MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E
2009-01-20
The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less
Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; Dwivedi, B. N.
2006-11-01
aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.
Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong
NASA Astrophysics Data System (ADS)
Cheng, Vicky; Ng, Edward; Chan, Cecilia; Givoni, Baruch
2012-01-01
This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments—an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index—physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.
Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong.
Cheng, Vicky; Ng, Edward; Chan, Cecilia; Givoni, Baruch
2012-01-01
This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments--an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index--physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.
Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil
NASA Astrophysics Data System (ADS)
Park, Heecheol; Kim, A.-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun
2014-09-01
For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K.
Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.
2004-01-01
In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .
Proceedings: Panel on Information Dissemination for Wind Energy
NASA Astrophysics Data System (ADS)
Weis, P.
1980-04-01
A program for coordinating and strengthening technical information activities related to the commercialization of solar energy research and development results is described. The program contains a project for each of the following technologies: biomass; ocean thermal energy conversion; photovoltaics; solar thermal power; and wind energy conversion systems. In addition to the production and dissemination of several types of information materials, the wind energy project aims to support efforts of others in the field. The meeting is the first attempt to acquaint people with the information activities of others, to discuss information needs as an aid to planning, and to promote cooperation in disseminating information on wind energy.
Statistical analysis and use of the VAS radiance data
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1984-01-01
Special radiosonde soundings at 75 km spacings and 3 hour intervals provided an opportunity to learn more about mesoscale data and storm-environment interactions. Relatively small areas of intense convection produce major changes in surrounding fields of thermodynamic, kinematic, and energy variables. The Red River Valley tornado outbreak was studied. Satellite imagery and surface data were used to specify cloud information needed in the radiative heating/cooling calculations. A feasibility study for computing boundary layer winds from satellite-derived thermal data was completed. Winds obtained from TIROS-N retrievals compared very favorably with corresponding values from concurrent rawisonde thermal data, and both sets of thermally-derived winds showed good agreements with observed values.
Heating of Solar Wind Ions via Cyclotron Resonance
NASA Astrophysics Data System (ADS)
Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.
2017-12-01
Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.
Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor
2004-01-01
The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.
Effects of anisotropic thermal conduction on wind properties in hot accretion flow
NASA Astrophysics Data System (ADS)
Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei
2016-06-01
Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.
Prediction of air temperature for thermal comfort of people in outdoor environments
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2007-05-01
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.
Thermal responses and perceptions under distinct ambient temperature and wind conditions.
Shimazaki, Yasuhiro; Yoshida, Atsumasa; Yamamoto, Takanori
2015-01-01
Wind conditions are widely recognized to influence the thermal states of humans. In this study, we investigated the relationship between wind conditions and thermal perception and energy balance in humans. The study participants were exposed for 20 min to 3 distinct ambient temperatures, wind speeds, and wind angles. During the exposure, the skin temperatures as a physiological reaction and mental reactions of the human body were measured and the energy balance was calculated based on the human thermal-load method. The results indicate that the human thermal load is an accurate indicator of human thermal states under all wind conditions. Furthermore, wind speed and direction by themselves do not account for the human thermal experience. Because of the thermoregulation that occurs to prevent heat loss and protect the core of the body, a low skin temperature was maintained and regional differences in skin temperature were detected under cool ambient conditions. Thus, the human thermal load, which represents physiological parameters such as skin-temperature change, adequately describes the mixed sensation of the human thermal experience. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal winds in stellar mass black hole and neutron star binary systems
NASA Astrophysics Data System (ADS)
Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki
2018-01-01
Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.
Jussila, Kirsi; Rissanen, Sirkka; Parkkola, Kai; Anttonen Hannu
2014-12-01
Prehospital maritime transportation in northern areas sets high demands on hypothermia prevention. To prevent body cooling and hypothermia of seriously-ill or injured casualties during transportation, casualty coverings must provide adequate thermal insulation and protection against cold, wind, moisture, and water splashes. The aim of this study was to determine the thermal protective properties of different types of casualty coverings and to evaluate which would be adequate for use under difficult maritime conditions (cold, high wind speed, and water splashes). In addition, the study evaluated the need for thermal protection of a casualty and verified the optimum system for maritime casualty transportation. The study consisted of two parts: (1) the definition and comparison of the thermal protective properties of different casualty coverings in a laboratory; and (2) the evaluation of the chosen optimum protective covering for maritime prehospital transportation. The thermal insulations of ten different casualty coverings were measured according to the European standard for sleeping bags (EN 13537) using a thermal manikin in a climate chamber (-5°C) with wind speeds of 0.3 m/s and 4.0 m/s, and during moisture simulations. The second phase consisted of measurements of skin and core temperatures, air temperature, and relative humidity inside the clothing of four male test subjects during authentic maritime prehospital transportation in a partially-covered motor boat. Wind (4 m/s) decreased the total thermal insulation of coverings by 11%-45%. The decrement of thermal insulation due to the added moisture inside the coverings was the lowest (approximately 22%-29%) when a waterproof reflective sheet inside blankets or bubble wrap was used, whereas vapor-tight rescue bags and bubble wrap provide the most protection against external water splashes. During authentic maritime transportation lasting 30 minutes, mean skin temperature decreased on average by 0.5°C when a windproof and water-resistant rescue bag was used over layered winter clothing. The selected optimum rescue bag consisted of insulating and water-resistant layers providing sufficient protection against cold, wind, and water splashes during prehospital transportation lasting 30 minutes in the uncovered portion of a motor boat. The minimum thermal insulation for safe maritime transportation (30 minutes) is 0.46 m²K/W at a temperature of -5°C and a wind speed of 10 m/s.
NASA Technical Reports Server (NTRS)
Frost, W.; Long, B. H.; Turner, R. E.
1978-01-01
The guidelines are given in the form of design criteria relative to wind speed, wind shear, turbulence, wind direction, ice and snow loading, and other climatological parameters which include rain, hail, thermal effects, abrasive and corrosive effects, and humidity. This report is a presentation of design criteria in an engineering format which can be directly input to wind turbine generator design computations. Guidelines are also provided for developing specialized wind turbine generators or for designing wind turbine generators which are to be used in a special region of the United States.
Influence of winding construction on starter-generator thermal processes
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-01-01
Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.
Potential impacts of climate variability on respiratory morbidity in children, infants, and adults.
Souza, Amaury de; Fernandes, Widinei Alves; Pavão, Hamilton Germano; Lastoria, Giancarlo; Albrez, Edilce do Amaral
2012-01-01
To determine whether climate variability influences the number of hospitalizations for respiratory diseases in infants, children, and adults in the city of Campo Grande, Brazil. We used daily data on admissions for respiratory diseases, precipitation, air temperature, humidity, and wind speed for the 2004-2008 period. We calculated the thermal comfort index, effective temperature, and effective temperature with wind speed (wind-chill or heat index) using the meteorological data obtained. Generalized linear models, with Poisson multiple regression, were used in order to predict hospitalizations for respiratory disease. The variables studied were (collectively) found to show relatively high correlation coefficients in relation to hospital admission for pneumonia in children (R² = 68.4%), infants (R² = 71.8%), and adults (R² = 81.8%). Our results indicate a quantitative risk for an increase in the number of hospitalizations of children, infants, and adults, according to the increase or decrease in temperature, humidity, precipitation, wind speed, and thermal comfort index in the city under study.
Understanding thermal circulations and near-surface turbulence processes in a small mountain valley
NASA Astrophysics Data System (ADS)
Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.
2017-12-01
The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.
Electric Motor Thermal Management Research: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin S.
Past work in the area of active convective cooling provided data on the average convective heat transfer coefficients of circular orifice automatic transmission fluid (ATF) jets impinging on stationary targets intended to represent the wire bundle surface of the motor end-winding. Work during FY16 focused on the impact of alternative jet geometries that could lead to improved cooling over a larger surface of the motor winding. Results show that the planar jet heat transfer coefficients over a small (12.7-mm-diameter) target surface are not too much lower than for the circular orifice jet in which all of the ATF from themore » jet impinges on the target surface. The planar jet has the potential to achieve higher heat transfer over a larger area of the motor end winding. A new test apparatus was constructed to measure the spatial dependence of the heat transfer relative to the jet nozzle over a larger area representative of a motor end-winding. The tested planar flow geometry has the potential to provide more uniform cooling over the full end-winding surface versus the conventional jet configuration. The data will be used by motor designers to develop thermal management strategies to improve motor power density. Work on passive thermal design in collaboration with Oak Ridge National Laboratory to measure the thermal conductivity of wire bundle samples representative of end-winding and slot-winding materials was completed. Multiple measurement techniques were compared to determine which was most suitable for measuring composite wire bundle samples. NREL used a steady-state thermal resistance technique to measure the direction-dependent thermal conductivity. The work supported new interactions with industry to test new materials and reduce passive-stack thermal resistance in motors, leading to motors with increased power density. NREL collaborated with Ames Laboratory in the area of material characterization. The work focused on measuring the transverse rupture strength of new magnet materials developed at Ames. The impact of the improved transverse rupture strength is a mechanically stronger magnet that is easier for manufacturers to implement into motor designs. The thermal conductivity of the new magnet materials was also measured in comparison to two commercially available AlNiCo magnet materials. The impact of the thermal conductivity of the magnet material will need to be analyzed in the context of a motor application.« less
Effects of wind application on thermal perception and self-paced performance.
Teunissen, L P J; de Haan, A; de Koning, J J; Daanen, H A M
2013-07-01
Physiological and perceptual effects of wind cooling are often intertwined and have scarcely been studied in self-paced exercise. Therefore, we aimed to investigate (1) the independent perceptual effect of wind cooling and its impact on performance and (2) the responses to temporary wind cooling during self-paced exercise. Ten male subjects completed four trials involving 15 min standardized incremental intensity cycling, followed by a 15-km self-paced cycling time trial. Three trials were performed in different climates inducing equivalent thermal strain: hot humid with wind (WIND) and warm humid (HUMID) and hot dry (DRY) without wind. The fourth trial (W3-12) was equal to HUMID, except that wind cooling was unexpectedly provided during kilometers 3-12. Physiological, perceptual and performance parameters were measured. Subjects felt generally cooler during the WIND than the HUMID and DRY trials, despite similar heart rate, rectal and skin temperatures and a WBGT of ~4 °C higher. The cooler thermal sensation was not reflected in differences in thermal comfort or performance. Comparing W3-12 to HUMID, skin temperature was 1.47 ± 0.43 °C lower during the wind interval, leading to more favorable ratings of perceived exertion, thermal sensation and thermal comfort. Overall, power output was higher in the W3-12 than the HUMID-trial (256 ± 29 vs. 246 ± 22 W), leading to a 67 ± 48 s faster finish time. In conclusion, during self-paced exercise in the heat, wind provides immediate and constant benefits in physiological strain, thermal perception and performance. Independent of physiological changes, wind still provides a greater sensation of coolness, but does not impact thermal comfort or performance.
Experimental constraints on impact-induced winds
NASA Astrophysics Data System (ADS)
Quintana, Stephanie N.; Schultz, Peter H.; Horowitz, Seth S.
2018-05-01
A new class of wind streaks on Mars uniquely associated with impact craters is most clearly detected in nighttime thermal infrared imaging. Thermally bright streaks radiate from some well-preserved impact craters and are related to the impact process. Using laboratory experiments performed at the NASA Ames Vertical Gun Range, we test the hypothesis that these streaks are formed from either the winds within an air-blast or winds set up by expanding impact vapor interacting with the atmosphere. The experiments use a variety of tracers and instruments to document three interrelated processes occurring in the impact of a Pyrex projectile into an easily vaporized powdered dolomite target: (1) a surface roughening spreading outward from the impact point, (2) an expanding vapor plume, and (3) outward winds made visible by dust trails from vertically placed, dusty pipe cleaners. The clear connection between the surface roughening, vapor expansion, and outward winds implicate an expanding vapor interacting with the atmosphere as the controlling process.
NASA Astrophysics Data System (ADS)
Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2016-01-01
The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.
NASA Astrophysics Data System (ADS)
Scudder, J. D.
2017-12-01
Enroute to a new formulation of the heat law for the solar wind plasma the role of the invariably neglected, but omnipresent, thermal force for the multi-fluid physics of the corona and solar wind expansion will be discussed. This force (a) controls the size of the collisional ion electron energy exchange, favoring the thermal vs supra thermal electrons; (b) occurs whenever heat flux occurs; (c) remains after the electron and ion fluids come to a no slip, zero parallel current, equilibrium; (d) enhances the equilibrium parallel electric field; but (e) has a size that is theoretically independent of the electron collision frequency - allowing its importance to persist far up into the corona where collisions are invariably ignored in first approximation. The constituent parts of the thermal force allow the derivation of a new generalized electron heat flow relation that will be presented. It depends on the separate field aligned divergences of electron and ion pressures and the gradients of the ion gravitational potential and parallel flow energies and is based upon a multi-component electron distribution function. The new terms in this heat law explicitly incorporate the astrophysical context of gradients, acceleration and external forces that make demands on the parallel electric field and quasi-neutrality; essentially all of these effects are missing in traditional formulations.
Assessment of the effects of environmental radiation on wind chill equivalent temperatures.
Shitzer, Avraham
2008-09-01
Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.
A dynamic experimental study on the evaporative cooling performance of porous building materials
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui
2017-08-01
Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.
NASA Astrophysics Data System (ADS)
Yang, Yichen; Wang, Yongwei; Zhang, Zhen; Wang, Wei; Ren, Xia; Gao, Yaqi; Liu, Shoudong; Lee, Xuhui
2018-04-01
Among several influential factors, the geographical position and depth of a lake determine its thermal structure. In temperate zones, shallow lakes show significant differences in thermal stratification compared to deep lakes. Here, the variation in thermal stratification in Lake Taihu, a shallow fresh water lake, is studied systematically. Lake Taihu is a warm polymictic lake whose thermal stratification varies in short cycles of one day to a few days. The thermal stratification in Lake Taihu has shallow depths in the upper region and a large amplitude in the temperature gradient, the maximum of which exceeds 5°C m-1. The water temperature in the entire layer changes in a relatively consistent manner. Therefore, compared to a deep lake at similar latitude, the thermal stratification in Lake Taihu exhibits small seasonal differences, but the wide variation in the short term becomes important. Shallow polymictic lakes share the characteristic of diurnal mixing. Prominent differences on the duration and frequency of long-lasting thermal stratification are found in these lakes, which may result from the differences of local climate, lake depth, and fetch. A prominent response of thermal stratification to weather conditions is found, being controlled by the stratifying effect of solar radiation and the mixing effect of wind disturbance. Other than the diurnal stratification and convection, the representative responses of thermal stratification to these two factors with contrary effects are also discussed. When solar radiation increases, stronger wind is required to prevent the lake from becoming stratified. A daily average wind speed greater than 6 m s-1 can maintain the mixed state in Lake Taihu. Moreover, wind-induced convection is detected during thermal stratification. Due to lack of solar radiation, convection occurs more easily in nighttime than in daytime. Convection occurs frequently in fall and winter, whereas long-lasting and stable stratification causes less convection in summer.
Wind loading on solar concentrators: Some general considerations
NASA Technical Reports Server (NTRS)
Roschke, E. J.
1984-01-01
A survey was completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view. Current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed. Recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly.
The effects of thermospheric winds and chemistry in the diurnal variations of thermospheric species
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1977-01-01
The reported investigation considers on the basis of a theoretical model, the diurnal variations of the thermospheric composition (H, He, O, O2, and Ar) in terms of thermal expansion with diffusive equilibrium and transport effects associated with thermospheric winds, chemistry, and exospheric flow. The theoretical results are compared with satellite composition data which indicate that the fundamental diurnal tide can be reasonably well understood. It is found that winds are only important for molecular oxygen below 180 km, while thermal expansion due to the larger mass is relatively more important for O2 than for O. Distinct from O, photodissociation and in particular photoionization of O2 are very significant for molecular oxygen.
Cui, Zhiying; Fan, Jintu; Wu, Yuenshing
2016-08-01
This paper reports on an experimental investigation on the effects of air gap, wind and walking motion on the thermal properties of traditional Arabian thawbs and Chinese cheongsams. Total thermal resistance (It) and vapour resistance (Re) were measured using the sweating fabric manikin - 'Walter', and the air gap volumes of the garments were determined by a 3D body scanner. The results showed the relative changes of It and Re of thawbs due to wind and walking motion are greater than those of cheongsams, which provided an explanation of why thawbs are preferred in extremely hot climate. It is further shown that thermal insulation and vapour resistance of thawbs increase with the air gap volume up to about 71,000 cm(3) and then decrease gradually. Thawbs with higher air permeability have significantly lower evaporative resistance particularly under windy conditions demonstrating the advantage of air permeable fabrics in body cooling in hot environments. Practitioner Summary: This paper aims to better understand the thermal insulation and vapour resistance of traditional Arabian thawbs and Chinese cheongsams, and the relationship between the thermal properties and their fit and design. The results of this study provide a scientific basis for designing ethnic clothing used in hot environments.
A study of tornadic thunderstorm interactions with thermal boundaries
NASA Technical Reports Server (NTRS)
Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.
1980-01-01
A study of tornadic thunderstorm interactions with thermal boundaries using a model of subcloud wind profiles is presented. Within a hot, moist, and conditionally unstable air mass, warm thermal advection and surface friction cause the winds to veer and increase with height, while within a cool, moist air mass cool thermal advection and friction combine to produce a wind profile that has maximum speeds near the surface and veers little with height. The spatial distribution of different wind profiles and moisture contents within the boundary layer may act together to maximize mesoscale moisture contents, convergence, and cyclonic vorticity within a narrow mixing zone along the thermal boundary.
Average thermal characteristics of solar wind electrons
NASA Technical Reports Server (NTRS)
Montgomery, M. D.
1972-01-01
Average solar wind electron properties based on a 1 year Vela 4 data sample-from May 1967 to May 1968 are presented. Frequency distributions of electron-to-ion temperature ratio, electron thermal anisotropy, and thermal energy flux are presented. The resulting evidence concerning heat transport in the solar wind is discussed.
Numerical modeling of the autumnal thermal bar
NASA Astrophysics Data System (ADS)
Tsydenov, Bair O.
2018-03-01
The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.
NASA Astrophysics Data System (ADS)
Kántor, Noémi; Égerházi, Lilla; Unger, János
2012-11-01
During two investigation periods in transient seasons (14 weekdays in autumn 2009 and 15 weekdays in spring 2010) 967 visitors in two inner city squares of Szeged (Hungary) were asked about their estimation of their thermal environment. Interrelationships of subjective assessments—thermal sensation, perceptions and preferences for individual climate parameters—were analyzed, as well as their connections with the prevailing thermal conditions [air temperature, relative humidity, wind velocity, mean radiant temperature and physiologically equivalent temperature (PET)]. Thermal sensation showed strong positive relationships with air temperature and solar radiation perception, while wind velocity and air humidity perception had a negative (and weaker) impact. If a parameter was perceived to be low or weak, then it was usually desired to be higher or stronger. This negative correlation was weakest in the case of humidity. Of the basic meteorological parameters, Hungarians are most sensitive to variations in wind. Above PET = 29°C, people usually prefer lower air temperature and less solar radiation. The temperature values perceived by the interviewees correlated stronger with PET, but their means were more similar to air temperature. It was also found that the mean thermal sensation of Hungarians in transient seasons depends on PET according to a quadratic function ( R 2 = 0.912) and, consequently, the thermal comfort ranges of the locals differ from that usually adopted.
NASA Astrophysics Data System (ADS)
Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.
2017-02-01
A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.
Operation of Power Grids with High Penetration of Wind Power
NASA Astrophysics Data System (ADS)
Al-Awami, Ali Taleb
The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Shi, Wen; Zhang, Chengjiao
2015-10-01
In this serial study, 486 thermal manikin tests were carried out to examine the effects of air velocity and walking speed on both total and local clothing thermal insulations. Seventeen clothing ensembles with different layers (i.e., one, two, or three layers) were selected for the study. Three different wind speeds (0.15, 1.55, 4.0 m/s) and three levels of walking speed (0, 0.75, 1.2 m/s) were chosen. Thus, there are totally nine different testing conditions. The clothing total insulation and local clothing insulation at different body parts under those nine conditions were determined. In part I, empirical equations for estimating total resultant clothing insulation as a function of the static thermal insulation, relative air velocity, and walking speed were developed. In part II, the local thermal insulation of various garments was analyzed and correction equations on local resultant insulation for each body part were developed. This study provides critical database for potential applications in thermal comfort study, modeling of human thermal strain, and functional clothing design and engineering.
1D gasdynamics of wind-blown bubbles: effects of thermal conduction
NASA Astrophysics Data System (ADS)
Zhekov, S. A.; Myasnikov, A. V.
1998-03-01
Gasdynamic properties of the wind-blown bubbles are considered in the framework of the 1D spherically symmetric flow. The model self-consistently takes into account the optically-thin-plasma cooling and the electron thermal conduction. The numerical method used in calculations is described in details. A comparison with the existing self-similar solution is provided. It is shown that the self-similar solution gives a relatively well representation of the hot-bubble interior and could be used for estimations of some of its spectral characteristics. However, it is also shown that the thermal conduction in combination with the cooling may cause additional multiple shocks to appear in the interaction region and the analysis of the nature of these shocks is provided.
Thermal and wind-driven water motions in vegetated waters and their role in greenhouse gas fluxes
NASA Astrophysics Data System (ADS)
Poindexter, C.; Variano, E. A.
2016-12-01
The relative importance of different methane transport pathways in wetlands can impact total wetland methane fluxes. The transport of methane and other gases through the water column is affected by a variety of forces. We investigate the role of wind- and thermally-driven water motions in greenhouse gas fluxes in a freshwater marsh and a rice field using in situ velocity measurements in combination with gas transfer velocity models. We measure velocity using an Acoustic Doppler velocimeter, correcting for instrument generated velocities, and a Volumetric Particle Imager. These measurements indicate the presence of wind-driven motions in the wetland water column located below a dense 3-m emergent vegetation canopy. In the rice field's water column, velocity data suggest the occurrence of thermal convection. Results from these in-situ velocity measurements correspond with the non-negligible gas transfer velocities we predict via semi-empirical models. This underscores the importance of hydrodynamics to greenhouse gas fluxes even in shallow, vegetated inland waters.
NASA Technical Reports Server (NTRS)
Sittler, E. C., Jr.; Scudder, J. D.
1979-01-01
Empirical evidence is presented that solar wind thermal electrons obey a polytrope law with polytrope index gamma = 1.175 plus or minus 0.03. The Voyager 2 and Mariner 10 data used as evidence are compared and discussed. The theoretical predictions that solar wind thermal electrons in the asymptotic solar wind should obey a polytrope law with polytrope index gamma = 1.16 plus or minus. The widespread impressions in the literature that solar wind electrons behave more like an isothermal than adiabatic gas, and the arguments that Coulomb collisions are the dominant stochastic process shaping observed electron distribution functions in the solar wind are reexamined, reviewed and evaluated. The assignment of the interplanetary potential as equal to approximately seven times the temperature of the thermal electrons is discussed.
NASA Technical Reports Server (NTRS)
Sittler, E. C., Jr.; Scudder, J. D.
1980-01-01
In this paper empirical evidence is presented that between 0.4 and 5 AU the thermal portion (but not all) of the solar wind electron population obeys a polytrope relation. It is also shown that this functional relationship is a member of a broader class of possible laws required of a steady state, fully ionized plasma whose proper frame electric field is dominated by the polarization electric field. The empirically determined, thermodynamically interesting value of the polytrope index (1.175) is virtually that predicted (1.16) by the theoretical considerations of Scudder and Olbert (1979). Strong, direct, empirical evidence for the nearly isothermal behavior of solar wind electrons as has been indirectly argued in the literature for some time is provided.
76 FR 69166 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
...] transformer primary winding can break due to thermal fatigue. Broken transformer primary winding can prevent.... However, it was found that the same ADG GCU transformer primary winding can break due to thermal fatigue. Broken transformer primary winding can prevent the supply of power from the ADG to the essential buses...
Human thermal perception related to Föhn winds due to Saharan dust outbreaks in Crete Island, Greece
NASA Astrophysics Data System (ADS)
Nastos, P. T.; Bleta, A. G.; Matsangouras, I. T.
2017-05-01
Crete Island is located in the southmost border of East Mediterranean basin, facing exacerbating atmospheric conditions (mainly concentrations of particulates) due to Saharan dust outbreaks. It is worth to note that these episodes are more frequent during spring and autumn, when mild biometeorological conditions become intolerable due to the synergy of the so called Föhn winds. Cretan mountains, especially Psiloritis Mt. (summit at 2456 m), are orientated perpendicularly to the southwest air mass flow, generating the Föhn winds. Propagating from the leeward of the mountains, these dry, hot winds have an effect on prevailing biometeorological conditions. While descending to the lowlands on the leeward side of the range, the wind becomes strong, gusty, and desiccating. This wind often lasts less than an hour to several days, with gradual weakening after the first or the second day. Sometimes, it stops very abruptly. In this work, the authors examined and analyzed the abrupt changes of human thermal perception within specific case studies during which Föhn winds appeared in Heraklion city at the leeward of Psiloritis Mt, associated with extreme Saharan dust episodes, observed within the period 2006-2010. In order to verify the development of Föhn winds, Meteorological Terminal Aviation Routine Weather Reports (METARs, meteorological observations every half hour), were acquired from the Heraklion meteorological station installed by the Hellenic National Meteorological Service (HNMS). The biometeorological conditions analyzed are based on human thermal bioclimatic indices such as the Physiologically equivalent temperature (PET) and the Universal Thermal Climate Index (UTCI). METAR recordings of meteorological variables, such as air temperature, vapor pressure, wind speed, and cloudiness, were used as input variables in modeling the aforementioned thermal indices, so that to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, "RayMan," which is well-suited to calculate radiation fluxes and human biometeorological indices. The results of the performed analysis showed even an increase of air temperature from 20 to 30 °C within 5 h, associated with a decrease in the vapor pressure from 11.5 to 9.3 hPa. In addition, the wind speed at 10 m increased from 5.1 to 20.1 m/s, 3.7 to 14.3 m/s with respect to 1.1 m height, during the events of Föhn winds. The biometeorological analysis has given evidence that slight/moderate heat stress classes of the examined thermal indices appear during Saharan dust episodes. Such conditions are uncommon at the beginning of spring season, indicating that Saharan dust episodes are not only responsible for acute health impacts but also for adverse biometeorological conditions, due to the very likely development of Föhn winds towards the wider area of Heraklion, a coastal city in the eastern Mediterranean.
Doppler Lidar Observations of an Atmospheric Thermal Providing Lift to Soaring Ospreys
NASA Technical Reports Server (NTRS)
Koch, Grady J.
2005-01-01
Vertical wind measurements are presented of an atmospheric thermal in which ospreys (Pandion haliaetus) were soaring. These observations were made with a Doppler lidar, allowing high spatial and high temporal resolution wind profiles in clear air. The thermal was generated at the onset of a cloud bank, producing a rolling eddy upon which ospreys were seen to be riding. A determination is made on the size and shape of the thermal, wind speeds involved, and the altitude to which the birds could have ridden the thermal.
Relative Heating of Heavy Ions Observed at 1 AU with ACE/SWICS
NASA Astrophysics Data System (ADS)
Tracy, P.; Kasper, J. C.; Zurbuchen, T.; Raines, J. M.; Gilbert, J. A.
2015-12-01
Heavy ions (Z>4) observed near 1 AU, especially in fast solar wind, tend to have thermal speeds that are approximately equal, indicative of a mass proportional temperature. The fact that these heavy ions have similar thermal speeds implies that they have very different temperatures, and furthermore, that they are far from thermal equilibrium. By comparing the observed heavy ion temperatures amongst species with different mass and charge values we can critically evaluate heating theories for the solar wind. Utilizing improved data processing techniques, results from the Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) are used to analyze the thermal properties of the heavy ion population at 1 AU. We have shown in previous work that Coulomb Collisional relaxation has a significant effect on these heavy ion populations, and now we investigate how Coulomb Collisions effect the observed temperature ratios of different heavy ion species. We observe that the heavy ion to proton temperature ratio scales with the mass and charge values of species analyzed. These dependencies are compared to current heating theories to determine which best explains the observations. The results of this work are valuable for comparison with coronal spectroscopic observations of ion temperatures, existing solar wind observations at different distances from the Sun, and for predictions of the environment to be encountered by Solar Probe and Solar Orbiter.
Method of remotely characterizing thermal properties of a sample
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Heath, D. Michele (Inventor); Welch, Christopher (Inventor); Winfree, William P. (Inventor); Miller, William E. (Inventor)
1992-01-01
A sample in a wind tunnel is radiated from a thermal energy source outside of the wind tunnel. A thermal imager system, also located outside of the wind tunnel, reads surface radiations from the sample as a function of time. The produced thermal images are characteristic of the heat transferred from the sample to the flow across the sample. In turn, the measured rates of heat loss of the sample are characteristic of the flow and the sample.
NASA Astrophysics Data System (ADS)
Ehrke, Elizabeth
Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a solar thermal array or wind turbine. The model is meant to aide in the planning stages of a renewable energy project, and advanced investigation will be needed to move forward with that project.
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Salem, C. S.
2016-12-01
A new model for solar wind electrons provides an explanation for the origin of the non-thermal core-halo-strahl-superhalo VDF ubiquitously observed in the solar wind. Such kurtotic VDF's should be as common as the gradient induced occurrence of finite parallel electric fields that enforce quasi-neutrality in astrophysical plasmas. The velocity space separatrix of coulomb runaway predicts the observed scaling of the break point energy at 1AU of the electron VDF between thermal and suprathermal components and agrees well with the tabulations of its variation with radius. SERM quantitatively reproduces: 14 year IMP archives of the fraction of supra thermal electrons and the observed variation of the supra thermal density with local (nearly asymptotic) solar wind speed; the observed inverse correlation between halo density fraction and Th/Tc; and the reported, but theoretically unusual relative slippage of the core and halo that supports the heat flux. Requirements for quasi-neutrality (in the presence of runaways) lead to a quantitative non-local specification of the required supra thermal density fraction and the lowest even Legendre order approximate VDF that is symmetric, but kurtotic in the proton rest frame. The Stokes drift of the thermals suggested by runaway physics requires a counter drift of the non-locally returning suprathermals which determine the observed heat flux and thermal force contributions and the lowest order odd Legendre dependence of the VDF. The strahl is recovered as an extreme part of the non-local suprathermals. "Direct'' runaways caused by the parallel electric field are identified as an omnipresent source for the observed sunward portion of the non-thermal VDF. The source of the super halo electrons is suggested to be mirrored runaways produced at the base of the corona with subsequent near isotropization in the interplanetary medium.
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Yu, Zhenyang; Liu, Jiying; Zhang, Linhua
2018-02-01
With the improvement of people’s living standard, people not only pay attention to the indoor environment, but also the outdoor environment. The paper simulated the outdoor wind environment and thermal environment for the building in its design stage, then suggestions are provided for further design stage using a case study in a residential area in Liaocheng, China. SketchUp is used to establish 3D model and PHOENICS is adopted to simulate wind environment and thermal environment. The evaluation criterion mainly utilized Green Building Evaluation Criteria and Urban Residential Area Thermal Environment Design Criteria and ISO7243. Through the analysis of the wind and thermal environment problems, this paper puts forward measures and suggestions to provide reference for the later planning.
NASA Astrophysics Data System (ADS)
Tseliou, Areti; Tsiros, Ioannis X.; Nikolopoulou, Marialena
2017-07-01
Outdoor urban areas are very important for cities and microclimate is a critical parameter in the design process, contributing to thermal comfort which is important for urban developments. The research presented in this paper is part of extensive field surveys conducted in Athens aimed at investigating people's thermal sensation in a Mediterranean city. Based on 2313 questionnaires and microclimatic data the current work focuses on the relative frequencies of people's evaluation of the thermal along with the sun and wind sensations between two seasons trying to identify the seasonal differences in thermal sensation. The impact of basic meteorological factors on thermal discomfort with respect to season are also examined, as well as the use of the outdoor environment. Results show that psychological adaptation is an important contributing factor influencing perception of the thermal environment between seasons. In addition, the thermal sensation votes during the cool months show that individuals are satisfied to a great extend with the thermal environment whereas the combination of high air temperature, strong solar radiation and weak wind lead to thermal discomfort during summertime. As far as the appropriate urban design in the Mediterranean climate is concerned, priority should be given to the warm months of the year.
Li, Xuyou; Ling, Weiwei; He, Kunpeng; Xu, Zhenlong; Du, Shitong
2016-06-16
The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL) and quadrupolar (QAD) winding methods is comparatively analyzed. Simulation by the finite element method (FEM) is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs).
