Sample records for thermal threshold testing

  1. Thermal perception thresholds among workers in a cold climate.

    PubMed

    Burström, Lage; Björ, Bodil; Nilsson, Tohr; Pettersson, Hans; Rödin, Ingemar; Wahlström, Jens

    2017-10-01

    To investigate whether exposure to cold could influence the thermal perception thresholds in a working population. This cross-sectional study was comprised of 251 males and females and was carried out at two mines in the northern part of Norway and Sweden. The testing included a baseline questionnaire, a clinical examination and measurements of thermal perception thresholds, on both hands, the index (Digit 2) and little (Digit 5) fingers, for heat and cold. The thermal perception thresholds were affected by age, gender and test site. The thresholds were impaired by experiences of frostbite in the fingers and the use of medication that potentially could affect neurosensory functions. No differences were found between the calculated normative values for these workers and those in other comparative investigations conducted in warmer climates. The study provided no support for the hypothesis that living and working in cold climate will lead to impaired thermal perception thresholds. Exposure to cold that had caused localized damage in the form of frostbite was shown to lead to impaired thermal perception.

  2. Influence of intrinsic noise generated by a thermotesting device on thermal sensory detection and thermal pain detection thresholds.

    PubMed

    Pavlaković, G; Züchner, K; Zapf, A; Bachmann, C G; Graf, B M; Crozier, T A; Pavlaković, H

    2009-08-01

    Various factors can influence thermal perception threshold measurements and contribute significantly to unwanted variability of the tests. To minimize this variability, testing should be performed under strictly controlled conditions. Identifying the factors that increase the variability and eliminating their influence should increase reliability and reproducibility. Currently available thermotesting devices use a water-cooling system that generates a continuous noise of approximately 60 dB. In order to analyze whether this noise could influence the thermal threshold measurements we compared the thresholds obtained with a silent thermotesting device to those obtained with a commercially available device. The subjects were tested with one randomly chosen device on 1 day and with the other device 7 days later. At each session, heat, heat pain, cold, and cold pain thresholds were determined with three measurements. Bland-Altman analysis was used to assess agreement in measurements obtained with different devices and it was shown that the intersubject variability of the thresholds obtained with the two devices was comparable for all four thresholds tested. In contrast, the intrasubject variability of the thresholds for heat, heat pain, and cold pain detection was significantly lower with the silent device. Our results show that thermal sensory thresholds measured with the two devices are comparable. However, our data suggest that, for studies with repeated measurements on the same subjects, a silent thermotesting device may allow detection of smaller differences in the treatment effects and/or may permit the use of a smaller number of tested subjects. Muscle Nerve 40: 257-263, 2009.

  3. Refinement of a thermal threshold probe to prevent burns.

    PubMed

    Dixon, M J; Taylor, P M; Slingsby, L C; Murrell, J C

    2016-02-01

    Thermal threshold testing is commonly used for pain research. The stimulus may cause burning and merits prevention. Thermal probe modifications hypothesized to reduce burning were evaluated for practicality and effect. Studies were conducted on two humans and eight cats. Unmodified probe 0 was tested on two humans and promising modifications were also evaluated on cats. Probe 1 incorporated rapid cooling after threshold was reached: probe 1a used a Peltier system and probe 1b used water cooling. Probe 2 released skin contact immediately after threshold. Probe 3 (developed in the light of evidence of 'hot spots' in probe 0) incorporated reduced thermal mass and even heating across the skin contact area. Human skin was heated to 48℃ (6℃ above threshold) and the resulting burn was evaluated using area of injury and a simple descriptive scale (SDS). Probe 1a cooled the skin but required further heat dissipation, excessive power, was not 'fail-safe' and was inappropriate for animal mounting. Probe 1b caused less damage than no cooling (27 ± 13 and 38 ± 11 mm(2) respectively, P = 0.0266; median SDS 1.5 and 4 respectively, P = 0.0317) but was cumbersome. Probe 2 was unwieldy and was not evaluated further. Probe 3 produced even heating without blistering in humans. With probe 3 in cats, after opioid treatment, thermal threshold reached cut-out (55℃) on 24 occasions, exceeded 50℃ in a further 32 tests and exceeded 48℃ in the remainder. No skin damage was evident immediately after testing and mild hyperaemia in three cats at 2-3 days resolved rapidly. Probe 3 appeared to be suitable for thermal threshold testing. © The Author(s) 2015.

  4. The effect of acclimatization and ambient temperature on heat withdrawal threshold in rats.

    PubMed

    Vítková, J; Loučka, M; Boček, J; Vaculín, S

    2015-01-01

    Nociception in rats is frequently measured in terms of latency of withdrawal reaction to radiant heat (thermal nociceptive threshold). The aim of this study was to determine how much housing acclimatization and ambient temperature affect the results of thermal pain threshold testing. All experiments used adult male Wistar rats. Thermal pain thresholds were tested using the radiant heat withdrawal reaction at three different body sites: forepaws, hind paws and tail. Skin temperature was measured using an Infrared thermometer and ambient temperature was set at 18, 20, 24 or 26 °C. The results demonstrate that (1) thermal pain threshold was inversely related to both ambient and skin temperature; (2) housing acclimatization and repeated testing had no effect on nociceptive thresholds at any of the three body sites; (3) a resting, cranio-caudal distribution, of nociceptive sensitivity was observed; (4) hind paws and tail were more sensitive to changes of skin and ambient temperature than forepaws. These findings show the importance of recording laboratory conditions in experiments and their influence on results. © 2014 European Pain Federation - EFIC®

  5. Thermoreception and nociception of the skin: a classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise.

    PubMed

    Kuhtz-Buschbeck, Johann P; Andresen, Wiebke; Göbel, Stephan; Gilster, René; Stick, Carsten

    2010-06-01

    About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.

  6. Quantitative sensory studies in complex regional pain syndrome type 1/RSD.

    PubMed

    Tahmoush, A J; Schwartzman, R J; Hopp, J L; Grothusen, J R

    2000-12-01

    Patients with complex regional pain syndrome type I (CRPSD1) may have thermal allodynia after application of a non-noxious thermal stimulus to the affected limb. We measured the warm, cold, heat-evoked pain threshold and the cold-evoked pain threshold in the affected area of 16 control patients and patients with complex regional pain syndrome type 1/RSD to test the hypothesis that allodynia results from an abnormality in sensory physiology. A contact thermode was used to apply a constant 1 degrees C/second increasing (warm and heat-evoked pain) or decreasing (cold and cold-evoked pain) thermal stimulus until the patient pressed the response button to show that a temperature change was felt by the patient. Student t test was used to compare thresholds in patients and control patients. The cold-evoked pain threshold in patients with CRPSD1/RSD (p <0.001) was significantly decreased when compared with the thresholds in control patients (i.e., a smaller decrease in temperature was necessary to elicit cold-pain in patients with CRPSD1/RSD than in control patients). The heat-evoked pain threshold in patients with CRPS1/RSD was (p <0.05) decreased significantly when compared with thresholds in control patients. The warm- and cold-detection thresholds in patients with CRPS1/RSD were similar to the thresholds in control patients. This study suggests that thermal allodynia in patients with CRPS1/RSD results from decreased cold-evoked and heat-evoked pain thresholds. The thermal pain thresholds are reset (decreased) so that non-noxious thermal stimuli are perceived to be pain (allodynia).

  7. Neurosensory findings among electricians with self-reported remaining symptoms after an electrical injury: A case series.

    PubMed

    Rådman, Lisa; Gunnarsson, Lars-Gunnar; Nilsagård, Ylva; Nilsson, Tohr

    2016-12-01

    Symptoms described in previous studies indicate that electrical injury can cause longstanding injuries to the neurosensory nerves. The aim of the present case series was to objectively assess the profile of neurosensory dysfunction in electricians in relation to high voltage or low voltage electrical injury and the "no-let-go phenomenon". Twenty-three Swedish male electricians exposed to electrical injury were studied by using a battery of clinical instruments, including quantitative sensory testing (QST). The clinical test followed a predetermined order of assessments: thermal perceptions thresholds, vibration perception thresholds, tactile gnosis (the Shape and Texture Identification test), manual dexterity (Purdue Pegboard Test), and grip strength. In addition, pain was studied by means of a questionnaire, and a colour chart was used for estimation of white fingers. The main findings in the present case series were reduced thermal perceptions thresholds, where half of the group showed abnormal values for warm thermal perception and/or cold thermal perception. Also, the tactile gnosis and manual dexterity were reduced. High voltage injury was associated with more reduced sensibility compared to those with low voltage. Neurosensory injury can be objectively assessed after an electrical injury by using QST with thermal perception thresholds. The findings are consistent with injuries to small nerve fibres. In the clinical setting thermal perception threshold is therefore recommended, in addition to tests of tactile gnosis and manual dexterity (Purdue Pegboard). Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  8. Thermal Threshold Testing for Evaluation of Analgesics in New Zealand White Rabbits

    PubMed Central

    Barter, Linda S; Kwiatkowski, Anna

    2013-01-01

    We adapted a thermal analgesiometric device developed for cats for use in unrestrained rabbits. A probe composed of an electrical element and temperature sensor was held against shaved skin by using an elasticized band placed circumferentially around the thorax. An inflated bladder located between the probe and elastic maintained constant contact between probe and skin. The probe was heated until the rabbit displayed a behavioral reaction or the safety cutoff of 55 °C was reached. Threshold temperatures in unmedicated rabbits were stable over a 5-h period provided that tests were 15 min or more apart. Careful acclimation and testing resulted in no false-negative responses, and sham testing did not produce false-positive results. When compared with baseline values, thermal thresholds were significantly increased from 30 to 240 min, but not 300 min, after the administration of morphine at 3 mg/kg. Administration of equivalent volumes of saline via the same route had no effect on thermal threshold. This device may be suitable for investigating analgesic pharmacology in rabbits. PMID:23562032

  9. Cool, warm, and heat-pain detection thresholds: testing methods and inferences about anatomic distribution of receptors.

    PubMed

    Dyck, P J; Zimmerman, I; Gillen, D A; Johnson, D; Karnes, J L; O'Brien, P C

    1993-08-01

    We recently found that vibratory detection threshold is greatly influenced by the algorithm of testing. Here, we study the influence of stimulus characteristics and algorithm of testing and estimating threshold on cool (CDT), warm (WDT), and heat-pain (HPDT) detection thresholds. We show that continuously decreasing (for CDT) or increasing (for WDT) thermode temperature to the point at which cooling or warming is perceived and signaled by depressing a response key ("appearance" threshold) overestimates threshold with rapid rates of thermal change. The mean of the appearance and disappearance thresholds also does not perform well for insensitive sites and patients. Pyramidal (or flat-topped pyramidal) stimuli ranging in magnitude, in 25 steps, from near skin temperature to 9 degrees C for 10 seconds (for CDT), from near skin temperature to 45 degrees C for 10 seconds (for WDT), and from near skin temperature to 49 degrees C for 10 seconds (for HPDT) provide ideal stimuli for use in several algorithms of testing and estimating threshold. Near threshold, only the initial direction of thermal change from skin temperature is perceived, and not its return to baseline. Use of steps of stimulus intensity allows the subject or patient to take the needed time to decide whether the stimulus was felt or not (in 4, 2, and 1 stepping algorithms), or whether it occurred in stimulus interval 1 or 2 (in two-alternative forced-choice testing). Thermal thresholds were generally significantly lower with a large (10 cm2) than with a small (2.7 cm2) thermode.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Reliability of the method of levels for determining cutaneous temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Jakovljević, Miroljub; Mekjavić, Igor B.

    2012-09-01

    Determination of the thermal thresholds is used clinically for evaluation of peripheral nervous system function. The aim of this study was to evaluate reliability of the method of levels performed with a new, low cost device for determining cutaneous temperature sensitivity. Nineteen male subjects were included in the study. Thermal thresholds were tested on the right side at the volar surface of mid-forearm, lateral surface of mid-upper arm and front area of mid-thigh. Thermal testing was carried out by the method of levels with an initial temperature step of 2°C. Variability of thermal thresholds was expressed by means of the ratio between the second and the first testing, coefficient of variation (CV), coefficient of repeatability (CR), intraclass correlation coefficient (ICC), mean difference between sessions (S1-S2diff), standard error of measurement (SEM) and minimally detectable change (MDC). There were no statistically significant changes between sessions for warm or cold thresholds, or between warm and cold thresholds. Within-subject CVs were acceptable. The CR estimates for warm thresholds ranged from 0.74°C to 1.06°C and from 0.67°C to 1.07°C for cold thresholds. The ICC values for intra-rater reliability ranged from 0.41 to 0.72 for warm thresholds and from 0.67 to 0.84 for cold thresholds. S1-S2diff ranged from -0.15°C to 0.07°C for warm thresholds, and from -0.08°C to 0.07°C for cold thresholds. SEM ranged from 0.26°C to 0.38°C for warm thresholds, and from 0.23°C to 0.38°C for cold thresholds. Estimated MDC values were between 0.60°C and 0.88°C for warm thresholds, and 0.53°C and 0.88°C for cold thresholds. The method of levels for determining cutaneous temperature sensitivity has acceptable reliability.

  11. Quantitative somatosensory testing of the penis: optimizing the clinical neurological examination.

    PubMed

    Bleustein, Clifford B; Eckholdt, Haftan; Arezzo, Joseph C; Melman, Arnold

    2003-06-01

    Quantitative somatosensory testing, including vibration, pressure, spatial perception and thermal thresholds of the penis, has demonstrated neuropathy in patients with a history of erectile dysfunction of all etiologies. We evaluated which measurement of neurological function of the penis was best at predicting erectile dysfunction and examined the impact of location on the penis for quantitative somatosensory testing measurements. A total of 107 patients were evaluated. All patients were required to complete the erectile function domain of the International Index of Erectile Function (IIEF) questionnaire, of whom 24 had no complaints of erectile dysfunction and scored within the "normal" range on the IIEF. Patients were subsequently tested on ventral middle penile shaft, proximal dorsal midline penile shaft and glans penis (with foreskin retracted) for vibration, pressure, spatial perception, and warm and cold thermal thresholds. Mixed models repeated measures analysis of variance controlling for age, diabetes and hypertension revealed that method of measurement (quantitative somatosensory testing) was predictive of IIEF score (F = 209, df = 4,1315, p <0.001), while site of measurement on the penis was not. To determine the best method of measurement, we used hierarchical regression, which revealed that warm temperature was the best predictor of erectile dysfunction with pseudo R(2) = 0.19, p <0.0007. There was no significant improvement in predicting erectile dysfunction when another test was added. Using 37C and greater as the warm thermal threshold yielded a sensitivity of 88.5%, specificity 70.0% and positive predictive value 85.5%. Quantitative somatosensory testing using warm thermal threshold measurements taken at the glans penis can be used alone to assess the neurological status of the penis. Warm thermal thresholds alone offer a quick, noninvasive accurate method of evaluating penile neuropathy in an office setting.

  12. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  13. Sex differences in thermal detection and thermal pain threshold and the thermal grill illusion: a psychophysical study in young volunteers.

    PubMed

    Averbeck, Beate; Seitz, Lena; Kolb, Florian P; Kutz, Dieter F

    2017-09-01

    Sex-related differences in human thermal and pain sensitivity are the subject of controversial discussion. The goal of this study in a large number of subjects was to investigate sex differences in thermal and thermal pain perception and the thermal grill illusion (TGI) as a phenomenon reflecting crosstalk between the thermoreceptive and nociceptive systems. The thermal grill illusion is a sensation of strong, but not necessarily painful, heat often preceded by transient cold upon skin contact with spatially interlaced innocuous warm and cool stimuli. The TGI was studied in a group of 78 female and 58 male undergraduate students and was evoked by placing the palm of the right hand on the thermal grill (20/40 °C interleaved stimulus). Sex-related thermal perception was investigated by a retrospective analysis of thermal detection and thermal pain threshold data that had been measured in student laboratory courses over 5 years (776 female and 476 male undergraduate students) using the method of quantitative sensory testing (QST). To analyse correlations between thermal pain sensitivity and the TGI, thermal pain threshold and the TGI were determined in a group of 20 female and 20 male undergraduate students. The TGI was more pronounced in females than males. Females were more sensitive with respect to thermal detection and thermal pain thresholds. Independent of sex, thermal detection thresholds were dependent on the baseline temperature with a specific progression of an optimum curve for cold detection threshold versus baseline temperature. The distribution of cold pain thresholds was multi-modal and sex-dependent. The more pronounced TGI in females correlated with higher cold sensitivity and cold pain sensitivity in females than in males. Our finding that thermal detection threshold not only differs between the sexes but is also dependent on the baseline temperature reveals a complex processing of "cold" and "warm" inputs in thermal perception. The results of the TGI experiment support the assumption that sex differences in cold-related thermoreception are responsible for sex differences in the TGI.

  14. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions

    PubMed Central

    2013-01-01

    Background The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse’s general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Results Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). Conclusion The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures. PMID:23298405

  15. Evaluation of contact heat thermal threshold testing for standardized assessment of cutaneous nociception in horses - comparison of different locations and environmental conditions.

    PubMed

    Poller, Christin; Hopster, Klaus; Rohn, Karl; Kästner, Sabine Br

    2013-01-08

    The aim of the study was to evaluate the performance of contact heat thermal stimulation in horses at different body sites and under different environmental conditions and different test situations. Five warm-blood horses were equipped with the thermal probe located on the skin of nostril (N), withers (W) or coronary band (C). Skin temperature and reaction temperature (thermal threshold) at each location were measured and percent thermal excursion (% TE = 100 * (threshold temperature - skin temperature)/(cut-out temperature - skin temperature) was calculated. Environmental conditions were changed in partial random order for all locations, so each horse was tested in its familiar box stall and stocks, in the morning and evening and at warm and cold ambient temperatures. Type of reaction to the stimulus and horse's general behaviour during stimulation were recorded. The stimulation sites were examined for the occurrence of possible skin lesions. Skin temperatures were significantly different during warm and cold ambient temperatures at all three locations, but remained constant over repeated stimulation. An obvious response to stimulation before reaching cut-out temperature could be detected most frequently at N and W in boxes during warm ambient temperatures. The most frequent type of reaction to thermal stimulation at the nostril was headshaking (64.6%), skin twitching at the withers (82.9%) and hoof withdrawal at the coronary band (79.2%). The outcome of thermal threshold testing depended on ambient temperature, stimulation site and environment. Best results with the WTT2 in horses were obtained at the nostrils or withers in a familiar environment at warm ambient temperatures.

  16. Influence of aging on thermal and vibratory thresholds of quantitative sensory testing.

    PubMed

    Lin, Yea-Huey; Hsieh, Song-Chou; Chao, Chi-Chao; Chang, Yang-Chyuan; Hsieh, Sung-Tsang

    2005-09-01

    Quantitative sensory testing has become a common approach to evaluate thermal and vibratory thresholds in various types of neuropathies. To understand the effect of aging on sensory perception, we measured warm, cold, and vibratory thresholds by performing quantitative sensory testing on a population of 484 normal subjects (175 males and 309 females), aged 48.61 +/- 14.10 (range 20-86) years. Sensory thresholds of the hand and foot were measured with two algorithms: the method of limits (Limits) and the method of level (Level). Thresholds measured by Limits are reaction-time-dependent, while those measured by Level are independent of reaction time. In addition, we explored (1) the correlations of thresholds between these two algorithms, (2) the effect of age on differences in thresholds between algorithms, and (3) differences in sensory thresholds between the two test sites. Age was consistently and significantly correlated with sensory thresholds of all tested modalities measured by both algorithms on multivariate regression analysis compared with other factors, including gender, body height, body weight, and body mass index. When thresholds were plotted against age, slopes differed between sensory thresholds of the hand and those of the foot: for the foot, slopes were steeper compared with those for the hand for each sensory modality. Sensory thresholds of both test sites measured by Level were highly correlated with those measured by Limits, and thresholds measured by Limits were higher than those measured by Level. Differences in sensory thresholds between the two algorithms were also correlated with age: thresholds of the foot were higher than those of the hand for each sensory modality. This difference in thresholds (measured with both Level and Limits) between the hand and foot was also correlated with age. These findings suggest that age is the most significant factor in determining sensory thresholds compared with the other factors of gender and anthropometric parameters, and this provides a foundation for investigating the neurobiologic significance of aging on the processing of sensory stimuli.

  17. Do ethnicity and gender have an impact on pain thresholds in minor dermatologic procedures? A study on thermal pain perception thresholds in Asian ethinic groups.

    PubMed

    Yosipovitch, Gil; Meredith, Gregory; Chan, Yiong Huak; Goh, Chee Leok

    2004-02-01

    The perception of pain is a personal experience influenced by many factors, including genetic, ethnic and cultural issues. Understanding these perceptions is especially important in dermatologic patients undergoing minor surgical operations and who often differ in their pain response to surgical treatments. Little is known about how these differences affect the perception of experimental pain. The purpose of this study was to determine experimental pain perception differences in three distinct East Asian ethnic populations. Pain thresholds were examined with a psychophysical computerized quantitative thermal sensory testing device (TSA 2001) in healthy volunteers recruited from three different Asian ethnic groups. Using the methods of limits, experimental pain perception threshold was measured on the forehead and volar aspect of the forearm in 49 healthy subjects. The measurements were then repeated after skin barrier perturbation with adhesive tape stripping of the stratum corneum. All three ethnic groups were analyzed separately with respect to age, gender educational level and skin type. A total of 20 Chinese, 14 Malay and 15 Indian subjects completed the study. Thermal pain thresholds were similar in all three ethnic groups before and after tape strippings. No significant differences were noted between genders. Using quantitative sensory thermal testing, we demonstrated that no significant differences in pain occur between different races and genders.

  18. Antinociceptive effects of methadone combined with detomidine or acepromazine in horses.

    PubMed

    Lopes, C; Luna, S P L; Rosa, A C; Quarterone, C; Crosignani, N; Taylor, P M; Pantoja, J C; Puoli, J N P

    2016-09-01

    To investigate two protocols to provide antinociception in horses. To evaluate the antinociceptive effects of intravenous methadone combined with detomidine or acepromazine in adult horses. Randomised, blinded, crossover study. Mechanical, thermal and electrical stimuli were applied to the dorsal left and right metacarpus and coronary band of the left thoracic limb, respectively. A thermal stimulus was applied caudal to the withers. The horses were treated with saline (C), a combination of methadone (0.2 mg/kg bwt) and detomidine (10 μg/kg bwt) (MD) or methadone (0.2 mg/kg bwt) and acepromazine (0.05 mg/kg bwt) (MA) at 1 week intervals. Nociceptive thresholds were measured before and at 15 min intervals until 150 min after treatment. Wilcoxon rank-sum and Wilcoxon signed rank tests were used to compare data between groups at each time point and over time within each group, followed by the Bonferroni method to adjust the P value. The mechanical stimulus was the most sensitive test to differentiate the antinociceptive effects of the treatments. Mechanical thresholds were greater after MD than MA between 15 and 30 min and with both MD and MA these thresholds were greater than C from 15 to 60 min. Electrical and thermal limb thresholds were greater after MD than C at 15 and 45 min and at 15, 30, 45, 75 and 105 min, respectively. Thermal limb thresholds were greater with MA than C at 30 min. Thoracic thermal threshold in MD and MA were higher than C at 45, 75, 90 and 120 min and from 30 to 75 min, respectively. Methadone and acepromazine produced less pronounced mechanical antinociception than MD. © 2015 EVJ Ltd.

  19. Effect of intrathecal baclofen on evoked pain perception: an evoked potentials and quantitative thermal testing study.

    PubMed

    Kumru, H; Kofler, M; Flores, M C; Portell, E; Robles, V; Leon, N; Vidal, J

    2013-08-01

    Somatic antinociceptive effects of baclofen have been demonstrated in animal models. We hypothesized that if enhanced thermal or pain sensitivity is produced by loss of gamma-aminobutyric acid (GABA)-ergic tone in the central nervous system, spinal administration of GABA agonists might be predicted to be effective in thermal and/or pain perception changes and pain-related evoked potentials in candidates for intrathecal baclofen (ITB) treatment. Eleven patients with severe spinal cord injury (SCI) who suffered from severe spasticity were evaluated during a 50-μg ITB bolus test. Warm and heat pain thresholds, evoked heat pain perception, and contact heat-evoked potentials (CHEPs) were determined above SCI level from the right and left sides. Nine age- and gender-matched healthy volunteers undergoing repeat testing without any placebo injection served as control group. In patients, heat pain perception threshold increased, and evoked pain perception and amplitude of CHEPs decreased significantly after ITB bolus application in comparison with baseline (p < 0.005), with no change in warm perception threshold. In controls, no significant changes were observed in repeat testing over time. Our findings indicate that ITB modulates heat pain perception threshold, evoked heat pain perception and heat pain-related evoked potentials without inducing warm perception threshold changes in SCI patients. This phenomenon should be taken into account in the clinical evaluation and management of pain in patients receiving baclofen. © 2012 European Federation of International Association for the Study of Pain Chapters.

  20. Experimental Psychological Stress on Quantitative Sensory Testing Response in Patients with Temporomandibular Disorders.

    PubMed

    Araújo Oliveira Ferreira, Dyna Mara; Costa, Yuri Martins; de Quevedo, Henrique Müller; Bonjardim, Leonardo Rigoldi; Rodrigues Conti, Paulo César

    2018-05-15

    To assess the modulatory effects of experimental psychological stress on the somatosensory evaluation of myofascial temporomandibular disorder (TMD) patients. A total of 20 women with myofascial TMD and 20 age-matched healthy women were assessed by means of a standardized battery of quantitative sensory testing. Cold detection threshold (CDT), warm detection threshold (WDT), cold pain threshold (CPT), heat pain threshold (HPT), mechanical pain threshold (MPT), wind-up ratio (WUR), and pressure pain threshold (PPT) were performed on the facial skin overlying the masseter muscle. The variables were measured in three sessions: before (baseline) and immediately after the Paced Auditory Serial Addition Task (PASAT) (stress) and then after a washout period of 20 to 30 minutes (poststress). Mixed analysis of variance (ANOVA) was applied to the data, and the significance level was set at P = .050. A significant main effect of the experimental session on all thermal tests was found (ANOVA: F > 4.10, P < .017), where detection tests presented an increase in thresholds in the poststress session compared to baseline (CDT, P = .012; WDT, P = .040) and pain thresholds were reduced in the stress (CPT, P < .001; HPT, P = .001) and poststress sessions (CPT, P = .005; HPT, P = .006) compared to baseline. In addition, a significant main effect of the study group on all mechanical tests (MPT, WUR, and PPT) was found (ANOVA: F > 4.65, P < .037), where TMD patients were more sensitive than healthy volunteers. Acute mental stress conditioning can modulate thermal sensitivity of the skin overlying the masseter in myofascial TMD patients and healthy volunteers. Therefore, psychological stress should be considered in order to perform an unbiased somatosensory assessment of TMD patients.

  1. Effects of reference analgesics and psychoactive drugs on the noxious heat threshold of mice measured by an increasing-temperature water bath.

    PubMed

    Boros, Melinda; Benkó, Rita; Bölcskei, Kata; Szolcsányi, János; Barthó, Loránd; Pethő, Gábor

    2013-12-01

    The study aimed at validating an increasing-temperature water bath suitable for determining the noxious heat threshold for use in mice. The noxious heat threshold was determined by immersing the tail of the gently held awake mouse into a water container whose temperature was near-linearly increased at a rate of 24°C/min. until the animal withdrew its tail, that is, heating attained the noxious threshold. The effects of standard analgesic, neuroleptic and anxiolytic drugs were investigated in a parallel way on both the noxious heat threshold and the psychomotor activity assessed by the open field test. Morphine, diclofenac and metamizol (dipyrone) elevated the heat threshold of mice with minimum effective doses of 6, 30 and 1000 mg/kg i.p., respectively. These doses of morphine and diclofenac failed to induce any remarkable effect on psychomotor activity in the open field test while that of metamizol exerted a profound inhibition. The anxiolytic diazepam and the neuroleptic droperidol at doses evoking a mild and moderate, respectively, psychomotor inhibition failed to alter the heat threshold. Combination of a subliminal dose of morphine (regarding both antinociceptive and psychomotor inhibitory action) with diclofenac, metamizol, diazepam or droperidol at doses also subliminal regarding the thermal antinociceptive effect elevated the noxious heat threshold without major additional effects in the open field test. It is concluded that the increasing-temperature water bath is suitable for studying the thermal antinociceptive effects of morphine and diclofenac as well as the morphine-sparing action of diclofenac, metamizol, droperidol and diazepam. Behavioural testing is recommended when testing analgesics. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  2. Fatigue threshold studies in Fe, Fe-Si, and HSLA steel: Part II. thermally activated behavior of the effective stress intensity at threshold

    NASA Astrophysics Data System (ADS)

    Yu, W.; Esaklul, K.; Gerberich, W. W.

    1984-05-01

    It is shown that closure mechanisms alone cannot fully explain increasing fatigue thresholds with decreasing test temperature for a sequence of Fe-Si binary alloys and an HSLA steel. Implications are that fatigue crack propagation near threshold is a thermally activated process. The effective threshold stress intensity, which was obtained by subtracting the closure portion from the fatigue threshold, was examined. This effective stress intensity was found to correlate very well to the thermal component of the flow stress. A detailed fractographic study of the fatigue surface was performed. Water vapor in the room air was found to promote the formation of oxide and intergranular crack growth. At lower temperature, a brittle-type cyclic cleavage fatigue surface was observed but the ductile process persisted even at 123 K. Arrest marks were found on all three modes of fatigue crack growth. The regular spacings between these lines and dislocation modeling suggested that fatigue crack growth was controlled by the subcell structure near threshold. A model based on the slip-off of dislocations was examined. From this, it is shown that the effective fatigue threshold may be related to the square root of (one plus the strain rate sensitivity).

  3. Thermal Threshold: Research Study on Small Fiber Dysfunction in Distal Diabetic Polyneuropathy

    PubMed Central

    Jimenez-Cohl, Pedro; Grekin, Carlos; Leyton, Cristian; Vargas, Claudio; Villaseca, Roberto

    2012-01-01

    Objective The most commonly used technique for diagnosis of diabetic neuropathy (DN) is nervous conduction (NC). Our hypothesis is that the use of the thermal threshold (TT) technique to evaluate small fiber damage, which precedes large fiber damage, could enable earlier diagnosis and diminish false negatives. Research Design and Methods The study involved 70 asymptomatic patients with type 2 diabetes mellitus (T2DM) all being treated with oral hypoglycemic medication, and having negative metabolic control levels with glycosylated hemoglobin A1c greater than 7% and less than 8%. Diabetic neuropathy was their only evident complication. All other complications or other causes of neuropathy were discarded. Their time of evolution was 1 to 48 months since date of diagnosis of diabetes. Both thermal threshold and sensory and motor nervous conduction were determined in upper and lower limbs. Results Nervous conduction was found normal in 81% and altered in 19% of patients (large fiber neuropathy). Thermal threshold was normal in 57% and altered in 43% of patients (small fiber neuropathy). In those with normal TTs, no case with an altered NC was found (p < 0.001). Patients with altered TTs could have normal (57%) or altered NC (43%). Thus, NC showed a high frequency of false negatives for DN (57% of 30 cases). The frequency of small fiber neuropathy found with the TT test was higher than that of large fiber neuropathy found with the NC test (p < 0.001) and was found at an earlier age. Conclusions The TT test demonstrated a higher frequency of neuropathy than the NC test in clinically asymptomatic T2DM patients. We suggest that small fiber should be studied before large fiber function to diagnosis distal and symmetrical DN. PMID:22401337

  4. Can widespread hypersensitivity in carpal tunnel syndrome be substantiated if neck and arm pain are absent?

    PubMed

    Schmid, A B; Soon, B T C; Wasner, G; Coppieters, M W

    2012-02-01

    Recent studies demonstrated that patients with carpal tunnel syndrome (CTS) have signs of thermal and mechanical hyperalgesia in extra-median territories suggesting an involvement of central pain mechanisms. As previous studies included patients with shoulder/arm symptoms or neck pain, a potential influence of these coexisting disorders cannot be excluded. This study therefore evaluated whether widespread sensory changes (hypoesthesia or hyperalgesia) are present in patients with unilateral CTS in the absence of coexisting disorders. Twenty-six patients with unilateral CTS with symptoms localised to their hand and 26 healthy controls participated in the study. A comprehensive quantitative sensory testing (QST) protocol including thermal and mechanical detection and pain thresholds was performed over the hands (median, ulnar and radial innervation area), lateral elbows, neck and tibialis anterior muscle. Patients with CTS demonstrated thermal and mechanical hypoesthesia in the hand but not at distant sites. Thermal or mechanical hyperalgesia was not identified at any location with traditional QST threshold testing. However, patients with CTS rated the pain during thermal pain testing significantly higher than healthy participants. This was especially apparent for heat pain ratings which were elevated not only in the affected hand but also in the neck and tibialis anterior muscle. In conclusion, CTS alone in the absence of coexisting neck and arm pain does not account for sensory changes outside the affected hand as determined by traditional QST threshold testing. Elevated pain ratings may however be an early indication of central pain mechanisms. © 2011 European Federation of International Association for the Study of Pain Chapters.

  5. A low dose of three local anesthetic solutions for interscalene blockade tested by thermal quantitative sensory testing: a randomized controlled trial.

    PubMed

    Sermeus, Luc A; Schepens, Tom; Hans, Guy H; Morrison, Stuart G; Wouters, Kristien; Breebaart, Margaretha B; Smitz, Carine J; Vercauteren, Marcel P

    2018-05-03

    This randomized double-blind controlled trial compared the block characteristics of three low-dose local anesthetics at different roots in an ultrasound-guided interscalene block, using thermal quantitative sensory testing for assessing the functioning of cutaneous small nerve fibres. A total of 37 adults scheduled to undergo shoulder arthroscopy were randomized to receive 5 mL of either 0.5% levobupivacaine with and without epinephrine 1/200,000 or 0.75% ropivacaine in a single-shot interscalene block. Thermal quantitative sensory testing was performed in the C4, C5, C6 and C7 dermatomes. Detection thresholds for cold/warm sensation and cold/heat pain were measured before and at 30 min, 6, 10 and 24 h after infiltration around C5. The need for rescue medication was recorded. No significant differences between groups were found for any sensation (lowest P = 0.28). At 6 h, the largest differences in sensory thresholds were observed for the C5 dermatome. The increase in thresholds were less in C4 and C6 and minimal in C7 for all sensations. The analgesic effect lasted the longest in C5 (time × location mixed model P < 0.001 for all sensory tests). The time to rescue analgesia was significantly shorter with 0.75% ropivacaine (P = 0.02). The quantitative sensory findings showed no difference in intensity between the local anesthetics tested. A decrease in block intensity, with minimal changes in pain detection thresholds, was observed in the roots adjacent to C5, with the lowest block intensity in C7. A clinically relevant shorter duration was found with 0.75% ropivacaine compared to the other groups. Trial registration NCT 02691442.

  6. Quantitative thermal sensory testing -- value of testing for both cold and warm sensation detection in evaluation of small fiber neuropathy.

    PubMed

    Shukla, Garima; Bhatia, Manvir; Behari, Madhuri

    2005-10-01

    Small fiber neuropathy is a common neurological disorder, often missed or ignored by physicians, since examination and routine nerve conduction studies are usually normal in this condition. Many methods including quantitative thermal sensory testing are currently being used for early detection of this condition, so as to enable timely investigation and treatment. This study was conducted to assess the yield of quantitative thermal sensory testing in diagnosis of small fiber neuropathy. We included patients presenting with history suggestive of positive and/or negative sensory symptoms, with normal examination findings, clinically suggestive of small fiber neuropathy, with normal or minimally abnormal routine nerve conduction studies. These patients were subjected to quantitative thermal sensory testing using a Medoc TSA-II Neurosensory analyser at two sites and for two modalities. QST data were compared with those in 120 normal healthy controls. Twenty-five patients (16 males, 9 females) with mean age 46.8+/-16.6 years (range: 21-75 years) were included in the study. The mean duration of symptoms was 1.6+/-1.6 years (range: 3 months-6 years). Eighteen patients (72%) had abnormal thresholds in at least one modality. Thermal thresholds were normal in 7 out of the 25 patients. This study demonstrates that quantitative thermal sensory testing is a fairly sensitive method for detection of small fiber neuropathy especially in patients with normal routine nerve conduction studies.

  7. Noninvasive Thermal Evaluation of Ventriculoperitoneal Shunt Patency and Cerebrospinal Fluid Flow Using a Flow Enhancing Device.

    PubMed

    Hameed, Mustafa Q; Zurakowski, David; Proctor, Mark R; Stone, Scellig S D; Warf, Benjamin C; Smith, Edward R; Goumnerova, Liliana C; Swoboda, Marek; Anor, Tomer; Madsen, Joseph R

    2018-06-16

    While a noninvasive flow determination would be desirable in the diagnosis of cerebrospinal fluid shunt malfunction, existing studies have not yet defined a role for thermal flow detection. To evaluate a revised test protocol using a micropumper designed to transiently enhance flow during thermal testing to determine whether thermal detection of flow is associated with progression to shunt revision surgery. Eighty-two unique tests were performed in 71 shunts. The primary outcome, need for revision within 7 d of testing, was compared with results of micropumper-augmented thermal flow detection. Statistical analysis was based on blind interpretation of test results and raw temperature data recorded during testing. The test was sensitive (73%) and specific (68%) in predicting need for revision, with 5.6-fold higher probability of revision when flow was not detected. Negative predictive value in our sample was 94.2%. The probability of not requiring revision increased with increasing total temperature drop. Analysis of various possible thresholds showed that the optimal temperature cutoff may be lower than suggested by the manufacturer (0.125°C vs 0.2°C). This is the first study to report a strong association between thermal flow evaluation and a clinical impression that a shunt is not malfunctioning. The current recommended threshold may increase the false positive rate unnecessarily, and as clinicians gain experience with the method, they may find value in examining the temperature curves themselves. Multicenter studies are suggested to further define a role for this diagnostic test.

  8. Numerical simulation study on thermal response of PBX 9501 to low velocity impact

    NASA Astrophysics Data System (ADS)

    Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli

    2017-01-01

    Impact sensitivity of solid high explosives, an important index in evaluating the safety and performance of explosives, is an important concern in handling, storage, and shipping procedures. It is a great threat for either bare dynamite or shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The Steven test is an effective tool to study the relative sensitivity of various explosives. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven test, the thermal and mechanical response rules of PBX 9501 at various impact velocities were numerically analyzed, and the threshold velocity of explosive initiation was obtained, which is in good agreement with experimental results. In addition, the effect of confine condition of test device to the threshold velocity was explored.

  9. Thermal and mechanical quantitative sensory testing in Chinese patients with burning mouth syndrome--a probable neuropathic pain condition?

    PubMed

    Mo, Xueyin; Zhang, Jinglu; Fan, Yuan; Svensson, Peter; Wang, Kelun

    2015-01-01

    To explore the hypothesis that burning mouth syndrome (BMS) probably is a neuropathic pain condition, thermal and mechanical sensory and pain thresholds were tested and compared with age- and gender-matched control participants using a standardized battery of psychophysical techniques. Twenty-five BMS patients (men: 8, women: 17, age: 49.5 ± 11.4 years) and 19 age- and gender-matched healthy control participants were included. The cold detection threshold (CDT), warm detection threshold (WDT), cold pain threshold (CPT), heat pain threshold (HPT), mechanical detection threshold (MDT) and mechanical pain threshold (MPT), in accordance with the German Network of Neuropathic Pain guidelines, were measured at the following four sites: the dorsum of the left hand (hand), the skin at the mental foramen (chin), on the tip of the tongue (tongue), and the mucosa of the lower lip (lip). Statistical analysis was performed using ANOVA with repeated measures to compare the means within and between groups. Furthermore, Z-score profiles were generated, and exploratory correlation analyses between QST and clinical variables were performed. Two-tailed tests with a significance level of 5 % were used throughout. CDTs (P < 0.02) were significantly lower (less sensitivity) and HPTs (P < 0.001) were significantly higher (less sensitivity) at the tongue and lip in BMS patients compared to control participants. WDT (P = 0.007) was also significantly higher at the tongue in BMS patients compared to control subjects . There were no significant differences in MDT and MPT between the BMS patients and healthy subjects at any of the four test sites. Z-scores showed that significant loss of function can be identified for CDT (Z-scores = -0.9±1.1) and HPT (Z-scores = 1.5±0.4). There were no significant correlations between QST and clinical variables (pain intensity, duration, depressions scores). BMS patients had a significant loss of thermal function but not mechanical function, supporting the hypothesis that BMS may be a probable neuropathic pain condition. Further studies including e.g. electrophysiological or imaging techniques are needed to clarify the underlying mechanisms of BMS.

  10. Altered quantitative sensory testing outcome in subjects with opioid therapy.

    PubMed

    Chen, Lucy; Malarick, Charlene; Seefeld, Lindsey; Wang, Shuxing; Houghton, Mary; Mao, Jianren

    2009-05-01

    Preclinical studies have suggested that opioid exposure may induce a paradoxical decrease in the nociceptive threshold, commonly referred as opioid-induced hyperalgesia (OIH). While OIH may have implications in acute and chronic pain management, its clinical features remain unclear. Using an office-based quantitative sensory testing (QST) method, we compared pain threshold, pain tolerance, and the degree of temporal summation of the second pain in response to thermal stimulation among three groups of subjects: those with neither pain nor opioid therapy (group 1), with chronic pain but without opioid therapy (group 2), and with both chronic pain and opioid therapy (group 3). We also examined the possible correlation between QST responses to thermal stimulation and opioid dose, opioid treatment duration, opioid analgesic type, pain duration, or gender in group 3 subjects. As compared with both group 1 (n=41) and group 2 (n=41) subjects, group 3 subjects (n=58) displayed a decreased heat pain threshold and exacerbated temporal summation of the second pain to thermal stimulation. In contrast, there were no differences in cold or warm sensation among three groups. Among clinical factors, daily opioid dose consistently correlated with the decreased heat pain threshold and exacerbated temporal summation of the second pain in group 3 subjects. These results indicate that decreased heat pain threshold and exacerbated temporal summation of the second pain may be characteristic QST changes in subjects with opioid therapy. The data suggest that QST may be a useful tool in the clinical assessment of OIH.

  11. Thermal quantitative sensory testing to assess the sensory effects of three local anesthetic solutions in a randomized trial of interscalene blockade for shoulder surgery.

    PubMed

    Sermeus, Luc A; Hans, Guy H; Schepens, Tom; Bosserez, Nathalie M-L; Breebaart, Margaretha B; Smitz, Carine J; Vercauteren, Marcel P

    2016-01-01

    This study investigated whether quantitative sensory testing (QST) with thermal stimulations can quantitatively measure the characteristics of an ultrasound-guided interscalene brachial plexus block (US-ISB). This was a prospective randomized trial in patients scheduled for arthroscopic shoulder surgery under general anesthesia and US-ISB. Participants and observers were blinded for the study. We assigned the study participants to one of three groups: 0.5% levobupivacaine 15 mL, 0.5% levobupivacaine 15 mL with 1:200,000 epinephrine, and 0.75% ropivacaine 15 mL. We performed thermal QST within dermatomes C4, C5, C6, and C7 before infiltration and 30 min, six hours, ten hours, and 24 hr after performing the US-ISB. In addition, we used QST, a semi-objective quantitative testing method, to measure the onset, intensity, duration, extent, and functional recovery of the sensory block. We also measured detection thresholds for cold/warm sensations and cold/heat pain. Detection thresholds for all thermal sensations within the ipsilateral C4, C5, C6, and C7 dermatomes increased rapidly (indicating the development of a hypoesthetic state) and reached a steady state after 30 min. This lasted for approximately ten hours and returned to normal detection thresholds by 24 hr. There were no differences detected between the three groups at 24 hr when we compared warm sensation thresholds on one dermatome. Visual inspection of the pooled results per dermatome suggests the ability of QST to detect clinically relevant differences in block intensity per dermatome. Quantitative sensory testing can be useful as a method for detecting the presence and characteristics of regional anesthesia-induced sensory block and may be used for the evaluation of clinical protocols. The three local anesthetic solutions exhibited a similar anesthetic effect. The results support the use of QST to assess block characteristics quantitatively under clinical research conditions. This trial was registered at Clinicaltrals.gov, NCT02271867.

  12. Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain.

    PubMed

    Lv, Jing; Li, Zhenci; She, Shouzhang; Xu, Lixin; Ying, Yanlu

    2015-08-01

    To evaluate the effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Healthy 30 male Sprague Dawley (SD) rats were randomly divided into six groups (n = 5 in each group): (1) control group without any treatments; (2) chronic constriction injury (CCI) group; (3) Early-rapamycin group with intrathecal injection of rapamycin 4 hours after CCI days; (4) Early-vehicle group with intrathecal injection of DMSO; (5) Late-rapamycin group with intrathecal injection of rapamycin 7 days after CCI; (6) Late-vehicle group with intrathecal injection of DMSO 7 days after CCI. Rapamycin or DMSO was injected for 3 consecutive days. Mechanical and thermal threshold were tested before and after the CCI operation. Lumbar segment of spinal cords was tested for glial fibrillary acidic protein (GFAP) by immunohistochemistry on 14th day after operation. Mechanical and thermal hyperalgesia emerged on fourth day were maintained till fourteenth day after operation. After intrathecal injection of rapamycin 4 hours or 7 days after CCI, mechanical and thermal threshold significantly increased compared to injection of DMSO. The area of GFAP positive and the mean density of GFAP positive area in the dorsal horn of the ipsilateral side greatly increased in rapamycin-treated groups. Intrathecal injection of rapamycin may attenuate CCI-induced hyperalgesia and inhibit the activation of astrocyte.

  13. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  14. Physiological changes in female genital sensation during sexual stimulation.

    PubMed

    Gruenwald, Ilan; Lowenstein, Lior; Gartman, Irena; Vardi, Yoram

    2007-03-01

    A normal sexual response in the female depends on the integrity of afferent sensory input from the genital region. So far genital sensation has been investigated only during a non-excitatory state, and the sensory physiological changes, which occur during the sexual cycle in this region, are still obscured. To investigate the sensory status of the female genital region during sexual arousal and orgasm. Genital sensory thresholds measured by Quantitative Sensory Testing (vibratory and thermal) were compared in a non-excitatory vs. excitatory state in normal sexually functioning females. Eleven healthy female volunteers were recruited and attended three separate visits. During each session only one anatomical site, either clitoris or vagina was tested for either vibratory or thermal stimuli. A psychophysical method of limits was employed for threshold determination of warm or vibratory stimuli. In each session, all women were tested at baseline, immediately after arousal, after orgasm and three more measurements - 5, 10, and 20 minutes during the recovery state. A significant decrease in clitoral vibratory sensation threshold was observed between the baseline and the arousal phases (P = 0.003). Comparison of vibratory sensation between baseline and following orgasm at the clitoral and vaginal region showed a significant difference (P < 0.001) for both regions. These changes were not significant for thermal threshold sensation at the clitoral region (P = 0.6). This is the first time that genital sensation has been measured during the excitatory phase of the female sexual cycle. This normative data may serve as a baseline for further investigations of the sensory input of the genital organs during intercourse in pathological states.

  15. Test-retest agreement and reliability of quantitative sensory testing 1 year after breast cancer surgery.

    PubMed

    Andersen, Kenneth Geving; Kehlet, Henrik; Aasvang, Eske Kvanner

    2015-05-01

    Quantitative sensory testing (QST) is used to assess sensory dysfunction and nerve damage by examining psychophysical responses to controlled, graded stimuli such as mechanical and thermal detection and pain thresholds. In the breast cancer population, 4 studies have used QST to examine persistent pain after breast cancer treatment, suggesting neuropathic pain being a prominent pain mechanism. However, the agreement and reliability of QST has not been described in the postsurgical breast cancer population, hindering exact interpretation of QST studies in this population. The aim of the present study was to assess test-retest properties of QST after breast cancer surgery. A total of 32 patients recruited from a larger ongoing prospective trial were examined with QST 12 months after breast cancer surgery and reexamined a week later. A standardized QST protocol was used, including sensory mapping for mechanical, warmth and cold areas of sensory dysfunction, mechanical thresholds using monofilaments and pin-prick, thermal thresholds including warmth and cold detection thresholds and heat pain threshold, with bilateral examination. Agreement and reliability were assessed by Bland-Altman plots, descriptive statistics, coefficients of variance, and intraclass correlation. Bland-Altman plots showed high variation on the surgical side. Intraclass coefficients ranged from 0.356 to 0.847 (moderate to substantial reliability). Between-patient variation was generally higher (0.9 to 14.5 SD) than within-patient variation (0.23 to 3.55 SD). There were no significant differences between pain and pain-free patients. The individual test-retest variability was higher on the operated side compared with the nonoperated side. The QST protocol reliability allows for group-to-group comparison of sensory function, but less so for individual follow-up after breast cancer surgery.

  16. Evaluation of experimental methods for assessing safety for ultrasound radiation force elastography.

    PubMed

    Skurczynski, M J; Duck, F A; Shipley, J A; Bamber, J C; Melodelima, D

    2009-08-01

    Standard test tools have been evaluated for the assessment of safety associated with a prototype transducer intended for a novel radiation force elastographic imaging system. In particular, safety has been evaluated by direct measurement of temperature rise, using a standard thermal test object, and detection of inertial cavitation from acoustic emission. These direct measurements have been compared with values of the thermal index and mechanical index, calculated from acoustic measurements in water using standard formulae. It is concluded that measurements using a thermal test object can be an effective alternative to the calculation of thermal index for evaluating thermal hazard. Measurement of the threshold for cavitation was subject to considerable variability, and it is concluded that the mechanical index still remains the preferred standard means for assessing cavitation hazard.

  17. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    NASA Astrophysics Data System (ADS)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  18. Antinociceptive effects of nalbuphine hydrochloride in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Sanchez-Migallon Guzman, David; KuKanich, Butch; Keuler, Nicholas S; Klauer, Julia M; Paul-Murphy, Joanne R

    2011-06-01

    To evaluate the antinociceptive effects and duration of action of nalbuphine HCl administered IM on thermal thresholds in Hispaniolan Amazon parrots (Amazona ventralis). 14 healthy adult Hispaniolan Amazon parrots of unknown sex. 3 doses of nalbuphine (12.5, 25, and 50 mg/kg, IM) and saline (0.9% NaCl) solution (control treatment) were evaluated in a blinded complete crossover experimental design by use of foot withdrawal threshold to a noxious thermal stimulus. Baseline data on thermal threshold were generated 1 hour before administration of nalbuphine or saline solution; thermal threshold measurements were obtained 0.5, 1.5, 3, and 6 hours after administration. Nalbuphine administered IM at 12.5 mg/kg significantly increased the thermal threshold (mean change, 2.4°C), compared with results for the control treatment, and significantly changed thermal threshold for up to 3 hours, compared with baseline results (mean change, 2.6° to 3.8°C). Higher doses of nalbuphine did not significantly change thermal thresholds, compared with results for the control treatment, but had a significant effect, compared with baseline results, for up to 3 and 1.5 hours after administration, respectively. Nalbuphine administered IM at 12.5 mg/kg significantly increased the foot withdrawal threshold to a thermal noxious stimulus in Hispaniolan Amazon parrots. Higher doses of nalbuphine did not result in significantly increased thermal thresholds or a longer duration of action and would be expected to result in less analgesic effect than lower doses. Further studies are needed to fully evaluate the analgesic effects of nalbuphine in psittacine species.

  19. Test-retest reliability of neurophysiological tests of hand-arm vibration syndrome in vibration exposed workers and unexposed referents.

    PubMed

    Gerhardsson, Lars; Gillström, Lennart; Hagberg, Mats

    2014-01-01

    Exposure to hand-held vibrating tools may cause the hand-arm vibration syndrome (HAVS). The aim was to study the test-retest reliability of hand and muscle strength tests, and tests for the determination of thermal and vibration perception thresholds, which are used when investigating signs of neuropathy in vibration exposed workers. In this study, 47 vibration exposed workers who had been investigated at the department of Occupational and Environmental Medicine in Gothenburg were compared with a randomized sample of 18 unexposed subjects from the general population of the city of Gothenburg. All participants passed a structured interview, answered several questionnaires and had a physical examination including hand and finger muscle strength tests, determination of vibrotactile (VPT) and thermal perception thresholds (TPT). Two weeks later, 23 workers and referents, selected in a randomized manner, were called back for the same test-procedures for the evaluation of test-retest reliability. The test-retest reliability after a two week interval expressed as limits of agreement (LOA; Bland-Altman), intra-class correlation coefficients (ICC) and Pearson correlation coefficients was excellent for tests with the Baseline hand grip, Pinch-grip and 3-Chuck grip among the exposed workers and referents (N = 23: percentage of differences within LOA 91 - 100%; ICC-values ≥0.93; Pearson r ≥0.93). The test-retest reliability was also excellent (percentage of differences within LOA 96-100 %) for the determination of vibration perception thresholds in digits 2 and 5 bilaterally as well as for temperature perception thresholds in digits 2 and 5, bilaterally (percentage of differences within LOA 91 - 96%). For ICC and Pearson r the results for vibration perception thresholds were good for digit 2, left hand and for digit 5, bilaterally (ICC ≥ 0.84; r ≥0.85), and lower (ICC = 0.59; r = 0.59) for digit 2, right hand. For the latter two indices the test-retest reliability for the determination of temperature thresholds was lower and showed more varying results. The strong test-retest reliability for hand and muscle strength tests as well as for the determination of VPTs makes these procedures useful for diagnostic purposes and follow-up studies in vibration exposed workers.

  20. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    NASA Astrophysics Data System (ADS)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  1. A novel method for delivering ramped cooling reveals rat behaviours at innocuous and noxious temperatures: A comparative study of human psychophysics and rat behaviour.

    PubMed

    Dunham, James P; Hulse, Richard P; Donaldson, Lucy F

    2015-07-15

    Thermal sensory testing in rodents informs human pain research. There are important differences in the methodology for delivering thermal stimuli to humans and rodents. This is particularly true in cold pain research. These differences confound extrapolation and de-value nociceptive tests in rodents. We investigated cooling-induced behaviours in rats and psychophysical thresholds in humans using ramped cooling stimulation protocols. A Peltier device mounted upon force transducers simultaneously applied a ramped cooling stimulus whilst measuring contact with rat hind paw or human finger pad. Rat withdrawals and human detection, discomfort and pain thresholds were measured. Ramped cooling of a rat hind paw revealed two distinct responses: Brief paw removal followed by paw replacement, usually with more weight borne than prior to the removal (temperature inter-quartile range: 19.1 °C to 2.8 °C). Full withdrawal was evoked at colder temperatures (inter quartile range: -11.3 °C to -11.8 °C). The profile of human cool detection threshold and cold pain threshold were remarkably similar to that of the rat withdrawals behaviours. Previous rat cold evoked behaviours utilise static temperature stimuli. By utilising ramped cold stimuli this novel methodology better reflects thermal testing in patients. Brief paw removal in the rat is driven by non-nociceptive afferents, as is the perception of cooling in humans. This is in contrast to the nociceptor-driven withdrawal from colder temperatures. These findings have important implications for the interpretation of data generated in older cold pain models and consequently our understanding of cold perception and pain. Copyright © 2015. Published by Elsevier B.V.

  2. Changes in thermal and mechanical pain thresholds in hand amputees. A clinical and physiological long-term follow-up.

    PubMed

    Wahren, L K

    1990-09-01

    In a previous study, allodynia to cold and vibratory stimuli was found in the finger stumps of 24 patients with amputations, control values being obtained from fingers of the intact contralateral hand. When treated with regional intravenous guanethidine block (RGB), some of the patients only had short-lasting relief of symptoms, whereas others experienced a more long-lasting beneficial effect. In the present long-term follow-up study the patients were re-examined 6 years after the RGB treatment. The aim was to investigate whether the earlier symptoms and signs persisted, and whether there were any differences in these respects, between patients with long-lasting (group 1) and short-lasting relief of symptoms after RGB (group 2). All 24 patients were asked to answer a questionnaire concerning their clinical symptoms. In addition, 14 of them visited the laboratory for determination of thermal and vibration-induced pain thresholds. Comparisons were made with values obtained at the first examination before RGB treatment and with values from 14 healthy subjects tested in a similar way on 2 occasions with an interval of 8 years. Twenty of 23 patients reported that cold exposure still evoked stump pain. However, the threshold measurements showed that with time the patients had become more tolerant to thermal stimuli not only in the injured but also in the uninjured hand. A rise in pain threshold was also observed when vibration-induced pain was tested in the injured hand. There was no significant difference between groups 1 and 2. Similar changes in pain thresholds with time were not observed in the group of healthy control subjects.

  3. Energy thresholds of discrete breathers in thermal equilibrium and relaxation processes.

    PubMed

    Ming, Yi; Ling, Dong-Bo; Li, Hui-Min; Ding, Ze-Jun

    2017-06-01

    So far, only the energy thresholds of single discrete breathers in nonlinear Hamiltonian systems have been analytically obtained. In this work, the energy thresholds of discrete breathers in thermal equilibrium and the energy thresholds of long-lived discrete breathers which can remain after a long time relaxation are analytically estimated for nonlinear chains. These energy thresholds are size dependent. The energy thresholds of discrete breathers in thermal equilibrium are the same as the previous analytical results for single discrete breathers. The energy thresholds of long-lived discrete breathers in relaxation processes are different from the previous results for single discrete breathers but agree well with the published numerical results known to us. Because real systems are either in thermal equilibrium or in relaxation processes, the obtained results could be important for experimental detection of discrete breathers.

  4. In-flight rain damage tests of the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.; Barneburg, Jack

    1988-01-01

    NASA conducted in-flight rain damage tests of the Shuttle thermal protection system (TPS). Most of the tests were conducted on an F-104 aircraft at the Dryden Flight Research Facility of NASA's Ames Research Center, although some tests were conducted by NOAA on a WP-3D aircraft off the eastern coast of southern Florida. The TPS components tested included LI900 and LI2200 tiles, advanced flexible reusable surface insulation, reinforced carbon-carbon, and an advanced tufi tile. The objective of the test was to define the damage threshold of various thermal protection materials during flight through rain. The test hardware, test technique, and results from both F-104 and WP-3D aircraft are described. Results have shown that damage can occur to the Shuttle TPS during flight in rain.

  5. Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxin; Yan, Qingzhi; Lang, Shaoting; Xia, Min; Ge, Changchun

    2014-09-01

    The potassium doped tungsten (W-K) grade was achieved via swaging + rolling process. The swaged + rolled W-K alloy exhibited acceptable thermal conductivity of 159.1 W/m K and ductile-to-brittle transition temperature of about 873 K while inferior mechanical properties attributed to the coarse pores and small deformation degree. Then the thermal shock, fatigue resistance of the W-K grade were characterized by an electron beam facility. Thermal shock tests were conducted at absorbed power densities varied from 0.22 to 1.1 GW/m2 in a step of 0.22 GW/m2. The cracking threshold was in the range of 0.44-0.66 GW/m2. Furthermore, recrystallization occurred in the subsurface of the specimens tested at 0.66-1.1 GW/m2 basing on the analysis of microhardness and microstructure. Thermal fatigue tests were performed at 0.44 GW/m2 up to 1000 cycles and no cracks emerged throughout the tests. Moreover, recrystallization occurred after 1000 cycles.

  6. ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Peter C.; Strout, Steve; McClelland, Matthew

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energeticmore » materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.« less

  7. Feasibility and repeatability of cold and mechanical quantitative sensory testing in normal dogs

    PubMed Central

    Briley, Jessica D.; Williams, Morika D.; Freire, Mila; Griffith, Emily H.; Lascelles, B. Duncan X.

    2015-01-01

    Feasibility and inter-session repeatability of cold and mechanical quantitative sensory testing (QST) were assessed in 24 normal dogs. Cold thermal latencies were evaluated using a thermal probe (0 °C) applied to three pelvic limb sites. Mechanical thresholds were measured using an electronic von Frey anesthesiometer (EVF) and a blunt-probed pressure algometer (PA) applied to the dorsal aspect of the metatarsus. All QST trials were performed with dogs in lateral recumbency. Collection of cold QST data was easy (feasible) in 19/24 (79%) dogs. However, only 18.4%, 18.9% and 13.2% of cold QST trials elicited a response at the medial tibia, third digital pad and plantar metatarsal regions, respectively. Collection of mechanical QST data was easy (feasible) in 20/24 (83%) dogs for both EVF and PA. At consecutive sampling times, approximately 2 weeks apart, the average EVF sensory thresholds were 414 ± 186 g and 379 ± 166 g, respectively, and the average PA sensory thresholds were 1089 ± 414 g and 1028 ± 331 g, respectively. There was no significant difference in inter-session or inter-limb threshold values for either mechanical QST device. The cold QST protocol in this study was achievable, but did not provide consistently quantifiable results. Both mechanical QST devices tested provided repeatable, reliable sensory threshold measurements in normal, client-owned dogs. These findings contribute to the validation of the EVF and PA as tools to obtain repeated QST data over time in dogs to assess somatosensory processing changes. PMID:24268475

  8. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    NASA Astrophysics Data System (ADS)

    Hsu, P. C.; Hust, G.; Zhang, M. X.; Lorenz, T. K.; Reynolds, J. G.; Fried, L.; Springer, H. K.; Maienschein, J. L.

    2014-05-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  9. Transient dynamics of NbOx threshold switches explained by Poole-Frenkel based thermal feedback mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ziwen; Kumar, Suhas; Nishi, Yoshio; Wong, H.-S. Philip

    2018-05-01

    Niobium oxide (NbOx) two-terminal threshold switches are potential candidates as selector devices in crossbar memory arrays and as building blocks for neuromorphic systems. However, the physical mechanism of NbOx threshold switches is still under debate. In this paper, we show that a thermal feedback mechanism based on Poole-Frenkel conduction can explain both the quasi-static and the transient electrical characteristics that are experimentally observed for NbOx threshold switches, providing strong support for the validity of this mechanism. Furthermore, a clear picture of the transient dynamics during the thermal-feedback-induced threshold switching is presented, providing useful insights required to model nonlinear devices where thermal feedback is important.

  10. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  11. Thermal antinociception after dexmedetomidine administration in cats: a dose-finding study.

    PubMed

    Slingsby, L S; Taylor, P M

    2008-04-01

    The optimum dose of dexmedetomidine for antinociception to a thermal stimulus was determined in a crossover study of 12 cats. In five treatment groups (n = 10 per group), dexmedetomidine was administered intramuscularly (i.m.) at 2, 5, 10, 20 and 40 microg/kg; positive and negative controls were administered buprenorphine (20 microg/kg, i.m.) and 0.9% saline (0.006 mL/kg, i.m.) respectively. Baseline thermal thresholds and visual analogue scale (VAS) sedation scores were obtained prior to drug treatment and then at regular intervals until 24 h after administration. The summary measures of overall mean thresholds and overall mean VAS scores were investigated using a univariate general linear model for multiple factors with post hoc Tukey's tests (P < 0.05). Only dexmedetomidine at 40 microg/kg displayed an analgesic effect (less than that of buprenorphine). The VAS for sedation did not significantly affect the thresholds obtained and treatment was the only significant factor to influence VAS. Dexmedetomidine resulted in higher VAS for sedation than saline and buprenorphine. Dexmedetomidine at 40 microg/kg significantly increased nociceptive thresholds compared with saline control, but less than buprenorphine. Dexmedetomidine produced dose-dependent sedation, but only the highest dose produced analgesia, suggesting that induction of analgesia requires the highest dose (or an additional analgesic) in the clinical setting.

  12. Asymmetric dimethylarginine may mediate increased heat pain threshold in experimental chronic kidney disease.

    PubMed

    Kielstein, Jan T; Suntharalingam, Mayuren; Perthel, Ronny; Rong, Song; Martens-Lobenhoffer, Jens; Jäger, Kristin; Bode-Böger, Stefanie M; Nave, Heike

    2012-03-01

    Thermal sensitivity in uraemia is decreased. Non-selective synthetic nitric oxide synthase (NOS) inhibitors significantly attenuate thermal hyperalgesia in preclinical models. The aim of our study was to evaluate the effect of experimental uraemia, which is associated with an increase of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), on thermal sensitivity in rats. Furthermore, we intended to study the effect of chronic ADMA infusion alone on thermal sensitivity. Male Sprague-Dawley rats (n = 54), 10 weeks old, weight 370-430 g, were randomly assigned to three groups receiving either (i) isotonic saline or (ii) ADMA via osmotic mini pumps or (iii) underwent 5/6 nephrectomy (Nx). After 14 days, 50% of all animals from all groups underwent thermal sensitivity testing and terminal blood draw. After 28 days, the remaining animals underwent the same procedures. Thermal sensitivity examination was performed by the hot-plate test, measuring time from heat exposition to first paw licking or jumping of the animal. While the median [interquartile range] latency time between heat exposition to first paw licking or jumping of the animal in the NaCl infusion group remained unchanged between Day 14 (8.4 [6.75-11.50] s) and Day 28 (7.35 [6.10-7.90] s) both, ADMA infusion and 5/6 nephrectomy tended to increase the thermal pain threshold at Day 14 (9.25 [6.55-12.18] s) and (9.50 [5.8 ± 11.0] s), respectively, compared to NaCl on Day 14 (8.4 [6.75-11.50] s). This difference became statistical significant at Day 28 where the median latency time in the ADMA group (13.10 [11.85-15.95] s) and in the 5/6 Nx group (13.50 [10.85-17.55] s) were significantly higher than in the NaCl group (7.35 [6.10-7.90] s). Induction of progressive renal failure in rats by 5/6 nephrectomy, which is accompanied by a marked increase of the serum levels of the endogenous NOS inhibitor ADMA, leads to a significantly increased heat pain threshold at 28 days. The sole infusion of ADMA into healthy rats leads to the same increase in heat pain threshold.

  13. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.; Hust, G.; McClelland, M.

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurationsmore » (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).« less

  14. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  15. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  16. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less

  17. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers.

    PubMed

    Lin, Guoping; Candela, Y; Tillement, O; Cai, Zhiping; Lefèvre-Seguin, V; Hare, J

    2012-12-15

    A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.

  18. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  19. Bioclimatic Thresholds, Thermal Constants and Survival of Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Response to Constant Temperatures on Hibiscus

    PubMed Central

    Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi

    2013-01-01

    Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus ( Hibiscus rosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P . solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai’s linear model permitted testing the equivalence of lower developmental thresholds for life stages of P . solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P . solenopsis . The estimated bioclimatic thresholds and the observed survival rates of P . solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P . solenopsis on its host plants. PMID:24086597

  20. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference data for the trunk and application in patients with chronic postherpetic neuralgia.

    PubMed

    Pfau, Doreen B; Krumova, Elena K; Treede, Rolf-Detlef; Baron, Ralf; Toelle, Thomas; Birklein, Frank; Eich, Wolfgang; Geber, Christian; Gerhardt, Andreas; Weiss, Thomas; Magerl, Walter; Maier, Christoph

    2014-05-01

    Age- and gender-matched reference values are essential for the clinical use of quantitative sensory testing (QST). To extend the standard test sites for QST-according to the German Research Network on Neuropathic Pain-to the trunk, we collected QST profiles on the back in 162 healthy subjects. Sensory profiles for standard test sites were within normal interlaboratory differences. QST revealed lower sensitivity on the upper back than the hand, and higher sensitivity on the lower back than the foot, but no systematic differences between these trunk sites. Age effects were significant for most parameters. Females exhibited lower pressure pain thresholds (PPT) than males, which was the only significant gender difference. Values outside the 95% confidence interval of healthy subjects (considered abnormal) required temperature changes of >3.3-8.2 °C for thermal detection. For cold pain thresholds, confidence intervals extended mostly beyond safety cutoffs, hence only relative reference data (left-right differences, hand-trunk differences) were sufficiently sensitive. For mechanical detection and pain thresholds, left-right differences were 1.5-2.3 times more sensitive than absolute reference data. The most sensitive parameter was PPT, where already side-to-side differences >35% were abnormal. Compared to trunk reference data, patients with postherpetic neuralgia exhibited thermal and tactile deficits and dynamic mechanical allodynia, mostly without reduced mechanical pain thresholds. This pattern deviates from other types of neuropathic pain. QST reference data for the trunk will also be useful for patients with postthoracotomy pain or chronic back pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Nociceptive sensations evoked from 'spots' in the skin by mild cooling and heating.

    PubMed

    Green, Barry G; Roman, Carolyn; Schoen, Kate; Collins, Hannah

    2008-03-01

    It was recently found that nociceptive sensations (stinging, pricking, or burning) can be evoked by cooling or heating the skin to innocuous temperatures (e.g., 29 and 37 degrees C). Here, we show that this low-threshold thermal nociception (LTN) can be traced to sensitive 'spots' in the skin equivalent to classically defined warm spots and cold spots. Because earlier work had shown that LTN is inhibited by simply touching a thermode to the skin, a spatial search procedure was devised that minimized tactile stimulation by sliding small thermodes (16 and 1mm(2)) set to 28 or 36 degrees C slowly across the lubricated skin of the forearm. The procedure uncovered three types of temperature-sensitive sites (thermal, bimodal, and nociceptive) that contained one or more thermal, nociceptive, or (rarely) bimodal spots. Repeated testing indicated that bimodal and nociceptive sites were less stable over time than thermal sites, and that mechanical contact differentially inhibited nociceptive sensations. Intensity ratings collected over a range of temperatures showed that LTN increased monotonically on heat-sensitive sites but not on cold-sensitive sites. These results provide psychophysical evidence that stimulation from primary afferent fibers with thresholds in the range of warm fibers and cold fibers is relayed to the pain pathway. However, the labile nature of LTN implies that these low-threshold nociceptive inputs are subject to inhibitory controls. The implications of these findings for the roles of putative temperature receptors and nociceptors in innocuous thermoreception and thermal pain are discussed.

  2. Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates

    NASA Astrophysics Data System (ADS)

    Pantavou, Katerina; Lykoudis, Spyridon; Nikolopoulou, Marialena; Tsiros, Ioannis X.

    2018-06-01

    The influence of physiological acclimatization and psychological adaptation on thermal perception is well documented and has revealed the importance of thermal experience and expectation in the evaluation of environmental stimuli. Seasonal patterns of thermal perception have been studied, and calibrated thermal indices' scales have been proposed to obtain meaningful interpretations of thermal sensation indices in different climate regions. The current work attempts to quantify the contribution of climate to the long-term thermal adaptation by examining the relationship between climate normal annual air temperature (1971-2000) and such climate-calibrated thermal indices' assessment scales. The thermal sensation ranges of two thermal indices, the Universal Thermal Climate Index (UTCI) and the Physiological Equivalent Temperature Index (PET), were calibrated for three warm temperate climate contexts (Cfa, Cfb, Csa), against the subjective evaluation of the thermal environment indicated by interviewees during field surveys conducted at seven European cities: Athens (GR), Thessaloniki (GR), Milan (IT), Fribourg (CH), Kassel (DE), Cambridge (UK), and Sheffield (UK), under the same research protocol. Then, calibrated scales for other climate contexts were added from the literature, and the relationship between the respective scales' thresholds and climate normal annual air temperature was examined. To maintain the maximum possible comparability, three methods were applied for the calibration, namely linear, ordinal, and probit regression. The results indicated that the calibrated UTCI and PET thresholds increase with the climate normal annual air temperature of the survey city. To investigate further climates, we also included in the analysis results of previous studies presenting only thresholds for neutral thermal sensation. The average increase of the respective thresholds in the case of neutral thermal sensation was about 0.6 °C for each 1 °C increase of the normal annual air temperature for both indices, statistically significant only for PET though.

  3. Cannabinoid-mediated diversity of antinociceptive efficacy of parecoxib in Wistar and Sprague Dawley rats in the chronic constriction injury model of neuropathic pain.

    PubMed

    Becker, Axel; Geisslinger, Gerd; Murín, Radovan; Grecksch, Gisela; Höllt, Volker; Zimmer, Andreas; Schröder, Helmut

    2013-05-01

    We studied nociceptive behavior and the effects of analgesics in Wistar (Wist) and Sprague Dawley (SPD) rats and in CB1 receptor-deficient mice with neuropathic pain experimentally. Neuropathic pain was induced by loose ligation of the sciatic nerve (chronic constriction injury, CCI). In CCI rats from both strains, cold allodynia and a reduced thermal pain threshold were detected, whereas no effect was found in the hot plate test. Thermal pain threshold was used to study the antinociceptive effects of morphine, gabapentin, and parecoxib 5 days after surgery. Doses of gabapentin and morphine which had no effect on sham-operated animals provoked antinociceptive activity in CCI rats from both strains. An antinociceptive effect of parecoxib was only found in CCI Wist rats. No pharmacokinetic differences were detected between the two strains in parecoxib metabolism. Antinociceptive activity caused by parecoxib was attenuated by the CB1 antagonist rimonabant. To further clarify parecoxib-CB1 interaction, the effect of parecoxib was investigated in CB1-deficient mice and wild-type animals. CCI did not affect thermal pain threshold and mechanical pain threshold was decreased. Parecoxib normalized the altered mechanical pain threshold in CCI wild-type animals, whereas it had only a marginal effect in CB1 receptor deficient mice. Receptor binding experiments showed increased CB1 binding in parecoxib-treated CCI Wist rats. Levels of the CB1 receptor mRNA remained constant in both strains of rats 5 days after surgery. Differences in antinociceptive activity might be due to modification of the cannabinoid system.

  4. Evaluation of thermal antinociceptive effects after intramuscular administration of hydromorphone hydrochloride to American kestrels (Falco sparverius)

    USGS Publications Warehouse

    Guzman, David Sanchez-Migallon; Drazenovich, Tracy L.; Olsen, Glenn H.; Willits, Neil H.; Paul-Murphy, Joanne R.

    2013-01-01

    Conclusions and Clinical Relevance—Hydromorphone at the doses evaluated significantly increased the thermal nociception threshold for American kestrels for 3 to 6 hours. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times are needed to fully evaluate the analgesic and adverse effects of hydromorphone in kestrels and other avian species and the use of hydromorphone in clinical settings.

  5. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  6. Aqueous stress-corrosion cracking of high-toughness D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1976-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history, and test technique, under sustained load in filtered natural seawater, 3.3 per cent sodium chloride solution, and distilled water, was investigated. Reported investigations of D6AC were considered in terms of the present study with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, and threshold. Both threshold and growth kinetics were found to be relatively insensitive to these test parameters. The apparent incubation period was dependent on technique, both detection sensitivity and precracking stress intensity level.

  7. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents

    PubMed Central

    Matsumoto, Misaki; Xie, Weijiao; Inoue, Makoto; Ueda, Hiroshi

    2007-01-01

    Background We have proposed that nerve injury-specific loss of spinal tonic cholinergic inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR) agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well characterized. Results Here, we show that choline acetyltransferase (ChAT) signals were localized not only in outer dorsal horn fibers (lamina I–III) and motor neurons in the spinal cord, but also in the vast majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-induced paw withdrawal (EPW) test, the thresholds for stimulation through C-, Aδ- and Aβ-fibers were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.) induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical, thermal and EPW tests. However, nicotine had no effects in control mice or treated with a mismatch scramble (MS)-ODN in all of these nociception tests. Conclusion These findings suggest that primary afferent cholinergic neurons produce tonic inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine rescues the loss of tonic cholinergic inhibition. PMID:18088441

  8. The ODTX System for the Study of Thermal Sensitivity and Thermal Explosion Violence of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon

    2013-06-01

    Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Antinociceptive effects of long-acting nalbuphine decanoate after intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Sanchez-Migallon Guzman, David; Braun, Jana M; Steagall, Paulo V M; Keuler, Nicholas S; Heath, Timothy D; Krugner-Higby, Lisa A; Brown, Carolyn S; Paul-Murphy, Joanne R

    2013-02-01

    To evaluate the thermal antinociceptive effects and duration of action of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis). 10 healthy adult Hispaniolan Amazon parrots of unknown sex. Nalbuphine decanoate (33.7 mg/kg) or saline (0.9% NaCl) solution was administered IM in a randomized complete crossover experimental design (periods 1 and 2). Foot withdrawal threshold to a noxious thermal stimulus was used to evaluate responses. Baseline thermal withdrawal threshold was recorded 1 hour before drug or saline solution administration, and thermal foot withdrawal threshold measurements were repeated 1, 2, 3, 6, 12, 24, 48, and 72 hours after drug administration. Nalbuphine decanoate administered IM at a dose of 33.7 mg/kg significantly increased thermal foot withdrawal threshold, compared with results after administration of saline solution during period 2, and also caused a significant change in withdrawal threshold for up to 12 hours, compared with baseline values. Nalbuphine decanoate increased the foot withdrawal threshold to a noxious thermal stimulus in Hispaniolan Amazon parrots for up to 12 hours and provided a longer duration of action than has been reported for other nalbuphine formulations. Further studies with other types of nociceptive stimulation, dosages, and dosing intervals as well as clinical trials are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds.

  10. Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.

    PubMed

    Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S

    2017-12-29

    Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was significant (P < 0.002). Fibromyalgia patients withdrew their extremity from the cold water significantly earlier than neuropathic pain patients and healthy controls; however, they had a higher perceived pain intensity on the VAS than neuropathic pain patients and control subjects. Furthermore, neuropathic pain patients had a localized hypersensitivity to mechanical and thermal stimuli in the affected area of the body. In contrast, fibromyalgia patients displayed a general hypersensitivity to mechanical and thermal stimuli when the stimuli were rated by the VAS, and hypersensitivity to some of the sensory stimuli. Conclusions These findings are the first to suggest that a conditioning stimulus evoked by a cold pressor test reduced spontaneous ongoing pain in patients with peripheral neuropathic pain, but not in fibromyalgia patients when directly compared. The current study supports the notion that fibromyalgia and neuropathic pain are distinct pain conditions with separate sensory patterns and dysfunctions in pain-modulating networks. Fibromyalgia should therefore not, as sometimes discussed, be included in NP conditions. Implications On the basis of the findings, it is of interest to speculate on the underlying mechanisms. The results are consistent with the idea that peripheral neuropathic pain is primarily driven from damaged nerve endings in the periphery, while chronic fibromyalgia pain may be a central disorder with increased activity in pain-facilitating systems.

  11. Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates.

    PubMed

    Pantavou, Katerina; Lykoudis, Spyridon; Nikolopoulou, Marialena; Tsiros, Ioannis X

    2018-06-07

    The influence of physiological acclimatization and psychological adaptation on thermal perception is well documented and has revealed the importance of thermal experience and expectation in the evaluation of environmental stimuli. Seasonal patterns of thermal perception have been studied, and calibrated thermal indices' scales have been proposed to obtain meaningful interpretations of thermal sensation indices in different climate regions. The current work attempts to quantify the contribution of climate to the long-term thermal adaptation by examining the relationship between climate normal annual air temperature (1971-2000) and such climate-calibrated thermal indices' assessment scales. The thermal sensation ranges of two thermal indices, the Universal Thermal Climate Index (UTCI) and the Physiological Equivalent Temperature Index (PET), were calibrated for three warm temperate climate contexts (Cfa, Cfb, Csa), against the subjective evaluation of the thermal environment indicated by interviewees during field surveys conducted at seven European cities: Athens (GR), Thessaloniki (GR), Milan (IT), Fribourg (CH), Kassel (DE), Cambridge (UK), and Sheffield (UK), under the same research protocol. Then, calibrated scales for other climate contexts were added from the literature, and the relationship between the respective scales' thresholds and climate normal annual air temperature was examined. To maintain the maximum possible comparability, three methods were applied for the calibration, namely linear, ordinal, and probit regression. The results indicated that the calibrated UTCI and PET thresholds increase with the climate normal annual air temperature of the survey city. To investigate further climates, we also included in the analysis results of previous studies presenting only thresholds for neutral thermal sensation. The average increase of the respective thresholds in the case of neutral thermal sensation was about 0.6 °C for each 1 °C increase of the normal annual air temperature for both indices, statistically significant only for PET though.

  12. Thermal sensitivity and cardiovascular reactivity to stress in healthy males.

    PubMed

    Conde-Guzón, Pablo Antonio; Bartolomé-Albistegui, María Teresa; Quirós, Pilar; Cabestrero, Raúl

    2011-11-01

    This paper examines the association of cardiovascular reactivity with thermal thresholds (detection and unpleasantness). Heart period (HP), systolic (SBP) and diastolic (DBP) blood pressure of 42 health young males were recorded during a cardiovascular reactivity task (a videogame based upon Sidman's avoidance paradigm). Thermal sensitivity, assessing detection and unpleasantness thresholds with radiant heat in the forearm was also estimated for participants. Participants with differential scores in the cardiovascular variables from base line to task > or = P65 were considered as reactors and those how have differential scores < or = P35 were considered as non-reactors. Significant differences were observed between groups in the unpleasantness thresholds in blood pressure (BP) but not in HP. Reactors exhibited significant higher unpleasantness thresholds than non-reactors. No significant differences were obtained in detection thresholds between groups.

  13. Repeatability of quantitative sensory testing in healthy cats in a clinical setting with comparison to cats with osteoarthritis.

    PubMed

    Addison, Elena S; Clements, Dylan N

    2017-12-01

    Objectives The aim of this study was to evaluate the repeatability of quantitative sensory tests (QSTs) in a group of healthy untrained cats (n = 14) and to compare the results with those from cats with osteoarthritis (n = 7). Methods Peak vertical force (PVF) and vertical impulse were measured on a pressure plate system. Thermal sensitivity was assessed using a temperature-controlled plate at 7°C and 40°C. Individual paw lifts and overall duration of paw lifts were counted and measured for each limb. Paw withdrawal thresholds were measured using manual and electronic von Frey monofilaments (MVF and EVF, respectively) applied to the metacarpal or metatarsal pads. All measurements were repeated twice to assess repeatability of the tests. Results In healthy cats all tests were moderately repeatable. When compared with cats with osteoarthritis the PVF was significantly higher in healthy hindlimbs in repeat 1 but not in repeat 2. Cats with osteoarthritis of the forelimbs showed a decrease in the frequency of paw lifts on the 7°C plate compared with cats with healthy forelimbs, and the duration of paw lifts was significantly less than healthy forelimbs in the first repeat but not in the second repeat. Osteoarthritic limbs had significantly lower paw withdrawal thresholds with both MVF and EVF than healthy limbs. Conclusions and relevance QSTs are moderately repeatable in untrained cats. Kinetic gait analysis did not permit differentiation between healthy limbs and those with osteoarthritis, but thermal sensitivity testing (cold) does. Sensory threshold testing can differentiate osteoarthritic and healthy limbs, and may be useful in the diagnosis and monitoring of this condition in cats in the clinical setting.

  14. Ethnic differences in thermal pain responses: a comparison of South Asian and White British healthy males.

    PubMed

    Watson, Paul J; Latif, R Khalid; Rowbotham, David J

    2005-11-01

    The expression and report of pain is influenced by social environment and culture. Previous studies have suggested ethnically determined differences in report of pain threshold, intensity and affect. The influence of ethnic differences between White British and South Asians has remained unexplored. Twenty age-matched, male volunteers in each group underwent evaluation. Cold and warm perception and cold and heat threshold were assessed using an ascending method of limits. Magnitude estimation of pain unpleasantness and pain intensity were investigated with thermal stimuli of 46, 47, 48 and 49 degrees C. Subjects also completed a pain anxiety questionnaire. Data was analysed using t-test, Mann-Whitney and repeated measures analysis of variance as appropriate. There were no differences in cold and warm perception between the two groups. There was a statistically significant difference between the two groups for heat pain threshold (P=0.006) and heat pain intensity demonstrated a significant effect for ethnicity (F=13.84, P=0.001). Although no group differences emerged for cold pain threshold and heat unpleasantness, South Asians demonstrated lower cold pain threshold and reported more unpleasantness at all temperatures but this was not statistically significant. Our study shows that ethnicity plays an important role in heat pain threshold and pain report, South Asian males demonstrated lower pain thresholds and higher pain report when compared with matched White British males. There were no differences in pain anxiety between the two groups and no correlations were identified between pain and pain anxiety Haemodynamic measures and anthropometry did not explain group differences.

  15. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  16. Optical Thin Film Coatings

    DTIC Science & Technology

    1981-06-01

    implantation prevents the formation of CuO (which is thermally unstable), in favor of CuAlO2 which is a more stable oxide. This process may produce...coatings for Lambda Physik’s exclmer lasers. In-housp damage threshold tests are performed using either of two Nd:YAC lasers. One laser produces a

  17. Impact of early developmental fluoride exposure on the peripheral pain sensitivity in mice.

    PubMed

    Ma, Jing; Liu, Fei; Liu, Peng; Dong, Ying-Ying; Chu, Zheng; Hou, Tie-Zhou; Dang, Yong-Hui

    2015-12-01

    Consumption of high concentration of fluoride in the drinking water would cause the fluorosis and chronic pain. Similar pain syndrome appeared in the patients in fluoride therapy of osteoporotic. The aim of the current study was to examine whether exposing immature mice to fluoride would modify the peripheral pain sensitivity or even cause a pain syndrome. We gave developmental fluoride exposure to mice in different concentration (0mg/L, 50mg/L and 100mg/L) and evaluated their basal pain threshold. Von Frey hair test, hot plate test and formalin test were conducted to examine the mechanical, thermal nociceptive threshold and inflammatory pain, respectively. In addition, the expression of hippocampal brain-derived neurotrophic factor (BDNF) was also evaluated by Western blotting. Hyperalgesia in fluoride exposure mice was exhibited in the Von Frey hair test, hot plate test and formalin test. Meanwhile, the expression of BDNF was significantly higher than that of control group. The results suggest that early developmental fluoride exposure may lower the basal pain threshold and be associated with the increasing of BDNF expression in hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thermal nociception as a measure of non-steroidal anti-inflammatory drug effectiveness in broiler chickens with articular pain☆

    PubMed Central

    Caplen, Gina; Baker, Laurence; Hothersall, Becky; McKeegan, Dorothy E.F.; Sandilands, Victoria; Sparks, Nick H.C.; Waterman-Pearson, Avril E.; Murrell, Joanna C.

    2013-01-01

    Pain associated with poultry lameness is poorly understood. The anti-nociceptive properties of two non-steroidal anti-inflammatory drugs (NSAIDs) were evaluated using threshold testing in combination with an acute inflammatory arthropathy model. Broilers were tested in six groups (n = 8 per group). Each group underwent a treatment (saline, meloxicam (3 or 5 mg/kg) or carprofen (15 or 25 mg/kg)) and a procedure (Induced (arthropathy-induction) or sham (sham-handling)) prior to testing. Induced groups had Freund’s complete adjuvant injected intra-articularly into the left intertarsal joint (hock). A ramped thermal stimulus (1 °C/s) was applied to the skin of the left metatarsal. Data were analysed using random-intercept multi-level models. Saline-induced birds had a significantly higher skin temperature (± SD) than saline-sham birds (37.6 ± 0.8 °C vs. 36.5 ± 0.5 °C; Z = −3.47, P < 0.001), consistent with an inflammatory response. Saline was associated with significantly lower thermal thresholds (TT) than analgesic treatment (meloxicam: Z = 2.72, P = 0.007; carprofen: Z = 2.58, P = 0.010) in induced birds. Saline-induced birds also had significantly lower TT than saline-sham birds (Z = −2.17, P = 0.030). This study found direct evidence of an association between inflammatory arthropathies and thermal hyperalgesia, and showed that NSAID treatment maintained baseline thermal sensitivity (via anti-nociception). Quantification of nociceptive responsiveness in a predictable broiler pain model identified thermal anti-hyperalgesic properties of two NSAIDs, which suggested that therapeutically effective treatment was provided at the doses administered. Such validation of analgesic strategies will increase the understanding of pain associated with specific natural broiler lameness types. PMID:24129110

  19. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz

    NASA Astrophysics Data System (ADS)

    Ebert, S.; Eom, S. J.; Schuderer, J.; Apostel, U.; Tillmann, T.; Dasenbrock, C.; Kuster, N.

    2005-11-01

    The objective of this study was the determination of the thermal regulatory and the thermal breakdown thresholds for in-tube restrained B6C3F1 and NMRI mice exposed to radiofrequency electromagnetic fields at 905 MHz. Different levels of the whole-body averaged specific absorption rate (SAR = 0, 2, 5, 7.2, 10, 12.6 and 20 W kg-1) have been applied to the mice inside the 'Ferris Wheel' exposure setup at 22 ± 2 °C and 30-70% humidity. The thermal responses were assessed by measurement of the rectal temperature prior, during and after the 2 h exposure session. For B6C3F1 mice, the thermal response was examined for three different weight groups (20 g, 24 g, 29 g), both genders and for pregnant mice. Additionally, NMRI mice with a weight of 36 g were investigated for an interstrain comparison. The thermal regulatory threshold of in-tube restrained mice was found at SAR levels between 2 W kg-1 and 5 W kg-1, whereas the breakdown of regulation was determined at 10.1 ± 4.0 W kg-1(K = 2) for B6C3F1 mice and 7.7 ± 1.6 W kg-1(K = 2) for NMRI mice. Based on a simplified power balance equation, the thresholds show a clear dependence upon the metabolic rate and weight. NMRI mice were more sensitive to thermal stress and respond at lower SAR values with regulation and breakdown. The presented data suggest that the thermal breakdown for in-tube restrained mice, whole-body exposed to radiofrequency fields, may occur at SAR levels of 6 W kg-1(K = 2) at laboratory conditions.

  20. Thermal protection system (TPS) monitoring using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.

    2011-04-01

    This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.

  1. Prediction of threshold pain skin temperature from thermal properties of materials in contact.

    PubMed

    Stoll, A M; Chianta, M A; Piergallini, J R

    1982-12-01

    Aerospace design engineers have long sought concrete data with respect to the thermal safety of materials in contact with human skin. A series of studies on this subject has been completed and some of the results have been reported earlier. In these studies over 2,000 observations were made of pain threshold during contact with materials at elevated temperatures. Six materials were used representing the full range of thermal properties from good conductors to good insulators. Previous reports gave methods for determining the maximum permissible temperatures for any material in safe contact with bare skin for 1-5 s solely from a knowledge of its thermal properties. This report presents the comparison of the theoretical and experimental contact temperatures at pain threshold and provides a method for deriving the skin temperature productive of threshold pain from the thermal properties of any material within the range of those studies. Ratios reflecting the heat transfer coefficient associated with the materials in contact are related to their thermal properties so that the skin temperature at pain threshold may be determined from that calculated from heat transfer theory. Tabular and graphical representation of these data permits interpolation within the range of properties so that any material of known thermal conductivity, density and specific heat may be assessed with respect to its effect on the skin temperature during contact to the end point of pain. These data, in conjunction with those already reported, constitute a system for the complete assessment of the thermal aspects of practically any material suitable for construction and manufacturing applications with respect to safe contact with human skin.

  2. SCB thermite igniter studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.

    1996-12-31

    The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affectedmore » the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.« less

  3. Thermal damage study of beryllium windows used as vacuum barriers in synchrotron radiation beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdener, F.R.; Johnson, G.L.; Karpenko, V.P.

    An experimental study to investigate thermal-induced damage to SSRL-designed beryllium foil windows was performed at LLNL's Laser Welding Research Facility. The primary goal of this study was to determine the threshold at which thermal-stress-induced damage occurs in these commonly used vacuum barriers. An Nd:Yag pulsed laser with cylindrical optics and a carefully designed test cell provided a test environment that closely resembles the actual beamline conditions at SSRL. Tests performed on two beryllium window geometries, with different vertical aperture dimensions but equal foil thicknesses of 0.254 mm, resulted in two focused total-power thresholds at which incipient damage was determined. Formore » a beam spot size similar to that of the Beamline-X Wiggler Line, onset of surface damage for a 5-mm by 25-mm aperture window was observed at 170 W after 174,000 laser pulses (1.2-ms pulse at 100 pps). A second window with double the vertical aperture dimension (10 mm by 25 mm) was observed to have surface cracking after 180,000 laser pulses with 85 W impinging its front surface. It failed after approximately 1,000,000 pulses. Another window of the same type (10 mm by 25 mm) received 2,160,000 laser pulses at 74.4 W, and subsequent metallographic sectioning revealed no signs of through-thickness damage. Comparison of windows with equal foil thicknesses and aperture dimensions has effectively identified the heat flux limit for incipient failure. The data show that halving the aperture's vertical dimension allows doubling the total incident power for equivalent onsets of thermal-induced damage.« less

  4. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events.

    PubMed

    Donner, Simon D

    2011-07-01

    Over the past 30 years, warm thermal disturbances have become commonplace on coral reefs worldwide. These periods of anomalous sea surface temperature (SST) can lead to coral bleaching, a breakdown of the symbiosis between the host coral and symbiotic dinoflagellates which reside in coral tissue. The onset of bleaching is typically predicted to occur when the SST exceeds a local climatological maximum by 1 degrees C for a month or more. However, recent evidence suggests that the threshold at which bleaching occurs may depend on thermal history. This study uses global SST data sets (HadISST and NOAA AVHRR) and mass coral bleaching reports (from Reefbase) to examine the effect of historical SST variability on the accuracy of bleaching prediction. Two variability-based bleaching prediction methods are developed from global analysis of seasonal and interannual SST variability. The first method employs a local bleaching threshold derived from the historical variability in maximum annual SST to account for spatial variability in past thermal disturbance frequency. The second method uses a different formula to estimate the local climatological maximum to account for the low seasonality of SST in the tropics. The new prediction methods are tested against the common globally fixed threshold method using the observed bleaching reports. The results find that estimating the bleaching threshold from local historical SST variability delivers the highest predictive power, but also a higher rate of Type I errors. The second method has the lowest predictive power globally, though regional analysis suggests that it may be applicable in equatorial regions. The historical data analysis suggests that the bleaching threshold may have appeared to be constant globally because the magnitude of interannual variability in maximum SST is similar for many of the world's coral reef ecosystems. For example, the results show that a SST anomaly of 1 degrees C is equivalent to 1.73-2.94 standard deviations of the maximum monthly SST for two-thirds of the world's coral reefs. Coral reefs in the few regions that experience anomalously high interannual SST variability like the equatorial Pacific could prove critical to understanding how coral communities acclimate or adapt to frequent and/or severe thermal disturbances.

  5. Oxygen concentration affects upper thermal tolerance in a terrestrial vertebrate.

    PubMed

    Shea, Tanner K; DuBois, P Mason; Claunch, Natalie M; Murphey, Nicolette E; Rucker, Kiley A; Brewster, Robert A; Taylor, Emily N

    2016-09-01

    We tested the oxygen limitation hypothesis, which states that animals decline in performance and reach the upper limits of their thermal tolerance when the metabolic demand for oxygen at high temperatures exceeds the circulatory system's ability to supply adequate oxygen, in air-breathing lizards exposed to air with different oxygen concentrations. Lizards exposed to hypoxic air (6% O2) gaped, panted, and lost their righting response at significantly lower temperatures than lizards exposed to normoxic (21% O2) or hyperoxic (35% O2) air. A greater proportion of lizards in the hyperoxic treatment were able to withstand body temperatures above 44°C than in the normoxic treatment. We also found that female lizards had a higher panting threshold than male lizards, while sex had no effect on gaping threshold and loss of righting response. Body size affected the temperature at which lizards lost the righting response, with larger lizards losing the response at lower temperatures than smaller lizards when exposed to hypoxic conditions. These data suggest that oxygen limitation plays a mechanistic role in the thermal tolerance of lizards. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  7. Effect of morphine, methadone, hydromorphone or oxymorphone on the thermal threshold, following intravenous or buccal administration to cats.

    PubMed

    Pypendop, Bruno H; Shilo-Benjamini, Yael; Ilkiw, Jan E

    2016-11-01

    To determine the effects of morphine, methadone, hydromorphone or oxymorphone on the thermal threshold in cats, following buccal and intravenous (IV) administration. Randomized crossover study. Six healthy adult female ovariohysterectomized cats weighing 4.5 ± 0.4 kg. Morphine sulfate (0.2 mg kg -1 IV or 0.5 mg kg -1 buccal), methadone hydrochloride (0.3 mg kg -1 IV or 0.75 mg kg -1 buccal), hydromorphone hydrochloride (0.1 mg kg -1 IV or 0.25 mg kg -1 buccal) or oxymorphone hydrochloride (0.1 mg kg -1 IV or 0.25 mg kg -1 buccal) were administered. All cats were administered all treatments. Skin temperature and thermal threshold were measured in duplicate prior to drug administration, and at various times up to 8 hours after drug administration. The difference between thermal threshold and skin temperature (ΔT) was analyzed. Administration of methadone and hydromorphone IV resulted in significant increases in ΔT at 40 minutes after drug administration. Buccal administration of methadone resulted in significant increases in thermal threshold, although no significant difference from baseline measurement was detected at any time point. IV administration of morphine and oxymorphone, and buccal administration of morphine, hydromorphone and oxymorphone did not cause significant thermal antinociception. At the doses used in this study, IV administration of methadone and hydromorphone, and buccal administration of methadone resulted in transient thermal antinociception. The results of this study do not allow us to predict the usefulness of these drugs for providing analgesia in clinical patients. © 2016 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  8. How to Avoid a Learning Curve in Stapedotomy: A Standardized Surgical Technique.

    PubMed

    Kwok, Pingling; Gleich, Otto; Dalles, Katharina; Mayr, Elisabeth; Jacob, Peter; Strutz, Jürgen

    2017-08-01

    To evaluate, whether a learning curve for beginners in stapedotomy can be avoided by using a prosthesis with thermal memory-shape attachment in combination with a standardized laser-assisted surgical technique. Retrospective case review. Tertiary referral center. Fifty-eight ears were operated by three experienced surgeons and compared with a group of 12 cases operated by a beginner in stapedotomy. Stapedotomy. Difference of pure-tone audiometry thresholds measured before and after surgery. The average postoperative gain for air conduction in the frequencies below 2 kHz was 20 to 25 dB and decreased for the higher frequencies. Using the Mann-Whitney-U test for comparing mean gain between experienced and inexperienced surgeons showed no significant difference (p = 0.281 at 4 kHz and p > 0.7 for the other frequencies). A Spearman rank correlation of the postoperative gain for air- and bone-conduction thresholds was obtained at each test frequency for the first 12 patients consecutively treated with a thermal memory-shape attachment prosthesis by two experienced and one inexperienced surgeon. This analysis does not support the hypothesis of a "learning effect" that should be associated with an improved outcome for successively treated patients. It is possible to avoid a learning curve in stapes surgery by applying a thermal memory-shape prosthesis in a standardized laser-assisted surgical procedure.

  9. Effects of substrate on the femtosecond laser-induced damage properties of gold films

    NASA Astrophysics Data System (ADS)

    Huang, Haopeng; Wang, Leilei; Kong, Fanyu; Xia, Zhilin; Jin, Yunxia; Xu, Jiao; Chen, Junming; Cui, Yun; Shao, Jianda

    2018-07-01

    In this work, gold films on two different types of substrates were fabricated by electron beam (e-beam) evaporation, and the femtosecond laser-induced damage properties were evaluated. The first sample was gold film deposited on fused silica, whereas the second was gold deposited on photoresist. 1-on-1 damage tests were implemented by an 800 ± 30 nm laser with pulse duration of 30 fs. Different damage thresholds and morphologies were obtained for the two samples. The damage threshold of the gold film on fused silica was 0.64 J/cm2, with the typical damage morphology of thermal ablation and melting; the damage threshold of the gold film on photoresist was 0.30 J/cm2, with the typical damage morphology of blisters or peeling off. In order to better understand the impact of the substrate on the properties of the whole sample, the normalized electric field intensity, temperature, and thermal stress distributions were calculated. The adhesion between the gold film and substrate were measured and the experimental results well agreed with the theoretical analysis. The results indicate that gold films deposited onto grating-structured fused silica will have more powerful laser damage resistance performance.

  10. The effect of the impactor diameter and temperature on low velocity impact behavior of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Evci, C.; Uyandıran, I.

    2017-02-01

    Impact damage is one of the major concerns that should be taken into account with the new aircraft and spacecraft structures which employ ever-growing use of composite materials. Considering the thermal loads encountered at different altitudes, both low and high temperatures can affect the properties and impact behavior of composite materials. This study aims to investigate the effect of temperature and impactor diameter on the impact behavior and damage development in balanced and symmetrical CFRP laminates which were manufactured by employing vacuum bagging process with autoclave cure. Instrumented drop-weight impact testing system is used to perform the low velocity impact tests in a range of temperatures ranged from 60 down to -50 °C. Impact tests for each temperature level were conducted using three different hemispherical impactor diameters varying from 10 to 20 mm. Energy profile method is employed to determine the impact threshold energies for damage evolution. The level of impact damage is determined from the dent depth on the impacted face and delamination damage detected using ultrasonic C-Scan technique. Test results reveal that the threshold of penetration energy, main failure force and delamination area increase with impactor diameter at all temperature levels. No clear influence of temperature on the critical force thresholds could be derived. However, penetration threshold energy decreased as the temperature was lowered. Drop in the penetration threshold was more obvious with quite low temperatures. Delamination damage area increased while the temperature decreased from +60 °C to -50 °C.

  11. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?

    PubMed

    van Rhoon, Gerard C; Samaras, Theodoros; Yarmolenko, Pavel S; Dewhirst, Mark W; Neufeld, Esra; Kuster, Niels

    2013-08-01

    To define thresholds of safe local temperature increases for MR equipment that exposes patients to radiofrequency fields of high intensities for long duration. These MR systems induce heterogeneous energy absorption patterns inside the body and can create localised hotspots with a risk of overheating. The MRI + EUREKA research consortium organised a "Thermal Workshop on RF Hotspots". The available literature on thresholds for thermal damage and the validity of the thermal dose (TD) model were discussed. The following global TD threshold guidelines for safe use of MR are proposed: 1. All persons: maximum local temperature of any tissue limited to 39 °C 2. Persons with compromised thermoregulation AND (a) Uncontrolled conditions: maximum local temperature limited to 39 °C (b) Controlled conditions: TD < 2 CEM43°C 3. Persons with uncompromised thermoregulation AND (a) Uncontrolled conditions: TD < 2 CEM43°C (b) Controlled conditions: TD < 9 CEM43°C The following definitions are applied: Controlled conditions A medical doctor or a dedicated trained person can respond instantly to heat-induced physiological stress Compromised thermoregulation All persons with impaired systemic or reduced local thermoregulation • Standard MRI can cause local heating by radiofrequency absorption. • Monitoring thermal dose (in units of CEM43°C) can control risk during MRI. • 9 CEM43°C seems an acceptable thermal dose threshold for most patients. • For skin, muscle, fat and bone,16 CEM43°C is likely acceptable.

  12. Intrathecal injection of fluorocitric acid inhibits the activation of glial cells causing reduced mirror pain in rats.

    PubMed

    Cao, Jing; Li, Zhihua; Zhang, Zhenhua; Ren, Xiuhua; Zhao, Qingzan; Shao, Jinping; Li, Ming; Wang, Jiannan; Huang, Puchao; Zang, Weidong

    2014-01-01

    Growing evidence has shown that unilateral nerve injury results in pain hypersensitivity in the ipsilateral and contralateral sides respective to the injury site. This phenomenon is known as mirror image pain (MIP). Glial cells have been indicated in the mechanism of MIP; however, it is not clear how glial cells are involved in MIP. To observe phenomenon MIP and the following mechanism, 20 adult male Sprague-Dawley rats (weighing 180-220 g) were separated into two groups: Sham Group (n = 10) and left L5 spinal nerve ligated and sectioned (SNL) group (n = 10). Thermal hyperalgesia and mechanical hypersensitivity were measured for both groups to determine if the SNL model had Mirror image of Pain (MIP). Nav1.7 protein expression in DRG was analyzed using immunohistochemistry and western-blotting. And then to observe the effect of fluorocitrate on MIP, 15 rats were separated into three Groups: Sham Group (n = 5); SNL + FC group: intrathecal injection of Fluorocitric acid(FC) 1 nmol/10 μL (n = 5); SNL + NS group: intrathecal injection of 0.9% Normal Saline (n = 5). Behavior testing, immunocytochemistry, and western-blotting using dorsal root ganglion (DRG) from both sides were then conducted. The results showed pain hypersensitivity in both hind-paws of the SNL animals, Mechanical tests showed the paw withdrawal threshold dropped from 13.30 ± 1.204 g to 2.57 ± 1.963 g at 14 d as will as the ipsilateral paw thermal withdrawal threshold dropped from 16.5 ± 2.236 s to 4.38 ± 2.544 s at 14 d. Mechanical tests showed the contralateral paw withdrawal threshold dropped from 14.01 ± 1.412 to 4.2 ± 1.789 g at 7d will the thermal withdrawal threshold dropped from 16.8 ± 2.176 s to 7.6 ± 1.517 s at 7d. Nav1.7 expression increased and glial cells actived in bilateral side DRG after SNL compared with sham group. After intrathecal injection of fluorocitrate, the glial cell in bilateral DRG were inhibited and the pain behavior were reversed in both hindpaws too. Fluorocitrate can inhibit the activation of glial cells in spinal cord and DRG, and reduce MIP.

  13. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less

  14. Thermal shock tests to qualify different tungsten grades as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  15. Damage threshold dependence of optical coatings on substrate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhouling, W.; Zhenxiu, F.

    1996-04-01

    Damage threshold dependence on substrate materials was investigated for TiO2, ZrO2, SiO2, MgF2, ZnS, and single and TiO2/SiO2 multilayers. The results show that the damage threshold increases with increasing substrate thermal conductivity for single layers and AR coatings and remains the same for HR coatings. With the help of localized absorption measurement and in-situ damage process analysis, these phenomena were well correlated with local absorption-initiated thermal damage mechanism.

  16. The Effects of Mechanical and Thermal Stimuli on Local Field Potentials and Single Unit Activity in Parkinson's Disease Patients.

    PubMed

    Belasen, Abigail; Youn, Youngwon; Gee, Lucy; Prusik, Julia; Lai, Brant; Ramirez-Zamora, Adolfo; Rizvi, Khizer; Yeung, Philip; Shin, Damian S; Argoff, Charles; Pilitsis, Julie G

    2016-10-01

    Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). In this study, we examined how single unit and LFP oscillatory activity in the basal ganglia are impacted by mechanical and thermal sensory stimuli and explored their role in pain modulation. We assessed changes in LFPs and SUAs in the subthalamic nucleus (STN), globus pallidus interna (Gpi), and globus pallidus externa (Gpe) following exposure with mechanical or thermal stimuli. Sensory thresholds were determined pre-operatively using quantitative sensory testing. Based on these data, patients were exposed to innocuous and noxious mechanical, pressure, and thermal stimuli at individualized thresholds. In the STN, LFP alpha oscillatory activity and SUA increased in response to innocuous mechanical stimuli; SUA further increased in response to noxious mechanical, noxious pressure, and noxious thermal stimuli (p < 0.05). In the Gpe, LFP low betaactivity and SUA increased with noxious thermal stimuli; SUA also increased in response to innocuous thermal stimuli (p < 0.05). In the Gpi, innocuous thermal stimuli increased LFP gammaactivity; noxious pressure stimuli decreased low betaactivity; SUA increased in response to noxious thermal stimuli (p < 0.05). Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits. © 2016 International Neuromodulation Society.

  17. High-resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management.

    PubMed

    Kumagai, Naoki H; Yamano, Hiroya

    2018-01-01

    Coral reefs are one of the world's most threatened ecosystems, with global and local stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can cause coral bleaching, resulting in coral death and decreases in coral cover. A SST threshold of 1 °C over the climatological maximum is widely used to predict coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity, and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring system Sango Map Project, at scales appropriate for the local and regional conservation of Japanese coral reefs. We recorded coral bleaching events in the years 2004-2016 in Japan. We revealed the influence of multiple factors on the ability to predict coral bleaching, including selection of thermal indices, statistical optimization of thermal thresholds, quantification of multiple environmental influences, and use of multiple modeling methods (generalized linear models and random forests). After optimization, differences in predictive ability among thermal indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were important predictors of the occurrence of coral bleaching. Predictions based on the best model revealed that coral reefs in Japan have experienced recent and widespread bleaching. A practical method to reduce bleaching frequency by screening UV radiation was also demonstrated in this paper.

  18. High-resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management

    PubMed Central

    Yamano, Hiroya

    2018-01-01

    Coral reefs are one of the world’s most threatened ecosystems, with global and local stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can cause coral bleaching, resulting in coral death and decreases in coral cover. A SST threshold of 1 °C over the climatological maximum is widely used to predict coral bleaching. In this study, we refined thermal indices predicting coral bleaching at high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well as considering other environmental influences on bleaching such as ultraviolet (UV) radiation, water turbidity, and cooling effects. We used a coral bleaching dataset derived from the web-based monitoring system Sango Map Project, at scales appropriate for the local and regional conservation of Japanese coral reefs. We recorded coral bleaching events in the years 2004–2016 in Japan. We revealed the influence of multiple factors on the ability to predict coral bleaching, including selection of thermal indices, statistical optimization of thermal thresholds, quantification of multiple environmental influences, and use of multiple modeling methods (generalized linear models and random forests). After optimization, differences in predictive ability among thermal indices were negligible. Thermal index, UV radiation, water turbidity, and cooling effects were important predictors of the occurrence of coral bleaching. Predictions based on the best model revealed that coral reefs in Japan have experienced recent and widespread bleaching. A practical method to reduce bleaching frequency by screening UV radiation was also demonstrated in this paper. PMID:29473007

  19. Nociceptive thermal threshold testing in horses – effect of neuroleptic sedation and neuroleptanalgesia at different stimulation sites

    PubMed Central

    2013-01-01

    Background Aim of the study was to compare the effect of neuroleptic sedation with acepromazine and neuroleptanalgesia with acepromazine and buprenorphine on thermal thresholds (TT) obtained at the nostrils and at the withers. The study was carried out as a randomized, blinded, controlled trial with cross-over design. Thermal thresholds were determined by incremental contact heat applied to the skin above the nostril (N) or the withers (W). Eleven horses were treated with saline (S), acepromazine (0.05 mg/kg) (ACE) or acepromazine and buprenorphine (0.0075 mg/kg) (AB) intravenously (IV). Single stimulations were performed 15 minutes prior and 15, 45, 75, 105, 165, 225, 285, 405 and 525 minutes after treatment. Sedation score, gastrointestinal auscultation score and occurrence of skin lesions were recorded. Data were analysed with analysis of variance for repeated measurements. Results There were no significant differences in TT between N and W with all treatments. The TT remained constant after S and there was no difference in TT between S and ACE. After AB there was a significant increase above baseline in TT until 405 minutes after treatment. Restlessness occurred 30–90 minutes after AB in 7 horses. All horses had reduced to absent borborygmi after AB administration for 165 to 495 minutes. Conclusion Thermal stimulation at both described body areas gives comparable results in the assessment of cutaneous anti-nociception in horses. There is no differential influence of neuroleptic sedation or neuroleptanalgesia on TTs obtained at N or W. Buprenorphine combined with acepromazine has a long lasting anti-nociceptive effect associated with the typical opioid induced side effects in horses. PMID:23837730

  20. Inert gas narcosis has no influence on thermo-tactile sensation.

    PubMed

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  1. [Heat-induced symptomatology in human teeth. An in-vitro study].

    PubMed

    Baldissara, P; Bortolini, S; Papale, G; Scotti, R

    1998-09-01

    Various dental procedures can generate thermal increase in the dental pulp, in particular if they are incorrectly conducted. In literature the pulp cells are considered very heat sensitive. In this study the symptomatological response of patients during and after thermal administration to the dental crown has been recorded. The analysis of the symptomatology was used as an indication for the definition of the threshold of thermal damage. Twelve healthy teeth of four patients programmed for extraction were subdivided into six couples of homologous teeth. One tooth out of each couple was used for the immediate in vivo recording of the symptoms; the other, once extracted, was used to determine the thermal increase applied through the insertion of a thermocouple sensor. In each couple of teeth the thermal stimulus was equal. The average thermal increase was 11.2 degrees C. Pain starts at temperatures ranging from 39.5 to 50.4 degrees C with an average of 44.6 degrees C. This agrees with classical physiological data which reports the threshold of pain at 45 degrees C. The threshold of pain registered suggests that at temperatures below 44.6 degrees C damage to the dental pulp is improbable, at least in healthy teeth. The limit of 45 degrees C appears, therefore, to be a probable safe threshold, contrary to what is reported in literature.

  2. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz band.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993...

  3. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993...

  4. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage. [58 FR 59180, Nov. 8, 1993...

  5. Innovative neurophysiological methods in itch research: long-latency evoked potentials after electrical and thermal stimulation in patients with atopic dermatitis.

    PubMed

    Yudina, Marina M; Toropina, Galina G; Lvov, Andrey; Gieler, Uwe

    2011-10-01

    The aim of this study was to examine the findings of innovative neurophysiological methods of itch research. Short-latency and pain-related somatosensory-evoked potentials after electrical stimulation, as well as long-latency evoked potentials after thermal stimulation were studied in 38 patients with atopic dermatitis (AD) and 26 healthy volunteers. Quantitative Sensory Testing of thermal perception was performed in 22 patients with AD from the main AD group and in 15 healthy volunteers. Brain hyperactivity to electrical stimuli, delayed thermal-evoked potentials and elevated thermal thresholds were revealed in patients with AD compared with healthy controls. The data indicate small nerve fibre dysfunction in patients with AD, which may contribute to the pathogenesis of AD and chronic itch. The study demonstrates objective approaches to assess the function of small nerve fibres in patients with chronic itch.

  6. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.

    PubMed

    He, Xiaoming; Bhowmick, Sankha; Bischof, John C

    2009-07-01

    The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50 degrees C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 43-50 degrees C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50 degrees C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50 degrees C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50 degrees C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.

  7. Caribbean mesophotic coral ecosystems are unlikely climate change refugia.

    PubMed

    Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S

    2016-08-01

    Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs. © 2015 John Wiley & Sons Ltd.

  8. Experimental results of Hooper's gravity-electromagnetic coupling concept

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Williamson, Gary Scott

    1995-01-01

    Experiments were conducted to test assertions from Patent 3,610,971, by W.J. Hooper that self-canceling electromagnetic coils can reduce the weight of objects placed underneath. No weight changes were observed within the detectability of the instrumentation. More careful examination of the patent and other reports from Hooper led to the conclusion that Hooper may have misinterpreted thermal effects as his 'Motional Field' effects. There is a possibility that the claimed effects are below the detection thresholds of the instrumentation used for these tests.

  9. Anti-static coat for solar arrays

    NASA Astrophysics Data System (ADS)

    Fellas, C. N.

    1982-06-01

    A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.

  10. Chronic Widespread Back Pain is Distinct From Chronic Local Back Pain: Evidence From Quantitative Sensory Testing, Pain Drawings, and Psychometrics.