Li, Xuyou; Ling, Weiwei; He, Kunpeng; Xu, Zhenlong; Du, Shitong
2016-01-01
The thermal performance under variable temperature conditions of fiber coils with double-cylinder (D-CYL) and quadrupolar (QAD) winding methods is comparatively analyzed. Simulation by the finite element method (FEM) is done to calculate the temperature distribution and the thermal-induced phase shift errors in the fiber coils. Simulation results reveal that D-CYL fiber coil itself has fragile performance when it experiences an axially asymmetrical temperature gradient. However, the axial fragility performance could be improved when the D-CYL coil meshes with a heat-off spool. Through further simulations we find that once the D-CYL coil is provided with an axially symmetrical temperature environment, the thermal performance of fiber coils with the D-CYL winding method is better than that with the QAD winding method under the same variable temperature conditions. This valuable discovery is verified by two experiments. The D-CYL winding method is thus promising to overcome the temperature fragility of interferometric fiber optic gyroscopes (IFOGs). PMID:27322271
NASA Astrophysics Data System (ADS)
Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.
2013-03-01
An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.
NASA Astrophysics Data System (ADS)
Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang
2018-01-01
In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
NASA Astrophysics Data System (ADS)
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
Indoor thermal environment of bedroom during sleep in Malaysia
NASA Astrophysics Data System (ADS)
Tsuzuki, Kazuyo; Mori, Ikue
2017-10-01
This study was conducted to investigate the indoor thermal environment and sleep of occupants in bedrooms where air conditioners (ACs) are preferentially installed. Field measurements and questionnaires were conducted for 22 houses, with a total of 28 occupants, located in the suburbs of Kuala Lumpur. The participants were requested to wear a wrist actigraphy on the non-dominant hand for three consecutive days, except while bathing or washing hands in order to evaluate sleep by the activity of the actigraphy. The average air temperatures in the bedrooms were 22.6-28.9 °C and 28.1-32.2 °C with and without AC, respectively. The observed lowest air temperature was below 21 °C in a bedroom with AC. Such low air temperatures are not considered appropriate in terms of energy consumption and the occupants' physiological condition during sleep. The wind velocity of fresh air coming through the open window was found as well as when the use of a fan. From the relations among the factors of thermal environment, increased wind velocity seems to compensate for increased air temperature and increased relative humidity. The sleep efficiency index (SEI) looks decreased in accordance with increased air temperature, increased air velocity, and increased relative humidity. However, no statistical significances were found in those relationships. New effective temperature (SET*) was calculated from measured thermal factors and relation was examined with SEI.
An electric noise component with density 1/f identified on ISEE 3
NASA Technical Reports Server (NTRS)
Hoang, S.; Steinberg, J. L.; Couturier, P.; Feldman, W. C.
1982-01-01
The properties of the 1/f noise detected at the terminals of ISEE 3 antennas are described and related to the solar wind parameters. The 1/f noise was observed with the radio receivers of the three-dimensional radio mapping experiment using the S and Z dipole antennas. The noise spectra contained a negative spectral index component at frequencies lower than 0.7 of the plasma frequency, and 5-10 times the predicted thermal noise for the Z antenna. S-antenna measurements of the 1/f component revealed it to be deeply spin modulated with a minimum electric field in the direction of the solar wind. Modulation increases with increasing frequency, becomes negligible when the 1/f intensity is negligible with respect to the thermal noise, and increases with solar wind velocity. The possibilities that the noise is due either to waves or currents are discussed.
HST FGS1R Results On the Association Between Binary Wolf-Rayet Stars and Non-Thermal Radio Emission
NASA Astrophysics Data System (ADS)
Wallace, D. J.; Gies, D. R.; Nelan, E.; Leitherer, C.
2000-12-01
Two separate models have been proposed to explain the non-thermal emission detected in some Wolf-Rayet (WR) stars. In models based on single WR stars, this emission is proposed to arise via synchrotron radiative processes in the outer (intrinsically unstable) WR wind (e.g. White & Chen 1995). In models based on WR + O systems, this non-thermal radio emission is suggested to arise from the WR wind colliding with the wind of a companion (e.g. Williams et al. 1990). In order to be observed, the colliding winds region is believed to occur in wide binaries where the interaction zone is outside the WR radio photosphere (≈30 AU based on spherically symmetric uniform wind models). HST FGS1R observations of 9 non-thermal and 9, as a control group, purely thermal radio emitting stars attempted to verify the theory that this non-thermal emission is always a result of binary interactions. If the binary model is correct, then most or all of our non-thermal targets should have companions with projected separations of 0.01″
NASA Astrophysics Data System (ADS)
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen
2015-10-01
Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen
2015-10-01
Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.
Thermal wind from hot accretion flows at large radii
NASA Astrophysics Data System (ADS)
Bu, De-Fu; Yang, Xiao-Hong
2018-06-01
We study slowly rotating accretion flow at parsec and subparsec scales irradiated by low-luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination, and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6-10-3) LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate on to the black hole. ɛ lies in the range 10-4-1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.
Electrostatically controlled heat shutter
NASA Technical Reports Server (NTRS)
Derr, L. J. (Inventor)
1973-01-01
A heat transfer assembly for conducting thermal energy is described. The assembly includes a hermetically sealed container enclosing a quantity of inert gas such as nitrogen. Two opposed walls of the container have high thermal conducting characteristics while the connecting walls have low thermal conducting characteristics. Electrodes are positioned adjacent to the high thermal conducing walls and biased relative to the conducting walls to a corona potential for creating an ionic gas wind which must contact the conducting walls to be neutralized. The contact of the gas molecules permits the maximum thermal energy transfer between the walls. Baffles can be positioned adjacent to the electrodes to regulate gas flow between the high thermal conducting surfaces.
Dynamic thermal environment and thermal comfort.
Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J
2016-02-01
Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thermal Tracker: The Secret Lives of Bats and Birds Revealed
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Offshore wind developers and stakeholders can accelerate the sustainable, widespread deployment of offshore wind using a new open-source software program, called ThermalTracker. Researchers can now collect the data they need to better understand the potential effects of offshore wind turbines on bird and bat populations. This plug and play software can be used with any standard desktop computer, thermal camera, and statistical software to identify species and behaviors of animals in offshore locations.
NASA Technical Reports Server (NTRS)
Drew, J. E.
1989-01-01
Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.
Influencing factors on the cooling effect of coarse blocky top-layers on relict rock glaciers
NASA Astrophysics Data System (ADS)
Pauritsch, Marcus; Wagner, Thomas; Mayaud, Cyril; Thalheim, Felix; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried
2017-04-01
Coarse blocky material widely occurs in alpine landscapes particularly at the surface of bouldery rock glaciers. Such blocky layers are known to have a cooling effect on the subjacent material because of the enhanced non-conductive heat exchange with the atmosphere. This effect is used for instance by the construction of blocky embankments in the building of railways and roads in permafrost regions to prevent thawing processes. In alpine regions, this cooling effect may have a strong influence on the distribution and conservation of permafrost related to climate warming. The thermal regimes of the blocky surface layers of two comparable - in terms of size, elevation and geology - relict rock glaciers with opposing slope aspects are investigated. Therefore, the influence of the slope aspect-related climatic conditions (mainly the incident solar radiation, wind conditions and snow cover) on the cooling effect of the blocky layers is investigated. Air temperature, ground surface temperature and ground temperature at one meter depth were continuously measured over a period of four years at several locations at the NE-oriented Schöneben Rock Glacier and the adjacent SW-oriented Dürrtal Rock Glacier. At the former, additional data about wind speed and wind direction as well as precipitation are available, which are used to take wind-forced convection and snow cover into consideration. Statistical analyses of the data reveal that the blocky top layer of the Dürrtal Rock Glacier generally exhibits lower temperatures compared to the Schöneben Rock Glacier despite the more radiation-exposed aspect and the related higher solar radiation. However, the data show that the thermal regimes of the surface layers are highly heterogeneous and that data from the individual measurement sites have to be interpreted with caution. High Rayleigh numbers at both rock glaciers show that free convection occurs particularly during winter. Furthermore, wind-forced convection has a high impact on the thermal regime of the Schöneben Rock Glacier and, as the major wind direction, especially for higher wind speeds, is from west towards east, it is suspected that wind-forced convection is even more important at the Dürrtal Rock Glacier. The limited incident solar radiation at the Schöneben Rock Glacier results in a longer seasonal snow cover that appears earlier in autumn and can persist longer during the melting season. Moreover, with the predominant westerly wind, snow is supposedly transported from neighboring catchments (i.a. the Dürrtal Rock Glacier catchment) towards the Schöneben Rock Glacier catchment. Thus, in times with relatively cold air temperatures the coarse blocky surface at the Dürrtal Rock Glacier is better connected to the atmosphere than the more northern exposed Schöneben rock glacier because of the missing or only partial snow cover, which results in an enhanced cooling effect. It can be concluded that the cooling effect of coarse blocky debris is highly variable in alpine environments and can show considerable variations, depending on the heterogeneous structure of the layer itself and a complex interplay of slope aspect-related microclimatic effects such as incident solar radiation, predominant wind direction and snow cover dynamics.
The calculation from weather records of the requirement for clothing insulation
NASA Astrophysics Data System (ADS)
Mount, L. E.; Brown, D.
1985-12-01
Standard meteorological measurements of dry bulb temperature, wind speed, sunshine, cloud cover and rainfall are used to calculate the clothing insulation required by man for thermal comfort under given weather conditions. The calculation is based on earlier work on the effect of weather on sensible (non-evaporative) heat loss from sheep, which used the relation between heat flow, thermal insulation and the difference between body and environmental temperatures. Clothing insulation for man is estimated in two ways: as clothing (Ic) that is impervious to the effects of wind and rain; and as the equivalent depth of sheep fleece (fm), which is not impervious. This allows the assessment of wind chill for a range of clothing of varied penetration by wind instead of for only one type of garment. Results are given as daily means calculated from hourly measurements throughout 1973 for Plymouth (on the south coast of Britain) and Aberdeen (on the far northeast coast of Britain). Wind chill is estimated both by its effect on fm requirement and by the fall in air temperature that would be needed to produce under still-air conditions the same demand for fm that occurs in the actual environment. The monthly mean fm requirement is reduced by about 40% when the effect of wind is removed. When wind chill is estimated as an equivalent fall in air temperature it approximates to 1 K per knot wind speed measured at the standard meteorological height of 10 m.
Representativeness of wind measurements in moderately complex terrain
NASA Astrophysics Data System (ADS)
van den Bossche, Michael; De Wekker, Stephan F. J.
2018-02-01
We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.
Costs of solar and wind power variability for reducing CO2 emissions.
Lueken, Colleen; Cohen, Gilbert E; Apt, Jay
2012-09-04
We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.
Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage
2014-12-01
New York, 2013. [8] A. Togelou et al., “Wind power forecasting in the absence of historical data,” IEEE trans. on sustainable energy, vol. 3, no...WIND ENERGY POWERED VARIABLE CHILLER WITH THERMAL ICE STORAGE by Rex A. Boonyobhas December 2014 Thesis Advisor: Anthony J. Gannon Co...AND DATES COVERED December 20 14 Master ’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS CONTROL STRATEGY: WIND ENERGY POWERED VARIABLE CHILLER
Solar Probe Cup: Laboratory Performance
NASA Astrophysics Data System (ADS)
Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.
2017-12-01
The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.
2012-04-01
certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased
Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Todd; Botterud, Audun
2015-05-01
We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less
Thermal stress analysis for a wood composite blade. [wind turbines
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented.
The effect of wind on the rate of heat loss from avian cup-shaped nests.
Heenan, Caragh B; Seymour, Roger S
2012-01-01
Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.
The Effect of Wind on the Rate of Heat Loss from Avian Cup-Shaped Nests
Heenan, Caragh B.; Seymour, Roger S.
2012-01-01
Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss from the nests of both species, and further still during incubation recesses. The significance of forced convection through the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds. This provides confirmation that selecting a sheltered nest site is important for avian reproductive success. PMID:22389689
Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain
NASA Astrophysics Data System (ADS)
Maurer, V.; Kalthoff, N.; Wieser, A.; Kohler, M.; Mauder, M.; Gantner, L.
2016-02-01
In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed.
Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.
System-wide emissions implications of increased wind power penetration.
Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter
2012-04-03
This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.
NASA Technical Reports Server (NTRS)
Levy, Gad; Tiu, Felice S.
1990-01-01
Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.
1981-01-01
An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.
Electric Field Measurements At The Magnetopause
NASA Astrophysics Data System (ADS)
Lindqvist, P.-A.; Dunlop, M.
The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (<0.1 eV), as encountered in planetary ionospheres, with a single instrument. We will finally focus on the thermal noise analysis we might perform using an electric dipole on the bepiColombo/MMO probe, with the aim to get accurate measurements of elec- tron density and temperature for comparison with our models of Mercury/solar wind interaction.
Wind regime peculiarities in the lower thermosphere in the winter of 1983/84
NASA Technical Reports Server (NTRS)
Lysenko, I. A.; Makarov, N. A.; Portnyagin, Yu. I.; Petrov, B. I.; Greisiger, K. M.; Schminder, R.; Kurschner, D.
1987-01-01
Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds.
NASA Technical Reports Server (NTRS)
Herring, Gregory C.
2015-01-01
The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].
Holistic Framework for Understanding the Evolution of Stellar Coronal Plasmas
NASA Astrophysics Data System (ADS)
Blackman, Eric; Owen, James
2017-10-01
Understanding how how the coronal X-ray activity of stars depends on magnetic field strength, dynamos, rotation, mass loss and age is of interest not only for the basic plasma physics of stars, but also for stellar age determination and implications for habitability. Approximate relations between field strength, activity, spin down, mass loss and age have been measured, but remain to be understood theoretically. The saturation of plasma activity of the fastest rotators and the decoupling of spin-down from magnetic field strengths for slow rotators are particular puzzles. To explain the observed trends, I discuss our minimalist holistic theoretical framework that combines a Parker wind with (i) magnetic dynamo sourcing of thermal energy, wind energy and x-ray luminosity (ii) dynamo saturation based on magnetic helicity conservation and shear-induced eddy shredding and (iii) coronal equilibrium to determine how the magnetic energy divides into wind, x-ray, and thermal conduction sinks. We find conduction to be important for older stars where it can reduce the efficacy of wind angular momentum loss, offering an alternative explanation of this trend to those which require dynamo transitions. Overall, the framework shows promise and provides opportunity for further Grant NSF-AST1515648 is acknowledged.
NASA Technical Reports Server (NTRS)
Marshall, B. A.
1984-01-01
The Advanced Flexible Reusable Surface Insulation (AFRSI) test article was wind tunnel tested. The AFRSI was exposed to a simulated ascent airloads environment and data was obtained which could be used to support the AFRSI certification program. The AFRSI sequence of environments also included radiant heating (1500 degrees Fahrenheit) and wind/rain environments. The test article was wind/rain conditioned before each wind tunnel entry and was thermally conditioned after each wind tunnel entry. The AFRSI failed and the test was aborted before reaching the ascent environment. The AFRSI test article sequentially exposed to 50 wind/rain and 49 simulated entry thermal missions, as well as four wind tunnel entries equivalent to 40 ascent missions.
Titan's stratospheric temperatures - A case for dynamical inertia?
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Conrath, B. J.
1990-01-01
Voyager IRIS spectral radiances in the nu4-band of CH4 for the Titan atmosphere exhibit a hemispheric asymmetry. While asymmetry in the meridional distribution of opacity about the equator cannot be discounted, attention is given to the need for angular momentum transport concurrent with seasonally varying temperatures in the Titan stratosphere, which would maintain the cyclostrophic thermal wind relation between zonal winds and temperatures. The adiabatic heating and cooling associated with these motions can produce the observed temperature asymmetry.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM
NASA Astrophysics Data System (ADS)
Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa
2018-02-01
Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.
Recent advances in spacecraft thermal-control materials research.
NASA Technical Reports Server (NTRS)
Zerlaut, G. A.; Gilligan, J. E.; Gates, D. W.
1972-01-01
The state-of-the-art of spacecraft thermal-control materials technology has been significantly advanced during the past 4 years. Selective black coatings are discussed together with black paints, dielectric films on metal surfaces, and white radiator coatings. Criteria for the selection of thermal-control surfaces are considered, giving attention to prelaunch protection, the capability of being measured, reproducibility, simulator response, and aspects of a nonindigenous space environment. Progress in space simulation is related to vacuum technology, ultraviolet sources, solar wind simulation, and the production of protons. Advances have been made in the protection against space environmental effects, and in the development of thermal-control surfaces and pigments.
Numerical Simulation of the Effects of Water Surface in Building Environment
NASA Astrophysics Data System (ADS)
Li, Guangyao; Pan, Yuqing; Yang, Li
2018-03-01
Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.
NASA Technical Reports Server (NTRS)
Belt, Carol L.; Fuelberg, Henry E.
1984-01-01
The feasibility of using satellite derived thermal data to generate realistic synoptic scale winds within the planetary boundary layer (PBL) is examined. Diagnostic modified Ekman wind equations from the Air Force Global Weather Central (AFGWC) Boundary Layer Model are used to compute winds at seven levels within the PBL transition layer (50 m to 1600 m AGL). Satellite derived winds based on 62 predawn TIROS-N soundings are compared to similarly derived wind fields based on 39 AVE-SESAME II rawinsonde (RAOB) soundings taken 2 h later. Actual wind fields are also used as a basis for comparison. Qualitative and statistical comparisons show that the Ekman winds from both sources are in very close agreement, with an average vector correlation coefficient of 0.815. Best results are obtained at 300 m AGL. Satellite winds tend to be slightly weaker than their RAOB counterparts and exhibit a greater degree of cross-isobaric flow. The modified Ekman winds show a significant improvement over geostrophic values at levels nearest the surface.
Structure of the Mesosphere of Venus from the reanalized Venera 15 IR-spectrometry data
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. V.
1998-09-01
The results of IR-spectromerty on board VENERA-15 have been reanalyzed. The new data concerned temperature, aerosol, water vapor and thermal zonal wind profiles have been obtained and the latitudinal and local time related variations have been investigated. The cyclostrophic zonal wind fields show the presence of mid-latitudinal jet which changes its position with solar time, so that its altitude and wind speed are correlated and indicated the conservation of angular momentum. The connection between altitude of jet and its velocity shows the flux conservation. The wind velocity in the midlatitudinal jet is correlated with temperature inversion in the "cold collar". The low-latitudinal jet (at about 80 km near 20 deg.) is also connected with inversion in temperature profile observed there.
Poster 16: Eclipse-induced changes of Titan's meteorology at equinox
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya
2016-06-01
Titan experiences solar eclipses by Saturn on ˜20 consecutive orbits around equinox for durations of up to ˜6 hours. The impact of these eclipses on Titan's surface, lower atmosphere and middle atmosphere is investigated by a global climate model. When an eclipse commences, the surface temperature on the subsaturnian side drops by up to 0.3 K, so that the diurnal maximum surface temperature remains lower than on the antisaturnian side, which is never eclipsed. By contrast, the tropospheric air temperature does not abruptly decrease during the eclipses because of the large thermal inertia, but the diurnal mean temperature slightly decreases. The surface wind at low latitudes becomes less gusty in the presence of eclipse due to damping of turbulence. The troposphere outside the planetary boundary layer is not sensitive to eclipses. In most parts of the stratosphere and mesosphere the temperature decreases by up to 2 K due to eclipses, but there are also layers, which experience relative warming due to thermal contraction of the underlying layers. The temperature in the middle atmosphere rapidly recovers after the end of the eclipse season. Eclipse-induced cooling and warming changes the zonal wind speed by a few m/s due to thermal wind adjustment to changing latitudinal temperature gradients.
An X-ray Study of a Massive Star and its Wind
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Sugawara, Yasuharu; Tsuboi, Yohko; Hamaguchi, Kenji
2010-10-01
WR 140 is one of the best known examples of a Wolf-Rayet stars. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The column density at periastron is about 30 times higher than that at pre-periastron, which can be explained as self-absorption by the Wolf-Rayet wind. The spectra are dominated by a line and continuum emission from a optically thin-thermal plasma. The strong Ne-K lines are evidence that the thermal plasma is shock-heated W-R wind materials by the interaction with the wind from the companion O star. We present the parameters of the wind, such as a mass-loss rate, which were calculated with the absorption and line emission in the spectra.
Impact of red giant/AGB winds on active galactic nucleus jet propagation
NASA Astrophysics Data System (ADS)
Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.
2017-10-01
Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to the mass-load of the jet and thus affect its dynamics. Shear layer mass-entrainment could be important. The interaction structure can be a source of significant non-thermal emission.
NSF presentation. [summary on energy conversion research program
NASA Technical Reports Server (NTRS)
Morse, F. H.
1973-01-01
Wind energy conversion research is considered in the framework of the national energy problem. Research and development efforts for the practical application of solar energy -- including wind energy -- as alternative energy supplies are assessed in: (1) Heating and cooling of buildings; (2) photovoltaic energy conversion; (3) solar thermal energy conversion; (4) wind energy conversion; (5) ocean thermal energy conversion; (6) photosynthetic production of organic matter; and (7) conversion of organic matter into fuels.
Forest trees filter chronic wind-signals to acclimate to high winds.
Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem
2016-05-01
Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Havenith, George; Fiala, Dusan; Błazejczyk, Krzysztof; Richards, Mark; Bröde, Peter; Holmér, Ingvar; Rintamaki, Hannu; Benshabat, Yael; Jendritzky, Gerd
2012-05-01
The Universal Thermal Climate Index (UTCI) was conceived as a thermal index covering the whole climate range from heat to cold. This would be impossible without considering clothing as the interface between the person (here, the physiological model of thermoregulation) and the environment. It was decided to develop a clothing model for this application in which the following three factors were considered: (1) typical dressing behaviour in different temperatures, as observed in the field, resulting in a model of the distribution of clothing over the different body segments in relation to the ambient temperature, (2) the changes in clothing insulation and vapour resistance caused by wind and body movement, and (3) the change in wind speed in relation to the height above ground. The outcome was a clothing model that defines in detail the effective clothing insulation and vapour resistance for each of the thermo-physiological model's body segments over a wide range of climatic conditions. This paper details this model's conception and documents its definitions.
Surface temperature/heat transfer measurement using a quantitative phosphor thermography system
NASA Technical Reports Server (NTRS)
Buck, G. M.
1991-01-01
A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud
2018-01-01
Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication process and algal blooms formation in shallow water environments. Wind field is the key control factor for thermal destratification and hypoxia reduction. 24.1C° is the critical/threshold temperature for hypoxia, Chlorophyll-a and NH 3 -N concentrations of the shallow freshwater lake. Copyright © 2017. Published by Elsevier Ltd.
Thermal and Driven Stochastic Growth of Langmuir Waves in the Solar Wind and Earth's Foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.
2000-01-01
Statistical distributions of Langmuir wave fields in the solar wind and the edge of Earth's foreshock are analyzed and compared with predictions for stochastic growth theory (SGT). SGT quantitatively explains the solar wind, edge, and deep foreshock data as pure thermal waves, driven thermal waves subject to net linear growth and stochastic effects, and as waves in a pure SGT state, respectively, plus radiation near the plasma frequency f(sub p). These changes are interpreted in terms of spatial variations in the beam instability's growth rate and evolution toward a pure SGT state. SGT analyses of field distributions are shown to provide a viable alternative to thermal noise spectroscopy for wave instruments with coarse frequency resolution, and to separate f(sub p) radiation from Langmuir waves.
NASA Astrophysics Data System (ADS)
Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.
2016-11-01
There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
NASA Technical Reports Server (NTRS)
Hoang, S.; Meyer-Vernet, N.; Bougeret, J.-L.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Moncuquet, M.; Perche, C.; Steinberg, J.-L.; Macdowall, R. J.
1992-01-01
The radio receiver of the Unified Radio and Plasma experiment aboard the Ulysses spacecraft records spectra of the quasi-thermal plasma noise. The interpretation of these spectra allows the determination of the total electron density Ne and of the cold (core) electron temperature Tc in the solar wind. A single power law does not fit the variations of Ne which result from the contribution from different solar wind structures. The distribution of the values of Tc suggests that, on the average, the solar wind is nearly isothermal.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, Charles R.; Kono, Jamie
2015-04-13
With U.S. Department of Energy goals of reducing existing home energy use by 30% and new home energy use by 50%, it is imperative to focus on several energy efficiency measures, including the quality of air and thermal barriers. This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, andmore » air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.« less
Aeolus -A Mission to Study the Thermal and Wind Environment of Mars
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2017-01-01
Aeolus is a small satellite mission to observe surface and atmospheric forcing and general circulation of Mars, by measuring surface energy balance, atmospheric temperatures, aerosols and clouds, and winds. Critically, Aeolus will make these measurements at all local times of day, providing information on both seasonal and diurnal variability. To date, direct measurements of Martian wind speeds have only been possible at the surface, only during daylight hours, and over small areas limited by rover traverse capabilities. From orbit, thermal measurements (e.g., estimates from assumed geostrophic balance) as well as images of dust storms and dune migration have provided inputs to derive current data sets on Martian winds. However, Mars General Circulation models demonstrate that wind speeds derived from these indirect measurements may be in error by 50 to 100%. For this reason, direct wind velocity measurements have been deemed "High Priority" by MEPAG (Mars Exploration Program Analysis Group); measuring wind speeds and corresponding thermal data is vital to understanding the climate of Mars. Aeolus will carry four Spatial Heterodyne Spectrometers (SHS), coupled to two orthogonal viewing telescopes. These high-resolution near-infrared spectrometers will measure CO2 (daytime absorption) and O2 (day and night emission) lines in the Martian atmosphere. Doppler shifts in these lines can be measured during Martian day and night, resolving wind speeds down to 5 m/s. Orthogonal views allow the spectrometers to capture wind vectors over all observation locations. Aeolus will also carry the atmospheric limb-viewing Thermal Limb Sounder (TLS) to measure atmospheric temperatures, water ice clouds, and dust abundances across all altitudes where winds are measured. Finally, the Surface Radiometric Sensor Package (SuRSeP), a nadir viewing radiometer, will measure the total reflected solar and emitted thermal radiance, surface temperature, and water cloud and dust total column abundances. The combined spectral and thermal measurements will provide a new understanding of the global energy balance, dust transport processes, and climate cycles in the Martian atmosphere. Aeolus will consist of a single satellite in a near-polar orbit, allowing it to pass over all local times, with the baseline mission observing all seasons of an entire Martian year (two Earth years). Aeolus was one of two Martian smallsat concepts selected for study through the Planetary Science Deep Space SmallSat Studies program. This talk will provide an overview of the mission, including science rationale, instruments, spacecraft, and mission operations concept.
Agricultural scene understanding
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Bauer, M. E.; Silva, L.; Hoffer, R. M.; Baumgardner, M. F.
1977-01-01
The author has identified the following significant results. The LACIE field measurement data were radiometrically calibrated. Calibration enabled valid comparisons of measurements from different dates, sensors, and/or locations. Thermal band canopy results included: (1) Wind velocity had a significant influence on the overhead radiance temperature and the effect was quantized. Biomass and soil temperatures, temperature gradient, and canopy geometry were altered. (2) Temperature gradient was a function of wind velocity. (3) Temperature gradient of the wheat canopy was relatively constant during the day. (4) The laser technique provided good quality geometric characterization.
Bröde, Peter; Błazejczyk, Krzysztof; Fiala, Dusan; Havenith, George; Holmér, Ingvar; Jendritzky, Gerd; Kuklane, Kalev; Kampmann, Bernhard
2013-01-01
The growing need for valid assessment procedures of the outdoor thermal environment in the fields of public weather services, public health systems, urban planning, tourism & recreation and climate impact research raised the idea to develop the Universal Thermal Climate Index UTCI based on the most recent scientific progress both in thermo-physiology and in heat exchange theory. Following extensive validation of accessible models of human thermoregulation, the advanced multi-node 'Fiala' model was selected to form the basis of UTCI. This model was coupled with an adaptive clothing model which considers clothing habits by the general urban population and behavioral changes in clothing insulation related to actual environmental temperature. UTCI was developed conceptually as an equivalent temperature. Thus, for any combination of air temperature, wind, radiation, and humidity, UTCI is defined as the air temperature in the reference condition which would elicit the same dynamic response of the physiological model. This review analyses the sensitivity of UTCI to humidity and radiation in the heat and to wind in the cold and compares the results with observational studies and internationally standardized assessment procedures. The capabilities, restrictions and potential future extensions of UTCI are discussed.
Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin
2015-06-09
Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.« less
Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Capecchi, Valerio; Modesti, Pietro Amedeo; Gensini, Gian Franco; Orlandini, Simone
2014-01-01
The aim of this study is to identify the most effective thermal predictor of heat-related very-elderly mortality in two cities located in different geographical contexts of central Italy. We tested the hypothesis that use of the state-of-the-art rational thermal indices, the Universal Thermal Climate Index (UTCI), might provide an improvement in predicting heat-related mortality with respect to other predictors. Data regarding very elderly people (≥75 years) who died in inland and coastal cities from 2006 to 2008 (May–October) and meteorological and air pollution were obtained from the regional mortality and environmental archives. Rational (UTCI) and direct thermal indices represented by a set of bivariate/multivariate apparent temperature indices were assessed. Correlation analyses and generalized additive models were applied. The Akaike weights were used for the best model selection. Direct multivariate indices showed the highest correlations with UTCI and were also selected as the best thermal predictors of heat-related mortality for both inland and coastal cities. Conversely, the UTCI was never identified as the best thermal predictor. The use of direct multivariate indices, which also account for the extra effect of wind speed and/or solar radiation, revealed the best fitting with all-cause, very-elderly mortality attributable to heat stress. PMID:24523657
Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Capecchi, Valerio; Modesti, Pietro Amedeo; Gensini, Gian Franco; Orlandini, Simone
2014-01-01
The aim of this study is to identify the most effective thermal predictor of heat-related very-elderly mortality in two cities located in different geographical contexts of central Italy. We tested the hypothesis that use of the state-of-the-art rational thermal indices, the Universal Thermal Climate Index (UTCI), might provide an improvement in predicting heat-related mortality with respect to other predictors. Data regarding very elderly people (≥ 75 years) who died in inland and coastal cities from 2006 to 2008 (May-October) and meteorological and air pollution were obtained from the regional mortality and environmental archives. Rational (UTCI) and direct thermal indices represented by a set of bivariate/multivariate apparent temperature indices were assessed. Correlation analyses and generalized additive models were applied. The Akaike weights were used for the best model selection. Direct multivariate indices showed the highest correlations with UTCI and were also selected as the best thermal predictors of heat-related mortality for both inland and coastal cities. Conversely, the UTCI was never identified as the best thermal predictor. The use of direct multivariate indices, which also account for the extra effect of wind speed and/or solar radiation, revealed the best fitting with all-cause, very-elderly mortality attributable to heat stress.
Wind constraints on the thermoregulation of high mountain lizards.
Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín
2017-03-01
Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard (Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.
Wind constraints on the thermoregulation of high mountain lizards
NASA Astrophysics Data System (ADS)
Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín
2017-03-01
Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.
Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles
2016-06-01
defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the
NASA Astrophysics Data System (ADS)
Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping
2017-11-01
The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.
Effects of heavy ions on electron temperatures in the solar corona and solar wind
NASA Technical Reports Server (NTRS)
Nakada, M. P.
1972-01-01
The effects of the reduction in the thermal conductivity due to heavy ions on electron temperatures in the solar corona and solar wind are examined. Large enhancements of heavy ions in the corona appear to be necessary to give appreciable changes in the thermal gradient of the electrons.
Code of Federal Regulations, 2010 CFR
2010-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2014 CFR
2014-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...
The Interplanetary Magnetic Field and Magnetospheric Current Systems
NASA Technical Reports Server (NTRS)
El-Alaoui, Mostafa
2003-01-01
We have performed systematic global magnetohydrodynamic (MHD) simulation studies driven by an idealized time series of solar wind parameters to establish basic cause and effect relationships between the solar wind variations and the ionosphere parameters. We studied six cases in which the interplanetary magnetic field (IMF) rotated from southward to northward in one minute. In three cases (cases A, B, and C) we ran five hours of southward IMF with Beta(sub Zeta) = 5 nT, followed by five hours of northward IMF with Beta(sub Zeta) = 5 nT. In the other three cases (cases D, E, and F) the magnetic field magnitude was increased to 10 nT. The solar wind parameters were: For cases A and D a density of 5 cm(exp -3), a thermal pressure of 3.3 nPa, and a solar wind speed 375 km/s, for cases B and E a density of 10 cm(exp -3), a thermal pressure of 9.9 nPa, and a solar wind speed 420 km/s, while for cases C and F a density of 15 cm(exp -3), a thermal pressure of 14.9 nPa, and a solar wind speed of 600 km/s.
INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randol, B. M.; McComas, D. J.; Schwadron, N. A., E-mail: brentrandol@gmail.com
We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as themore » ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.« less
NASA Astrophysics Data System (ADS)
Myasnikov, A. V.; Zhekov, S. A.
1998-11-01
The influence of electron thermal conduction on the 2D gas dynamics of colliding stellar winds is investigated. It is shown that, as a result of the non-linear dependence of the electron thermal flux on the temperature, the pre-heating zones (in which the hot gas in the interaction region heats the cool winds in front of the shocks) have finite sizes. The dependence of the problem of the structure of the flow in the interaction region on the dimensionless parameters is studied, and a simple expression is derived for the size of the pre-heating zones at the axis of symmetry. It is shown that small values of the thermal conductivity do not suppress the Kelvin-Helmholtz instability if the adiabatic flow is subject to it. Further studies, both numerical and analytical, in this direction will be of great interest. The influence of thermal conduction on the X-ray emission from the interaction region is also estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Andrew; Wiser, Ryan
2012-05-18
We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\more » $$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal storage is found to drop considerably (by more than \\$$70/MWh) as the penetration of solar increases toward 30\\percent on an energy basis. This is due primarily to a steep drop in capacity value followed by a decrease in energy value. In contrast, the value of CSP with thermal storage drops much less dramatically as penetration increases. As a result, at solar penetration levels above 10\\percent, CSP with thermal storage is found to be considerably more valuable relative to PV and CSP without thermal storage. The marginal economic value of wind is found to be largely driven by energy value, and is lower than solar at low penetration. The marginal economic value of wind drops at a relatively slower rate with penetration, however. As a result, at high penetration, the value of wind can exceed the value of PV and CSP without thermal storage. Though some of these findings may be somewhat unique to the specific case study presented here, the results: (1) highlight the importance of an analysis framework that addresses long-term investment decisions as well as short-term dispatch and operational constraints, (2) can help inform long-term decisions about renewable energy procurement and supporting infrastructure, and (3) point to areas where further research is warranted.« less
Patterns of migrating soaring migrants indicate attraction to marine wind farms
Desholm, Mark; Heinänen, Stefan; Kahlert, Johnny A.; Laubek, Bjarke; Jensen, Niels Einar; Žydelis, Ramūnas; Jensen, Bo Præstegaard
2016-01-01
Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed. PMID:28003522
Thermalization of Heavy Ions in the Solar Wind
NASA Astrophysics Data System (ADS)
Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason
2015-10-01
Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.
Synergies of wind power and electrified space heating: case study for Beijing.
Chen, Xinyu; Lu, Xi; McElroy, Michael B; Nielsen, Chris P; Kang, Chongqing
2014-01-01
Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.
2014-12-01
The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil moisture effects were observed. This data provides important insight into future work of accurately modeling the exchange processes associated with evaporation under various turbulent atmospheric conditions.
2016-06-01
13 Figure 6. Vertical Axis Wind Turbines and Photovoltaic Solar Panels ....................15 Figure 7. Solar Sunny Boy Inverter...16 Figure 8. Wind Turbine Inverters...1. Comparison of Energy Storage. Adapted from [16], [18], [19]. ................10 Table 2. DC Operating Voltage of Wind Turbine Inverters
NASA Technical Reports Server (NTRS)
Hook, Simon J.
2008-01-01
The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.
Aerothermoelastic Analysis of a NASP-Like Vertical Fin
NASA Technical Reports Server (NTRS)
Rodgers, John P.
1992-01-01
Several aeroelastic stability analyses for a vertical fin similar to that of the National Aero-Space Plane are described. The objectives of the study were to design and obtain an experimental data base for a supersonic wind-tunnel model of the fin in order to examine the effects of thermal loading on the flutter characteristics. This paper describes the preliminary efforts to design the wind-tunnel model, including several of the geometric parameter variations that were analyzed. The dominant flutter mechanism involved a flap vibration mode and a fin bending mode. Variation of the thicknesses of flap and root flexures, used to attach the flap to the fin, and the fin to a support, significantly affected the flutter boundary. Uniform thermal loads, affecting only material properties, had little effect, as did the application of different uniform temperatures to each side of the fin. In contrast, the application of significant chord-wise thermal gradients induced stresses which reduced the flutter dynamic pressure by as much as 37 percent. For less extreme distributed loading, the low-aspect ratio fin was relatively unaffected.
NASA Technical Reports Server (NTRS)
Nagai, F.
1984-01-01
Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.
24 CFR 3286.603 - At or before sale.
Code of Federal Regulations, 2011 CFR
2011-04-01
... consumer disclosure statement required in § 3286.7(b); and (ii) Verify that the wind, thermal, and roof... lessee plans to install the home for occupancy; and (iii) If the cost of inspection of the home's... designed and constructed for specific wind, thermal, and roof load zones; and (2) If the home is sited in a...
24 CFR 3286.603 - At or before sale.
Code of Federal Regulations, 2010 CFR
2010-04-01
... consumer disclosure statement required in § 3286.7(b); and (ii) Verify that the wind, thermal, and roof... lessee plans to install the home for occupancy; and (iii) If the cost of inspection of the home's... designed and constructed for specific wind, thermal, and roof load zones; and (2) If the home is sited in a...
24 CFR 3286.603 - At or before sale.
Code of Federal Regulations, 2012 CFR
2012-04-01
... consumer disclosure statement required in § 3286.7(b); and (ii) Verify that the wind, thermal, and roof... lessee plans to install the home for occupancy; and (iii) If the cost of inspection of the home's... designed and constructed for specific wind, thermal, and roof load zones; and (2) If the home is sited in a...
24 CFR 3286.603 - At or before sale.
Code of Federal Regulations, 2014 CFR
2014-04-01
... consumer disclosure statement required in § 3286.7(b); and (ii) Verify that the wind, thermal, and roof... lessee plans to install the home for occupancy; and (iii) If the cost of inspection of the home's... designed and constructed for specific wind, thermal, and roof load zones; and (2) If the home is sited in a...
24 CFR 3286.603 - At or before sale.
Code of Federal Regulations, 2013 CFR
2013-04-01
... consumer disclosure statement required in § 3286.7(b); and (ii) Verify that the wind, thermal, and roof... lessee plans to install the home for occupancy; and (iii) If the cost of inspection of the home's... designed and constructed for specific wind, thermal, and roof load zones; and (2) If the home is sited in a...
Vertical structure of tropospheric winds on gas giants
NASA Astrophysics Data System (ADS)
Scott, R. K.; Dunkerton, T. J.
2017-04-01
Zonal mean zonal velocity profiles from cloud-tracking observations on Jupiter and Saturn are used to infer latitudinal variations of potential temperature consistent with a shear stable potential vorticity distribution. Immediately below the cloud tops, density stratification is weaker on the poleward and stronger on the equatorward flanks of midlatitude jets, while at greater depth the opposite relation holds. Thermal wind balance then yields the associated vertical shears of midlatitude jets in an altitude range bounded above by the cloud tops and bounded below by the level where the latitudinal gradient of static stability changes sign. The inferred vertical shear below the cloud tops is consistent with existing thermal profiling of the upper troposphere. The sense of the associated mean meridional circulation in the upper troposphere is discussed, and expected magnitudes are given based on existing estimates of the radiative timescale on each planet.
'On-line' analyses of simulated solar wind implantations of terrestrial analogs of lunar materials
NASA Technical Reports Server (NTRS)
Blanford, G. E.; Bergesen, P.; Moeller, W.; Maurette, M.; Monart, B.
1986-01-01
In connection with the establishment of a lunar base, it would be necessary to provide water, and the feasibility to obtain water from solar wind (SW) implanted lunar soils has been considered. In this context, a project involving the examination of materials under conditions of simulated SW irradiation has been initiated. A description is presented of initial results on oligoclase, ilmenite, and simulated lunar glass (SLG). Attention is given to the reaction chamber, the target materials, the saturation concentrations, aspects of water release, depth profiles, thermal release, effects from helium-3 preimplants, mechanisms of possible water release related to direct emission and thermal release, and lunar soil components enriched in trapped SW hydrogen. It is found that ilmenite stores about twice as much deuterium as the other target materials. However, it is unknown whether the small enrichment factor will be sufficient to make the material a potential source of lunar water.
Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)
NASA Technical Reports Server (NTRS)
Houtas, Franzeska; Teets, Edward H., Jr.
2012-01-01
Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.
Supernova shock breakout through a wind
NASA Astrophysics Data System (ADS)
Balberg, Shmuel; Loeb, Abraham
2011-06-01
The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.
Cryogenic strain gage techniques used in force balance design for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Ferris, A. T.
1986-01-01
A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.
Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A
2015-11-01
A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.
Wind farm density and harvested power in very large wind farms: A low-order model
NASA Astrophysics Data System (ADS)
Cortina, G.; Sharma, V.; Calaf, M.
2017-07-01
In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.
NASA Astrophysics Data System (ADS)
Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2018-05-01
Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
Wind loading on solar concentrators: some general considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschke, E. J.
A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results onmore » heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.« less
A thermal storage capacity market for non dispatchable renewable energies
NASA Astrophysics Data System (ADS)
Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz
2017-06-01
Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.
Solar wind: Internal parameters driven by external source
NASA Technical Reports Server (NTRS)
Chertkov, A. D.
1995-01-01
A new concept interpreting solar wind parameters is suggested. The process of increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. Thus, the solar wind is unique from the point of view of thermodynamics of irreversible processes. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of interplanetary plasma must be very far from the thermodynamic equilibrium. Plasma internal energy is contained mainly in non-degenerate forms (plasma waves, resonant plasma oscillations, electric currents). Microscopic oscillating electric fields in the solar wind plasma should be about 1 V/m. It allows one to describe the solar wind by simple dissipative MHD equations with small effective mean free path (required for hydrodynamical description), low value of electrical conductivity combined with very big apparent thermal conductivity (required for observed solar wind acceleration). These internal parameters are interrelated only due to their origin: they are externally driven. Their relation can change during the interaction of solar wind plasma with an obstacle (planet, spacecraft). The concept proposed can be verified by the special electric field measurements, not ruining the primordial plasma state.
Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A
NASA Astrophysics Data System (ADS)
Blomme, R.; Fenech, D. M.; Prinja, R. K.; Pittard, J. M.; Morford, J. C.
2017-12-01
Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims: We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods: We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results: The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions: The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed modelling of this system, based on solving the hydrodynamical equations, is required to give a definite answer. This work is based on observations carried out under project numbers S14AW and S16AU with the IRAM NOEMA Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
NASA Astrophysics Data System (ADS)
Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan
2018-05-01
We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.
Polar low formation: ambient environments and the role of moisture
NASA Astrophysics Data System (ADS)
Terpstra, Annick; Spengler, Thomas; Michel, Clio; Moore, Richard
2016-04-01
Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. Previous studies have shown that wind shear, baroclinicity, latent heat release, and surface fluxes are important factors during formation and intensification, yet their relative contributions and importance are still not fully understood. We use the ambient atmospheric conditions during polar low genesis to provide dynamical insights to the intensification and formation mechanisms for polar lows. We identify the characteristics of the ambient pre-polar low environment utilising an existing polar low database and ERA-Interim reanalysis data. Classification of these environments is based on the the direction between the thermal wind and the mean flow in the lower troposphere, where environments are classified as 'reverse shear' if the thermal wind and mean flow are in opposing directions and 'forward shear' if they are in the same direction. The two types of pre-polar low environments exhibit distinctly different features in terms of synoptic scale patterns, baroclinicity, configuration of the sea-surface temperature, as well as depth and stratification of the troposphere. These clear-cut differences hint at different dynamical pathways for the formation and intensification of polar lows for different shear environments. We also explore the role of latent heating during polar low formation utilising an idealised baroclinic channel model. The experimental design resembles a typical forward-shear moist-baroclinic environment at high-latitudes. Cyclogenesis is triggered by a weak, low-level thermal perturbation in hydrostatic and geostrophic balance. Our experiments show that significant disturbance growth is possible in absence of upper level forcing, surface fluxes, and radiation. The relative importance of diabatic versus baroclinic processes for the generation of eddy available potential energy is used to differentiate between the dynamical processes contributing to disturbance growth. The experiments indicate that sufficient latent heat release in the north-eastern quadrant of the cyclone is crucial for rapid disturbance intensification, where environmental relative humidity, baroclinicity, and static stability modulate the relative importance of latent heat release. Furthermore, the relative shallowness of the perturbation at high-latitudes increases the effectiveness of latent heat release on cyclone amplification.
Magneto-thermal Disk Winds from Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng
2016-02-01
The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.
Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources.
Green, Jonathan R.; Espinoza, Eduardo; Hearn, Alex R.
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100–350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources. PMID:28854201
Spatial variability of chilling temperature in Turkey and its effect on human comfort
NASA Astrophysics Data System (ADS)
Toros, H.; Deniz, A.; Şaylan, L.; Şen, O.; Baloğlu, M.
2005-03-01
Air temperature, absolute humidity and wind speed are the most important meteorological parameters that affect human thermal comfort. Because of heat loss, the human body feels air temperatures different to actual temperatures. Wind speed is the most practical element for consideration in terms of human comfort. In winter, due to the strong wind speeds, the sensible temperature is generally colder than the air temperature. This uncomfortable condition can cause problems related to tourism, heating and cooling. In this study, the spatial and temporal distributions of cooling temperatures and Wind Chill Index (WCI) are analyzed for Turkey, and their effect on the human body is considered. In this paper, monthly cooling temperatures between October and March in the years 1929 to 1990 are calculated by using measured temperature and wind speed at 79 stations in Turkey. The influence of wind chill is especially observed in the regions of the Aegean, west and middle Black Sea and east and central Anatolia. The wind chill in these regions has an uncomfortable effect on the human body. Usually, the WCI value is higher in western, northern and central Anatolia than in other regions.
Observations of thermal and suprathermal tail ions from WIND
NASA Astrophysics Data System (ADS)
Randol, B. M.; Christian, E. R.; Wilson, L. B., III
2016-12-01
The velocity distribution function (VDF) of solar wind protons (as well as other ion populations) is comprised of a thermal Maxwellian core and an accelerated suprathermal tail, beginning at around 1 keV in the frame co-moving with solar wind bulk velocity. The form of the suprathermal tail is a power law in phase space density, f, vs. speed, v, such that f / vγ, where γ is the power law index. This commonly observed index is of particular interest because no traditional theory predicts its existence. We need more data in order to test these theories. The general shape is of interest because it is kappa-like. We show combined observations from three different instruments on the WIND spacecraft: 3DP/PLSP, STICS, and 3DP/SST/Open. These data stretch from 102 to 107 eV in energy, encompassing both the thermal and suprathermal proton populations. We show further evidence for this kappa-like distribution and report on our progress on fitting of empirical functions to these data.
NASA Astrophysics Data System (ADS)
Rajewski, D. A.
2015-12-01
Wind farms are an important resource for electrical generation in the Central U.S., however with each installation there are many poorly documented interactions with the local and surrounding environment. The impact of wind farms on surface microclimate is largely understood conceptually using numerical or wind tunnel models or ex situ satellite-detected changes. Measurements suitable for calibration of numerical simulations are few and of limited applicability but are urgently needed to improve parameterization of wind farm aerodynamics influenced by the diurnal evolution of the boundary layer. Among large eddy simulations of wind farm wakes in thermally stable stratification, there are discrepancies on the influence of turbine-induced mixing on the surface heat flux. We provide measurements from seven surface flux stations, vertical profiling LiDARs located upwind and downwind of turbines, and SCADA measurements from turbines during the 2013 Crop Wind Energy Experiment (CWEX-13) as the best evidence for the variability of turbine induced heat flux within a large wind farm. Examination of ambient conditions (wind direction, wind veer, and thermal stratification) and on turbine operation factors (hub-height wind speed, normalized power) reveal conditions that lead to the largest modification of heat flux. Our results demonstrate the highest flux change from the reference station to be where the leading few lines of turbines influence the surface. Under stably stratified conditions turbine-scale turbulence is highly efficient at bringing warmer air aloft to the surface, leading to an increase in downward heat flux. Conversely we see that the combination of wakes from several lines of turbines reduces the flux contrast from the reference station. In this regime of deep wind-farm flow, wake turbulence is similar in scale and intensity to the reference conditions. These analysis tools can be extended to other turbine SCADA and microclimate variables (e.g. temperature) to improve basic understanding of turbine-turbine and total wind farm wake interactions. Forthcoming tall-tower measurements will provide additional opportunities for comparison of simulated wind and thermal profiles in non-wake, and waked flow conditions.
Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study
NASA Astrophysics Data System (ADS)
Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando
2013-02-01
Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12-15 °C and heating up the test section floor to 73-75 °C. The freestream wind speed was set at about 2.5 m s-1, resulting in a bulk Richardson number of -0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2-3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2-20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that in the undisturbed CBL inflow. This study represents the first controlled wind-tunnel experiment to study the effects of the CBL on wind-turbine wakes. The results on decreased velocity deficit and increased turbulence in wind-turbine wakes associated with atmospheric thermal stability are important to be taken into account in the design of wind farms, in order to reduce the impact of wakes on power output and fatigue loads on downwind wind turbines.
Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf
2009-01-01
In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (< 0.5 m/s), moderate (2-3 m/s) and high (8-9 m/s) wind conditions. During steady state thermal transfer, the total resultant insulation value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended outdoor, on-scene durations, such as during prolonged extrications or in multiple casualty situations, the results of this study emphasize the importance of using a windproof and compression resistant outer ensemble to maintain adequate insulation capacity.
Evaluation of thermal perception in schoolyards under Mediterranean climate conditions
NASA Astrophysics Data System (ADS)
Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.
2016-03-01
The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.
Impact of active and break wind spells on the demand-supply balance in wind energy in India
NASA Astrophysics Data System (ADS)
Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal
2018-02-01
With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.
Low-Energy Electron Effects on the Polar Wind Observed by the POLAR Spacecraft
NASA Technical Reports Server (NTRS)
Horwitz, J. L.; Su, Y.-J.; Dors, E. E.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.
1998-01-01
Large ion outflow velocity variation at POLAR apogee have been observed. The observed H+ flow velocities were in the range of 23-110 km/s and 0+ flow velocities were in the range of 5-25 km/s. These velocity ranges lie between those predicted by simulations of the photoelectron-driven polar wind and "baseline" polar wind. The electric current contributions of the photoelectrons and polar rain are expected to control the size and altitude of an electric potential drop which accelerates the polar wind at relatively high altitudes. In this presentation, we compare polar wind characteristics observed near 5000 km and 8 RE altitudes by the Thermal Ion Dynamics Experiment (TIDE) with measurements of low-energy electrons sampled by HYDRA, both from the POLAR spacecraft, to examine possible effects of the polar rain and photoelectrons on the polar wind. Both correlations and anti-correlations are found between the polar wind velocities and the polar rain fluxes at POLAR apogee during different polar cap crossings. Also, the low-altitude upward/downward photoelectron spectra are used to estimates the potential drops above the spacecraft. We interpret these observations in terms of the effects that both photoelectrons and polar rain may have on the electric potential and polar wind acceleration along polar cap magnetic field lines.
Patterns of migrating soaring migrants indicate attraction to marine wind farms.
Skov, Henrik; Desholm, Mark; Heinänen, Stefan; Kahlert, Johnny A; Laubek, Bjarke; Jensen, Niels Einar; Žydelis, Ramūnas; Jensen, Bo Præstegaard
2016-12-01
Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Bezhan, A. V.; Minin, V. A.
2017-03-01
This article describes a methodological approach to defining indoor air temperature in buildings heated by a power supply unit consisting of a boiler house and a wind-driven power plant (WDPP). We discuss a heating option for a residential building in the windy conditions of Murmansk city. We proved that, during the periods of strong wind, a WDPP can partially or fully satisfy the heat demand and sometimes even create a surplus of energy. During low wind weather, almost all loads are handled by the boiler house. We considered a possibility to accumulate the surplus energy obtained from a WDPP during strong wind by increasing the temperature in the whole building up to 25°C and further using the accumulated heat during the lowwind period when indoor air temperature may fall below 20°C. This allows saving organic fuel in the boiler house. We demonstrated how indoor air temperature in the building may change throughout the year when using the surplus energy from the WDPP due to thermal storage capacitance of the building. We also provided the results of study, showing favorable energy-related effects of using a WDPP along with the boiler house. It was determined that engaging a WDPP in fulfilling the diagram of heating loads promotes the decrease in the boiler house's contribution to heat supply by 30 to 50%, and using the surplus energy from the WDPP and thermal storage capacitance of the building allows reducing the contribution of the boiler house by 5-15% more in certain months.
Thermally driven up-slope flows: state of the art and open questions
NASA Astrophysics Data System (ADS)
Zardi, D.
2015-12-01
Thermally driven flows over simple slopes are a relevant research topic, not only per se, but also as a source of key concepts for understanding and modelling many other flows over more complex topographies. However, compared to down-slope, up-slope flows have received much less attention in the literature. Indeed, to investigate katabatic winds many extensive and well equipped field measurements were performed in recent years under various research projects, and a series of high-resolution numerical simulations were run. On the contrary, few field experiments have provided detailed datasets documenting the development of anabatic flows, and the analysis of numerical investigations still relies on Schumann's (1990) pioneering LES simulations. Also, analytic solutions - such as Prandtl's (1942) constant-K profiles - reproduce fairly well katabatic flows, but are definitely inadequate to accurately reproduce field data for up-slope flows (Defant 1949). In particular, some open questions still claim for further investigations, such as the conditions of instability of slope-parallel flow vs. vertical motions, and the related possible occurrence of flow separation, and the similarity analysis of slope-normal velocity profiles of temperature anomaly, wind intensity and turbulence related quantities. Here a review of the state of the art on the subject is proposed, along with some insights into possible future developments. ReferencesDefant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382 pp. Schumann, U., 1990: Large-eddy simulation of the up-slope boundary layer. Quart. J. Roy. Meteor. Soc., 116, 637-670.
The development and stability of non-thermal plasma in space
NASA Astrophysics Data System (ADS)
Kasper, Justin
2017-10-01
This talk will review our understanding of non-thermal ion and electron velocity distribution functions (VDFs) in space plasma, with a focus on pressure anisotropy and unequal temperatures in the solar wind and corona. Under typical solar wind plasma conditions, which are common for a range of astrophysical plasmas, relaxation processes such as Coulomb collisions are sufficiently slow compared to interactions between particles and electromagnetic fluctuations that ion and electron VDFs can depart significantly from the classical Maxwell-Boltzmann distribution and maintain these non-thermal features for times greater than the dynamical scales of the system. These non-thermal properties of the plasma are very important as they can significantly modify aspects of the plasma such as heat flux, susceptibility to kinetic instabilities, and interaction with waves and turbulence. Major open questions in the field will be reviewed, along with current and planned observational capabilities of instruments on spacecraft such as Wind and the upcoming Parker Solar Probe, with an eye to potential crossover with laboratory plasma experiments.
75 FR 75335 - Integration of Variable Energy Resources
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-02
... the facility owner or operator. This includes, for example, wind, solar thermal and photovoltaic, and... Commission recognized that intermittent resources, such as wind power, have a limited ability to control...\\ The Commission therefore exempted wind resources from certain sections of the LGIA and added Appendix...
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
The solar probe and coronal dynamics
NASA Technical Reports Server (NTRS)
Belcher, J.; Heinemann, M.; Goodrich, C.
1978-01-01
The discovery of coronal holes led to basic changes in ideas about the structure of the low corona and its expansion into the solar wind. The nature of the energy flux is not understood. Current ideas include enhanced thermal conductivities, extended MHD wave heating, and wave momentum transfer, all in rapidly diverging geometries. There is little feel for the relative importance of these processes. The Solar Probe, with its penetration deep into the solar corona, could lead to observational constraints on their relative importance, and thus to an understanding of the origin of the solar wind. Observations from the Solar Probe will also bear on such questions as to whether small scale "intrastream" structure is common close to the Sun in open field-line regions, whether the properties of the wind are pronouncedly different over closed and open field-line regions at five solar radii, and many others. The resolution of these questions requires measurements of the magnetic field and of the proton and electron distribution functions.
NASA Technical Reports Server (NTRS)
Scudder, J. D.
1978-01-01
A detailed first principle kinetic theory for electrons which is neither a classical fluid treatment nor an exospheric calculation is presented. This theory illustrates the global and local properties of the solar wind expansion that shape the observed features of the electron distribution function, such as its bifurcation, its skewness and the differential temperatures of the thermal and suprathermal subpopulations. Coulomb collisions are substantial mediators of the interplanetary electron velocity distribution function and they place a zone for a bifurcation of the electron distribution function deep in the corona. The local cause and effect precept which permeates the physics of denser media is modified for electrons in the solar wind. The local form of transport laws and equations of state which apply to collision dominated plasmas are replaced with global relations that explicitly depend on the relative position of the observer to the boundaries of the system.
Theoretical studies of the solar atmosphere and interstellar pickup ions
NASA Technical Reports Server (NTRS)
1994-01-01
Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.
Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system
NASA Astrophysics Data System (ADS)
Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.
2017-12-01
Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
The effects of the stellar wind and orbital motion on the jets of high-mass microquasars
NASA Astrophysics Data System (ADS)
Bosch-Ramon, V.; Barkov, M. V.
2016-05-01
Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.
Four essays on offshore wind power potential, development, regulatory framework, and integration
NASA Astrophysics Data System (ADS)
Dhanju, Amardeep
Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the coastal states to harness the resource, particularly in states adjacent to the Mid-Atlantic Bight where the shallow continental shelf allows installation of wind turbines using the existing foundation technology. But the promise of bountiful clean energy from offshore wind could be delayed or forestalled due to policy and regulatory challenges. This dissertation is an effort to identify and address some of the important challenges. Focusing on Delaware as a case study it calculates the extent of the wind resource; considers one means to facilitate resource development---the establishment of statewide and regional public power authorities; analyzes possible regulatory frameworks to manage the resource in state-controlled waters; and assesses the use of distributed storage to manage intermittent output from wind turbines. In order to cover a diversity of topics, this research uses a multi-paper format with four essays forming the body of work. The first essay lays out an accessible methodology to calculate offshore wind resource potential using publicly available data, and uses this methodology to access wind resources off Delaware. The assessment suggests a wind resource approximately four times the average electrical load in Delaware. The second essay examines the potential role of a power authority, a quasi-public institution, in lowering the cost of capital, reducing financial risk of developing and operating a wind farm, and enhancing regional collaboration on resource development and management issues. The analysis suggests that a power authority can lower the cost of offshore wind power by as much as 1/3, thereby preserving the ability to pursue cost-competitive development even if the current federal incentives are removed. The third essay addresses the existing regulatory void in state-controlled waters of Delaware. It outlines a regulatory framework touching on key elements such as the leasing system, length of tenure, and financial terms for allocating property rights. In addition, the framework also provides recommendations on environmental assessment that would be required prior to lease issuance. The fourth essay analyzes offshore wind power integration using electric thermal storage in housing units. It presents a model of wind generation, heating load and wind driven thermal storage to assess the potential of storage to buffer wind intermittency. The analysis suggests that thermal load matches the seasonal excess of offshore wind during winter months, and that electric thermal storage could provide significant temporal, spatial, and cost advantages for balancing output from offshore wind generation, while also converting a major residential load (space heating) now met by fossil fuels to low carbon energy resources. Together, the four essays provide new analyses of policy, regulatory, and system integration issues that could impede resource development, and also analyze and recommend strategies to manage these issues.
Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiyong; Lu, Jian; Liu, Fukai
The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less
High-Rise Buildings versus Outdoor Thermal Environment in Chongqing
Lu, Jun; Chen, Jin-hua; Tang, Ying; Feng, Yuan; Wang, Jin-sha
2007-01-01
This paper gives a brief description of the over quick urbanization since Chongqing, one of the biggest cities in China, has been a municipality directly under the Central Government in 1997, excessive development and exceeding increase of high-rise buildings because of its special geographical position which finally leads to the worsening of the urban outdoor thermal environment. Then, this paper makes a bright balance to the field measurement and simulated results of the wind speed field, temperature field of one multifunctional high-rise building in Chongqing university located in the city center, and the contrasted results validate the correctness of CFD in the outdoor thermal environmental simulation, expose the disadvantages of high-rise buildings on the aspects of blocking the wind field, decreasing wind speed which results in accumulation of the air-conditioning heat revolving around and periscian region where sunshine can not rip into. Finally, in order to improve the urban outdoor thermal environment near the high-rise buildings especially for the angle of natural ventilation, this paper simulates the wind environment in different architectural compositions and architectural layouts by CFD, and the simulated results show that freestyle and tower buildings which can guarantee the wind speed and take the air-conditioning heat away are much suitable and reasonable for the special Chongqing geography. These conclusions can also be used as a reference in other mountain cities, especially for the one with a great number of populations. PMID:28903222
Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation
NASA Astrophysics Data System (ADS)
Zhao, L.; Landi, E.; Kocher, M.; Lepri, S. T.; Fisk, L. A.; Zurbuchen, T. H.
2016-03-01
The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (Rs) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O7+/O6+ and C6+/C5+ charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measured by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of "Outliers" departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (Vp < 500 km/s) and about 1.0% of them is fast solar wind (Vp > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as Vp < 500 km/s and O7+/O6+ > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C6+/C5+ ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.
NASA Astrophysics Data System (ADS)
Higginbottom, Nick; Knigge, Christian; Long, Knox S.; Matthews, James H.; Sim, Stuart A.; Hewitt, Henrietta A.
2018-06-01
Essentially all low-mass X-ray binaries (LMXBs) in the soft state appear to drive powerful equatorial disc winds. A simple mechanism for driving such outflows involves X-ray heating of the top of the disc atmosphere to the Compton temperature. Beyond the Compton radius, the thermal speed exceeds the escape velocity, and mass loss is inevitable. Here, we present the first coupled radiation-hydrodynamic simulation of such thermally-driven disc winds. The main advance over previous modelling efforts is that the frequency-dependent attenuation of the irradiating SED is taken into account. We can therefore relax the approximation that the wind is optically thin throughout which is unlikely to hold in the crucial acceleration zone of the flow. The main remaining limitations of our simulations are connected to our treatment of optically thick regions. Adopting parameters representative of the wind-driving LMXB GRO J1655-40, our radiation-hydrodynamic model yields a mass-loss rate that is ≃ 5 × lower than that suggested by pure hydrodynamic, optically thin models. This outflow rate still represents more than twice the accretion rate and agrees well with the mass-loss rate inferred from Chandra/HETG observations of GRO J1655-40 at a time when the system had a similar luminosity to that adopted in our simulations. The Fe XXV and Fe XXVI Lyman {α } absorption line profiles observed in this state are slightly stronger than those predicted by our simulations but the qualitative agreement between observed and simulated outflow properties means that thermal driving is a viable mechanism for powering the disc winds seen in soft-state LMXBs.
NASA Astrophysics Data System (ADS)
Harper, Graham
2017-08-01
Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.
NASA Technical Reports Server (NTRS)
Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)
1991-01-01
Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.
NASA Astrophysics Data System (ADS)
Johansson, Erik; Emmanuel, Rohinton
2006-11-01
The outdoor environment is deteriorating in many tropical cities due to rapid urbanization. This leads to a number of problems related to health and well-being of humans and also negatively affects social and commercial outdoor activities. The creation of thermally comfortable microclimates in urban environments is therefore very important. This paper discusses the influence of street-canyon geometry on outdoor thermal comfort in Colombo, Sri Lanka. Five sites with different urban geometry, ground cover, and distance from the sea were studied during the warmest season. The environmental parameters affecting thermal comfort, viz. air temperature, humidity, wind speed, and solar radiation, were measured, and the thermal comfort was estimated by calculating the physiologically equivalent temperature (PET). The thermal comfort is far above the assumed comfort zone due to the combination of intense solar radiation, high temperatures, and low wind speeds, especially on clear days. The worst conditions were found in wide streets with low-rise buildings and no shade trees. The most comfortable conditions were found in narrow streets with tall buildings, especially if shade trees were present, as well as in areas near the coast where the sea breeze had a positive effect. In order to improve the outdoor comfort in Colombo, it is suggested to allow a more compact urban form with deeper street canyons and to provide additional shade through the use of trees, covered walkways, pedestrian arcades, etc. The opening up of the city’s coastal strip would allow the sea breeze to penetrate further into the city.
Johansson, Erik; Emmanuel, Rohinton
2006-11-01
The outdoor environment is deteriorating in many tropical cities due to rapid urbanization. This leads to a number of problems related to health and well-being of humans and also negatively affects social and commercial outdoor activities. The creation of thermally comfortable microclimates in urban environments is therefore very important. This paper discusses the influence of street-canyon geometry on outdoor thermal comfort in Colombo, Sri Lanka. Five sites with different urban geometry, ground cover, and distance from the sea were studied during the warmest season. The environmental parameters affecting thermal comfort, viz. air temperature, humidity, wind speed, and solar radiation, were measured, and the thermal comfort was estimated by calculating the physiologically equivalent temperature (PET). The thermal comfort is far above the assumed comfort zone due to the combination of intense solar radiation, high temperatures, and low wind speeds, especially on clear days. The worst conditions were found in wide streets with low-rise buildings and no shade trees. The most comfortable conditions were found in narrow streets with tall buildings, especially if shade trees were present, as well as in areas near the coast where the sea breeze had a positive effect. In order to improve the outdoor comfort in Colombo, it is suggested to allow a more compact urban form with deeper street canyons and to provide additional shade through the use of trees, covered walkways, pedestrian arcades, etc. The opening up of the city's coastal strip would allow the sea breeze to penetrate further into the city.
A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Bucciantini, N.
2018-05-01
Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.
NASA Astrophysics Data System (ADS)
Höppe, P.
With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.
NASA Astrophysics Data System (ADS)
Delgado, A.; Gertig, C.; Blesa, E.; Loza, A.; Hidalgo, C.; Ron, R.
2016-05-01
Typical plant configurations for Central Receiver Systems (CRS) are comprised of a large field of heliostats which concentrate solar irradiation onto the receiver, which is elevated hundreds of meters above the ground. Wind speed changes with altitude above ground, impacting on the receiver thermal efficiency due to variations of the convective heat losses. In addition, the physical properties of air vary at high altitudes to a significant degree, which should be considered in the thermal losses calculation. DNV GL has long-reaching experience in wind energy assessment with reliable methodologies to reduce the uncertainty of the determination of the wind regime. As a part of this study, DNV GL estimates the wind speed at high altitude for different sites using two methods, a detailed estimation applying the best practices used in the wind energy sector based on measurements from various wind sensors and a simplified estimation applying the power law (1, 2) using only one wind measurement and a representative value for the surface roughness. As a result of the study, a comparison of the wind speed estimation considering both methods is presented and the impact on the receiver performance for the evaluated case is estimated.
Global Reference Atmosphere Model (GRAM)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Blocker, Rhonda; Justus, C. G.
1993-01-01
4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.
Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.
Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L
2018-06-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.
2018-06-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.
2018-05-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
NASA Astrophysics Data System (ADS)
Perdana Khidmat, Rendy; Donny Koerniawan, M.; Suhendri
2018-05-01
Student dormitory is a semi-private building that designated to occupies large number of habitats. This type of building mostly designated in simple type of vertical housing. In the context of utilization, dormitory surely requires indoor thermal comfort yet in the same way it requires the energy efficiency as well. Building in a tropical climate country is expected to be adequate to adopt a potention from its surrounding in order to switch air conditioner and gain efficiency in energy consume. One of its key factors is wind. This paper tries to describe and investigate wind movement that works on two different type of student dormitory in Sumatera Institute of Technology. The distinct difference between two blocks is one of the tower block utilizes void meanwhile the other are not. This research is conducted by using Computational Fluid Dynamic (CFD) based software. This study is expected to provide an overview of the wind movement and its effect on air temperature and its correlation to the indoor thermal comfort in both buildings.
NASA Astrophysics Data System (ADS)
Issautier, Karine; Ongala-Edoumou, Samuel; Moncuquet, Michel
2016-04-01
The quasi-thermal noise (QTN) method consists in measuring the electrostatic fluctuations produced by the thermal motion of the ambient particles. This noise is detected with a sensitive wave receiver and measured at the terminal of a passive electric antenna, which is immersed in a stable plasma. The analysis of the so-called QTN provides in situ measurements, mainly the total electron density, with a good accuracy, and thermal temperature in a large number of space media. We create a preliminary electron database to analyse the anti-correlation between electron density and temperature deduced from WIND perigees in the Earth's plasmasphere. We analyse the radio power spectra measured by the Thermal Noise Receiver (TNR), using the 100-m long dipole antenna, onboard WIND spacecraft. We develop a systematic routine to determine the electron density, core and halo temperature and the magnitude of the magnetic field based on QTN in Bernstein modes. Indeed, the spectra are weakly banded between gyroharmonics below the upper hybrid frequency, from which we derive the local electron density. From the gyrofrequency determination, we obtain an independent measure of the magnetic field magnitude, which is in close agreement with the onboard magnetometer.
Four Point Measurements of the Foreshock
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Omidi, N.; Angelopoulos, V.
2008-01-01
Hybrid code numerical simulations accurately predict the properties of the Earth's foreshock, a region populated by solar wind particles heated and reflected by their interaction with the bow shock. The thermal pressures associated with the reflected population suffice to substantially modify the oncoming solar wind, substantially reducing densities, velocities, and magnetic field strengths, but enhance temperatures. Enhanced thermal pressures cause the foreshock to expand at the expense of the ambient solar wind, creating a boundary that extends approx.10 RE upstream which is marked by enhanced densities and magnetic field strengths, and flows deflected away from the foreshock. We present a case study of Cluster plasma and magnetic field observations of this boundary.
Numerical simulation of thermally induced near-surface flows over Martian terrain
NASA Technical Reports Server (NTRS)
Parish, T. R.; Howard, A. D.
1993-01-01
Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.
Shuttle orbiter boundary layer transition at flight and wind tunnel conditions
NASA Technical Reports Server (NTRS)
Goodrich, W. D.; Derry, S. M.; Bertin, J. J.
1983-01-01
Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.
NASA Astrophysics Data System (ADS)
Ma, Libin; Ren, Jianxing
2018-01-01
Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.
The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables
NASA Technical Reports Server (NTRS)
Begelman, Mitchell
2002-01-01
This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.
Biomass, thermal inertia, and radiative freeze occurrence in leafless forests
Brian E. Potter; John C. Zasada
1999-01-01
Using field measurements of air temperature, wind, and relative humidity from a clear-cut site and two wooded sites in northern Wisconsin, we used a radiative transfer model to simulate temperatures on seven calm, clear nights similar to those on which freezes typically occur. Each night was simulated twice for the wooded sites. One simulation ignored the presence of...
Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake
NASA Astrophysics Data System (ADS)
Lin, Y. T.
2014-12-01
In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets
Fenton, L.K.; Bandfield, J.L.; Ward, A.W.
2003-01-01
Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Olbert, S.
1979-01-01
A kinetic theory for the velocity distribution of solar wind electrons which illustrates the global and local properties of the solar wind expansion is proposed. By means of the Boltzmann equation with the Krook collision operator accounting for Coulomb collisions, it is found that Coulomb collisions determine the population and shape of the electron distribution function in both the thermal and suprathermal energy regimes. For suprathermal electrons, the cumulative effects of Coulomb interactions are shown to take place on the scale of the heliosphere itself, whereas the Coulomb interactions of thermal electrons occur on a local scale near the point of observation (1 AU). The bifurcation of the electron distribution between thermal and suprathermal electrons is localized to the deep solar corona (1 to 10 solar radii).
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1974-01-01
The solution to the steady state magnetohydrodynamic equations governing the supersonic expansion of the solar corona into interplanetary space is obtained for various assumptions regarding the form in which proton thermal energy is carried away from the sun. The one-fluid, inviscid, formulation of the MHD equations is considered assuming that thermal energy is carried away by conduction from a heat source located at the base of the corona. Angular motion of the solar wind led to the existence of three critical points through which the numerical solutions must pass to extend from the sun's surface to large heliocentric distances. The results show that the amount of magnetic field energy converted into kinetic energy in the solar wind is only a small fraction of the total expansion energy flux and has little effect upon the final radial expansion velocity.
Storlazzi, Curt D.; Cheriton, Olivia M.; Lescinski, Jamie M.R.; Logan, Joshua B.
2014-01-01
The U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center (PCMSC) initiated an investigation in the National Park Service’s (NPS) War in the Pacific National Historical Park (WAPA) to provide baseline scientific information on coastal circulation and water-column properties along west-central Guam, focusing on WAPA’s Agat Unit, as it relates to the transport and settlement of coral larvae, fish, and other marine organisms. The oceanographic data and numerical circulation modeling results from this study demonstrate that circulation in Agat Bay was strongly driven by winds and waves at longer (>1 day) timescales and by the tides at shorter (<1 day) timescales; near-surface currents in deep water were primarily controlled by the winds, whereas currents on the shallow reef flats were dominated by wave-driven motions. Water-column properties exhibited strong seasonality coupled to the shift from the trade wind to the non-trade wind season. During the dry trade-wind season, waters were cooler and more saline. When the winds shifted to a more variable pattern, waters warmed and became less saline because of a combination of increased thermal insolation from lack of wind forcing and higher rainfall. Turbidity was relatively low in Agat Bay and was similar to levels measured elsewhere along west-central Guam. The numerical circulation modeling results provide insight into the potential paths of buoyant material released from a series of locations along west-central Guam under summer non-trade wind forcing conditions that characterize coral spawning events. This information may be useful in evaluating the potential zones of influence/impact resulting from transport by surface currents of material released from these select locations.
Mesoscale and Synoptic Summertime Circulations and Their Impact on Visibility in the Arabian Gulf
NASA Astrophysics Data System (ADS)
Eleuterio, D. P.; Walker, A. L.
2005-12-01
Although frequently characterized as a region of relatively persistent northwesterly winds, often referred to as the 40-day shamal, several researchers have recognized significant temporal and spatial variability in the summer low level winds in the Arabian Gulf. In addition to the synoptically driven gradient between the subtropical high to the north and the monsoon trough across the Gulf of Oman and Northern Arabian Sea, there are complex interactions between the Saudi Arabian and Pakistani heat lows, land-sea breeze circulations, and coastal terrain influence due to the proximity of the Zagros Mountains. These interactions frequently result in several distinct wind regimes within the Arabian Gulf, to include weak thermally and dynamically forced southerlies in the southern Gulf, a diurnally varying region of convergence/ divergence across the central Gulf, and northwesterly shamal type flow in the northern Gulf. The relative orientation and strength of these wind regimes and the strength of the subsidence inversion at the top of the marine boundary layer greatly impact the aerosol loading over water and resulting visibility due to wind-blown sand, dust, and smoke. Several case studies are examined to explore the interaction between mesoscale and synoptic forcing and the resulting spatial and temporal variability in visibility and aerosol optical depth. Conditions range from two to three day periods of rapid and persistent regional clearing with freshening northwesterly winds, to persistent periods of moderate to poor visibility in marine haze under light winds, to large scale events that create a distinct wind and dust front, severely reducing visibility through much of Iraq, Kuwait, and Saudi Arabia, and extending well into the Arabian Gulf. These strong, widespread events may be correlated with synoptically forced conditions farther north. Alternatively, smaller scale regional plumes of mobilized dust are often created by mesoscale events which, in conjunction with oil smoke and industrial pollution, can rapidly reduce visibility in localized regions for periods of 1-2 days and are relatively difficult to forecast because of their mesoscale nature.
Size Scales for Thermal Inhomogeneities in Mars' Atmosphere Surface Layer: Mars Pathfinder
NASA Technical Reports Server (NTRS)
Mihalov, John D.; Haberle, Robert M.; Seiff, Alvin; Murphy, James R.; Schofield, John T.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Atmospheric temperature measurement at three heights with thin wire thermocouples on the 1.1 m Mars Pathfinder meteorology must allow estimates of the integral scale of the atmospheric thermal turbulence during an 83 sol period that begins in the summer. The integral scale is a measure for regions of perturbations. In turbulent media that roughly characterizes locations where the perturbations are correlated. Excluding some to intervals with violent excursions of the mean temperatures, integral scale values are found that increase relatively rapidly from a few tenths meters or less near down to several meters by mid-morning. During mid-morning, the diurnal and shorter time scale wind direction variations often place the meteorology mast in the thermal wake of the Lander.
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1986-01-01
A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.
Electric Motor Thermal Management R&D (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
2014-11-01
Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize themore » passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.« less
Multi-time scale energy management of wind farms based on comprehensive evaluation technology
NASA Astrophysics Data System (ADS)
Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.
2017-11-01
A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.
Wind Enhanced Escape, Ion Pickup and the Evolution of Water on Mars
NASA Technical Reports Server (NTRS)
Hartle, Richard
1999-01-01
Preferential loss of hydrogen over deuterium from Mars has produced a deuterium rich atmosphere possessing a D/B ratio 5.2 times that of terrestrial water. Rayleigh fractionation is applied, constrained by the deuterium enrichment factor, to determine the magnitudes of ancient and present water reservoirs on the planet. The dominant lose mechanisms of R and D from the current atmosphere are thought to be thermal escape and solar wind ion pickup of the neutral and ion forms of theme constituents, respectively. During an earlier martian epoch, only thermal escape was significant because Mars had a terrestrial sized magnetosphere that protected the atmosphere from solar wind scavenging processes. The magnitudes of present and ancient water reservoirs are estimated when thermal escape is considered alone and subsequently when the effects of ion pickup are added. The escape fluxes of R and D are significantly increased above the respective Jeans fluxes when the effects of thermospheric winds and planetary rotation are accounted for at the exobase. Such wind enhanced escape also increases as the mass of an escaping constituent increases; thus, the increase in the escape flux of D is greater than that of H. When the fractionation process is also constrained by the D/H ratio observed in hydrous minerals of SNC meteorites, an ancient crustal reservoir of Martian water in derived, tens of meters in global-equivalent depth, considerably exceeding that obtained with no winds. The reservoir becomes even larger when ion pickup processes are added.
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C. Y.; He, J.; Wang, L.
2017-12-01
The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.
Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network
NASA Astrophysics Data System (ADS)
Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.
2017-12-01
To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.
Hollow H II regions. II - Mechanism for wind energy dissipation and diffuse X-ray emission
NASA Astrophysics Data System (ADS)
Dorland, H.; Montmerle, T.
1987-05-01
The mechanism by which stellar-wind energy is dissipated near the shock in a hollow H II region (HHR) around a massive star is investigated theoretically, in the context of the HHR model developed by Dorland et al. (1986). The principles of nonlinear thermal conduction (especially the delocalizaton of conductive heat flux postulated for laboratory fusion plasmas) are reviewed; expressions for estimating heat fluxes are derived; a two-temperature approximation is employed to describe coupling between thermal conduction and wind-energy dissipation; and the determination of the flux-limit factor from X-ray observations is explained. The model is then applied to observational data for the Rosette nebula and Eta Car, and the results are presented graphically. The diffuse X-ray temperatures of HHRs are found to be in the range 2-16 keV and to depend uniquely on stellar-wind velocity, the value for an O star with wind velocity 2500 km/s being about 5 keV.
Ionosphere of venus: first observations of the effects of dynamics on the dayside ion composition.
Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Michel, F C; Daniell, R E; Donahue, T M; Maehl, R C
1979-02-23
Bennett radio-frequency ion mass spectrometers have returned the first in situ measurements of the Venus dayside ion composition, including evidence of pronounced structural variability resulting from a dynamic interaction with the solar wind. The ionospheric envelope, dominated above 200 kilometers by O(+), responds dramatically to variations in the solar wind pressure, Which is observed to compress the thermal ion distributions from heights as great as 1800 kilometers inward to 280 kilometers. At the thermal ion boundary, or ionopause, the ambient ions are swept away by the solar wind, such that a zone of accelerated suprathermnal plasma is encountered. At higher altitudes, extending outward on some orbits for thousands of kilometers to the bows shock, energetic ion currents are detected, apparently originating from the shocked solar wind plasma. Within the ionosphere, observations of pass-to-pass differences in the ion scale heights are indicative of the effects of ion convection stimlulated by the solar wind interaction.
Termination Shock Transition in Multi-ion Multi-fluid MHD Models of the Heliosphere
NASA Astrophysics Data System (ADS)
Zieger, B.; Opher, M.; Toth, G.
2013-12-01
As evidenced by Voyager 2 observations, pickup ions (PUIs) play a significant role in the termination shock (TS) transition of the solar wind [Richardson et al., Nature, 2008]. Recent kinetic simulations [Ariad and Gedalin, JGR, 2013] came to the conclusion that the contribution of the high energy tail of PUIs is negligible at the shock transition. The Rankine-Hugoniot (R-H) relations are determined by the low energy body of PUIs. Particle-in-cell simulations by Wu et al. [JGR, 2010] have shown that the sum of the thermal solar wind and non-thermal PUI distributions downstream of the TS can be approximated with a 2-Maxwellian distribution. It is important to note that this 2-Maxwellian distribution neglects the suprathermal tail population that has a characteristic power-law distribution. These results justify the fluid description of PUIs in our large-scale multi-ion multi-fluid MHD simulations of the heliospheric interface [Prested et al., JGR, 2013; Zieger et al., GRL, 2013]. The closure of the multi-ion MHD equations could be implemented with separate momentum and energy equations for the different ion species (thermal solar wind and PUIs) where the transfer rate of momentum and energy between the two ion species are considered as source terms, like in Glocer et al. [JGR, 2009]. Another option is to solve for the total energy equation with an additional equation for the PUI pressure, as suggested by Fahr and Chalov [A&A, 2008]. In this paper, we validate the energy conservation and the R-H relations across the TS in different numerical implementations of our latest multi-ion multi-fluid MHD model. We assume an instantaneous pickup process, where the convection velocity of the two ion fluids are the same, and the so-called strong scattering approximation, where newly born PUIs attain their spherical shell distribution within a short distance on fluid scales (spatial scales much larger than the respective ion gyroradius).
NASA Astrophysics Data System (ADS)
Martinović, M.
2017-12-01
Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.
Plasma-field Coupling at Small Length Scales in Solar Wind Near 1 AU
NASA Astrophysics Data System (ADS)
Livadiotis, G.; Desai, M. I.
2016-10-01
In collisionless plasmas such as the solar wind, the coupling between plasma constituents and the embedded magnetic field occurs on various temporal and spatial scales, and is primarily responsible for the transfer of energy between waves and particles. Recently, it was shown that the transfer of energy between solar wind plasma particles and waves is governed by a new and unique relationship: the ratio between the magnetosonic energy and the plasma frequency is constant, E ms/ω pl ˜ ℏ*. This paper examines the variability and substantial departure of this ratio from ℏ* observed at ˜1 au, which is caused by a dispersion of fast magnetosonic (FMS) waves. In contrast to the efficiently transferred energy in the fast solar wind, the lower efficiency of the slow solar wind can be caused by this dispersion, whose relation and characteristics are derived and studied. In summary, we show that (I) the ratio E ms/ω pl transitions continuously from the slow to the fast solar wind, tending toward the constant ℏ* (II) the transition is more efficient for larger thermal, Alfvén, or FMS speeds; (III) the fast solar wind is almost dispersionless, characterized by quasi-constant values of the FMS speed, while the slow wind is subject to dispersion that is less effective for larger wind or magnetosonic speeds; and (IV) the constant ℏ* is estimated with the best known precision, ℏ* ≈ (1.160 ± 0.083) × 10-22 Js.
Energization and transport of ions of ionospheric origin in the terrestrial magnetosphere
NASA Technical Reports Server (NTRS)
Waite, J. Hunter JR.
1995-01-01
The work of this grant has been predominantly focused on ion outflows from two data sets: Prognoz 7 and Dynamics Explorer. The Prognoz analysis studied ion densities, temperatures, and flow velocities in the magnetotail. The work performed under this contract consisted of developing a program to load the raw data, computing the background subtraction of a strong sun pulse, and using the net count to calculate the low order moments of the distribution function. The study confirms the results of ISEE with regard to the supply of plasma from the cusp as a major source of plasmasheet plasma and goes beyond this to discuss the use of ion velocities as a way to examine the motions of the magnetotail. The abstract of the work to be reported is included as an appendix. The work on the DE/Retarding Ion Mass Spectrometer is separated into two categories: (1) classification of low-energy ion flows from high-latitudes, and (2) studies of the polar wind. Major publications resulting from this work are also included as an appendix to this report. The polar wind is in a category by itself as a result of the thermal escape of hydrogen and helium because of ambipolar diffusion through the heavier, oxygen-dominated topside ionosphere. The analysis of the polar wind reports the flux variability as a function of season, magnetic activity, etc. Much effort has been expended under this grant to complete a follow on study of the thermal structure of the polar wind. Extensive display tools and analysis software have been developed and used in an attempt to carry out this thermal analysis. The present work uses a constrained fit scheme that combines the ion densities and flow velocities derived from Chandler et al. and a spacecraft potential derived from an empirical relation to the total ion density to determine the remaining fit parameter, the ion temperature, via a least squares fit to the RIMS data.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
Human thermal comfort conditions and urban planning in hot-humid climates—The case of Cuba
NASA Astrophysics Data System (ADS)
Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas
2016-08-01
Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.
Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.
Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas
2016-08-01
Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.
Electricity storage using a thermal storage scheme
NASA Astrophysics Data System (ADS)
White, Alexander
2015-01-01
The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.
The effect of added fullness and ventilation holes in T-shirt design on thermal comfort.
Ho, Chupo; Fan, Jintu; Newton, Edward; Au, Raymond
2011-04-01
This paper reports on an experimental investigation on the effect of added fullness and ventilation holes in T-shirt design on clothing comfort measured in terms of thermal insulation and moisture vapour resistance. Four T-shirts in four different sizes (S, M, L, XL) were cut under the traditional sizing method while another (F-1) was cut with specially added fullness to create a 'flared' drape. A thermal manikin 'Walter' was used to measure the thermal insulation and moisture vapour resistance of the T-shirts in a chamber with controlled temperature, relative humidity and air velocity. The tests included four conditions: manikin standing still in the no-wind and windy conditions and walking in the no-wind and windy condition. It was found that adding fullness in the T-shirt design (F-1) to create the 'flared' drape can significantly reduce the T-shirt's thermal insulation and moisture vapour resistance under walking or windy conditions. Heat and moisture transmission through the T-shirt can be further enhanced by creating small apertures on the front and back of the T-shirt with specially added fullness. STATEMENT OF RELEVANCE: The thermal comfort of the human body is one of the key issues in the study of ergonomics. When doing exercise, a human body will generate heat, which will eventually result in sweating. If heat and moisture are not released effectively from the body, heat stress may occur and the person's performance will be negatively affected. Therefore, contemporary athletic T-shirts are designed to improve the heat and moisture transfer from the wearer. Through special cutting, such athletic T-shirts can be designed to improve the ventilation of the wearer.
Impact of novel energy sources: OTEC, wind, goethermal, biomass
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1978-01-01
Alternate energy conversion methods such as ocean thermal energy conversion (OTEC), wind power, geothermal wells and biomass conversion are being explored, and re-examined in some cases, for commercial viability. At a time when United States fossil fuel and uranium resources are found to be insufficient to supply national needs into the twenty-first century, it is essential to broaden the base of feasible energy conversion technologies. The motivations for development of these four alternative energy forms are established. Primary technical aspects of OTEC, wind, geothermal and biomass energy conversion systems are described along with a discussion of relative advantages and disadvantages of the concepts. Finally, the sentiment is voiced that each of the four systems should be developed to the prototype stage and employed in the region of the country and in the sector of economy which is complimentary to the form of system output.
Induced and permanent magnetism on the moon - Structural and evolutionary implications.
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Dyal, P.; Colburn, D. S.; Mihalov, J. D.; Parkin, C. W.; Smith, B. F.; Schubert, G.; Schwartz, K.
1971-01-01
It is shown that the moon possesses an extraordinary response to induction from the solar wind due to a combination of a high interior electrical conductivity together with a relatively resistive crustal layer into which the solar wind dynamic pressure forces back the induced field. The dark side response, devoid of solar wind pressure, is approximately that expected for the vacuum case. These data permit an assessment of the interior conductivity and an estimate of the thermal gradient in the crustal region. The discovery of a large permanent magnetic field at the Apollo 12 site corresponds approximately to the paleomagnetic residues discovered in both Apollo 11 and 12 rock samples. The implications regarding an early lunar magnetic field are discussed and it is shown that among the various conjectures regarding the early field the most prominent are either an interior dynamo or an early approach to the earth though no extant model is free of difficulties.
Modelling accretion disc and stellar wind interactions: the case of Sgr A.
Christie, I M; Petropoulou, M; Mimica, P; Giannios, D
2016-07-01
Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8 cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33 erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d = 10 5 cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.
Qian, Xiaoming; Fan, Jintu
2006-11-01
Clothing thermal insulation and moisture vapour resistance are the two most important parameters in thermal environmental engineering, functional clothing design and end use of clothing ensembles. In this study, clothing thermal insulation and moisture vapour resistance of various types of clothing ensembles were measured using the walking-able sweating manikin, Walter, under various environmental conditions and walking speeds. Based on an extensive experimental investigation and an improved understanding of the effects of body activities and environmental conditions, a simple but effective direct regression model has been established, for predicting the clothing thermal insulation and moisture vapour resistance under wind and walking motion, from those when the manikin was standing in still air. The model has been validated by using experimental data reported in the previous literature. It has shown that the new models have advantages and provide very accurate prediction.
Photoelectron Effects on the Self-Consistent Potential in the Collisionless Polar Wind
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Liemohn, M. W.; Moore, T. E.
1997-01-01
The presence of unthermalized photoelectrons in the sunlit polar cap leads to an enhanced ambipolar potential drop and enhanced upward ion acceleration. Observations in the topside ionosphere have led to the conclusion that large-scale electrostatic potential drops exist above the spacecraft along polar magnetic field lines connected to regions of photoelectron production. A kinetic approach is used for the O(+), H(+), and photoelectron (p) distributions, while a fluid approach is used to describe the thermal electrons (e) and self-consistent electric field (E(sub II)) electrons are allowed to carry a flux that compensates for photoelectron escape, a critical assumption. Collisional processes are excluded, leading to easier escape of polar wind particles and therefore to the formation of the largest potential drop consistent with this general approach. We compute the steady state electric field enhancement and net potential drop expected in the polar wind due to the presence of photoelectrons as a function of the fractional photoelectron content and the thermal plasma characteristics. For a set of low-altitude boundary conditions typical of the polar wind ionosphere, including 0.1% photoelectron content, we found a potential drop from 500 km to 5 R(sub E) of 6.5 V and a maximum thermal electron temperature of 8800 K. The reasonable agreement of our results with the observed polar wind suggests that the assumptions of this approach are valid.
Methods and apparatus for cooling wind turbine generators
Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James
2008-10-28
A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.
Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance
NASA Astrophysics Data System (ADS)
Cranmer, Steven R.
2014-07-01
Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.
NASA Technical Reports Server (NTRS)
Browning, G. L.; Holzer, T. E.
1992-01-01
The paper derives the 'reduced' system of equations commonly used to describe the time evolution of the polar wind and multiconstituent stellar winds from the equations for a multispecies plasma with known temperature profiles by assuming that the electron thermal speed approaches infinity. The reduced system is proved to have unbounded growth near the sonic point of the protons for many of the standard parameter cases. For the same parameter cases, the unmodified system exhibits growth in some of the Fourier modes, but this growth is bounded. An alternate system (the 'approximate' system) in which the electron thermal speed is slowed down is introduced. The approximate system retains the mathematical behavior of the unmodified system and can be shown to accurately describe the smooth solutions of the unmodified system. Other advantages of the approximate system over the reduced system are discussed.
2015-10-07
solutions such as solar photovoltaics, solar thermal, wind energy, bio-mass ( wood chips, etc.), bio-gas, or synthetic gas are considered as part of the...Leonard Wood , MO, Fort Hunter Liggett, CA, Schofield Barracks, HI, and the Presidio of Monterey, CA. Energy planning may be conducted at varying levels...installation goals at the lowest cost. In- dustrial scale supply solutions such as solar photovoltaics, solar-thermal, wind energy, biomass ( wood chips
2008-10-01
Blank CONTENTS 1. INTRODUCTION 9 2. EXPERIMENTAL PROCEDURES 9 2.1 Wind Tunnel 9 2.2 Agent 10 2.3 Gas Chromatography /Mass Spectrometry Detection 10...protective equipment. 2.3 Gas Chromatography /Mass Spectrometry Detection (GC/MSD) The GC/MSD analysis of the thermal desorption tubes was performed on a...coupled to thermal desorption tubes that were analyzed using gas chromatography /mass spectrometry detection (GC/MSD). Differences between the tunnels
NASA Astrophysics Data System (ADS)
Miles, David M.; Mann, Ian R.; Kale, Andy; Milling, David K.; Narod, Barry B.; Bennest, John R.; Barona, David; Unsworth, Martyn J.
2017-10-01
Fluxgate magnetometers are an important tool in geophysics and space physics but are typically sensitive to variations in sensor temperature. Changes in instrumental gain with temperature, thermal gain dependence, are thought to be predominantly due to changes in the geometry of the wire coils that sense the magnetic field and/or provide magnetic feedback. Scientific fluxgate magnetometers typically employ some form of temperature compensation and support and constrain wire sense coils with bobbins constructed from materials such as MACOR machinable ceramic (Corning Inc.) which are selected for their ultra-low thermal deformation rather than for robustness, cost, or ease of manufacturing. We present laboratory results comparing the performance of six geometrically and electrically matched fluxgate sensors in which the material used to support the windings and for the base of the sensor is varied. We use a novel, low-cost thermal calibration procedure based on a controlled sinusoidal magnetic source and quantitative spectral analysis to measure the thermal gain dependence of fluxgate magnetometer sensors at the ppm°C-1 level in a typical magnetically noisy university laboratory environment. We compare the thermal gain dependence of sensors built from MACOR, polyetheretherketone (PEEK) engineering plastic (virgin, 30 % glass filled and 30 % carbon filled), and acetal to examine the trade between the thermal properties of the material, the impact on the thermal gain dependence of the fluxgate, and the cost and ease of manufacture. We find that thermal gain dependence of the sensor varies as one half of the material properties of the bobbin supporting the wire sense coils rather than being directly related as has been historically thought. An experimental sensor constructed from 30 % glass-filled PEEK (21.6 ppm°C-1) had a thermal gain dependence within 5 ppm°C-1 of a traditional sensor constructed from MACOR ceramic (8.1 ppm°C-1). If a modest increase in thermal dependence can be tolerated or compensated, then 30 % glass-filled PEEK is a good candidate for future fluxgate sensors as it is more economical, easier to machine, lighter, and more robust than MACOR.
Using radon-222 to distinguish between vertical transport processes at Jungfraujoch
NASA Astrophysics Data System (ADS)
Griffiths, Alan; Chambers, Scott; Conen, Franz; Weingartner, Ernest; Zimmermann, Lukas; Williams, Alastair; Steinbacher, Martin
2015-04-01
Trace gases measured at Jungfrajoch, a key baseline monitoring station in the Swiss Alps, are tranported from the surface to the alpine ridge by several different processes. On clear days with weak synoptic forcing, thermally-driven upslope mountain winds (anabatic winds) are prevalent. Using hourly radon--222 observations, which are often used to identify air of terrestrial origin, we used the shape of the diurnal cycle to sort days according to the strength of anabatic winds. Radon is ideal as an airmass tracer because it is emitted from soil at a relatively constant rate, it is chemically inert, and decays with a half-life of 3.8 days. Because of its short half-life, radon concentrations are much lower in the free troposphere than in boundary-layer air over land. For comparable radon concentrations, anabatic wind days at Jungfraujoch are different from non-anabatic days in terms of the average wind speed, humidity, air temperature anomalies, and trace species. As a consequence, future studies could be devised which focus on a subset of days, e.g. by excluding anabatic days, with the intention of choosing a set of days which can be more accurately simulated by a transport model.
Optimizing Street Canyon Orientation for Rajarhat Newtown, Kolkata, India
NASA Astrophysics Data System (ADS)
De, Bhaskar; Mukherjee, Mahua
2017-12-01
Air temperature in urban street canyons is increased due to the morphed urban geometry, increased surface area, decreased long wave radiation and evapo-transpiration, different thermo-physical properties of surface materials and anthropogenic heat which results in thermal discomfort. Outdoor thermal stress can be mitigated substantially by properly orienting the canyons. It is crucial for the urban planners and designers to orient street canyons optimally considering variable local climatic context. It is important especially for cities in warm humid climatic context as these cities receive higher insolation with higher relative humidity and low level macro wind flow. This paper examines influence of canyon orientation on outdoor thermal comfort and proposes the optimum canyon orientation for the Rajarhat Newtown, Kolkata - a city in warm humid climate zone. Different scenarios are generated with different orientations. Change in air temperature, wind speed, Mean Radiant Temperature (MRT) and Physiological Equivalent Temperature (PET) of different scenarios are compared to find out the optimum orientation by parametric simulation in ENVI_met. Analysing the simulation results it is observed that orientation angle between 30°-60° to north performs the best for the study area of the Rajarhat Newtown. The findings of this research will be helpful for the planners to orient the street canyons optimally for future development and extension of the Rajarhat Newtown, Kolkata.