    PubMed

    Gerhardt, Andreas; Eich, Wolfgang; Janke, Susanne; Leisner, Sabine; Treede, Rolf-Detlef; Tesarz, Jonas

    2016-07-01

    Whether chronic localized pain (CLP) and chronic widespread pain (CWP) have different mechanisms or to what extent they overlap in their pathophysiology is controversial. The study compared quantitative sensory testing profiles of nonspecific chronic back pain patients with CLP (n=48) and CWP (n=29) with and fibromyalgia syndrome (FMS) patients (n=90) and pain-free controls (n = 40). The quantitative sensory testing protocol of the "German-Research-Network-on-Neuropathic-Pain" was used to measure evoked pain on the painful area in the lower back and the pain-free hand (thermal and mechanical detection and pain thresholds, vibration threshold, pain sensitivity to sharp and blunt mechanical stimuli). Ongoing pain and psychometrics were captured with pain drawings and questionnaires. CLP patients did not differ from pain-free controls, except for lower pressure pain threshold (PPT) on the back. CWP and FMS patients showed lower heat pain threshold and higher wind-up ratio on the back and lower heat pain threshold and cold pain threshold on the hand. FMS showed lower PPT on back and hand, and higher comorbidity of anxiety and depression and more functional impairment than all other groups. Even after long duration CLP presents with a local hypersensitivity for PPT, suggesting a somatotopically specific sensitization of nociceptive processing. However, CWP patients show widespread ongoing pain and hyperalgesia for different stimuli that is generalized in space, suggesting the involvement of descending control systems, as also suggested for FMS patients. Because mechanisms in nonspecific chronic back pain with CLP and CWP differ, these patients should be distinguished in future research and allocated to different treatments.

  11. Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates

    NASA Astrophysics Data System (ADS)

    Teneva, Lida; Karnauskas, Mandy; Logan, Cheryl A.; Bianucci, Laura; Currie, Jock C.; Kleypas, Joan A.

    2012-03-01

    Sea surface temperature fields (1870-2100) forced by CO2-induced climate change under the IPCC SRES A1B CO2 scenario, from three World Climate Research Programme Coupled Model Intercomparison Project Phase 3 (WCRP CMIP3) models (CCSM3, CSIRO MK 3.5, and GFDL CM 2.1), were used to examine how coral sensitivity to thermal stress and rates of adaption affect global projections of coral-reef bleaching. The focus of this study was two-fold, to: (1) assess how the impact of Degree-Heating-Month (DHM) thermal stress threshold choice affects potential bleaching predictions and (2) examine the effect of hypothetical adaptation rates of corals to rising temperature. DHM values were estimated using a conventional threshold of 1°C and a variability-based threshold of 2σ above the climatological maximum Coral adaptation rates were simulated as a function of historical 100-year exposure to maximum annual SSTs with a dynamic rather than static climatological maximum based on the previous 100 years, for a given reef cell. Within CCSM3 simulations, the 1°C threshold predicted later onset of mild bleaching every 5 years for the fraction of reef grid cells where 1°C > 2σ of the climatology time series of annual SST maxima (1961-1990). Alternatively, DHM values using both thresholds, with CSIRO MK 3.5 and GFDL CM 2.1 SSTs, did not produce drastically different onset timing for bleaching every 5 years. Across models, DHMs based on 1°C thermal stress threshold show the most threatened reefs by 2100 could be in the Central and Western Equatorial Pacific, whereas use of the variability-based threshold for DHMs yields the Coral Triangle and parts of Micronesia and Melanesia as bleaching hotspots. Simulations that allow corals to adapt to increases in maximum SST drastically reduce the rates of bleaching. These findings highlight the importance of considering the thermal stress threshold in DHM estimates as well as potential adaptation models in future coral bleaching projections.

  12. Relationship between the melanocortin-1 receptor (MC1R) variant R306ter and physiological responses to mechanical or thermal stimuli in Labrador Retriever dogs.

    PubMed

    Perez, Tania E; Mealey, Katrina L; Burke, Neal S; Grubb, Tamara L; Court, Michael H; Greene, Stephen A

    2017-03-01

    Variants in the MC1R gene have been associated with red hair color and sensitivity to pain in humans. The study objective was to determine if a relationship exists between MC1R genotype and physiological thermal or mechanical nociceptive thresholds in Labrador Retriever dogs. Prospective experimental study. Thirty-four Labrador Retriever dogs were included in the study following public requests for volunteers. Owner consent was obtained and owners verified that their dog was apparently not experiencing pain and had not been treated for pain during the previous 14 days. The study was approved by the Institutional Animal Care and Use Committee. Nociceptive thresholds were determined from a mean of three thermal and five mechanical replications using commercially available algometers. Each dog was genotyped for the previously described MC1R variant (R306ter). Data were analyzed using one-way anova with post hoc comparisons using Tukey's test (p < 0.05). Thirteen dogs were homozygous wild-type (WT/WT), nine were heterozygous (WT/R306ter), and eight were homozygous variant (R306ter/R306ter) genotype. Four dogs could not be genotyped. A significant difference (p = 0.04) in mechanical nociceptive thresholds was identified between dogs with the WT/WT genotype (12.1±2.1 N) and those with the WT/R306ter genotype (9.2±2.4 N). A difference in mechanical, but not thermal, nociceptive threshold was observed between wild-type and heterozygous MC1R variants. Differences in nociceptive thresholds between homozygous R306ter variants and other genotypes for MC1R were not observed. Compared with the wild-type MC1R genotype, nociceptive sensitivity to mechanical force in dogs with a single variant R306ter allele may be greater. However, in contrast to the reported association between homozygous MC1R variants (associated with red hair color) and nociception in humans, we found no evidence of a similar relationship in dogs with the homozygous variant genotype. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  13. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    NASA Astrophysics Data System (ADS)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  14. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  15. Napping reverses increased pain sensitivity due to sleep restriction.

    PubMed

    Faraut, Brice; Léger, Damien; Medkour, Terkia; Dubois, Alexandre; Bayon, Virginie; Chennaoui, Mounir; Perrot, Serge

    2015-01-01

    To investigate pain sensitivity after sleep restriction and the restorative effect of napping. A strictly controlled randomized crossover study with continuous polysomnography monitoring was performed. Laboratory-based study. 11 healthy male volunteers. Volunteers attended two three-day sessions: "sleep restriction" alone and "sleep restriction and nap". Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the "sleep restriction and nap" session, volunteers took two 30-minute naps, one in the morning and one in the afternoon. Quantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area. Sleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.

  16. Effect of butorphanol on thermal nociceptive threshold in healthy pony foals.

    PubMed

    McGowan, K T; Elfenbein, J R; Robertson, S A; Sanchez, L C

    2013-07-01

    Pain management is an important component of foal nursing care, and no objective data currently exist regarding the analgesic efficacy of opioids in foals. To evaluate the somatic antinociceptive effects of 2 commonly used doses of intravenous (i.v.) butorphanol in healthy foals. Our hypothesis was that thermal nociceptive threshold would increase following i.v. butorphanol in a dose-dependent manner in both neonatal and older pony foals. Seven healthy neonatal pony foals (age 1-2 weeks), and 11 healthy older pony foals (age 4-8 weeks). Five foals were used during both age periods. Treatments, which included saline (0.5 ml), butorphanol (0.05 mg/kg bwt) and butorphanol (0.1 mg/kg bwt), were administered i.v. in a randomised crossover design with at least 2 days between treatments. Response variables included thermal nociceptive threshold, skin temperature and behaviour score. Data within each age period were analysed using a 2-way repeated measures ANOVA, followed by a Holm-Sidak multiple comparison procedure if warranted. There was a significant (P<0.05) increase in thermal threshold, relative to Time 0, following butorphanol (0.1 mg/kg bwt) administration in both age groups. No significant time or treatment effects were apparent for skin temperature. Significant time, but not treatment, effects were evident for behaviour score in both age groups. Butorphanol (0.1 mg/kg bwt, but not 0.05 mg/kg bwt) significantly increased thermal nociceptive threshold in neonatal and older foals without apparent adverse behavioural effects. Butorphanol shows analgesic potential in foals for management of somatic painful conditions. © 2012 EVJ Ltd.

  17. Temperature Thresholds and Thermal Requirements for the Development of the Rice Leaf Folder, Cnaphalocrocis medinalis

    PubMed Central

    Padmavathi, Chintalapati; Katti, Gururaj; Sailaja, V.; Padmakumari, A.P.; Jhansilakshmi, V.; Prabhakar, M.; Prasad, Y.G.

    2013-01-01

    The rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) is a predominant foliage feeder in all the rice ecosystems. The objective of this study was to examine the development of leaf folder at 7 constant temperatures (18, 20, 25, 30, 32, 34, 35° C) and to estimate temperature thresholds and thermal constants for the forecasting models based on heat accumulation units, which could be developed for use in forecasting. The developmental periods of different stages of rice leaf folder were reduced with increases in temperature from 18 to 34° C. The lower threshold temperatures of 11.0, 10.4, 12.8, and 11.1° C, and thermal constants of 69, 270, 106, and 455 degree days, were estimated by linear regression analysis for egg, larva, pupa, and total development, respectively. Based on the thermodynamic non-linear optimSSI model, intrinsic optimum temperatures for the development of egg, larva, and pupa were estimated at 28.9, 25.1 and 23.7° C, respectively. The upper and lower threshold temperatures were estimated as 36.4° C and 11.2° C for total development, indicating that the enzyme was half active and half inactive at these temperatures. These estimated thermal thresholds and degree days could be used to predict the leaf folder activity in the field for their effective management. PMID:24205891

  18. Effects of oxygen on responses to heating in two lizard species sampled along an elevational gradient.

    PubMed

    DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N

    2017-08-01

    Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.

  19. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities.

    PubMed

    Sharifi, Ehsan; Boland, John

    2018-06-18

    Outdoor thermal comfort is influenced by people's climate expectations, perceptions and adaptation capacity. Varied individual response to comfortable or stressful thermal environments results in a deviation between actual outdoor thermal activity choices and those predicted by thermal comfort indices. This paper presents a passive activity observation (PAO) method for estimating contextual limits of outdoor thermal adaptation. The PAO method determines which thermal environment result in statistically meaningful changes may occur in outdoor activity patterns, and it estimates thresholds of outdoor thermal neutrality and limits of thermal adaptation in public space based on activity observation and microclimate field measurement. Applications of the PAO method have been demonstrated in Adelaide, Melbourne and Sydney, where outdoor activities were analysed against outdoor thermal comfort indices between 2013 and 2014. Adjusted apparent temperature (aAT), adaptive predicted mean vote (aPMV), outdoor standard effective temperature (OUT_SET), physiological equivalent temperature (PET) and universal thermal comfort index (UTCI) are calculated from the PAO data. Using the PAO method, the high threshold of outdoor thermal neutrality was observed between 24 °C for optional activities and 34 °C for necessary activities (UTCI scale). Meanwhile, the ultimate limit of thermal adaptation in uncontrolled public spaces is estimated to be between 28 °C for social activities and 48 °C for necessary activities. Normalised results indicate that city-wide high thresholds for outdoor thermal neutrality vary from 25 °C in Melbourne to 26 °C in Sydney and 30 °C in Adelaide. The PAO method is a relatively fast and localised method for measuring limits of outdoor thermal adaptation and effectively informs urban design and policy making in the context of climate change.

  20. Influence of an anomalous dimension effect on thermal instability in amorphous-InGaZnO thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kuan-Hsien; Chou, Wu-Ching, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw; Chang, Ting-Chang, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw

    2014-10-21

    This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of themore » surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.« less

  1. Pain facilitation and pain inhibition during conditioned pain modulation in fibromyalgia and in healthy controls.

    PubMed

    Potvin, Stéphane; Marchand, Serge

    2016-08-01

    Although fibromyalgia (FM) is associated with a deficit in inhibitory conditioned pain modulation (CPM), the discriminative power of CPM procedures is unknown. Moreover, the high intersubject heterogeneity in CPM responses in FM raises the possibility that a sizeable subgroup of these patients may experience pain facilitation during CPM, but the phenomenon has not been explicitly studied. To address these issues, 96 patients with FM and 71 healthy controls were recruited. Thermal stimuli were used to measure pain thresholds. Pain inhibition was elicited using a tonic thermal test (Peltier thermode) administered before and after activation of CPM mechanisms using a cold pressor test. Thermal pain thresholds were lower in patients with FM than in healthy controls. Pain ratings during the cold pressor test were higher in patients with FM, relative to controls. The CPM inhibitory efficacy was lower in patients with FM than in controls. The CPM procedure had good specificity (78.9%) but low sensitivity (45.7%), whereas a composite pain index had good sensitivity (75.0%) and specificity (78.9%). Finally, the rate of patients with FM who reported pain facilitation during the CPM procedure was found to be significantly increased compared with that of controls (41.7% vs 21.2%). The good discriminative power of the composite pain index highlights the need for further validation studies using mechanistically relevant psychophysical procedures in FM. The low sensitivity of the CPM procedure, combined with the large proportion of patients with FM experiencing pain facilitation during CPM, strongly suggests that endogenous pain inhibition mechanisms are deeply impaired in patients with FM, but only in a subgroup of them.

  2. Demonstration of an anti-hyperalgesic effect of a novel pan-Trk inhibitor PF-06273340 in a battery of human evoked pain models.

    PubMed

    Loudon, Peter; Siebenga, Pieter; Gorman, Donal; Gore, Katrina; Dua, Pinky; van Amerongen, Guido; Hay, Justin L; Groeneveld, Geert Jan; Butt, Richard P

    2018-02-01

    Inhibitors of nerve growth factor (NGF) reduce pain in several chronic pain indications. NGF signals through tyrosine kinase receptors of the tropomyosin-related kinase (Trk) family and the unrelated p75 receptor. PF-06273340 is a small molecule inhibitor of Trks A, B and C that reduces pain in nonclinical models, and the present study aimed to investigate the pharmacodynamics of this first-in-class molecule in humans. A randomized, double-blind, single-dose, placebo- and active-controlled five-period crossover study was conducted in healthy human subjects (NCT02260947). Subjects received five treatments: PF-06273340 50 mg, PF-06273340 400 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo. The five primary endpoints were the pain detection threshold for the thermal pain tests and the pain tolerance threshold for the cold pressor, electrical stair and pressure pain tests. The trial had predefined decision rules based on 95% confidence that the PF-06273340 effect was better than that of placebo. Twenty subjects entered the study, with 18 completing all five periods. The high dose of PF-06273340 met the decision rules on the ultraviolet (UV) B skin thermal pain endpoint [least squares (LS) mean vs. placebo: 1.13, 95% confidence interval: 0.64-1.61], but not on the other four primary endpoints. The low dose did not meet the decision criteria for any of the five primary endpoints. Pregabalin (cold pressor and electrical stair tests) and ibuprofen (UVB thermal pain) showed significant analgesic effects on expected endpoints. The study demonstrated, for the first time, the translation of nonclinical effects into man in an inflammatory pain analgesic pharmacodynamic endpoint using a pan-Trk inhibitor. © 2017 The British Pharmacological Society.

  3. Influence of skin cold sensation threshold in the occurrence of dental sensitivity during dental bleaching: a placebo controlled clinical trial.

    PubMed

    Rahal, Vanessa; Gallinari, Marjorie de Oliveira; Barbosa, Juliana Stuginski; Martins-Junior, Reynaldo Leite; Santos, Paulo Henrique Dos; Cintra, Luciano Tavares Angelo; Briso, André Luiz Fraga

    2018-01-18

    This study verified the occurrence of dental sensitivity in patients submitted to a 35% hydrogen peroxide based product (Whiteness HP Maxx 35% - FGM), skin cold sensation threshold (SCST) and its influence on dental sensitivity. Sixty volunteers were divided into 4 groups (n = 15), according to SCST (low: GI and GIII, and high: GII and IV) and bleaching treatment (hydrogen peroxide: GI and GII, and placebo: GIII and GIV). SCST was determined in the inner forearm for 6 different times using a neurosensory analyzer, the TSA II (Medoc Advanced Medical Systems, Ramat Yishai, Northern District, Israel). Dental sensitivity measurements were performed 10 different times using a thermal stimulus and an intraoral device attached to TSA II, positioned in the buccal surface of the upper right central incisor. Spontaneous dental sensitivity was also determined using the Visual Analogue Scale (VAS). Data were submitted to Student's t-test and Pearson's Correlation Test (α=0.05). SCST remained the same during bleaching treatment. Distinct responses of dental sensitivity were found in patients with low and high SCST during the first and third bleaching session (p≤0.05). The teeth submitted to the bleaching treatment became more sensitive to cold than those treated with placebo. Moreover, data obtained with TSA and VAS presented moderate correlation. Bleaching treatment increased dental sensitivity and skin cold sensation threshold might represent a determining factor in this occurrence, since low and high SCST patients had different responses to the thermal stimulus in the teeth.

  4. Lagged association between geomagnetic activity and diminished nocturnal pain thresholds in mice.

    PubMed

    Galic, M A; Persinger, M A

    2007-10-01

    A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice. (c) 2007 Wiley-Liss, Inc.

  5. 47 CFR 15.323 - Specific requirements for devices operating in the 1920-1930 MHz sub-band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to... windows with the lowest power level below a monitoring threshold of 50 dB above the thermal noise power... of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability...

  6. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  7. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    NASA Astrophysics Data System (ADS)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  8. Increased Sensitivity to Thermal Pain and Reduced Subcutaneous Lidocaine Efficacy in Redheads

    PubMed Central

    Liem, Edwin B.; Joiner, Teresa V.; Tsueda, Kentaro; Sessler, Daniel I.

    2005-01-01

    Background: Anesthetic requirement in redheads is exaggerated, suggesting that redheads may be especially sensitive to pain. We therefore tested the hypotheses that women with natural red hair are more sensitive to pain, and that redheads are resistant to topical and subcutaneous lidocaine. Methods: We evaluated pain sensitivity in red-haired (n=30) or dark-haired (n=30) women by determining the electrical current perception threshold, pain perception, and maximum pain tolerance with a Neurometer CPT/C (Neurotron, Inc., Baltimore, MD). We evaluated the analogous warm and cold temperature thresholds with the TSA-II Neurosensory Analyzer (Medoc Ltd., Minneapolis, MN). Volunteers were tested with both devices at baseline and with the Neurometer after 1-hour exposure to 4% liposomal lidocaine and after subcutaneous injection of 1% lidocaine. Data are presented as medians [interquartile ranges]. Results: Current perception, pain perception, and pain tolerance thresholds were similar in the red-haired and dark-haired women at 2000, 250, and 5 Hz. In contrast, redheads were more sensitive to cold pain perception (22.6°C [15.1, 26.1] vs. 12.6°C [0, 20], P=0.004), cold pain tolerance (6.0°C [0, 9.7] vs. 0.0°C [0.0, 2.0], P=0.001), and heat pain (46.3°C [45.7, 47.5] vs. 47.7°C [46.6, 48.7], P=0.009). Subcutaneous, lidocaine was significantly less effective in redheads, e.g., pain tolerance threshold at 2000 Hz stimulation in redheads was 11.0 mA [8.5, 16.5] vs. >20.0 mA [14.5, >20] in others, P=0.005). Conclusion: Red hair is the phenotype for mutations of the melanocortin 1 receptor. Our results indicate that redheads are more sensitive to thermal pain and are resistant to the analgesic effects of subcutaneous lidocaine. Mutations of the melanocortin 1 receptor, or a consequence thereof, thus modulate pain sensitivity. PMID:15731586

  9. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.

    1982-01-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  10. Effects of arc current on the life in burner rig thermal cycling of plasma sprayed ZrOsub2-Ysub2Osub3

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; McDonald, G.

    1982-02-01

    An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.

  11. Napping Reverses Increased Pain Sensitivity Due to Sleep Restriction

    PubMed Central

    Faraut, Brice; Léger, Damien; Medkour, Terkia; Dubois, Alexandre; Bayon, Virginie; Chennaoui, Mounir; Perrot, Serge

    2015-01-01

    Study Objective To investigate pain sensitivity after sleep restriction and the restorative effect of napping. Design A strictly controlled randomized crossover study with continuous polysomnography monitoring was performed. Setting Laboratory-based study. Participants 11 healthy male volunteers. Interventions Volunteers attended two three-day sessions: “sleep restriction” alone and “sleep restriction and nap”. Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the “sleep restriction and nap” session, volunteers took two 30-minute naps, one in the morning and one in the afternoon. Measurements and Results Quantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area. Conclusions Sleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status. PMID:25723495

  12. Recovery in dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors with thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byung-Jae; Hwang, Ya-Hsi; Ahn, Shihyun

    The recovery effects of thermal annealing on dc and rf performance of off-state step-stressed AlGaN/GaN high electron mobility transistors were investigated. After stress, reverse gate leakage current and sub-threshold swing increased and drain current on-off ratio decreased. However, these degradations were completely recovered after thermal annealing at 450 °C for 10 mins for devices stressed either once or twice. The trap densities, which were estimated by temperature-dependent drain-current sub-threshold swing measurements, increased after off-state step-stress and were reduced after subsequent thermal annealing. In addition, the small signal rf characteristics of stressed devices were completely recovered after thermal annealing.

  13. Characteristics of the local cutaneous sensory thermoneutral zone

    PubMed Central

    Zhang, Hui; Arens, Edward A.

    2017-01-01

    Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm’s glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors’ activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5–34.9°C (Pearson r = 0.94; P < 0.001). It falls within the cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology. NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32–34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature integration. Also, we have developed from vision research a new quantitative test addressing the balance in activity of cutaneous cold and warm thermoreceptors. This could have important clinical (assessment of somatosensory abnormalities in neurological disease) and applied (design of personal comfort systems) implications. PMID:28148644

  14. Wavelength dependence of laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter; Stuck, Bruce E.

    2005-04-01

    The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.

  15. Experimental Observation of Thermal Self-Modulation in OPO

    NASA Technical Reports Server (NTRS)

    Gao, Jiangrui; Wang, Hai; Xie, Changde; Peng, Kunchi

    1996-01-01

    The thermal self-modulation has been observed experimentally via SHG in OPO. The threshold pump power for the thermal self- modulation is much smaller than that of the nonlinear self-pulsing. The thermal effect prevent from realizing the theoretical prediction for the self-pulsing.

  16. Extremely heat tolerant photosymbiosis in a shallow marine benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Schmidt, Christiane; Danna, Titelboim; Janett, Brandt; Raphael, Morard; Barak, Herut; Sigal, Abramovich; Ahuva, Almogi-Labin; Michal, Kucera

    2016-04-01

    Thermal stress leads to the loss of algal symbionts (bleaching) in many shallow marine calcifiers including foraminifera. The bleaching threshold often occurs at water temperatures, which are likely to be exceeded in the near future due to global warming. Preadaptation represents one mechanism allowing photosymbiotic organisms to persist under warmer conditions, providing the tolerance can be carried to new habitats. Here we provide evidence for the existence of such adaptation in the benthic foraminifera Pararotalia calcariformata recently discovered in the eastern Mediterranean. We identify its symbionts as a consortium of diatom species dominated by Minutocellus polymorphus. We show that in the field, the foraminifera retains its pigments at a thermally polluted site, where peak water temperatures reach 36°C. To test whether this tolerance represents a widespread adaptation, we conducted manipulative experiments exposing populations from an unpolluted site to elevated temperatures for up to three weeks. The populations were kept in co-culture with the more thermally sensitive diatom-bearing foraminifera Amphistegina lobifera. Reduced photosynthetic activity in A. lobifera occurred at 32°C whereas photochemical stress in P. calcariformata was first observed during exposure to 36°C and chronic photoinhibition (but not mortality) first occurred at 42°C. Survivorship was high in all treatments, and growth was observed under thermal conditions similar to summer maxima at the thermally polluted site (35-36°C). The photosymbiosis in P. calcariformata is unusually thermally tolerant for a photosymbiont-bearing eukaryote. The thermal tolerance of this photosymbiosis is present in a natural environment where its thermal threshold is never realized. These observations imply that photosymbiosis in marine protists can respond to elevated temperatures by drawing on a pool of naturally occurring pre-adaptations. It also provides a perspective on the massive occurrence of symbiont-bearing foraminifera in the early Cenozoic hothouse climate.

  17. Effect of agmatine on acute and mononeuropathic pain.

    PubMed

    Aricioglu, Feyza; Korcegez, Eylem; Bozkurt, Ayhan; Ozyalcin, Suleyman

    2003-12-01

    Agmatine is a polycationic amine synthesized from L-arginine by arginine decarboxylase in brain and several tissues. It binds to N-methyl-D-aspartate (NMDA) subtype of glutamatergic, alpha(2)-adrenergic and imidazoline (I) receptors. The present study was designed to investigate effect of agmatine on acute and mononeuropathic pain after chronic constriction injury (CCI). CCI was created by four loose ligations around the right sciatic nerve. The analgesic threshold in rats was evaluated by using thermal hyperalgesia/allodynia (THA) at 4 degrees C. The evaluations were made preoperatively, on postoperative day 15, and after drug administration. Agmatine (10, 20, 40, 80, and 100 mg/kg) was administered intraperitoneally for 5 days beginning on postoperative day 15. Agmatine significantly reduced the hyperalgesia in all doses applied. When agmatine was injected intraperitoneally (10, 20, 40, 80, and 100 mg/kg), it increased the nociceptive threshold in the tail-immersion test in a dose-dependent manner, but it had no effect in the hot-plate test. This effect of agmatine in the tail-immersion test was blocked by both yohimbine (1 mg/kg) and idazoxan (0.5 mg/kg). When agmatine was administered intracerebroventricularly (25-200 microg/10 microL), it increased the nociceptive threshold in the hot-plate but not in the tail-immersion test. We conclude that agmatine, an endogenous substance derived from arginine, can modulate both acute and chronic pain.

  18. Incorporating adaptive responses into future projections of coral bleaching.

    PubMed

    Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D

    2014-01-01

    Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress.

  19. Thermal antinociception after dexmedetomidine administration in cats: a comparison between intramuscular and oral transmucosal administration.

    PubMed

    Slingsby, Louisa S; Taylor, Polly M; Monroe, Taylor

    2009-10-01

    Dexmedetomidine 40microg/kg was administered either intramuscularly (IM) or oral transmucosally (OTM) to 12 cats in a randomised cross-over study. Thermal nociceptive thresholds and visual analogue scale (VAS) sedation scores were obtained before and at regular intervals up to 24h after test drug administration. The summary measures of overall mean threshold, overall mean VAS sedation plus onset, offset and duration of analgesia were investigated using a univariate general linear model. There were no significant differences between treatment groups. Data are presented as mean+/-standard deviation: delta T mean increase over time (IM 6 degrees C+/-3 degrees C, OTM 6 degrees C+/-2 degrees C); overall mean VAS (IM 43+/-9 OTM 39+/-1); onset (IM 35+/-32 and OTM 30+/-40min); offset (IM 96+/-56 and OTM 138+/-135min); duration (IM 61+/-47 OTM 99+/-124min). Dexmedetomidine is well absorbed through the oral mucosa in cats since OTM and IM administration of dexmedetomidine 40microg/kg produced similar overall sedative and antinociceptive effects.

  20. Visible lesion thresholds and model predictions for Q-switched 1318-nm and 1540-nm laser exposures to porcine skin

    NASA Astrophysics Data System (ADS)

    Zohner, Justin J.; Schuster, Kurt J.; Chavey, Lucas J.; Stolarski, David J.; Kumru, Semih S.; Rockwell, Benjamin A.; Thomas, Robert J.; Cain, Clarence P.

    2006-02-01

    Skin damage thresholds were measured and compared with theoretical predictions using a skin thermal model for near-IR laser pulses at 1318 nm and 1540 nm. For the 1318-nm data, a Q-switched, 50-ns pulse with a spot size of 5 mm was applied to porcine skin and the damage thresholds were determined at 1 hour and 24 hours postexposure using Probit analysis. The same analysis was conducted for a Q-switched, 30-ns pulse at 1540 nm with a spot size of 5 mm. The Yucatan mini-pig was used as the skin model for human skin due to its similarity to pigmented human skin. The ED 50 for these skin exposures at 24 hours postexposure was 10.5 J/cm2 for the 1318-nm exposures, and 6.1 J/cm2 for the 1540-nm exposures. These results were compared to thermal model predictions. We show that the thermal model fails to account for the ED 50 values observed. A brief discussion of the possible causes of this discrepancy is presented. These thresholds are also compared with previously published skin minimum visible lesion (MVL) thresholds and with the ANSI Standard's MPE for 1318-nm lasers at 50 ns and 1540-nm lasers at 30 ns.

  1. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  2. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports; Exhaustive Thresholds and Resistance Checkpoints; Reconfigurable HIL Testing of Earth Satellites; FPGA Control System for the Automated Test of MicroShutters; Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM; Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis; Galileo - The Serial-Production AIT Challenge; The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Simulated Reentry Heating by Torching; Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum; High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber; The Planning and Implementation of Test Facility Improvements; and Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit.

  3. Systemic administration of vitamins C and E attenuates nociception induced by chronic constriction injury of the sciatic nerve in rats.

    PubMed

    Riffel, Ana Paula K; de Souza, Jéssica A; Santos, Maria do Carmo Q; Horst, Andréa; Scheid, Taína; Kolberg, Carolina; Belló-Klein, Adriane; Partata, Wania A

    2016-03-01

    Antioxidants have been tested to treat neuropathic pain, and α-Tocopherol (vitamin E--vit. E) and ascorbic acid (vitamin C--vit. C) are potent antioxidants. We assessed the effect of intraperitoneal administration of vit. C (30 mg/kg/day) and vit. E (15 mg/kg/day), given alone or in combination, on the mechanical and thermal thresholds and the sciatic functional index (SFI) in rats with chronic constriction injury (CCI) of the sciatic nerve. We also determined the lipid hydroperoxides and total antioxidant capacity (TAC) in the injured sciatic nerve. Further, we assessed the effects of oral administration of vit. C+vit. E (vit. C+E) and of a combination of vit. C+E and gabapentin (100mg/kg/day, i.p.) on the mechanical and thermal thresholds of CCI rats. The vitamins, whether administered orally or i.p., attenuated the reductions in the mechanical and thermal thresholds induced by CCI. The antinociceptive effect was greater with a combination of vit. C+E than with each vitamin given alone. The SFI was also improved in vitamin-treated CCI rats. Co-administration of vit. C+E and gabapentin induced a greater antinociceptive effect than gabapentin alone. No significant change occurred in TAC and lipid hydroperoxide levels, but TAC increased (45%) while lipid hydroperoxides decreased (38%) in the sciatic nerve from vit. C+E-treated CCI rats. Thus, treatment with a combination of vit. C+E was more effective to treat CCI-induced neuropathic pain than vitamins alone, and the antinociceptive effect was greater with co-administration of vit. C+E and gabapentin than with gabapentin alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. DC power limitation of the heterojunction bipolar transistor with dot geometry: Effect of base potential distribution on thermal runaway

    NASA Astrophysics Data System (ADS)

    Liou, L. L.; Jenkins, T.; Huang, C. I.

    1997-06-01

    The d.c. power limitation of a conventional HBT with dot geometry was studied theoretically using combined electro-thermal and transmission line models. In most cases, the thermal runaway occurs at a power level lower than that set by the intrinsic electronic property of the device. The dependence of the d.c. thermal runaway threshold power density, Pmax, on the emitter dot radius and emitter ballast resistance was calculated. Increasing emitter dot radius lowers Pmax. Although ballast resistance increases Pmax, the effect reduces as the emitter dot radius increases. This is caused by the non-uniform potential distribution in the base layer. When thermal runaway is considered, the nonuniform base-emitter potential offsets the improvement of the power handling capability by the physical ballast resistance. Conventional HBTs with a large radius (greater than 4 μm) exhibit a small Pmax caused by thermal effect. This threshold power density can be increased drastically by using the thermal shunt technique.

  5. Antinociception after both peripheral and intrathecal injection of oxotremorine is modulated by spinal nitric oxide.

    PubMed

    Machelska, H; Pavone, F; Capone, F; Przewłocka, B

    1999-03-01

    The present study investigated the role of spinal nitric oxide (NO) in the antinociception induced by intraperitoneal (i.p.) and intrathecal (i.th.) injection of oxotremorine. The experiments were carried out on male Wistar rats, which had cannulas chronically implanted in the lumbar enlargement of the spinal cord. Antinociceptive effects were evaluated using a tail-flick and a paw pressure test. To raise the spinal NO level, the rats received the NO donor, 3-morpholino-sydnonimine (SIN-1, 10 and 100 microg/5 microl); to lower the NO level, the inhibitor of NO synthase, N-nitro-L-arginine methyl ester (L-NAME, 50 and 400 microg/5 microl), was administered. Both those substances were injected i.th. Systemic injections of oxotremorine (0.02 and 0.1 mg/kg) produced a significant increase in the thermal nociceptive threshold, while the mechanical threshold was affected only by the higher dose (0.1 mg/kg) of the muscarinic agonist. I.th. injections of oxotremorine (0.1 ng, 1 ng, 1 microg/5 microl) produced significant antinociception in both those tests. I.th. administration of SIN-1 in doses which themselves did not affect the nociceptive threshold antagonized both the peripheral and central oxotremorine antinociception. I.th. administration of L-NAME (50 and 400 microg/5 microl) did not change the nociceptive threshold, but dose-dependently potentiated the effects of oxotremorine injected i.p. in both tests; however, the effect of i.th. administration of oxotremorine was potentiated only in the tail-flick test. Our results demonstrate that irrespective of the way of its injection, the antinociceptive effect of oxotremorine is modulated by activity of the spinal NO. Moreover, our results further support the hypothesis that NO present in the spinal cord exerts pronociceptive effects.

  6. Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis

    PubMed Central

    Baeumler, Petra I.; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik

    2014-01-01

    Background The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Methods Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Results Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Conclusions Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory profiles in order to fully characterize its effect on sensory perception and to explore the predictive value of sensory profiles for the effectiveness of acupuncture. PMID:25502787

  7. Effects of acupuncture on sensory perception: a systematic review and meta-analysis.

    PubMed

    Baeumler, Petra I; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik

    2014-01-01

    The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory profiles in order to fully characterize its effect on sensory perception and to explore the predictive value of sensory profiles for the effectiveness of acupuncture.

  8. Application of pentacene thin-film transistors with controlled threshold voltages to enhancement/depletion inverters

    NASA Astrophysics Data System (ADS)

    Takahashi, Hajime; Hanafusa, Yuki; Kimura, Yoshinari; Kitamura, Masatoshi

    2018-03-01

    Oxygen plasma treatment has been carried out to control the threshold voltage in organic thin-film transistors (TFTs) having a SiO2 gate dielectric prepared by rf sputtering. The threshold voltage linearly changed in the range of -3.7 to 3.1 V with the increase in plasma treatment time. Although the amount of change is smaller than that for organic TFTs having thermally grown SiO2, the tendency of the change was similar to that for thermally grown SiO2. To realize different plasma treatment times on the same substrate, a certain region on the SiO2 surface was selected using a shadow mask, and was treated with oxygen plasma. Using the process, organic TFTs with negative threshold voltages and those with positive threshold voltages were fabricated on the same substrate. As a result, enhancement/depletion inverters consisting of the organic TFTs operated at supply voltages of 5 to 15 V.

  9. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less

  10. Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.

    PubMed

    Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari

    2018-01-01

    Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p < .001), a low threshold of thermal stimulus in the plantar test (withdrawal latencies: 9.69 [0.98] seconds for paired versus 6.15 [0.75] seconds for loss; p = .037), and exacerbated pain behaviors in the formalin test (total number of lifts: 40.33 [4.46] for paired versus 54.42 [1.91] for loss; p = .042) as compared with paired males (n = 20). Thermal thresholds in the plantar test significantly correlated with anxiety-related behavior in the open-field test (r = 0.64). No such differences were observed in the males that did not display partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.

  11. [Thermal comfort and indoor air quality in some of the italian state police workplaces.

    PubMed

    Chirico, Francesco; Rulli, Giuseppina

    2017-12-01

    Little can be found in the literature about thermal comfort and indoor air quality (IAQ) in law enforcement workplaces. This study, based on environmental surveys carried out by the Centro Sanitario Polifunzionale of Milan (Italian State Police Health Service Department), aims to assess the thermal comfort and IAQ in some of the Italian State Police workplaces. Measurements were performed in some indoor workplaces such as offices, archives, laboratories and guard-houses in various regions (Lombardia, Emilia Romagna, Liguria, Veneto, Trentino Alto-Adige) of Northern Italy. The PMV/PPD model developed by Fangar for the evaluation of the thermal comfort was used. We measured both CO2 concentration and relative humidity indoor levels for the evaluation of IAQ. We used Chi square and t Student tests to study both prevalence of thermal discomfort and low IAQ, and their differences between summer and winter. For the purposes of the present study we carried out 488 measurements in 36 buildings (260 in winter and 228 in summer). Our results showed that thermal comfort was reached in 95% and 68% of environmental measurements (in winter and summer, respectively). In summer, we measured different types of thermal discomfort. As regard to IAQ, CO2 exceeded the threshold limit value (1000 ppm) in 39% (winter) and 9% (summer) of our measurements. Chi-square test showed a statistically significant difference between summer and winter for all outcomes considered. Indeed, thermal comfort was better in winter than summer (X2 = 61.0795), while IAQ was found to be better in the summer than winter considering both the CO2 1000 ppm and 1200 ppm threshold values (X2 = 56.9004 and X2 = 8.8845 respectively). Prevalence of low relative humidity in winter was higher than in summer (X2 = 124.7764). Even though this study did not report any situation of risk to Italian police officers health and safety, it has highlighted some potential issues in some of the examined workplaces, concerning thermal comfort in summer and IAQ in winter. Regarding the risk assessment process, simple and inexpensive preventive measures are already feasible in the 'observation phase' of the risk assessment, before execution of instrumental environmental survey. According to the technical standards and risk assessment models, this way might increase both comfort levels for workers employed in indoor environments and the effectiveness of the risk assessment process, through the optimization of available resources. Copyright© by Aracne Editrice, Roma, Italy.

  12. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  13. Acupuncture-induced changes of pressure pain threshold are mediated by segmental inhibition--a randomized controlled trial.

    PubMed

    Baeumler, Petra I; Fleckenstein, Johannes; Benedikt, Franziska; Bader, Julia; Irnich, Dominik

    2015-11-01

    Our aim was to distinguish between spinal and supraspinal mechanisms in the intact nervous system by comparing homosegmental and heterosegmental effects of electroacupuncture (EA) and manual acupuncture (MA) on sensory perception in healthy volunteers by means of quantitative sensory testing. Seventy-two healthy volunteers were randomly assigned to receive either MA or EA at SP 6, SP 9, GB 39, and ST 36 at the left leg or relaxed for 30 minutes (control group [CG]). Blinded examiners assessed 13 sensory modalities (thermal and mechanical detection and pain thresholds) at the upper arms and lower legs before and after intervention by means of a standardized quantitative sensory testing battery. Change scores of all 13 sensory thresholds were compared between groups. The main outcome measure was the change score of the pressure pain threshold (PPT). There were no baseline differences between groups. Pressure pain threshold change scores at the lower left leg, in the same segment as the needling site, differed significantly (P = 0.008) between the EA (median: 103.01 kPa) and CG groups (median: 0.00 kPa) but not between the MA (median: 0.00 kPa) and CG groups. No further significant change score differences were found between one of the acupuncture groups and the CG. The PPT can be changed by EA. The PPT increase was confined to the segment of needling, which indicates that it is mainly mediated by segmental inhibition in the spinal cord. This underscores the importance of segmental needling and electrical stimulation in clinical practice.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Tanmoy, E-mail: tanmoybesus@gmail.com; Singh, Harkirat, E-mail: tanmoybesus@gmail.com; Mitra, Chiranjib, E-mail: tanmoybesus@gmail.com

    Violation of Bell’s inequality test has been established as an efficient tool to determine the presence of entanglement in quantum spin 1/2 magnets. Herein, macroscopic thermodynamic quantities, namely, magnetic susceptibility and specific heat have been employed to perform Bell’s inequality test for [NH{sub 4}CuPO{sub 4}, H{sub 2}O], a spin 1/2 antiferromagnet with nearest neighbor interactions. The mean value of the Bell operator is quantified and plotted as a function of temperature. The threshold temperature is determined above which the Bell’s inequality is not violated and a good consistency is found between the analyses done on magnetic and thermal data.

  15. Thermotactile perception thresholds measurement conditions.

    PubMed

    Maeda, Setsuo; Sakakibara, Hisataka

    2002-10-01

    The purpose of this paper is to investigate the effects of posture, push force and rate of temperature change on thermotactile thresholds and to clarify suitable measuring conditions for Japanese people. Thermotactile (warm and cold) thresholds on the right middle finger were measured with an HVLab thermal aesthesiometer. Subjects were eight healthy male Japanese students. The effects of posture in measurement were examined in the posture of a straight hand and forearm placed on a support, the same posture without a support, and the fingers and hand flexed at the wrist with the elbow placed on a desk. The finger push force applied to the applicator of the thermal aesthesiometer was controlled at a 0.5, 1.0, 2.0 and 3.0 N. The applicator temperature was changed to 0.5, 1.0, 1.5, 2.0 and 2.5 degrees C/s. After each measurement, subjects were asked about comfort under the measuring conditions. Three series of experiments were conducted on different days to evaluate repeatability. Repeated measures ANOVA showed that warm thresholds were affected by the push force and the rate of temperature change and that cold thresholds were influenced by posture and push force. The comfort assessment indicated that the measurement posture of a straight hand and forearm laid on a support was the most comfortable for the subjects. Relatively high repeatability was obtained under measurement conditions of a 1 degrees C/s temperature change rate and a 0.5 N push force. Measurement posture, push force and rate of temperature change can affect the thermal threshold. Judging from the repeatability, a push force of 0.5 N and a temperature change of 1.0 degrees C/s in the posture with the straight hand and forearm laid on a support are recommended for warm and cold threshold measurements.

  16. Nociceptive tuning by stem cell factor/c-Kit signaling.

    PubMed

    Milenkovic, Nevena; Frahm, Christina; Gassmann, Max; Griffel, Carola; Erdmann, Bettina; Birchmeier, Carmen; Lewin, Gary R; Garratt, Alistair N

    2007-12-06

    The molecular mechanisms regulating the sensitivity of sensory circuits to environmental stimuli are poorly understood. We demonstrate here a central role for stem cell factor (SCF) and its receptor, c-Kit, in tuning the responsiveness of sensory neurons to natural stimuli. Mice lacking SCF/c-Kit signaling displayed profound thermal hypoalgesia, attributable to a marked elevation in the thermal threshold and reduction in spiking rate of heat-sensitive nociceptors. Acute activation of c-Kit by its ligand, SCF, resulted in a reduced thermal threshold and potentiation of heat-activated currents in isolated small-diameter neurons and thermal hyperalgesia in mice. SCF-induced thermal hyperalgesia required the TRP family cation channel TRPV1. Lack of c-Kit signaling during development resulted in hypersensitivity of discrete mechanoreceptive neuronal subtypes. Thus, c-Kit can now be grouped with a small family of receptor tyrosine kinases, including c-Ret and TrkA, that control the transduction properties of sensory neurons.

  17. Theory of Auditory Thresholds in Primates

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2001-03-01

    The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note

  18. Electroconvulsive stimulation (ECS) increases the expression of neuropeptide Y (NPY) in rat brains in a model of neuropathic pain: a quantitative real-time polymerase chain reaction (RT-PCR) study.

    PubMed

    Okabe, Tadashi; Sato, Chiyo; Matsumoto, Keisuke; Ozawa, Hitoshi; Sakamoto, Atsuhiro

    2009-11-01

    Electroconvulsive shock therapy (ECT) has been widely used as an effective and established treatment for refractory depression and schizophrenia. Some reports have shown that ECT is also effective for treating refractory neuropathic pain. In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from day 2 after surgery. An electroconvulsive shock (ECS) was administered to rodents once daily for 6 days on days 7-12 after CCI operation using a pulse generator. Thermal and mechanical stimulation tests were performed to assess pain thresholds. Real-time polymerase chain reaction was used to measure the gene expression levels for 5HT(1A)R, 5HT(2A)R, neuropeptide Y (NPY), and GABAA(alpha1)R in the brain. After ECS, the latency to withdrawal from thermal stimulation was significantly increased; however, pain withdrawal thresholds in response to mechanical stimulation were not significantly changed. Expression ratios of NPY were significantly greater after ECS. Symptoms of neuropathic pain improved and expression of NPY in the brain was increased in CCI model rats after ECS, suggesting that changes in the expression of NPY in the brain may be related to the mechanism of action of ECT in treating neuropathic pain.

  19. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

    PubMed

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

  20. Thermal Detection Thresholds of Aδ- and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin

    PubMed Central

    Churyukanov, Maxim; Plaghki, Léon; Legrain, Valéry; Mouraux, André

    2012-01-01

    Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C) and C-fibres (39.8±1.7°C). Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively. PMID:22558230

  1. The use of a battery of pain models to detect analgesic properties of compounds: a two‐part four‐way crossover study

    PubMed Central

    Okkerse, Pieter; van Amerongen, Guido; de Kam, Marieke L.; Stevens, Jasper; Butt, Richard P.; Gurrell, Rachel; Dahan, Albert; van Gerven, Joop M.; Hay, Justin L.

    2017-01-01

    Aim The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. Methods The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)‐pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg–1, phenytoin 300 mg, (S)‐ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post‐dose. Endpoints were analysed using a mixed model analysis of variance. Results Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)‐ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)‐ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. Conclusion This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered. PMID:27862179

  2. The use of a battery of pain models to detect analgesic properties of compounds: a two-part four-way crossover study.

    PubMed

    Okkerse, Pieter; van Amerongen, Guido; de Kam, Marieke L; Stevens, Jasper; Butt, Richard P; Gurrell, Rachel; Dahan, Albert; van Gerven, Joop M; Hay, Justin L; Groeneveld, Geert Jan

    2017-05-01

    The aim was to investigate the ability of a battery of pain models to detect analgesic properties of commonly used analgesics in healthy subjects. The battery consisted of tests eliciting electrical, mechanical and thermal (contact heat and cold pressor)-pain and included a UVB model, the thermal grill illusion and a paradigm of conditioned pain modulation. Subjects were administered fentanyl 3 μg kg -1 , phenytoin 300 mg, (S)-ketamine 10 mg and placebo (part I), or imipramine 100 mg, pregabalin 300 mg, ibuprofen 600 mg and placebo (part II). Pain measurements were performed at baseline and up to 10 h post-dose. Endpoints were analysed using a mixed model analysis of variance. Sixteen subjects (8 female) completed each part. The pain tolerance threshold (PTT) for electrical stimulation was increased (all P < 0.05) compared to placebo for (S)-ketamine (+10.1%), phenytoin (+8.5%) and pregabalin (+10.8%). The PTT for mechanical pain was increased by pregabalin (+14.1%). The cold pressor PTT was increased by fentanyl (+17.1%) and pregabalin (+46.4%). Normal skin heat pain detection threshold was increased by (S)-ketamine (+3.3%), fentanyl (+2.8%) and pregabalin (+4.1%). UVB treated skin pain detection threshold was increased by fentanyl (+2.6%) and ibuprofen (+4.0%). No differences in conditioned pain modulation were observed. This study shows that these pain models are able to detect changes in pain thresholds after administration of different classes of analgesics in healthy subjects. The analgesic compounds all showed a unique profile in their effects on the pain tasks administered. © 2016 The British Pharmacological Society.

  3. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE PAGES

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; ...

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm 2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT.more » The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm 2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  4. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm 2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT.more » The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm 2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  5. Physiological and pathological characterization of capsaicin-induced reversible nerve degeneration and hyperalgesia.

    PubMed

    Chiang, H; Chang, K-C; Kan, H-W; Wu, S-W; Tseng, M-T; Hsueh, H-W; Lin, Y-H; Chao, C-C; Hsieh, S-T

    2018-07-01

    The study aimed to investigate the physiology, psychophysics, pathology and their relationship in reversible nociceptive nerve degeneration, and the physiology of acute hyperalgesia. We enrolled 15 normal subjects to investigate intraepidermal nerve fibre (IENF) density, contact heat-evoked potential (CHEP) and thermal thresholds during the capsaicin-induced skin nerve degeneration-regeneration; and CHEP and thermal thresholds at capsaicin-induced acute hyperalgesia. After 2-week capsaicin treatment, IENF density of skin was markedly reduced with reduced amplitude and prolonged latency of CHEP, and increased warm and heat pain thresholds. The time courses of skin nerve regeneration and reversal of physiology and psychophysics were different: IENF density was still lower at 10 weeks after capsaicin treatment than that at baseline, whereas CHEP amplitude and warm threshold became normalized within 3 weeks after capsaicin treatment. Although CHEP amplitude and IENF density were best correlated in a multiple linear regression model, a one-phase exponential association model showed better fit than a simple linear one, that is in the regeneration phase, the slope of the regression line between CHEP amplitude and IENF density was steeper in the subgroup with lower IENF densities than in the one with higher IENF densities. During capsaicin-induced hyperalgesia, recordable rate of CHEP to 43 °C heat stimulation was higher with enhanced CHEP amplitude and pain perception compared to baseline. There were differential restoration of IENF density, CHEP and thermal thresholds, and changed CHEP-IENF relationships during skin reinnervation. CHEP can be a physiological signature of acute hyperalgesia. These observations suggested the relationship between nociceptive nerve terminals and brain responses to thermal stimuli changed during different degree of skin denervation, and CHEP to low-intensity heat stimulus can reflect the physiology of hyperalgesia. © 2018 European Pain Federation - EFIC®.

  6. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  7. Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: L-lysine hydrochloride dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaiselvi, D.; Mohan Kumar, R.; Jayavel, R.

    2008-07-01

    Single crystals of L-lysine hydrochloride dihydrate (LLHCD), a nonlinear optical material, have been grown by slow cooling technique from its aqueous solution. LLHCD was found to be highly soluble in water. The grown crystals have been subjected to single crystal X-ray diffraction to confirm the structure and to estimate the lattice parameters. The vibrational structure of the molecule is elucidated from FTIR spectra. Thermal analysis revealed the thermal stability of the grown crystals. The optical transmittance spectrum shows that the material possesses good optical transparency in the entire visible region with a UV cut-off wavelength at 228 nm. The mechanicalmore » properties of the grown crystal have been studied using Vicker's microhardness test. The laser damage threshold of 52.25 MW/cm{sup 2} has been measured by irradiating Q-switched Nd:YAG laser (1064 nm)« less

  8. Cold adaptation, aging, and Korean women divers haenyeo.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Kim, Siyeon

    2017-08-08

    We have been studying the thermoregulatory responses of Korean breath-hold women divers, called haenyeo, in terms of aging and cold adaptation. During the 1960s to the 1980s, haenyeos received attention from environmental physiologists due to their unique ability to endure cold water while wearing only a thin cotton bathing suit. However, their overall cold-adaptive traits have disappeared since they began to wear wetsuits and research has waned since the 1980s. For social and economic reasons, the number of haenyeos rapidly decreased to 4005 in 2015 from 14,143 in 1970 and the average age of haenyeos is about 75 years old at present. For the past several years, we revisited and explored older haenyeos in terms of environmental physiology, beginning with questionnaire and field studies and later advancing to thermal tolerance tests in conjunction with cutaneous thermal threshold tests in a climate chamber. As control group counterparts, older non-diving females and young non-diving females were compared with older haenyeos in the controlled experiments. Our findings were that older haenyeos still retain local cold tolerance on the extremities despite their aging. Finger cold tests supported more superior local cold tolerance for older haenyeos than for older non-diving females. However, thermal perception in cold reflected aging effects rather than local cold acclimatization. An interesting finding was the possibility of positive cross-adaptation which might be supported by greater heat tolerance and cutaneous warm perception thresholds of older haenyeos who adapted to cold water. It was known that cold-adaptive traits of haenyeos disappeared, but we confirmed that cold-adaptive traits are still retained on the face and hands which could be interpreted by a mode switch to local adaptation from the overall adaptation to cold. Further studies on cross-adaptation between chronic cold stress and heat tolerance are needed.

  9. Quantitative sensory testing and pain-evoked cytokine reactivity: comparison of patients with sickle cell disease to healthy matched controls.

    PubMed

    Campbell, Claudia M; Carroll, C Patrick; Kiley, Kasey; Han, Dingfen; Haywood, Carlton; Lanzkron, Sophie; Swedberg, Lauren; Edwards, Robert R; Page, Gayle G; Haythornthwaite, Jennifer A

    2016-04-01

    Sickle cell disease (SCD) is an inherited blood disorder associated with significant morbidity, which includes severe episodic pain, and, often, chronic pain. Compared to healthy individuals, patients with SCD report enhanced sensitivity to thermal detection and pain thresholds and have altered inflammatory profiles, yet no studies to date have examined biomarker reactivity after laboratory-induced pain. We sought to examine this relationship in patients with SCD compared to healthy control participants. We completed quantitative sensory testing in 83 patients with SCD and sequential blood sampling in 27 of them, whom we matched (sex, age, race, body mass index, and education) to 27 healthy controls. Surprisingly, few quantitative sensory testing differences emerged between groups. Heat pain tolerance, pressure pain threshold at the trapezius, thumb, and quadriceps, and thermal temporal summation at 45°C differed between groups in the expected direction, whereas conditioned pain modulation and pain ratings to hot water hand immersion were counterintuitive, possibly because of tailoring the water temperature to a perceptual level; patients with SCD received milder temperatures. In the matched subsample, group differences and group-by-time interactions were observed in biomarkers including tumor necrosis factor alpha, interleukin-1ß, interleukin-4, and neuropeptide Y. These findings highlight the utility of laboratory pain testing methods for understanding individual differences in inflammatory cytokines. Our findings suggest amplified pain-evoked proinflammatory cytokine reactivity among patients with SCD relative to carefully matched controls. Future research is warranted to evaluate the impact of enhanced pain-related cytokine response and whether it is predictive of clinical characteristics and the frequency/severity of pain crises in patients with SCD.

  10. The role of thermal physiology in recent declines of birds in a biodiversity hotspot.

    PubMed

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K; Smit, Ben

    2015-01-01

    We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning.

  11. The role of thermal physiology in recent declines of birds in a biodiversity hotspot

    PubMed Central

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K

    2015-01-01

    Abstract We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning. PMID:27293732

  12. Blister Threshold Based Thermal Limits for the U-Mo Monolithic Fuel System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Wachs; I. Glagolenko; F. J. Rice

    2012-10-01

    Fuel failure is most commonly induced in research and test reactor fuel elements by exposure to an under-cooled or over-power condition that results in the fuel temperature exceeding a critical threshold above which blisters form on the plate. These conditions can be triggered by normal operational transients (i.e. temperature overshoots that may occur during reactor startup or power shifts) or mild upset events (e.g., pump coastdown, small blockages, mis-loading of fuel elements into higher-than-planned power positions, etc.). The rise in temperature has a number of general impacts on the state of a fuel plate that include, for example, stress relaxationmore » in the cladding (due to differential thermal expansion), softening of the cladding, increased mobility of fission gases, and increased fission-gas pressure in pores, all of which can encourage the formation of blisters on the fuel-plate surface. These blisters consist of raised regions on the surface of fuel plates that occur when the cladding plastically deforms in response to fission-gas pressure in large pores in the fuel meat and/or mechanical buckling of the cladding over damaged regions in the fuel meat. The blister temperature threshold decreases with irradiation because the mechanical properties of the fuel plate degrade while under irradiation (due to irradiation damage and fission-product accumulation) and because the fission-gas inventory progressively increases (and, thus, so does the gas pressure in pores).« less

  13. [Biological characteristics of the egg phase of citrus root weevils].

    PubMed

    Guedes, Jerson V C; Parra, José R P

    2007-01-01

    The goal of this work was to study some characteristics of the egg phase of three species of citrus root weevils. The insects were collected from citrus plants in Itapetininga, SP, and brought to the Laboratório de Biologia de Insetos of ESALQ/USP, in Piracicaba, SP, where the species Naupactus cervinus (Boheman), Naupactus versatilis (Hustache) and Parapantomorus fluctuosus (Boheman) were kept. Duration and viability of the egg phase were evaluated, and the lower temperature threshold and thermal constant (K) were calculated for these species. The species of citrus root weevils showed different duration of egg phases. The egg phase ranged from 40.4 to 13.8 N. cervinus, from 38.7 to 20.0 days for N. versatilis, and from 35.0 to 13.8 days for P. fluctuosus, depending upon temperature. The temperature thresholds of this stage were 8.1, 8.3, and 9.9 masculineC at thermal constant was 385.7, 397.7 and 294.1 degree-days, for N. cervinus, N. versatilis and P. fluctuosus respectively. The duration of the egg phases of N. cervinus and N. versatilis were similar at the same temperatures and P. fluctuosus had a faster development than Naupactus spp. in all temperatures tested.

  14. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice

    PubMed Central

    Bates, EA; Nikai, T; Brennan, KC; Fu, Y-H; Charles, AC; Basbaum, AI; Ptáček, LJ; Ahn, AH

    2016-01-01

    The association between the clinical use of nitroglycerin (NTG) and headache has led to the examination of NTG as a model trigger for migraine and related headache disorders, both in humans and laboratory animals. In this study in mice, we hypothesized that NTG could trigger behavioural and physiological responses that resemble a common manifestation of migraine in humans. We report that animals exhibit a dose-dependent and prolonged NTG-induced thermal and mechanical allodynia, starting 30–60 min after intraperitoneal injection of NTG at 5–10 mg/kg. NTG administration also induced Fos expression, an anatomical marker of neuronal activity in neurons of the trigeminal nucleus caudalis and cervical spinal cord dorsal horn, suggesting that enhanced nociceptive processing within the spinal cord contributes to the increased nociceptive behaviour. Moreover, sumatriptan, a drug with relative specificity for migraine, alleviated the NTG-induced allodynia. We also tested whether NTG reduces the threshold for cortical spreading depression (CSD), an event considered to be the physiological substrate of the migraine aura. We found that the threshold of CSD was unaffected by NTG, suggesting that NTG stimulates migraine mechanisms that are independent of the regulation of cortical excitability. PMID:19489890

  15. Development of a 3D patient-specific planning platform for interstitial and transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Diederich, Chris J.