Thermal electrostatic noise and radio waves spectroscopy (SORBET) on BepiColombo/MMO/PWI
NASA Astrophysics Data System (ADS)
Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Blomberg, L.; Issautier, K.; Kasaba, Y.; Maksimovic, M.; Meyer-Vernet, N.; Yagitani, S.; Zarka, P.
2003-04-01
The SORBET experiment is a part of the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which include remote and in-situ measurements of wave (electromagnetic and electrostatic), for studying the structure and dynamics (regions, boundaries, acceleration, dissipation processes...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind. More specific SORBET goals are: - Mapping of (cold) electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy (and also analysis of Bernstein modes and upper-hybrid emissions). The quasi-thermal noise is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distributions and the antenna geometry. So, conversely, the "spectroscopy" of this noise reveals the local plasma properties. This method is routinely used on Ulysses and Wind spacecrafts in the solar wind or in planetary magnetospheres/ionospheres (Ulysses at Jupiter, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons perturbations. These measurements will provide a fundamental input for the chemistry of cold ionized species (Na...) in Mercury's environment and for the dynamic modelling of the magnetosphere. Corresponding plasma frequencies are expected to be up to 200-300 kHz. Hence the QTN spectrum should be measured up to at least ~2 max(fpe) ~ 600 kHz. -Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to ~10-20 kHz) from mildly energetic electrons in most highly magnetized (polar?) regions, and possible synchrotron radiation (up to a few MHz?) from more energetic electrons. Indeed no stable radiation belts are expected, due to the weakness of Mercury's magnetic field, but intense bursts of energetic particles were measured by Mariner 10 in the magnetotail. Short storm-like events with ~1 minute duration (observed by Mariner 10), as well as Sodium aurorae, suggest an auroral activity at Mercury. Associated cyclotron emissions, due to keV electrons, would be produced near the gyrofrequency and below the plasma frequency in the surrounding solar wind, and thus be trapped inside the magnetospheric cavity. They can be detected only during relatively short crossings of the magnetosphere by MMO. -Monitoring of solar radio emissions up to ~10 MHz (type II and type III radio bursts, indicative of interplanetary transient shocks, CMEs, and energetic particle streams), in order to create a solar activity index from the view point of Mercury, allowing to correlate it with the Hermean magnetospheric response (i.e. "Space weather" at Mercury).
Global Ultraviolet Imager (GUVI) investigation
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.
1995-01-01
This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.
NASA Astrophysics Data System (ADS)
Bleta, Anastasia G.; Nastos, Panagiotis T.
2013-04-01
The aim of this study is to quantify the association between bioclimatic conditions and daily counts of admissions for non-fatal acute cardiovascular (acute coronary syndrome, arrhythmia, decompensation of heart failure) syndromes (ACS) registered by the two main hospitals in Heraklion, Crete Island, during a five-year period 2008-2012. The bioclimatic conditions analyzed are based on human thermal bioclimatic indices such as the Physiological Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI). Mean daily meteorological parameters, such as air temperature, relative humidity, wind speed and cloudiness, were acquired from the meteorological station of Heraklion (Hellenic National Meteorological Service). These parameters were used as input variables in modeling the aforementioned thermal indices, in order to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Generalized linear models (GLM) were applied to time series of daily numbers of outpatients with ACS against bioclimatic variations, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased coronary heart disease incidence, especially in the elderly and males. Additionally, heat stress plays an important role in the configuration of daily ACS outpatients, even in temperate climate, as that in Crete Island. In this point it is worth mentioning that Crete Island is frequently affected by Saharan outbreaks, which are associated in many cases with miscellaneous phenomena, such as Föhn winds - hot and dry winds - causing extreme bioclimatic conditions (strong heat stress). Taking into consideration the projected increased ambient temperature in the future, ACS exacerbation is very likely to happen during the warm period, against mitigation during the cold period of the year.
Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind
NASA Astrophysics Data System (ADS)
Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay
2018-03-01
In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of <1.1 R ⊙. Analysis of Fe, Si, and Mg spectral lines reveals a peaked line-shape core and broad wings that can be characterized by a kappa VDF. A kappa distribution fit gives very small kappa indices off-limb of κ ≈ 1.9–2.5, indicating either (a) ion populations far from thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).
The solar wind as a possible source of fast temporal variations of the heliospheric ribbon
Kucharek, H.; Fuselier, S. A.; Wurz, P.; ...
2013-10-04
Here we present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persistsmore » until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. In conclusion, with a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.« less
Enhancement of thermal blooming effect on free space propagation of high power CW laser beam
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
In this paper, we present an enhanced model to predict the effect of thermal blooming and atmospheric turbulence, on high energy laser beams free space propagation. We introduce an implementation technique for the proposed mathematical models describing the effect of thermal blooming and atmospheric turbulence including wind blowing, and how it effect high power laser beam power, far field pattern, phase change effect and beam quality . An investigated model of adaptive optics was introduced to study how to improve the wave front and phase distortion caused by thermal blooming and atmospheric turbulence, the adaptive optics model with Actuator influence spacing 3 cm the that shows observed improvement in the Strehl ratio and in wave front and phase of the beam. These models was implemented using cooperative agents relying on GLAD software package. Without taking in consideration the effect of thermal blooming It was deduced that the beam at the source takes the Gaussian shape with uniform intensity distribution, we found that the beam converge on the required distance 4 km using converging optics, comparing to the laser beam under the effect of thermal blooming the far field pattern shows characteristic secondary blip and "sugar scoop" effect which is characteristic of thermal blooming. It was found that the thermal blooming causes the beam to steer many centimeters and to diverge beyond about 1.8 km than come to a focus at 4 km where the beam assumed to be focused on the required target. We assume that this target is moving at v = (4,-4) m/sec at distance 4 km and the wind is moving at v = (-10,-10) m/sec, it was found that the effect will be strongest when wind and target movement are at the same velocity. GLAD software is used to calculate the attenuation effects of the atmosphere as well as the phase perturbations due to temperature change in the air and effects caused as the beam crosses through the air due to wind and beam steering.
Feasibility analysis on the building environment of college dormitories in Baoding
NASA Astrophysics Data System (ADS)
Wang, Xinyi
2018-06-01
The quality of indoor air greatly affects people's health. As a place where college students live for a long time, the architectural environment is closely related to people's lives. In this paper, two cases of dormitory of the North China Electric Power University in Baoding are selected as the subject investigated. The environmental test and questionnaire method were used to study. The test indexes mainly include temperature, relative humidity and wind speeds. We obtain the basic situation of indoor thermal humidity environment, light environment and air velocity. Based on a series of tests, combined with subjective comfort and comprehensive evaluation, we analyzed the thermal comfort of indoor buildings, and put forward measures to further improve the building environment of College Dormitories under the principle of high efficiency and energy saving.
NASA Technical Reports Server (NTRS)
Gordon, L. H.
1980-01-01
Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.
An investigation of the effect of wind cooling on photovoltaic arrays
NASA Technical Reports Server (NTRS)
Wen, L.
1982-01-01
Convective cooling of photovoltaic modules for different wind conditions, including steady state controlled testing in a solar simulator and natural test environments in a field was investigated. Analytical thermal models of different module designs were used to correlate experimental data. The applicability of existing heat transfer correlations is confirmed. Reasonable agreement is obtained by applying a power law wind profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In many two-story homes, there are attic spaces above the first-floor of the home that border portions of the second-story conditioned space. These spaces have breaches of the air and thermal boundaries, creating a phenomenon known as wind washing. This can cause attic air above the first-floor space to be driven into the cavity between the first and second floors by wind, thermal buoyancy forces, or mechanical driving forces as well as circulation of hot attic air against the wallboard because of gaps between insulation batts installed on knee walls and the gypsum wallboard. In this project, the U.S. Departmentmore » of Energy team Building America Partnership for Improved Residential Construction (BA-PIRC) investigated wind washing in 56 homes. The goals were to identify the failure mechanisms that lead to wind washing, characterize the pathways for air and heat to enter the house, and evaluate the seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for cost-effective retrofit solutions and information that can help avoid these problems in new construction.« less
Computational fluid dynamic modeling of the summit of Mt. Hopkins for the MMT Observatory
NASA Astrophysics Data System (ADS)
Callahan, S.
2010-07-01
Over the past three decades, the staff of the MMT observatory used a variety of techniques to predict the summit wind characteristics including wind tunnel modeling and the release of smoke bombs. With the planned addition of a new instrument repair facility to be constructed on the summit of Mt. Hopkins, new computational fluid dynamic (CFD) models were made to determine the building's influence on the thermal environment around the telescope. The models compared the wind profiles and density contours above the telescope enclosure with and without the new building. The results show the steeply-sided Mount Hopkins dominates the summit wind profiles. In typical winds, the height of the telescope remains above the ground layer and is sufficiently separated from the new facility to insure the heat from the new building does not interfere with the telescope. The results also confirmed the observatories waste heat exhaust duct location needs to be relocated to prevent heat from being trapped in the wind shadow of the new building and lofting above the telescope. These useful models provide many insights into understanding the thermal environment of the summit.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
NASA Astrophysics Data System (ADS)
Le Goff, P.
Calculations of the temperature, humidity, pressure, and velocity of the wind at different locations are provided to demonstrate that energy characteristics of the wind other than the mechanical pressure exerted by the wind on obstacles are significant. A system is described, based on the heat pump principle, which takes advantage of the thermal inertia of the wind, known to remain around freezing even in Siberian winters. An analysis of the energy available for heat transfer in a site in France demonstrates that the dryness, warmth, or chill of a cubic meter of air contains, continuously, 100-1000 times the kinetic energy of moving air. In excess of one kilowatt/sq m is available for extraction by heat pumps based on designs for ocean thermal energy conversion. An electric generating system is described which would yield 10-50 times the mechanical power of a windmill using the same collector area. Finally, a wall heat exchanger for a house is presented which would gain heat energy proportional to the severity of the winter wind.
The T-REX valley wind intercomparison project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidli, J; Billings, B J; Burton, R
2008-08-07
An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less
Momentum and energy balance in late-type stellar winds
NASA Technical Reports Server (NTRS)
Macgregor, K. B.
1981-01-01
Observations at ultraviolet and X-ray wavelengths indicate that the classical picture of a static stellar atmosphere containing a radiative equilibrium temperature distribution is inapplicable to the majority of late type stars. Mass loss and the presence of atmospheric regions characterized by gas temperatures in excess of the stellar effective temperature appear to be almost ubiquitous throughout the HR diagram. Evidence pertaining to the thermal and dynamical structure of the outer envelopes of cool stars is summarized. These results are compared with the predictions of several theoretical models which were proposed to account for mass loss from latetype stars. Models in which the outflow is thermally radiatively, or wave driven are considered for identification of the physical processes responsible for the observed wind properties. The observed variation of both the wind, thermal and dynamical structure as one proceeds from the supergiant branch toward the main sequence in the cool portion of the HR diagram give consideration to potential mechanisms for heating and cooling the flow from low gravity stars.
Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.
NASA Astrophysics Data System (ADS)
Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.
Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.
Solar-Wind Observations of Collisional Thermalization among Multiple Ion-Species
NASA Astrophysics Data System (ADS)
Maruca, B.; Qudzi, R.; Hellinger, P.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.
2017-12-01
The rate of Coulomb collisions among ions in the solar wind is low enough that significant departures from thermal equilibrium (e.g., different ion species having different temperatures) are frequently observed. Nevertheless, collisions have been found to play an important role in the plasma's large-scale evolution as it expands from the corona and through the heliosphere. Many statistical analyses have found that the temperature ratio of the two most abundant ions, protons (ionized hydrogen) and alpha-particles (fully ionized helium), is heavily influenced by collisional thermalization. This ongoing study expands on this work by including oxygen +6, which, during select periods (of cold, slow, dense plasma), the Wind spacecraft's Faraday Cups can measure at high cadences. Using well-established models of collisional relaxation, the in-situ measurements at 1 AU can be used to estimate ion conditions earlier in the plasma's expansion history. Assessing the physicality of these predictions can indicate to what degree preferential heating and/or heating beyond the corona affected the plasma's evolution.
Analysis of Cycling Costs in Western Wind and Solar Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, G.; Venkataraman, S.
The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveragingmore » the results of WWSIS Phase 1 study.« less
Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds
NASA Astrophysics Data System (ADS)
Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge
2017-11-01
We compute the thermal X-ray emission from hydrodynamic simulations of the 30 Wolf-Rayet (WR) stars orbiting within a parsec of Sgr A*, with the aim of interpreting the Chandra X-ray observations of this region. The model well reproduces the spectral shape of the observations, indicating that the shocked WR winds are the dominant source of this thermal emission. The model X-ray flux is tied to the strength of the Sgr A* outflow, which clears out hot gas from the vicinity of Sgr A*. A moderate outflow best fits the present-day observations, even though this supermassive black hole (SMBH) outflow ended ~100 yr ago.
Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables
NASA Astrophysics Data System (ADS)
Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.
2015-12-01
This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.
Anomalously low C{sup 6+}/C{sup 5+} ratio in solar wind: ACE/SWICS observation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L., E-mail: lzh@umich.edu; Landi, E.; Kocher, M.
The Carbon and Oxygen ionization states in the solar wind plasma freeze-in within 2 solar radii (R{sub s}) from the solar surface, and then they do not change as they propagate with the solar wind into the heliosphere. Therefore, the O{sup 7+}/O{sup 6+} and C{sup 6+}/C{sup 5+} charge state ratios measured in situ maintain a record of the thermal properties (electron temperature and density) of the inner corona where the solar wind originates. Since these two ratios freeze-in at very similar height, they are expected to be correlated. However, an investigation of the correlation between these two ratios as measuredmore » by ACE/SWICS instrument from 1998 to 201l shows that there is a subset of “Outliers” departing from the expected correlation. We find about 49.4% of these Outliers is related to the Interplanetary Coronal Mass Ejections (ICMEs), while 49.6% of them is slow speed wind (V{sub p} < 500 km/s) and about 1.0% of them is fast solar wind (V{sub p} > 500 km/s). We compare the outlier-slow-speed wind with the normal slow wind (defined as V{sub p} < 500 km/s and O{sup 7+}/O{sup 6+} > 0.2) and find that the reason that causes the Outliers to depart from the correlation is their extremely depleted C{sup 6+}/C{sup 5+} ratio which is decreased by 80% compared to the normal slow wind. We discuss the implication of the Outlier solar wind for the solar wind acceleration mechanism.« less
NASA Astrophysics Data System (ADS)
Tesfuhuney, Weldemichael A.; Walker, Sue; Van Rensburg, Leon D.; Steyn, A. Stephan
2016-08-01
In a cropped field, microclimate and thermal stability conditions depend on the canopy structures and the prevailing weather. The main aim of the study therefore was to characterize the vertical profiles of weather variables within and above a maize (Zea mays L.) canopy and to describe the water vapour pressure deficit (VPD) under different atmospheric and soil surface conditions for both wide and narrow runoff strips with the in-field rainwater harvesting (IRWH) system. Micrometeorological measurements of wind, temperature and relative humidity were performed at eight levels, within canopy (1.8 and 2.1 m), and just above the canopy (2.4, 2.7, 3.0, and 3.3 m) up to reference levels (3.9 and 4.5 m) when the maize reached a maximum height of 2.2 m. Under incomplete canopy cover of the IRWH system, two important factors complicated evapotranspiration estimation, namely the local advection and high temperatures of the bare soil between adjacent plant rows. Diurnal variations of water vapour related to turbulence at each locality and its position in the thermal internal boundary layers. Generally, advection was more pronounced in wide runoff strips than narrow strips. On wide runoff strips the wind was more effective in replacing the air between the rows and maintained a higher driving force for evaporation. The maximum VPD over the narrow strips was observed at reference level during a dry day, at about 2.2 kPa in the afternoon, while wet day VPD reached a maximum of 1.8 kPa. The VPD of the wide runoff strips correlated negatively with wind speed, but showed a fairly positive correlation with some scattered values on wet days after rain. Therefore, profile characteristics within and above plant canopies played a key role in determining the VPD and consequently, could help to explain transpiration rates of crops. Hence, VPD relations enhanced the understanding of the heat energy exchange processes under the heterogeneous nature of maize canopy of the IRWH tillage system.
Power electronic supply system with the wind turbine dedicated for average power receivers
NASA Astrophysics Data System (ADS)
Widerski, Tomasz; Skrzypek, Adam
2018-05-01
This article presents the original project of the AC-DC-AC converter dedicated to low power wind turbines. Such a set can be a good solution for powering isolated objects that do not have access to the power grid, for example isolated houses, mountain lodges or forester's lodges, where they can replace expensive diesel engine generators. An additional source of energy in the form of a mini-wind farm is also a good alternative to yachts, marinas and tent sites, which are characterized by relatively low power consumption. This article presents a designed low power wind converter that is dedicated to these applications. The main design idea of the authors was to create a device that converts the very wide range input voltage directly to a stable 230VAC output voltage without the battery buffer. Authors focused on maximum safety of using and service. The converter contains the thermal protection, short-circuit protection and overvoltage protection. The components have been selected in such a way as to ensure that the device functions as efficiently as possible.
Ambipolar Electric Field, Photoelectrons, and Their Role in Atmospheric Escape From Hot Jupiters
NASA Technical Reports Server (NTRS)
Cohen, O.; Glocer, A.
2012-01-01
Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the "polar wind," is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization.We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.
Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon
2017-07-26
Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.
Some remarks on waves in the solar wind
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.
1995-01-01
Waves are significant to the solar wind in two ways as modifiers of the particle distribution functions, and as diagnostics. In addition, the solar wind serves as an important laboratory for the study of plasma wave processes, as it is possible to make detailed measurements of phenomena which are too small to be easily measured by laboratory sized sensors. There are two areas where waves (we include discontinuities under this heading) must make important modifications of the distribution functions: in accelerating the alpha particles to higher speeds than the protons (Marsch et al.) and in accelerating the solar wind itself. A third area is possibly in maintaining the relative isotropy of the solar wind ion distribution in the solar wind rest frame. As the solar wind is nearly collisionless, the ions should conserve magnetic moment in rushing out from the sun, and therefore Tperp/B should be relatively constant, but it is obviously not. This has not received much attention. The waves, both electromagnetic and electrostatic, which are pan of the solar Type 111 burst phenomenon, have been extensively studied as examples of nonlinear plasma phenomena, and also used as remote sensors to trace the solar magnetic field. The observations made by Ulysses show that the field can be traced in this way out to perhaps a little more than an A.U., but then the electromagnetic pan of the type 111 burst fades out. Nevertheless, sometimes Langmuir waves appear at Ulysses at an appropriate extrapolated time. This seems to support the picture in which the electromagnetic waves at the fundamental plasma frequency are trapped in density fluctuations. Langmuir waves in the solar wind are usually in quasi-thermal equilibrium quasi because the solar wind itself is not isothermal. The Observatory of Paris group (Steinberg. Meyer-Vernet, Hoang) has exploited this with an experiment on WIND which is capable of providing density and temperature on a faster time scale than hitherto. Recently it has been found that Langmuir waves are associated with magnetic holes. This may help to elucidate the nature of magnetic holes. Nonlinear processes are important in the transformation of wave energy to panicle energy. Some recent examples from WIND data will be shown.
NASA Astrophysics Data System (ADS)
Pozanenko, A. S.; Barkov, M. V.; Minaev, P. Yu.; Volnova, A. A.; Mazaeva, E. D.; Moskvitin, A. S.; Krugov, M. A.; Samodurov, V. A.; Loznikov, V. M.; Lyutikov, M.
2018-01-01
We present our observations of electromagnetic transients associated with GW170817/GRB 170817A using optical telescopes of Chilescope observatory and Big Scanning Antenna (BSA) of Pushchino Radio Astronomy Observatory at 110 MHz. The Chilescope observatory detected an optical transient of ∼19m on the third day in the outskirts of the galaxy NGC 4993; we continued observations following its rapid decrease. We put an upper limit of 1.5 × 104 Jy on any radio source with a duration of 10–60 s, which may be associated with GW170817/GRB 170817A. The prompt gamma-ray emission consists of two distinctive components—a hard short pulse delayed by ∼2 s with respect to the LIGO signal and softer thermal pulse with T ∼ 10 keV lasting for another ∼2 s. The appearance of a thermal component at the end of the burst is unusual for short GRBs. Both the hard and the soft components do not satisfy the Amati relation, making GRB 170817A distinctively different from other short GRBs. Based on gamma-ray and optical observations, we develop a model for the prompt high-energy emission associated with GRB 170817A. The merger of two neutron stars creates an accretion torus of ∼10‑2 M ⊙, which supplies the black hole with magnetic flux and confines the Blandford–Znajek-powered jet. We associate the hard prompt spike with the quasispherical breakout of the jet from the disk wind. As the jet plows through the wind with subrelativistic velocity, it creates a radiation-dominated shock that heats the wind material to tens of kiloelectron volts, producing the soft thermal component.
NASA Astrophysics Data System (ADS)
de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.
2016-06-01
Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Alvarez, K.; Curry, S.; Dong, C.; Ma, Y.; Bougher, S. W.; Benna, M.; Elrod, M. K.; Mahaffy, P. R.; Withers, P.; Girazian, Z.; Connerney, J. E. P.; Brain, D.; Jakosky, B. M.
2016-12-01
Since the two Viking Landers, progress on improving our global knowledge of the Martian ionosphere's characteristics has been limited by the available instrumentation and sampling geometries. In particular, while remote sensing and the lower energy plasma spectrometer observations on missions including MGS and MEX provided insights on the effects of the crustal magnetic fields of Mars and the solar wind interaction, these measurements did not allow the broader thermal ion surveys necessary to test our current understanding of the region between the exobase at 200 km altitude and the solar wind interaction boundary. In this study we use the MAVEN NGIMS thermal ion mass spectrometer observations from the prime mission year 2015 to construct some statistical pictures of the increasingly collisionless region of the ionosphere between 200 and 500 km where crustal field and solar wind interaction effects should begin to dominate its behavior. Comparisons with models of the solar wind interaction with Mars provide important global context for these observations, including the roles of system diversity associated with changing crustal field and interplanetary field orientations.
Design, analysis, and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A.; Minning, C.
1981-01-01
Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.
Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liping; Zhang, Lei; Feng, Xueshang
2017-02-10
Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of themore » magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.« less
Design, analysis, and test verification of advanced encapsulation systems
NASA Astrophysics Data System (ADS)
Garcia, A.; Minning, C.
1981-11-01
Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.
Variable cross-section windings for efficiency improvement of electric machines
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-02-01
Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.
The spectral effects of subsolidus reduction of olivine and pyroxene
NASA Technical Reports Server (NTRS)
Britt, D. T.
1993-01-01
The surfaces of atmosphereless bodies are subjected to a variety of chemical, thermal, accretionary, and shock processes related to their regolith environment. These processes are responsible for a number of alterations that occur in regoliths. Alterations include particle size commutation, implantation of solar wind gases, formation of agglutinates, spectral darkening, and, in the lunar case, the development of the very strong red continuum slope in the visible and near infrared spectra. A great deal of work has pointed to the role of agglutinates as the principal agent for darkening and reddening the lunar soil. The measures of regolith maturity are strongly linked to the accumulation of agglutinates. Recent work has suggested that the finest fractions of agglutinitic glass are major source of the spectral red slope. In particular, the red slope is most strongly associated with the agglutinitic glasses that are rich in blebs of sub-micron sized metal particles. It is thought that these metal particles, because of their size and scattering efficiently relative to the wavelength of light, are responsible for the red continuum slope. This fine fraction of metal particles is produced primarily by reduction of Fe(+2) from silicates. One mechanism for the reduction process is the reaction of solar implanted wind protons with the regolith soil during impact events. In this case the presence of hydrogen creates a reducing environment and the thermal pulse from the impact greatly speeds the reaction kinetics. To explore other reducing and thermal environments a series of experiments were done using samples in evacuated capsules buffered by Tantalum and heated to subsolidus temperatures.
Calculations of air cooler for new subsonic wind tunnel
NASA Astrophysics Data System (ADS)
Rtishcheva, A. S.
2017-10-01
As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.
NASA Technical Reports Server (NTRS)
Segal, M.; Pielke, R. A.
1985-01-01
Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.
Externally Induced Evaporation of Young Stellar Disks in Orion
NASA Technical Reports Server (NTRS)
Johnstone, D.; Hollenbach, D.; Shu, F.
1996-01-01
In this paper we propose a model for the evaporation of disks around young low-mass stars by external sources of high energy photons. Two evaporation techniques are possible. Lyman continuum radiation can ionize hydrogen at the disk surface powering a steady thermal ionized disk-wind, or FUV radiation can heat the disk through photo-electric grain processes powering a slower thermal neutral disk-wind. Applying these two models to the evaporating objects in the Trapezium produces a satisfactory solution to both the mass-loss rate and size of the ionized envelopes.
NASA Technical Reports Server (NTRS)
Dor, J. B.; Mignosi, A.; Plazanet, M.
1984-01-01
The T2 wind tunnel is described. The process of generating a cyrogenic gust using the example of a test made at very low temperature is presented. Detailed results of tests on temperatures for flow in the settling chamber, the interior walls of the system, and the metal casing are given. The transverse temperature distribution in the settling chamber and working section, and of the thermal gradients in the walls, are given as a function of the temperature level of the test.
NASA Technical Reports Server (NTRS)
Merceret, Francis J.; Crawford, Winifred C.
2010-01-01
Knowledge of peak wind speeds is important to the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS), but they are more difficult to forecast than mean wind speeds. Development of a reliable model for the gust factor (GF) relating the peak to the mean wind speed motivated a previous study of GF in tropical storms. The same motivation inspired a climatological study of non-TS peak wind speed statistics without the use of GF. Both studies presented their respective statistics as functions of mean wind speed and height. The few comparisons of IS and non-TS GF in the literature suggest that the non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics mentioned above to the equivalent GF statistics and compared the results with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data are taken from the same towers in the same locations. That eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF as a function of height and mean wind speed. In addition, the data suggest the possibility of providing an operational model for non-TS GF as a function of height and wind speed in a manner similar to the one previously developed for TS GF.
Missing pressure in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Stewart, B. K.; Taylor, H. A., Jr.
1992-01-01
Data obtained by various instruments on the Pioneer-Venus spacecraft were used to study the conservation of momentum flux from the solar wind through the dayside ionopause into the thermal Venus ionosphere. A consistent pressure deficit was found below the ionopause, with a strong dependence on solar wind pressure. Independent of solar wind pressure, the pressure deficit was found to decrease with decreasing altitude below the ionopause. Measurements of this pressure deficit (missing pressure) are presented as a function of altitude for various solar wind conditions. The identity of the missing pressure component and the correlation with solar wind pressure are discussed.
NASA Astrophysics Data System (ADS)
Steele, C. J.; Dorling, S. R.; von Glasow, R.; Bacon, J.
2013-01-01
The behaviour and characteristics of the marine component of sea breeze cells have received little attention relative to their onshore counterparts. Yet there is a growing interest and dependence on the offshore wind climate from, for example, a wind energy perspective. Using idealized model experiments, we investigate the sea breeze circulation at scales which approximate to those of the southern North Sea, a region of major ongoing offshore wind farm development. We also contrast the scales and characteristics of the pure and the little known corkscrew and backdoor sea breeze types, where the type is pre-defined by the orientation of the synoptic scale flow relative to the shoreline. We find, crucially, that pure sea breezes, in contrast to corkscrew and backdoor types, can lead to substantial wind speed reductions offshore and that the addition of a second eastern coastline emphasises this effect through generation of offshore "calm zones". The offshore extent of all sea breeze types is found to be sensitive to both the influence of Coriolis acceleration and to the boundary layer scheme selected. These extents range, for example for a pure sea breeze produced in a 2 m s-1 offshore gradient wind, from 0 km to 21 km between the Mellor-Yamada-Nakanishi-Niino and the Yonsei State University schemes respectively. The corkscrew type restricts the development of a backdoor sea breeze on the opposite coast and is also capable of traversing a 100 km offshore domain even under high along-shore gradient wind speed (>15 m s-1) conditions. Realistic variations in sea surface skin temperature and initializing vertical thermodynamic profile do not significantly alter the resulting circulation, though the strengths of the simulated sea breezes are modulated if the effective land-sea thermal contrast is altered. We highlight how sea breeze impacts on circulation need to be considered in order to improve the accuracy of both assessments of the offshore wind energy climate and forecasts of wind energy output.
The spiral field inhibition of thermal conduction in two-fluid solar wind models
NASA Technical Reports Server (NTRS)
Nerney, S.; Barnes, A.
1978-01-01
The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.
Asphalted Road Temperature Variations Due to Wind Turbine Cast Shadows
Arnay, Rafael; Acosta, Leopoldo; Sigut, Marta; Toledo, Jonay
2009-01-01
The contribution of this paper is a technique that in certain circumstances allows one to avoid the removal of dynamic shadows in the visible spectrum making use of images in the infrared spectrum. This technique emerged from a real problem concerning the autonomous navigation of a vehicle in a wind farm. In this environment, the dynamic shadows cast by the wind turbines' blades make it necessary to include a shadows removal stage in the preprocessing of the visible spectrum images in order to avoid the shadows being misclassified as obstacles. In the thermal images, dynamic shadows completely disappear, something that does not always occur in the visible spectrum, even when the preprocessing is executed. Thus, a fusion on thermal and visible bands is performed. PMID:22291541
Design of outdoor urban spaces for thermal comfort
Harriet J. Plumley
1977-01-01
Microclimates in outdoor urban spaces may be modified by controlling the wind and radiant environments in these spaces. Design guidelines were developed to specify how radiant environments may be selected or modified to provide conditions for thermal comfort. Fanger's human-thermal-comfort model was used to determine comfortable levels of radiant-heat exchange for...
Aerodynamic heating environment definition/thermal protection system selection for the HL-20
NASA Astrophysics Data System (ADS)
Wurster, K. E.; Stone, H. W.
1993-09-01
Definition of the aerothermal environment is critical to any vehicle such as the HL-20 Personnel Launch System that operates within the hypersonic flight regime. Selection of an appropriate thermal protection system design is highly dependent on the accuracy of the heating-environment prediction. It is demonstrated that the entry environment determines the thermal protection system design for this vehicle. The methods used to predict the thermal environment for the HL-20 Personnel Launch System vehicle are described. Comparisons of the engineering solutions with computational fluid dynamic predictions, as well as wind-tunnel test results, show good agreement. The aeroheating predictions over several critical regions of the vehicle, including the stagnation areas of the nose and leading edges, windward centerline and wing surfaces, and leeward surfaces, are discussed. Results of predictions based on the engineering methods found within the MINIVER aerodynamic heating code are used in conjunction with the results of the extensive wind-tunnel tests on this configuration to define a flight thermal environment. Finally, the selection of the thermal protection system based on these predictions and current technology is described.
The Thermal Ion Dynamics Experiment and Plasma Source Instrument
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.;
1995-01-01
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.
In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography
NASA Astrophysics Data System (ADS)
Szewczyk, Mariusz; Smusz, Robert; de Groot, Klaus; Meyer, Joerg; Kucaba-Pietal, Anna; Rzucidlo, Pawel
2017-04-01
Infrared thermography (IRT) has been well established in wind tunnel and flight tests for the last decade. Former applications of IRT were focused, in nearly all cases, on steady measurements. In the last years, requirements of unsteady IRT measurements (up to 10 Hz) have been formulated, but the problem of a very slow thermal response of common materials of wind tunnel models or airplane components has to be overcome by finding a surface modification with a fast thermal response (low heat capacity, low thermal conductivity and high thermal diffusivity). Therefore, lab investigations of potential material combinations and flight tests with a ‘low cost’ aircraft, i.e. a glider with a modified wing surface, were conducted. In order to induce unsteady conditions (rapid change of laminar-turbulent boundary layer transition), special maneuvers of a glider during IRT measurements were performed.