    2010-03-01

    Interstitial and transurethral catheter-based ultrasound devices are under development for treatment of prostate cancer and BPH, uterine fibroids, liver tumors and other soft tissue disease. Accurate 3D thermal modeling is essential for designing site-specific applicators, exploring treatment delivery strategies, and integration of patient-specific treatment planning of thermal ablations. We are developing a comprehensive 3D modeling and treatment planning platform for ultrasound ablation of tissue using catheter-based applicators. We explored the applicability of assessing thermal effects in tissue using critical temperature, thermal dose and Arrhenius thermal damage thresholds and performed a comparative analysis of dynamic tissue properties critical to accurate modeling. We used the model to assess the feasibility of automatic feedback control with MR thermometry, and demonstrated the utility of the modeling platform for 3D patient-specific treatment planning. We have identified critical temperature, thermal dose and thermal damage thresholds for assessing treatment endpoint. Dynamic changes in tissue attenuation/absorption and perfusion must be included for accurate prediction of temperature profiles and extents of the ablation zone. Lastly, we demonstrated use of the modeling platform for patient-specific treatment planning.

  16. Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis.

    PubMed

    Paracka, Lejla; Wegner, Florian; Blahak, Christian; Abdallat, Mahmoud; Saryyeva, Assel; Dressler, Dirk; Karst, Matthias; Krauss, Joachim K

    2017-01-01

    Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.

  17. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  18. Evaluation of shuttle solid rocket booster case materials. Corrosion and stress corrosion susceptibility of several high temperature materials

    NASA Technical Reports Server (NTRS)

    Pionke, L. J.; Garland, K. C.

    1973-01-01

    Candidate alloys for the Shuttle Solid Rocket Booster (SRB) case were tested under simulated service conditions to define subcritical flaw growth behavior under both sustained and cyclic loading conditions. The materials evaluated were D6AC and 18 Ni maraging steel, both heat treated to a nominal yield strength of 1380 MN/sq m (200 ksi). The sustained load tests were conducted by exposing precracked, stressed specimens of both alloys to alternate immersion in synthetic sea water. It was found that the corrosion and stress corrosion resistance of the 18 Ni maraging steel were superior to that of the D6AC steel under these test conditions. It was also found that austenitizing temperature had little influence on the threshold stress intensity of the D6AC. The cyclic tests were conducted by subjecting precracked surface-flawed specimens of both alloys to repeated load/thermal/environmental profiles which were selected to simulate the SRB missions. It was found that linear removal operations that involve heating to 589 K (600 F) cause a decrease in cyclic life of D6AC steel relative to those tests conducted with no thermal cycling.

  19. Objective sensory evaluation of the spread of complex regional pain syndrome.

    PubMed

    Edinger, Lara; Schwartzman, Robert J; Ahmad, Ayesha; Erwin, Kirsten; Alexander, Guillermo M

    2013-01-01

    The spread of complex regional pain syndrome (CRPS) has been well documented. Many severe refractory long-standing patients have total body pain (TBP) that evolved from a single extremity injury. The purpose of this study was to document by objective sensory threshold testing the extent of body area involvement in 20 long-standing patients with CRPS who have TBP. A comparison of sensory threshold testing parameters between 20 long-standing refractory patients with CRPS who have TBP versus 10 healthy participants. Twenty patients with CRPS who stated that they suffered from total body pain were chosen from the Drexel University College of Medicine CRPS database. They were compared to 10 healthy participants that were age and gender matched to the patients with CRPS. The sensory parameters tested were: skin temperature; static and mechanical allodynia; thermal allodynia; mechanical hyperalgesia; after sensations following all sensory tests. The sites chosen for testing in the patients with CRPS were the most painful area in each of 8 body regions that comprised the total body area. Five patients with CRPS had signs of CRPS over 100% of their body (20%). One patient had pain over 87% and another had pain over 90% of their body area. The average percentage of body involvement was 62% (range 37% - 100%). All patients with CRPS had at least one sensory parameter abnormality in all body regions. All patients with CRPS had lower pain thresholds for static allodynia in all body areas, while 50% demonstrated a lower threshold for dynamic allodynia in all body regions compared to the healthy participants. Cold allodynia had a higher median pain rating on the Likert pain scale in all body areas versus healthy participants except for the chest, abdomen, and back. Eighty-five percent of the patients with CRPS had a significantly lower pain threshold for mechanical hyperalgesia in all body areas compared to the healthy participants. After sensations occurred after all sensory parameters in the extremities in patients with CRPS. The primary limitations of this study would be the variability of self-reported data (each subject's assessment of pain/ discomfort to a tested parameter) and the challenge to uniformly administer each parameter's assessment since simple tools and not precision instruments were used (with the exception of skin temperature). TBP and objective sensory loss occur in 20% of patients with refractory long-standing CRPS.

  20. Thermal detection thresholds in 5-year-old preterm born children; IQ does matter.

    PubMed

    de Graaf, Joke; Valkenburg, Abraham J; Tibboel, Dick; van Dijk, Monique

    2012-07-01

    Experiencing pain at newborn age may have consequences on one's somatosensory perception later in life. Children's perception for cold and warm stimuli may be determined with the Thermal Sensory Analyzer (TSA) device by two different methods. This pilot study in 5-year-old children born preterm aimed at establishing whether the TSA method of limits, which is dependent of reaction time, and the method of levels, which is independent of reaction time, would yield different cold and warm detection thresholds. The second aim was to establish possible associations between intellectual ability and the detection thresholds obtained with either method. A convenience sample was drawn from the participants in an ongoing 5-year follow-up study of a randomized controlled trial on effects of morphine during mechanical ventilation. Thresholds were assessed using both methods and statistically compared. Possible associations between the child's intelligence quotient (IQ) and threshold levels were analyzed. The method of levels yielded more sensitive thresholds than did the method of limits, i.e. mean (SD) cold detection thresholds: 30.3 (1.4) versus 28.4 (1.7) (Cohen'sd=1.2, P=0.001) and warm detection thresholds; 33.9 (1.9) versus 35.6 (2.1) (Cohen's d=0.8, P=0.04). IQ was statistically significantly associated only with the detection thresholds obtained with the method of limits (cold: r=0.64, warm: r=-0.52). The TSA method of levels, is to be preferred over the method of limits in 5-year-old preterm born children, as it establishes more sensitive detection thresholds and is independent of IQ. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Interaction of hyperalgesia and sensory loss in complex regional pain syndrome type I (CRPS I).

    PubMed

    Huge, Volker; Lauchart, Meike; Förderreuther, Stefanie; Kaufhold, Wibke; Valet, Michael; Azad, Shahnaz Christina; Beyer, Antje; Magerl, Walter

    2008-07-23

    Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS). In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST) in comparison to an age and gender matched control group. 61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients' warm and cold detection thresholds (WDT; CDT), the heat and cold pain thresholds (HPT; CPT) and the occurrence of paradoxical heat sensation (PHS) were observed. In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb. We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.

  2. Cost-effectiveness of forced air warming during sedation in the cardiac catheterisation laboratory.

    PubMed

    Conway, Aaron; Duff, Jed; Sutherland, Joanna

    2018-05-13

    To determine the cost-effectiveness of forced air warming during sedation in a cardiac catheterisation laboratory. Forced air warming improves thermal comfort in comparison with standard care. It is not known whether the extra costs required for forced air warming are good value. Cost-effectiveness analysis alongside a randomised controlled trial conducted in 2016-2017. A cost-effectiveness analysis was undertaken using Monte Carlo simulations from input distributions to estimate costs and effects associated with using forced air warming to reduce risk of thermal discomfort for patients receiving sedation in a cardiac catheterisation laboratory. A range of willingness to pay threshold values were tested with results plotted on a cost-effectiveness acceptability curve. Costs were calculated in Australian currency ($AUD). Estimated total costs were $5.21 (SD 3.26) higher per patient for forced air warming in comparison to standard care. Estimated probability of success (rating of thermal comfort) was 0.16 (0.06) higher for forced air warming. Forced air warming becomes more likely to result in a net benefit than standard care at a willingness to pay threshold of $34. Forced air warming could be considered cost-effective for procedures performed with sedation in a cardiac catheterisation laboratory if the extra cost of an incremental gain in thermal comfort is less than the decision maker's willingness to pay for it. Therefore, those responsible for decision-making regarding use of forced air warming in the cardiac catheterisation laboratory can use results of our model to decide if it represents good value for their organisation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites.

    PubMed

    Vasileiou, Alexandros A; Kontopoulou, Marianna; Docoslis, Aristides

    2014-02-12

    Graphene was prepared by low temperature vacuum-assisted thermal exfoliation of graphite oxide. The resulting thermally reduced graphene oxide (TRGO) had a specific surface area of 586 m(2)/g and consisted of a mixture of single-layered and multilayered graphene. The TRGO was added to maleated linear low-density polyethylene LLDPE and to its derivatives with pyridine aromatic groups by melt compounding. The LLDPE/TRGO composites exhibited very low electrical percolation thresholds, between 0.5 and 0.9 vol %, depending on the matrix viscosity and the type of functional groups. The dispersion of the TRGO in the compatibilized composites was improved significantly, due to enhanced noncovalent interactions between the aromatic moieties grafted onto the polymer matrix and the filler. Better dispersion resulted in a slight increase in the rheological and electrical percolation thresholds, and to significant improvements in mechanical properties and thermal conductivity, compared to the noncompatibilized composites. The presence of high surface area nanoplatelets within the polymer also resulted in a substantially improved thermal stability. Compared to their counterparts containing multiwalled carbon nanotubes, LLDPE/TRGO composites had lower percolation thresholds. Therefore, lower amounts of TRGO were sufficient to impart electrical conductivity and modulus improvements, without compromising the ductility of the composites.

  4. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    PubMed

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of PETN Class 4. The PETN was found to have: 1) an impact sensitivity (DH 50) range of 6 to 12 cm, 2) a BAM friction sensitivity (F 50) range 7 to 11 kg, TIL (0/10) of 3.7 to 7.2 kg, 3) a ABL friction sensitivity threshold of 5 or less psig at 8 fps, 4) an ABL ESD sensitivity thresholdmore » of 0.031 to 0.326 j/g, and 5) a thermal sensitivity of an endothermic feature with T min = ~ 141 °C, and a exothermic feature with a T max = ~205°C.« less

  6. Pain thresholds, supra-threshold pain and lidocaine sensitivity in patients with erythromelalgia, including the I848Tmutation in NaV 1.7.

    PubMed

    Helås, T; Sagafos, D; Kleggetveit, I P; Quiding, H; Jönsson, B; Segerdahl, M; Zhang, Z; Salter, H; Schmelz, M; Jørum, E

    2017-09-01

    Nociceptive thresholds and supra-threshold pain ratings as well as their reduction upon local injection with lidocaine were compared between healthy subjects and patients with erythromelalgia (EM). Lidocaine (0.25, 0.50, 1.0 or 10 mg/mL) or placebo (saline) was injected intradermally in non-painful areas of the lower arm, in a randomized, double-blind manner, to test the effect on dynamic and static mechanical sensitivity, mechanical pain sensitivity, thermal thresholds and supra-threshold heat pain sensitivity. Heat pain thresholds and pain ratings to supra-threshold heat stimulation did not differ between EM-patients (n = 27) and controls (n = 25), neither did the dose-response curves for lidocaine. Only the subgroup of EM-patients with mutations in sodium channel subunits Na V 1.7, 1.8 or 1.9 (n = 8) had increased lidocaine sensitivity for supra-threshold heat stimuli, contrasting lower sensitivity to strong mechanical stimuli. This pattern was particularly clear in the two patients carrying the Na V 1.7 I848T mutations in whom lidocaine's hyperalgesic effect on mechanical pain sensitivity contrasted more effective heat analgesia. Heat pain thresholds are not sensitized in EM patients, even in those with gain-of-function mutations in Na V 1.7. Differential lidocaine sensitivity was overt only for noxious stimuli in the supra-threshold range suggesting that sensitized supra-threshold encoding is important for the clinical pain phenotype in EM in addition to lower activation threshold. Intracutaneous lidocaine dose-dependently blocked nociceptive sensations, but we did not identify EM patients with particular high lidocaine sensitivity that could have provided valuable therapeutic guidance. Acute pain thresholds and supra-threshold heat pain in controls and patients with erythromelalgia do not differ and have the same lidocaine sensitivity. Acute heat pain thresholds even in EM patients with the Na V 1.7 I848T mutation are normal and only nociceptor sensitivity to intradermal lidocaine is changed. Only in EM patients with mutations in Na V 1.7, 1.8 or 1.9 supra-threshold heat and mechanical pain shows differential lidocaine sensitivity as compared to controls. © 2017 European Pain Federation - EFIC®.

  7. When do Indians feel hot? Internet searches indicate seasonality suppresses adaptation to heat

    NASA Astrophysics Data System (ADS)

    Singh, Tanya; Siderius, Christian; Van der Velde, Ype

    2018-05-01

    In a warming world an increasing number of people are being exposed to heat, making a comfortable thermal environment an important need. This study explores the potential of using Regional Internet Search Frequencies (RISF) for air conditioning devices as an indicator for thermal discomfort (i.e. dissatisfaction with the thermal environment) with the aim to quantify the adaptation potential of individuals living across different climate zones and at the high end of the temperature range, in India, where access to health data is limited. We related RISF for the years 2011–2015 to daily daytime outdoor temperature in 17 states and determined at which temperature RISF for air conditioning starts to peak, i.e. crosses a ‘heat threshold’, in each state. Using the spatial variation in heat thresholds, we explored whether people continuously exposed to higher temperatures show a lower response to heat extremes through adaptation (e.g. physiological, behavioural or psychological). State-level heat thresholds ranged from 25.9 °C in Madhya Pradesh to 31.0 °C in Orissa. Local adaptation was found to occur at state level: the higher the average temperature in a state, the higher the heat threshold; and the higher the intra-annual temperature range (warmest minus coldest month) the lower the heat threshold. These results indicate there is potential within India to adapt to warmer temperatures, but that a large intra-annual temperature variability attenuates this potential to adapt to extreme heat. This winter ‘reset’ mechanism should be taken into account when assessing the impact of global warming, with changes in minimum temperatures being an important factor in addition to the change in maximum temperatures itself. Our findings contribute to a better understanding of local heat thresholds and people’s adaptive capacity, which can support the design of local thermal comfort standards and early heat warning systems.

  8. Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko

    2016-03-01

    Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.

  9. Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history.

    PubMed

    Buckley, B A; Owen, M E; Hofmann, G E

    2001-10-01

    Spatio-temporal variation in heat-shock gene expression gives organisms the ability to respond to changing thermal environments. The temperature at which heat-shock genes are induced, the threshold induction temperature, varies as a function of the recent thermal history of an organism. To elucidate the mechanism by which this plasticity in gene expression is achieved, we determined heat-shock protein (Hsp) induction threshold temperatures in the intertidal mussel Mytilus trossulus collected from the field in February and again in August. In a separate experiment, threshold induction temperatures, endogenous levels of both the constitutive and inducible isoforms of Hsps from the 70 kDa family and the quantity of ubiquitinated proteins (a measure of cellular protein denaturation) were measured in M. trossulus after either 6 weeks of cold acclimation in the laboratory or acclimatization to warm, summer temperatures in the field over the same period. In addition, we quantified levels of activated heat-shock transcription factor 1 (HSF1) in both groups of mussels (HSF1 inducibly transactivates all classes of Hsp genes). Lastly, we compared the temperature of HSF1 activation with the induction threshold temperature in the congeneric M. californianus. It was found that the threshold induction temperature in M. trossulus was 23 degrees C in February and 28 degrees C in August. This agreed with the acclimation/acclimatization experiment, in which mussels acclimated in seawater tables to a constant temperature of 10-11 degrees C for 6 weeks displayed a threshold induction temperature of 20-23 degrees C compared with 26-29 degrees C for individuals that were experiencing considerably warmer body temperatures in the intertidal zone over the same period. This coincided with a significant increase in the inducible isoform of Hsp70 in warm-acclimatized individuals but no increase in the constitutive isoform or in HSF1. Levels of ubiquitin-conjugated protein were significantly higher in the field mussels than in the laboratory-acclimated individuals. Finally, the temperature of HSF1 activation in M. californianus was found to be approximately 9 degrees C lower than the induction threshold for this species.

  10. Heating of Solar Wind Ions via Cyclotron Resonance

    NASA Astrophysics Data System (ADS)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.

  11. Using a Photon Beam for Thermal Nociceptive Threshold Experiments

    NASA Astrophysics Data System (ADS)

    Walker, Azida; Anderson, Jeffery; Sherwood, Spencer

    In humans, risk of diabetes and diabetic complications increases with age and duration of prediabetic state. In an effort to understand the progression of this disease scientists have evaluated the deterioration of the nervous system. One of the current methods used in the evaluation of the deterioration of the nervous system is through thermal threshold experiments. An incremental Hot / Cold Plate Analgesia Meter (IITC Life Science,CA is used to linearly increase the plate temperature at a rate of 10 ºC min-1 with a cutoff temperature of 55 ºC. Hind limb heat pain threshold (HPT) will be defined as a plate temperature at which the animal abruptly withdraws either one of its hind feet from the plate surface in a sharp move, typically followed by licking of the lifted paw. One of the disadvantages of using this hot plate method is in determining the true temperature at which the paw was withdrawn. While the temperature of the plate is known the position of the paw on the surface may vary; occasionally being cupped resulting in a temperature differentiation between the plate and the paw. During experiments the rats may urine onto the plate changing the temperature of the surface again resulting in reduced accuracy as to the withdrawal threshold. We propose here a new method for nociceptive somatic experiments involving the heat pain threshold experiments. This design employs the use of a photon beam to detect thermal response from an animal model. The details of this design is presented. Funded by the Undergraduate Research Council at the University of Central Arkansas.

  12. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices.

    PubMed

    Pickett, Matthew D; Williams, R Stanley

    2012-06-01

    We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm(2) devices were found to be Δt(ON) = 700 ps and Δt(OFF) = 2:3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits.

  13. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  14. Irradiation of MOS-FET devices to provide desired logic functions

    NASA Technical Reports Server (NTRS)

    Danchenko, V.; Schaefer, D. H.

    1972-01-01

    Gamma, X-ray, electron, or other radiation is used to shift threshold potentials of MOS devices on logic circuits. Before irradiation MOS gates to be shifted are biased positive and other gates are grounded to substrate. Threshold lasts 10 years. Thermal annealing brings circuit back to original configuration.

  15. Effect of Load Carriage on Upper Limb Performance.

    PubMed

    Hadid, Amir; Katz, Inbar; Haker, Tal; Zeilig, Gabi; Defrin, Ruth; Epstein, Yoram; Gefen, Amit

    2017-05-01

    Carrying heavy backpacks are often associated with shoulder discomfort or pain, loss of sensorimotor functions, and brachial plexus injuries that might hamper performance. On the basis of previous research, the cause of these symptoms could be tissue deformations of the brachial plexus and the subclavian artery caused by the shoulder straps. This study aimed to evaluate the changes in the upper extremity hemodynamic and neural function and to assess how they are associated with brachial plexus tissue deformation during heavy load carriage. Ten young healthy adults carried for 45 min a backpack load (40% of their body weight) while standing freely, followed by 15 min of recovery (unloaded). Index-finger microvascular flow and sensorimotor function were measured before and after carrying the load, and after recovery. The following sensorimotor functions were measured: light touch thresholds by the index finger and little finger, forearm thermal sensation thresholds, and gross motor function. In addition, marksmanship accuracy, as an indication for fine motor function, was tested. Load carriage resulted in an average decrease of ~40% in microvascular flow and a significant decrement in light touch sensation (P < 0.05), but not in thermal sensation and gross motor functions. An increase in the light touch threshold was highly correlated with a reduced index-finger microvascular blood flow (r = 0.79, P = 0.007). These physiological effects were associated with a functional 34% decrement in the accuracy of target acquisition. Heavy load carriage resulted in impaired light touch sensitivity and fine motor function, which were associated with reduced finger microvascular blood flow.

  16. A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception.

    PubMed

    Borckardt, Jeffrey J; Bikson, Marom; Frohman, Heather; Reeves, Scott T; Datta, Abhishek; Bansal, Varun; Madan, Alok; Barth, Kelly; George, Mark S

    2012-02-01

    Several brain stimulation technologies are beginning to evidence promise as pain treatments. However, traditional versions of 1 specific technique, transcranial direct current stimulation (tDCS), stimulate broad regions of cortex with poor spatial precision. A new tDCS design, called high definition tDCS (HD-tDCS), allows for focal delivery of the charge to discrete regions of the cortex. We sought to preliminarily test the safety and tolerability of the HD-tDCS technique as well as to evaluate whether HD-tDCS over the motor cortex would decrease pain and sensory experience. Twenty-four healthy adult volunteers underwent quantitative sensory testing before and after 20 minutes of real (n = 13) or sham (n = 11) 2 mA HD-tDCS over the motor cortex. No adverse events occurred and no side effects were reported. Real HD-tDCS was associated with significantly decreased heat and cold sensory thresholds, decreased thermal wind-up pain, and a marginal analgesic effect for cold pain thresholds. No significant effects were observed for mechanical pain thresholds or heat pain thresholds. HD-tDCS appears well tolerated, and produced changes in underlying cortex that are associated with changes in pain perception. Future studies are warranted to investigate HD-tDCS in other applications, and to examine further its potential to affect pain perception. This article presents preliminary tolerability and efficacy data for a new focal brain stimulation technique called high definition transcranial direct current stimulation. This technique may have applications in the management of pain. Copyright © 2012. Published by Elsevier Inc.

  17. An investigation of heat transfer to the implant-bone interface when drilling through a zirconia crown attached to a titanium or zirconia abutment.

    PubMed

    Mason, Amy G; Sutton, Alan; Turkyilmaz, Ilser

    2014-11-01

    Thermal injury to the implant-bone interface may lead to bone necrosis and loss of osseointegration. This is a concern during manipulation of the implant throughout the restorative phase of treatment. The risk of heat transfer to the implant-bone interface during abutment preparation or prosthesis removal should be considered. The purpose of the study was to examine the amount of heat transferred to the implant-bone interface when a zirconia crown is drilled to access the screw channel or section a crown with a high-speed dental handpiece. Of the 64 ceramic-veneered zirconia crowns fabricated, 32 had a coping thickness of 0.5 mm and 32 had a coping thickness of 1.0 mm. The crowns were cemented on either titanium stock abutments or zirconia stock abutments. Each group was further subdivided to evaluate heat transfer when the screw channel was accessed or the crown was sectioned with a high-speed handpiece with or without irrigation. Temperature change was recorded for each specimen at the cervical and apical aspect of the implant with thermocouples and a logging thermometer. ANOVA was used to assess the statistical significance in temperature change between the test combinations, and nonparametric Mann-Whitney U tests were used to evaluate the findings. The use of irrigation during both crown removal processes yielded an average temperature increase of 3.59 ±0.35°C. Crown removal in the absence of irrigation yielded an average temperature increase of 18.76 ±3.09°C. When all parameter combinations in the presence of irrigation were evaluated, the maximum temperature change was below the threshold of thermal injury to bone. The maximum temperature change was above the threshold for thermal injury at the coronal aspect of the implant and below the threshold at the apical aspect in the absence of irrigation. Within the limitations of this investigation, the use of irrigation with a high-speed dental handpiece to remove a ceramic-veneered zirconia crown results in a temperature increase at the implant-bone interface insufficient to cause irreversible damage. Conversely, a lack of irrigation may yield a temperature increase capable of producing irreversible damage at the coronal aspect of the implant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Mineral Information Extraction Based on GAOFEN-5'S Thermal Infrared Data

    NASA Astrophysics Data System (ADS)

    Liu, L.; Shang, K.

    2018-04-01

    Gaofen-5 carries six instruments aimed at various land and atmosphere applications, and it's an important unit of China High-resolution Earth Observation System. As Gaofen-5's thermal infrared payload is similar to that of ASTER, which is widely used in mineral exploration, application of Gaofen-5's thermal infrared data is discussed regarding its capability in mineral classification and silica content estimation. First, spectra of silicate, carbonate, sulfate minerals from a spectral library are used to conduct spectral feature analysis on Gaofen-5's thermal infrared emissivities. Spectral indices of band emissivities are proposed, and by setting thresholds of these spectral indices, it can classify three types of minerals mentioned above. This classification method is tested on a simulated Gaofen-5 emissivity image. With samples acquired from the study area, this method is proven to be feasible. Second, with band emissivities of silicate and their silica content from the same spectral library, correlation models have been tried to be built for silica content inversion. However, the highest correlation coefficient is merely 0.592, which is much lower than that of correlation model built on ASTER thermal infrared emissivity. It can be concluded that GF-5's thermal infrared data can be utilized in mineral classification but not in silica content inversion.

  19. Bilateral hand/wrist heat and cold hyperalgesia, but not hypoesthesia, in unilateral carpal tunnel syndrome.

    PubMed

    de la Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César; Fernández-Carnero, Josué; Padua, Luca; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-10-01

    The aim of the current study was to evaluate bilaterally warm/cold detection and heat/cold pain thresholds over the hand/wrist in patients with carpal tunnel syndrome (CTS). A total of 25 women with strictly unilateral CTS (mean 42 +/- 10 years), and 20 healthy matched women (mean 41 +/- 8 years) were recruited. Warm/cold detection and heat/cold pain thresholds were assessed bilaterally over the carpal tunnel and the thenar eminence in a blinded design. Self-reported measures included both clinical pain history (intensity, location and area) and Boston Carpal Tunnel Questionnaire. No significant differences between groups for both warm and cold detection thresholds in either carpal tunnel or thenar eminence (P > 0.5) were found. Further, significant differences between groups, but not between sides, for both heat and cold pain thresholds in both the carpal tunnel and thenar eminence were found (all P < 0.001). Heat pain thresholds (P < 0.01) were negatively correlated, whereas cold pain thresholds (P < 0.001) were positively correlated with hand pain intensity and duration of symptoms. Our findings revealed bilateral thermal hyperalgesia (lower heat pain and reduced cold pain thresholds) but not hypoesthesia (normal warm/cold detection thresholds) in patients with strictly unilateral CTS when compared to controls. We suggest that bilateral heat and cold hyperalgesia may reflect impairments in central nociceptive processing in patients with unilateral CTS. The bilateral thermal hyperalgesia associated with pain intensity and duration of pain history supports a role of generalized sensitization mechanisms in the initiation, maintenance and spread of pain in CTS.

  20. Thermal analysis and management of lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Advani, Suresh G.; Prasad, Ajay K.

    2011-08-01

    Battery electric vehicles and hybrid electric vehicles demand batteries that can store large amounts of energy in addition to accommodating large charge and discharge currents without compromising battery life. Lithium-titanate batteries have recently become an attractive option for this application. High current thresholds allow these cells to be charged quickly as well as supply the power needed to drive such vehicles. These large currents generate substantial amounts of waste heat due to loss mechanisms arising from the cell's internal chemistry and ohmic resistance. During normal vehicle operation, an active cooling system must be implemented to maintain a safe cell temperature and improve battery performance and life. This paper outlines a method to conduct thermal analysis of lithium-titanate cells under laboratory conditions. Thermochromic liquid crystals were implemented to instantaneously measure the entire surface temperature field of the cell. The resulting temperature measurements were used to evaluate the effectiveness of an active cooling system developed and tested in our laboratory for the thermal management of lithium-titanate cells.

  1. Central and rear-edge populations can be equally vulnerable to warming

    NASA Astrophysics Data System (ADS)

    Bennett, Scott; Wernberg, Thomas; Arackal Joy, Bijo; de Bettignies, Thibaut; Campbell, Alexandra H.

    2015-12-01

    Rear (warm) edge populations are often considered more susceptible to warming than central (cool) populations because of the warmer ambient temperatures they experience, but this overlooks the potential for local variation in thermal tolerances. Here we provide conceptual models illustrating how sensitivity to warming is affected throughout a species' geographical range for locally adapted and non-adapted populations. We test these models for a range-contracting seaweed using observations from a marine heatwave and a 12-month experiment, translocating seaweeds among central, present and historic range edge locations. Growth, reproductive development and survivorship display different temperature thresholds among central and rear-edge populations, but share a 2.5 °C anomaly threshold. Range contraction, therefore, reflects variation in local anomalies rather than differences in absolute temperatures. This demonstrates that warming sensitivity can be similar throughout a species geographical range and highlights the importance of incorporating local adaptation and acclimatization into climate change vulnerability assessments.

  2. Considerations for theoretical modeling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control

    PubMed Central

    Prakash, Punit; Diederich, Chris J.

    2012-01-01

    Purpose To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared impact several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. Methods A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity.. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. Results Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t43 ≥ 240min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54 °C for short (< 5 min) duration ablations and 50 °C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. Conclusions Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5—15 min ablations with this modality, thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate. PMID:22235787

  3. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  4. Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model.

    PubMed

    Mert, Tufan; Kurt, Akif Hakan; Altun, İdiris; Celik, Ahmet; Baran, Furkan; Gunay, Ismail

    2017-05-01

    Cell-based or magnetic field therapies as alternative approaches to pain management have been tested in several experimental pain models. The aim of this study therefore was to investigate the actions of the cell-based therapy (adipose tissue derived mesenchymal stem cells; ADMSC) or pulsed magnetic field (PMF) therapy and magneto-cell therapy (combination of ADMSC and PMF) in chronic constriction nerve injury model (CCI). The actions of individual ADMSC (route dependent [systemic or local], time-dependent [a day or a week after surgery]), or PMF and their combination (magneto-cell) therapies on hyperalgesia and allodynia were investigated by using thermal plantar test and a dynamic plantar aesthesiometer, respectively. In addition, various cytokine levels (IL-1β, IL-6, and IL-10) of rat sciatic nerve after CCI were analyzed. Following the CCI, both latency and threshold significantly decreased. ADMSC or PMF significantly increased latencies and thresholds. The combination of ADMSC with PMF even more significantly increased latency and threshold when compared with ADMSC alone. However, ADMSC-induced decrease in pro-inflammatory or increase in anti-inflammatory cytokines levels were partially prevented by PMF treatments. Present findings may suggest that both cell-based and magnetic therapies can effectively attenuate chronic neuropathic pain symptoms. Combined magneto-cell therapy may also efficiently reverse neuropathic signs. Bioelectromagnetics. 38:255-264, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Evaluation of PS 212 Coatings Under Boundary Lubrication Conditions with an Ester-based Oil to 300 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Loomis, William R.; Dellacorte, Christopher

    1994-01-01

    High friction and wear of turbine engine components occur during high temperature excursions above the oxidation threshold of the liquid lubricant. This paper reports on research to study the use of a high temperature self lubricating coating, PS 212 for back-up lubrication in the event of failure of the liquid lubricant. Pin on disk tests were performed under dry and boundary-lubricated conditions at disk temperatures up to 300 C. The liquid lubricant was a formulated polyol ester qualified under MIL L-23699. At test temperatures above the oil's thermal degradation level, the use of PS 212 reduced wear, providing a back-up lubricant effect.

  6. Growth and characterization of Bis(L-threonine) copper (II) monohydrate single crystals: A semiorganic second order nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.

    2016-12-01

    Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.

  7. Milder form of heat-related symptoms and thermal sensation: a study in a Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Pantavou, Katerina G.; Lykoudis, Spyridon P.; Nikolopoulos, Georgios K.

    2016-06-01

    Mild heat-related health effects and their potential association with meteorological and personal parameters in relation to subjective and objective thermal sensation were investigated. Micrometeorological measurements and questionnaire surveys were conducted in an urban Mediterranean environment during a warm, cool, and a transitional season. The participants were asked to indicate their thermal sensation based on a seven-point scale and report whether they were experiencing any of the following symptoms: headache, dizziness, breathing difficulties, and exhaustion. Two thermal indices, Actual Sensation Vote (ASV) and Universal Thermal Climate Index (UTCI), were estimated in order to obtain an objective measure of individuals' thermal sensation. Binary logistic regression was applied to identify risk parameters while cluster analysis was used to determine thresholds of air temperature, ASV and UTCI related to health effects. Exhaustion was the most frequent symptom reported by the interviewees. Females and smokers were more likely to report heat-related symptoms than males and nonsmokers. Based on cluster analysis, 35 °C could be a cutoff point for the manifestation of heat-related symptoms during summer. The threshold for ASV was 0.85 corresponding to "warm" thermal sensation and for UTCI was about 30.85 °C corresponding to "moderate heat stress" according to the Mediterranean assessment scale.

  8. Thresholds for thermal damage to normal tissues: an update.

    PubMed

    Yarmolenko, Pavel S; Moon, Eui Jung; Landon, Chelsea; Manzoor, Ashley; Hochman, Daryl W; Viglianti, Benjamin L; Dewhirst, Mark W

    2011-01-01

    The purpose of this review is to summarise a literature survey on thermal thresholds for tissue damage. This review covers published literature for the consecutive years from 2002-2009. The first review on this subject was published in 2003. It included an extensive discussion of how to use thermal dosimetric principles to normalise all time-temperature data histories to a common format. This review utilises those same principles to address sensitivity of a variety of tissues, but with particular emphasis on brain and testis. The review includes new data on tissues that were not included in the original review. Several important observations have come from this review. First, a large proportion of the papers examined for this review were discarded because time-temperature history at the site of thermal damage assessment was not recorded. It is strongly recommended that future research on this subject include such data. Second, very little data is available examining chronic consequences of thermal exposure. On a related point, the time of assessment of damage after exposure is critically important for assessing whether damage is transient or permanent. Additionally, virtually no data are available for repeated thermal exposures which may occur in certain recreational or occupational activities. For purposes of regulatory guidelines, both acute and lasting effects of thermal damage should be considered.

  9. A new temperature threshold detector - Application to missile monitoring

    NASA Astrophysics Data System (ADS)

    Coston, C. J.; Higgins, E. V.

    Comprehensive thermal surveys within the case of solid propellant ballistic missile flight motors are highly desirable. For example, a problem involving motor failures due to insulator cracking at motor ignition, which took several years to solve, could have been identified immediately on the basis of a suitable thermal survey. Using conventional point measurements, such as those utilizing typical thermocouples, for such a survey on a full scale motor is not feasible because of the great number of sensors and measurements required. An alternate approach recognizes that temperatures below a threshold (which depends on the material being monitored) are acceptable, but higher temperatures exceed design margins. In this case hot spots can be located by a grid of wire-like sensors which are sensitive to temperature above the threshold anywhere along the sensor. A new type of temperature threshold detector is being developed for flight missile use. The considered device consists of KNO3 separating copper and Constantan metals. Above the KNO3 MP, galvanic action provides a voltage output of a few tenths of a volt.

  10. A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Lee, Suyoun; Jeong, Doo Seok; Jeong, Jeung-hyun; Zhe, Wu; Park, Young-Wook; Ahn, Hyung-Woo; Cheong, Byung-ki

    2010-01-01

    We investigated the temperature dependence of the threshold switching characteristics of a memory-type chalcogenide material, Ge2Sb2Te5. We found that the threshold voltage (Vth) decreased linearly with temperature, implying the existence of a critical conductivity of Ge2Sb2Te5 for its threshold switching. In addition, we investigated the effect of bias voltage and temperature on the delay time (tdel) of the threshold switching of Ge2Sb2Te5 and described the measured relationship by an analytic expression which we derived based on a physical model where thermally activated hopping is a dominant transport mechanism in the material.

  11. Interaction thresholds in Er:YAG laser ablation of organic tissue

    NASA Astrophysics Data System (ADS)

    Lukac, Matjaz; Marincek, Marko; Poberaj, Gorazd; Grad, Ladislav; Mozina, Janez I.; Sustercic, Dusan; Funduk, Nenad; Skaleric, Uros

    1996-01-01

    Because of their unique properties with regard to the absorption in organic tissue, pulsed Er:YAG lasers are of interest for various applications in medicine, such as dentistry, dermatology, and cosmetic surgery. The relatively low thermal side effects, and surgical precision of erbium medical lasers have been attributed to the micro-explosive nature of their interaction with organic tissue. In this paper, we report on preliminary results of our study of the thresholds for tissue ablation, using an opto-acoustic technique. Two laser energy thresholds for the interaction are observed. The lower energy threshold is attributed to surface water vaporization, and the higher energy threshold to explosive ablation of thin tissue layers.

  12. Nociception at the diabetic foot, an uncharted territory

    PubMed Central

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  13. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    PubMed

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Pain referral and regional deep tissue hyperalgesia in experimental human hip pain models.

    PubMed

    Izumi, Masashi; Petersen, Kristian Kjær; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas

    2014-04-01

    Hip disorder patients typically present with extensive pain referral and hyperalgesia. To better understand underlying mechanisms, an experimental hip pain model was established in which pain referrals and hyperalgesia could be studied under standardized conditions. In 16 healthy subjects, pain was induced by hypertonic saline injection into the gluteus medius tendon (GMT), adductor longus tendon (ALT), or gluteus medius muscle (GMM). Isotonic saline was injected contralaterally as control. Pain intensity was assessed on a visual analogue scale (VAS), and subjects mapped the pain distribution. Before, during, and after injections, passive hip joint pain provocation tests were completed, together with quantitative sensory testing as follows: pressure pain thresholds (PPTs), cuff algometry pain thresholds (cuff PPTs), cutaneous pin-prick sensitivity, and thermal pain thresholds. Hypertonic saline injected into the GMT resulted in higher VAS scores than hypertonic injections into the ALT and GMM (P<.05). Referred pain areas spread to larger parts of the leg after GMT and GMM injections compared with more regionalized pain pattern after ALT injections (P<.05). PPTs at the injection site were decreased after hypertonic saline injections into GMT and GMM compared with baseline, ALT injections, and isotonic saline. Cuff PPTs from the thigh were decreased after hypertonic saline injections into the ALT compared with baseline, GMT injections, and isotonic saline (P<.05). More subjects had positive joint pain provocation tests after hypertonic compared with isotonic saline injections (P<.05), indicating that this provocation test also assessed hyperalgesia in extra-articular soft tissues. The experimental models may open for better understanding of pain mechanisms associated with painful hip disorders. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pustovalov, Victor; Zharov, Vladimir

    2008-02-01

    Photothermal-based effects in and around gold nanoparticles under action of short (nano, pico- and femtosecond) laser pulses are analyzed with focus on photoacoustic effects due to the thermal expansion of nanoparticles and liquid around them, thermal protein denaturation, explosive liquid vaporization, melting and evaporation of nanoparticle, optical breakdown initiated by nanoparticles and accompanied to shock waves and explosion (fragmentation) of gold nanoparticles. Characteristic parameters for these processes such as the temperature and laser intensity thresholds are summarized to provide basis for comparison of different mechanisms of selective nanophotothermolysis of different targets (e.g., cancer cells, bacteria, viruses, fungi, and helminths).

  16. Thermal behavior of Charmonium in the vector channel from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.

    2010-11-01

    The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.

  17. Comparison of thermal activity thresholds of the spider mite predators Phytoseiulus macropilis and Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Coombs, Megan R; Bale, Jeffrey S

    2013-04-01

    The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.

  18. Central sensitization as the mechanism underlying pain in joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    PubMed

    Di Stefano, G; Celletti, C; Baron, R; Castori, M; Di Franco, M; La Cesa, S; Leone, C; Pepe, A; Cruccu, G; Truini, A; Camerota, F

    2016-09-01

    Patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT) commonly suffer from pain. How this hereditary connective tissue disorder causes pain remains unclear although previous studies suggested it shares similar mechanisms with neuropathic pain and fibromyalgia. In this prospective study seeking information on the mechanisms underlying pain in patients with JHS/EDS-HT, we enrolled 27 consecutive patients with this connective tissue disorder. Patients underwent a detailed clinical examination, including the neuropathic pain questionnaire DN4 and the fibromyalgia rapid screening tool. As quantitative sensory testing methods, we included thermal-pain perceptive thresholds and the wind-up ratio and recorded a standard nerve conduction study to assess non-nociceptive fibres and laser-evoked potentials, assessing nociceptive fibres. Clinical examination and diagnostic tests disclosed no somatosensory nervous system damage. Conversely, most patients suffered from widespread pain, the fibromyalgia rapid screening tool elicited positive findings, and quantitative sensory testing showed lowered cold and heat pain thresholds and an increased wind-up ratio. While the lack of somatosensory nervous system damage is incompatible with neuropathic pain as the mechanism underlying pain in JHS/EDS-HT, the lowered cold and heat pain thresholds and increased wind-up ratio imply that pain in JHS/EDS-HT might arise through central sensitization. Hence, this connective tissue disorder and fibromyalgia share similar pain mechanisms. WHAT DOES THIS STUDY ADD?: In patients with JHS/EDS-HT, the persistent nociceptive input due to joint abnormalities probably triggers central sensitization in the dorsal horn neurons and causes widespread pain. © 2016 European Pain Federation - EFIC®

  19. Injury thresholds for topical-cream-coated skin of hairless guinea pigs (cavia porcellus) in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2006-02-01

    The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.

  20. An in vitro Corneal Model with a Laser Damage Threshold at 2 Micrometers That is Similar to That in the Rabbit

    DTIC Science & Technology

    2007-11-01

    Proceedings 3. DATES COVERED (From - To) June 2007- November 2007 4. TITLE AND SUBTITLE An In Vitro Corneal Model with a Laser Damage Threshold at 2...2-µm wavelength output of a thulium fiber laser with 4 mm beam diameter for 0.25 seconds in a thermally controlled environment and then assayed for...data in the literature. 15. SUBJECT TERMS corneal organotypic culture, laser , threshold, thermography, Probit 16. SECURITY CLASSIFICATION OF

  1. The Enhancement of Gas Pressure Diagnostics in the P-ODTX System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Peter C.; Jones, Aaron; Tesillo, Lynda

    The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory is a useful tool for thermal safety assessment of energetic material. It has been used since 1970s to measure times to explosion, threshold thermal explosion temperature, thermal explosion violence, and determine decomposition kinetic parameters of energetic materials. ODTX data obtained for the last 40 years can be found elsewhere.

  2. Passive thermal management using phase change materials

    NASA Astrophysics Data System (ADS)

    Ganatra, Yash Yogesh

    The trend of enhanced functionality and reducing thickness of mobile devices has. led to a rapid increase in power density and a potential thermal bottleneck since. thermal limits of components remain unchanged. Active cooling mechanisms are not. feasible due to size, weight and cost constraints. This work explores the feasibility. of a passive cooling system based on Phase Change Materials (PCMs) for thermal. management of mobile devices. PCMs stabilize temperatures due to the latent heat. of phase change thus increasing the operating time of the device before threshold. temperatures are exceeded. The primary contribution of this work is the identification. of key parameters which influence the design of a PCM based thermal management. system from both the experiments and the numerical models. This work first identifies strategies for integrating PCMs in an electronic device. A. detailed review of past research, including experimental techniques and computational. models, yields key material properties and metrics to evaluate the performance of. PCMs. Subsequently, a miniaturized version of a conventional thermal conductivity. measurement technique is developed to characterize thermal resistance of PCMs. Further, latent heat and transition temperatures are also characterized for a wide. range of PCMs. In-situ measurements with PCMs placed on the processor indicate that some. PCMs can extend the operating time of the device by as much as a factor of 2.48. relative to baseline tests (with no PCMs). This increase in operating time is investigated. by computational thermal models that explore various integration locations, both at the package and device level.

  3. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong.

    PubMed

    Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun

    2018-04-12

    The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.

  4. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: a comparative study between Melbourne and Hong Kong

    NASA Astrophysics Data System (ADS)

    Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun

    2018-04-01

    The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.

  5. A Pilot Study of the Snap & Sniff Threshold Test.

    PubMed

    Jiang, Rong-San; Liang, Kai-Li

    2018-05-01

    The Snap & Sniff ® Threshold Test (S&S) has been recently developed to determine the olfactory threshold. The aim of this study was to further evaluate the validity and test-retest reliability of the S&S. The olfactory thresholds of 120 participants were determined using both the Smell Threshold Test (STT) and the S&S. The participants included 30 normosmic volunteers and 90 patients (60 hyposmic, 30 anosmic). The normosmic participants were retested using the STT and S&S at an intertest interval of at least 1 day. The mean olfactory threshold determined with the S&S was -6.76 for the normosmic participants, -3.79 for the hyposmic patients, and -2 for the anosmic patients. The olfactory thresholds were significantly different across the 3 groups ( P < .001). Snap & Sniff-based and STT-based olfactory thresholds were correlated weakly in the normosmic group (correlation coefficient = 0.162, P = .391) but more strongly correlated in the patient groups (hyposmic: correlation coefficient = 0.376, P = .003; anosmic: correlation coefficient = 1.0). The test-retest correlation for the S&S-based olfactory thresholds was 0.384 ( P = .036). Based on validity and test-retest reliability, we concluded that the S&S is a proper test for olfactory thresholds.

  6. High precision automated face localization in thermal images: oral cancer dataset as test case

    NASA Astrophysics Data System (ADS)

    Chakraborty, M.; Raman, S. K.; Mukhopadhyay, S.; Patsa, S.; Anjum, N.; Ray, J. G.

    2017-02-01

    Automated face detection is the pivotal step in computer vision aided facial medical diagnosis and biometrics. This paper presents an automatic, subject adaptive framework for accurate face detection in the long infrared spectrum on our database for oral cancer detection consisting of malignant, precancerous and normal subjects of varied age group. Previous works on oral cancer detection using Digital Infrared Thermal Imaging(DITI) reveals that patients and normal subjects differ significantly in their facial thermal distribution. Therefore, it is a challenging task to formulate a completely adaptive framework to veraciously localize face from such a subject specific modality. Our model consists of first extracting the most probable facial regions by minimum error thresholding followed by ingenious adaptive methods to leverage the horizontal and vertical projections of the segmented thermal image. Additionally, the model incorporates our domain knowledge of exploiting temperature difference between strategic locations of the face. To our best knowledge, this is the pioneering work on detecting faces in thermal facial images comprising both patients and normal subjects. Previous works on face detection have not specifically targeted automated medical diagnosis; face bounding box returned by those algorithms are thus loose and not apt for further medical automation. Our algorithm significantly outperforms contemporary face detection algorithms in terms of commonly used metrics for evaluating face detection accuracy. Since our method has been tested on challenging dataset consisting of both patients and normal subjects of diverse age groups, it can be seamlessly adapted in any DITI guided facial healthcare or biometric applications.

  7. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface

    PubMed Central

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-01

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style. PMID:26758742

  8. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface.

    PubMed

    Fusi, Marco; Cannicci, Stefano; Daffonchio, Daniele; Mostert, Bruce; Pörtner, Hans-Otto; Giomi, Folco

    2016-01-13

    The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.

  9. Amitriptyline converts non-responders into responders to low-frequency electroacupuncture-induced analgesia in rats.

    PubMed

    Fais, Rafael S; Reis, G M; Rossaneis, A C; Silveira, J W S; Dias, Q M; Prado, W A

    2012-07-26

    The purpose of this study was to examine whether the use of intraperitoneal or intrathecal amitriptyline combined with electroacupuncture modifies the tail-flick reflex and incision pain in rats that normally do not have analgesia to electroacupuncture in the tail-flick test (non-responder rats). Changes in the nociceptive threshold of intraperitoneal or intrathecal saline- or amitriptyline-treated non-responder rats were evaluated using the tail-flick or incision pain tests before, during and after a 20-min period of electroacupuncture, applied at 2 Hz to the Zusanli and Sanynjiao acupoints. Amitriptyline was used at doses of 0.8 mg/kg or 30 μg/kg by intraperitoneal or intrathecal route, respectively. At these doses, amitriptyline has no effect against thermal or incision pain in rats. Rats selected as non-responders to the analgesic effect of electroacupuncture 2 Hz in tail-flick and incision pain tests become responders after an intraperitoneal or intrathecal injection of amitriptyline. Amitriptyline converts non-responder rats to rats that respond to electroacupuncture with analgesia in a model of thermal phasic pain and anti-hyperalgesia in a model of incision pain. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Subthalamic deep brain stimulation modulates conscious perception of sensory function in Parkinson's disease.

    PubMed

    Cury, Rubens G; Galhardoni, Ricardo; Teixeira, Manoel J; Dos Santos Ghilardi, Maria G; Silva, Valquiria; Myczkowski, Martin L; Marcolin, Marco A; Barbosa, Egberto R; Fonoff, Erich T; Ciampi de Andrade, Daniel

    2016-12-01

    Subthalamic deep brain stimulation (STN-DBS) is used to treat refractory motor complications in Parkinson disease (PD), but its effects on nonmotor symptoms remain uncertain. Up to 80% of patients with PD may have pain relief after STN-DBS, but it is unknown whether its analgesic properties are related to potential effects on sensory thresholds or secondary to motor improvement. We have previously reported significant and long-lasting pain relief after DBS, which did not correlate with motor symptomatic control. Here we present secondary data exploring the effects of DBS on sensory thresholds in a controlled way and have explored the relationship between these changes and clinical pain and motor improvement after surgery. Thirty-seven patients were prospectively evaluated before STN-DBS and 12 months after the procedure compared with healthy controls. Compared with baseline, patients with PD showed lower thermal and mechanical detection and higher cold pain thresholds after surgery. There were no changes in heat and mechanical pain thresholds. Compared with baseline values in healthy controls, patients with PD had higher thermal and mechanical detection thresholds, which decreased after surgery toward normalization. These sensory changes had no correlation with motor or clinical pain improvement after surgery. These data confirm the existence of sensory abnormalities in PD and suggest that STN-DBS mainly influenced the detection thresholds rather than painful sensations. However, these changes may depend on the specific effects of DBS on somatosensory loops with no correlation to motor or clinical pain improvement.

  11. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    PubMed

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Intrathecal treatment with MK-801 suppresses thermal nociceptive responses and prevents c-fos immunoreactivity induced in rat lumbar spinal cord neurons.

    PubMed

    Huang, W; Simpson, R K

    1999-09-01

    Sensitization of the second order neurons in the spinal dorsal horn after somatic noxious stimuli is partly mediated by the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor. These neurons also express c-Fos immunoreactivity in response to the somatic noxious stimuli. The present study assessed the influence of intrathecal pre-treatment with MK-801, a non-competitive antagonist of NMDA receptor, on thermal sensitization following peripheral noxious heat stimulation. In addition, the influence of MK-801 on c-Fos immunoreactivity in the rat lumbar spinal cord neurons after the peripheral noxious heat was examined. Sprague-Dawley rats were subject to intrathecal catheterization and administration of MK-801 or saline before and after noxious heat (52 degrees C) stimulation of rat hindpaws. Thermal sensitization was tested after MK-801 (0.1 mumol 10 microliters-1). Fos-like immunoreactivity was evaluated 2 h after noxious stimulation in a separate group of animals. MK-801 significantly increased the thermal withdrawal threshold by 60% following noxious heat stimulation and reduced c-Fos immunoreactivity in the second order neurons by 70% in the dorsal horn. The study suggests that glutamate plays a pivotal role in the thermal nociceptive pathway and indicates that the NMDA receptor is necessary to maintain normal thermal sensitization, possibly by regulating c-fos gene expression in second order neurons.

  13. Thermal conductivity of electron-irradiated graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  14. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish.

    PubMed

    Komoroske, Lisa M; Connon, Richard E; Jeffries, Ken M; Fangue, Nann A

    2015-10-01

    Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change. © 2015 John Wiley & Sons Ltd.

  15. Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results

    NASA Astrophysics Data System (ADS)

    Kántor, Noémi; Kovács, Attila; Takács, Ágnes

    2016-11-01

    Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature ( PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.

  16. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  17. The Fine Tuning of Pain Thresholds: A Sophisticated Double Alarm System

    PubMed Central

    Plaghki, Léon; Decruynaere, Céline; Van Dooren, Paul; Le Bars, Daniel

    2010-01-01

    Two distinctive features characterize the way in which sensations including pain, are evoked by heat: (1) a thermal stimulus is always progressive; (2) a painful stimulus activates two different types of nociceptors, connected to peripheral afferent fibers with medium and slow conduction velocities, namely Aδ- and C-fibers. In the light of a recent study in the rat, our objective was to develop an experimental paradigm in humans, based on the joint analysis of the stimulus and the response of the subject, to measure the thermal thresholds and latencies of pain elicited by Aδ- and C-fibers. For comparison, the same approach was applied to the sensation of warmth elicited by thermoreceptors. A CO2 laser beam raised the temperature of the skin filmed by an infrared camera. The subject stopped the beam when he/she perceived pain. The thermal images were analyzed to provide four variables: true thresholds and latencies of pain triggered by heat via Aδ- and C-fibers. The psychophysical threshold of pain triggered by Aδ-fibers was always higher (2.5–3°C) than that triggered by C-fibers. The initial skin temperature did not influence these thresholds. The mean conduction velocities of the corresponding fibers were 13 and 0.8 m/s, respectively. The triggering of pain either by C- or by Aδ-fibers was piloted by several factors including the low/high rate of stimulation, the low/high base temperature of the skin, the short/long peripheral nerve path and some pharmacological manipulations (e.g. Capsaicin). Warming a large skin area increased the pain thresholds. Considering the warmth detection gave a different picture: the threshold was strongly influenced by the initial skin temperature and the subjects detected an average variation of 2.7°C, whatever the initial temperature. This is the first time that thresholds and latencies for pain elicited by both Aδ- and C-fibers from a given body region have been measured in the same experimental run. Such an approach illustrates the role of nociception as a “double level” and “double release” alarm system based on level detectors. By contrast, warmth detection was found to be based on difference detectors. It is hypothesized that pain results from a CNS build-up process resulting from population coding and strongly influenced by the background temperatures surrounding at large the stimulation site. We propose an alternative solution to the conventional methods that only measure a single “threshold of pain”, without knowing which of the two systems is involved. PMID:20428245

  18. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  19. Few Like it Hot: Coral Reef Reponses to Elevated Temperatures and CO2

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Gledhill, D. K.; Heron, S. F.; Skirving, W.; Christensen, T.; Morgan, J.; Liu, G.; Strong, A. E.

    2007-12-01

    Coral reefs live within a fairly narrow envelope of environmental conditions constrained by water temperatures, light, salinity, nutrients, bathymetry and the aragonite saturation state of seawater. As documented in numerous studies, the world's coral reefs are "in crisis" as a result of human impacts on their environment. While local stresses currently dominate, coral reefs are increasingly confronted with global-scale changes due to rising greenhouse gas concentrations. These changes are rapidly modifying the environmental envelope of coral reefs through both increased thermal stress and ocean acidification. In the former case, there is a well-documented relationship between thermal stress and the response of corals that include coral bleaching, disease, and mortality. Clear tolerance thresholds exist beyond which high temperature and accumulated thermal stress have deleterious effects. However, the synergistic effects of increasing temperature and ocean acidification are not yet fully understood. At this time, there is mounting concern that decreasing pH and aragonite saturation state will cause net reef accretion to cease or become negative. The threshold at which this could occur is likely to be reached much sooner than the pH drop necessary to induce carbonate dissolution. Both the thermal and chemical limits that control coral survival and reef growth will likely be passed before 2100 assuming even conservative projections reported in the 4th Assessment Report of the Intergovernmental Panel on Climate Change. This talk will discuss these thresholds and their ramifications for ecosystems and resource management.

  20. Finite element model of thermal processes in retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    Short duration (< 20 ms) pulses are desirable in patterned scanning laser photocoagulation to confine thermal damage to the photoreceptor layer, decrease overall treatment time and reduce pain. However, short exposures have a smaller therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation). We have constructed a finite-element computational model of retinal photocoagulation to predict spatial damage and improve the therapeutic window. Model parameters were inferred from experimentally measured absorption characteristics of ocular tissues, as well as the thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Calculated lesion diameters showed good agreement with histological measurements over a wide range of pulse durations and powers.

  1. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  2. Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for health care policy and decision-making.

    PubMed

    Owen, Rhiannon K; Cooper, Nicola J; Quinn, Terence J; Lees, Rosalind; Sutton, Alex J

    2018-07-01

    Network meta-analyses (NMA) have extensively been used to compare the effectiveness of multiple interventions for health care policy and decision-making. However, methods for evaluating the performance of multiple diagnostic tests are less established. In a decision-making context, we are often interested in comparing and ranking the performance of multiple diagnostic tests, at varying levels of test thresholds, in one simultaneous analysis. Motivated by an example of cognitive impairment diagnosis following stroke, we synthesized data from 13 studies assessing the efficiency of two diagnostic tests: Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), at two test thresholds: MMSE <25/30 and <27/30, and MoCA <22/30 and <26/30. Using Markov chain Monte Carlo (MCMC) methods, we fitted a bivariate network meta-analysis model incorporating constraints on increasing test threshold, and accounting for the correlations between multiple test accuracy measures from the same study. We developed and successfully fitted a model comparing multiple tests/threshold combinations while imposing threshold constraints. Using this model, we found that MoCA at threshold <26/30 appeared to have the best true positive rate, whereas MMSE at threshold <25/30 appeared to have the best true negative rate. The combined analysis of multiple tests at multiple thresholds allowed for more rigorous comparisons between competing diagnostics tests for decision making. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change

    NASA Astrophysics Data System (ADS)

    Waltham, Nathan J.; Sheaves, Marcus

    2017-09-01

    Understanding acute hyperthermic exposure risk to animals, including fish in tropical estuaries, is increasingly necessary under future climate change. To examine this hypothesis, fish (upper water column species - glassfish, Ambassis vachellii; river mullet, Chelon subviridis; diamond scale mullet, Ellochelon vaigiensis; and ponyfish, Leiognathus equulus; and lower water bottom dwelling species - whiting Sillago analis) were caught in an artificial tidal lake in tropical north Queensland (Australia), and transported to a laboratory tank to acclimate (3wks). After acclimation, fish (between 10 and 17 individuals each time) were transferred to a temperature ramping experimental tank, where a thermoline increased (2.5 °C/hr; which is the average summer water temperature increasing rate measured in the urban lakes) tank water temperature to establish threshold points where each fish species lost equilibrium (defined here as Acute Effect Temperature; AET). The coolest AET among all species was 33.1 °C (S. analis), while the highest was 39.9 °C (A. vachellii). High frequency loggers were deployed (November and March representing Austral summer) in the same urban lake where fish were sourced, to measure continuous (20min) surface (0.15 m) and bottom (0.1 m) temperature to derive thermal frequency curves to examine how often lake temperatures exceed AET thresholds. For most fish species examined, water temperature that could be lethal were exceeded at the surface, but rarely, if ever, at the bottom waters suggesting deep, cooler, water provides thermal refugia for fish. An energy-balance model was used to estimate daily mean lake water temperature with good accuracy (±1 °C; R2 = 0.91, modelled vs lake measured temperature). The model was used to predict climate change effects on lake water temperature, and the exceedance of thermal threshold change. A 2.3 °C climate warming (based on 2100 local climate prediction) raised lake water temperature by 1.3 °C. However, small as this increase might seem, it led to a doubling of time that water temperatures were in excess of AET thresholds at the surface, but also the bottom waters that presently provide thermal refugia for fish.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-Min; Kim, Doyoung; Kim, Hyungjun

    We investigated the ultraviolet (UV) light photostability of plasma-enhanced and thermal atomic layer deposition of ZnO thin film transistor (TFT). The negative shift of threshold voltage was similarly observed in both cases by UV exposure due to the increment of carrier concentration. Additionally, the transfer curves of TFT using thermal ALD ZnO:N active layer were exhibited recovery characteristics.

  5. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Honghyuk; Guan, Yingxin; Babcock, Susan E.; Kuech, Thomas F.; Mawst, Luke J.

    2018-03-01

    Laser diodes employing a strain-compensated GaAs1-xBix/GaAs1-yPy single quantum well (SQW) active region were grown by organometallic vapor phase epitaxy (OMVPE). High resolution x-ray diffraction, room temperature photoluminescence, and real-time optical reflectance measurements during the OMVPE growth were used to find the optimum process window for the growth of the active region material. Systematic post-growth in situ thermal anneals of various lengths were carried out in order to investigate the impacts of thermal annealing on the laser device performance characteristics. While the lowest threshold current density was achieved after the thermal annealing for 30 min at 630 °C, a gradual decrease in the external differential quantum efficiency was observed as the annealing time increases. It was observed that the temperature sensitivities of the threshold current density increase while those of lasing wavelength and slope efficiency remain nearly constant with increasing annealing time. Z-contrast scanning transmission electron microscopic) analysis revealed inhomogeneous Bi distribution within the QW active region.

  6. Rational use of Xpert testing in patients with presumptive TB: clinicians should be encouraged to use the test-treat threshold.

    PubMed

    Decroo, Tom; Henríquez-Trujillo, Aquiles R; De Weggheleire, Anja; Lynen, Lutgarde

    2017-10-11

    A recently published Ugandan study on tuberculosis (TB) diagnosis in HIV-positive patients with presumptive smear-negative TB, which showed that out of 90 patients who started TB treatment, 20% (18/90) had a positive Xpert MTB/RIF (Xpert) test, 24% (22/90) had a negative Xpert test, and 56% (50/90) were started without Xpert testing. Although Xpert testing was available, clinicians did not use it systematically. Here we aim to show more objectively the process of clinical decision-making. First, we estimated that pre-test probability of TB, or the prevalence of TB in smear-negative HIV infected patients with signs of presumptive TB in Uganda, was 17%. Second, we argue that the treatment threshold, the probability of disease at which the utility of treating and not treating is the same, and above which treatment should be started, should be determined. In Uganda, the treatment threshold was not yet formally established. In Rwanda, the calculated treatment threshold was 12%. Hence, one could argue that the threshold was reached without even considering additional tests. Still, Xpert testing can be useful when the probability of disease is above the treatment threshold, but only when a negative Xpert result can lower the probability of disease enough to cross the treatment threshold. This occurs when the pre-test probability is lower than the test-treat threshold, the probability of disease at which the utility of testing and the utility of treating without testing is the same. We estimated that the test-treatment threshold was 28%. Finally, to show the effect of the presence or absence of arguments on the probability of TB, we use confirming and excluding power, and a log10 odds scale to combine arguments. If the pre-test probability is above the test-treat threshold, empirical treatment is justified, because even a negative Xpert will not lower the post-test probability below the treatment threshold. However, Xpert testing for the diagnosis of TB should be performed in patients for whom the probability of TB was lower than the test-treat threshold. Especially in resource constrained settings clinicians should be encouraged to take clinical decisions and use scarce resources rationally.

  7. Divergent sensory phenotypes in nonspecific arm pain: comparisons with cervical radiculopathy.

    PubMed

    Moloney, Niamh; Hall, Toby; Doody, Catherine

    2015-02-01

    To investigate whether distinct sensory phenotypes were identifiable in individuals with nonspecific arm pain (NSAP) and whether these differed from those in people with cervical radiculopathy. A secondary question considered whether the frequency of features of neuropathic pain, kinesiophobia, high pain ratings, hyperalgesia, and allodynia differed according to subgroups of sensory phenotypes. Cross-sectional study. Higher education institution. Forty office workers with NSAP, 17 people with cervical radiculopathy, and 40 age- and sex-matched healthy controls (N=97). Not applicable. Participants were assessed using quantitative sensory testing (QST) comprising thermal and vibration detection thresholds and thermal and pressure pain thresholds; clinical examination; and relevant questionnaires. Sensory phenotypes were identified for each individual in the patient groups using z-score transformation of the QST data. Individuals with NSAP and cervical radiculopathy present with a spectrum of sensory abnormalities; a dominant sensory phenotype was not identifiable in individuals with NSAP. No distinct pattern between clinical features and questionnaire results across sensory phenotypes was identified in either group. When considering sensory phenotypes, neither individuals with NSAP nor individuals with cervical radiculopathy should be considered homogeneous. Therefore, people with either condition may warrant different intervention approaches according to their individual sensory phenotype. Issues relating to the clinical identification of sensory hypersensitivity and the validity of QST are highlighted. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  9. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies.

    PubMed

    Artes, Paul H; Iwase, Aiko; Ohno, Yuko; Kitazawa, Yoshiaki; Chauhan, Balwantray C

    2002-08-01

    To investigate the distributions of threshold estimates with the Swedish Interactive Threshold Algorithms (SITA) Standard, SITA Fast, and the Full Threshold algorithm (Humphrey Field Analyzer; Zeiss-Humphrey Instruments, Dublin, CA) and to compare the pointwise test-retest variability of these strategies. One eye of 49 patients (mean age, 61.6 years; range, 22-81) with glaucoma (Mean Deviation mean, -7.13 dB; range, +1.8 to -23.9 dB) was examined four times with each of the three strategies. The mean and median SITA Standard and SITA Fast threshold estimates were compared with a "best available" estimate of sensitivity (mean results of three Full Threshold tests). Pointwise 90% retest limits (5th and 95th percentiles of retest thresholds) were derived to assess the reproducibility of individual threshold estimates. The differences between the threshold estimates of the SITA and Full Threshold strategies were largest ( approximately 3 dB) for midrange sensitivities ( approximately 15 dB). The threshold distributions of SITA were considerably different from those of the Full Threshold strategy. The differences remained of similar magnitude when the analysis was repeated on a subset of 20 locations that are examined early during the course of a Full Threshold examination. With sensitivities above 25 dB, both SITA strategies exhibited lower test-retest variability than the Full Threshold strategy. Below 25 dB, the retest intervals of SITA Standard were slightly smaller than those of the Full Threshold strategy, whereas those of SITA Fast were larger. SITA Standard may be superior to the Full Threshold strategy for monitoring patients with visual field loss. The greater test-retest variability of SITA Fast in areas of low sensitivity is likely to offset the benefit of even shorter test durations with this strategy. The sensitivity differences between the SITA and Full Threshold strategies may relate to factors other than reduced fatigue. They are, however, small in comparison to the test-retest variability.

  10. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kemmerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The detection of corrosion beneath Space Shuttle Orbiter thermal protective system is traditionally accomplished by removing the Reusable Surface Insulation tiles and performing a visual inspection of the aluminum substrate and corrosion protection system. This process is time consuming and has the potential to damage high cost tiles. To evaluate non-intrusive NDE methods, a Proof of Concept (PoC) experiment was designed and test panels were manufactured. The objective of the test plan was three-fold: establish the ability to detect corrosion hidden from view by tiles; determine the key factor affecting detectability; roughly quantify the detection threshold. The plan consisted of artificially inducing dimensionally controlled corrosion spots in two panels and rebonding tile over the spots to model the thermal protective system of the orbiter. The corrosion spot diameter ranged from 0.100" to 0.600" inches and the depth ranged from 0.003" to 0.020". One panel consisted of a complete factorial array of corrosion spots with and without tile coverage. The second panel consisted of randomized factorial points replicated and hidden by tile. Conventional methods such as ultrasonics, infrared, eddy current and microwave methods have shortcomings. Ultrasonics and IR cannot sufficiently penetrate the tiles, while eddy current and microwaves have inadequate resolution. As such, the panels were interrogated using Backscatter Radiography and Terahertz Imaging. The terahertz system successfully detected artificially induced corrosion spots under orbiter tile and functional testing is in-work in preparation for implementation.

  11. The Ultrachopper tip: a wound temperature study.

    PubMed

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  12. Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming

    2017-12-01

    The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.

  13. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niang, K. M.; Flewitt, A. J., E-mail: ajf@eng.cam.ac.uk; Barquinha, P. M. C.

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 10{sup 7} s{sup −1}. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys.more » 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.« less

  14. Effects of a coastal power plant thermal discharge on phytoplankton community structure in Zhanjiang Bay, China.

    PubMed

    Li, Xue-Ying; Li, Bin; Sun, Xing-Li

    2014-04-15

    The effects of a thermal discharge from a coastal power plant on phytoplankton were determined in Zhanjiang Bay. Monthly cruises were undertaken at four tide times during April-October 2011. There were significant differences for dominant species among seven sampling months and four sampling tides. Species diversity (H') and Evenness showed a distinct increasing gradient from the heated water source to the control zone and fluctuated during four tides with no visible patterns. Species richness, cell count and Chl a at mixed and control zones were significantly higher than heated zones, and showed tidal changes with no obvious patterns. The threshold temperature of phytoplankton species can be regarded as that of phytoplankton community at ebb slack. The average threshold temperature over phytoplankton species, cell count and Chl a, and the threshold temperature of cell count can be regarded as that of phytoplankton community at flood slack during spring and neap respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Phase-change memory: A continuous multilevel compact model of subthreshold conduction and threshold switching

    NASA Astrophysics Data System (ADS)

    Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel

    2018-04-01

    Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.

  16. Laser heating and ablation at high repetition rate in thermal confinement regime

    NASA Astrophysics Data System (ADS)

    Brygo, François; Semerok, A.; Oltra, R.; Weulersse, J.-M.; Fomichev, S.

    2006-09-01

    Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and λ = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repetition rate and the number of applied pulses. With a high repetition rate, the threshold fluence decreased significantly when the number of applied pulses was increasing. The experimentally obtained thresholds were well described by the developed theoretical model. Some specific features of paint heating and ablation with high repetition rate lasers are discussed.

  17. An electrophysiological investigation of the receptor apparatus of the duck's bill

    PubMed Central

    Gregory, J. E.

    1973-01-01

    1. The properties of receptors in the duck's bill have been studied by recording from units isolated by dissecting fine filaments from the maxillary and ophthalmic nerves. 2. The units studied were divisible into three groups, phasic mechanoreceptors responsive to vibration, thermoreceptive units, and high threshold mechanoreceptors. 3. Vibration-sensitive mechanoreceptors (113 units) had small receptive fields, showed a rapidly adapting discharge to mechanical stimulation of the bill, were sensitive to vibratory but not to thermal stimuli and showed no background discharge. 4. Temperature receptors (twenty-one units) were insensitive to mechanical stimulation and showed a temperature-dependent background discharge. Sudden cooling produced a transient increase in discharge frequency. 5. High threshold mechanosensitive units (eight units) gave a slowly adapting discharge to strong mechanical stimulation and were insensitive to vibratory and thermal stimulation. 6. It is concluded that the low-threshold, vibration-sensitive responses come from Herbst corpuscles. No specific function can yet be assigned to the Grandry corpuscles. PMID:4689962

  18. New developments in supra-threshold perimetry.

    PubMed

    Henson, David B; Artes, Paul H

    2002-09-01

    To describe a series of recent enhancements to supra-threshold perimetry. Computer simulations were used to develop an improved algorithm (HEART) for the setting of the supra-threshold test intensity at the beginning of a field test, and to evaluate the relationship between various pass/fail criteria and the test's performance (sensitivity and specificity) and how they compare with modern threshold perimetry. Data were collected in optometric practices to evaluate HEART and to assess how the patient's response times can be analysed to detect false positive response errors in visual field test results. The HEART algorithm shows improved performance (reduced between-eye differences) over current algorithms. A pass/fail criterion of '3 stimuli seen of 3-5 presentations' at each test location reduces test/retest variability and combines high sensitivity and specificity. A large percentage of false positive responses can be detected by comparing their latencies to the average response time of a patient. Optimised supra-threshold visual field tests can perform as well as modern threshold techniques. Such tests may be easier to perform for novice patients, compared with the more demanding threshold tests.

  19. Influence of Host Quality and Temperature on the Biology of Diaeretiella rapae (Hymenoptera: Braconidae, Aphidiinae).

    PubMed

    Souza, M F; Veloso, L F A; Sampaio, M V; Davis, J A

    2017-08-01

    Biological features of Diaeretiella rapae (McIntosh), an aphid parasitoid, are conditioned by temperature and host. However, studies of host quality changes due to temperature adaptability have not been performed previously. Therefore, this study evaluated the adaptability of Lipaphis pseudobrassicae (Davis) and Myzus persicae (Sulzer) to high temperature, high temperature effect on their quality as hosts for D. rapae, and on parasitoid's thermal threshold. Aphid development, survivorship, fecundity, and longevity were compared at 19 °C and 28 °C. Host quality in different temperatures was determined through evaluation of parasitoid biology. Thermal threshold of D. rapae was determined using development time data. At 28 °C, development time, rate of immature survival, and total fecundity rates were greater in L. pseudobrassicae than in M. persicae. Development time of D. rapae in L. pseudobrassicae was shorter than that in M. persicae at 28 °C and 31 °C for females and at 31 °C for males. The thermal threshold of D. rapae was 6.38 °C and 3.33 °C for females and 4.45 °C and 3.63 °C for males developed on L. pseudobrassicae and M. persicae, respectively. Diaeretiella rapae size gain was greater in L. pseudobrassicae than that in M. persicae at 25 °C and 28 °C. Lipaphis pseudobrassicae showed better adaptation than M. persicae to elevated temperatures, which resulted in a better quality host for D. rapae at temperatures of 28 °C and 31 °C and a higher lower thermal threshold when the parasitoid developed within L. pseudobrassicae. The host's adaptation to high temperatures is a determinant of host quality for the parasitoid at that same climatic condition. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Neurological Assessment Using a Quantitative Sensory Test in Patients with Chronic Unilateral Orofacial Pain.

    PubMed

    Salame, Talal H; Blinkhorn, Antony; Karami, Zahra

    2018-01-01

    Quantitative Sensory Testing (QST) has been used in clinical and experimental settings to establish sensory assessment for different types of pains, and may be a useful tool for the assessment of orofacial pain, but this premise needs to be tested. The aim of the study was to evaluate responses to thermal stimuli between painful and non-painful facial sites in subjects with orofacial pain using QST. A total of 60 participants (5o females: 28-83 years; 10 males: 44-81 years) with unilateral orofacial pain were recruited from the Orofacial Pain Clinic at the Pain Management and Research Centre, Royal North Shore Hospital, Sydney, Australia. The study followed the methods of limits of the German Research Network testing four modalities of thermal thresholds, the Warm Sensation, the Cold Sensation, the Heat Pain and the Cold Pain using a TSA-II Neurosensory Analyser. The results were compared to the results from the unaffected side of the same patient on the same area and a single t test statistical analysis was performed, where a p value of less than 0.05 was considered significant. The Mean Difference for Cold Sensation between the pain side and the non-pain side was 0.48 °C ± 1.5 (t= 2.466, p=0.017), 0.68 °C ± 2.04 for Warm Sensation (t= -2.573, p= 0.013), 2.56 °C ± 2.74 for Cold Pain (t= 7.238, p<0.001) and -1.21 °C ± 2.59 for Hot Pain (t= -3.639, p=0.001). The study showed that QST methods using thermal stimuli could be used to evaluate sensory dysfunction in orofacial pain patients using the specific parameters of cool and warm sensation, and cold and hot pain.

  1. Automated Smartphone Threshold Audiometry: Validity and Time Efficiency.

    PubMed

    van Tonder, Jessica; Swanepoel, De Wet; Mahomed-Asmail, Faheema; Myburgh, Hermanus; Eikelboom, Robert H

    2017-03-01

    Smartphone-based threshold audiometry with automated testing has the potential to provide affordable access to audiometry in underserved contexts. To validate the threshold version (hearTest) of the validated hearScreen™ smartphone-based application using inexpensive smartphones (Android operating system) and calibrated supra-aural headphones. A repeated measures within-participant study design was employed to compare air-conduction thresholds (0.5-8 kHz) obtained through automated smartphone audiometry to thresholds obtained through conventional audiometry. A total of 95 participants were included in the study. Of these, 30 were adults, who had known bilateral hearing losses of varying degrees (mean age = 59 yr, standard deviation [SD] = 21.8; 56.7% female), and 65 were adolescents (mean age = 16.5 yr, SD = 1.2; 70.8% female), of which 61 had normal hearing and the remaining 4 had mild hearing losses. Threshold comparisons were made between the two test procedures. The Wilcoxon signed-ranked test was used for comparison of threshold correspondence between manual and smartphone thresholds and the paired samples t test was used to compare test time. Within the adult sample, 94.4% of thresholds obtained through smartphone and conventional audiometry corresponded within 10 dB or less. There was no significant difference between smartphone (6.75-min average, SD = 1.5) and conventional audiometry test duration (6.65-min average, SD = 2.5). Within the adolescent sample, 84.7% of thresholds obtained at 0.5, 2, and 4 kHz with hearTest and conventional audiometry corresponded within ≤5 dB. At 1 kHz, 79.3% of the thresholds differed by ≤10 dB. There was a significant difference (p < 0.01) between smartphone (7.09 min, SD = 1.2) and conventional audiometry test duration (3.23 min, SD = 0.6). The hearTest application with calibrated supra-aural headphones provides a cost-effective option to determine valid air-conduction hearing thresholds. American Academy of Audiology

  2. Flurbiprofen in rapid eye movement sleep deprivation induced hyperalgesia.

    PubMed

    Gürel, Elif Ezgi; Ural, Keremcan; Öztürk, Gülnur; Öztürk, Levent

    2014-04-10

    Rapid eye movement (REM) sleep deprivation induces hyperalgesia in healthy rats. Here, we evaluated the effects of flurbiprofen, an anti-inflammatory and neuroprotective agent, on the increased thermal responses observed in REM sleep deprived rats. Forty female rats were divided into four groups following 96-hour REM sleep deprivation: intraperitoneal injections of placebo, and flurbiprofen 5 mg/kg, 15 mg/kg and 40 mg/kg were made in CONT (n=10), FBP5, FBP15 and FBP40 groups respectively. Pain threshold measurements were performed three times at baseline (0.hour), at the end of REM sleep deprivation (96.hour) and at 1 h after injections (97.hour) by hot plate and tail-flick tests. REM sleep deprivation induced a significant decrease in pain thresholds of all rats (hotplate: 0.hour vs 96.hour, 9.75±2.85 vs 5.10±2.02, p<0.001; tail flick: 0.hour vs 96.hour, 11.92±4.62 vs 7.92±5.15, p<0.001). Flurbiprofen in 15 mg/kg and 40 mg/kg doses significantly improved pain tolerance measured by tail flick test (tail flick in FBP15 and FBP40 groups: 96.hour vs 97.hour, 7.01±4.97 vs 8.34±3.61 and 5.06±1.57 vs 7.04±2.49, p<0.05 for both). 96 h of REM sleep deprivation resulted in reduced pain thresholds in both hot plate and tail flick tests. Flurbiprofen was used for the first time in a rat model of REM sleep deprivation, and it provided anti-nociceptive effects in 15 mg/kg and 40 mg/kg doses. Flurbiprofen may have the potential for treatment of painful syndromes accompanying insomnia or sleep loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  4. Combination of dexmedetomidine with buprenorphine enhances the antinociceptive effect to a thermal stimulus in the cat compared with either agent alone.

    PubMed

    Slingsby, Louisa S; Murrell, Joanna C; Taylor, Polly M

    2010-03-01

    To evaluate the sedative and antinociceptive effects of combinations of dexmedetomidine and buprenorphine in cats. Experimental randomized study. Twelve purpose-bred neutered domestic short-hair cats (4 male and 8 female) weighing 4.6 kg (range 3.7-5.5 kg) aged from 2 to 5 years. Six cats per group were administered buprenorphine (B) at 10 (B10) or 20 microg kg(-1) (B20) or dexmedetomidine (D) at 20 (D20) or 40 microg kg(-1) (D40) or a combination of B10/D20. A feline thermal nociceptive threshold testing device was used to evaluate the antinociceptive effects of the drugs before and up to 24 hours after drug treatment. Sedation was scored using a 100 mm visual analogue scale (VAS). Thermal thresholds increased significantly after administration of all but D20. Area under the curve (AUC, hours degrees C) for the first 6 hours (mean +/- SD) for B20 (281 +/- 17.8) was significantly greater than B10 (260 +/- 11.4), D20 (250 +/- 7.9) and D40 (255 +/- 11.4). The AUC for B10/D20 (273 +/- 12.2) was significantly greater than D20 but not the other treatments. No sedation was seen after administration of B10 or B20 and maximal sedation was seen for all animals in the D40 and B10/D20 groups and most animals in the D20 group. D20 alone had the smallest analgesic effect; B10 alone provided no sedation but their combination gave good sedation with analgesia comparable with B20. This combination could be a useful multimodal sedative/analgesic regimen in cats.

  5. Use of intraspecific variation in thermal responses for estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer.

    PubMed

    Ishizuka, W; Ono, K; Hara, T; Goto, S

    2015-01-01

    To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high-elevation populations developed cold hardiness earlier than low-elevation populations, representing significant genetic control. Because development occurred earlier at high-elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade-off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high-elevation population. These thermal responses may be one of the important factors driving the elevation-dependent adaptation of A. sachalinensis. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Validation of a thermal threshold nociceptive model in bearded dragons (Pogona vitticeps).

    PubMed

    Couture, Émilie L; Monteiro, Beatriz P; Aymen, Jessica; Troncy, Eric; Steagall, Paulo V

    2017-05-01

    To validate a thermal threshold (TT) nociceptive model in bearded dragons (Pogona vitticeps) and to document TT changes after administration of morphine. A two-part randomized, blinded, controlled, experimental study. Five adult bearded dragons (242-396 g). A TT device delivered a ramped nociceptive stimulus (0.6 °C second -1 ) to the medial thigh until a response (leg kick/escape behavior) was observed or maximum (cut-off) temperature of 62 °C was reached. In phase I, period 1, six TT readings were determined at 20 minute intervals for evaluation of repeatability. Two of these readings were randomly assigned to be sham to assess specificity of the behavioral response. The same experiment was repeated 2 weeks later (period 2) to test reproducibility. In phase II, animals were administered either intramuscular morphine (10 mg kg -1 ) or saline 0.9%. TTs (maximum 68 °C) were determined before and 2, 4, 8, 12 and 24 hours after treatment administration. Data were analyzed using one-way anova (temporal changes and repeatability) and paired t tests (reproducibility and treatment comparisons) using Bonferroni correction (p < 0.05). Mean TT values were 57.4 ± 3.8 °C and 57.3 ± 4.3 °C for periods 1 and 2, respectively. Data were repeatable within each period (p = 0.83 and p = 0.07, respectively). Reproducibility between periods was remarkable (p = 0.86). False-positive responses during sham testing were 10%. TTs were significantly increased after morphine administration at 2, 4 and 8 hours compared with baseline, and at 2 and 4 hours compared with saline 0.9%. The highest TT was 67.7 ± 0.7 °C at 4 hours after morphine administration. Testing was repeatable, reproducible and well tolerated in bearded dragons. TT nociceptive testing detected morphine administration and may be suitable for studying opioid regimens in bearded dragons. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  7. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  8. The Development of the Text Reception Threshold Test: A Visual Analogue of the Speech Reception Threshold Test

    ERIC Educational Resources Information Center

    Zekveld, Adriana A.; George, Erwin L. J.; Kramer, Sophia E.; Goverts, S. Theo; Houtgast, Tammo

    2007-01-01

    Purpose: In this study, the authors aimed to develop a visual analogue of the widely used Speech Reception Threshold (SRT; R. Plomp & A. M. Mimpen, 1979b) test. The Text Reception Threshold (TRT) test, in which visually presented sentences are masked by a bar pattern, enables the quantification of modality-aspecific variance in speech-in-noise…

  9. Should Malaria Treatment Be Guided by a Point of Care Rapid Test? A Threshold Approach to Malaria Management in Rural Burkina Faso

    PubMed Central

    Bisoffi, Zeno; Tinto, Halidou; Sirima, Bienvenu Sodiomon; Gobbi, Federico; Angheben, Andrea; Buonfrate, Dora; Van den Ende, Jef

    2013-01-01

    Background In Burkina Faso, rapid diagnostic tests for malaria have been made recently available. Previously, malaria was managed clinically. This study aims at assessing which is the best management option of a febrile patient in a hyperendemic setting. Three alternatives are: treating presumptively, testing, or refraining from both test and treatment. The test threshold is the tradeoff between refraining and testing, the test-treatment threshold is the tradeoff between testing and treating. Only if the disease probability lies between the two should the test be used. Methods and Findings Data for this analysis was obtained from previous studies on malaria rapid tests, involving 5220 patients. The thresholds were calculated, based on disease risk, treatment risk and cost, test accuracy and cost. The thresholds were then matched against the disease probability. For a febrile child under 5 in the dry season, the pre-test probability of clinical malaria (3.2%), was just above the test/treatment threshold. In the rainy season, that probability was 63%, largely above the test/treatment threshold. For febrile children >5 years and adults in the dry season, the probability was 1.7%, below the test threshold, while in the rainy season it was higher (25.1%), and situated between the two thresholds (3% and 60.9%), only if costs were not considered. If they were, neither testing nor treating with artemisinin combination treatments (ACT) would be recommended. Conclusions A febrile child under 5 should be treated presumptively. In the dry season, the probability of clinical malaria in adults is so low, that neither testing nor treating with any regimen should be recommended. In the rainy season, if costs are considered, a febrile adult should not be tested, nor treated with ACT, but a possible alternative would be a presumptive treatment with amodiaquine plus sulfadoxine-pyrimethamine. If costs were not considered, testing would be recommended. PMID:23472129

  10. Land Breeze and Thermals: A Scale Threshold to Distinguish Their Effects

    Treesearch

    Yongqiang Liu

    2005-01-01

    Land breeze is a type of mesoscale circulation developed due to thermal forcing over a heterogeneous landscape. It can contribute to atmospheric dynamic and hydrologic processes through affecting heat and water fluxes on the land-atmosphere interface and generating shallow convective precipitation. If the scale of the landscape heterogeneity is smaller than a certain...

  11. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  12. A short note on the inclusion of sultriness issues in perceived temperature in mild climates

    NASA Astrophysics Data System (ADS)

    Staiger, Henning; Laschewski, Gudrun; Matzarakis, Andreas

    2018-01-01

    Sultriness is a specific case in thermal perception under warm/humid environments and frequently applied in German operational weather forecast and is assumed if the dew-point temperature t d exceeds a threshold of 16.5 °C. In perceived temperature ( PT), which is based on the ASHRAE two-node-model, a Central European climatology was prepared of the classical predicted mean vote ( PMV), exclusively linked to thermal stress, and the so-called rational PMV* that additionally accounts for the humidity in the meteorological environment and is closely linked to thermal strain. The standard deviation of the difference Δ PMV = PMV* - PMV over PMV reveals a similarity to the appearance of sultriness that suggests as side effect of the PT parameterisation a thermophysiologically based definition of sultriness: "Under warm/humid conditions a subject adapted to mild climatologic conditions perceives sultriness if the actual value of Δ PMV exceeds the long-term mean by more than its single standard deviation". This definition accounts for all environmental and subject related variables influencing the thermal state of the body and is in accordance with all in the literature described properties in the perception of sultriness. The two definitions coincide more or less at daylight hours for t d values markedly beyond the threshold. However, in the t d threshold region, the PT-derived definition offers stronger differentiated patterns and is significantly less frequent at nighttime than the mono-causal definition. For given PT values, the sensible heat flux via the skin shows an increase under a sultry environment, whereas the latent is reduced; skin and core temperatures as well as the skin blood flow are also less. In any case, PT-derived sultriness is linked with an increased thermal strain on the body temperatures, which is a measure of discomfort caused by increased humidity and/or dissatisfaction with the thermal environment. This confirms the thermal uncomfortable feeling accompanying the perception of sultriness. Therefore, the PT-derived sultriness can be presumed to be a more appropriate measure for the perception of sultriness, because it accounts for all environmental impacts on thermoregulation.

  13. Antinociceptive effects after oral administration of tramadol hydrochloride in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Sanchez-Migallon Guzman, David; Souza, Marcy J; Braun, Jana M; Cox, Sherry K; Keuler, Nicholas S; Paul-Murphy, Joanne R

    2012-08-01

    To evaluate antinociceptive effects on thermal thresholds after oral administration of tramadol hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis). Animals-15 healthy adult Hispaniolan Amazon parrots. 2 crossover experiments were conducted. In the first experiment, 15 parrots received 3 treatments (tramadol at 2 doses [10 and 20 mg/kg] and a control suspension) administered orally. In the second experiment, 11 parrots received 2 treatments (tramadol hydrochloride [30 mg/kg] and a control suspension) administered orally. Baseline thermal foot withdrawal threshold was measured 1 hour before drug or control suspension administration; thermal foot withdrawal threshold was measured after administration at 0.5, 1.5, 3, and 6 hours (both experiments) and also at 9 hours (second experiment only). For the first experiment, there were no overall effects of treatment, hour, period, or any interactions. For the second experiment, there was an overall effect of treatment, with a significant difference between tramadol hydrochloride and control suspension (mean change from baseline, 2.00° and -0.09°C, respectively). There also was a significant change from baseline for tramadol hydrochloride at 0.5, 1.5, and 6 hours after administration but not at 3 or 9 hours after administration. Tramadol at a dose of 30 mg/kg, PO, induced thermal antinociception in Hispaniolan Amazon parrots. This dose was necessary for induction of significant and sustained analgesic effects, with duration of action up to 6 hours. Further studies with other types of noxious stimulation, dosages, and intervals are needed to fully evaluate the analgesic effects of tramadol hydrochloride in psittacines.

  14. Decreased sensitivity to thermal pain in rats bred for high anxiety-related behaviour is attenuated by citalopram or diazepam treatment.

    PubMed

    Jochum, Thomas; Boettger, Michael Karl; Wigger, Alexandra; Beiderbeck, Daniela; Neumann, Inga D; Landgraf, Rainer; Sauer, Heinrich; Bär, Karl-Jürgen

    2007-10-01

    Complex interactions between pain perception, anxiety and depressive symptoms have repeatedly been described. However, pathophysiological or biochemical mechanisms underlying the alterations of pain perception in patients suffering from anxiety or depression still remain a matter of debate. Thus, we aimed to perform an investigation on pain perception in an animal model of extremes in anxiety-related behaviour, which might provide a tool for future studies. Here, thermal pain thresholds were obtained from rats with a genetic predisposition to high anxiety-related behaviour (HAB), including signs of comorbid depression-like behaviour and from controls (low-anxiety rats (LAB); cross-bred HAB and LAB rats; Wistar rats). Furthermore, the effect of eight-week antidepressive treatment using citalopram and of short-term anxiolytic treatment with diazepam on pain-related behaviour was assessed. Simultaneously, anxiety-related behaviour was monitored. At baseline, HAB animals showed 35% higher thresholds for thermal pain than controls. These were normalized to control levels after eight weeks of continuous citalopram treatment paralleled by a reduction of anxiety-related behaviour, but also acutely after diazepam administration. Overall, thermal pain thresholds in HAB animals are shifted in a similar fashion as seen in patients suffering from major depressive disorder. Antidepressive, as well as anxiolytic treatments, attenuated these differences. As the relative importance of the factors anxiety and depression cannot be derived from this study with certainty, extending these investigations to additional animal models might represent a valuable tool for future investigations concerning the interrelations between anxiety, depression, and pain at a molecular level.

  15. "Cold" and "hot" thermal anomalies/events during spring and autumn in Poland

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Szwed, Małgorzata; Choryński, Adam

    2014-05-01

    Regular air temperatures' changes, as an effect of succession of the seasons, are a part of people's everyday life. When winters and summers are not characterised by extreme thermal conditions, people are well prepared and there are no losses for agriculture and economy or human health consequences observed. A similar situation takes place in case of typical springs and autumns, where normally no too low or too high air temperatures occur. The situation becomes totally different when the air temperature significantly exceeds frames of typical temperature for particular months or seasons. Appearance of winter conditions during months in which they are not expected may lead to losses in different branches of the economy e.g. transport or agriculture. Heat in non-summer months potentially brings less damages for the economy, but it might be a great threat for human health, especially for those with cardiological diseases, and it may result in thermal discomfort. If these conditions last for sufficient period of time, they may cause disorders in plant vegetation cycles. One element of the discussion held on the global warming which has been observed since the half of the twentieth century, is the question of how this effects the occurrence of climatic anomalies. Does it result in an decrease of "cold" thermal anomalies and in an increase of frequency of "hot" anomalies? Or does it increase the occurrence of both types of these events? In this research there will be performed an analysis of the occurrence of conditions typical for winter months, outside the climatic winter (December, January, February) at ten locations in the area of Poland. During the months directly close to this period (November and March) the threshold for winter conditions will be maximum temperature below 0 oC which means occurrence of frost all day long. For other non-summer months the threshold will be mean daily temperature below 0 oC meaning low temperatures during the day, not only morning frosts. A similar procedure will be used for summer conditions outside the climatic summer (June, July, August), where for months close to climatic summer (May and September) the thresholds will be set at maximum temperature higher than 30 oC and 25 oC for other spring and autumn months. In order to assess if, and to what extent , the occurrence of anomalies and rare thermal events changes, their number will be compared in three sub-periods: 1951-1980; 1961-1990; 1991-2013 (the period after 1990, where warming in Poland is observed). The final stage of the analysis will be detection of trend of anomalies calculated for ten meteorological stations in the multi-year period of 1951-2013, using statistical tests in time series.

  16. Early warning signals detect critical impacts of experimental warming.

    PubMed

    Jarvis, Lauren; McCann, Kevin; Tunney, Tyler; Gellner, Gabriel; Fryxell, John M

    2016-09-01

    Earth's surface temperatures are projected to increase by ~1-4°C over the next century, threatening the future of global biodiversity and ecosystem stability. While this has fueled major progress in the field of physiological trait responses to warming, it is currently unclear whether routine population monitoring data can be used to predict temperature-induced population collapse. Here, we integrate trait performance theory with that of critical tipping points to test whether early warning signals can be reliably used to anticipate thermally induced extinction events. We find that a model parameterized by experimental growth rates exhibits critical slowing down in the vicinity of an experimentally tested critical threshold, suggesting that dynamical early warning signals may be useful in detecting the potentially precipitous onset of population collapse due to global climate change.

  17. Fine characterization rock thermal damage by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Kong, Biao; Li, Zenghua; Wang, Enyuan

    2018-02-01

    This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.

  18. High-frequency (8 to 16 kHz) reference thresholds and intrasubject threshold variability relative to ototoxicity criteria using a Sennheiser HDA 200 earphone.

    PubMed

    Frank, T

    2001-04-01

    The first purpose of this study was to determine high-frequency (8 to 16 kHz) thresholds for standardizing reference equivalent threshold sound pressure levels (RETSPLs) for a Sennheiser HDA 200 earphone. The second and perhaps more important purpose of this study was to determine whether repeated high-frequency thresholds using a Sennheiser HDA 200 earphone had a lower intrasubject threshold variability than the ASHA 1994 significant threshold shift criteria for ototoxicity. High-frequency thresholds (8 to 16 kHz) were obtained for 100 (50 male, 50 female) normally hearing (0.25 to 8 kHz) young adults (mean age of 21.2 yr) in four separate test sessions using a Sennheiser HDA 200 earphone. The mean and median high-frequency thresholds were similar for each test session and increased as frequency increased. At each frequency, the high-frequency thresholds were not significantly (p > 0.05) different for gender, test ear, or test session. The median thresholds at each frequency were similar to the 1998 interim ISO RETSPLs; however, large standard deviations and wide threshold distributions indicated very high intersubject threshold variability, especially at 14 and 16 kHz. Threshold repeatability was determined by finding the threshold differences between each possible test session comparison (N = 6). About 98% of all of the threshold differences were within a clinically acceptable range of +/-10 dB from 8 to 14 kHz. The threshold differences between each subject's second, third, and fourth minus their first test session were also found to determine whether intrasubject threshold variability was less than the ASHA 1994 criteria for determining a significant threshold shift due to ototoxicity. The results indicated a false-positive rate of 0% for a threshold shift > or = 20 dB at any frequency and a false-positive rate of 2% for a threshold shift >10 dB at two consecutive frequencies. This study verified that the output of high-frequency audiometers at 0 dB HL using Sennheiser HDA 200 earphones should equal the 1998 interim ISO RETSPLs from 8 to 16 kHz. Further, because the differences between repeated thresholds were well within +/-10 dB and had an extremely low false-positive rate in reference to the ASHA 1994 criteria for a significant threshold shift due to ototoxicity, a Sennheiser HDA 200 earphone can be used for serial monitoring to determine whether significant high-frequency threshold shifts have occurred for patients receiving potentially ototoxic drug therapy.

  19. Going wireless and booth-less for hearing testing in industry.

    PubMed

    Meinke, Deanna K; Norris, Jesse A; Flynn, Brendan P; Clavier, Odile H

    2017-01-01

    To assess the test-retest variability of hearing thresholds obtained with an innovative, mobile wireless automated hearing-test system (WAHTS) with enhanced sound attenuation to test industrial workers at a worksite as compared to standardised automated hearing thresholds obtained in a mobile trailer sound booth. A within-subject repeated-measures design was used to compare air-conducted threshold tests (500-8000 Hz) measured with the WAHTS in six workplace locations, and a third test using computer-controlled audiometry obtained in a mobile trailer sound booth. Ambient noise levels were measured in all test environments. Twenty workers served as listeners and 20 workers served as operators. On average, the WAHTS resulted in equivalent thresholds as the mobile trailer audiometry at 1000, 2000, 3000 and 8000 Hz and thresholds were within ±5 dB at 500, 4000 and 6000 Hz. Comparable performance may be obtained with the WAHTS in occupational audiometry and valid thresholds may be obtained in diverse test locations without the use of sound-attenuating enclosures.

  20. The stability of color discrimination threshold determined using pseudoisochromatic test plates

    NASA Astrophysics Data System (ADS)

    Zutere, B.; Jurasevska Luse, K.; Livzane, A.

    2014-09-01

    Congenital red-green color vision deficiency is one of the most common genetic disorders. A previously printed set of pseudoisochromatic plates (KAMS test, 2012) was created for individual discrimination threshold determination in case of mild congenital red-green color vision deficiency using neutral colors (colors confused with gray). The diagnostics of color blind subjects was performed with Richmond HRR (4th edition, 2002) test, Oculus HMC anomaloscope, and further the examination was made using the KAMS test. 4 male subjects aged 20 to 24 years old participated in the study: all of them were diagnosed with deuteranomalia. Due to the design of the plates, the threshold of every subject in each trial was defined as the plate total color difference value ΔE at which the stimulus was detected 75% of the time, so the just-noticeable difference (jnd) was calculated in CIE LAB DeltaE (ΔE) units. Authors performed repeated discrimination threshold measurements (5 times) for all four subjects under controlled illumination conditions. Psychophysical data were taken by sampling an observer's performance on a psychophysical task at a number of different stimulus saturation levels. Results show that a total color difference value ΔE threshold exists for each individual tested with the KAMS pseudoisochromatic plates, this threshold value does not change significantly in multiple measurements. Deuteranomal threshold values aquired using greenish plates of KAMS test are significantly higher than thresholds acquired using reddish plates. A strong positive correlation (R=0.94) exists between anomaloscope matching range (MR) and deuteranomal thresholds aquired by the KAMS test and (R=0.81) between error score in the Richmond HRR test and thresholds aquired by the KAMS test.

  1. Catechol-O-methlytransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat

    PubMed Central

    Kline, R. H.; Exposto, F. G.; O’Buckley, S. C.; Westlund, K. N.; Nackley, A. G.

    2015-01-01

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10–45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of ARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. PMID:25659347

  2. Characterization of Thermal Refugia and Biogeochemical Hotspots at Sleepers River Watershed, VT

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.; Kelleher, C.; Shanley, J. B.; Shaw, S. B.

    2017-12-01

    During low flow, changes in the extent of the channel network in headwater catchments depend on groundwater-surface water interactions, and dictate thermal and biogeochemical heterogeneities. Channel reaches with low temperature may act as refugia for valued species such as brook trout, and warmer reaches with high dissolved organic matter may act as biogeochemical hotspots. Prior studies have found uniform scaling of hydrologic and biogeochemical processes above certain spatial thresholds but sizable heterogeneities in these processes below the threshold. We utilize high resolution measurements of water quality parameters including stream temperature, conductivity and fluorescent dissolved organic matter (fDOM) at tributaries in two catchments of Sleepers River Watershed, Vermont to investigate seasonal and spatial variation of water quality and scaling of stream chemistry within the intensive study area and the larger Sleepers River Watershed. This study leverages findings from various small scale regional studies to identify differences in headwater channel reach behavior in a similar climate across some dissimilar geomorphic units, to inform the identification of thermal refugia and biogeochemical hotspots.

  3. Thermalization threshold in models of 1D fermions

    NASA Astrophysics Data System (ADS)

    Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram

    2013-03-01

    The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.

  4. Hydroxyisohexyl 3-cyclohexene carboxaldehyde allergy: relationship between patch test and repeated open application test thresholds.

    PubMed

    Fischer, L A; Menné, T; Avnstorp, C; Kasting, G B; Johansen, J D

    2009-09-01

    Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC) is a synthetic fragrance ingredient. Case reports of allergy to HICC appeared in the 1980s, and HICC has recently been included in the European baseline series. Human elicitation dose-response studies performed with different allergens have shown a significant relationship between the patch-test threshold and the repeated open application test (ROAT) threshold, which mimics some real-life exposure situations. Fragrance ingredients are special as significant amounts of allergen may evaporate from the skin. The study aimed to investigate the relationship between elicitation threshold doses at the patch test and the ROAT, using HICC as the allergen. The expected evaporation rate was calculated. Seventeen HICC-allergic persons were tested with a dilution series of HICC in a patch test and a ROAT (duration up to 21 days). Seventeen persons with no HICC allergy were included as control group for the ROAT. Results The response frequency to the ROAT (in microg HICC cm(-2) per application) was significantly higher than the response frequency to the patch test at one of the tested doses. Furthermore the response rate to the accumulated ROAT dose was significantly lower at half of the doses compared with the patch test. The evaporation rate of HICC was calculated to be 72% over a 24-h period. The ROAT threshold in dose per area per application is lower than the patch test threshold; furthermore the accumulated ROAT threshold is higher than the patch test threshold, which can probably be explained by the evaporation of HICC from the skin in the open test.

  5. Voice Function Differences Following Resting Breathing vs. Submaximal Exercise

    PubMed Central

    Sandage, Mary J.; Connor, Nadine P.; Pascoe, David D.

    2013-01-01

    Objectives/Hypothesis There is little known about how physical exercise may alter physiological parameters of voice production. In this investigation, vocal function and upper airway temperature were examined following a bout of submaximal exercise and compared with a resting breathing condition. It was hypothesized that phonation threshold pressure and perceived phonatory effort would increase, and pharyngeal temperature would decrease following an exercise bout. Study Design Using a within-participant repeated measures design, 18 consented participants (9 men, 9 women) completed the study. Methods A 20-minute equilibration task was immediately followed by 8 minutes of submaximal exercise on a stationary bike in a thermally neutral environment (25°C/40% RH). At the end of the equilibration trial and the exercise trial measures were taken in the following order: pharyngeal temperature, phonation threshold pressure, and perceived phonatory effort. Data were analyzed using paired t-tests with significance set at α<0.05. Results Significantly increased phonation threshold pressure and perceived phonatory effort and significantly decreased pharyngeal temperature (1.9°C) were found, supporting the initial hypotheses. Conclusions Findings from this investigation support the widely held belief that voice use associated with physical activity requires additional laryngeal effort and closure forces. The effect of the temperature reduction in the upper airway on voice function requires further study. PMID:23849683

  6. Pharmacology of Intracisternal or Intrathecal Glycine, Muscimol, and Baclofen in Strychnine-induced Thermal Hyperalgesia of Mice

    PubMed Central

    Son, Jin Kook; Lim, Eui-Sung; Kim, Yeon-Soo

    2011-01-01

    Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABAA receptor agonist), baclofen (a GABAB receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system. PMID:22022192

  7. Pharmacology of intracisternal or intrathecal glycine, muscimol, and baclofen in strychnine-induced thermal hyperalgesia of mice.

    PubMed

    Lee, Il Ok; Son, Jin Kook; Lim, Eui-Sung; Kim, Yeon-Soo

    2011-10-01

    Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABA(A) receptor agonist), baclofen (a GABA(B) receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.

  8. Increased pain sensitivity is not associated with electrodiagnostic findings in women with carpal tunnel syndrome.

    PubMed

    de la Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César; Laguarta-Val, Sofia; Alonso-Blanco, Cristina; Martínez-Perez, Almudena; Arendt-Nielsen, Lars; Pareja, Juan A

    2011-01-01

    To determine the differences in widespread pressure pain and thermal hypersensitivity in women with minimal, moderate, and severe carpal tunnel syndrome (CTS) and healthy controls. A total of 72 women with CTS (19 with minimal, 18 with moderate, and 35 with severe) and 19 healthy age-matched women participated. Pressure pain thresholds were bilaterally assessed over the median, ulnar, and radial nerves, the C5 to C6 zygapophyseal joint, the carpal tunnel, and the tibialis anterior muscle. In addition, warm and cold detection thresholds and heat and cold pain thresholds were bilaterally assessed over the carpal tunnel and the thenar eminence. All outcome parameters were assessed by an assessor blinded to the participant's condition. No significant differences in pain parameters among patients with minimal, moderate, and severe CTS were found. The results showed that PPT were significantly decreased bilaterally over the median, ulnar, and radial nerve trunks, the carpal tunnel, C5 to C6 zygapophyseal joint, and the tibialis anterior muscle in patients with minimal, moderate, or severe CTS as compared with healthy controls (all, P<0.001). In addition, patients with CTS also showed lower heat pain threshold and reduced cold pain threshold compared with controls (P<0.001). No significant sensory differences between minimal, moderate, or severe CTS were found. The similar widespread pressure and thermal hypersensitivity in patients with minimal, moderate, or severe CTS and pain intensity suggests that increased pain sensitivity is not related to electrodiagnostic findings.

  9. Assessing the Links Between Anthropometrics Data and Akabane Test Results.

    PubMed

    Muzhikov, Valery; Vershinina, Elena; Belenky, Vadim; Muzhikov, Ruslan

    2018-02-01

    According to popular belief, metabolic disorders and imbalances are one of the main factors contributing to various human illnesses. Early diagnosis of these disorders is one of the main methods for preventing serious diseases. The goal of this study was to assess the correlations between main physical indicators and the activity of certain acupuncture channels using the thermal Akabane test based on ancient Chinese diagnostic methods. This test measures the pain thresholds' temperature sensitivity when a point source of heat is applied to the "entrance-exit" points of each channel. The skin temperature sensitivity in our bodies is a basic reactive system; it is as significant as such important indicators as body temperature and provides a very clear representation of functional and psychophysiological profiles. On the basis of our statistical study, we revealed reliable correspondence between the activity of certain acupuncture channels and main anthropometric and biometric data. Copyright © 2018. Published by Elsevier B.V.

  10. Resolving hyporheic and groundwater components of streambed water flux

    USGS Publications Warehouse

    Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.

    2012-01-01

    Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.

  11. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  12. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  13. CHANGES IN THE ANAEROBIC THRESHOLD IN AN ANNUAL CYCLE OF SPORT TRAINING OF YOUNG SOCCER PLAYERS

    PubMed Central

    Andrzejewski, M.; Wieczorek, A.; Barinow-Wojewódzki, A.; Jadczak, Ł.; Adrian, S.; Pietrzak, M.; Wieczorek, S.

    2013-01-01

    The aim of the study was to assess changes in the anaerobic threshold of young soccer players in an annual training cycle. A group of highly trained 15-18 year old players of KKS Lech Poznań were tested. The tests included an annual training macrocycle, and its individual stages resulted from the time structure of the sports training. In order to assess the level of exercise capacities of the players, a field exercise test of increasing intensity was carried out on a soccer pitch. The test made it possible to determine the 4 millimolar lactate threshold (T LA 4 mmol · l-1) on the basis of the lactate concentration in blood [LA], to establish the threshold running speed and the threshold heart rate [HR]. The threshold running speed at the level of the 4 millimolar lactate threshold was established using the two-point form of the equation of a straight line. The obtained indicators of the threshold running speed allowed for precise establishment of effort intensity used in individual training in developing aerobic endurance. In order to test the significance of differences in mean values between four dates of tests, a non-parametric Friedman ANOVA test was used. The significance of differences between consecutive dates of tests was determined using a post-hoc Friedman ANOVA test. The tests showed significant differences in values of selected indicators determined at the anaerobic threshold in various stages of an annual training cycle of young soccer players. The most beneficial changes in terms of the threshold running speed were noted on the fourth date of tests, when the participants had the highest values of 4.01 m · s-1 for older juniors, and 3.80 m · s-1 for younger juniors. This may be indicative of effective application of an individualized programme of training loads and of good preparation of teams for competition in terms of players’ aerobic endurance. PMID:24744480

  14. Changes in the anaerobic threshold in an annual cycle of sport training of young soccer players.

    PubMed

    Sliwowski, R; Andrzejewski, M; Wieczorek, A; Barinow-Wojewódzki, A; Jadczak, L; Adrian, S; Pietrzak, M; Wieczorek, S

    2013-06-01

    The aim of the study was to assess changes in the anaerobic threshold of young soccer players in an annual training cycle. A group of highly trained 15-18 year old players of KKS Lech Poznań were tested. The tests included an annual training macrocycle, and its individual stages resulted from the time structure of the sports training. In order to assess the level of exercise capacities of the players, a field exercise test of increasing intensity was carried out on a soccer pitch. The test made it possible to determine the 4 millimolar lactate threshold (T LA 4 mmol · l(-1)) on the basis of the lactate concentration in blood [LA], to establish the threshold running speed and the threshold heart rate [HR]. The threshold running speed at the level of the 4 millimolar lactate threshold was established using the two-point form of the equation of a straight line. The obtained indicators of the threshold running speed allowed for precise establishment of effort intensity used in individual training in developing aerobic endurance. In order to test the significance of differences in mean values between four dates of tests, a non-parametric Friedman ANOVA test was used. The significance of differences between consecutive dates of tests was determined using a post-hoc Friedman ANOVA test. The tests showed significant differences in values of selected indicators determined at the anaerobic threshold in various stages of an annual training cycle of young soccer players. The most beneficial changes in terms of the threshold running speed were noted on the fourth date of tests, when the participants had the highest values of 4.01 m · s(-1) for older juniors, and 3.80 m · s(-1) for younger juniors. This may be indicative of effective application of an individualized programme of training loads and of good preparation of teams for competition in terms of players' aerobic endurance.

  15. Study of blur discrimination for 3D stereo viewing

    NASA Astrophysics Data System (ADS)

    Subedar, Mahesh; Karam, Lina J.

    2014-03-01

    Blur is an important attribute in the study and modeling of the human visual system. Blur discrimination was studied extensively using 2D test patterns. In this study, we present the details of subjective tests performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. Specifically, the effect of disparity on the blur discrimination thresholds is studied on a passive stereoscopic 3D display. The blur discrimination thresholds are measured using stereoscopic 3D test patterns with positive, negative and zero disparity values, at multiple reference blur levels. A disparity value of zero represents the 2D viewing case where both the eyes will observe the same image. The subjective test results indicate that the blur discrimination thresholds remain constant as we vary the disparity value. This further indicates that binocular disparity does not affect blur discrimination thresholds and the models developed for 2D blur discrimination thresholds can be extended to stereoscopic 3D blur discrimination thresholds. We have presented fitting of the Weber model to the 3D blur discrimination thresholds measured from the subjective experiments.

  16. The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging.

    PubMed

    Lo Vecchio, Silvia; Andersen, Hjalte Holm; Arendt-Nielsen, Lars

    2018-05-29

    Topically applied high-concentration capsaicin induces reversible dermo-epidermal denervation and depletion of capsaicin-sensitive nociceptors. This causes desensitization of distinct sensory modalities and is used to treat peripheral neuropathic pain and itch. For high-concentration capsaicin, the selectivity of loss of function and functional recovery rates of various afferent fibers subpopulations are unknown. This study used comprehensive quantitative sensory testing and vasomotor imaging to assess effectiveness, duration and sensory selectivity of high-concentration 8% capsaicin-ablation. Skin areas in 14 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 1 and 24 h and underwent comprehensive sensory and vasomotor testing at 1, 7 and 21 days postpatch removal. Tests consisted of thermal detection and pain thresholds, tactile and vibration detection thresholds, mechanical pain threshold and mechanical pain sensitivity as well as micro-vascular and itch reactivity to histamine provocations. The 24 h capsaicin drastically inhibited warmth detection (P < 0.001), heat pain (P < 0.001) as well as histamine-induced itch (P < 0.05) and neurogenic flare (P < 0.001), but had no impact on tactile sensitivity, cold detection and cold pain. A marginal decrease in mechanical pain sensitivity was observed (P < 0.05). Capsaicin for 1 h had limited and transient sensory effects only affecting warmth and heat sensations. Time-dependent functional recovery was almost complete 21 days after the 24 h capsaicin exposure, while recovery of neurogenic inflammatory responsiveness remained partial. The psychophysically assessed sensory deficiencies induced by the used 8% capsaicin-ablation correspond well with a predominant effect on TRPV1 + -cutaneous fibers. The method is easy to apply, well tolerated, and utilizable for studies on, e.g., interactions between skin barrier, inflammation and capsaicin-sensitive afferents.

  17. Effect of detomidine on visceral and somatic nociception and duodenal motility in conscious adult horses.

    PubMed

    Elfenbein, Johanna R; Sanchez, L Chris; Robertson, Sheilah A; Cole, Cynthia A; Sams, Richard

    2009-03-01

    To evaluate the effects of detomidine on visceral and somatic nociception, heart and respiratory rates, sedation, and duodenal motility and to correlate these effects with serum detomidine concentrations. Nonrandomized, experimental trial. Five adult horses, each with a permanent gastric cannula weighing 534 +/- 46 kg. Visceral nociception was evaluated by colorectal (CRD) and duodenal distension (DD). The duodenal balloon was used to assess motility. Somatic nociception was assessed via thermal threshold (TT). Nose-to-ground (NTG) height was used as a measure of sedation. Serum was collected for pharmacokinetic analysis. Detomidine (10 or 20 microg kg(-1)) was administered intravenously. Data were analyzed by means of a three-factor anova with fixed factors of treatment and time and random factor of horse. When a significant time x treatment interaction was detected, differences were compared with a simple t-test or Bonferroni t-test. Significance was set at p < 0.05. Detomidine produced a significant, dose-dependent decrease in NTG height, heart rate, and skin temperature and a significant, nondose-dependent decrease in respiratory rate. Colorectal distension threshold was significantly increased with 10 microg kg(-1) for 15 minutes and for at least 165 minutes with 20 microg kg(-1). Duodenal distension threshold was significantly increased at 15 minutes for the 20 microg kg(-1) dose. A significant change in TT was not observed at either dose. A marked, immediate decrease in amplitude of duodenal contractions followed detomidine administration at both doses for 50 minutes. Detomidine caused a longer period of visceral anti-nociception as determined by CRD but a shorter period of anti-nociception as determined by DD than has been previously reported. The lack of somatic anti-nociception as determined by TT testing may be related to the marked decrease in skin temperature, likely caused by peripheral vasoconstriction and the low temperature cut-off of the testing device.

  18. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  19. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.

    PubMed

    Xu, Zhiyuan; Carlson, Carissa; Snell, John; Eames, Matt; Hananel, Arik; Lopes, M Beatriz; Raghavan, Prashant; Lee, Cheng-Chia; Yen, Chun-Po; Schlesinger, David; Kassell, Neal F; Aubry, Jean-Francois; Sheehan, Jason

    2015-01-01

    In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as follows: no cavitation, stable cavitation, and inertial cavitation. Low-power and longer sonications induced only thermal lesions, with a peak temperature threshold for lesioning of 53°C. Hemorrhagic lesions occurred only with high-power and shorter sonications. The sizes of the hemorrhages measured on macroscopic histological examinations correlated with the intensity of the cavitation activity (R2 = 0.74). The acoustic cavitation activity detected by the passive cavitation detectors exhibited a threshold of 0.09 V·Hz for the occurrence of hemorrhages. This work demonstrates that 220-kHz ultrasound is capable of inducing a thermal lesion in the brain of living swines without hemorrhage. Although the same acoustic energy can induce either a hemorrhage or a thermal lesion, it seems that low-power, long-duration sonication is less likely to cause hemorrhage and may be safer. Although further study is needed to decrease the likelihood of ischemic infarction associated with the 220-kHz ultrasound, the threshold established in this work may allow for the detection and prevention of deleterious cavitations.