NASA Astrophysics Data System (ADS)
Yahia, Moohammed Wasim; Johansson, Erik; Thorsson, Sofia; Lindberg, Fredrik; Rasmussen, Maria Isabel
2018-03-01
Due to the complexity of built environment, urban design patterns considerably affect the microclimate and outdoor thermal comfort in a given urban morphology. Variables such as building heights and orientations, spaces between buildings, plot coverage alter solar access, wind speed and direction at street level. To improve microclimate and comfort conditions urban design elements including vegetation and shading devices can be used. In warm-humid Dar es Salaam, the climate consideration in urban design has received little attention although the urban planning authorities try to develop the quality of planning and design. The main aim of this study is to investigate the relationship between urban design, urban microclimate, and outdoor comfort in four built-up areas with different morphologies including low-, medium-, and high-rise buildings. The study mainly concentrates on the warm season but a comparison with the thermal comfort conditions in the cool season is made for one of the areas. Air temperature, wind speed, mean radiant temperature (MRT), and the physiologically equivalent temperature (PET) are simulated using ENVI-met to highlight the strengths and weaknesses of the existing urban design. An analysis of the distribution of MRT in the areas showed that the area with low-rise buildings had the highest frequency of high MRTs and the lowest frequency of low MRTs. The study illustrates that areas with low-rise buildings lead to more stressful urban spaces than areas with high-rise buildings. It is also shown that the use of dense trees helps to enhance the thermal comfort conditions, i.e., reduce heat stress. However, vegetation might negatively affect the wind ventilation. Nevertheless, a sensitivity analysis shows that the provision of shade is a more efficient way to reduce PET than increases in wind speed, given the prevailing sun and wind conditions in Dar es Salaam. To mitigate heat stress in Dar es Salaam, a set of recommendations and guidelines on how to develop the existing situation from microclimate and thermal comfort perspectives is outlined. Such recommendations will help architects and urban designers to increase the quality of the outdoor environment and demonstrate the need to create better urban spaces in harmony with microclimate and thermal comfort.
Yahia, Moohammed Wasim; Johansson, Erik; Thorsson, Sofia; Lindberg, Fredrik; Rasmussen, Maria Isabel
2018-03-01
Due to the complexity of built environment, urban design patterns considerably affect the microclimate and outdoor thermal comfort in a given urban morphology. Variables such as building heights and orientations, spaces between buildings, plot coverage alter solar access, wind speed and direction at street level. To improve microclimate and comfort conditions urban design elements including vegetation and shading devices can be used. In warm-humid Dar es Salaam, the climate consideration in urban design has received little attention although the urban planning authorities try to develop the quality of planning and design. The main aim of this study is to investigate the relationship between urban design, urban microclimate, and outdoor comfort in four built-up areas with different morphologies including low-, medium-, and high-rise buildings. The study mainly concentrates on the warm season but a comparison with the thermal comfort conditions in the cool season is made for one of the areas. Air temperature, wind speed, mean radiant temperature (MRT), and the physiologically equivalent temperature (PET) are simulated using ENVI-met to highlight the strengths and weaknesses of the existing urban design. An analysis of the distribution of MRT in the areas showed that the area with low-rise buildings had the highest frequency of high MRTs and the lowest frequency of low MRTs. The study illustrates that areas with low-rise buildings lead to more stressful urban spaces than areas with high-rise buildings. It is also shown that the use of dense trees helps to enhance the thermal comfort conditions, i.e., reduce heat stress. However, vegetation might negatively affect the wind ventilation. Nevertheless, a sensitivity analysis shows that the provision of shade is a more efficient way to reduce PET than increases in wind speed, given the prevailing sun and wind conditions in Dar es Salaam. To mitigate heat stress in Dar es Salaam, a set of recommendations and guidelines on how to develop the existing situation from microclimate and thermal comfort perspectives is outlined. Such recommendations will help architects and urban designers to increase the quality of the outdoor environment and demonstrate the need to create better urban spaces in harmony with microclimate and thermal comfort.
Space-Based Solar Power: A Technical, Economic, and Operational Assessment
2015-04-01
reports also address alternative and renew- able sources such as biomass, wind, geothermal , and solar (thermal and photovoltaic), which are becom- ing...2025 using solar, wind, biomass, and geothermal energy generation technologies.86 Table 3. Army Sites for Terrestrial Solar Photovoltaic Power
NASA Astrophysics Data System (ADS)
De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.
2009-05-01
Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.
An ironless armature brushless torque motor
NASA Technical Reports Server (NTRS)
Studer, P. A.
1973-01-01
A high torque motor with improved servo mechanism is reported. Armature windings are cast into an epoxy cylinder and armature conductors are integrally cast with an aluminum mounting ring which provides thermal conductance directly into the structure. This configuration eliminates magnetic hysteresis because there is no relative motion between the rotating magnetic field and any stationary iron. The absence of destabilization forces provides a fast electrical response compared with a typical torquer of conventional construction.
Third Stokes parameter emission from a periodic water surface
NASA Technical Reports Server (NTRS)
Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.
1991-01-01
An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.
Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site
NASA Technical Reports Server (NTRS)
Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.
2005-01-01
The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.
Experimental Study of Aligned and Staggered Wind Farms in a Convective Boundary Layer
NASA Astrophysics Data System (ADS)
Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando
2011-11-01
Wind farm-atmosphere interaction is complicated by turbine configuration and thermal effects on momentum and kinetic energy fluxes. Wind farms of finite length have been modeled as increased surface roughness or as a sparse canopy; however it is not clear which approach is more appropriate. Experiments were conducted in a thermally controlled boundary layer wind tunnel, using a custom x-wire/cold wire and surface heat flux sensors, to understand the effect of aligned versus staggered turbine configurations on momentum absorption and flow adjustment in a convective boundary layer (CBL). Results for experiments of a large farm show the span-wise averaged flow statistics exhibit similar turbulent transport properties to that of canopy flows. The wake adjusts within and grows over the farm more quickly for a staggered compared to an aligned farm. Using canopy flow scaling, we show that the flow equilibrates faster and the overall momentum absorption is higher in a staggered compared to an aligned farm. Wake recovery behind a single turbine is facilitated by buoyancy in a CBL (Zhang et al. under review). We find a similar effect in wind farms resulting in reduced effective roughness and momentum absorption. We also find a reduction of surface heat flux for both wind farms, but greater for the staggered farm.
NASA Technical Reports Server (NTRS)
Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,
2011-01-01
Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Durante, Daniele; Iess, Luciano; Kaspi, Yohai
2017-04-01
The ongoing Juno spacecraft measurements are improving our knowledge of Jupiter's gravity field. Similarly, the Cassini Grand Finale will improve the gravity estimate of Saturn. The analysis of the Juno and Cassini Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity fields of Jupiter and Saturn, additional information needs to be incorporated into the analysis, especially with regards to the planets' wind structures. In this work we propose a new iterative approach for the estimation of Jupiter and Saturn gravity fields, using simulated measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model is used to obtain the gravitational moments. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an optimization method, the likely penetration depth of the winds is computed, and its uncertainty is evaluated. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an estimate of their uncertainties, to be used as a priori for a new calculation of the gravity field. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that by using this method some of the gravitational moments are fitted better to the `observed' ones, mainly due to the added information from the dynamical model which includes the wind structure and its depth. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity moments estimated from the Juno and Cassini radio science experiments.
Structure of the Highly Sheared Tropical Storm Chantal During CAMEX-4
NASA Technical Reports Server (NTRS)
Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.
2004-01-01
NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical stoins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and have helped us learn more about why this storm didn't develop.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
Impact-generated winds on Venus: Causes and effects
NASA Technical Reports Server (NTRS)
Schultz, Pater H.
1992-01-01
The pressure of the dense atmosphere of Venus significantly changes the appearance of ejecta deposits relative to craters on the Moon and Mercury. Conversely, specific styles and sequences of ejecta emplacement can be inferred to represent different intensities of atmospheric response winds acting over different timescales. Three characteristic timescales can be inferred from the geologic record: surface scouring and impactor-controlled (angle and direction) initiation of the long fluidized run-out flows; nonballistic emplacement of inner, radar-bright ejecta facies and radar-dark outer facies; and very late reworking of surface materials. These three timescales roughly correspond to processes observed in laboratory experiments that can be scaled to conditions on Venus (with appropriate assumptions): coupling between the atmosphere and earlytime vapor/melt (target and impactor) that produces an intense shock that subsequently evolves into blast/response winds; less energetic dynamic response of the atmosphere to the outward-moving ballistic ejecta curtain that generates nonthermal turbulent eddies; and late recovery of the atmosphere to impact-generated thermal and pressure gradients expressed as low-energy but long-lived winds. These different timescales and processes can be viewed as the atmosphere equivalent of shock melting, material motion, and far-field seismic response in the target. The three processes (early Processes, Atmospheric Processes, and Late Recovery Winds) are discussed at length.
A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, J.; Homan, J.; Rahoui, F.
2016-05-01
During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley and Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on themore » orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.« less
Identifying Wave-Particle Interactions in the Solar Wind using Statistical Correlations
NASA Astrophysics Data System (ADS)
Broiles, T. W.; Jian, L. K.; Gary, S. P.; Lepri, S. T.; Stevens, M. L.
2017-12-01
Heavy ions are a trace component of the solar wind, which can resonate with plasma waves, causing heating and acceleration relative to the bulk plasma. While wave-particle interactions are generally accepted as the cause of heavy ion heating and acceleration, observations to constrain the physics are lacking. In this work, we statistically link specific wave modes to heavy ion heating and acceleration. We have computed the Fast Fourier Transform (FFT) of transverse and compressional magnetic waves between 0 and 5.5 Hz using 9 days of ACE and Wind Magnetometer data. The FFTs are averaged over plasma measurement cycles to compute statistical correlations between magnetic wave power at each discrete frequency, and ion kinetic properties measured by ACE/SWICS and Wind/SWE. The results show that lower frequency transverse oscillations (< 0.2 Hz) and higher frequency compressional oscillations (> 0.4 Hz) are positively correlated with enhancements in the heavy ion thermal and drift speeds. Moreover, the correlation results for the He2+ and O6+ were similar on most days. The correlations were often weak, but most days had some frequencies that correlated with statistical significance. This work suggests that the solar wind heavy ions are possibly being heated and accelerated by both transverse and compressional waves at different frequencies.
NASA Astrophysics Data System (ADS)
Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.
2008-10-01
Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.
Spectroscopic diagnostics of extended corona and solar wind with UVCS/Spartan
NASA Technical Reports Server (NTRS)
Strachan, L.; Gardner, L. D.; Kohl, J. L.
1995-01-01
The primary goal of the Ultraviolet Coronal Spectrometer on Spartan 201 (UVCS/Spartan) is to make spectroscopic diagnostic measurements that can be used to derive plasma parameters in the extended solar corona where it is believed that significant heating of the corona and acceleration of the solar wind take place. Direct and indirect measurements of particle velocity distribution, thermal and non-thermal temperatures, and bulk outflow velocities are crucial to aid in the identification of physical processes that may be responsible for coronal heating and solar wind acceleration. UVCS/Spartan has made two flights in April 1993 and September 1994, the latter coinciding with the South Polar Passage of the Ulysses spacecraft. Observations were made of the large-scale structures and sub-structures of coronal holes and streamers at heliocentric heights between 1.5 solar radii and 3.5 solar radii. Measurements were made of H I Lyman-alpha intensities and profiles, and line intensities of minor ions like O(5+) and Fe(11+). We will present results from the flights and discuss how these measurements are used to constrain values for the proton thermal and non-thermal kinetic temperatures, proton bulk outflow velocities, and minor ion temperatures and bulk outflow velocities. Plans for the upcoming flight in July 1995 will also be discussed.
Concepts for autonomous flight control for a balloon on Mars
NASA Technical Reports Server (NTRS)
Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.
1988-01-01
Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.
A Subtropical Cyclone in the Canary Islands: the October 2014 event
NASA Astrophysics Data System (ADS)
Quitian, Lara; Martin, Maria Luisa; Jesús González-Alemán, Juan; Santos-Muñoz, Daniel; Valero Rodríguez, Francisco
2016-04-01
Depending on the thermal structure and dynamics, there are different types of cyclones in the troposphere. Subtropical cyclones (STC) are low pressure systems that share tropical and extratropical characteristics, having hybrid thermal structures. In October 2014, a cyclonic system landfall the Canary Islands, causing widespread damages. The system began to develop in October 18 and its effects lasted until October 21. Here, the diagnosis and identification of such cyclone as STC is carried out, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. The cyclone evolved from a typical extratropical cyclone, detached from the atmospheric circulation which was highly meridional and became a stationary cut-off low. The meridional intrusion of the trough as well as a low-level baroclinic zone favored the formation of a STC northwestern of the Canary Islands. Several cyclone phase space diagrams are used to classify the cyclone as a STC, highlighting a deep cold core in its early stages that develops into a shallow warm core. High potential vorticity areas associated with the cyclone promoted strong winds and precipitation over the Islands. Throughout the event, an increased conditional instability is observed in the different soundings, leading to strong vertical wind shear. Moreover, relatively warm sea surface temperature is obtained, establishing the conditions to favor the organization of long-lived convective structures.
Engineering and fabrication cost considerations for cryogenic wind tunnel models
NASA Technical Reports Server (NTRS)
Boykin, R. M., Jr.; Davenport, J. B., Jr.
1983-01-01
Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.
Indo-Pacific sea level variability during recent decades
NASA Astrophysics Data System (ADS)
Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.
2016-12-01
Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.
Solar thermal power generation. A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1979-01-01
Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.
Thermal transport processes in stable boundary layers
NASA Astrophysics Data System (ADS)
Gutierrez, Walter; Araya, Guillermo; Kiliyanpilakkil, Praju; Basu, Sukanta; Ruiz-Columbie, Arquimedes; Castillo, Luciano
2014-11-01
Using the 200-m tower data (Reese, Texas), profiler and Mesonet data, and WRF runs, a 4-dim model is introduced which summarizes the main features of the Low Level Jet (LLJ) in stable boundary conditions over the aforementioned region and shows its patterns along the year. We also demonstrate the importance of LLJs for wind energy production. It has been observed that during a LLJ event the level of turbulence intensities and TKE are significantly much lower than those during unstable conditions. The major salient results from this study include: the vertical shears in the LLJ are very large at the current wind turbine heights, causing higher static and cyclical aerodynamic loads. The WRF model has accurately captured the beginning and end of the LLJ event; however, the local maximum wind speed at the LLJ ``nose'' has been under-predicted by approximately 15%, which highlights the difficulties WRF still faces in predicting this phenomenon. Furthermore, power spectra and time-autocorrelations of thermal fluctuations will help us in the understanding of the thermal coherent structures involved in moderate and strong LLJ.
Winds and Weather, Teacher's Edition. Probing the Natural World/3.
ERIC Educational Resources Information Center
Florida State Univ., Tallahassee. Dept. of Science Education.
The teacher's edtion for the Intermediate Science Curriculum Study Level III unit entitled "Winds and Weather" provides instructions for teachers for examining some principles underlying thermal convention, weather observation, closed systems, moisture and cloud formation, the heated-air model, and fronts. A brief introduction dealing…
NASA Technical Reports Server (NTRS)
Warren, A. W.; Esinger, A. W.
1979-01-01
Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).
Thermal Remote Anemometer Device
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.
1988-01-01
Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.
Observed Thermal Impacts of Wind Farms Over Northern Illinois.
Slawsky, Lauren M; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A
2015-06-25
This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003-2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18-0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades.
Observed Thermal Impacts of Wind Farms Over Northern Illinois
Slawsky, Lauren M.; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A.
2015-01-01
This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003–2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18–0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613
NASA Astrophysics Data System (ADS)
Barai, Paramita; Viel, Matteo; Murante, Giuseppe; Gaspari, Massimo; Borgani, Stefano
2014-01-01
We investigate two modes of coupling the feedback energy from a central active galactic nucleus (AGN) to the neighbouring gas in galaxy simulations: kinetic - velocity boost and thermal - heating. We formulate kinetic feedback models for energy-driven wind (EDW) and momentum-driven wind (MDW), using two free parameters: feedback efficiency ɛf and AGN wind velocity vw. A novel numerical algorithm is implemented in the smoothed particle hydrodynamics code GADGET-3, to prevent the expansion of a hole in the gas distribution around the black hole (BH). We perform simulations of isolated evolution and merger of disc galaxies, of Milky Way mass as well as lower and higher masses. We find that in the isolated galaxy BH kinetic feedback generates intermittent bipolar jet-like gas outflows. We infer that current prescriptions for BH subgrid physics in galaxy simulations can grow the BH to observed values even in an isolated disc galaxy. The BH growth is enhanced in a galaxy merger, which consequently requires different model parameters to fit the observations than an isolated case. Comparing the [MBH-σ⋆] relation obtained in our simulations with observational data, we conclude that it is possible to find parameter sets for a fit in all the models (e.g. vw = 10 000 km s-1 and ɛf = 0.25 for BH kinetic EDW), except for the case with MDW feedback in a galaxy merger, in which the BH is always too massive. The BH thermal feedback implementation of Springel et al. within the multiphase star formation model is found to have negligible impact on gas properties, and the effect claimed in all previous studies is attributed to gas depletion around the BH by the creation of an artificial hole. The BH mass accretion rate in our simulations exhibit heavy fluctuations. The star formation rate is quenched with feedback by removal of gas. The circumgalactic medium gas at galactocentric distances (20-100) h-1 kpc is found to give the best metallicity observational diagnostic to distinguish between BH models.
Probing the Martian Exosphere and Neutral Escape Using Pickup Ions Measured by MAVEN
NASA Astrophysics Data System (ADS)
Rahmati, A.; Larson, D. E.; Cravens, T.; Halekas, J. S.; Lillis, R. J.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; Dunn, P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.
2016-12-01
Soon after the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft started orbiting Mars in September 2014, the SEP (Solar Energetic Particle), SWIA (Solar Wind Ion Analyzer), and STATIC (Supra-Thermal and Thermal Ion Composition) instruments onboard the spacecraft started detecting planetary pickup ions. SEP can measure energetic (>50 keV) oxygen pickup ions, the source of which is the extended hot oxygen exosphere of Mars. Model results show that these pickup ions originate from tens of Martian radii upstream of Mars and are energized by the solar wind motional electric field as they gyrate back towards Mars. SEP is blind to pickup hydrogen, as the low energy threshold for detection of hydrogen in SEP is 20 keV; well above the maximum pickup hydrogen energy, which is four times the solar wind proton energy. SWIA and STATIC, on the other hand, can detect both pickup oxygen and pickup hydrogen with energies below 30 keV and created closer to Mars. During the times when MAVEN is outside the Martian bow shock and in the upstream undisturbed solar wind, the solar wind velocity measured by SWIA and the solar wind (or interplanetary) magnetic field measured by the MAG (magnetometer) instrument can be used to model pickup oxygen and hydrogen fluxes near Mars. Solar wind flux measurements of the SWIA instrument are used in calculating charge-exchange frequencies, and data from the EUVM (Extreme Ultraviolet Monitor) and SWEA (Solar Wind Electron Analyzer) instruments are also used in calculating photo-ionization and electron impact frequencies of neutral species in the Martian exosphere. By comparing SEP, SWIA, and STATIC measured pickup ion fluxes with model results, the Martian thermal hydrogen and hot oxygen neutral densities can be probed outside the bow shock, which would place constraints on estimates of oxygen and hydrogen neutral escape rates. We will present model-data comparisons of pickup ions measured outside the Martian bow shock. Our analysis reveals an order of magnitude density change with Mars season in the hydrogen exosphere, whereas the hot oxygen exosphere densities vary less than a factor of 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.
Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1–5.5 amu/e and were collected in the time range of 1998–2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H{sup +}) and alpha particles (He{sup 2+}). From these rates, wemore » find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He{sup 2+} and C{sup 6+} follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O{sup 6+} shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O{sup 6+} occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.« less
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2017-12-01
Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.
Ascent trajectory optimization for stratospheric airship with thermal effects
NASA Astrophysics Data System (ADS)
Guo, Xiao; Zhu, Ming
2013-09-01
Ascent trajectory optimization with thermal effects is addressed for a stratospheric airship. Basic thermal characteristics of the stratospheric airship are introduced. Besides, the airship’s equations of motion are constructed by including the factors about aerodynamic force, added mass and wind profiles which are developed based on horizontal-wind model. For both minimum-time and minimum-energy flights during ascent, the trajectory optimization problem is described with the path and terminal constraints in different scenarios and then, is converted into a parameter optimization problem by a direct collocation method. Sparse Nonlinear OPTimizer(SNOPT) is employed as a nonlinear programming solver and two scenarios are adopted. The solutions obtained illustrate that the trajectories are greatly affected by the thermal behaviors which prolong the daytime minimum-time flights of about 20.8% compared with that of nighttime in scenario 1 and of about 10.5% in scenario 2. And there is the same trend for minimum-energy flights. For the energy consumption of minimum-time flights, 6% decrease is abstained in scenario 1 and 5% decrease in scenario 2. However, a few energy consumption reduction is achieved for minimum-energy flights. Solar radiation is the principal component and the natural wind also affects the thermal behaviors of stratospheric airship during ascent. The relationship between take-off time and performance of airship during ascent is discussed. it is found that the take-off time at dusk is best choice for stratospheric airship. And in addition, for saving energy, airship prefers to fly downwind.
Turbulent flow and scalar transport in a large wind farm
NASA Astrophysics Data System (ADS)
Porte-Agel, F.; Markfort, C. D.; Zhang, W.
2012-12-01
Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface heat flux change produced by the wind farms is found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero change for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. This comprehensive first wind-tunnel dataset on turbulent flow and scalar transport in wind farms will be further used to develop and validate new parameterizations of surface fluxes in numerical models.
Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors: Denholm, Paul; Cochran, Jaquelin; Brancucci Martinez-Anido, Carlo
This is the Spanish version of the 'Greening the Grid - Wind and Solar on the Power Grid: Myths and Misperceptions'. Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants,more » and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.« less
NASA Technical Reports Server (NTRS)
Sutherland, R. A.; Hannah, H. E.; Cook, A. F.; Martsolf, J. D.
1981-01-01
Thermal images from an aircraft-mounted scanner are used to evaluate the effectiveness of crop-freeze protection devices. Data from flights made while using fuel oil heaters, a wind machine and an undercanopy irrigation system are compared. Results show that the overall protection provided by irrigation (at approximately 2 C) is comparable to the less energy-efficient heater-wind machine combination. Protection provided by the wind machine alone (at approximately 1 C) was found to decrease linearly with distance from the machine by approximately 1 C/100 m. The flights were made over a 1.5 hectare citrus grove at an altitude of 450 m with an 8-14 micron detector. General meteorological conditions during the experiments, conducted during the nighttime, were cold (at approximately -6 C) and calm with clear skies.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier-Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Engineering Aerothermal Analysis for X-34 Thermal Protection System Design
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Riley, Christopher J.; Zoby, E. Vincent
1998-01-01
Design of the thermal protection system for any hypersonic flight vehicle requires determination of both the peak temperatures over the surface and the heating-rate history along the flight profile. In this paper, the process used to generate the aerothermal environments required for the X-34 Testbed Technology Demonstrator thermal protection system design is described as it has evolved from a relatively simplistic approach based on engineering methods applied to critical areas to one of detailed analyses over the entire vehicle. A brief description of the trajectory development leading to the selection of the thermal protection system design trajectory is included. Comparisons of engineering heating predictions with wind-tunnel test data and with results obtained using a Navier- Stokes flowfield code and an inviscid/boundary layer method are shown. Good agreement is demonstrated among all these methods for both the ground-test condition and the peak heating flight condition. Finally, the detailed analysis using engineering methods to interpolate the surface-heating-rate results from the inviscid/boundary layer method to predict the required thermal environments is described and results presented.
Microelectronics Instrument Products Shock and Vibration Electro-optics: C-Qualification Test Report
NASA Technical Reports Server (NTRS)
1994-01-01
In this test report all measurements made during testing are recorded in ATP 20049 DS data sheets and are included in the log. The motor/encoder (henceforth referred to as the UUT) test sequence began with a baseline functional evaluation, which demonstrated that the motor satisfied the operating torque, cogging torque, winding resistance, and mechanical requirements of SOW. In addition, the encoder electrical requirements were verified, as well as the alignment of the encoder outputs relative tc, the motor shaft position. There were no discrepancies observed in this portion of the test. The UUT was then exposed to a number of environments, including thermal vacuum, thermal cycling, random and sine vibration, and mechanical shock. During the thermal environments, the performance of the UUT under load was verified at specified points in the cycles, as described in ATP 20049. In addition, the UUT was bench tested between the two thermal environments. No anomalies were observed during the thermal tests. The load attachment method was subsequently corrected, and vibration of S/N 0002 began while 0003 was being repaired.
Nonlinear development of shocklike structure in the solar wind.
Lee, E; Parks, G K; Wilber, M; Lin, N
2009-07-17
We report first in situ multispacecraft observations of nonlinear steepening of compressional pulses in the solar wind upstream of Earth's bow shock. The magnetic field of a compressional pulse formed at the upstream edge of density holes is shown to suddenly break and steepen into a shocklike structure. During the early phase of development thermalization of ions is insignificant. Substantial thermalization of ions occurs as gyrating ions are observed at the steepened edge. These observations indicate that the mechanisms causing the dissipation of magnetic fields (currents) and ions are different in the early phase of shock development.
decay rates for diffusing tracers. The data revealed that a laminar laboratory flow may be used to simulate a turbulent field flow under conditions of...stable thermal stratification and complex terrain. In such flow conditions, diffusion is dominated by convective dispersion. (Author)
Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking
NASA Technical Reports Server (NTRS)
Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.
2012-01-01
The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.
Observations of the convective plume of a lake under cold-air advective conditions
NASA Technical Reports Server (NTRS)
Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.; Chen, E.
1978-01-01
Moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C under conditions of moderate winds (about 4 m/s). No substantial temperature effects were observed with surface wind speed less than 1 m/s. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity, and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for nonadvective conditions.
On factors influencing air-water gas exchange in emergent wetlands
Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.
2018-01-01
Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.
1975-09-01
sling psychrometers, thermographs or hygrothermographs, rain gauges , and recording wind direction and velocity Indicators. Four stations Included MRI...precluded drilling a hole and the moulins have not been sufficiently exposed In the last two years, it has been essential to extend the survey control into...middle of May (Miller, 1972 b).The character of thermal penetration Is revealed by data from thermistors drilled Into the Ice from the glacier’s surface
Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.
1990-01-01
The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.
Solar Wind Ablation of Terrestrial Planet Atmospheres
NASA Technical Reports Server (NTRS)
Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.
2009-01-01
Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.
NASA Astrophysics Data System (ADS)
Steele, C. J.; Dorling, S. R.; von Glasow, R.; Bacon, J.
2012-06-01
The behaviour and characteristics of the marine component of sea breeze cells have received little attention relative to their onshore counterparts. Yet there is a growing interest and dependence on the offshore wind climate from, for example, a wind energy perspective. Using idealized model experiments, we investigate the sea breeze circulation at scales which approximate to those of the Southern North Sea, a region of major ongoing offshore wind farm development. We also contrast the scales and characteristics of the pure and the little known corkscrew and backdoor sea breeze types, where the type is pre-defined by the orientation of the synoptic scale flow relative to the shoreline. We find, crucially, that pure sea breezes, in contrast to corkscrew and backdoor types, can lead to substantial wind speed reductions offshore and that the addition of a second eastern coastline emphasises this effect through generation of offshore "calm zones". The offshore extent of all sea breeze types is found to be sensitive to both the influence of Coriolis acceleration and to the boundary layer scheme selected. These extents range, for example for a pure sea breeze produced in a 2 m s-1 offshore gradient wind, from 10 km to 40 km between the Mellor-Yamada-Nakanishi-Niino and the Yonsei State University schemes, respectively. The corkscrew type restricts the development of a backdoor sea breeze on the eastern coast and is also capable of traversing a 100 km offshore domain even under high gradient wind speed (>15 m s-1) conditions. Realistic variations in sea surface skin temperature during the sea breeze season do not significantly affect the circulation, suggesting that a thermal contrast is only needed as a precondition to the development of the sea breeze. We highlight how sea breeze impacts on circulation need to be considered in order to improve the accuracy of assessments of the offshore wind energy climate.
Saturn’s gravitational field induced by its equatorially antisymmetric zonal winds
NASA Astrophysics Data System (ADS)
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-05-01
The cloud-level zonal winds of Saturn are marked by a substantial equatorially antisymmetric component with a speed of about 50ms‑1 which, if they are sufficiently deep, can produce measurable odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4. This study, based on solutions of the thermal-gravitational wind equation, provides a theoretical basis for interpreting the odd gravitational coefficients of Saturn in terms of its equatorially antisymmetric zonal flow. We adopt a Saturnian model comprising an ice-rock core, a metallic dynamo region and an outer molecular envelope. We use an equatorially antisymmetric zonal flow that is parameterized, confined in the molecular envelope and satisfies the solvability condition required for the thermal-gravitational wind equation. The structure and amplitude of the zonal flow at the cloud level are chosen to be consistent with observations of Saturn. We calculate the odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4 by regarding the depth of the equatorially antisymmetric winds as a parameter. It is found that ΔJ 3 is ‑4.197 × 10‑8 if the zonal winds extend about 13 000 km downward from the cloud tops while it is ‑0.765 × 10‑8 if the depth is about 4000 km. The depth/profile of the equatorially antisymmetric zonal winds can eventually be estimated when the high-precision measurements of the Cassini Grand Finale become available.
Non-hoop winding effect on bonding temperature of laser assisted tape winding process
NASA Astrophysics Data System (ADS)
Zaami, Amin; Baran, Ismet; Akkerman, Remko
2018-05-01
One of the advanced methods for production of thermoplastic composite methods is laser assisted tape winding (LATW). Predicting the temperature in LATW process is very important since the temperature at nip-point (bonding line through width) plays a pivotal role in a proper bonding and hence the mechanical performance. Despite the hoop-winding where the nip-point is the straight line, non-hoop winding includes a curved nip-point line. Hence, the non-hoop winding causes somewhat a different power input through laser-rays and-reflections and consequently generates unknown complex temperature profile on the curved nip-point line. Investigating the temperature at the nip-point line is the point of interest in this study. In order to understand this effect, a numerical model is proposed to capture the effect of laser-rays and their reflections on the nip-point temperature. To this end, a 3D optical model considering the objects in LATW process is considered. Then, the power distribution (absorption and reflection) from the optical analysis is used as an input (heat flux distribution) for the thermal analysis. The thermal analysis employs a fully-implicit advection-diffusion model to calculate the temperature on the surfaces. The results are examined to demonstrate the effect of winding direction on the curved nip-point line (tape width) which has not been considered in literature up to now. Furthermore, the results can be used for designing a better and more efficient setup in the LATW process.
Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Aharonian, F. A.
2000-04-01
We show that the relativistic wind of the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at r<=rS~0.1pc, in fact could be directly observed through its inverse Compton (IC) γ-ray emission. This radiation is caused by illumination of the wind by low-frequency photons emitted by the pulsar, and consists of two, pulsed and unpulsed, components associated with the non-thermal (pulsed) and thermal (unpulsed) low-energy radiation of the pulsar, respectively. These two components of γ-radiation have distinct spectral characteristics, which depend essentially on the site of formation of the kinetic-energy-dominated wind, as well as on the Lorentz factor and the geometry of propagation of the wind. Thus, the search for such specific radiation components in the spectrum of the Crab Nebula can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths. In particular, we show that the comparison of the calculated flux of the unpulsed IC emission with the measured γ-ray flux of the Crab Nebula excludes the possibility of formation of a kinetic-energy-dominated wind within 5 light-cylinder radii of the pulsar, Rw>=5RL. The analysis of the pulsed IC emission, calculated under reasonable assumptions concerning the production site and angular distribution of the optical pulsed radiation, yields even tighter restrictions, namely Rw>=30RL.
Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator); Dixon, R. G.
1981-01-01
Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.
Aerosol effects on the UV irradiance in Santiago de Chile
NASA Astrophysics Data System (ADS)
Cordero, R. R.; Seckmeyer, G.; Damiani, A.; Jorquera, J.; Carrasco, J.; Muñoz, R.; Da Silva, L.; Labbe, F.; Laroze, D.
2014-11-01
Santiago de Chile (33°27‧ S-70°41‧ W) is a mid-latitude city of 6 million inhabitants with a complicated surrounding topography. Aerosol extinction in Santiago is determined by the semi-arid local climate, the urban pollution, a regional subsidence thermal inversion layer, and the boundary-layer wind airflow. In this paper we report on spectral measurements of the surface irradiance (at 290-600 nm wavelength range) carried out during 2013 in the heart of the city by using a double monochromator-based spectroradiometer system. These measurements were used to assess the effect of local aerosols, paying particular attention to the ultraviolet (UV) range. We found that the aerosol optical depth (AOD) exhibited variations likely related to changes in the subsidence thermal inversion and in the boundary-layer winds. Although the AOD at 350 nm typically ranged from 0.2 to 0.3, peak values of about 0.7 were measured. The AOD diminished with the wavelength and typically ranged from 0.1 to 0.2 at 550 nm. Our AOD data were found to be consistent with measurements of the particulate matter (PM) mass concentration.
Coupling of the coronal helium abundance to the solar wind
NASA Technical Reports Server (NTRS)
Hansteen, Viggo H.; Leer, Egil; Holzer, Thomas E.
1994-01-01
Models of the transition region-corona-solar wind system are investigated in order to find the coronal helium abundance and to study the role played by coronal helium in controlling the solar wind proton flux. The thermal force on alpha-particles in the transition region sets the flow of helium into the corona. The frictional coupling between alpha-particles and protons and/or the electric polarization field determines the proton flux in the solar wind as well as the fate of the coronal helium content. The models are constructed by solving the time-dependent population and momentum equations for all species of hydrogen and helium in an atmosphere with a given temperature profile. Several temperature profiles are considered in order to very the roles of frictional coupling and electric polarization field in the solar wind, and the thermal force in the transition region. Steady-state solutions are found for coronae with a hydrogen flux at 1 AU of 1.0 x 10(exp 9)/cm(exp 2)/sec or larger. For coronae with lower hydrogen fluxes, the helium flux into the corona is larger than the flux 'pulled out' by the solar wind protons, and solutions with increasing coronal helium content are found. The timescale for forming a helium-filled corona, that may allow for a steady outflow, is long compared to the mixing time for the corona.
Venus, Earth, Mars: Comparative ion escape caused by the interaction with the solar wind
NASA Astrophysics Data System (ADS)
Barabash, Stas
For the solar system planets the non-thermal atmospheric escape exceeds by far the Jean escape for particles heavier than helium. In this talk we consider only ion escape and compare the total ion escape rates for Venus, Earth, and Mars caused by the interaction with the solar wind. We review the most recent data on the escape rates based on measurements from Mars Express, Venus Express, and Cluster. The comparison of the available numbers show that despite large differences in the atmospheric masses between these three planets (a factor of 100 -200), different types of the interactions with the solar wind (magnetized and non-magnetized obstacles), the escape rates for Mars, Venus, and the Earth are within the range 1024 - 1025 s-1 . Surprisingly, the expected shielding of the Earth atmosphere by the intrinsic magnetic field is not as efficient as one may think. The reason for this is the non-thermal escape caused by the solar wind interaction is a energy -limited process. Indeed, normalizing the escape rates to the planet-dependent escape energy and power available in the solar wind results in the normalized escape rates deferring only on a factor between three planets. The larger Earth's magnetosphere intercepts and tunnels down to the ionosphere more energy from the solar wind than more compact interaction regions of non-magnetized planets.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005
Effects of wind and rain on thermal responses of humans in a mildly cold environment.
Yamane, Motoi; Oida, Yukio; Ohnishi, Norikazu; Matsumoto, Takaaki; Kitagawa, Kaoru
2010-05-01
The purpose of the present study was to clarify the effects of wind and rain on peripheral heat loss by non-exercising minimally clothed humans in a mildly cold environment. Seven healthy young male subjects wearing only shorts rested in a standing position for 20 min at an ambient temperature of 15 degrees C under three conditions: without exposure to wind or rain (CON), with exposure to wind (3 m/s) (WIND) and with exposure to wind (3 m/s) and rain (40 mm/h) (WIND + RAIN). Mean heat loss measured using a heat flux transducer was significantly greater in the subjects exposed to WIND + RAIN compared to those exposed to CON and WIND conditions (p < 0.01). Metabolic heat production was significantly greater under WIND + RAIN than under CON and WIND (p < 0.01). Decrease in heat storage was significantly larger at WIND + RAIN compared with CON and WIND (p < 0.01). Mean skin temperature was significantly lower under WIND + RAIN than under CON and WIND conditions (p < 0.01). These results indicate that peripheral heat loss significantly increases when humans are exposed to wind and rain for a short period (20 min) under a mildly cold condition.
Alfven waves in spiral interplanetary field
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1973-01-01
A theoretical study is presented of the Alfven waves in the spiral interplanetary magnetic field. The Alfven waves under consideration are arbitrary, large amplitude, non-monochromatic, microscale waves of any polarization. They superpose on a mesoscale background flow of thermally anisotropic plasma. Using WKB approximation, an analytical solution for the amplitude vectors is obtained as a function of the background flow properties: density, velocity, Alfven speed, thermal anisotropy, and the spiral angel. The necessary condition for the validity of the WKB solution is discussed. The intensity of fluctuations is calculated as a function of heliocentric distance. Relative intensity of fluctuations as compared with the magnitude of the background field has its maximum in the region near l au. Thus outside of this region, the solar wind is less turbulent.
New vitrinite reflectance data for the Wind River Basin, Wyoming
Pawlewicz, Mark J.; Finn, Thomas M.
2013-01-01
The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.
The Hurricane Imaging Radiometer: Present and Future
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.;
2013-01-01
The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.
Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2015-06-03
As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.
NASA Astrophysics Data System (ADS)
Guala, M.; Hu, S. J.; Chamorro, L. P.
2011-12-01
Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.
Poessel, Sharon; Brandt, Joseph; Mendenhall, Laura C.; Braham, Melissa A.; Lanzone, Michael J.; McGann, Andrew J.; Katzner, Todd
2018-01-01
Wind power is a fast-growing energy resource, but wind turbines can kill volant wildlife, and the flight behavior of obligate soaring birds can place them at risk of collision with these structures. We analyzed altitudinal data from GPS telemetry of critically endangered California Condors (Gymnogyps californianus) to assess the circumstances under which their flight behavior may place them at risk from collision with wind turbines. Condor flight behavior was strongly influenced by topography and land cover, and birds flew at lower altitudes and closer to the rotor-swept zone of wind turbines when over ridgelines and steep slopes and over forested and grassland cover types. Condor flight behavior was temporally predictable, and birds flew lower and closer to the rotor-swept zone during early morning and evening hours and during the winter months, when thermal updrafts were weakest. Although condors only occasionally flew at altitudes that placed them in the rotor-swept zone of turbines, they regularly flew near or within wind resource areas preferred by energy developers. Practitioners aiming to mitigate collision risk to this and other soaring bird species of conservation concern can consider the manner in which flight behavior varies temporally and in response to areas of high topographic relief and proximity to nocturnal roosting sites. By contrast, collision risk to large soaring birds from turbines should be relatively lower over flatter and less rugged areas and in habitat used during daytime soaring.
Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor
NASA Astrophysics Data System (ADS)
PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu
2018-03-01
In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Sanz, Santiago; Neumann, Holger
2015-12-01
Superconducting generators show the potential to reduce the head mass of large offshore wind turbines. A 10 MW offshore superconducting wind turbine has been investigated in the SUPRAPOWER project. The superconducting coils based on MgB2 tapes are supposed to work at cryogenic temperature of 20 K. In this paper, a novel modular rotating cryostat was presented for one single coil of the superconducting wind turbine. The modular concept and cryogen-free cooling method were proposed to fulfil the requirements of handling, maintenance, reliability of long term and offshore operations. Two stage Gifford-McMahon cryocoolers were used to provide cooling source. Supporting rods made of titanium alloy were selected as support structures of the cryostat in aim of reducing the heat load. The thermal performance in the modular cryostat was carefully investigated. The heat load applied to the cryocooler second stage was 2.17 W@20 K per coil. The corresponding temperature difference along the superconducting coil was only around 1 K.
Agrawal, Prashant; Mittal, Anugya; Prakash, Rajiv; Kumar, Manoj; Singh, T B; Tripathi, S K
2010-08-01
In the present study, an attempt was made to measure contamination of soil around four large coal-based Thermal Power Plants. The concentration of Cadmium, Lead, Arsenic and Nickel was estimated in all four directions from Thermal Power Plants. The soil in the study area was found to be contaminated to varying degrees from coal combustion byproducts. The soil drawn from various selected sites in each direction was largely contaminated by metals, predominantly higher within 2-4 km distance from Thermal Power Plant. Within 2-4 km, the mean maximum concentration of Cadmium, Lead, Arsenic and Nickel was 0.69, 13.69, 17.76, and 3.51 mg/kg, respectively. It was also observed that concentration was maximum in the prevalent wind direction. The concentration of Cadmium, Lead, Arsenic and Nickel was highest 0.69, 13.23, 17.29 and 3.56 mg/kg, respectively in west direction where wind was prevalent.
Preparation and Ablating Behavior of FGM used in a Heat Flux Rocket Engine
NASA Astrophysics Data System (ADS)
He, Xiaodong; Han, Jiecai; Zhang, Xinghong
2002-01-01
Functionally Graded Material (FGM) is a new kind of nonhomogeneous materials, which composition varies gradually and continuously from metals to ceramics, thus excellence of both ceramic and metal is brought fully into play. The impetus for the development of FGM was to make thermal barrier materials for space shuttles and structure such as combustion chamber, gas vane, air vane, nose cone, fuel valve sheets and piston crown. There are several main techniques for making FGMs including chemical vapor deposition (CVD), powder metallurgy, plasma spraying and self-propagating high temperate synthesis (SHS). SHS Technology is the process by which condensed phases are produced by self - sustaining exothermic chemical reaction. Demonstrated advantages of SHS as a method for the preparation of materials include higher purity of the products, low energy requirements, and the relative simplicity of the process. SHS is particularly well suited to fabricating FGM. Due to the rapidity of the combustion reaction, the initial arrangement of the constituent in the green body is unchanged during combustion. In this paper, TiB2-Cu FGM and homogeneous cermets have been prepared by combing forced compaction with SHS. The experimental results show that process parameters significantly influence the combustion synthesis procedure of Ti-B-Cu system. Optimal process parameters have been gained for preparing TiB2-Cu FGM and cermets. TiB2-Cu FGM by SHS has a continuous distribution in microstructure along its thickness. The macroscopic interface of ceramic/metal joint is elemented. Mechanical properties of TiB2-Cu cermets were investigated at room and high temperature. The thermal stress of TiC-Ni FGM prepared by SHS are simulated at working condition, as well as comparing with a layered TiB2-Cu Non- FGM. Obviously, the TiB2-Cu FGM has the function of distortion and thermal stress relation. TiB2-Cu FGM was tested in the limited wind tunnel simulating the real condition of the heat flux rocket engine. As a result, TiB2-Cu FGM showed excellent resistant ablating properties. There is only a little loss of the mass after heated for 40 seconds in the wind tunnel. Meanwhile no cracks and breakup appeared in the FGM under the sharp thermal shock condition. Key words: functionally graded materials, combustion synthesis, ablation, thermal shock, thermal stress
Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs
NASA Astrophysics Data System (ADS)
Swartz, Douglas A.; Weisskopf, M. C.; Zavlin, V.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; van der Horst, A.; Yukita, M.
2013-04-01
Deep Chandra ACIS observations of the region around the putative pulsar, CXO J061705.3+222127, in the supernova remnant IC443 confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by a pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The observations further reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic; there is no evidence for a strong bow shock and the ring, presumably formed at a wind termination shock, is not distorted by motion through the ambient medium.
Summer Thermal Performance of Ventilated Roofs with Tiled Coverings
NASA Astrophysics Data System (ADS)
Bortoloni, M.; Bottarelli, M.; Piva, S.
2017-01-01
The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.
NASA Technical Reports Server (NTRS)
Lacy, G. E.; Fleming, M.; Baker, L.; Imbriale, W.; Cortes-Medellin, G.; Veidt, B.; Hovey, G. J.; DeBoer, D.
2012-01-01
This paper will give an overview of the unique mechanical and optical design of the DVA-1 telescope. The rim supported carbon fibre reflector surfaces are designed to be both low cost and have high performance under wind, gravity, and thermal loads. The shaped offset Gregorian optics offer low and stable side lobes along with a large area at the secondary focus for multiple feeds with no aperture blockage. Telescope performance under ideal conditions as well as performance under gravity, wind, and thermal loads will be compared directly using calculated radiation patterns for each of these operating conditions.
Radio emission from Sgr A*: pulsar transits through the accretion disc
NASA Astrophysics Data System (ADS)
Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.
2017-06-01
Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.
HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx
2013-03-01
The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or amore » very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.« less
The DROPPS/MIDAS Campaign Neutral Atmosphere Measurements and the Occurrence of PMSE and NLC
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Schauer, A. G.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Measurements of the neutral atmosphere and their relationship to electrodynamic conditions in the mesosphere have been of interest for many years. Inflatable falling sphere measurements along with electrodynamic measurements were obtained in conjunction with the occurrence of PMSE and NLC during the DROPPS/MIDAS Campaign conducted in July 1999 from Andenes Rocket Range, Norway. The inflatable failing sphere measurements in conjunction with a PMSE event on 5-6 July and with a NLC event on 14 July are used to infer thermal advection and its influence on the clouds' maintenance. Hodograph analysis, an early tropospheric tool used by analyst and forecasters, will be used to determine the magnitude and direction of thermal advection from measured wind data. Analysis of the wind structure through the use of hodographs and some assumptions can determine thermal advection, wind shear, and possible vertical motion. Changes in the temperature structure between allied observations were subtle which may be explained by advection. Because of meteorological instabilities in the mesosphere it is possible that hodograph analysis may not fully work. It is our intention to show that such analysis has value and has a place in the mesosphere.
Overview of Laminar Flow Control
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1998-01-01
The history of Laminar Flow Control (LFC) from the 1930s through the 1990s is reviewed and the current status of the technology is assessed. Early studies related to the natural laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. Although most of this publication is about slot-, porous-, and perforated-suction LFC concept studies in wind tunnel and flight experiments, some mention is made of thermal LFC. Theoretical and computational tools to describe the LFC aerodynamics are included for completeness.
Development of a superconducting claw-pole linear test-rig
NASA Astrophysics Data System (ADS)
Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus
2016-04-01
Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.
The impact of star formation feedback on the circumgalactic medium
NASA Astrophysics Data System (ADS)
Fielding, Drummond; Quataert, Eliot; McCourt, Michael; Thompson, Todd A.
2017-04-01
We use idealized 3D hydrodynamic simulations to study the dynamics and thermal structure of the circumgalactic medium (CGM). Our simulations quantify the role of cooling, stellar feedback driven galactic winds and cosmological gas accretion in setting the properties of the CGM in dark matter haloes ranging from 1011 to 1012 M⊙. Our simulations support a conceptual picture in which the properties of the CGM, and the key physics governing it, change markedly near a critical halo mass of Mcrit ≈ 1011.5 M⊙. As in calculations without stellar feedback, above Mcrit halo gas is supported by thermal pressure created in the virial shock. The thermal properties at small radii are regulated by feedback triggered when tcool/tff ≲ 10 in the hot gas. Below Mcrit, however, there is no thermally supported halo and self-regulation at tcool/tff ˜ 10 does not apply. Instead, the gas is out of hydrostatic equilibrium and largely supported against gravity by bulk flows (turbulence and coherent inflow/outflow) arising from the interaction between cosmological gas inflow and outflowing galactic winds. In these lower mass haloes, the phase structure depends sensitively on the outflows' energy per unit mass and mass-loading, which may allow measurements of the CGM thermal state to constrain the nature of galactic winds. Our simulations account for some of the properties of the multiphase halo gas inferred from quasar absorption line observations, including the presence of significant mass at a wide range of temperatures, and the characteristic O VI and C IV column densities and kinematics. However, we underpredict the neutral hydrogen content of the z ˜ 0 CGM.
Ion kinetic scale in the solar wind observed.
Śafránková, Jana; Němeček, Zdeněk; Přech, Lubomír; Zastenker, Georgy N
2013-01-11
This Letter shows the first results from the solar wind monitor onboard the Spektr-R spacecraft which measures plasma moments with a time resolution of 31 ms. This high-time resolution allows us to make direct observations of solar wind turbulence below ion kinetic length scales. We present examples of the frequency spectra of the density, velocity, and thermal velocity. Our study reveals that although these parameters exhibit the same behavior at the magnetohydrodynamic scale, their spectra are remarkably different at the kinetic scale.
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Kipp, H. W.
1974-01-01
Wind tunnel tests were conducted to determine the aerodynamic heating created by gaps in the reusable surface insulation (RSI) thermal protection system (TPS) for the space shuttle. The effects of various parameters of the RSI on convective heating characteristics are described. The wind tunnel tests provided a data base for accurate assessment of gap heating. Analysis and correlation of the data provide methods for predicting heating in the RSI gaps on the space shuttle.
The solar wind in time: a change in the behaviour of older winds?
NASA Astrophysics Data System (ADS)
O'Fionnagáin, D.; Vidotto, A. A.
2018-05-01
In this paper, we model the wind of solar analogues at different ages to investigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray luminosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in Time' project with ages between 120 and 7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (\\dot{M}) at roughly 2 Gyr, with \\dot{M} (t < 2 Gyr) ∝ t-0.74 and \\dot{M} (t > 2 Gyr) ∝ t-3.9. This steep decay in \\dot{M} at older ages could be the reason why older stars are less efficient at carrying away angular momentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected. Combining our models with dynamo evolution models for the magnetic field of the Earth, we find that, at early ages (≈100 Myr), our Earth had a magnetosphere that was three or more times smaller than its current size.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
NASA Astrophysics Data System (ADS)
Su, Yi-Jiun
1998-11-01
The polar wind is an ambipolar outflow of thermal plasma from the terrestrial high latitude ionosphere to the magnetosphere along geomagnetic field lines. This dissertation comprises a simulation and data analysis investigation of the polar wind from the ionosphere to the magnetosphere. In order to study the transport of ionospheric plasma from the collisional lower ionosphere to the collisionless magnetosphere, a self-consistent steady state coupled fluid-semikinetic model has been developed, which incorporates photoelectron and magnetospheric plasma effects. In applying this treatment to the simulation of the photoelectron-driven polar wind, an electric potential layer of the order of 40 Volts which develops above 3 RE altitude is obtained, when the downward magnetospheric electron fluxes are insufficient to balance the ionospheric photoelectron flux. This potential layer accelerates the ionospheric ions to supersonic speeds at high altitudes, but not at low altitudes (as some previous theories have suggested). In order to experimentally investigate the polar wind, low-energy ion data obtained by the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite has been analyzed. A survey of the polar wind characteristics as observed by TIDE at 5000 km and 8 RE altitudes is presented in this dissertation. At 5000 km altitude, the H+ polar wind exhibited a supersonic outflow, while O+ displayed subsonic downflow. Dramatic decreases of the 5000 km H+ and O+ ion densities and fluxes correlated with increasing solar zenith angle for the ionospheric base, which is consistent with solar illumination ionization control of the 5000 km ion densities. However, the polar cap downward O+ flow and the density declined from dayside to nightside, which is also consistent with a cleft ion fountain origin for the polar cap O+. At 8 RE altitude, both H+ and O+ outflows were supersonic, and H+ was the dominant ion species. The typical velocity ratios, VO+:VHe+:VH+~2:3:5, may suggest transport processes which result in comparable energy gains, such as electric potential layer produced by photoelectron effects.
On-line consolidation of thermoplastic composites
NASA Astrophysics Data System (ADS)
Shih, Po-Jen
An on-line consolidation system, which includes a computer-controlled filament winding machine and a consolidation head assembly, has been designed and constructed to fabricate composite parts from thermoplastic towpregs. A statistical approach was used to determine the significant processing parameters and their effect on the mechanical and physical properties of composite cylinders fabricated by on-line consolidation. A central composite experimental design was used to select the processing conditions for manufacturing the composite cylinders. The thickness, density, void content, degree of crystallinity and interlaminar shear strength (ILSS) were measured for each composite cylinder. Micrographs showed that complete intimate contact and uniform fiber-matrix distribution were achieved. The degree of crystallinity of the cylinders was found to be in the range of 25-30%. Under optimum processing conditions, an ILSS of 58 MPa and a void content of <1% were achieved for APC-2 (PEEK/Carbon fiber) composite cylinders. An in-situ measurement system which uses a slip ring assembly and a computer data acquisition system was developed to obtain temperature data during winding. Composite cylinders were manufactured with eight K-type thermocouples installed in various locations inside the cylinder. The temperature distribution inside the composite cylinder during winding was measured for different processing conditions. ABAQUS finite element models of the different processes that occur during on-line consolidation were constructed. The first model was used to determine the convective heat transfer coefficient for the hot-air heat source. A convective heat transfer coefficient of 260 w/msp{2°}K was obtained by matching the calculated temperature history to the in-situ measurement data. To predict temperature distribution during winding an ABAQUS winding simulation model was developed. The winding speed was modeled by incrementally moving the convective boundary conditions around the outer surface of the composite cylinder. A towpreg heating model was constructed to predict the temperature distribution on the cross section of the incoming towpreg. For the process-induced thermal stresses analysis, a thermoelastic finite element model was constructed. Using the temperature history obtained from thermal analysis as the initial conditions, the thermal stresses during winding and cooling were investigated.
Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.
Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A
2014-01-01
Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30-31°S.
A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath
NASA Technical Reports Server (NTRS)
Fuselier, Stephen A.
1994-01-01
Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.
Wave Forcing of Saturn's Equatorial Oscillation
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.
2011-01-01
Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.
Meteorological data for selected sites along the Colorado River Corridor, Arizona, 2011-13
Caster, Joshua J.; Dealy, Timothy P.; Andrews, Timothy; Fairley, Helen C.; East, Amy E.; Sankey, Joel B.
2014-01-01
This report presents data from 14 automated weather stations collected as part of an ongoing monitoring program within the Grand Canyon National Park and Glen Canyon Recreation Area along the Colorado River Corridor in Arizona. Weather data presented in this document include precipitation, wind speed, maximum wind gusts, wind direction, barometric pressure, relative humidity, and air temperature collected by the Grand Canyon Monitoring and Research Center at 4-minute intervals between January 1, 2011, and December 31, 2013, using automated weather stations consisting of a data logger and a weather transmitter equipped with a piezoelectric sensor, ultrasonic transducers, and capacitive thermal and pressure sensors. Data collection was discontinuous because of station additions, station removals, changes in permits, and equipment failure. A large volume of data was collected for each station. These data are part of a larger research effort focused on physical processes affecting landscapes and archaeological-site stability in the Colorado River Corridor—both natural processes (including meteorological events) and those related to the Glen Canyon Dam operations. Meteorological conditions during the study interval were warmer and drier than is typical, due to ongoing drought conditions during the time period studied. The El Niño/Southern Oscillation was primarily in a neutral state during the reporting period.
Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming
Finn, Thomas M.; Pawlewicz, Mark J.
2013-01-01
The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.
Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings
NASA Astrophysics Data System (ADS)
Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre
The Venus mesosphere (60-100 km altitude) is a transition region characterized by extremely complex dynamics: strong retrograde zonal winds dominate in the troposphere and lower meso-sphere while a solar-antisolar circulation can be observed in the upper mesosphere. The super-rotation extends from the surface up to the cloud top (˜65 km altitude) with wind speeds of only a few meters per second near the surface and reaching a maximum value of ˜100 m s-1 at cloud top, corresponding to a rotation period of ˜4 Earth days (˜60 times faster than Venus itself). The solar-antisolar circulation is driven by the day-night contrast in solar heating, and occurs above 110 km altitude with speeds of 120 m s-1 . The processes responsible for maintain-ing the zonal super-rotation in the lower atmosphere and its transition to the solar-antisolar circulation in the upper atmosphere are still poorly understood (Schubert et al.,2007). Different techniques have been used to obtain direct observations of wind at various altitudes: tracking of clouds in ultraviolet (UV) and near infrared (NIR) images give information on wind speeds at the cloud top (Moissl et al., 2009; Sanchez-Lavega et al., 2008) and within the clouds (˜47 km, ˜61 km) (Sanchez-Lavega et al., 2008) while ground-based measurements of Doppler shifts in the CO2 band at 10 µm (Sornig et al., 2008) and in several CO millimiter lines (Rengel et al., 2008) provide wind speeds above the clouds up to ˜110 km altitude. The deep atmosphere from the surface up to the cloud top has been investigated through the Doppler tracking of descent probes and balloons (Counselman et al., 1980; Kerzhanovich and Limaye, 1985). In the mesosphere, between 45-85 km of altitude, where direct observations of wind are not possible, the zonal wind field can be derived from the vertical temperature structure using a special approximation of the thermal wind equation: based on cyclostrophic balance. Previous studies (Leovy, 1973; Newman et al., 1984) showed that on a slowly rotating planet, like Venus, strong zonal winds at the cloud top can be described by a cyclostrophic balance in which the equatorward component of centrifugal force is balanced by the meridional pressure gradient. This equation gives a possibility to reconstruct the zonal wind if the temperature field is known, together with a suitable boundary condition on u. Two experiments onboard Venus Express are sounding the temperature structure of the Venus mesosphere: VIRTIS sounds the Venus Southern hemisphere in the altitude range 65-90 km with a very good spatial and temporal coverage (Grassi et al., 2008) and the Northern hemi-sphere but with more limited coverage; VeRa observes both northern and southern hemispheres between 40-90 km altitude with a vertical resolution of ˜500 m (Tellmann et al., 2008). Here we present zonal thermal winds derived applying cyclostrophic balance from VIRTIS and VeRa temperature retrievals. The main features of the retrieved winds are: (1) a midlatitude jet with a maximum speed up to 140 ± 15 m s-1 which occurs around 50° S latitude at 70 km altitude; (2) the fast decrease of the wind speed from 60° S toward the pole; (3) the decrease of the wind speed with increasing height above the jet (Piccialli et al., 2008). Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. From zonal thermal winds the Richardson number has been evaluated. In good agreement with previous studies (Allison et al., 1994), we have found that the atmosphere is dominated by convection from ˜45 km altitude up to the cloud top. A high value of Richardson number has been determined, cor-responding to the midlatitude jet and indicating a highly stable atmosphere. Verification of the necessary condition for barotropic instability implies that barotropic instability may occur on the poleward side of the midlatitude jet where planetary waves are expected to play an important role in the maintenance of the circulation.
Stability of the surface layer and its relation to the dispersion of primary pollutants in St. Louis
NASA Technical Reports Server (NTRS)
Remsberg, E. E.; Woodbury, G. E.
1983-01-01
The effects of atmospheric stability on the dispersion of primary pollutants such as CO, total hydrocarbons (THC), and NO were examined in St. Louis. The pollutant levels were measured at 25 stations, temperature at 12 stations at 5 and 30 m height, and wind speed and direction at the 30 m level at 12 stations. Correlation coefficients were generated for pairs of the vertical temperature differences, the log of the mean wind speed reciprocal, the bulk Richardson number, and specific pollutant concentrations. A high correlation was obtained between the thermal stability and the urban concentration of the primary pollutants in the lowest part of the boundary layer. A restricted nighttime dispersion of the pollutants was observed, indicating near-ground increased concentrations at times when the source emissions actually decrease.
An analysis of influential factors on outdoor thermal comfort in summer.
Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei
2012-09-01
A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships between thermal perception and amount of exercise, thermal experience, mood, clothing, illness and microclimate, etc., are established. Our findings also shed light on how to resist or adapt to outdoor hyperthermic conditions during summer in subtropical monsoon climate areas.
An analysis of influential factors on outdoor thermal comfort in summer
NASA Astrophysics Data System (ADS)
Yin, JiFu; Zheng, YouFei; Wu, RongJun; Tan, JianGuo; Ye, DianXiu; Wang, Wei
2012-09-01
A variety of research has linked high temperature to outdoor thermal comfort in summer, but it remains unclear how outdoor meteorological environments influence people's thermal sensation in subtropical monsoon climate areas, especially in China. In order to explain the process, and to better understand the related influential factors, we conducted an extensive survey of thermally comfortable conditions in open outdoor spaces. The goal of this study was to gain an insight into the subjects' perspectives on weather variables and comfort levels, and determine the factors responsible for the varying human thermal comfort response in summer. These perceptions were then compared to actual ambient conditions. The database consists of surveys rated by 205 students trained from 6:00 am to 8:00 pm outdoors from 21 to 25 August 2009, at Nanjing University of Information Science & Technology (NUIST), Nanjing, China. The multiple regression approach and simple factor analysis of variance were used to investigate the relationships between thermal comfort and meteorological environment, taking into consideration individual mood, gender, level of regular exercise, and previous environmental experiences. It was found that males and females have similar perceptions of maximum temperature; in the most comfortable environment, mood appears to have a significant influence on thermal comfort, but the influence of mood diminishes as the meteorological environment becomes increasingly uncomfortable. In addition, the study confirms the strong relationship between thermal comfort and microclimatic conditions, including solar radiation, atmospheric pressure, maximum temperature, wind speed and relative humidity, ranked by importance. There are also strong effects of illness, clothing and exercise, all of which influence thermal comfort. We also find that their former place of residence influences people's thermal comfort substantially by setting expectations. Finally, some relationships between thermal perception and amount of exercise, thermal experience, mood, clothing, illness and microclimate, etc., are established. Our findings also shed light on how to resist or adapt to outdoor hyperthermic conditions during summer in subtropical monsoon climate areas.
Modelling the perception of weather conditions by users of outdoor public spaces
NASA Astrophysics Data System (ADS)
Andrade, H.; Oliveira, S.; Alcoforado, M.-J.
2009-09-01
Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared preference for lower wind speed in all the seasons. It was observed that adaptive strategies are undertaken to improve their level of comfort, namely through changes in clothing and displacement between shade/sunshine conditions. Older people declared lower discomfort, possibly due to higher clothing insulation and lower climatic sensitivity. The perception of wind is strongly influenced by gender, with women declaring a lower level of comfort when wind speed increases. Other personal characteristics found to have a significant influence were: company - people accompanied declared higher thermal comfort than people alone - and geographic origin, e.g. Brazilian people demonstrated a much lower tolerance to cool conditions than other communities. It should be noted that most Brazilians arrived in Portugal much more recently than, for example, African people, whose responses, in turn, did not reveal a significant difference from the general population, probably due to a certain degree of climatic adaptation already acquired. This study provides a framework to assess the perception of the bioclimatic comfort in outdoor open spaces. Furthermore, it constitutes a potential contribution to the design of more satisfying leisure areas in a future context of warmer cities.
Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.
ERIC Educational Resources Information Center
Longe, Karen M.; McClelland, Michael J.
Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…
NASA Technical Reports Server (NTRS)
Barnes, Aaron; Gazis, Paul R.; Phillips, John L.
1995-01-01
The mass flux density and velocity of the solar wind at polar latitudes can provide strong constraints on solar wind acceleration mechanisms. We use plasma observations from the first polar passage of the Ulysses spacecraft to investigate this question. We find that the mass flux density and velocity are too high to reconcile with acceleration of the solar wind by classical thermal conduction alone. Therefore acceleration of the high-speed must involve extended deposition of energy by some other mechanism, either as heat or as a direct effective pressure, due possibly to waves and/or turbulence, or completely non-classical heat transport.
NASA Astrophysics Data System (ADS)
Finley, Christopher
Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.
Orbiter entry leeside heat-transfer data analysis
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Zoby, E. V.
1983-01-01
Heat-transfer data measured along the Space Shuttle Orbiter's leeward centerline and over the wing leeside surface during the STS-2 and STS-3 mission entries are presented. The flight data are compared with available wind-tunnel results. Flight heating levels are, in general, lower than those which are inferred from the wind-tunnel results. This result is apparently due to the flight leeside flowfield remaining laminar over a larger Reynolds number range than that of corresponding ground test results. The flight/wind-tunnel data comparisons confirm the adequacy of, and conservatism embodied in, the direct application of wind-tunnel data at flight conditions for the design of Orbiter leeside thermal protection.
Smits, Kathleen; Eagen, Victoria; Trautz, Andrew
2015-01-01
Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages. PMID:26131928
Thermal Structure and Energy Influx to the Day-and Nightside Venus Ionosphere.
Knudsen, W C; Spenner, K; Whitten, R C; Spreiter, J R; Miller, K L; Novak, V
1979-07-06
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.
Temperatures and Composition in the Saturn System from Cassini CIRS
NASA Technical Reports Server (NTRS)
Flasar, F. Michael
2008-01-01
We summarize recent observations by the Composite Infrared Spectrometer of Saturn, its rings, Titan, and the icy satellites. Limb observations of Saturn show vertical oscillations of temperatures and zonal-wind shears in the equatorial region that may be related to a temporal oscillation similar to the terrestrial QBO and Jupiter's QQO. There is also evidence of subsidence at mid-northern latitudes driven by the equatorial activity. Nadir-viewing observations show compact warm spots in the troposphere and stratosphere at both (summer and winter) poles, likely associated with subsidence. Observations of Titan have defined better the characteristics of the northern winter polar vortex, with 190 m/s winds surrounding a cold atmosphere at 1 microbar. The very warm polar stratopause at 10 microbar and the enhanced abundances of organic compounds suggest subsidence within the vortex. Analysis of the zonal structure in temperature indicates that the stratospheric zonal winds rotate about an axis that is displaced approximately 4.1 deg from the IAU pole. Additional flybys, including a close one in March 2008, continue to characterize the endogenic activity in Enceladus s south polar region. Temperature maps of bright and dark terrains on Iapetus indicate that its ice is approximately stable to sublimation in the bright regions and highly unstable in the dark regions. Thermal mapping of Saturn s rings continues to constrain their composition, and observations at different solar phase angles, spacecraft elevations, solar elevations, and local hour angles have elucidated the effects of ring-particle shadowing and vertical motions on the thermal structure, and revealed the presence of small-scale structure associated with self-gravity wakes.