  20. Thermal criteria for early life stage development of the winged mapleleaf mussel (Quadrilla fragosa)

    USGS Publications Warehouse

    Steingraeber, M.T.; Bartsch, M.R.; Kalas, J.E.; Newton, T.J.

    2007-01-01

    The winged mapleleaf mussel [Quadrula fragosa (Conrad)] is a Federal endangered species. Controlled propagation to aid in recovering this species has been delayed because host fishes for its parasitic glochidia (larvae) are unknown. This study identified blue catfish [Ictaluris furcatus (Lesueur)] and confirmed channel catfish [Ictaluris punctatus (Rafinesque)] as suitable hosts. The time required for glochidia to metamorphose and for peak juvenile excystment to begin was water temperature dependent and ranged from 28 to 37 d in a constant thermal regime (19 C); totaled 70 d in a varied thermal regime (12-19 C); and ranged 260 to 262 d in simulated natural thermal regimes (0-21 C). We developed a quantitative model that describes the thermal-temporal relation and used it to empirically estimate the species-specific low-temperature threshold for development of glochidia into juveniles on channel catfish (9.26 C) and the cumulative temperature units of development required to achieve peak excystment of juveniles from blue catfish (383 C???d) and channel catfish (395 C???d). Long-term tests simulated the development of glochidia into juveniles in natural thermal regimes and consistently affirmed the validity of these estimates, as well as provided evidence for a thermal cue (17-20 C) that presumably is needed to trigger peak juvenile excystment. These findings substantiate our model and provide an approach that could be used to determine corresponding thermal criteria for early life development of other mussel species. These data can be used to improve juvenile mussel production in propagation programs designed to help recover imperiled species and may also be useful in detecting temporal climatic changes within a watershed.

  1. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K.; Zhang, Z. D.; Qian, L.

    2016-02-08

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermalmore » properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.« less

  2. Regulation of star formation in giant galaxies by precipitation, feedback and conduction.

    PubMed

    Voit, G M; Donahue, M; Bryan, G L; McDonald, M

    2015-03-12

    The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.

  3. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  4. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  5. Application of nuclear pumped laser to an optical self-powered neutron detector

    NASA Astrophysics Data System (ADS)

    Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.

    1996-05-01

    A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.

  6. A ruggedness evaluation of procedures for damage threshold testing optical materials

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.; Thomas, Milfred E.; Wise, Stephanie A.; Tappan, Nina D.

    1995-01-01

    A ruggedness evaluation of approaches to damage threshold testing was performed to determine the influence of three procedural variables on damage threshold data. The differences between the number of test sites evaluated at an applied fluence level (1 site versus 10 sites), the number of laser pulses at each test site (1 pulse versus 200 pulses), and the beam diameter (0.35 mm versus 0.70 mm) were all found to significantly influence the damage threshold data over a 99-percent confidence interval.

  7. Determination of a Testing Threshold for Lumbar Puncture in the Diagnosis of Subarachnoid Hemorrhage after a Negative Head Computed Tomography: A Decision Analysis.

    PubMed

    Taylor, Richard Andrew; Singh Gill, Harman; Marcolini, Evie G; Meyers, H Pendell; Faust, Jeremy Samuel; Newman, David H

    2016-10-01

    The objective was to determine the testing threshold for lumbar puncture (LP) in the evaluation of aneurysmal subarachnoid hemorrhage (SAH) after a negative head computed tomography (CT). As a secondary aim we sought to identify clinical variables that have the greatest impact on this threshold. A decision analytic model was developed to estimate the testing threshold for patients with normal neurologic findings, being evaluated for SAH, after a negative CT of the head. The testing threshold was calculated as the pretest probability of disease where the two strategies (LP or no LP) are balanced in terms of quality-adjusted life-years. Two-way and probabilistic sensitivity analyses (PSAs) were performed. For the base-case scenario the testing threshold for performing an LP after negative head CT was 4.3%. Results for the two-way sensitivity analyses demonstrated that the test threshold ranged from 1.9% to 15.6%, dominated by the uncertainty in the probability of death from initial missed SAH. In the PSA the mean testing threshold was 4.3% (95% confidence interval = 1.4% to 9.3%). Other significant variables in the model included probability of aneurysmal versus nonaneurysmal SAH after negative head CT, probability of long-term morbidity from initial missed SAH, and probability of renal failure from contrast-induced nephropathy. Our decision analysis results suggest a testing threshold for LP after negative CT to be approximately 4.3%, with a range of 1.4% to 9.3% on robust PSA. In light of these data, and considering the low probability of aneurysmal SAH after a negative CT, classical teaching and current guidelines addressing testing for SAH should be revisited. © 2016 by the Society for Academic Emergency Medicine.

  8. Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: L-phenylalanine DL-mandelic acid

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Peer Mohamed, M.; Krishnan, P.; Nageshwari, M.; Mani, G.; Lydia Caroline, M.

    2016-12-01

    Single crystals of L-phenylalanine dl-mandelic acid [C9H11NO2. C8H8O3], have been grown by the slow evaporation technique at room temperature using aqueous solution. The single crystal XRD study confirms monoclinic system for the grown crystal. The functional groups present in the grown crystal have been identified by FTIR and FT-Raman analyses. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 257 nm and the optical band gap energy Eg is determined to be 4.62 eV. The Kurtz powder second harmonic generation was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. Further, the thermal studies confirmed no weight loss up to 150°C for the as-grown crystal. The photoluminescence spectrum exhibited three peaks (414 nm, 519 nm, 568 nm) due to the donation of protons from carboxylic acid to amino group. Laser damage threshold value was found to be 4.98 GW/cm2. The Vickers microhardness test was carried out on the grown crystals and there by Vickers hardness number (Hv), work hardening coefficient (n), yield strength (σy), stiffness constant C11 were evaluated. The dielectric behavior of the crystal has been determined in the frequency range 50 Hz-5 MHz at various temperatures.

  9. The Purpose of Generating Fatigue Crack Growth Threshold Data

    NASA Technical Reports Server (NTRS)

    Forth, Scott

    2006-01-01

    Test data shows that different width and thickness C(T), M(T) and ESE(T) specimens generate different thresholds Structures designed for "infinite life" are being re-evaluated: a) Threshold changes from 6 to 3 ksi in(sup 1/2); b) Computational life changes from infinite to 4 missions. Multi-million dollar test programs required to substantiate operation. Using ASTM E647 as standard guidance to generate threshold data is not practical. A threshold test approach needs to be standardized that will provide positive margin for high cycle fatigue applications.

  10. Comparison of algorithms of testing for use in automated evaluation of sensation.

    PubMed

    Dyck, P J; Karnes, J L; Gillen, D A; O'Brien, P C; Zimmerman, I R; Johnson, D M

    1990-10-01

    Estimates of vibratory detection threshold may be used to detect, characterize, and follow the course of sensory abnormality in neurologic disease. The approach is especially useful in epidemiologic and controlled clinical trials. We studied which algorithm of testing and finding threshold should be used in automatic systems by comparing among algorithms and stimulus conditions for the index finger of healthy subjects and for the great toe of patients with mild neuropathy. Appearance thresholds obtained by linear ramps increasing at a rate less than 4.15 microns/sec provided accurate and repeatable thresholds compared with thresholds obtained by forced-choice testing. These rates would be acceptable if only sensitive sites were studied, but they were too slow for use in automatic testing of insensitive parts. Appearance thresholds obtained by fast linear rates (4.15 or 16.6 microns/sec) overestimated threshold, especially for sensitive parts. Use of the mean of appearance and disappearance thresholds, with the stimulus increasing exponentially at rates of 0.5 or 1.0 just noticeable difference (JND) units per second, and interspersion of null stimuli, Békésy with null stimuli, provided accurate, repeatable, and fast estimates of threshold for sensitive parts. Despite the good performance of Békésy testing, we prefer forced choice for evaluation of the sensation of patients with neuropathy.

  11. The self-perception of dyspnoea threshold during the 6-min walk test: a good alternative to estimate the ventilatory threshold in chronic obstructive pulmonary disease.

    PubMed

    Couillard, Annabelle; Tremey, Emilie; Prefaut, Christian; Varray, Alain; Heraud, Nelly

    2016-12-01

    To determine and/or adjust exercise training intensity for patients when the cardiopulmonary exercise test is not accessible, the determination of dyspnoea threshold (defined as the onset of self-perceived breathing discomfort) during the 6-min walk test (6MWT) could be a good alternative. The aim of this study was to evaluate the feasibility and reproducibility of self-perceived dyspnoea threshold and to determine whether a useful equation to estimate ventilatory threshold from self-perceived dyspnoea threshold could be derived. A total of 82 patients were included and performed two 6MWTs, during which they raised a hand to signal self-perceived dyspnoea threshold. The reproducibility in terms of heart rate (HR) was analysed. On a subsample of patients (n=27), a stepwise regression analysis was carried out to obtain a predictive equation of HR at ventilatory threshold measured during a cardiopulmonary exercise test estimated from HR at self-perceived dyspnoea threshold, age and forced expiratory volume in 1 s. Overall, 80% of patients could identify self-perceived dyspnoea threshold during the 6MWT. Self-perceived dyspnoea threshold was reproducibly expressed in HR (coefficient of variation=2.8%). A stepwise regression analysis enabled estimation of HR at ventilatory threshold from HR at self-perceived dyspnoea threshold, age and forced expiratory volume in 1 s (adjusted r=0.79, r=0.63, and relative standard deviation=9.8 bpm). This study shows that a majority of patients with chronic obstructive pulmonary disease can identify a self-perceived dyspnoea threshold during the 6MWT. This HR at the dyspnoea threshold is highly reproducible and enable estimation of the HR at the ventilatory threshold.

  12. Demand for Colonoscopy in Colorectal Cancer Screening Using a Quantitative Fecal Immunochemical Test and Age/Sex-Specific Thresholds for Test Positivity.

    PubMed

    Chen, Sam Li-Sheng; Hsu, Chen-Yang; Yen, Amy Ming-Fang; Young, Graeme P; Chiu, Sherry Yueh-Hsia; Fann, Jean Ching-Yuan; Lee, Yi-Chia; Chiu, Han-Mo; Chiou, Shu-Ti; Chen, Hsiu-Hsi

    2018-06-01

    Background: Despite age and sex differences in fecal hemoglobin (f-Hb) concentrations, most fecal immunochemical test (FIT) screening programs use population-average cut-points for test positivity. The impact of age/sex-specific threshold on FIT accuracy and colonoscopy demand for colorectal cancer screening are unknown. Methods: Using data from 723,113 participants enrolled in a Taiwanese population-based colorectal cancer screening with single FIT between 2004 and 2009, sensitivity and specificity were estimated for various f-Hb thresholds for test positivity. This included estimates based on a "universal" threshold, receiver-operating-characteristic curve-derived threshold, targeted sensitivity, targeted false-positive rate, and a colonoscopy-capacity-adjusted method integrating colonoscopy workload with and without age/sex adjustments. Results: Optimal age/sex-specific thresholds were found to be equal to or lower than the universal 20 μg Hb/g threshold. For older males, a higher threshold (24 μg Hb/g) was identified using a 5% false-positive rate. Importantly, a nonlinear relationship was observed between sensitivity and colonoscopy workload with workload rising disproportionately to sensitivity at 16 μg Hb/g. At this "colonoscopy-capacity-adjusted" threshold, the test positivity (colonoscopy workload) was 4.67% and sensitivity was 79.5%, compared with a lower 4.0% workload and a lower 78.7% sensitivity using 20 μg Hb/g. When constrained on capacity, age/sex-adjusted estimates were generally lower. However, optimizing age/-sex-adjusted thresholds increased colonoscopy demand across models by 17% or greater compared with a universal threshold. Conclusions: Age/sex-specific thresholds improve FIT accuracy with modest increases in colonoscopy demand. Impact: Colonoscopy-capacity-adjusted and age/sex-specific f-Hb thresholds may be useful in optimizing individual screening programs based on detection accuracy, population characteristics, and clinical capacity. Cancer Epidemiol Biomarkers Prev; 27(6); 704-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  14. Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris.

    PubMed

    Orrù, Martino; Mattana, Efisio; Pritchard, Hugh W; Bacchetta, Gianluigi

    2012-12-01

    The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l). Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10-25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C). Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (T(b)) of 9·0-11·3 °C and a thermal time requirement for 50 % of germination (θ(50)) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations. The thermal thresholds for seed germination identified in this study (T(b) and θ(50)) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.

  15. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

    PubMed

    Vilčáková, Jarmila; Moučka, Robert; Svoboda, Petr; Ilčíková, Markéta; Kazantseva, Natalia; Hřibová, Martina; Mičušík, Matej; Omastová, Mária

    2012-11-05

    The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  16. Thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins of North America

    USGS Publications Warehouse

    East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.

    2012-01-01

    Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).

  17. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    NASA Astrophysics Data System (ADS)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  18. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats.

    PubMed

    Cui, Xiang; Liu, Kun; Xu, Dandan; Zhang, Youyou; He, Xun; Liu, Hao; Gao, Xinyan; Zhu, Bing

    2018-01-01

    Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs) may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant-induced MC-deficient rats. WsRC-Ws/Ws rats and their wild-type (WT) littermates (WsRC-+/+) were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA]) were applied randomly on different days. Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats ( P <0.001). For pain thresholds, MWL and MWT were higher in WsRC-Ws/Ws compared to WsRC-+/+ on bilateral paws ( P <0.05), but TWL was not different between the two rats ( P >0.05). Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline ( P <0.01, P <0.001). In WsRC-Ws/Ws rats, only noxious stimuli could produce anti-nociceptive effects for mechanical pain (46°C, 3 mA EA, MA) ( P <0.01, P <0.001). Additionally, the net increases in MWL and MWT induced by most stimuli were greater in WT than in mutant rats ( P <0.05). For thermal nociception, either high- or low-intensity stimuli could significantly augment TWL in two rats ( P <0.001), and the net increases of TWL evoked by most stimuli were to the same extent in two genetic variants. MCs influence the basic mechanical but not thermal pain threshold. MCs participate in acupuncture analgesia in mechanical but not in thermal nociception, in that MC deficiency may attenuate the mechanical analgesia evoked by high-intensity stimuli and eliminate analgesia provoked by low-intensity stimuli.

  19. A study of the high-frequency hearing thresholds of dentistry professionals

    PubMed Central

    Lopes, Andréa Cintra; de Melo, Ana Dolores Passarelli; Santos, Cibele Carmelo

    2012-01-01

    Summary Introduction: In the dentistry practice, dentists are exposed to harmful effects caused by several factors, such as the noise produced by their work instruments. In 1959, the American Dental Association recommended periodical hearing assessments and the use of ear protectors. Aquiring more information regarding dentists', dental nurses', and prosthodontists' hearing abilities is necessary to propose prevention measures and early treatment strategies. Objective: To investigate the auditory thresholds of dentists, dental nurses, and prosthodontists. Method: In this clinical and experimental study, 44 dentists (Group I; GI), 36 dental nurses (Group II; GII), and 28 prosthodontists (Group III; GIII) were included, , with a total of 108 professionals. The procedures that were performed included a specific interview, ear canal inspection, conventional and high-frequency threshold audiometry, a speech reception threshold test, and an acoustic impedance test. Results: In the 3 groups that were tested, the comparison between the mean hearing thresholds provided evidence of worsened hearing ability relative to the increase in frequency. For the tritonal mean at 500 to 2,000 Hz and 3,000 to 6,000 Hz, GIII presented the worst thresholds. For the mean of the high frequencies (9,000 and 16,000 Hz), GII presented the worst thresholds. Conclusion: The conventional hearing threshold evaluation did not demonstrate alterations in the 3 groups that were tested; however, the complementary tests such as high-frequency audiometry provided greater efficacy in the early detection of hearing problems, since this population's hearing loss impaired hearing ability at frequencies that are not tested by the conventional tests. Therefore, we emphasize the need of utilizing high-frequency threshold audiometry in the hearing assessment routine in combination with other audiological tests. PMID:25991940

  20. Reliability evaluation of CMOS RAMs

    NASA Astrophysics Data System (ADS)

    Salvo, C. J.; Sasaki, A. T.

    The results of an evaluation of the reliability of a 1K x 1 bit CMOS RAM and a 4K x 1 bit CMOS RAM for the USAF are reported. The tests consisted of temperature cycling, thermal shock, electrical overstress-static discharge and accelerated life test cells. The study indicates that the devices have high reliability potential for military applications. Use-temperature failure rates at 100 C were 0.54 x 10 to the -5th failures/hour for the 1K RAM and 0.21 x 10 to the -5th failures/hour for the 4K RAM. Only minimal electrostatic discharge damage was noted in the devices when they were subjected to multiple pulses at 1000 Vdc, and redesign of the 7 Vdc quiescent parameter of the 4K RAM is expected to raise its field threshold voltage.

  1. Simulation of ion-temperature-gradient turbulence in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B I; Dimits, A M; Kim, C

    Results are presented from nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) turbulence and transport. The gyrokinetic simulations are found to yield values of the thermal diffusivity significantly lower than gyrofluid or IFS-PPPL-model predictions. A new phenomenon of nonlinear effective critical gradients larger than the linear instability threshold gradients is observed, and is associated with undamped flux-surface-averaged shear flows. The nonlinear gyrokineic codes have passed extensive validity tests which include comparison against independent linear calculations, a series of nonlinear convergence tests, and a comparison between two independent nonlinear gyrokinetic codes. Our most realistic simulations to date have actual reconstructedmore » equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the need for still more physics to be included in the simulations« less

  2. Melt layer formation in stainless steel under transient thermal loads

    NASA Astrophysics Data System (ADS)

    Steudel, I.; Klimov, N. S.; Linke, J.; Loewenhoff, Th.; Pintsuk, G.; Pitts, R. A.; Wirtz, M.

    2015-08-01

    To investigate the performance of stainless steel under transient thermal events, such as photon pulses caused by disruptions mitigated by massive gas injection (MGI), the material has been exposed to electron beam loads with ITER relevant power densities slightly above the melting threshold (245 MW/m2) and a pulse duration of 3 ms (Sugihara et al., 2012; Klimov et al., 2013; Pitts et al., 2013). The samples were manufactured from different steel grades with slightly modified chemical composition. To investigate the effect of repetitive surface heat loads on the melting process and the melt motion, identical heat pulses in the range of 100-3000 were applied. All tested materials showed intense melt-induced surface roughening, driven by repeated shallow surface melting up to several ten micrometre and fast re-solidification with epitaxial grain growth. During the liquid phase, melt motion induced by cohesive forces results in the formation of a wavy surface structure with apexes. Further experiments have been performed to study the effects of non-perpendicular surfaces or leading edges.

  3. Investigation of surface evolution for stainless steel electrode under pulsed megagauss magnetic field

    NASA Astrophysics Data System (ADS)

    Zou, Wenkang; Dan, Jiakun; Wang, Guilin; Duan, Shuchao; Wei, Bing; Zhang, Hengdi; Huang, Xianbin; Zhang, Zhaohui; Guo, Fan; Gong, Boyi; Chen, Lin; Wang, Meng; Feng, Shuping; Xie, Weiping; Deng, Jianjun

    2018-02-01

    Surface evolution for a conductor electrode under pulsed megagauss (MG) magnetic field was investigated. Stainless steel rods with 3 mm diameter were driven by 8 MA, 130 ns (10%-90%) current pulse in a series of shots on the Primary Test Stand. Experimental data from two complementary diagnostic systems and simulation results from one-dimensional magneto-hydrodynamics code reveal a transition phase for instability development. The transition, which begins as the conductor surface starts to expand, lasts about 40 ns in the pulse. It ends after the thermal plasma is formed, and striation electrothermal instability growth stops but magneto-Rayleigh-Taylor instability (MRTI) starts to develop. An expanding velocity which grows to about 2.0 km/s during the transition phase was directly measured for the first time. The threshold magnetic field for thermal plasma formation on the stainless steel surface was inferred to be 3.3 MG under a rising rate of about 66 MG/μs, and after that MRTI becomes predominant for amplitude growth in surface perturbation.

  4. Speech-in-Noise Tests and Supra-threshold Auditory Evoked Potentials as Metrics for Noise Damage and Clinical Trial Outcome Measures.

    PubMed

    Le Prell, Colleen G; Brungart, Douglas S

    2016-09-01

    In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.

  5. Normal Threshold Size of Stimuli in Children Using a Game-Based Visual Field Test.

    PubMed

    Wang, Yanfang; Ali, Zaria; Subramani, Siddharth; Biswas, Susmito; Fenerty, Cecilia; Henson, David B; Aslam, Tariq

    2017-06-01

    The aim of this study was to demonstrate and explore the ability of novel game-based perimetry to establish normal visual field thresholds in children. One hundred and eighteen children (aged 8.0 ± 2.8 years old) with no history of visual field loss or significant medical history were recruited. Each child had one eye tested using a game-based visual field test 'Caspar's Castle' at four retinal locations 12.7° (N = 118) from fixation. Thresholds were established repeatedly using up/down staircase algorithms with stimuli of varying diameter (luminance 20 cd/m 2 , duration 200 ms, background luminance 10 cd/m 2 ). Relationships between threshold and age were determined along with measures of intra- and intersubject variability. The Game-based visual field test was able to establish threshold estimates in the full range of children tested. Threshold size reduced with increasing age in children. Intrasubject variability and intersubject variability were inversely related to age in children. Normal visual field thresholds were established for specific locations in children using a novel game-based visual field test. These could be used as a foundation for developing a game-based perimetry screening test for children.

  6. The relationship of nerve fibre pathology to sensory function in entrapment neuropathy

    PubMed Central

    Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.

    2014-01-01

    Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity. PMID:25348629

  7. Computational Study of Collisions Between O(3P) and NO(2Pi) at Temperatures Relevant to the Hypersonic Flight Regime

    DTIC Science & Technology

    2014-10-29

    hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O(3P) and NO(2_) are relevant over a wide...hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O(3P) and NO(2) are relevant over a wide...N) is of particular interest since the thermal dissociation threshold for O2 is lower than that for N2 in air. A central question is how

  8. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    DTIC Science & Technology

    2008-05-01

    in non-human primates. a. Study behavioral effects of ultra- low doses of intrathecal N/OFQ over a wide dose range using a warm water tail...threshold of monkeys. Figure 1 compares the effects of ultra- low doses of intrathecal N/OFQ (i.e., 1 fmol and 1 pmol) with those of a mu opioid...findings indicate that ultra- low doses of intrathecal N/OFQ did not change the monkey’s thermal nociceptive threshold (Figure 1, middle panels

  9. Automatic Fault Recognition of Photovoltaic Modules Based on Statistical Analysis of Uav Thermography

    NASA Astrophysics Data System (ADS)

    Kim, D.; Youn, J.; Kim, C.

    2017-08-01

    As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.

  10. A brief peripheral motion contrast threshold test predicts older drivers' hazardous behaviors in simulated driving.

    PubMed

    Henderson, Steven; Woods-Fry, Heather; Collin, Charles A; Gagnon, Sylvain; Voloaca, Misha; Grant, John; Rosenthal, Ted; Allen, Wade

    2015-05-01

    Our research group has previously demonstrated that the peripheral motion contrast threshold (PMCT) test predicts older drivers' self-report accident risk, as well as simulated driving performance. However, the PMCT is too lengthy to be a part of a battery of tests to assess fitness to drive. Therefore, we have developed a new version of this test, which takes under two minutes to administer. We assessed the motion contrast thresholds of 24 younger drivers (19-32) and 25 older drivers (65-83) with both the PMCT-10min and the PMCT-2min test and investigated if thresholds were associated with measures of simulated driving performance. Younger participants had significantly lower motion contrast thresholds than older participants and there were no significant correlations between younger participants' thresholds and any measures of driving performance. The PMCT-10min and the PMCT-2min thresholds of older drivers' predicted simulated crash risk, as well as the minimum distance of approach to all hazards. This suggests that our tests of motion processing can help predict the risk of collision or near collision in older drivers. Thresholds were also correlated with the total lane deviation time, suggesting a deficiency in processing of peripheral flow and delayed detection of adjacent cars. The PMCT-2min is an improved version of a previously validated test, and it has the potential to help assess older drivers' fitness to drive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation.

    PubMed

    Zhao, Yunshan; Liu, Dan; Chen, Jie; Zhu, Liyan; Belianinov, Alex; Ovchinnikova, Olga S; Unocic, Raymond R; Burch, Matthew J; Kim, Songkil; Hao, Hanfang; Pickard, Daniel S; Li, Baowen; Thong, John T L

    2017-06-27

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed.

  12. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

    PubMed Central

    Zhao, Yunshan; Liu, Dan; Chen, Jie; Zhu, Liyan; Belianinov, Alex; Ovchinnikova, Olga S.; Unocic, Raymond R.; Burch, Matthew J.; Kim, Songkil; Hao, Hanfang; Pickard, Daniel S.; Li, Baowen; Thong, John T. L.

    2017-01-01

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed. PMID:28653663

  13. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

    DOE PAGES

    Zhao, Yunshan; Liu, Dan; Chen, Jie; ...

    2017-06-27

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. Here, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism ismore » understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Finally, we observed threshold dose beyond a crystalline-amorphous transition.« less

  14. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yunshan; Liu, Dan; Chen, Jie

    The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. Here, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism ismore » understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Finally, we observed threshold dose beyond a crystalline-amorphous transition.« less

  15. Synthesis and physicochemical properties of bis(L-asparaginato) zinc(II): A promising new semiorganic crystal with high laser damage threshold for shorter wavelength generation

    NASA Astrophysics Data System (ADS)

    Subhashini, R.; Arjunan, S.

    2018-05-01

    An exceedingly apparent nonlinear semiorganic optical crystals of bis(L-asparaginato)zinc(II) [BLAZ], was synthesized by a traditional slow evaporation solution growth technique. The cell parameters were estimated from single crystal X-ray diffraction analysis. Spectroscopic study substantiates the presence of functional groups. The UV spectrum shows the sustenance of wide transparency window and several optical constants, such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data. The fluorescence emission spectrum of the crystal pronounces red emission. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser. The output intensity of second harmonic generation was estimated using the Kurtz and Perry powder method. The hardness stability was investigated by Vickers microhardness test. The decomposition and thermal stability of the compound were scrutinized by TGA-DSC studies. Dielectric studies were carried out to anatomize the electrical properties of the crystal. SEM analysis reveals the existence of minute crystallites on the growth surface.

  16. The influence of dynamical change of optical properties on the thermomechanical response and damage threshold of noble metals under femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.

    2018-02-01

    We present a theoretical investigation of the dynamics of the dielectric constant of noble metals following heating with ultrashort pulsed laser beams and the influence of the temporal variation of the associated optical properties on the thermomechanical response of the material. The effect of the electron relaxation time on the optical properties based on the use of a critical point model is thoroughly explored for various pulse duration values (i.e., from 110 fs to 8 ps). The proposed theoretical framework correlates the dynamical change in optical parameters, relaxation processes and induced strains-stresses. Simulations are presented by choosing gold as a test material, and we demonstrate that the consideration of the aforementioned factors leads to significant thermal effect changes compared to results when static parameters are assumed. The proposed model predicts a substantially smaller damage threshold and a large increase of the stress which firstly underlines the significant role of the temporal variation of the optical properties and secondly enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

  17. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.).

    PubMed

    Degenhardt, Andreas Georg; Hofmann, Thomas

    2010-12-22

    Sequential application of solvent extraction and RP-HPLC in combination with taste dilution analyses (TDA) and comparative TDA, followed by LC-MS and 1D/2D NMR experiments, led to the discovery of 10 C(17)-C(21) oxylipins with 1,2,4-trihydroxy-, 1-acetoxy-2,4-dihydroxy-, and 1-acetoxy-2-hydroxy-4-oxo motifs, respectively, besides 1-O-stearoyl-glycerol and 1-O-linoleoyl-glycerol as bitter-tasting compounds in thermally processed avocado (Persea americana Mill.). On the basis of quantitative data, dose-over-threshold (DoT) factors, and taste re-engineering experiments, these phytochemicals, among which 1-acetoxy-2-hydroxy-4-oxo-octadeca-12-ene was found with the highest taste impact, were confirmed to be the key contributors to the bitter off-taste developed upon thermal processing of avocado. For the first time, those C(17)-C(21) oxylipins exhibiting a 1-acetoxy-2,4-dihydroxy- and a 1-acetoxy-2-hydroxy-4-oxo motif, respectively, were discovered to induce a mouthfulness (kokumi)-enhancing activity in sub-bitter threshold concentrations.

  18. An experimental investigation on thermal exposure during bone drilling.

    PubMed

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Fabricating niobium test loops for the SP-100 space reactor

    NASA Technical Reports Server (NTRS)

    Bryhan, Anthony J.; Chan, Ricky C.

    1993-01-01

    This article describes the successful fabrication, operation, and evaluation of a series of niobium-alloy (Nb-1 Zr and PWC-11) thermal convection loops designed to contain and circulate molten lithium at 1,350 K. These loops were used to establish the fabrication variables of significance for a nuclear power supply for space. Approximately 200 weldments were evaluated for their tendency to be attacked by lithium as a function of varying atmospheric contamination. No attack occurred for any weldment free of contamination, with or without heat treatment, and no welds accidentally deviated from purity. The threshold oxygen content for weldment attack was determined to be 170-200 ppm. Attack varied directly with weldment oxygen and nitrogen contents.

  20. Predicting thermal reference conditions for USA streams and rivers

    USGS Publications Warehouse

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most DMs, setting SWAs to 0 resulted in biased estimates of thermal reference condition.

  1. Testing alternative models of climate-mediated extirpations.

    PubMed

    Beever, Erik A; Ray, Chris; Mote, Philip W; Wilkening, Jennifer L

    2010-01-01

    Biotic responses to climate change will vary among taxa and across latitudes, elevational gradients, and degrees of insularity. However, due to factors such as phenotypic plasticity, ecotypic variation, and evolved tolerance to thermal stress, it remains poorly understood whether losses should be greatest in populations experiencing the greatest climatic change or living in places where the prevailing climate is closest to the edge of the species' bioclimatic envelope (e.g., at the hottest, driest sites). Research on American pikas (Ochotona princeps) in montane areas of the Great Basin during 1994-1999 suggested that 20th-century population extirpations were predicted by a combination of biogeographic, anthropogenic, and especially climatic factors. Surveys during 2005-2007 documented additional extirpations and within-site shifts of pika distributions at remaining sites. To evaluate the evidence in support of alternative hypotheses involving effects of thermal stress on pikas, we placed temperature sensors at 156 locations within pika habitats in the vicinity of 25 sites with historical records of pikas in the Basin. We related these time series of sensor data to data on ambient temperature from weather stations within the Historical Climate Network. We then used these highly correlated relationships, combined with long-term data from the same weather stations, to hindcast temperatures within pika habitats from 1945 through 2006. To explain patterns of loss, we posited three alternative classes of direct thermal stress: (1) acute cold stress (number of days below a threshold temperature); (2) acute heat stress (number of days above a threshold temperature); and (3) chronic heat stress (average summer temperature). Climate change was defined as change in our thermal metrics between two 31-yr periods: 1945-1975 and 1976-2006. We found that patterns of persistence were well predicted by metrics of climate. Our best models suggest some effects of climate change; however, recent and long-term metrics of chronic heat stress and acute cold stress, neither previously recognized as sources of stress for pikas, were some of the best predictors of pika persistence. Results illustrate that extremely rapid distributional shifts can be explained by climatic influences and have implications for conservation topics such as reintroductions and early-warning indicators.

  2. Testing alternative models of climate-mediated extirpations

    USGS Publications Warehouse

    Beever, E.A.; Chris, R.A.Y.; Mote, P.W.; Wilkening, J.L.

    2010-01-01

    Biotic responses to climate change will vary among taxa and across latitudes, elevational gradients, and degrees of insularity. However, due to factors such as phenotypic plasticity, ecotypic variation, and evolved tolerance to thermal stress, it remains poorly understood whether losses should be greatest in populations experiencing the greatest climatic change or living in places where the prevailing climate is closest to the edge of the species' bioclimatic envelope (e.g., at the hottest, driest sites). Research on American pikas (Ochotona princeps) in montane areas of the Great Basin during 1994-1999 suggested that 20th-century population extirpations were predicted by a combination of biogeographic, anthropogenic, and especially climatic factors. Surveys during 2005-2007 documented additional extirpations and within-site shifts of pika distributions at remaining sites. To evaluate the evidence in support of alternative hypotheses involving effects of thermal stress on pikas, we placed temperature sensors at 156 locations within pika habitats in the vicinity of 25 sites with historical records of pikas in the Basin. We related these time series of sensor data to data on ambient temperature from weather stations within the Historical Climate Network. We then used these highly correlated relationships, combined with long-term data from the same weather stations, to hindcast temperatures within pika habitats from 1945 through 2006. To explain patterns of loss, we posited three alternative classes of direct thermal stress: (1) acute cold stress (number of days below a threshold temperature); (2) acute heat stress (number of days above a threshold, temperature); and. (3) chronic heat stress (average summer temperature). Climate change was defined as change in our thermal metrics between two 31-y.r periods: 1945-1975 and 1976-2006. We found that patterns of persistence were well predicted by metrics of climate. Our best models suggest some effects of climate change; however, recent and long-term metrics of chronic heat stress and acute cold stress, neither previously recognized as sources of stress for pikas, were some of the best predictors of pika persistence. Results illustrate that extremely rapid distributional shifts can be explained by climatic influences and have implications for conservation topics such as reintroductions and early-warning indicators. ?? 2010 by the Ecological society of America.

  3. Corona-vacuum failure mechanism test facilities

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A nondestructive corona-vacuum test facility for testing high-voltage power system components has been developed using commercially available hardware. The facility simulates operating temperature and vacuum while monitoring coronal discharges with residual gases. Corona threshold voltages obtained from statorette tests with various gas-solid dielectric systems and comparison with calculated data support the following conclusions: (1) air gives the highest corona threshold voltage and helium the lowest, with argon and helium-xenon mixtures intermediate; (2) corona threshold voltage increases with gas pressure; (3) corona threshold voltage for an armature winding can be accurately calculated by using Paschen curves for a uniform field; and (4) Paschen curves for argon can be used to calculate the corona threshold voltage in He-Xe mixtures, for which Paschen curves are unavailable.-

  4. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.

    PubMed

    Kline, R H; Exposto, F G; O'Buckley, S C; Westlund, K N; Nackley, A G

    2015-04-02

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Effect of medical cannabis on thermal quantitative measurements of pain in patients with Parkinson's disease.

    PubMed

    Shohet, A; Khlebtovsky, A; Roizen, N; Roditi, Y; Djaldetti, R

    2017-03-01

    Cannabis can alleviate pain of various etiologies. This study assessed the effect of cannabis on motor symptoms and pain parameters in patients with Parkinson's disease (PD). Twenty patients with PD who were licensed to use cannabis underwent evaluation before and 30 min after cannabis consumption and again after long-term use. Motor function was assessed with the Unified PD Rating scale (UPDRS) by two raters, one blinded. Pain was assessed with the Pain Rating Index (PRI) and Visual Analogue Scale (VAS) of the short-form McGill Pain Questionnaire. Thermal quantitative sensory testing (QST) was performed in 18 patients. The two consecutive QST measurements were validated in 12 cannabis-naïve patients with PD. There was a significant decrease from baseline to 30 min after cannabis consumption in mean motor UPDRS score (38.1 ± 18 to 30.4 ± 15.6, p < 0.0001), total PRI (27 ± 13.5 to 9.7 ± 11, p = 0.001), and VAS score (6.4 ± 2.8 to 3.6 ± 3.1, p = 0.0005). Mean cold pain threshold decreased significantly in the more affected limb, but only after exclusion of two patients who consumed cannabis by vaporizer rather than smoking (19.5 ± 5.2 to 15.6 ± 8.7 °C, p = 0.02). After long-term (median 14 weeks) exposure, mean heat pain threshold decreased significantly in the more affected limb in all treated patients (43.6 ± 3.5 to 40.9 ± 3.3 °C, p = 0.05) and in cannabis smokers (43.7 ± 3.6 to 40.3 ± 2.5 °C, p = 0.008). Cannabis improved motor scores and pain symptoms in PD patients, together with a dissociate effect on heat and cold pain thresholds. Peripheral and central pathways are probably modulated by cannabis. Quantitative sensory test results are significantly altered following cannabis consumption in patients with PD. Cannabis probably acts on pain in PD via peripheral and central pathways. © 2016 European Pain Federation - EFIC®.

  6. Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures

    NASA Astrophysics Data System (ADS)

    Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.

    2018-07-01

    Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.

  7. Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures

    NASA Astrophysics Data System (ADS)

    Signor, L.; Kumar, P.; Tressou, B.; Nadot-Martin, C.; Miranda-Ordonez, José; Carr, J.; Joulain, K.; Milhet, X.

    2018-03-01

    Silver paste sintering is a very promising technology for chip bonding in future power electronics modules owing to its high melting temperature and the good electrical and thermal properties among other classic solder alloys. However, in its sintered form, these joints contain nanometric/submicrometric pores that affect their thermal performance. The present study gives insight into the relationship between the material thermal conductivity and the real three-dimensional porous structure using finite element modelling. It is shown that over a certain pore fraction threshold (˜ 13%), the pore morphology has a non-negligible influence on the thermal conductivity. Results are also compared to predictions obtained by analytical models available in the literature.

  8. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?

    NASA Astrophysics Data System (ADS)

    Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.

    2018-01-01

    Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.

  9. How Well Do Engineering Students Retain Core Mathematical Knowledge after a Series of High Threshold Online Mathematics Tests?

    ERIC Educational Resources Information Center

    Carr, Michael; Prendergast, Mark; Breen, Cormac; Faulkner, Fiona

    2017-01-01

    In the Dublin Institute of Technology, high threshold core skills assessments are run in mathematics for third-year engineering students. Such tests require students to reach a threshold of 90% on a multiple choice test based on a randomized question bank. The material covered by the test consists of the more important aspects of undergraduate…

  10. Quantitative sensory testing somatosensory profiles in patients with cervical radiculopathy are distinct from those in patients with nonspecific neck-arm pain.

    PubMed

    Tampin, Brigitte; Slater, Helen; Hall, Toby; Lee, Gabriel; Briffa, Noelle Kathryn

    2012-12-01

    The aim of this study was to establish the somatosensory profiles of patients with cervical radiculopathy and patients with nonspecific neck-arm pain associated with heightened nerve mechanosensitivity (NSNAP). Sensory profiles were compared to healthy control (HC) subjects and a positive control group comprising patients with fibromyalgia (FM). Quantitative sensory testing (QST) of thermal and mechanical detection and pain thresholds, pain sensitivity and responsiveness to repetitive noxious mechanical stimulation was performed in the maximal pain area, the corresponding dermatome and foot of 23 patients with painful C6 or C7 cervical radiculopathy, 8 patients with NSNAP in a C6/7 dermatomal pain distribution, 31 HC and 22 patients with FM. For both neck-arm pain groups, all QST parameters were within the 95% confidence interval of HC data. Patients with cervical radiculopathy were characterised by localised loss of function (thermal, mechanical, vibration detection P<.009) in the maximal pain area and dermatome (thermal detection, vibration detection, pressure pain sensitivity P<.04), consistent with peripheral neuronal damage. Both neck-arm pain groups demonstrated increased cold sensitivity in their maximal pain area (P<.03) and the foot (P<.009), and this was also the dominant sensory characteristic in patients with NSNAP. Both neck-arm pain groups differed from patients with FM, the latter characterised by a widespread gain of function in most nociceptive parameters (thermal, pressure, mechanical pain sensitivity P<.027). Despite commonalities in pain characteristics between the 2 neck-arm pain groups, distinct sensory profiles were demonstrated for each group. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.

    PubMed

    Züger, B J; Ott, B; Mainil-Varlet, P; Schaffner, T; Clémence, J F; Weber, H P; Frenz, M

    2001-01-01

    The surgical treatment of full-thickness cartilage defects in the knee joint remains a therapeutic challenge. Recently, new techniques for articular cartilage transplantation, such as mosaicplasty, have become available for cartilage repair. The long-term success of these techniques, however, depends not only on the chondrocyte viability but also on a lateral integration of the implant. The goal of this study was to evaluate the feasibility of cartilage welding by using albumin solder that was dye-enhanced to allow coagulation with 808-nm laser diode irradiation. Conventional histology of light microscopy was compared with a viability staining to precisely determine the extent of thermal damage after laser welding. Indocyanine green (ICG) enhanced albumin solder (25% albumin, 0.5% HA, 0.1% ICG) was used for articular cartilage welding. For coagulation, the solder was irradiated through the cartilage implant by 808-nm laser light and the tensile strength of the weld was measured. Viability staining revealed a thermal damage of typically 500 m in depth at an irradiance of approximately 10 W/cm(2) for 8 seconds, whereas conventional histologies showed only half of the extent found by the viability test. Heat-bath investigations revealed a threshold temperature of minimum 54 degrees C for thermal damage of chondrocytes. Efficient cartilage bonding was obtained by using bovine albumin solder as adhesive. Maximum tensile strength of more than 10 N/cm(2) was achieved. Viability tests revealed that the thermal damage is much greater (up to twice) than expected after light microscopic characterization. This study shows the feasibility to strongly laser weld cartilage on cartilage by use of a dye-enhanced albumin solder. Possibilities to reduce the range of damage are suggested. Copyright 2001 Wiley-Liss, Inc.

  12. Extended high-frequency thresholds in college students: effects of music player use and other recreational noise.

    PubMed

    Le Prell, Colleen G; Spankovich, Christopher; Lobariñas, Edward; Griffiths, Scott K

    2013-09-01

    Human hearing is sensitive to sounds from as low as 20 Hz to as high as 20,000 Hz in normal ears. However, clinical tests of human hearing rarely include extended high-frequency (EHF) threshold assessments, at frequencies extending beyond 8000 Hz. EHF thresholds have been suggested for use monitoring the earliest effects of noise on the inner ear, although the clinical usefulness of EHF threshold testing is not well established for this purpose. The primary objective of this study was to determine if EHF thresholds in healthy, young adult college students vary as a function of recreational noise exposure. A retrospective analysis of a laboratory database was conducted; all participants with both EHF threshold testing and noise history data were included. The potential for "preclinical" EHF deficits was assessed based on the measured thresholds, with the noise surveys used to estimate recreational noise exposure. EHF thresholds measured during participation in other ongoing studies were available from 87 participants (34 male and 53 female); all participants had hearing within normal clinical limits (≤25 HL) at conventional frequencies (0.25-8 kHz). EHF thresholds closely matched standard reference thresholds [ANSI S3.6 (1996) Annex C]. There were statistically reliable threshold differences in participants who used music players, with 3-6 dB worse thresholds at the highest test frequencies (10-16 kHz) in participants who reported long-term use of music player devices (>5 yr), or higher listening levels during music player use. It should be possible to detect small changes in high-frequency hearing for patients or participants who undergo repeated testing at periodic intervals. However, the increased population-level variability in thresholds at the highest frequencies will make it difficult to identify the presence of small but potentially important deficits in otherwise normal-hearing individuals who do not have previously established baseline data. American Academy of Audiology.

  13. The link between tissue elasticity and thermal dose in vivo

    NASA Astrophysics Data System (ADS)

    Sapin-de Brosses, Emilie; Pernot, Mathieu; Tanter, Mickaël

    2011-12-01

    The objective of this study was to investigate in vivo the relationship between stiffness and thermal dose. For this purpose, shear wave elastography (SWE)—a novel ultrasound-based technique for real-time mapping of the stiffness of biological soft tissues—is performed in temperature-controlled experiments. Experiments were conducted on nine anesthetized rats. Their right leg was put in a thermo-regulated waterbath. The right leg of each animal was heated at one particular temperature between 38 °C and 48.5 °C for 15 min to 3 h. Shear waves were generated in the muscle using the acoustic radiation force induced by a linear ultrasonic probe. The shear wave propagation was imaged in real time by the probe using an ultrafast scanner prototype (10 000 frames s-1). The local tissue stiffness was derived from the shear wave speed. Two optical fiber sensors were inserted into the muscle to measure in situ the temperature. Stiffness was found to increase strongly during the experiments. When expressed as a function of the thermal dose, the stiffness curves were found to be the same for all experiments. A thermal dose threshold was found at 202 min for an eightfold stiffness increase. Finally, the time-temperature relationship was established for different stiffness ratios. The slope of the time-temperature relationship based on stiffness measurements was found identical to the one obtained for cell death in the seminal paper on the thermal dose by Sapareto and Dewey in 1984 (Int. J. Radiat. Oncol. Biol. Phys. 10 787-800). The present results highlight the stiffness increase as a good indicator of thermal necrosis. SWE imaging can be used in vivo for necrosis threshold determination in thermal therapy.

  14. Gender role expectations of pain: relationship to experimental pain perception

    PubMed Central

    Wise, Emily A.; Price, Donald D.; Myers, Cynthia D.; Heft, Marc W.; Robinson, Michael E.

    2008-01-01

    The primary purpose of this study was to investigate the influence of an individual’s Gender Role Expectations of Pain (GREP) on experimental pain report. One hundred and forty-eight subjects (87 females and 61 males) subjects underwent thermal testing and were asked to report pain threshold, pain tolerance, VAS ratings of pain intensity and unpleasantness, and a computerized visual analogue scales (VAS) rating of pain intensity during the procedure. Subjects completed the GREP questionnaire to assess sex-related stereotypic attributions of pain sensitivity, pain endurance, and willingness to report pain. Consistent with previous research, significant sex differences emerged for measures of pain threshold, pain tolerance, and pain unpleasantness. After statistically controlling for age, GREP scores were significant predictors of threshold, tolerance, and pain unpleasantness, accounting for an additional 7, 11, and 21% of the variance, respectively. Sex remained a significant predictor of pain tolerance in hierarchical regression analyses after controlling for GREP scores. Results provide support for two competing but not mutually exclusive hypotheses related to the sex differences in experimental pain. Both psychosocial factors and first-order, biological sex differences remain as viable explanations for differences in experimental pain report between the sexes. It appears that GREP do play a part in determining an individual’s pain report and may be contributing to the sex differences in the laboratory setting. PMID:11973007

  15. A longitudinal study on the ammonia threshold in junior cyclists

    PubMed Central

    Yuan, Y; Chan, K

    2004-01-01

    Objectives: To identify the effect of a one year non-specific training programme on the ammonia threshold of a group of junior cyclists and to correlate ammonia threshold with other common physiological variables. Methods: The cyclists performed tests at three time points (T1, T2, T3) during the year. Follow up tests were conducted every six months after the original test. Ammonia threshold was obtained from a graded exercise with four minute steps. Results: The relatively non-specific one year training programme was effective in inducing an increase in peak VO2 (60.6 (5.9), 65.9 (7.4), and 64.6 (6.5) ml/min/kg at T1, T2, and T3 respectively) and endurance time (18.3 (4.5), 20.1 (5.2), and 27.0 (6.1) minutes at T1, T2, and T3 respectively), but was not effective for the sprint related variables. Ammonia threshold, together with lactate threshold and ventilatory threshold, was not significantly different at the three test times. Only endurance time correlated significantly with ammonia threshold (r  =  0.915, p  =  0.001). Conclusions: The findings suggest that a relatively non-specific one year training programme does not modify the ammonia threshold of junior cyclists. The significant correlation between ammonia threshold and endurance time further confirms that ammonia threshold is a measure of the ability to sustain exercise at submaximal intensities. PMID:15039242

  16. A principled approach to setting optimal diagnostic thresholds: where ROC and indifference curves meet.

    PubMed

    Irwin, R John; Irwin, Timothy C

    2011-06-01

    Making clinical decisions on the basis of diagnostic tests is an essential feature of medical practice and the choice of the decision threshold is therefore crucial. A test's optimal diagnostic threshold is the threshold that maximizes expected utility. It is given by the product of the prior odds of a disease and a measure of the importance of the diagnostic test's sensitivity relative to its specificity. Choosing this threshold is the same as choosing the point on the Receiver Operating Characteristic (ROC) curve whose slope equals this product. We contend that a test's likelihood ratio is the canonical decision variable and contrast diagnostic thresholds based on likelihood ratio with two popular rules of thumb for choosing a threshold. The two rules are appealing because they have clear graphical interpretations, but they yield optimal thresholds only in special cases. The optimal rule can be given similar appeal by presenting indifference curves, each of which shows a set of equally good combinations of sensitivity and specificity. The indifference curve is tangent to the ROC curve at the optimal threshold. Whereas ROC curves show what is feasible, indifference curves show what is desirable. Together they show what should be chosen. Copyright © 2010 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. Meta‐analysis of test accuracy studies using imputation for partial reporting of multiple thresholds

    PubMed Central

    Deeks, J.J.; Martin, E.C.; Riley, R.D.

    2017-01-01

    Introduction For tests reporting continuous results, primary studies usually provide test performance at multiple but often different thresholds. This creates missing data when performing a meta‐analysis at each threshold. A standard meta‐analysis (no imputation [NI]) ignores such missing data. A single imputation (SI) approach was recently proposed to recover missing threshold results. Here, we propose a new method that performs multiple imputation of the missing threshold results using discrete combinations (MIDC). Methods The new MIDC method imputes missing threshold results by randomly selecting from the set of all possible discrete combinations which lie between the results for 2 known bounding thresholds. Imputed and observed results are then synthesised at each threshold. This is repeated multiple times, and the multiple pooled results at each threshold are combined using Rubin's rules to give final estimates. We compared the NI, SI, and MIDC approaches via simulation. Results Both imputation methods outperform the NI method in simulations. There was generally little difference in the SI and MIDC methods, but the latter was noticeably better in terms of estimating the between‐study variances and generally gave better coverage, due to slightly larger standard errors of pooled estimates. Given selective reporting of thresholds, the imputation methods also reduced bias in the summary receiver operating characteristic curve. Simulations demonstrate the imputation methods rely on an equal threshold spacing assumption. A real example is presented. Conclusions The SI and, in particular, MIDC methods can be used to examine the impact of missing threshold results in meta‐analysis of test accuracy studies. PMID:29052347

  18. Thermal lensing in ocular media

    NASA Astrophysics Data System (ADS)

    Vincelette, Rebecca Lee

    2009-12-01

    This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e2 laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam-diameters delivered to the corneal plane, a behavior which was opposite of equivalent conditions simulated without thermal lensing.

  19. Thermoregulation and thermal perception in the cold and heat before and after intermittent heat adaptation

    NASA Astrophysics Data System (ADS)

    Issing, K.; Fuhr, E.

    1986-09-01

    Students wearing swim suits were exposed for 30 min to neutral room temperature (TR=28‡C). During the following 60 min they were subjected to gradual decreases or increases of room temperature reaching 12‡C or 45‡C, respectively. Static thermal stimuli were applied to the palms of the right (38‡C) and left (25‡C) hands. Hands and feet of all subjects were thermally isolated at 22‡C ambient temperature. General thermal comfort (GTC), local thermal comfort (LTC), skin blood flow (which is proportional to heat transport index λ) several body temperatures, oxygen-consumption(dot V_{O_2 } ), and sweat rate (S), were measured. After moderate intermittent heat exposures (7 times for 1h at TR=42.5‡C) the experiments started again. From GTC, LTC, or λ as functions of TR, no new knowledge about thermoregulatory or adaptive mechanisms was available. The high λ in the cold stimulated left hand, however, and the oscillatory thresholds (λOSC) for rhythmic vasomotion indicated the peripheral influence of skin temperature, as well as local, mean skin temperature (¯Ts) and core temperature. When exposed to moderate temperature decreases or increases the body seems to react only with increasing thermal resistance by vasoconstriction or an increase of sweat rate, respectively. Moderate heat adaptation is only able to raise sweat rate, but not the thresholds and gain of the S-function. We assume that functional studies of adaptive modifications in humans must be conducted at temperatures greatly beyond those used in these experiments.

  20. Role of extrinsic noise in the sensitivity of the rod pathway: rapid dark adaptation of nocturnal vision in humans.

    PubMed

    Reeves, Adam; Grayhem, Rebecca

    2016-03-01

    Rod-mediated 500 nm test spots were flashed in Maxwellian view at 5 deg eccentricity, both on steady 10.4 deg fields of intensities (I) from 0.00001 to 1.0 scotopic troland (sc td) and from 0.2 s to 1 s after extinguishing the field. On dim fields, thresholds of tiny (5') tests were proportional to √I (Rose-DeVries law), while thresholds after extinction fell within 0.6 s to the fully dark-adapted absolute threshold. Thresholds of large (1.3 deg) tests were proportional to I (Weber law) and extinction thresholds, to √I. rod thresholds are elevated by photon-driven noise from dim fields that disappears at field extinction; large spot thresholds are additionally elevated by neural light adaptation proportional to √I. At night, recovery from dimly lit fields is fast, not slow.

  1. Nano-material size dependent laser-plasma thresholds

    NASA Astrophysics Data System (ADS)

    EL Sherbini, Ashraf M.; Parigger, Christian G.

    2016-10-01

    The reduction of laser fluence for initiation of plasma was measured for zinc monoxide nanoparticles of diameters in the range of 100 to 20 nm. In a previous work by EL Sherbini and Parigger [Wavelength Dependency and Threshold Measurements for Nanoparticle-enhanced Laser-induced Breakdown Spectroscopy, Spectrochim. Acta Part B 116 (2016) 8-15], the hypothesis of threshold dependence on particle size leads to the interpretation of the experiments for varying excitation wavelengths with fixed, 30 nm nanomaterial. The experimental results presented in this work were obtained with 1064 nm Nd:YAG radiation and confirm and validate the suspected reduction due to quenching of the thermal conduction length to the respective sizes of the nanoparticles.

  2. Experimental study of the role of trap symmetry in an atom-chip interferometer above the Bose–Einstein condensation threshold

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, M.; Demur, R.; Westbrook, C. I.; Schwartz, S.

    2018-04-01

    We report the experimental study of an atom-chip interferometer using ultracold rubidium 87 atoms above the Bose–Einstein condensation threshold. The observed dependence of the contrast decay time with temperature and with the degree of symmetry of the traps during the interferometer sequence is in good agreement with theoretical predictions published in Dupont-Nivet et al (2016 New J. Phys. 18 113012). These results pave the way for precision measurements with trapped thermal atoms.

  3. Regulatory implications of a linear non-threshold (LNT) dose-based risks.

    PubMed

    Aleta, C R

    2009-01-01

    Current radiation protection regulatory limits are based on the linear non-threshold (LNT) theory using health data from atomic bombing survivors. Studies in recent years sparked debate on the validity of the theory, especially at low doses. The present LNT overestimates radiation risks since the dosimetry included only acute gammas and neutrons; the role of other bomb-caused factors, e.g. fallout, induced radioactivity, thermal radiation (UVR), electromagnetic pulse (EMP), and blast, were excluded. Studies are proposed to improve the dose-response relationship.

  4. Assessment of the Anticonvulsant Potency of Ursolic Acid in Seizure Threshold Tests in Mice.

    PubMed

    Nieoczym, Dorota; Socała, Katarzyna; Wlaź, Piotr

    2018-05-01

    Ursolic acid (UA) is a plant derived compound which is also a component of the standard human diet. It possesses a wide range of pharmacological properties, i.e., antioxidant, anti-inflammatory, antimicrobial and antitumor, which have been used in folk medicine for centuries. Moreover, influence of UA on central nervous system-related processes, i.e., pain, anxiety and depression, was proved in experimental studies. UA also revealed anticonvulsant properties in animal models of epilepsy and seizures. The aim of the present study was to investigate the influence of UA on seizure thresholds in three acute seizure models in mice, i.e., the 6 Hz-induced psychomotor seizure threshold test, the maximal electroshock threshold (MEST) test and the timed intravenous pentylenetetrazole (iv PTZ) infusion test. We also examined its effect on the muscular strength (assessed in the grip strength test) and motor coordination (estimated in the chimney test) in mice. UA at doses of 50 and 100 mg/kg significantly increased the seizure thresholds in the 6 Hz and MEST tests. The studied compound did not influence the seizure thresholds in the iv PTZ test. Moreover, UA did not affect the motor coordination and muscular strength in mice. UA displays only a weak anticonvulsant potential which is dependent on the used seizure model.

  5. The Molecular and Cellular Basis of Cold Sensation

    PubMed Central

    2012-01-01

    Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia. PMID:23421674

  6. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-10-01

    AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.

  7. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

    NASA Astrophysics Data System (ADS)

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  8. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia.

    PubMed

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  9. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts

    DOE PAGES

    Ahn, Jeong Joon; Son, Youngsoo; He, Yaqian; ...

    2016-08-17

    Temperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States. The effects of temperature on the stage-specific development of C. krombeini were determined at seven constant temperatures (16.1, 20.2, 24.1, 27.5, 30.0, 32.4 and 37.8°C). Parameters for stage-specific development, such as threshold temperatures and thermal constant, weremore » determined by using empirical models. Results of this study showed that C. krombeini eggs developed successfully to adult at all temperatures tested except 37.8°C. The nonlinear and linear empirical models were applied to describe quantitatively the relationship between temperature and development of each C. krombeini stage. The nonlinear Lactin model estimated optimal temperatures as 31.4, 32.9, 32.6 and 32.5°C for egg, larva, nymph, and egg to adult, respectively. In the linear model, the lower threshold temperatures were estimated to be 9.9, 14.7, 13.0 and 12.4°C for egg, larva, nymph, and egg to adult, respectively. The thermal constant for each stage completion were 61.5, 28.1, 64.8 and 171.1 degree days for egg, larva, nymph, and egg to adult, respectively. Under the future climate scenarios, the number of generations (i.e., voltinism) would increase more likely by 1.5 to 2.0 times by the year of 2100 according to simulation. Lastly, the findings herein firstly provided comprehensive data on thermal development of C. krombeini and implications for the management of C. krombeini populations under global warming were discussed.« less

  10. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jeong Joon; Son, Youngsoo; He, Yaqian

    Temperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States. The effects of temperature on the stage-specific development of C. krombeini were determined at seven constant temperatures (16.1, 20.2, 24.1, 27.5, 30.0, 32.4 and 37.8°C). Parameters for stage-specific development, such as threshold temperatures and thermal constant, weremore » determined by using empirical models. Results of this study showed that C. krombeini eggs developed successfully to adult at all temperatures tested except 37.8°C. The nonlinear and linear empirical models were applied to describe quantitatively the relationship between temperature and development of each C. krombeini stage. The nonlinear Lactin model estimated optimal temperatures as 31.4, 32.9, 32.6 and 32.5°C for egg, larva, nymph, and egg to adult, respectively. In the linear model, the lower threshold temperatures were estimated to be 9.9, 14.7, 13.0 and 12.4°C for egg, larva, nymph, and egg to adult, respectively. The thermal constant for each stage completion were 61.5, 28.1, 64.8 and 171.1 degree days for egg, larva, nymph, and egg to adult, respectively. Under the future climate scenarios, the number of generations (i.e., voltinism) would increase more likely by 1.5 to 2.0 times by the year of 2100 according to simulation. Lastly, the findings herein firstly provided comprehensive data on thermal development of C. krombeini and implications for the management of C. krombeini populations under global warming were discussed.« less

  11. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts

    PubMed Central

    Ahn, Jeong Joon; Son, Youngsoo; He, Yaqian; Lee, Eungul; Park, Yong-Lak

    2016-01-01

    Temperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States. The effects of temperature on the stage-specific development of C. krombeini were determined at seven constant temperatures (16.1, 20.2, 24.1, 27.5, 30.0, 32.4 and 37.8°C). Parameters for stage-specific development, such as threshold temperatures and thermal constant, were determined by using empirical models. Results of this study showed that C. krombeini eggs developed successfully to adult at all temperatures tested except 37.8°C. The nonlinear and linear empirical models were applied to describe quantitatively the relationship between temperature and development of each C. krombeini stage. The nonlinear Lactin model estimated optimal temperatures as 31.4, 32.9, 32.6 and 32.5°C for egg, larva, nymph, and egg to adult, respectively. In the linear model, the lower threshold temperatures were estimated to be 9.9, 14.7, 13.0 and 12.4°C for egg, larva, nymph, and egg to adult, respectively. The thermal constant for each stage completion were 61.5, 28.1, 64.8 and 171.1 degree days for egg, larva, nymph, and egg to adult, respectively. Under the future climate scenarios, the number of generations (i.e., voltinism) would increase more likely by 1.5 to 2.0 times by the year of 2100 according to simulation. The findings herein firstly provided comprehensive data on thermal development of C. krombeini and implications for the management of C. krombeini populations under global warming were discussed. *Scientific Article No. 3278 of the West Virginia Agricultural and Forestry Experiment Station, Morgantown, West Virginia PMID:27532151

  12. Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons.

    PubMed

    Weissman-Fogel, Irit; Sprecher, Elliot; Granovsky, Yelena; Yarnitsky, David

    2003-08-01

    Recent clinical studies showed that acute migraine attacks are accompanied by increased periorbital and bodily skin sensitivity to touch, heat and cold. Parallel pre-clinical studies showed that the underlying mechanism is sensitization of primary nociceptors and central trigeminovascular neurons. The present study investigates the sensory state of neuronal pathways that mediate skin pain sensation in migraine patients in between attacks. The assessments of sensory perception included (a) mechanical and thermal pain thresholds of the periorbital area, electrical pain threshold of forearm skin, (b) pain scores to phasic supra-threshold stimuli in the same modalities and areas as above, and (c) temporal summation of pain induced by applying noxious tonic heat pain and brief trains of noxious mechanical and electrical pulses to the above skin areas. Thirty-four pain-free migraine patients and 28 age- and gender-matched controls were studied. Patients did not differ from controls in their pain thresholds for heat (44+/-2.6 vs. 44.6+/-1.9 degrees C), and electrical (4.8+/-1.6 vs. 4.3+/-1.6 mA) stimulation, and in their pain scores for supra-threshold phasic stimuli for all modalities. They did, however, differ in their pain threshold for mechanical stimulation, just by one von Frey filament (P=0.01) and in their pain scores of the temporal summation tests. Increased summation of pain was found in migraineurs for repeated mechanical stimuli (delta visual analog scale (VAS) +2.32+/-0.73 in patients vs. +0.16+/-0.83 in controls, P=0.05) and repeated electrical stimuli (delta VAS +3.83+/-1.91 vs -3.79+/-2.31, P=0.01). Increased summation corresponded with more severe clinical parameters of migraine and tended to depend on interval since last migraine attack. The absence of clinically or overt laboratory expressed allodynia suggests that pain pathways are not sensitized in the pain-free migraine patients. Nevertheless, the increased temporal summation, and the slight decrease in mechanical pain thresholds, suggest that central nociceptive neurons do express activation-dependent plasticity. These findings may point to an important pathophysiological change in membrane properties of nociceptive neurons of migraine patients; a change that may hold a key to more effective prophylactic treatment.

  13. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1 receptor activation.

    PubMed

    Occhieppo, Victoria Belén; Marchese, Natalia Andrea; Rodríguez, Iara Diamela; Basmadjian, Osvaldo Martin; Baiardi, Gustavo; Bregonzio, Claudia

    2017-06-01

    The use of psychostimulants, such as amphetamine (Amph), is associated with inflammatory processes, involving glia and vasculature alterations. Brain Angiotensin II (Ang II), through AT 1 -receptors (AT 1 -R), modulates neurotransmission and plays a crucial role in inflammatory responses in brain vasculature and glia. Our aim for the present work was to evaluate the role of AT 1 -R in long-term alterations induced by repeated exposure to Amph. Astrocyte reactivity, neuronal survival and brain microvascular network were analysed at the somatosensory cortex. Thermal nociception was evaluated as a physiological outcome of this brain area. Male Wistar rats (250-320 g) were administered with AT 1 -R antagonist Candesartan/vehicle (3 mg/kg p.o., days 1-5) and Amph/saline (2.5 mg/kg i.p., days 6-10). The four experimental groups were: Veh-Sal, CV-Sal, Veh-Amph, CV-Amph. On day 17, the animals were sacrificed and their brains were processed for Nissl staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) and von Willebrand factor. In another group of animals, thermal nociception was evaluated using hot plate test, in the four experimental groups, on day 17. Data were analysed with two-way anova followed by Bonferroni test. Our results indicate that Amph exposure induces an increase in: neuronal apoptosis, astrocyte reactivity and microvascular network, evaluated as an augmented occupied area by vessels, branching points and their tortuosity. Moreover, Amph exposure decreased the thermal nociception threshold. Pretreatment with the AT 1 -R blocker prevented the described alterations induced by this psychostimulant. The decreased thermal nociception and the structural changes in somatosensory cortex could be considered as extended neuroadaptative responses to Amph, involving AT 1 -R activation. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. The Delineation of Coral Bleaching Thresholds and Future Reef Health, Little Cayman Cayman Islands

    NASA Astrophysics Data System (ADS)

    Manfrino, C.; Van Hooidonk, R. J.; Manzello, D.; Hendee, J.

    2011-12-01

    The global rise in sea temperature through anthropogenic climate change is affecting coral reef ecosystems through a phenomenon known as coral bleaching; a common reaction to thermally induced physiological stress in reef-building corals that often leads to coral mortality. We describe aspects of the most prevalent episode of coral bleaching ever recorded at Little Cayman, Cayman Islands, during the fall of 2009. Scleractinian coral species exhibiting susceptibility to thermal stress and bleaching in Little Cayman were, in order, Siderastrea siderea, Montastraea annularis, and Montastraea faveolata, while Diplora strigosa and Agaricia spp. were less so, yet still showed considerable bleaching prevalence and severity. In contrast, the least susceptible were Porites porites, Porites astreoides, and Montastraea cavernosa. These observations and other reported observations of coral bleaching, together with 29 years (1982 - 2010) of satellite-derived sea surface temperatures, were used in a Degree Heating Weeks (DHW) and Peirce Skill Score (PSS) analysis to calculate a bleaching threshold above which bleaching was expected to occur. A threshold of 4.2 DHW had the highest skill, with a PSS of 0.70. This threshold and susceptibility ranking are used in combination with SST data from global, coupled ocean-atmosphere general circulation models (GCM) from the fourth IPCC assessment to forecast future reef health on Little Cayman. While these GCMs possess skill in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. These model weaknesses likely reduce the skill of coral bleaching predictions. To overcome this, a multi-model ensemble of GCMs are corrected for their mean, annual cycle and ENSO variability prior to calculating future thermal stress. Preliminary results show that from 2045 on Little Cayman is likely to see more than two massive bleaching episodes per decade.

  15. Structural and functional differences in the cingulate cortex relate to disease severity in anorexia nervosa

    PubMed Central

    Bär, Karl-Jürgen; de la Cruz, Feliberto; Berger, Sandy; Schultz, Carl Christoph; Wagner, Gerd

    2015-01-01

    Background The dysfunction of specific brain areas might account for the distortion of body image in patients with anorexia nervosa. The present study was designed to reveal brain regions that are abnormal in structure and function in patients with this disorder. We hypothesized, based on brain areas of altered activity in patients with anorexia nervosa and regions involved in pain processing, an interrelation of structural aberrations in the frontoparietal–cingulate network and aberrant functional activation during thermal pain processing in patients with the disorder. Methods We determined pain thresholds outside the MRI scanner in patients with anorexia nervosa and matched healthy controls. Thereafter, thermal pain stimuli were applied during fMRI imaging. Structural analyses with high-resolution structural T1-weighted volumes were performed using voxel-based morphometry and a surface-based approach. Results Twenty-six patients and 26 controls participated in our study, and owing to technical difficulties, 15 participants in each group were included in our fMRI analysis. Structural analyses revealed significantly decreased grey matter volume and cortical thickness in the frontoparietal–cingulate network in patients with anorexia nervosa. We detected an increased blood oxygen level–dependent signal in patients during the painful 45°C condition in the midcingulate and posterior cingulate cortex, which positively correlated with increased pain thresholds. Decreased grey matter and cortical thickness correlated negatively with pain thresholds, symptom severity and illness duration, but not with body mass index. Limitations The lack of a specific quantification of body image distortion is a limitation of our study. Conclusion This study provides further evidence for confined structural and functional brain abnormalities in patients with anorexia nervosa in brain regions that are involved in perception and integration of bodily stimuli. The association of structural and functional deviations with thermal thresholds as well as with clinical characteristics might indicate a common neuronal origin. PMID:25825813

  16. Serotonin-1A Receptor Polymorphism (rs6295) Associated with Thermal Pain Perception

    PubMed Central

    Lindstedt, Fredrik; Karshikoff, Bianka; Schalling, Martin; Olgart Höglund, Caroline; Ingvar, Martin; Lekander, Mats; Kosek, Eva

    2012-01-01

    Background Serotonin (5-HT) is highly involved in pain regulation and serotonin-1A (5-HT1A) receptors are important in determining central 5-HT tone. Accordingly, variation in the 5-HT1A receptor gene (HTR1A) may contribute to inter-individual differences in human pain sensitivity. The minor G-allele of the HTR1A single nucleotide polymorphism (SNP) rs6295 attenuates firing of serotonergic neurons and reduces postsynaptic expression of the receptor. Experiments in rodents suggest that 5-HT1A-agonism modulates pain in opposite directions at mild compared to high noxious intensities. Based upon this and several other similar observations, we hypothesized that G-carriers would exhibit a relative hypoalgesia at mild thermal stimuli but tend towards hyperalgesia at higher noxious intensities. Methods Fourty-nine healthy individuals were selectively genotyped for rs6295. Heat- and cold-pain thresholds were assessed along with VAS-ratings of a range of suprathreshold noxious heat intensities (45°C–49°C). Nociceptive-flexion reflex (NFR) thresholds were also assessed. Results Volunteers did not deviate significantly from Hardy-Weinberg equilibrium. G-carriers were less sensitive to threshold-level thermal pain. This relative hypoalgesia was abolished at suprathreshold noxious intensities where G-carriers instead increased their ratings of heat-pain significantly more than C-homozygotes. No differences with regard to NFR-thresholds emerged. Conclusion/Significance To the best of our knowledge this is the first study of human pain perception on the basis of variation in HTR1A. The results illustrate the importance of including a range of stimulus intensities in assessments of pain sensitivity. In speculation, we propose that an attenuated serotonergic tone may be related to a ‘hypo- to hyperalgesic’ response-pattern. The involved mechanisms could be of clinical interest as variation in pain regulation is known to influence the risk of developing pain pathologies. Further investigations are therefore warranted. PMID:22952650

  17. Modelling the Future Hydroclimatology of the Lower Fraser River and its Impacts on the Spawning Migration Survival of Sockeye Salmon

    NASA Technical Reports Server (NTRS)

    Hague, M. J.; Ferrari, M. R.; Miller, J. R.; Patterson, D. A.; Russell, G. L.; Farrell, A.P.; Hinch, S. G.

    2010-01-01

    Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 C increase in average summer water temperature over 100 years (1981-2000 to 2081-2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, => 90% of salmon encountered temperatures exceeding population specific thermal optima for maximum aerobic scope; T(sub opt)) = 16.3 C for Gates Creek and T(sub sopt)=14.5 C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations =>50% of Weaver Creek fish exceeded temperature thresholds associated with 0 - 60% of maximum aerobic scope). Potential for adaptation via directional selection on run-timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15 - 31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0 - 17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population-specific differences in behaviour and physiological constraints when forecasting impacts of climate change on migratory survival of aquatic species.

  18. Thermal Efficiency: A Possible Determinant of Height Growth Potential in Young Loblolly Pines

    Treesearch

    William D. Boyer

    1976-01-01

    Height growth of 10 loblolly pines (Pinus taeda L.) during one growing season ranged from 35.7 to 126.9 cm. Ninety-four percent of these tree-to-tree differences in height growth were accounted for by two thermal characteristics of each tree: (1) threshold temperature for growth and (2) growth rate per unit of heat above 40°F (4.4°C). These...

  19. Do Optimal Prognostic Thresholds in Continuous Physiological Variables Really Exist? Analysis of Origin of Apparent Thresholds, with Systematic Review for Peak Oxygen Consumption, Ejection Fraction and BNP

    PubMed Central

    Leong, Tora; Rehman, Michaela B.; Pastormerlo, Luigi Emilio; Harrell, Frank E.; Coats, Andrew J. S.; Francis, Darrel P.

    2014-01-01

    Background Clinicians are sometimes advised to make decisions using thresholds in measured variables, derived from prognostic studies. Objectives We studied why there are conflicting apparently-optimal prognostic thresholds, for example in exercise peak oxygen uptake (pVO2), ejection fraction (EF), and Brain Natriuretic Peptide (BNP) in heart failure (HF). Data Sources and Eligibility Criteria Studies testing pVO2, EF or BNP prognostic thresholds in heart failure, published between 1990 and 2010, listed on Pubmed. Methods First, we examined studies testing pVO2, EF or BNP prognostic thresholds. Second, we created repeated simulations of 1500 patients to identify whether an apparently-optimal prognostic threshold indicates step change in risk. Results 33 studies (8946 patients) tested a pVO2 threshold. 18 found it prognostically significant: the actual reported threshold ranged widely (10–18 ml/kg/min) but was overwhelmingly controlled by the individual study population's mean pVO2 (r = 0.86, p<0.00001). In contrast, the 15 negative publications were testing thresholds 199% further from their means (p = 0.0001). Likewise, of 35 EF studies (10220 patients), the thresholds in the 22 positive reports were strongly determined by study means (r = 0.90, p<0.0001). Similarly, in the 19 positives of 20 BNP studies (9725 patients): r = 0.86 (p<0.0001). Second, survival simulations always discovered a “most significant” threshold, even when there was definitely no step change in mortality. With linear increase in risk, the apparently-optimal threshold was always near the sample mean (r = 0.99, p<0.001). Limitations This study cannot report the best threshold for any of these variables; instead it explains how common clinical research procedures routinely produce false thresholds. Key Findings First, shifting (and/or disappearance) of an apparently-optimal prognostic threshold is strongly determined by studies' average pVO2, EF or BNP. Second, apparently-optimal thresholds always appear, even with no step in prognosis. Conclusions Emphatic therapeutic guidance based on thresholds from observational studies may be ill-founded. We should not assume that optimal thresholds, or any thresholds, exist. PMID:24475020

  20. Thermal effects of the Er:YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray.

    PubMed

    Attrill, D C; Davies, R M; King, T A; Dickinson, M R; Blinkhorn, A S

    2004-01-01

    To quantify the temperature increments in a simulated dental pulp following irradiation with an Er:YAG laser, and to compare those increments when the laser is applied with and without water spray. Two cavities were prepared on either the buccal or lingual aspect of sound extracted teeth using the laser. One cavity was prepared with water spray, the other without and the order of preparation randomised. Identical preparation parameters were used for both cavities. Temperature increments were measured in the pulp chamber using a calibrated thermocouple and a novel pulp simulant. Maximum increments were 4.0 degrees C (water) and 24.7 degrees C (no water). Water was shown to be highly significant in reducing the overall temperature increments in all cases (p<0.001; paired t-test). None of the samples prepared up to a maximum of 135 J cumulative energy prepared with water spray exceeded that threshold at which pulpal damage can be considered to occur. Only 25% of those prepared without water spray remained below this threshold. Extrapolation of the figures suggests probably tolerable limits of continuous laser irradiation with water in excess to 160 J. With the incorporation of small breaks in the continuity of laser irradiation that occur in the in vivo situation, the cumulative energy dose tolerated by the pulp should far exceed these figures. The Er:YAG laser must be used in conjunction with water during cavity preparation. As such it should be considered as an effective tool for clinical use based on predicted pulpal responses to thermal stimuli.

  1. A randomized trial of the effect of automated ventricular capture on device longevity and threshold measurement in pacemaker patients.

    PubMed

    Koplan, Bruce A; Gilligan, David M; Nguyen, Luc S; Lau, Theodore K; Thackeray, Lisa M; Berg, Kellie Chase

    2008-11-01

    An automatic capture (AC) algorithm adjusts ventricular pacing output to capture the ventricle while optimizing output to 0.5 V above threshold. AC maintains this output and confirms capture on a beat-to-beat basis in bipolar and unipolar pacing and sensing. To assess the AC algorithm and its impact on device longevity. Patients implanted with a pacemaker were randomized 1:1 to have the AC feature on or off for 12 months. Two threshold tests were conducted at each visit- automatic threshold and manual threshold. Average ventricular voltage output and projected device longevity were compared between AC on and off using nonparametric tests. Nine hundred ten patients were enrolled and underwent device implantation. Average ventricular voltage output was 1.6 V for the AC on arm (n = 444) and 3.1 V for the AC off arm (n = 446) (P < 0.001). Projected device longevity was 10.3 years for AC on and 8.9 years for AC off (P < 0.0001), or a 16% increase in longevity for AC on. The proportion of patients in whom there was a difference between automatic threshold and manual threshold of

  2. Graded assessment and classification of impaired temperature sensibility in patients with diabetic polyneuropathy.

    PubMed Central

    Hansson, P; Lindblom, U; Lindström, P

    1991-01-01

    Thermal sensibility was quantitatively assessed in the feet of 46 diabetic patients. In subjects with sensibility deficits the perception threshold for warmth or cold, or of heat pain, was either increased or lost. Four stages of impaired thermal sensibility were defined, and a classification of dysfunction is proposed which could be useful in routine clinical examination of patients with diabetic polyneuropathy. The classification of impaired thermal sensibility correlated significantly with the results of a bedside screening examination aimed at describing the severity of the polyneuropathy in terms of its regional extent. PMID:1880516

  3. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  4. An efficient method for facial component detection in thermal images

    NASA Astrophysics Data System (ADS)

    Paul, Michael; Blanik, Nikolai; Blazek, Vladimir; Leonhardt, Steffen

    2015-04-01

    A method to detect certain regions in thermal images of human faces is presented. In this approach, the following steps are necessary to locate the periorbital and the nose regions: First, the face is segmented from the background by thresholding and morphological filtering. Subsequently, a search region within the face, around its center of mass, is evaluated. Automatically computed temperature thresholds are used per subject and image or image sequence to generate binary images, in which the periorbital regions are located by integral projections. Then, the located positions are used to approximate the nose position. It is possible to track features in the located regions. Therefore, these regions are interesting for different applications like human-machine interaction, biometrics and biomedical imaging. The method is easy to implement and does not rely on any training images or templates. Furthermore, the approach saves processing resources due to simple computations and restricted search regions.

  5. Initial-state-independent equilibration at the breakdown of the eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Khodja, Abdellah; Schmidtke, Daniel; Gemmer, Jochen

    2016-04-01

    This work aims at understanding the interplay between the eigenstate thermalization hypothesis (ETH), initial state independent equilibration, and quantum chaos in systems that do not have a direct classical counterpart. It is based on numerical investigations of asymmetric Heisenberg spin ladders with varied interaction strengths between the legs, i.e., along the rungs. The relaxation of the energy difference between the legs is investigated. Two different parameters, both intended to quantify the degree of accordance with the ETH, are computed. Both indicate violation of the ETH at large interaction strengths but at different thresholds. Indeed, the energy difference is found not to relax independently of its initial value above some critical interaction strength, which coincides with one of the thresholds. At the same point the level statistics shift from Poisson-type to Wigner-type. Hence, the system may be considered to become integrable again in the strong interaction limit.

  6. Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.

    PubMed

    Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L

    2015-12-09

    We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.

  7. Multiplicities and thermal runaway of current leads for superconducting magnets

    NASA Astrophysics Data System (ADS)

    Krikkis, Rizos N.

    2017-04-01

    The multiple solutions of conduction and vapor cooled copper leads modeling current delivery to a superconducting magnet have been numerically calculated. Both ideal convection and convection with a finite heat transfer coefficient for an imposed coolant mass flow rate have been considered. Because of the nonlinearities introduced by the temperature dependent material properties, two solutions exist, one stable and one unstable regardless of the cooling method. The limit points separating the stable form the unstable steady states form the blow-up threshold beyond which, any further increase in the operating current results in a thermal runway. An interesting finding is that the multiplicity persists even when the cold end temperature is raised above the liquid nitrogen temperature. The effect of various parameters such as the residual resistivity ratio, the overcurrent and the variable conductor cross section on the bifurcation structure and their stabilization effect on the blow-up threshold is also evaluated.

  8. Energy spectrum and thermal properties of a terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Klochkov, A. N.

    The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of themore » laser ridge stripe with an n{sup +}-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.« less

  9. Heart rate variability and pain: associations of two interrelated homeostatic processes.

    PubMed

    Appelhans, Bradley M; Luecken, Linda J

    2008-02-01

    Between-person variability in pain sensitivity remains poorly understood. Given a conceptualization of pain as a homeostatic emotion, we hypothesized inverse associations between measures of resting heart rate variability (HRV), an index of autonomic regulation of heart rate that has been linked to emotionality, and sensitivity to subsequently administered thermal pain. Resting electrocardiography was collected, and frequency-domain measures of HRV were derived through spectral analysis. Fifty-nine right-handed participants provided ratings of pain intensity and unpleasantness following exposure to 4 degrees C thermal pain stimulation, and indicated their thresholds for barely noticeable and moderate pain during three exposures to decreasing temperature. Greater low-frequency HRV was associated with lower ratings of 4 degrees C pain unpleasantness and higher thresholds for barely noticeable and moderate pain. High-frequency HRV was unrelated to measures of pain sensitivity. Findings suggest pain sensitivity is influenced by characteristics of a central homeostatic system also involved in emotion.

  10. Thermal annealing of lattice-matched InGaAs/InAlAs Quantum-Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Mathonnière, Sylvain; Semtsiv, M. P.; Ted Masselink, W.

    2017-11-01

    We describe the evolution of optical power, threshold current, and emission wavelength of a lattice-matched InGaAs/InAlAs Quantum-Cascade Laser (QCL) emitting at 13 μm grown by gas-source molecular-beam epitaxy under thermal annealing. Pieces from the same 2-in wafer were annealed at 600 °C, 650 °C, or 700 °C for 1 h; one control piece remained unannealed. No change in threshold current and emission wavelength was observed. The slope efficiency and maximum emission power increase for the 600 °C anneal, but higher annealing temperatures resulted in degraded performance. This result stands in contrast with the observation that strain-compensated structures cannot withstand annealing temperature of 600 °C. Useful information for post-growth processing steps and the role of interface roughness in QCL performance are obtained.

  11. Equivalence and test-retest reproducibility of conventional and extended-high-frequency audiometric thresholds obtained using pure-tone and narrow-band-noise stimuli.

    PubMed

    John, Andrew B; Kreisman, Brian M

    2017-09-01

    Extended high-frequency (EHF) audiometry is useful for evaluating ototoxic exposures and may relate to speech recognition, localisation and hearing aid benefit. There is a need to determine whether common clinical practice for EHF audiometry using tone and noise stimuli is reliable. We evaluated equivalence and compared test-retest (TRT) reproducibility for audiometric thresholds obtained using pure tones and narrowband noise (NBN) from 0.25 to 16 kHz. Thresholds and test-retest reproducibility for stimuli in the conventional (0.25-6 kHz) and EHF (8-16 kHz) frequency ranges were compared in a repeated-measures design. A total of 70 ears of adults with normal hearing. Thresholds obtained using NBN were significantly lower than thresholds obtained using pure tones from 0.5 to 16 kHz, but not 0.25 kHz. Good TRT reproducibility (within 2 dB) was observed for both stimuli at all frequencies. Responses at the lower limit of the presentation range for NBN centred at 14 and 16 kHz suggest unreliability for NBN as a threshold stimulus at these frequencies. Thresholds in the conventional and EHF ranges showed good test-retest reproducibility, but differed between stimulus types. Care should be taken when comparing pure-tone thresholds with NBN thresholds especially at these frequencies.

  12. To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers.

    PubMed

    Huber, Veronika; Wagner, Carola; Gerten, Dieter; Adrian, Rita

    2012-05-01

    Past heat waves are considered harbingers of future climate change. In this study, we have evaluated the effects of two recent Central European summer heat waves (2003 and 2006) on cyanobacterial blooms in a eutrophic, shallow lake. While a bloom of cyanobacteria developed in 2006, consistent with our expectations, cyanobacterial biomass surprisingly remained at a record-low during the entire summer of 2003. Critical thresholds of abiotic drivers extracted from the long-term (1993-2007) data set of the studied lake using classification tree analysis (CTA) proved suitable to explain these observations. We found that cyanobacterial blooms were especially favoured in 2006 because thermal stratification was critically intense (Schmidt stability >44 g cm cm(-2)) and long-lasting (>3 weeks). Our results also suggest that some cyanobacterial species (Anabaena sp.) benefitted directly from the stable water column, whereas other species (Planktothrix sp.) took advantage of stratification-induced internal nutrient loading. In 2003, conditions were less favourable for cyanobacteria due to a spell of lower temperatures and stronger winds in mid-summer; as a result, the identified thresholds of thermal stratification were hardly ever reached. Overall, our study shows that extracting critical thresholds of environmental drivers from long-term records is a promising avenue for predicting ecosystem responses to future climate warming. Specifically, our results emphasize that not average temperature increase but changes in short-term meteorological variability will determine whether cyanobacteria will bloom more often in a warmer world.

  13. Evaluation of runaway-electron effects on plasma-facing components for NET

    NASA Astrophysics Data System (ADS)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  14. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser

    NASA Astrophysics Data System (ADS)

    Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.

    2015-12-01

    The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.

  15. R-on-1 automatic mapping: A new tool for laser damage testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Garrec, P.; Dijon, J.

    1996-12-31

    Laser damage threshold measurement is statistical in nature. For a commercial qualification or for a user, the threshold determined by the weakest point is a satisfactory characterization. When a new coating is designed, threshold mapping is very useful. It enables the technology to be improved and followed more accurately. Different statistical parameters such as the minimum, maximum, average, and standard deviation of the damage threshold as well as spatial parameters such as the threshold uniformity of the coating can be determined. Therefore, in order to achieve a mapping, all the tested sites should give data. This is the major interestmore » of the R-on-1 test in spite of the fact that the laser damage threshold obtained by this method may be different from the 1-on-1 test (smaller or greater). Moreover, on the damage laser test facility, the beam size is smaller (diameters of a few hundred micrometers) than the characteristic sizes of the components in use (diameters of several centimeters up to one meter). Hence, a laser damage threshold mapping appears very interesting, especially for applications linked to large optical components like the Megajoule project or the National Ignition Facility (N.I.F). On the test bench used, damage detection with a Nomarski microscope and scattered light measurement are almost equivalent. Therefore, it becomes possible to automatically detect on line the first defects induced by YAG irradiation. Scattered light mappings and laser damage threshold mappings can therefore be achieved using a X-Y automatic stage (where the test sample is located). The major difficulties due to the automatic capabilities are shown. These characterizations are illustrated at 355 nm. The numerous experiments performed show different kinds of scattering curves, which are discussed in relation with the damage mechanisms.« less

  16. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  17. An investigation of mechanical nociceptive thresholds in dogs with hind limb joint pain compared to healthy control dogs.

    PubMed

    Harris, L K; Whay, H R; Murrell, J C

    2018-04-01

    This study investigated the effects of osteoarthritis (OA) on somatosensory processing in dogs using mechanical threshold testing. A pressure algometer was used to measure mechanical thresholds in 27 dogs with presumed hind limb osteoarthritis and 28 healthy dogs. Mechanical thresholds were measured at the stifles, radii and sternum, and were correlated with scores from an owner questionnaire and a clinical checklist, a scoring system that quantified clinical signs of osteoarthritis. The effects of age and bodyweight on mechanical thresholds were also investigated. Multiple regression models indicated that, when bodyweight was taken into account, dogs with presumed osteoarthritis had lower mechanical thresholds at the stifles than control dogs, but not at other sites. Non-parametric correlations showed that clinical checklist scores and questionnaire scores were negatively correlated with mechanical thresholds at the stifles. The results suggest that mechanical threshold testing using a pressure algometer can detect primary, and possibly secondary, hyperalgesia in dogs with presumed osteoarthritis. This suggests that the mechanical threshold testing protocol used in this study might facilitate assessment of somatosensory changes associated with disease progression or response to treatment. Copyright © 2017. Published by Elsevier Ltd.

  18. Optical feedback-induced light modulation for fiber-based laser ablation.

    PubMed

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  19. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system.

    PubMed

    Talukder, S; Thomson, P C; Kerrisk, K L; Clark, C E F; Celi, P

    2015-03-01

    This study was conducted to test the hypothesis that the specificity of infrared thermography (IRT) in detecting cows about to ovulate could be improved using different body parts that are less likely to be contaminated by fecal matter. In addition, the combined activity and rumination data captured by accelerometers were evaluated to provide a more accurate indication of ovulation than the activity and rumination data alone. Thermal images of 30 cows were captured for different body areas (eye, ear, muzzle, and vulva) twice daily after AM and PM milking sessions during the entire experimental period. Milk progesterone data and insemination records were used to determine the date of ovulation. Cows were fitted with SCR heat and rumination long-distance tags (SCR HR LD) for 1 month. Activity- and rumination-based estrus alerts were initially identified using default threshold values set by the manufacturer; however, a range of thresholds was also created and tested for both activity and rumination to determine the potential for higher levels of accuracy of ovulation detection. Visual assessment of mounting indicators resulted in 75% sensitivity (Se), 100% specificity (Sp), and 100% positive predictive value (PPV). Overall, IRT showed poor performance for detecting cows about to ovulate. Vulval temperature resulted in the greatest (80%) Sp but the poorest (21%) Se compared with the IRT temperatures of other body areas. The SCR HR LD tags default threshold value resulted in 78% Se, 57% Sp, and 70% PPV. Lowering the activity threshold from the default value improved the sensitivity but created a large number of false positives, which resulted in a decrease in specificity. Lowering the activity threshold to 20 resulted in a detection performance of 80% Se, 94% Sp, and 67% PPV, whereas the rumination levels achieved 35% Se, 69% Sp, and 14% PPV. The area under the curve for the activity level, rumination level, and the combined measures of activity and rumination levels were 0.82, 0.54, and 0.75, respectively. Alerts generated by SCR HR LD tags based on a lower activity threshold level had high sensitivity and may be able to detect a high proportion of cows in ovulatory periods in pasture-based system; however, the specificities and positive predictive value were lower than the visual assessment of mounting indicators. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Population Dynamics and Temperature-Dependent Development of Chrysomphalus aonidum (L.) to Aid Sustainable Pest Management Decisions.

    PubMed

    Campolo, O; Malacrinò, A; Laudani, F; Maione, V; Zappalà, L; Palmeri, V

    2014-10-01

    The increasing worldwide trades progressively led to decreased impact of natural barriers on wild species movement. The exotic scale Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae), recently reported on citrus in southern Italy, may represent a new threat to Mediterranean citriculture. We studied C. aonidum population dynamics under field conditions and documented its development under various temperatures. To enable describing temperature-dependent development through the use of linear and non-linear models, low temperature thresholds and thermal constants for each developmental stage were estimated. Chrysomphalus aonidum was able to perform four generations on green parts (leaves, sprouts) of citrus trees and three on fruits. In addition, an overall higher population density was observed on samples collected in the southern part of the tree canopy. Temperature had a significant effect on the developmental rate; female needed 625 degree days (DD) to complete its development, while male needed 833 DD. The low threshold temperatures, together with data from population dynamics, demonstrated that C. aonidum is able to overwinter as second instar and as an adult. The results obtained, validated by those collected in the field, revealed few differences between predicted and observed dates of first occurrence of each C. aonidum instar in citrus orchards. Data on C. aonidum phenology and the definition of the thermal parameters (lower and upper threshold temperatures, optimum temperature, and the thermal constant) by non-linear models could allow the estimation of the occurrence in the field of each life stage and would be helpful in developing effective integrated control strategies.

  1. On Possible Arc Inception on Low Voltage Solar Array

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2015-01-01

    Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly that electrostatic discharges caused more than 8 of all registered failures and anomalies, and comprised the most costly losses (25) for operating companies and agencies. The electrostatic discharges on spacecraft surfaces are the results of differential charging above some critical (threshold) voltages. The mechanisms of differential charging are well known, and various methods have been developed to prevent a generation of significant electric fields in areas of triple junctions. For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer over coverglass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all materials in harsh orbital environments. The expected life time of modern spacecraft varies within the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can result in surface erosion on conductive layers and microscopic cracks in coverglass sheets and adhesive films. These possible damages may cause significant increases in local electric field strengths and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple measures were developed to prevent sustained discharges between adjacent strings, and many ground tests were performed to determine threshold parameters (voltage and current) for sustained arcs. And again, manufacturing defects and aging in space environments may result in considerable decrease of critical threshold parameters. This paper is devoted to the analysis of possible reasons behind arcing on spacecraft with low bus voltages.

  2. On Possible Arc Inception on Low Voltage Solar Array

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2015-01-01

    Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly that electrostatic discharges caused more than 8 percent of all registered failures and anomalies, and comprised the most costly losses (25 percent) for operating companies and agencies. The electrostatic discharges on spacecraft surfaces are the results of differential charging above some critical (threshold) voltages. The mechanisms of differential charging are well known, and various methods have been developed to prevent a generation of significant electric fields in areas of triple junctions. For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer over cover-glass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all materials in harsh orbital environments. The expected life time of modern spacecraft varies within the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can result in surface erosion on conductive layers and microscopic cracks in cover-glass sheets and adhesive films. These possible damages may cause significant increases in local electric field strengths and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple measures were developed to prevent sustained discharges between adjacent strings, and many ground tests were performed to determine threshold parameters (voltage and current) for sustained arcs. And again, manufacturing defects and aging in space environments may result in considerable decrease of critical threshold parameters. This paper is devoted to the analysis of possible reasons behind arcing on spacecraft with low bus voltages.

  3. Thermal QST Phenotypes Associated with Response to Lumbar Epidural Steroid Injections: A Pilot Study.

    PubMed

    Maher, Dermot P; Ding, Weihua; Singh, Sarabdeep; Opalacz, Arissa; Fishman, Claire; Houghton, Mary; Ahmed, Shihab; Chen, Lucy; Mao, Jianren; Zhang, Yi

    2017-08-01

    Response to lumbar epidural steroid injection in lumbar radicular pain varies. The purpose of this study is to characterize the changes in quantitative sensory testing (QST) phenotypes of subjects and compare the QST characteristics in patients who do respond to treatment of radicular pain with a lumbar epidural steroid injection (ESI). Prospective, observational pilot study. Outpatient pain center. Twenty subjects with a lower extremity (LE) radicular pain who were scheduled to have an ESI were recruited. At the visit prior to and four weeks following an ESI, subjects underwent QST measurements of both the affected LE and the contralateral unaffected UE. Following an ESI, nine subjects reported a greater than 30% reduction in radicular pain and 11 reported a less than 30% reduction in radicular pain. Subjects who had less than 30% pain reduction response (nonresponders) to an ESI had increased pre-injection warm sensation threshold (37.30 °C, SD = 2.51 vs 40.39, SD = 3.36, P = 0.03) and heat pain threshold (47.22 °C, SD = 1.38, vs 48.83 °C, SD = 2.10, P = 0.04). Further, the nonresponders also showed increased pre-injection warm sensation threshold as measured in the difference of warm sensation detection threshold difference in the affected limb and the unaffected arm (2.68 °C, SD = 2.92 vs 5.67 °C, SD = 3.22, P  = 0.045). Other QST parameters were not affected. The results show that the nonresponders to ESIs have increased detection threshold to heat pain and warm sensation, suggesting that a preexisting dysfunction in the C fibers in this group of subjects who can be detected by QST. Such altered QST characteristics may prognosticate the response to ESIs. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Deep brain stimulation of the subthalamic nucleus improves temperature sensation in patients with Parkinson's disease.

    PubMed

    Maruo, Tomoyuki; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimokawa, Toshio; Hirata, Masayuki; Goto, Tetsu; Morris, Shayne; Harada, Yu; Yanagisawa, Takufumi; Aly, Mohamed M; Yoshimine, Toshiki

    2011-04-01

    Patients with Parkinson's disease (PD) reportedly show deficits in sensory processing in addition to motor symptoms. However, little is known about the effects of bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS) on temperature sensation as measured by quantitative sensory testing (QST). This study was designed to quantitatively evaluate the effects of STN-DBS on temperature sensation and pain in PD patients. We conducted a QST study comparing the effects of STN-DBS on cold sense thresholds (CSTs) and warm sense thresholds (WSTs) as well as on cold-induced and heat-induced pain thresholds (CPT and HPT) in 17 PD patients and 14 healthy control subjects. The CSTs and WSTs of patients were significantly smaller during the DBS-on mode when compared with the DBS-off mode (P<.001), whereas the CSTs and WSTs of patients in the DBS-off mode were significantly greater than those of healthy control subjects (P<.02). The CPTs and HPTs in PD patients were significantly larger on the more affected side than on the less affected side (P<.02). Because elevations in thermal sense and pain thresholds of QST are reportedly almost compatible with decreases in sensation, our findings confirm that temperature sensations may be disturbed in PD patients when compared with healthy persons and that STN-DBS can be used to improve temperature sensation in these patients. The mechanisms underlying our findings are not well understood, but improvement in temperature sensation appears to be a sign of modulation of disease-related brain network abnormalities. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. [Correlation of perceptive temperature threshold of oral mucosa and sympathetic skin response].

    PubMed

    Wang, Z G; Dong, T Z; Li, J; Chen, G

    2018-02-09

    Objectives: To explore the critical values of temperature perception in various mucosa sites of oral cavity and to draw the perceptive temperature threshold maps in healthy volunteers. To observe the interrelationship between subjective cognitive perception and sympathetic skin response (SSR) under various levels of thermal stimuli. Methods: Forty-two healthy volunteers (recruited from the students of Tianjin Medical University, 16 females and 26 males) were enrolled in the present study. The whole oral mucosa of each subject was divided into multiple partitions according to the mucosa type as well as tooth position. Peltier patch (commodity name) semiconductor chip was placed in the central part of each subarea of the mucosa. The stimulus was increased or decreased at 1 ℃ each time from a baseline temperature of 37 ℃. Warm (WT) and cold (CT) perception thresholds were measured thereafter respectively. A topographic temperature map of the oral mucosa for each subject was drew. Furthermore, the SSR was elicited and recorded at three temperature levels of 50 ℃, 55 ℃, 60 ℃ respectively. Analog test with visual analogue scale (VAS) and McGill scales were also performed. Data were statistically analyzed with variance and generalized estimation equation. Results: The tip of the tongue was the most sensitive area with both WT [(38.8±2.1) ℃, P< 0.05] and CT [(23.5±4.2) ℃, P< 0.05]. The highest heat threshold of gingival mucosa was in the left lower posterior teeth area [(49.9±3.7) ℃, P< 0.05], and the highest cold threshold of gingival mucosa was in the left upper posterior teeth area [(15.9±5.5) ℃, P< 0.05]. The perceptive temperature threshold increased gradually from the midline to both left and right sides were observed symmetrically and bilaterally. There was no statistically significant differences in temperature perception threshold between males and females [WT, male (44.8±3.1) ℃, female (44.8±3.2) ℃, OR= 1.100, P= 0.930; CT, Male (18.4±4.9) ℃, female (20.8±4.8) ℃, OR= 0.157, P= 0.210]. The SSR amplitude at sites of the tongue tip and the lower lip were increased with the rise of temperature [tongue tip (4.58±4.04) mv, P< 0.05, lower lip (2.89±3.01) mv, P< 0.05]. However, SSR amplitude values had no significant differences between males and females [tongue tip, male (2.00±2.16) mv, female (1.89±1.20) mv, P= 0.890; lower lip, male (0.94±0.82) mv, female (0.85±0.68) mv, P= 0.887]. Nevertheless, the amplitude of SSR and the VAS score of subjects showed a similar trend. Conclusions: The temperature perception levels were different amongst sites of lip, buccal mucosa, tongue dorsal mucosa and gingival mucosa. SSR amplitude values could reflect the responses of the mouth to the thermal stimuli.

  6. Total protein of whole saliva as a biomarker of anaerobic threshold.

    PubMed

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B; Espindola, Foued Salmen

    2009-09-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a maximum incremental exercise on a cycle ergometer. Blood and stimulated saliva were collected during the test. The TPWS anaerobic threshold (PAT) was determined using the Dmax method. The PAT was correlated with the blood lactate anaerobic threshold (AT; r = .93, p < .05). No significant difference (p = .16) was observed between PAT and AT. Thus, TPWS provides a convenient and noninvasive matrix for determining the anaerobic threshold during incremental exercise tests.

  7. AN EVALUATION OF HEURISTICS FOR THRESHOLD-FUNCTION TEST-SYNTHESIS,

    DTIC Science & Technology

    Linear programming offers the most attractive procedure for testing and obtaining optimal threshold gate realizations for functions generated in...The design of the experiments may be of general interest to students of automatic problem solving; the results should be of interest in threshold logic and linear programming. (Author)

  8. A Continuous Threshold Expectile Model.

    PubMed

    Zhang, Feipeng; Li, Qunhua

    2017-12-01

    Expectile regression is a useful tool for exploring the relation between the response and the explanatory variables beyond the conditional mean. A continuous threshold expectile regression is developed for modeling data in which the effect of a covariate on the response variable is linear but varies below and above an unknown threshold in a continuous way. The estimators for the threshold and the regression coefficients are obtained using a grid search approach. The asymptotic properties for all the estimators are derived, and the estimator for the threshold is shown to achieve root-n consistency. A weighted CUSUM type test statistic is proposed for the existence of a threshold at a given expectile, and its asymptotic properties are derived under both the null and the local alternative models. This test only requires fitting the model under the null hypothesis in the absence of a threshold, thus it is computationally more efficient than the likelihood-ratio type tests. Simulation studies show that the proposed estimators and test have desirable finite sample performance in both homoscedastic and heteroscedastic cases. The application of the proposed method on a Dutch growth data and a baseball pitcher salary data reveals interesting insights. The proposed method is implemented in the R package cthreshER .

  9. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish

    USGS Publications Warehouse

    Chadwick, Joseph G; Nislow, Kieth H; McCormick, Stephen

    2015-01-01

    Climate change is predicted to change the distribution and abundance of species, yet underlying physiological mechanisms are complex and methods for detecting populations at risk from rising temperature are poorly developed. There is increasing interest in using physiological mediators of the stress response as indicators of individual and population-level response to environmental stressors. Here, we use laboratory experiments to show that the temperature thresholds in brook trout (Salvelinus fontinalis) for increased gill heat shock protein-70 (20.7°C) and plasma glucose (21.2°C) are similar to their proposed thermal ecological limit of 21.0°C. Field assays demonstrated increased plasma glucose, cortisol and heat shock protein-70 concentrations at field sites where mean daily temperature exceeded 21.0°C. Furthermore, population densities of brook trout were lowest at field sites where temperatures were warm enough to induce a stress response, and a co-occurring species with a higher thermal tolerance showed no evidence of physiological stress at a warm site. The congruence of stress responses and proposed thermal limits supports the use of these thresholds in models of changes in trout distribution under climate change scenarios and suggests that the induction of the stress response by elevated temperature may play a key role in driving the distribution of species.

  10. Pyroclast/snow interactions and thermally driven slurry formation. Part 1: Theory for monodisperse grain beds

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.

  11. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    PubMed

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  12. Changes in mechanical, chemical, and thermal sensitivity of the cornea after topical application of nonsteroidal anti-inflammatory drugs.

    PubMed

    Acosta, M Carmen; Berenguer-Ruiz, Leticia; García-Gálvez, Alberto; Perea-Tortosa, David; Gallar, Juana; Belmonte, Carlos

    2005-01-01

    In addition to their well-known anti-inflammatory actions, some of the nonsteroidal anti-inflammatory drugs (NSAIDs) appear to have an analgesic effect. In human subjects, the changes in threshold and intensity of sensations evoked by mechanical, chemical, and thermal stimulation of the cornea induced by topical administration of two commercial NSAIDs, diclofenac sodium (Voltaren; Novartis, Basel, Switzerland) and flurbiprofen (Ocuflur; Allergan, Irvine, CA), were studied. Corneal sensitivity was measured in 10 young, healthy subjects with a gas esthesiometer. Chemical (10%-70% CO2 in air), mechanical (0-264 mL/min), and thermal (corneal temperature changes between -4.5 degrees C and +3 degrees C around the normal value) stimuli were applied to the center of the cornea. The intensity and perceived magnitude of the psychophysical attributes of the evoked sensation were scored at the end of the pulse in a 10-cm, continuous visual analog scale (VAS). The threshold was expressed as the stimulus intensity that evoked a VAS score >0.5. Sensitivity was measured in both eyes of each subject on two separate days, one without treatment and the other 30 minutes after topical application of 0.03% flurbiprofen (seven subjects) or 0.1% diclofenac sodium (six subjects). Diclofenac attenuated significantly all the sensation parameters evoked by high-intensity mechanical, chemical, and thermal stimuli. Flurbiprofen produced a slight reduction of the sensations evoked by mechanical and chemical stimulation that became significant only for the irritation caused by chemical stimuli of maximum intensity (70% CO2). None of the drugs modified significantly the detection threshold of the different stimuli. Flurbiprofen had a very limited effect on sensations evoked by corneal stimulation, whereas diclofenac reduced the intensity of sensations evoked by stimuli of different modality, suggesting a mild local anesthetic effect of this drug on all types of corneal sensory fibers. Such anesthetic action could explain the analgesic effect that has been reported after topical application of diclofenac in inflamed human eyes.

  13. Thermally efficient and highly scalable In2Se3 nanowire phase change memory

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Kang, Daegun; Kim, Jungsik; Meyyappan, M.; Lee, Jeong-Soo

    2013-04-01

    The electrical characteristics of nonvolatile In2Se3 nanowire phase change memory are reported. Size-dependent memory switching behavior was observed in nanowires of varying diameters and the reduction in set/reset threshold voltage was as low as 3.45 V/6.25 V for a 60 nm nanowire, which is promising for highly scalable nanowire memory applications. Also, size-dependent thermal resistance of In2Se3 nanowire memory cells was estimated with values as high as 5.86×1013 and 1.04×106 K/W for a 60 nm nanowire memory cell in amorphous and crystalline phases, respectively. Such high thermal resistances are beneficial for improvement of thermal efficiency and thus reduction in programming power consumption based on Fourier's law. The evaluation of thermal resistance provides an avenue to develop thermally efficient memory cell architecture.

  14. Thermal sensors to control polymer forming. Challenge and solutions

    NASA Astrophysics Data System (ADS)

    Lemeunier, F.; Boyard, N.; Sarda, A.; Plot, C.; Lefèvre, N.; Petit, I.; Colomines, G.; Allanic, N.; Bailleul, J. L.

    2017-10-01

    Many thermal sensors are already used, for many years, to better understand and control material forming processes, especially polymer processing. Due to technical constraints (high pressure, sealing, sensor dimensions…) the thermal measurement is often performed in the tool or close its surface. Thus, it only gives partial and disturbed information. Having reliable information about the heat flux exchanges between the tool and the material during the process would be very helpful to improve the control of the process and to favor the development of new materials. In this work, we present several sensors developed in labs to study the molding steps in forming processes. The analysis of the obtained thermal measurements (temperature, heat flux) shows the required sensitivity threshold of sensitivity of thermal sensors to be able to detect on-line the rate of thermal reaction. Based on these data, we will present new sensor designs which have been patented.

  15. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  16. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Lv, Liang; Zhang, Mingxiao; Lu, Zhongwen; Qiao, Zhao; Qiu, Fuming

    2018-05-01

    Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination of thermal shock stress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

  17. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  18. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2

    PubMed Central

    Liu, Beiying; Qin, Feng

    2016-01-01

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. PMID:27074678

  19. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  20. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  1. Ultrafast Passive Shields for Laser and Ballistic Protection

    DTIC Science & Technology

    1991-07-15

    chemically polymerized P(DPA)) as a binder, and these were tested for ablation (i.e. laser damage threshold ) limits. Table IV below summarizes these results...50, 100, 250 and 500 AJ/pulse o 1.G, 2.5, 5.0 mJ/pulse. The following energies were used for the preliminary laser damage threshold tests: o 2.5, 5.0...these were tested for ablation (i.e. laser damage threshold ) limits. Table VI summarizes these results which are all for tests in the absence of an iris

  2. Using a Standardized Clinical Quantitative Sensory Testing Battery to Judge the Clinical Relevance of Sensory Differences Between Adjacent Body Areas.

    PubMed

    Dimova, Violeta; Oertel, Bruno G; Lötsch, Jörn

    2017-01-01

    Skin sensitivity to sensory stimuli varies among different body areas. A standardized clinical quantitative sensory testing (QST) battery, established for the diagnosis of neuropathic pain, was used to assess whether the magnitude of differences between test sites reaches clinical significance. Ten different sensory QST measures derived from thermal and mechanical stimuli were obtained from 21 healthy volunteers (10 men) and used to create somatosensory profiles bilateral from the dorsum of the hands (the standard area for the assessment of normative values for the upper extremities as proposed by the German Research Network on Neuropathic Pain) and bilateral at volar forearms as a neighboring nonstandard area. The parameters obtained were statistically compared between test sites. Three of the 10 QST parameters differed significantly with respect to the "body area," that is, warmth detection, thermal sensory limen, and mechanical pain thresholds. After z-transformation and interpretation according to the QST battery's standard instructions, 22 abnormal values were obtained at the hand. Applying the same procedure to parameters assessed at the nonstandard site forearm, that is, z-transforming them to the reference values for the hand, 24 measurements values emerged as abnormal, which was not significantly different compared with the hand (P=0.4185). Sensory differences between neighboring body areas are statistically significant, reproducing prior knowledge. This has to be considered in scientific assessments where a small variation of the tested body areas may not be an option. However, the magnitude of these differences was below the difference in sensory parameters that is judged as abnormal, indicating a robustness of the QST instrument against protocol deviations with respect to the test area when using the method of comparison with a 95 % confidence interval of a reference dataset.

  3. Anaerobic Threshold and Salivary α-amylase during Incremental Exercise.

    PubMed

    Akizuki, Kazunori; Yazaki, Syouichirou; Echizenya, Yuki; Ohashi, Yukari

    2014-07-01

    [Purpose] The purpose of this study was to clarify the validity of salivary α-amylase as a method of quickly estimating anaerobic threshold and to establish the relationship between salivary α-amylase and double-product breakpoint in order to create a way to adjust exercise intensity to a safe and effective range. [Subjects and Methods] Eleven healthy young adults performed an incremental exercise test using a cycle ergometer. During the incremental exercise test, oxygen consumption, carbon dioxide production, and ventilatory equivalent were measured using a breath-by-breath gas analyzer. Systolic blood pressure and heart rate were measured to calculate the double product, from which double-product breakpoint was determined. Salivary α-amylase was measured to calculate the salivary threshold. [Results] One-way ANOVA revealed no significant differences among workloads at the anaerobic threshold, double-product breakpoint, and salivary threshold. Significant correlations were found between anaerobic threshold and salivary threshold and between anaerobic threshold and double-product breakpoint. [Conclusion] As a method for estimating anaerobic threshold, salivary threshold was as good as or better than determination of double-product breakpoint because the correlation between anaerobic threshold and salivary threshold was higher than the correlation between anaerobic threshold and double-product breakpoint. Therefore, salivary threshold is a useful index of anaerobic threshold during an incremental workload.

  4. Effect of Age and Severity of Facial Palsy on Taste Thresholds in Bell's Palsy Patients

    PubMed Central

    Park, Jung Min; Kim, Myung Gu; Jung, Junyang; Kim, Sung Su; Jung, A Ra; Kim, Sang Hoon

    2017-01-01

    Background and Objectives To investigate whether taste thresholds, as determined by electrogustometry (EGM) and chemical taste tests, differ by age and the severity of facial palsy in patients with Bell's palsy. Subjects and Methods This study included 29 patients diagnosed with Bell's palsy between January 2014 and May 2015 in our hospital. Patients were assorted into age groups and by severity of facial palsy, as determined by House-Brackmann Scale, and their taste thresholds were assessed by EGM and chemical taste tests. Results EGM showed that taste thresholds at four locations on the tongue and one location on the central soft palate, 1 cm from the palatine uvula, were significantly higher in Bell's palsy patients than in controls (p<0.05). In contrast, chemical taste tests showed no significant differences in taste thresholds between the two groups (p>0.05). The severity of facial palsy did not affect taste thresholds, as determined by both EGM and chemical taste tests (p>0.05). The overall mean electrical taste thresholds on EGM were higher in younger Bell's palsy patients than in healthy subjects, with the difference at the back-right area of the tongue differing significantly (p<0.05). In older individuals, however, no significant differences in taste thresholds were observed between Bell's palsy patients and healthy subjects (p>0.05). Conclusions Electrical taste thresholds were higher in Bell's palsy patients than in controls. These differences were observed in younger, but not in older, individuals. PMID:28417103

  5. Evaluation of three different histamine concentrations in intradermal testing of normal cats and attempted determination of 'irritant' threshold concentrations for 48 allergens.

    PubMed

    Austel, Michaela; Hensel, Patrick; Jackson, Dawn; Vidyashankar, Anand; Zhao, Ying; Medleau, Linda

    2006-06-01

    The purpose of this study was to determine the optimal histamine concentration and 'irritant' allergen threshold concentrations in intradermal testing (IDT) in normal cats. Thirty healthy cats were tested with three different histamine concentrations and four different concentrations of each allergen. The optimal histamine concentration was determined to be 1: 50,000 w/v (0.05 mg mL(-1)). Using this histamine concentration, the 'irritant' threshold concentration for most allergens was above the highest concentrations tested (4,000 PNU mL(-1) for 41 allergens and 700 PNU mL(-1) for human dander). The 'irritant' threshold concentration for flea antigen was determined to be 1:750 w/v. More than 10% of the tested cats showed positive reactions to Dermatophagoides farinae, Dermatophagoides pteronyssinus, housefly, mosquito and moth at every allergen concentration, which suggests that the 'irritant' threshold concentration for these allergens is below 1,000 PNU mL(-1), the lowest allergen concentration tested. Our results confirm previous studies in indicating that allergen and histamine concentrations used in feline IDT may need to be revised.

  6. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE PAGES

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; ...

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO 3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  7. Laser-induced retinal damage thresholds for annular retinal beam profiles

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  8. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  9. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is eliminated when testing is performed in dry air.

  10. Design of an arc-free thermal blanket

    NASA Technical Reports Server (NTRS)

    Fellas, C. N.

    1981-01-01

    The success of a multilayer thermal blanket in eliminating arcing is discussed. Arcing is eliminated by limiting the surface potential to well below the threshold level for discharge. This is achieved by enhancing the leakage current which results in conduction of the excess charge to the spacecraft structure. The thermal blanket consists of several layers of thermal control (space approved) materials, bonded together, with Kapton on the outside, arranged in such a way that when the outer surface is charged by electron irradiation, a strong electric field is set up on the Kapton layer resulting in a greatly improved conductivity. The basic properties of matter utilized in designing this blanket method of charge removal, and optimum thermo-optical properties are summarized.

  11. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.

  12. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.a; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space flight Center (MSFC) for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing testing standardization. To be discussed are: 1. Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debye lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Preventing sustained discharges during testing. 5. Real array or structure samples versus idealized samples. 6. Validity of LEO tests for GEO samples. 7. Extracting arc threshold information from arc rate versus voltage tests. 8 . Snapover and current collection at positive sample bias. Glows at positive bias. Kapton pyrolization. 9. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 10. Testing for Paschen discharge thresholds. Testing for dielectric breakdown thresholds. Testing for tether arcing. 11. Testing in very dense plasmas (ie thruster plumes). 12. Arc mitigation strategies. Charging mitigation strategies. Models. 13. Analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.

  13. Intelligence and Creativity: Over the Threshold Together?

    ERIC Educational Resources Information Center

    Welter, Marisete Maria; Jaarsveld, Saskia; van Leeuwen, Cees; Lachmann, Thomas

    2016-01-01

    Threshold theory predicts a positive correlation between IQ and creativity scores up to an IQ level of 120 and no correlation above this threshold. Primary school children were tested at beginning (N = 98) and ending (N = 70) of the school year. Participants performed the standard progressive matrices (SPM) and the Test of Creative…

  14. Oxygen Concentration Flammability Threshold Tests for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Williams, James H.

    2007-01-01

    CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.

  15. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  16. High-Temperature Creep Degradation of the AM1/NiAlPt/EBPVD YSZ System

    NASA Astrophysics Data System (ADS)

    Riallant, Fanny; Cormier, Jonathan; Longuet, Arnaud; Milhet, Xavier; Mendez, José

    2014-01-01

    The failure mechanisms of a NiAlPt/electron beam physical vapor deposition yttria-stabilized-zirconia thermal barrier coating system deposited on the AM1 single crystalline substrate have been investigated under pure creep conditions in the temperature range from 1273 K to 1373 K (1000 °C to 1100 °C) and for durations up to 1000 hours. Doubly tapered specimens were used allowing for the analysis of different stress states and different accumulated viscoplastic strains for a given creep condition. Under such experiments, two kinds of damage mechanisms were observed. Under low applied stress conditions ( i.e., long creep tests), microcracking is localized in the vicinity of the thermally grown oxide (TGO). Under high applied stress conditions, an unconventional failure mechanism at the substrate/bond coat interface is observed because of large creep strains and fast creep deformation, hence leading to a limited TGO growth. This unconventional failure mechanism is observed although the interfacial bond coat/top coat TGO thickening is accelerated by the mechanical applied stress beyond a given stress threshold.

  17. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  18. Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted "Z" Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane).

    PubMed

    Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2017-01-11

    A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.

  19. Bose-Einstein condensation of photons from the thermodynamic limit to small photon numbers

    NASA Astrophysics Data System (ADS)

    Nyman, Robert A.; Walker, Benjamin T.

    2018-03-01

    Photons can come to thermal equilibrium at room temperature by scattering multiple times from a fluorescent dye. By confining the light and dye in a microcavity, a minimum energy is set and the photons can then show Bose-Einstein condensation. We present here the physical principles underlying photon thermalization and condensation, and review the literature on the subject. We then explore the 'small' regime where very few photons are needed for condensation. We compare thermal equilibrium results to a rate-equation model of microlasers, which includes spontaneous emission into the cavity, and we note that small systems result in ambiguity in the definition of threshold.

  20. Photon-Induced Thermal Desorption of CO from Small Metal-Carbonyl Clusters

    NASA Astrophysics Data System (ADS)

    Lüttgens, G.; Pontius, N.; Bechthold, P. S.; Neeb, M.; Eberhardt, W.

    2002-02-01

    Thermal CO desorption from photoexcited free metal-carbonyl clusters has been resolved in real time using two-color pump-probe photoelectron spectroscopy. Sequential energy dissipation steps between the initial photoexcitation and the final desorption event, e.g., electron relaxation and thermalization, have been resolved for Au2(CO)- and Pt2(CO)-5. The desorption rates for the two clusters differ considerably due to the different numbers of vibrational degrees of freedom. The unimolecular CO-desorption thresholds of Au2(CO)- and Pt2(CO)-5 have been approximated by means of a statistical Rice-Ramsperger-Kassel calculation using the experimentally derived desorption rate constants.

  1. A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors

    PubMed Central

    Dezhdar, Tara; Moshourab, Rabih A.; Fründ, Ingo; Lewin, Gary R.; Schmuker, Michael

    2015-01-01

    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails. PMID:26638830

  2. Thermoregulatory defense mechanisms.

    PubMed

    Sessler, Daniel I

    2009-07-01

    Core body temperature is normally tightly regulated by an effective thermoregulatory system. Thermoregulatory control is sometimes impaired by serious illness, but more typically remains intact. The primary autonomic defenses against heat are sweating and active precapillary vasodilation; the primary autonomic defenses against cold are arteriovenous shunt vasoconstriction and shivering. The core temperature triggering each response defines its activation threshold. Temperatures between the sweating and vasoconstriction thresholds define the inter-threshold range. The shivering threshold is usually a full 1 degrees C below the vasoconstriction threshold and is therefore a "last resort" response. Both vasoconstriction and shivering are associated with autonomic and hemodynamic activation; and each response is effective, thus impeding induction of therapeutic hypothermia. It is thus helpful to accompany core cooling with drugs that pharmacologically induce a degree of thermal tolerance. No perfect drug or drug combination has been identified. Anesthetics, for example, induce considerable tolerance, but are rarely suitable. Meperidine-especially in combination with buspirone-is especially effective while provoking only modest toxicity. The combination of buspirone and dexmedetomidine is comparably effective while avoiding the respiratory depression association with opioid administration.

  3. Comparison of the anticonvulsant potency of various diuretic drugs in the maximal electroshock-induced seizure threshold test in mice.

    PubMed

    Załuska, Katarzyna; Kondrat-Wróbel, Maria W; Łuszczki, Jarogniew J

    2018-05-01

    The coexistence of seizures and arterial hypertension requires an adequate and efficacious treatment involving both protection from seizures and reduction of high arterial blood pressure. Accumulating evidence indicates that some diuretic drugs (with a well-established position in the treatment of arterial hypertension) also possess anticonvulsant properties in various experimental models of epilepsy. The aim of this study was to assess the anticonvulsant potency of 6 commonly used diuretic drugs (i.e., amiloride, ethacrynic acid, furosemide, hydrochlorothiazide, indapamide, and spironolactone) in the maximal electroshock-induced seizure threshold (MEST) test in mice. Doses of the studied diuretics and their corresponding threshold increases were linearly related, allowing for the determination of doses which increase the threshold for electroconvulsions in drug-treated animals by 20% (TID20 values) over the threshold in control animals. Amiloride, hydrochlorothiazide and indapamide administered systemically (intraperitoneally - i.p.) increased the threshold for maximal electroconvulsions in mice, and the experimentally-derived TID20 values in the maximal electroshock seizure threshold test were 30.2 mg/kg for amiloride, 68.2 mg/kg for hydrochlorothiazide and 3.9 mg/kg for indapamide. In contrast, ethacrynic acid (up to 100 mg/kg), furosemide (up to 100 mg/kg) and spironolactone (up to 50 mg/kg) administered i.p. had no significant impact on the threshold for electroconvulsions in mice. The studied diuretics can be arranged with respect to their anticonvulsant potency in the MEST test as follows: indapamide > amiloride > hydrochlorothiazide. No anticonvulsant effects were observed for ethacrynic acid, furosemide or spironolactone in the MEST test in mice.

  4. Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation

    NASA Astrophysics Data System (ADS)

    Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei

    2016-11-01

    Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.

  5. A critique of the use of indicator-species scores for identifying thresholds in species responses

    USGS Publications Warehouse

    Cuffney, Thomas F.; Qian, Song S.

    2013-01-01

    Identification of ecological thresholds is important both for theoretical and applied ecology. Recently, Baker and King (2010, King and Baker 2010) proposed a method, threshold indicator analysis (TITAN), to calculate species and community thresholds based on indicator species scores adapted from Dufrêne and Legendre (1997). We tested the ability of TITAN to detect thresholds using models with (broken-stick, disjointed broken-stick, dose-response, step-function, Gaussian) and without (linear) definitive thresholds. TITAN accurately and consistently detected thresholds in step-function models, but not in models characterized by abrupt changes in response slopes or response direction. Threshold detection in TITAN was very sensitive to the distribution of 0 values, which caused TITAN to identify thresholds associated with relatively small differences in the distribution of 0 values while ignoring thresholds associated with large changes in abundance. Threshold identification and tests of statistical significance were based on the same data permutations resulting in inflated estimates of statistical significance. Application of bootstrapping to the split-point problem that underlies TITAN led to underestimates of the confidence intervals of thresholds. Bias in the derivation of the z-scores used to identify TITAN thresholds and skewedness in the distribution of data along the gradient produced TITAN thresholds that were much more similar than the actual thresholds. This tendency may account for the synchronicity of thresholds reported in TITAN analyses. The thresholds identified by TITAN represented disparate characteristics of species responses that, when coupled with the inability of TITAN to identify thresholds accurately and consistently, does not support the aggregation of individual species thresholds into a community threshold.

  6. Rod-cone interaction in light adaptation

    PubMed Central

    Latch, M.; Lennie, P.

    1977-01-01

    1. The increment-threshold for a small test spot in the peripheral visual field was measured against backgrounds that were red or blue. 2. When the background was a large uniform field, threshold over most of the scotopic range depended exactly upon the background's effect upon rods. This confirms Flamant & Stiles (1948). But when the background was small, threshold was elevated more by a long wave-length than a short wave-length background equated for its effect on rods. 3. The influence of cones was explored in a further experiment. The scotopic increment-threshold was established for a short wave-length test spot on a large, short wave-length background. Then a steady red circular patch, conspicuous to cones, but below the increment-threshold for rod vision, was added to the background. When it was small, but not when it was large, this patch substantially raised the threshold for the test. 4. When a similar experiment was made using, instead of a red patch, a short wave-length one that was conspicuous in rod vision, threshold varied similarly with patch size. These results support the notion that the influence of small backgrounds arises in some size-selective mechanism that is indifferent to the receptor system in which visual signals originate. Two corollaries of this hypothesis were tested in further experiments. 5. A small patch was chosen so as to lift scotopic threshold substantially above its level on a uniform field. This threshold elevation persisted for minutes after extinction of the patch, but only when the patch was small. A large patch made bright enough to elevate threshold by as much as the small one gave rise to no corresponding after-effect. 6. Increment-thresholds for a small red test spot, detected through cones, followed the same course whether a large uniform background was long- or short wave-length. When the background was small, threshold upon the short wave-length one began to rise for much lower levels of background illumination, suggesting the influence of rods. This was confirmed by repeating the experiment after a strong bleach when the cones, but not rods, had fully recovered their sensitivity. Increment-thresholds upon small backgrounds of long or short wave-lengths then followed the same course. PMID:894602

  7. Sensitivity to cutaneous warm stimuli varies greatly in the human head.

    PubMed

    Kim, Yung-Bin; Jung, Dahee; Park, Joonhee; Lee, Joo-Young

    2017-10-01

    The head has been known as the most sensitive area to temperature changes but the values are limited to the face. The purpose of this study was to examine cutaneous warm thresholds on the scalp and face of young males. Eight males participated in this study (24 ± 3 yrs in age, 178.2 ± 5.3cm in height, and 90.0 ± 15.4kg in body mass). All measurements were conducted in an environmental chamber (27 ± 1°C air temperature and 53 ± 1% relative humidity). Cutaneous warm thresholds were measured on nine areas of the following regions: the frontal (two points on the right), parietal (a point on the right and the vertex, respectively), temporal (two points on the right), and occipital region (on the right) along with the forehead using a thermal stimulator (rate of temperature increase 0.1°Cs -1 ). Skin temperatures on the nine head regions were monitored during the threshold test. The results showed that 1) no significant differences were found in initial skin temperatures among the nine head regions; 2) cutaneous warm detecting temperatures were significantly greater on the vertex (38.2 ± 3.5°C) than on the forehead (34.8 ± 1.4°C) and the other seven scalp regions (P < 0.05); 3) subjects detected the increase of 1.2 ± 1.0°C on the forehead and 1.5 ± 1.2°C on the occipital region as the first warmth while the vertex was the most insensitive to the increase of temperature (4.0 ± 3.2°C) (P < 0.05). In summary, the scalp region of young males was less sensitive to the temperature change when compared to the forehead, and the vertex was the most insensitive among the eight scalp regions to the temperature increase. We conclude that the entire head should be considered as a binary topography with the face and the scalp in terms of cutaneous thermal sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Optimizing fluence and debridement effects on cutaneous resurfacing carbon dioxide laser surgery.

    PubMed

    Weisberg, N K; Kuo, T; Torkian, B; Reinisch, L; Ellis, D L

    1998-10-01

    To develop methods to compare carbon dioxide (CO2) resurfacing lasers, fluence, and debridement effects on tissue shrinkage and histological thermal denaturation. In vitro human or in vivo porcine skin samples received up to 5 passes with scanner or short-pulsed CO2 resurfacing lasers. Fluences ranging from 2.19 to 17.58 J/cm2 (scanner) and 1.11 to 5.56 J/cm2 (short pulsed) were used to determine each laser's threshold energy for clinical effect. Variable amounts of debridement were also studied. Tissue shrinkage was evaluated by using digital photography to measure linear distance change of the treated tissue. Tissue histological studies were evaluated using quantitative computer image analysis. Fluence-independent in vitro tissue shrinkage was seen with the scanned and short-pulsed lasers above threshold fluence levels of 5.9 and 2.5 J/cm2, respectively. Histologically, fluence-independent thermal depths of damage of 77 microns (scanner) and 25 microns (pulsed) were observed. Aggressive debridement of the tissue increased the shrinkage per pass of the laser, and decreased the fluence required for the threshold effect. In vivo experiments confirmed the in vitro results, although the in vivo threshold fluence level was slightly higher and the shrinkage obtained was slightly lower per pass. Our methods allow comparison of different resurfacing lasers' acute effects. We found equivalent laser tissue effects using lower fluences than those currently accepted clinically. This suggests that the morbidity associated with CO2 laser resurfacing may be minimized by lowering levels of tissue input energy and controlling for tissue debridement.

  9. Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models.

    PubMed

    O'Neill, Jessica; Sikandar, Shafaq; McMahon, Stephen B; Dickenson, Anthony H

    2015-09-01

    Translational research is key to bridging the gaps between preclinical findings and the patients, and a translational model of inflammatory pain will ideally induce both peripheral and central sensitisation, more effectively mimicking clinical pathophysiology in some chronic inflammatory conditions. We conducted a parallel investigation of two models of inflammatory pain, using ultraviolet B (UVB) irradiation alone and UVB irradiation with heat rekindling. We used rodent electrophysiology and human quantitative sensory testing to characterise nociceptive processing in the peripheral and central nervous systems in both models. In both species, UVB irradiation produces peripheral sensitisation measured as augmented evoked activity of rat dorsal horn neurones and increased perceptual responses of human subjects to mechanical and thermal stimuli. In both species, UVB with heat rekindling produces central sensitisation. UVB irradiation alone and UVB with heat rekindling are translational models of inflammation that produce peripheral and central sensitisation, respectively. The predictive value of laboratory models for human pain processing is crucial for improving translational research. The discrepancy between peripheral and central mechanisms of pain is an important consideration for drug targets, and here we describe two models of inflammatory pain that involve ultraviolet B (UVB) irradiation, which can employ peripheral and central sensitisation to produce mechanical and thermal hyperalgesia in rats and humans. We use electrophysiology in rats to measure the mechanically- and thermally-evoked activity of rat spinal neurones and quantitative sensory testing to assess human psychophysical responses to mechanical and thermal stimulation in a model of UVB irradiation and in a model of UVB irradiation with heat rekindling. Our results demonstrate peripheral sensitisation in both species driven by UVB irradiation, with a clear mechanical and thermal hypersensitivity of rat dorsal horn neurones and enhanced perceptual responses of human subjects to both mechanical and thermal stimulation. Additional heat rekindling produces markers of central sensitisation in both species, including enhanced receptive field sizes. Importantly, we also showed a correlation in the evoked activity of rat spinal neurones to human thermal pain thresholds. The parallel results in rats and humans validate the translational use of both models and the potential for such models for preclinical assessment of prospective analgesics in inflammatory pain states. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Quantitative Sensory Testing and Current Perception Threshold Testing in Patients With Chronic Pain Following Lower Extremity Fracture.

    PubMed

    Griffioen, Mari A; Greenspan, Joel D; Johantgen, Meg; Von Rueden, Kathryn; O'Toole, Robert V; Dorsey, Susan G; Renn, Cynthia L

    2018-01-01

    Chronic pain is a significant problem for patients with lower extremity injuries. While pain hypersensitivity has been identified in many chronic pain conditions, it is not known whether patients with chronic pain following lower extremity fracture report pain hypersensitivity in the injured leg. To quantify and compare peripheral somatosensory function and sensory nerve activation thresholds in persons with chronic pain following lower extremity fractures with a cohort of persons with no history of lower extremity fractures. This was a cross-sectional study where quantitative sensory testing and current perception threshold testing were conducted on the injured and noninjured legs of cases and both legs of controls. A total of 14 cases and 28 controls participated in the study. Mean time since injury at the time of testing for cases was 22.3 (standard deviation = 12.1) months. The warmth detection threshold ( p = .024) and nerve activation thresholds at 2,000 Hz ( p < .001) and 250 Hz ( p = .002), respectively, were significantly higher in cases compared to controls. This study suggests that patients with chronic pain following lower extremity fractures may experience hypoesthesia in the injured leg, which contrasts with the finding of hyperesthesia previously observed in other chronic pain conditions but is in accord with patients with nerve injuries and surgeries. This is the first study to examine peripheral sensory nerve function at the site of injury in patients with chronic pain following lower extremity fractures using quantitative sensory testing and current perception threshold testing.

  11. Determination of threshold and maximum operating electric stresses for selected high voltage insulations. Task 2: Investigation of oil-filled paper insulated cables

    NASA Astrophysics Data System (ADS)

    Sosnowski, M.; Eager, G. S., Jr.

    1983-06-01

    Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.

  12. A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina

    2012-01-01

    The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.

  13. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans

    NASA Astrophysics Data System (ADS)

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (Tes), ˜36.6 °C) and mild hyperthermia (HT; Tes, ˜37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit ( P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  14. Thermal sensation during mild hyperthermia is modulated by acute postural change in humans.

    PubMed

    Takeda, Ryosuke; Imai, Daiki; Suzuki, Akina; Ota, Akemi; Naghavi, Nooshin; Yamashina, Yoshihiro; Hirasawa, Yoshikazu; Yokoyama, Hisayo; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-12-01

    Thermal sensation represents the primary stimulus for behavioral and autonomic thermoregulation. We assessed whether the sensation of skin and core temperatures for the driving force of behavioral thermoregulation was modified by postural change from the supine (Sup) to sitting (Sit) during mild hyperthermia. Seventeen healthy young men underwent measurements of noticeable increase and decrease (±0.1 °C/s) of skin temperature (thresholds of warm and cold sensation on the skin, 6.25 cm 2 of area) at the forearm and chest and of the whole-body warm sensation in the Sup and Sit during normothermia (NT; esophageal temperature (T es ), ∼36.6 °C) and mild hyperthermia (HT; T es , ∼37.2 °C; lower legs immersion in 42 °C of water). The threshold for cold sensation on the skin at chest was lower during HT than NT in the Sit (P < 0.05) but not in Sup, and at the forearm was lower during HT than NT in the Sup and further in Sit (both, P < 0.05), with interactive effects of temperature (NT vs. HT) × posture (Sup vs. Sit) (chest, P = 0.08; forearm, P < 0.05). The threshold for warm sensation on the skin at both sites remained unchanged with changes in body posture or temperature. The whole-body warm sensation was higher during HT than NT in both postures and higher in the Sit than Sup during both NT and HT (all, P < 0.05). Thus, thermal sensation during mild hyperthermia is modulated by postural change from supine to sitting to sense lesser cold on the skin and more whole-body warmth.

  15. Scaling of the MHD perturbation amplitude required to trigger a disruption and predictions for ITER

    NASA Astrophysics Data System (ADS)

    de Vries, P. C.; Pautasso, G.; Nardon, E.; Cahyna, P.; Gerasimov, S.; Havlicek, J.; Hender, T. C.; Huijsmans, G. T. A.; Lehnen, M.; Maraschek, M.; Markovič, T.; Snipes, J. A.; the COMPASS Team; the ASDEX Upgrade Team; Contributors, JET

    2016-02-01

    The amplitude of locked instabilities, likely magnetic islands, seen as precursors to disruptions has been studied using data from the JET, ASDEX Upgrade and COMPASS tokamaks. It was found that the thermal quench, that often initiates the disruption, is triggered when the amplitude has reached a distinct level. This information can be used to determine thresholds for simple disruption prediction schemes. The measured amplitude in part depends on the distance of the perturbation to the measurement coils. Hence the threshold for the measured amplitude depends on the mode location (i.e. the rational q-surface) and thus indirectly on parameters such as the edge safety factor, q 95, and the internal inductance, li(3), that determine the shape of the q-profile. These dependencies can be used to set the disruption thresholds more precisely. For the ITER baseline scenario, with typically q 95  =  3.2, li(3)  =  0.9 and taking into account the position of the measurement coils on ITER, the maximum allowable measured locked mode amplitude normalized to engineering parameters was estimated to be a·B ML(r c)/I p  =  0.92 m mT/MA, or directly as a fraction edge poloidal magnetic field: B ML(r c)/B θ (a)  =  5 · 10-3. But these values decrease for operation at higher q 95 or lower li(3). The analysis found furthermore that the above empirical criterion to trigger a thermal quench is more consistent with a criterion derived with the concept of a critical island size, i.e. the thermal quench seemed to be triggered at a distinct island width.

  16. Levetiracetam synergises with common analgesics in producing antinociception in a mouse model of painful diabetic neuropathy.

    PubMed

    Micov, Ana; Tomić, Maja; Pecikoza, Uroš; Ugrešić, Nenad; Stepanović-Petrović, Radica

    2015-07-01

    Painful diabetic neuropathy is difficult to treat. Single analgesics often have insufficient efficacy and poor tolerability. Combination therapy may therefore be of particular benefit, because it might provide optimal analgesia with fewer adverse effects. This study aimed to examine the type of interaction between levetiracetam, a novel anticonvulsant with analgesic properties, and commonly used analgesics (ibuprofen, aspirin and paracetamol) in a mouse model of painful diabetic neuropathy. Diabetes was induced in C57BL/6 mice with a single high dose of streptozotocin, applied intraperitoneally (150 mg/kg). Thermal (tail-flick test) and mechanical (electronic von Frey test) nociceptive thresholds were measured before and three weeks after diabetes induction. The antinociceptive effects of orally administered levetiracetam, analgesics, and their combinations were examined in diabetic mice that developed thermal/mechanical hypersensitivity. In combination experiments, the drugs were co-administered in fixed-dose fractions of single drug ED50 and the type of interaction was determined by isobolographic analysis. Levetiracetam (10-100 mg/kg), ibuprofen (2-50 mg/kg), aspirin (5-75 mg/kg), paracetamol (5-100 mg/kg), and levetiracetam-analgesic combinations produced significant, dose-dependent antinociceptive effects in diabetic mice in both tests. In the tail-flick test, isobolographic analysis revealed 15-, and 19-fold reduction of doses of both drugs in the combination of levetiracetam with aspirin/ibuprofen, and paracetamol, respectively. In the von Frey test, approximately 7- and 9-fold reduction of doses of both drugs was detected in levetiracetam-ibuprofen and levetiracetam-aspirin/levetiracetam-paracetamol combinations, respectively. These results show synergism between levetiracetam and ibuprofen/aspirin/paracetamol in a model of painful diabetic neuropathy and might provide a useful approach to the treatment of patients suffering from painful diabetic neuropathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hypoxia, color vision deficiencies, and blood oxygen saturation.

    PubMed

    Hovis, Jeffery K; Milburn, Nelda J; Nesthus, Thomas E

    2012-02-01

    Chromatic thresholds were measured using the Cambridge Colour Test (CCT), the Colour Assessment and Diagnosis (CAD) test, and the Cone Specific Contrast Test (CSCT) at ground and 3780 m (12,400 ft) for subjects with normal color vision and red-green color vision defects. The CAD revealed a small (~10%) increase in the red-green thresholds for the trichromatic subjects and a similar increase in the blue-yellow thresholds for the dichromats. The other two color vision tests did not reveal any significant change in chromatic thresholds. The CAD results for the trichromats were consistent with a rotation of the discrimination ellipse counterclockwise with little change in the elliptical area. This alteration in the color discrimination ellipse can occur when retinal illumination is lowered. © 2012 Optical Society of America

  18. Correlation of gas exchange threshold and first muscle oxyhemoglobin inflection point with time-to-exhaustion during heavy-intensity exercise.

    PubMed

    Coquart, Jérémy B; Mucci, Patrick; L'hermette, Maxime; Chamari, Karim; Tourny, Claire; Garcin, Murielle

    2017-03-01

    The twofold aim of the study was to: 1) compare the gas exchange threshold (GET), the first oxyhemoglobin inflection point ([O2Hb]-T), and perceptual threshold as determined during an incremental exercise test, and 2) investigate the link between each threshold and time-to-exhaustion during heavy intensity exercise. Fourteen competitive cyclists performed an incremental exercise test to exhaustion on a cycloergometer to determine the different thresholds and peak workload (Wpeak). The participants then performed a sub-maximal constant workload test (90% Wpeak) to exhaustion to determine time-to-exhaustion. The thresholds were identified from: 1) the first breakpoint in the oxygen uptake vs. carbon dioxide output curve (GET), 2) the [O2Hb]-T, and 3) a rating of 13 in perceived exertion (perceptual threshold: RPE13-T). Oxygen uptake at the different thresholds was not significantly different (P>0.05). Moreover, GET and [O2Hb]-T were significantly correlated: 1) to each other (r≥0.79; P≤0.001), and 2) to time-to-exhaustion (r=0.81 and r=0.72, respectively; P<0.01). RPE13-T, however, was not significantly correlated with the time-to-exhaustion (P=0.148). The anaerobic threshold as identified from GET was concomitant to [O2Hb]-T. Both thresholds were correlated to time-to-exhaustion, and could therefore be used as a performance index in middle-duration events.

  19. Retesting The Validity Of A Specific Field Test For Judo Training

    PubMed Central

    Santos, Luis; González, Vicente; Iscar, Marta; Brime, Juan I.; Fernández-Río, Javier; Rodríguez, Blanca; Montoliu, Mª Ángeles

    2011-01-01

    The main goal of this research project was to retest the validity of a specifically designed judo field test (Santos Test) in a different group of judokas. Eight (n=8) national-level male judokas underwent laboratory and field testing. The mean data (mean +/− SD) obtained in the laboratory tests was: HRmax: 200 ± 4.0 beats × min−1, VO2 max: 52.8 ± 7.9 ± ml × kg−1 × min−1, lactate max: 12 ± 2.5 mmol × l−1, HR at the anaerobic threshold: 174.2 ± 9.4 beats × min−1, percentage of maximum heart rate at which the anaerobic threshold appears: 87 ± 3.6 %, lactate threshold: 4.0 ± 0.2 mmol × l−1, and RPE: 17.2 ± 1.0. The mean data obtained in the field test (Santos) was: HRmax: 201.3 ± 4.1 beats × min−1, VO2 max: 55.6 ± 5.8 ml × kg−1 × min−1, lactate max: 15.6 ± 2.8 mmol × l−1, HR at the anaerobic threshold: 173.2 ± 4.3 beats × min−1, percentage of maximum heart rate at which the anaerobic threshold appears: 86 ± 2.5 %, lactate threshold: 4.0 ± 0.2 mmol × l−1, and RPE: 16.7 ± 1.0. There were no significant differences between the data obtained on both tests in any of the parameters, except for maximum lactate concentration. Therefore, the Santos test can be considered a valid tool specific for judo training. PMID:23486994

  20. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data.

    PubMed

    Drakesmith, M; Caeyenberghs, K; Dutt, A; Lewis, G; David, A S; Jones, D K

    2015-09-01

    Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified. Copyright © 2015. Published by Elsevier Inc.

  1. Ambient effect on thermal stability of amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan

    2016-12-01

    The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.

  2. A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718

    NASA Technical Reports Server (NTRS)

    Garr, K. R.; Hresko, G. C., III

    1998-01-01

    Fatigue crack growth rate (FCGR) tests were conducted on Alloy 718 in the solution annealed and aged condition at room temperature. In each test, the FCGR threshold was measured using the decreasing (Delta)K method. Initial testing was at two facilities, one of which used C(T) specimens with W = 127 mm. Previous data at the other facility had been obtained with specimens with W = 50.8 mm. A comparison of test results at R = 0.1 showed that the threshold for the 127 mm specimen was considerably higher than that of the 50.8 mm specimen. A check showed that this difference was not due to a heat-to-heat or lab-to-lab variation. Additional tests were conducted on specimens with W = 25.4 mm and at other R values. Data for the various specimens is presented along with parameters usually used to describe threshold behavior.

  3. Macrophyte Community Response to Nitrogen Loading and Thermal Stressors: Water Residence Time Ameliorates Eutrophication Symptom Expression

    EPA Science Inventory

    Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of ...

  4. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  5. Objective evaluation of cutaneous thermal sensivity

    NASA Technical Reports Server (NTRS)

    Vanbeaumont, W.

    1972-01-01

    The possibility of obtaining reliable and objective quantitative responses was investigated under conditions where only temperature changes in localized cutaneous areas evoked measurable changes in remote sudomotor activity. Both male and female subjects were studied to evaluate sex difference in thermal sensitivity. The results discussed include: sweat rate responses to contralateral cooling, comparison of sweat rate responses between men and women to contralateral cooling, influence of the menstrual cycle on the sweat rate responses to contralateral cooling, comparison of threshold of sweating responses between men and women, and correlation of latency to threshold for whole body sweating. It is concluded that the quantitative aspects of the reflex response is affected by both the density and activation of receptors as well as the rate of heat loss; men responded 8-10% more frequently than women to thermode cooling, the magnitude of responses being greater for men; and women responded 7-9% more frequently to thermode cooling on day 1 of menstruation, as compared to day 15.

  6. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations.

    PubMed

    Kleypas, Joan A; Thompson, Diane M; Castruccio, Frederic S; Curchitser, Enrique N; Pinsky, Malin; Watson, James R

    2016-11-01

    Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone. © 2016 John Wiley & Sons Ltd.

  7. Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation

    NASA Astrophysics Data System (ADS)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2018-05-01

    A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.

  8. The effect of cockpit noise on the temporary threshold shift of Cessna 172SP flight instructors

    NASA Astrophysics Data System (ADS)

    Bellini, Andrew Robert

    The purpose of this thesis was to study the temporary threshold shift of general aviation flight instructors resulting from their working environment. Exposure to noise before a temporary threshold shift completely recovers can cause a permanent threshold shift with no possibility of recovery, resulting in permanent hearing loss. A result showing minimal to no temporary threshold shift would indicate that hearing personal protective equipment is working properly. This study used sound-level measurements, and audiometric testing, together with survey data to determine whether or not flight instructors were at risk for potential hearing impairment due to temporary threshold shift. Independent t-tests and descriptive statistics were used in analyzing the data. It was determined that there was a difference in temporary threshold shift based on the number of hours a flight instructor flies in a Cessna 172SP for only one frequency - 2000Hz in the left ear. All other frequencies tested in both ears showed no difference. Because there was a very low mean temporary threshold shift at 2000Hz in the left ear and no differences shown for all other frequencies in both ears, it was concluded that there was no need to improve or require additional hearing personal protective equipment, or to require decreased exposure times to aircraft noise.

  9. Spontaneous magnetic fluctuations and collisionless regulation of the Earth's plasma sheet

    NASA Astrophysics Data System (ADS)

    Moya, P. S.; Espinoza, C.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    Even in the absence of instabilities, plasmas often exhibit inherent electromagnetic fluctuations which are present due to the thermal motion of charged particles, sometimes called thermal (quasi-thermal) noise. One of the fundamental and challenging problems of laboratory, space, and astrophysical plasma physics is the understanding of the relaxation processes of nearly collisionless plasmas, and the resultant state of electromagnetic plasma turbulence. The study of thermal fluctuations can be elegantly addressed by using the Fluctuation-Dissipation Theorem that describes the average amplitude of the fluctuations through correlations of the linear response of the media with the perturbations of the equilibrium state (the dissipation). Recently, it has been shown that solar wind plasma beta and temperature anisotropy observations are bounded by kinetic instabilities such as the ion cyclotron, mirror, and firehose instabilities. The magnetic fluctuations observed within the bounded area are consistent with the predictions of the Fluctuation-Dissipation theorem even far below the kinetic instability thresholds, with an enhancement of the fluctuation level near the thresholds. Here, for the very first time, using in-situ magnetic field and plasma data from the THEMIS spacecraft, we show that such regulation also occurs in the Earth's plasma sheet at the ion scales and that, regardless of the clear differences between the solar wind and the magnetosphere environments, spontaneous fluctuation and their collisionless regulation seem to be fundamental features of space and astrophysical plasmas, suggesting the universality of the processes.

  10. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization

    NASA Astrophysics Data System (ADS)

    Pérez, J. B.; Arce, J. C.

    2018-06-01

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ˜1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  11. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization.

    PubMed

    Pérez, J B; Arce, J C

    2018-06-07

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ∼1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  12. Formation resistivity as an indicator of oil generation in black shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less

  13. The effects of thermal stimulation on clinical and experimental itch.

    PubMed

    Fruhstorfer, H; Hermanns, M; Latzke, L

    1986-02-01

    In order to substantiate accidental observations on the influence of skin temperature on itch, and to elucidate a possible involvement of thermoreceptors in itch generation, the effects of thermostimulation on clinical and experimental itch were studied. Eighteen patients with atopic dermatitis rated the intensity of spontaneous itch on one of their forearms before, during, and after its immersion in a waterbath of either 10 degrees C or 45 degrees C. In 40 normal subjects itch was elicited by histamine topically applied to a 7 cm2 skin area of the volar forearm. Before and after histamine application thermal thresholds were recorded. Then the skin area was heated or cooled at a rate of 0.5 degrees C/sec and itch intensity was continuously rated. Cooling abolished itch in all patients and in most of the normal subjects. Heating produced less clear effects: in two-thirds of both patients and normal subjects itch disappeared or was reduced whereas in the others itch was aggravated. Usually after the end of thermostimulation the opposite changes in itch intensity occurred. In the normal subjects thermal thresholds were not significantly influenced by histamine. Over a certain temperature range itch and thermal sensations could coexist as separate modalities. The results indicate that changes in skin temperature have a marked influence on itch intensity. Whereas cooling seems to act directly on the sensory receptors mediating itch, warm stimuli could have a central inhibitory effect. A direct role of thermoreceptors in the generation of itch is improbable.

  14. Role of ocular VEMP test in assessing the occurrence of vertigo in otosclerosis patients.

    PubMed

    Lin, Kuei-You; Young, Yi-Ho

    2015-01-01

    This study adopted an inner ear test battery comprising audiometry, caloric test, ocular vestibular-evoked myogenic potential (oVEMP) test and cervical VEMP (cVEMP) test to find the factors related to the occurrence of vertigo in patients with otosclerosis. Fifty otosclerosis patients comprising 27 patients with vertigo (Group A) and 23 patients without vertigo/dizziness (Group B) were enrolled. Each patient underwent otoscopy, image study, audiometry, caloric test, and oVEMP and cVEMP tests via bone vibration stimuli. The sequence of inner ear deficits in Group A was in the order from oVEMP test (84%), cVEMP test (51%), caloric test (38%) and mean bone-conducted (BC) hearing threshold (14%), exhibiting a significantly declining trend (p<0.001). The rate of inner ear dysfunction in Group B also declined significantly but in a different order - cVEMP test (55%), oVEMP test (52%), mean BC hearing threshold (33%), and caloric test (18%). Comparison between the two groups revealed a significant difference in the oVEMP test results (p<0.01), but not in the results of the BC hearing threshold, caloric test or cVEMP test (p>0.05). Further, no significant differences existed between the BC hearing threshold and vestibular function test results. Otosclerosis patients with vertigo have more frequent abnormalities of oVEMPs to impulsive stimulation than do those without, consistent with more frequent abnormalities of the utricle. Abnormalities of oVEMPs and cVEMPs are more frequent than for caloric testing and BC hearing thresholds. The relative frequency of abnormalities may reflect the degree of pathological involvement of the utricle, saccule, semicircular canals and cochlea in otosclerosis patients with vertigo. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Stochastic IMT (Insulator-Metal-Transition) Neurons: An Interplay of Thermal and Threshold Noise at Bifurcation

    PubMed Central

    Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit

    2018-01-01

    Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO2) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms. PMID:29670508

  16. Stochastic IMT (Insulator-Metal-Transition) Neurons: An Interplay of Thermal and Threshold Noise at Bifurcation.

    PubMed

    Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit

    2018-01-01

    Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO 2 ) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms.

  17. Cold-induced vasodilation during single digit immersion in 0°C and 8°C water in men and women.

    PubMed

    Tyler, Christopher James; Reeve, Tom; Cheung, Stephen S

    2015-01-01

    The present study compared the thermal responses of the finger to 0 and 8°C water immersion, two commonly used temperatures for cold-induced vasodilation (CIVD) research. On two separate and counterbalanced occasions 15 male and 15 female participants immersed their index finger in 20°C water for 5 min followed by either 0 or 8°C water for 30 min. Skin temperature, cardiovascular and perceptual data were recorded. Secondary analyses were performed between sexes and comparing 0.5, 1 and 4°C CIVD amplitude thresholds. With a 0.5°C threshold, CIVD waves were more prevalent in 8°C (2 (1-3) than in 0°C (1.5 (0-3)), but the amplitude was lower (4.0 ± 2.3 v 9.2 ± 4.0°C). Mean, minimum and maximum finger temperatures were lower in 0°C during the 30 min immersion, and CIVD onset and peak time occurred later in 0°C. Thermal sensation was lower and pain sensation was higher in 0°C. There were no differences between males and females in any of the physiological or CIVD data with the exception of SBP, which was higher in males. Females reported feeling higher thermal sensations in 8°C and lower pain sensations in 0°C and 8°C compared to males. Fewer CIVD responses were observed when using a 4°C (1 (0-3)) threshold to quantify a CIVD wave compared to using a 1°C (2 (0-3)) or 0.5°C (2 (0-3)) amplitude. In conclusion, both 0 and 8 °C can elicit CIVD but 8°C may be more suitable when looking to optimise the number of CIVD waves while minimising participant discomfort. The CIVD response to water immersion does not appear to be influenced by sex. Researchers should consider the amplitude threshold that was used to determine a CIVD wave when interpreting previous data.

  18. Apollo telescope mount thermal systems unit thermal vacuum test

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  19. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  20. Effects of programming threshold and maplaw settings on acoustic thresholds and speech discrimination with the MED-EL COMBI 40+ cochlear implant.

    PubMed

    Boyd, Paul J

    2006-12-01

    The principal task in the programming of a cochlear implant (CI) speech processor is the setting of the electrical dynamic range (output) for each electrode, to ensure that a comfortable loudness percept is obtained for a range of input levels. This typically involves separate psychophysical measurement of electrical threshold ([theta] e) and upper tolerance levels using short current bursts generated by the fitting software. Anecdotal clinical experience and some experimental studies suggest that the measurement of [theta]e is relatively unimportant and that the setting of upper tolerance limits is more critical for processor programming. The present study aims to test this hypothesis and examines in detail how acoustic thresholds and speech recognition are affected by setting of the lower limit of the output ("Programming threshold" or "PT") to understand better the influence of this parameter and how it interacts with certain other programming parameters. Test programs (maps) were generated with PT set to artificially high and low values and tested on users of the MED-EL COMBI 40+ CI system. Acoustic thresholds and speech recognition scores (sentence tests) were measured for each of the test maps. Acoustic thresholds were also measured using maps with a range of output compression functions ("maplaws"). In addition, subjective reports were recorded regarding the presence of "background threshold stimulation" which is occasionally reported by CI users if PT is set to relatively high values when using the CIS strategy. Manipulation of PT was found to have very little effect. Setting PT to minimum produced a mean 5 dB (S.D. = 6.25) increase in acoustic thresholds, relative to thresholds with PT set normally, and had no statistically significant effect on speech recognition scores on a sentence test. On the other hand, maplaw setting was found to have a significant effect on acoustic thresholds (raised as maplaw is made more linear), which provides some theoretical explanation as to why PT has little effect when using the default maplaw of c = 500. Subjective reports of background threshold stimulation showed that most users could perceive a relatively loud auditory percept, in the absence of microphone input, when PT was set to double the behaviorally measured electrical thresholds ([theta]e), but that this produced little intrusion when microphone input was present. The results of these investigations have direct clinical relevance, showing that setting of PT is indeed relatively unimportant in terms of speech discrimination, but that it is worth ensuring that PT is not set excessively high, as this can produce distracting background stimulation. Indeed, it may even be set to minimum values without deleterious effect.

  1. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study.

    PubMed

    Cain, D M; Khasabov, S G; Simone, D A

    2001-04-01

    The increasing use of transgenic mice for the study of pain mechanisms necessitates comprehensive understanding of the murine somatosensory system. Using an in vivo mouse preparation, we studied response properties of tibial nerve afferent fibers innervating glabrous skin. Recordings were obtained from 225 fibers identified by mechanical stimulation of the skin. Of these, 106 were classed as A beta mechanoreceptors, 51 as A delta fibers, and 68 as C fibers. A beta mechanoreceptors had a mean conduction velocity of 22.2 +/- 0.7 (SE) m/s (13.8--40.0 m/s) and a median mechanical threshold of 2.1 mN (0.4--56.6 mN) and were subclassed as rapidly adapting (RA, n = 75) or slowly adapting (SA, n = 31) based on responses to constant force mechanical stimuli. Conduction velocities ranged from 1.4 to 13.6 m/s (mean 7.1 +/- 0.6 m/s) for A delta fibers and 0.21 to 1.3 m/s (0.7 +/- 0.1 m/s) for C fibers. Median mechanical thresholds were 10.4 and 24.4 mN for A delta and C fibers, respectively. Responses of A delta and C fibers evoked by heat (35--51 degrees C) and by cold (28 to -12 degrees C) stimuli were determined. Mean response thresholds of A delta fibers were 42.0 +/- 3.1 degrees C for heat and 7.6 +/- 3.8 degrees C for cold, whereas mean response thresholds of C fibers were 40.3 +/- 0.4 degrees C for heat and 10.1 +/- 1.9 degrees C for cold. Responses evoked by heat and cold stimuli increased monotonically with stimulus intensity. Although only 12% of tested A delta fibers were heat sensitive, 50% responded to cold. Only one A delta nociceptor responded to both heat and cold stimuli. In addition, 40% of A delta fibers were only mechanosensitive since they responded neither to heat nor to cold stimuli. Thermal stimuli evoked responses from the majority of C fibers: 82% were heat sensitive, while 77% of C fibers were excited by cold, and 68% were excited by both heat and cold stimuli. Only 11% of C fibers were insensitive to heat and/or cold. This in vivo study provides an analysis of mouse primary afferent fibers innervating glabrous skin including new information on encoding of noxious thermal stimuli within the peripheral somatosensory system of the mouse. These results will be useful for future comparative studies with transgenic mice.

  2. High-frequency electroacupuncture versus carprofen in an incisional pain model in rats.

    PubMed

    Teixeira, F M; Castro, L L; Ferreira, R T; Pires, P A; Vanderlinde, F A; Medeiros, M A

    2012-12-01

    The objective of the present study was to compare the effect of electroacupuncture (EA) and carprofen (CP) on postoperative incisional pain using the plantar incision (PI) model in rats. A 1-cm longitudinal incision was made through skin, fascia and muscles of a hind paw of male Wistar rats and the development of mechanical and thermal hypersensitivity was determined over 4 days using the von Frey and Hargreaves methods, respectively. Based on the experimental treatments received on the third postoperative day, the animals were divided into the following groups: PI+CP (CP, 2 mg/kg, po); PI+EAST36 (100-Hz EA applied bilaterally at the Zusanli point (ST36)); PI+EANP (EA applied to a non-acupoint region); PI+IMMO (immobilization only); PI (vehicle). In the von Frey test, the PI+EAST36 group had higher withdrawal force thresholds in response to mechanical stimuli than the PI, PI+IMMO and PI+EANP groups at several times studied. Furthermore, the PI+EAST36 group showed paw withdrawal thresholds in response to mechanical stimuli that were similar to those of the PI+CP group. In the Hargreaves test, all groups had latencies higher than those observed with PI. The PI+EAST36 group was similar to the PI+IMMO, PI+EANP and PI+CP groups. We conclude that 100-Hz EA at the ST36 point, but not at non-acupoints, can reduce mechanical nociception in the rat model of incisional pain, and its effectiveness is comparable to that of carprofen.

  3. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  4. Are pain location and physical examinations useful in locating a tear site of the rotator cuff?

    PubMed

    Itoi, Eiji; Minagawa, Hiroshi; Yamamoto, Nobuyuki; Seki, Nobutoshi; Abe, Hidekazu

    2006-02-01

    Pain is the most common symptom of patients with rotator cuff tendinopathy, but little is known about the relationship between the site of pain and the site of cuff pathologic lesions. Also, accuracies of physical examinations used to locate a tear by assessing the muscle strength seem to be affected by the threshold for muscle weakness, but no studies have been reported regarding the efficacies of physical examinations in reference to their threshold. Pain location is useful in locating a tear site. Efficacies of physical examinations to evaluate the function of the cuff muscles depend on the threshold for muscle weakness. Case series; Level of evidence, 4. The authors retrospectively reviewed the clinical charts of 160 shoulders of 149 patients (mean age, 53 years) with either rotator cuff tears (140 shoulders) or cuff tendinitis (20 shoulders). The location of pain was recorded on a standardized form with 6 different areas. The diagnostic accuracies of the following tests were assessed with various thresholds for muscle weakness: supraspinatus test, the external rotation strength test, and the lift-off test. Lateral and anterior portions of the shoulder were the most common sites of pain regardless of existence of tear or tear location. The supraspinatus test was most accurate when it was assessed to have positive results with the muscle strength less than manual muscle testing grade 5, whereas the lift-off test was most accurate with a threshold less than grade 3. The external rotation strength test was most accurate with a threshold of less than grade 4+. The authors conclude that pain location is not useful in locating the site of a tear, whereas the physical examinations aiming to locate the tear site are clinically useful when assessed to have positive results with appropriate threshold for muscle weakness.

  5. Evaluation of Anticonvulsant, Antidepressant-, and Anxiolytic-like Effects of an Aqueous Extract from Cultured Mycelia of the Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Higher Basidiomycetes) in Mice.

    PubMed

    Socala, Katarzyna; Nieoczym, Dorota; Grzywnowicz, Krzysztof; Stefaniuk, Dawid; Wlaz, Piotr

    2015-01-01

    Ganoderma lucidum is a well-known medicinal mushroom with a long history of use. This study was designed to assess the anticonvulsant potential of an aqueous extract from cultured G. lucidum mycelium in 3 acute seizure models: timed intravenous pentylenetetrazole infusion, maximal electroshock seizure threshold, and 6-Hz-induced psychomotor seizure tests in mice. Moreover, antidepressant-like and anxiolytic-like effects of G. lucidum were evaluated using the forced swim test and the elevated plus maze test in mice, respectively. No changes in seizure thresholds in the intravenous pentylenetetrazole and maximal electroshock seizure threshold tests after acute treatment with G. lucidum extract (200-600 mg/kg) was observed. However, the studied extract (100-400 mg/kg) significantly increased the threshold for psychomotor seizures in the 6-Hz seizure test. In the forced swim test, G. lucidum (100-400 mg/kg) significantly reduced the duration of immobility. No anxiolytic-like or sedative effects were reported in mice pretreated with the extract (400-600 mg/kg). G. lucidum extract (50-2400 mg/kg) did not produce toxic effects in the chimney test (motor coordination) or grip-strength test (neuromuscular strength). Further studies are required to explain the neuropharmacological effects of G. lucidum and to identify its active ingredients that may affect seizure threshold, mood, or anxiety.

  6. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    NASA Astrophysics Data System (ADS)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  7. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2.

    PubMed

    Liu, Beiying; Qin, Feng

    2016-04-12

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Salicylate-induced changes in auditory thresholds of adolescent and adult rats.

    PubMed

    Brennan, J F; Brown, C A; Jastreboff, P J

    1996-01-01

    Shifts in auditory intensity thresholds after salicylate administration were examined in postweanling and adult pigmented rats at frequencies ranging from 1 to 35 kHz. A total of 132 subjects from both age levels were tested under two-way active avoidance or one-way active avoidance paradigms. Estimated thresholds were inferred from behavioral responses to presentations of descending and ascending series of intensities for each test frequency value. Reliable threshold estimates were found under both avoidance conditioning methods, and compared to controls, subjects at both age levels showed threshold shifts at selective higher frequency values after salicylate injection, and the extent of shifts was related to salicylate dose level.

  9. Sensory function after cavernous haemangioma: a case report of thermal hypersensitivity at and below an incomplete spinal cord injury.

    PubMed

    Gómez-Soriano, J; Goiriena, E; Florensa-Vila, J; Gómez-Arguelles, J M; Mauderli, A; Vierck, C J; Albu, S; Simón-Martinez, C; Taylor, J

    2012-09-01

    Case report of a 42-year-old woman with non-evoked pain diagnosed with a cavernous C7-Th6 spinal haemangioma. To assess the effect of intramedullary haemorrhage (IH) on nociception and neuropathic pain (NP) at and below an incomplete spinal cord injury (SCI). Sensorimotor Function Group, Hospital Nacional de Parapléjicos de Toledo (HNPT). T2*-susceptibility weighted image (SWI) magnetic resonance imaging (MRI) of spinal haemosiderin and a complete pain history were performed 8 months following initial dysaesthesia complaint. Thermal pain thresholds were assessed with short 1 s stimuli, while evidence for central sensitization was obtained with psychophysical electronic Visual Analogue Scale rating of tonic 10 s 3 °C and 48 °C stimuli, applied at and below the IH. Control data were obtained from 10 healthy volunteers recruited from the HNPT. Non-evoked pain was present within the Th6 dermatome and lower legs. T2*-SWI MRI imaging detected extensive haemosiderin-rich IH (C7-Th5/6 spinal level). Cold allodynia was detected below the IH (left L5 dermatome) with short thermal stimuli. Tonic thermal stimuli applied to the Th6, Th10 and C7 dermatomes revealed widespread heat and cold allodynia. NP was diagnosed following IH, corroborated by an increase in below-level cold pain threshold with at- and below-level cold and heat allodynia. Psychophysical evidence for at- and below-level SCI central sensitization was obtained with tonic thermal stimuli. Early detection of IH could lead to better management of specific NP symptoms, an appreciation of the role of haemorrhage as an aggravating SCI physical factor, and the identification of specific spinal pathophysiological pain mechanisms.

  10. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J.; Reininghaus, M.

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation ofmore » ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.« less

  11. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  12. Establishing the thermal threshold of the tropical mussel Perna viridis in the face of global warming.

    PubMed

    Goh, B P L; Lai, C H

    2014-08-30

    With increasing recognition that maximum oxygen demand is the unifying limit in tolerance, the first line of thermal sensitivity is, as a corollary, due to capacity limitations at a high level of organisational complexity before individual, molecular or membrane functions become disturbed. In this study the tropical mussel Perna viridis were subjected to temperature change of 0.4 °C per hour from ambient to 8-36 °C. By comparing thermal mortality against biochemical indices (hsp70, gluthathione), physiological indices (glycogen, FRAP, NRRT) and behavioural indices (clearance rate), a hierarchy of thermal tolerance was therein elucidated, ranging from systemic to cellular to molecular levels. Generally, while biochemical indices indicated a stress signal much earlier than the more integrated behavioural indices, failure of the latter (indicating a tolerance limit and transition to pejus state) occurred much earlier than the other indices tending towards thermal extremities at both ends of the thermal spectrum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Thermal dose dependent optical property changes of ex vivo chicken breast tissues between 500 and 1100 nm.

    PubMed

    Adams, Matthew T; Wang, Qi; Cleveland, Robin O; Roy, Ronald A

    2014-07-07

    This study examines the effectiveness of the thermal dose model in accurately predicting thermally induced optical property changes of ex vivo chicken breast between 500-1100 nm. The absorption coefficient, μa, and the reduced scattering coefficient, μ's, of samples are measured as a function of thermal dose over the range 50 °C-70 °C. Additionally, the maximum observable changes in μa and μ's are measured as a function of temperature in the range 50 °C-90 °C. Results show that the standard thermal dose model used in the majority of high-intensity focused ultrasound (HIFU) treatments is insufficient for modeling optical property changes, but that the isodose constant may be modified in order to better predict thermally induced changes. Additionally, results are presented that show a temperature dependence on changes in the two coefficients, with an apparent threshold effect occurring between 65 °C-70 °C.

  14. Comparisons between detection threshold and loudness perception for individual cochlear implant channels

    PubMed Central

    Bierer, Julie Arenberg; Nye, Amberly D

    2014-01-01

    Objective The objective of the present study, performed in cochlear implant listeners, was to examine how the level of current required to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception. Design Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing – those with the highest, median, and lowest thresholds – for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various partial tripolar fractions. Results For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations. Conclusions Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields. PMID:25036146

  15. Preclinical evaluation of a low-frequency transcranial MRI-guided focused ultrasound system in a primate model

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Livingstone, Margaret; Barış Top, Can; Sutton, Jonathan; Todd, Nick; Vykhodtseva, Natalia

    2016-11-01

    This study investigated thermal ablation and skull-induced heating with a 230 kHz transcranial MRI-guided focused ultrasound (TcMRgFUS) system in nonhuman primates. We evaluated real-time acoustic feedback and aimed to understand whether cavitation contributed to the heating and the lesion formation. In four macaques, we sonicated thalamic targets at acoustic powers of 34-560 W (896-7590 J). Tissue effects evaluated with MRI and histology were compared to MRI-based temperature and thermal dose measurements, acoustic emissions recorded during the experiments, and acoustic and thermal simulations. Peak temperatures ranged from 46 to 57 °C, and lesions were produced in 5/8 sonicated targets. A linear relationship was observed between the applied acoustic energy and both the focal and brain surface heating. Thermal dose thresholds were 15-50 cumulative equivalent minutes at 43 °C, similar to prior studies at higher frequencies. Histology was also consistent with earlier studies of thermal effects in the brain. The system successfully controlled the power level and maintained a low level of cavitation activity. Increased acoustic emissions observed in 3/4 animals occurred when the focal temperature rise exceeded approximately 16 °C. Thresholds for thermally-significant subharmonic and wideband emissions were 129 and 140 W, respectively, corresponding to estimated pressure amplitudes of 2.1 and 2.2 MPa. Simulated focal heating was consistent with the measurements for sonications without thermally-significant acoustic emissions; otherwise it was consistently lower than the measurements. Overall, these results suggest that the lesions were produced by thermal mechanisms. The detected acoustic emissions, however, and their association with heating suggest that cavitation might have contributed to the focal heating. Compared to earlier work with a 670 kHz TcMRgFUS system, the brain surface heating was substantially reduced and the focal heating was higher with this 230 kHz system, suggesting that a reduced frequency can increase the treatment envelope for TcMRgFUS and potentially reduce the risk of skull heating.

  16. Short-term toxicity of 1-methylnaphthalene to Americamysis bahia and 5 deep-sea crustaceans.

    PubMed

    Knap, Anthony; Turner, Nicholas R; Bera, Gopal; Renegar, D Abigail; Frank, Tamara; Sericano, Jose; Riegl, Bernhard M

    2017-12-01

    There are few studies that have evaluated hydrocarbon toxicity to vertically migrating deep-sea micronekton. Crustaceans were collected alive using a 9-m 2 Tucker trawl with a thermally insulated cod end and returned to the laboratory in 10 °C seawater. Toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to Americamysis bahia, Janicella spinacauda, Systellaspis debilis, Sergestes sp., Sergia sp., and a euphausiid species was assessed in a constant exposure toxicity test utilizing a novel passive dosing toxicity testing protocol. The endpoint of the median lethal concentration tests was mortality, and the results revealed high sensitivity of the deep-sea micronekton compared with other species for which these data are available. Threshold concentrations were also used to calculate critical target lipid body burdens using the target lipid model. Environ Toxicol Chem 2017;36:3415-3423. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  17. Implementing Recommendations of the Columbia Accident Investigation Board: Development of On-Orbit IR Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian P.; Parker, Bradford; Stephan, Ryan

    2005-01-01

    One of NASA's Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during reentry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  18. In vitro infrared thermography assessment of temperature peaks during the intra-oral welding of titanium abutments

    NASA Astrophysics Data System (ADS)

    Degidi, Marco; Nardi, Diego; Sighinolfi, Gianluca; Merla, Arcangelo; Piattelli, Adriano

    2012-07-01

    Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.

  19. Implementing Recommendations of the Columbia Accident Investigation Board - Development of on-Orbit RCC Thermography

    NASA Technical Reports Server (NTRS)

    Ottens, Brian; Parker, Brad; Stephen, Ryan

    2005-01-01

    One of NASA s Space Shuttle Return-to-Flight (RTF) efforts has been to develop thermography for the on-orbit inspection of the Reinforced Carbon Carbon (RCC) portion of the Orbiter Wing Leading Edge (WLE). This paper addresses the capability of thermography to detect cracks in RCC by using in-plane thermal gradients that naturally occur on-orbit. Crack damage, which can result from launch debris impact, is a detection challenge for other on-orbit sensors under consideration for RTF, such as the Intensified Television Camera and Laser Dynamic Range Imager. We studied various cracks in RCC, both natural and simulated, along with material characteristics, such as emissivity uniformity, in steady-state thermography. Severity of crack, such as those likely and unlikely to cause burn through were tested, both in-air and in-vacuum, and the goal of this procedure was to assure crew and vehicle safety during re-entry by identification and quantification of a damage condition while on-orbit. Expected thermal conditions are presented in typical shuttle orbits, and the expected damage signatures for each scenario are presented. Finally, through statistical signal detection, our results show that even at very low in-plane thermal gradients, we are able to detect damage at or below the threshold for fatality in the most critical sections of the WLE, with a confidence exceeding 1 in 10,000 probability of false negative.

  20. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen

    2015-09-01

    We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.

Top