Assessment of daytime outdoor comfort levels in and outside the urban area of Glasgow, UK.
Krüger, Eduardo; Drach, Patricia; Emmanuel, Rohinton; Corbella, Oscar
2013-07-01
To understand thermal preferences and to define a preliminary outdoor comfort range for the local population of Glasgow, UK, an extensive series of measurements and surveys was carried out during 19 monitoring campaigns from winter through summer 2011 at six different monitoring points in pedestrian areas of downtown Glasgow. For data collection, a Davis Vantage Pro2 weather station equipped with temperature and humidity sensors, cup anemometer with wind vane, silicon pyranometer and globe thermometer was employed. Predictions of the outdoor thermal index PET (physiologically equivalent temperature) correlated closely to the actual thermal votes of respondents. Using concurrent measurements from a second Davis Vantage Pro2 weather station placed in a rural setting approximately 15 km from the urban area, comparisons were drawn with regard to daytime thermal comfort levels and urban-rural temperature differences (∆T(u-r)) for the various sites. The urban sites exhibited a consistent lower level of thermal discomfort during daytime. No discernible effect of urban form attributes in terms of the sky-view factor were observed on ∆Tu-r or on the relative difference of the adjusted predicted percentage of dissatisfied (PPD*).
Wind streaks in Tharsis and Elysium - Implications for sediment transport by slope winds
NASA Astrophysics Data System (ADS)
Lee, S. W.; Thomas, P. C.; Veverka, J.
1982-11-01
Detailed maps of wind streaks in Tharsis and Elysium have been compiled from Viking Orbiter observations spanning one complete Martian year. The streak pattern is controlled by slope winds on the central volcanoes and on the flanks of the Tharsis bulge, while the global circulation dominates in Elysium. Dust erosion by downslope winds occurs over much of Tharsis and in the vicinity of Elysium Mons; this process is effective even at the low atmospheric pressures found near the summits of the large volcanoes. Erosional streaks are largely absent in Elysium Planitia; net deposition of dust might have occurred during the period of the observations. Surface properties such as slope, thermal inertia, and roughness may influence the efficiency of slope wind production sufficiently to account for the pronounced differences in streak types and patterns present in these two regions.
KASCADE2017 - An experimental study of thermal circulations and turbulence in complex terrain
NASA Astrophysics Data System (ADS)
Pardyjak, Eric; Dupuy, Florian; Durand, Pierre; Gunawardena, Nipun; Hedde, Thierry; Rubin, Pierre
2017-04-01
The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 experiment was conducted during winter 2017 with the overarching objective of improving prediction of dispersion in complex terrain during stable atmospheric conditions. The experiment builds on knowledge gathered during the first KASCADE experiment conducted in 2013 (Duine et al., 2016), which provided detailed observations of the vertical structure of the atmosphere during stable conditions. In spite of this improved understanding, considerable uncertainty remains regarding the near-surface horizontal spatial and temporal variability of winds and thermodynamic variables. For this specific campaign, the general aim has been to use a large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations, which were broadened during ten Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in south-eastern France from January through March 2017. The Cadarache Valley is a relatively small valley (6 km x 1 km) with modest slopes and elevation differences between the valley floor and nearby peaks ( 100 m). The valley is embedded in the larger Durance Valley drainage system leading to multi-scale flow interactions. During the winter, winds are light and stably stratified leading to thermal circulations as well as complex near-surface atmospheric layering that impacts dispersion of contaminants. The continuously operating instrumentation deployed included mean near surface (2-m) and sub-surface observations from 12 low-cost Local Energy-budget Measurement Stations (LEMS), four sonic anemometer masts, one full surface flux station, sodar measurements at two locations, wind and temperature measurements from a tall 110 m tower, and two additional met stations. During IOPs, additional deployments included a low-cost tethered balloon temperature profiler as well as regular (every 3 hours) radiosoundings (including recoverable and reusable probes). The presentation will provide an overview of the experiment and several interesting "first-results." First results will include data characterizing highly-regular nocturnal horizontal wind meandering and associated turbulence statistics. In addition, we present data on the development of strong near surface stable stratification hours before sunset.
The Local ISM and its Interaction with the Winds of Nearby Late-type Stars
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Linsky, Jeffrey L.
1998-01-01
We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that the collision is supersonic and that there should therefore be a bow shock outside the heliopause in the upwind direction. Finally, we estimate stellar wind pressures (P sub wind) from the measured hydrogen-wall column densities. These estimates represent the first empirical measurements of wind properties for late-type main-sequence stars. The wind pressures appear to be correlated with stellar X-ray surface fluxes, F(x), in a manner consistent with the relation P(wind) varies as F(x)(exp -1/2), a relation that is also consistent with the variations of P(sub wind) and F(sub x) observed during the solar activity cycle. If this relation can in fact be generalized to solar-like stars, as is suggested by our data, then it is possible to estimate stellar wind properties simply by measuring stellar X-rays. One implication of this is that stellar wind pressures and mass-loss rates are then predicted to increase with time, since F(sub x) is known to decrease with stellar age.
Duerr, Adam E.; Miller, Tricia A.; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd
2012-01-01
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors. PMID:22558166
Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd
2012-01-01
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.
1995-01-01
Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The central polar cap (greater than approx. 80 magnetic latitude) antisunward wind speed is found to be a strong function of both solar and geomagnetic activity. The polar cap temperatures show variations in both solar and geomagnetic activity, with temperatures near 800 K for low K(sub p) and F(sub 10.7) and greater than about 2000 K for high K(sub p) and F(sub 10.7). The observed temperatures are significantly greater than those predicted by the mass spectrometer/incoherent scatter model for high activity conditions. Theoretical analysis based on the NCAR TIGCM indicates that the antisunward upper thermospheric winds, driven by upstream ion drag, basically 'coast' across the polar cap. The relatively small changes in wind velocity and direction within the polar cap are induced by a combination of forcing terms of commensurate magnitude, including the nonlinear advection term, the Coriolis term, and the pressure gradient force term. The polar cap thennospheric thermal balance is dominated by horizontal advection, and adiabatic and thermal conduction terms.
Galactic Starburst NGC 3603 from X-Rays to Radio
NASA Technical Reports Server (NTRS)
Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.;
2002-01-01
NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.
Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.
2018-01-01
The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 < β < 1.3. From magnetic measurements by the Wind spacecraft, we select 141 data sets with each one longer than 13 h. We find that the ratio fb/fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β < 0.8. These new results show that fb is statistically 0.48fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.
Optimal trajectory planning for a UAV glider using atmospheric thermals
NASA Astrophysics Data System (ADS)
Kagabo, Wilson B.
An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.
The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath
NASA Astrophysics Data System (ADS)
Chalov, S. V.
2018-06-01
The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.
Study of Mesobeta Basin Flows by Remote Sensing
NASA Astrophysics Data System (ADS)
Cuxart, J.; Cunillera, J.; Jiménez, M. A.; Martínez, D.; Molinos, F.; Palau, J. L.
2012-04-01
If no well-defined synoptic pressure gradients exist over a basin, flows can develop at a variety of scales, the main generators of circulations being spatial thermal differences. These dynamics are studied for the eastern Ebro basin, at the north-eastern part of the Iberian Peninsula, almost isolated from the surrounding areas by mountain ranges. The main tool for the study is the new RASS-Sodar by Scintec, the WindRASS, which combines sound and radio waves to provide profiles of wind and virtual temperature up to 360 m above the ground in the present configuration. One year of operation shows that low-level jets are found routinely, their maximum speed being at a height below 500 m above ground level. The jets are from a constant direction for several hours over the whole observed column, with rapid transitions between these periods. They allow for efficient heat transport at the basin scale and are good producers of vertical mixing due to the strong wind shear. In summer the irrigated plain has larger thermal contrast with the dry slopes, and the winds are stronger than in winter, when katabatic flows can develop at night and usually radiation fog appears and may last for days.
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Moebius, Eberhard; Paschmann, Goetz
1990-01-01
The injection and acceleration of thermal solar wind ions at the quasi-parallel earth's bow shock during radial interplanetary magnetic field conditions is investigated. Active Magnetospheric Particle Tracer Explorers/Ion Release Module satellite observations of complete proton spectra, and of heavy ion spectra above 10 keV/Q, made on September 12, 1984 near the nose of the shock, are presented and compared to the predictions of a Monte Carlo shock simulation which includes diffusive shock acceleration. It is found that the spectral observations are in good agreement with the predictions of the simulation when it is assumed that all accelerated ions originate in the solar wind and are injected into the acceleration mechanism by thermal leakage from the downstream plasma. The efficiency, which is determined directly from the downstream observations, is high, with at least 15 percent of the solar wind energy flux going into accelerated particles. The comparisons allow constraints to be placed on the rigidity dependence of the scattering mean free path and suggest that the upstream solar wind must be slowed substantially by backstreaming accelerated ions prior to undergoing a sharp transition in the viscous subshock.
The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.
Guéritée, Julien; Tipton, Michael J
2015-02-01
The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.
Concentrating solar thermal power.
Müller-Steinhagen, Hans
2013-08-13
In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.
Thermal Measurements of Packed Copper Wire Enables Better Electric Motor
transmittance characterization methods both parallel and perpendicular to the axis. A measurement of apparent from all three test methods indicated that the k_app of the packed copper wire was significantly higher methods for examining the thermal impact of new materials for winding structures relevant to motor
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Verger, F.; Monget, J. M.; Crepon, M. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1980-01-01
The results of an investigation to map the various thermal gradients in the coastal zones of France are presented. Paricular emphasis is given to the natural phenomena and man made thermal effluents. It is shown that a close correlation exist between wind speed direction and the offshore width of the effluent.
NASA Astrophysics Data System (ADS)
Sullivan, Sharon M.
Observations as part of the Plains Elevated Convection at Night (PECAN) campaign have allowed for an examination of the thermodynamic and dynamic structure of the LLJ using ground-based and airborne measurements in central Kansas. A shallow jet with wind speeds near 20 m s-1 formed during the nighttime hours on 10 June 2015. The University of Wyoming King Air research aircraft conducted two research flights beginning at sunset and ending near dawn, capturing the full evolution of the LLJ. Each flight included a series of vertical sawtooth maneuvers and isobaric legs along a fixed track at 38.7°N between 98.89°W and 100.3°W. This case featured classic signatures of the LLJ, including but not limited to the inertial oscillation of the ageostrophic wind. Forcing of the LLJ was analyzed using cross sections of D-values that allowed the vertical structure of the horizontal pressure gradient and hence thermal wind to be examined. A series of numerical simulations of the 10 June 2015 case study were made using the Weather Research and Forecasting (WRF) model to compare with observations. Output grids indicated that a temperature gradient of 6°C over 500 km was present between the surface and 850 hPa. Warmer temperatures were found to the west from the surface up to 600 hPa. The 600 hPa geostrophic winds were from the north. As a result, only weak southerly geostrophic winds were able to develop at the surface. The terrain-induced thermal wind was sufficiently large to overcome the adverse pressure gradient in the free atmosphere, but could only produce weak southerly geostrophic winds at the surface of about 11.4 m s-1.
2007-06-01
the CNES proposal to perform in-flight experimentation mainly on reusable thermal protections, aero-thermo-dynamics and guidance to secure the second...the vehicle. A preliminary in-flight experimentation and measurement plan has been assessed defining the main objectives in terms of reusable Thermal ...Energy Management THEFA Thermographie Face Arrière TPS Thermal Protection System VKI Von Karman Institute WRT With Respect To WTT Wind
Equivalent Thermal Conductivities for Twisted Flat Windings
NASA Astrophysics Data System (ADS)
Glises, R.; Bernard, R.; Chamagne, D.; Kauffmann, J. M.
1996-10-01
The authors of this paper intend to develop a method of determination of equivalent thermal conductivities for twisted flat windings. The conductivities determined are radial and parallel to the principal directions of the windings. A design has been realized thanks to the thermal modulus of the computation software Flux2D using a finite elements method. Following that phase, numerical correlations permitting to express the radial conductivities as a function of temperature, filling rate and insulation conductivities are proposed. Les auteurs de cet article se proposent de développer une étude de détermination de conductivités thermiques équivalentes d'empilements de bobinages plats torsadés. Les conductivités sont déterminées dans le plan radial (perpendiculaire à l'axe des bobinages) et parallèlement aux directions principales de la structure. La méthode utilisée est exclusivement numérique et est réalisée à l'aide du logiciel de calculs bidimensionnels par éléments finis Flux2D. Des corrélations numériques exploitables permettent d'obtenir directement les conductivités radiales en fonction du taux de remplissage, de la température du milieu et des conductivités des isolants électriques.
Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised
NASA Technical Reports Server (NTRS)
Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.
1994-01-01
Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.
Shimazaki, Yasuhiro; Matsutani, Toshiki; Satsumoto, Yayoi
2016-07-01
Comfort is an important concept in footwear design. The microclimate inside footwear contributes to the perception of thermal comfort. To investigate the effect of ventilation on microclimate formation inside footwear, experiments with subjects were conducted at four gait speeds with three different footwear sizes. Skin temperature, metabolism, and body mass were measured at approximately 25 °C and 50% relative humidity, with no solar radiation and a calm wind. The footwear occupancy and ventilation rate were also estimated, with the latter determined using the tracer gas method. The experimental results revealed that foot movement, metabolism, evaporation, radiation, convection, and ventilation were the main factors influencing the energy balance for temperature formation on the surface of the foot. The cooling effect of ventilation on the arch temperature was observed during gait. The significance of the amount of air space and ventilation on the improvement in the thermal comfort of footwear was clarified. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Electron density measurements from the shot noise collected on the STEREO/WAVES antennas
NASA Astrophysics Data System (ADS)
Zouganelis, Ioannis; Bale, Stuart; Bougeret, J.-L.; Maksimovic, Milan
One of the most reliable techniques for in situ measuring the electron density and temperature in space plasmas is the quasi-thermal noise spectroscopy. When a passive electric antenna is immersed in a stable plasma, the thermal motion of the ambient particles produces electrostatic fluctuations, which can be adequately measured with a sensitive wave receiver connected to a wire dipole antenna. Unfortunately, on STEREO, the S/WAVES design does not let us use this high accuracy technique because the antennas have a large surface area and the resulting shot noise spectrum in the solar wind dominates the power at lower frequencies. We can use, instead, the electron shot noise to infer the plasma density. For this, we use well calibrated Wind particle data to deduce the base capacitance of the S/WAVES instrument in a special configuration when the STEREO-B spacecraft was just downstream of Wind. The electron plasma density deduced is then compared to the S/PLASTIC ion density and its accuracy is estimated of up to 10
NASA Technical Reports Server (NTRS)
Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.
1991-01-01
A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.
Additive Manufacturing of Wind Turbine Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Brian; Richardson, Bradley; Lloyd, Peter
The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings andmore » material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).« less
Minimum maximum temperature gradient coil design.
While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart
2013-08-01
Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.
Human thermal comfort antithesis in the context of the Mediterranean tourism potential
NASA Astrophysics Data System (ADS)
Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana
2016-04-01
Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could be attributed to the beneficial impact of the Etesians winds established in the summer months over the Aegean Sea and the development of the sea breeze over the numerous island complexes. Further, the sunny days and clear skies at the Greek resorts along with the harmony of the landscape promote the best of the aesthetical facet of the climate.
Temporal and Spatial Variability of the Ras Al-Hadd Jet/Front in the Northwest Arabian Sea
NASA Astrophysics Data System (ADS)
Al Shaqsi, Hilal Mohamed Said
Thirteen years of 1.1 km resolution daily satellites remote sensing sea surface temperature datasets (2002-2014), sea surface winds, sea surface height, Argo floats, daily three-hour interval wind datasets, and hourly records of oceanography physical parameters from mooring current meters were processed and analyzed to investigate the dynamics, temporal and spatial variability of the Ras Al-Hadd Jet off the northwest Arabian Sea. Cayula and Cornillon single image edge detection algorithm was used to detect these thermal fronts. The Ras Al-Hadd thermal front was found to have two seasonal peaks. The first peak occurred during the intensified southwest monsoon period (July/August), while the second peak was clearly observed during the transitional period or the Post-Southwest monsoon (September-October). Interannual and intraseasonal variability showed the occurrence of the Ras Al-Hadd thermal fronts in the northwest Arabian Sea. The southwest monsoon winds, the Somalia Current, the East Arabian Current, and the warmer high salinity waters from the Sea of Oman are the main factors influencing the creation of the Ras Al-Hadd Jet. Based on direct observations, current velocity in the Cape Ras Al-Hadd Jet exceeded 120 cms-1, and the wind speed was over 12 ms-1 during the southwest monsoon seasons. The mean width and the mean length of the Jet were approximately 40 km and 260 km, respectively. Neither the winter monsoon, nor the Pre-Southwest monsoon seasons showed signs of the Ras Al-Hadd Jet or fronts in the northwest Arabian Sea.
NASA Astrophysics Data System (ADS)
Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F. M.; Fletcher, L. N.; Hesman, B. E.; Gorius, N.
2018-01-01
Thermal infrared spectra acquired by Cassini/Composite InfraRed Spectrometer (CIRS) in limb-viewing geometry in 2015 are used to derive 2-D latitude-pressure temperature and thermal wind maps. These maps are used to study the vertical structure and evolution of Saturn's equatorial oscillation (SEO), a dynamical phenomenon presenting similarities with the Earth's quasi-biennal oscillation (QBO) and semi-annual oscillation (SAO). We report that a new local wind maximum has appeared in 2015 in the upper stratosphere and derive the descent rates of other wind extrema through time. The phase of the oscillation observed in 2015, as compared to 2005 and 2010, remains consistent with a ˜15 year period. The SEO does not propagate downward at a regular rate but exhibits faster descent rate in the upper stratosphere, combined with a greater vertical wind shear, compared to the lower stratosphere. Within the framework of a QBO-type oscillation, we estimate the absorbed wave momentum flux in the stratosphere to be on the order of ˜7 × 10-6 N m-2. On Earth, interactions between vertically propagating waves (both planetary and mesoscale) and the mean zonal flow drive the QBO and SAO. To broaden our knowledge on waves potentially driving Saturn's equatorial oscillation, we searched for thermal signatures of planetary waves in the tropical stratosphere using CIRS nadir spectra. Temperature anomalies of amplitude 1-4 K and zonal wave numbers 1 to 9 are frequently observed, and an equatorial Rossby (n = 1) wave of zonal wave number 3 is tentatively identified in November 2009.
Solar wind control of stratospheric temperatures in Jupiter's auroral regions?
NASA Astrophysics Data System (ADS)
Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.
2017-10-01
Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.
Subtidal circulation on the Alabama shelf during the Deepwater Horizon oil spill
NASA Astrophysics Data System (ADS)
Dzwonkowski, Brian; Park, Kyeong
2012-03-01
Water column velocity and hydrographic measurements on the inner Alabama shelf are used to examine the flow field and its forcing dynamics during the Deepwater Horizon oil spill disaster in the spring and summer of 2010. Comparison between two sites provides insight into the flow variability and dynamics of a shallow, highly stratified shelf in the presence of complicating geographic and bathymetric features. Seasonal currents reveal a convergent flow with strong, highly sheared offshore flow near a submarine bank just outside of Mobile Bay. At synoptic time scales, the flow is relatively consistent with typical characteristics of wind-driven Ekman coastal circulation. Analysis of the depth-averaged along-shelf momentum balance indicates that both bottom stress and along-shelf pressure gradient act to counter wind stress. As a consequence of the along-shelf pressure gradient and thermal wind shear, flow reversals in the bottom currents can occur during periods of transitional winds. Despite the relatively short distance between the two sites (14 km), significant spatial variability is observed. This spatial variability is argued to be a result of local variations in the bathymetry and density field as the study region encompasses a submarine bank near the mouth of a major freshwater source. Given the physical parameters of the system, along-shelf flow in this region would be expected to separate from the local isobaths, generating a mean offshore flow. The local, highly variable density field is expected to be, in part, responsible for the differences in the vertical variability in the current profiles.
Stellar winds driven by Alfven waves
NASA Technical Reports Server (NTRS)
Belcher, J. W.; Olbert, S.
1973-01-01
Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.
Photoelectrons in the Quiet Polar Wind
NASA Technical Reports Server (NTRS)
Glocer, A.; Khazanov, G.; Liemohn, M.
2017-01-01
This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM-STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day-night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.
Wind and solar powered turbine
NASA Technical Reports Server (NTRS)
Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)
1984-01-01
A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.
Dynamic Wind-Tunnel Testing of a Sub-Scale Iced Business Jet
NASA Technical Reports Server (NTRS)
Lee, Sam; Barnhart, Billy P.; Ratvasky, Thomas P.; Dickes, Edward; Thacker, Michael
2006-01-01
The effect of ice accretion on a 1/12-scale complete aircraft model of a business jet was studied in a rotary-balance wind tunnel. Three types of ice accretions were considered: ice protection system failure shape, pre-activation roughness, and runback shapes that form downstream of the thermal ice protection system. The results were compared with those from a 1/12-scale semi-span wing of the same aircraft at similar Reynolds number. The data showed that the full aircraft and the semi-span wing models showed similar characteristics, especially post stall behavior under iced configuration. However, there were also some discrepancies, such as the magnitude in the reductions in the maximum lift coefficient. Most of the ice-induced effects were limited to longitudinal forces. Rotational and forced oscillation studies showed that the effects of ice on lateral forces were relatively minor.
NASA Technical Reports Server (NTRS)
Kniskern, Marc W.
1990-01-01
The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.
Maes, W H; Steppe, K
2012-08-01
As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.
Chromatic Image Analysis For Quantitative Thermal Mapping
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1995-01-01
Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.
Erosion of the Edge of the South Polar Layered Deposits
2017-05-22
This image is an oblique view from NASA's Mars Reconnaissance Orbiter of the sloping edge of the stack of icy layers over the South Pole has some interesting morphologies. The slope appears to be eroding from a combination of landslides, block falls, and sublimation. The bright icy exposure in the larger landslide scar (upper right) suggests that this was a relatively recent event. Small-scale textures over the scene are due to both blowing wind and the thermal expansion and contraction of shallow ice. https://photojournal.jpl.nasa.gov/catalog/PIA21637
The Absolute Abundance of Iron in the Solar Corona.
White; Thomas; Brosius; Kundu
2000-05-10
We present a measurement of the abundance of Fe relative to H in the solar corona using a technique that differs from previous spectroscopic and solar wind measurements. Our method combines EUV line data from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory with thermal bremsstrahlung radio data from the VLA. The coronal Fe abundance is derived by equating the thermal bremsstrahlung radio emission calculated from the EUV Fe line data to that observed with the VLA, treating the Fe/H abundance as the sole unknown. We apply this technique to a compact cool active region and find Fe&solm0;H=1.56x10-4, or about 4 times its value in the solar photosphere. Uncertainties in the CDS radiometric calibration, the VLA intensity measurements, the atomic parameters, and the assumptions made in the spectral analysis yield net uncertainties of approximately 20%. This result implies that low first ionization potential elements such as Fe are enhanced in the solar corona relative to photospheric values.
NASA Technical Reports Server (NTRS)
Eslinger, David L.; Iverson, Richard L.
1986-01-01
Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.
On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lu, Hao; Porté-Agel, Fernando
2015-10-01
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.
Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid
NASA Astrophysics Data System (ADS)
Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei
2018-02-01
As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.
Hot Thermal Storage in a Variable Power, Renewable Energy System
2014-06-01
vehicle PV photovoltaic SCES super capacitors energy storage SPIDERS Smart Power Infrastructure Demonstration for Energy Reliability TE thermoelectric ...4 Figure 3. Photovoltaic solar resources of the United States, from [24]. ...........................9 Figure 4. Annual...collectors, solar photovoltaic collectors and small wind turbines coupled with facility suitable thermal storage systems. D. LITERATURE REVIEW The
NASA Astrophysics Data System (ADS)
Presley, Marsha A.; Craddock, Robert A.
2006-09-01
A line-heat source apparatus was used to measure thermal conductivities of natural fluvial and eolian particulate sediments under low pressures of a carbon dioxide atmosphere. These measurements were compared to a previous compilation of the dependence of thermal conductivity on particle size to determine a thermal conductivity-derived particle size for each sample. Actual particle-size distributions were determined via physical separation through brass sieves. Comparison of the two analyses indicates that the thermal conductivity reflects the larger particles within the samples. In each sample at least 85-95% of the particles by weight are smaller than or equal to the thermal conductivity-derived particle size. At atmospheric pressures less than about 2-3 torr, samples that contain a large amount of small particles (<=125 μm or 4 Φ) exhibit lower thermal conductivities relative to those for the larger particles within the sample. Nonetheless, 90% of the sample by weight still consists of particles that are smaller than or equal to this lower thermal conductivity-derived particle size. These results allow further refinement in the interpretation of geomorphologic processes acting on the Martian surface. High-energy fluvial environments should produce poorer-sorted and coarser-grained deposits than lower energy eolian environments. Hence these results will provide additional information that may help identify coarser-grained fluvial deposits and may help differentiate whether channel dunes are original fluvial sediments that are at most reworked by wind or whether they represent a later overprint of sediment with a separate origin.
Thermally Driven One-Fluid Electron-Proton Solar Wind: Eight-Moment Approximation
NASA Astrophysics Data System (ADS)
Olsen, Espen Lyngdal; Leer, Egil
1996-05-01
In an effort to improve the "classical" solar wind model, we study an eight-moment approximation hydrodynamic solar wind model, in which the full conservation equation for the heat conductive flux is solved together with the conservation equations for mass, momentum, and energy. We consider two different cases: In one model the energy flux needed to drive the solar wind is supplied as heat flux from a hot coronal base, where both the density and temperature are specified. In the other model, the corona is heated. In that model, the coronal base density and temperature are also specified, but the temperature increases outward from the coronal base due to a specified energy flux that is dissipated in the corona. The eight-moment approximation solutions are compared with the results from a "classical" solar wind model in which the collision-dominated gas expression for the heat conductive flux is used. It is shown that the "classical" expression for the heat conductive flux is generally not valid in the solar wind. In collisionless regions of the flow, the eight-moment approximation gives a larger thermalization of the heat conductive flux than the models using the collision-dominated gas approximation for the heat flux, but the heat flux is still larger than the "saturation heat flux." This leads to a breakdown of the electron distribution function, which turns negative in the collisionless region of the flow. By increasing the interaction between the electrons, the heat flux is reduced, and a reasonable shape is obtained on the distribution function. By solving the full set of equations consistent with the eight-moment distribution function for the electrons, we are thus able to draw inferences about the validity of the eight-moment description of the solar wind as well as the validity of the very commonly used collision-dominated gas approximation for the heat conductive flux in the solar wind.
NASA Astrophysics Data System (ADS)
Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen
2017-12-01
Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.
Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.
Zhang, Yufeng; Du, Xiaohan; Shi, Yurong
2017-08-01
The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.
INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu
2013-08-20
We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. Wemore » validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.« less
Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions
Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.
2017-03-14
High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less
Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.
High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
2004-09-14
KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, Terri McCall cleans up equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.
2004-09-14
KENNEDY SPACE CENTER, FLA. - In the RLV hangar at KSC, United Space Alliance worker Steve Mitchell unpacks equipment that was removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.
NASA Technical Reports Server (NTRS)
Merceret, Francis J.; Crawford, Winifred C.
2010-01-01
Peak wind speed is an important forecast element to ensure the safety of personnel and flight hardware at Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) in East-Central Florida. The 45th Weather Squadron (45 WS), the organization that issues forecasts for the KSC/CCAFS area, finds that peak winds are more difficult to forecast than mean winds. This difficulty motivated the 45 WS to request two independent studies. The first (Merceret 2009) was the development of a reliable model for gust factors (GF) relating the peak to the mean wind speed in tropical storms (TS). The second (Lambert et al. 2008) was a climatological study of non-TS cool season (October-April) mean and peak wind speeds by the Applied Meteorology Unit (AMU; Bauman et al. 2004) without the use of GF. Both studies presented their statistics as functions of mean wind speed and height. Most of the few comparisons of TS and non-TS GF in the literature suggest that non-TS GF at a given height and mean wind speed are smaller than the corresponding TS GF. The investigation reported here converted the non-TS peak wind statistics calculated by the AMU to the equivalent GF statistics and compared them with the previous TS GF results. The advantage of this effort over all previously reported studies of its kind is that the TS and non-TS data were taken from the same towers in the same locations. This eliminates differing surface attributes, including roughness length and thermal properties, as a major source of variance in the comparison. The goal of this study is two-fold: to determine the relationship between the non-TS and TS GF and their standard deviations (GFSD) and to determine if models similar to those developed for TS data in Merceret (2009) could be developed for the non-TS environment. The results are consistent with the literature, but include much more detailed, quantitative information on the nature of the relationship between TS and non-TS GF and GFSD as a function of height and mean wind speed.
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Comparison of UTCI to selected thermal indices.
Blazejczyk, Krzysztof; Epstein, Yoram; Jendritzky, Gerd; Staiger, Henning; Tinz, Birger
2012-05-01
Over the past century more than 100 indices have been developed and used to assess bioclimatic conditions for human beings. The majority of these indices are used sporadically or for specific purposes. Some are based on generalized results of measurements (wind chill, cooling power, wet bulb temperature) and some on the empirically observed reactions of the human body to thermal stress (physiological strain, effective temperature). Those indices that are based on human heat balance considerations are referred to as "rational indices". Several simple human heat balance models are known and are used in research and practice. This paper presents a comparative analysis of the newly developed Universal Thermal Climate Index (UTCI), and some of the more prevalent thermal indices. The analysis is based on three groups of data: global data-set, synoptic datasets from Europe, and local scale data from special measurement campaigns of COST Action 730. We found the present indices to express bioclimatic conditions reasonably only under specific meteorological situations, while the UTCI represents specific climates, weather, and locations much better. Furthermore, similar to the human body, the UTCI is very sensitive to changes in ambient stimuli: temperature, solar radiation, wind and humidity. UTCI depicts temporal variability of thermal conditions better than other indices. The UTCI scale is able to express even slight differences in the intensity of meteorological stimuli.
Propagation of an Airy beam through the atmosphere.
Ji, Xiaoling; Eyyuboğlu, Halil T; Ji, Guangming; Jia, Xinhong
2013-01-28
In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.
Turbulence effects on a full-scale 2.5 MW horizontal axis wind turbine
NASA Astrophysics Data System (ADS)
Chamorro, Leonardo; Lee, Seung-Jae; Olsen, David; Milliren, Chris; Marr, Jeff; Arndt, Roger; Sotiropoulos, Fotis
2012-11-01
Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Turbulence is the common driving mechanism that triggers instabilities on these quantities. We investigate the complex response of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the EOLOS Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the wind velocity, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine. The structure of the fluctuating turbine power and instantaneous stresses are studied in detail. Important insights about the role of turbulent and coherent motions as well as strong intermittent gusts will be discussed. Funding was provided by Department of Energy DOE (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).
Unsustainable Wind Turbine Blade Disposal Practices in the United States.
Ramirez-Tejeda, Katerin; Turcotte, David A; Pike, Sarah
2017-02-01
Finding ways to manage the waste from the expected high number of wind turbine blades in need of disposal is crucial to harvest wind energy in a truly sustainable manner. Landfilling is the most cost-effective disposal method in the United States, but it imposes significant environmental impacts. Thermal, mechanical, and chemical processes allow for some energy and/or material recovery, but they also carry potential negative externalities. This article explores the main economic and environmental issues with various wind turbine blade disposal methods. We argue for the necessity of policy intervention that encourages industry to develop better technologies to make wind turbine blade disposal sustainable, both environmentally and economically. We present some of the technological initiatives being researched, such as the use of bio-derived resins and thermoplastic composites in the manufacturing process of the blades.
YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto
2013-08-01
Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters,more » leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.« less
NASA Technical Reports Server (NTRS)
Chen, Yuan-Liang Albert
1999-01-01
The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Lybeck, Nancy J.; Pham, Binh
Research and development efforts are required to address aging and reliability concerns of the existing fleet of nuclear power plants. As most plants continue to operate beyond the license life (i.e., towards 60 or 80 years), plant components are more likely to incur age-related degradation mechanisms. To assess and manage the health of aging plant assets across the nuclear industry, the Electric Power Research Institute has developed a web-based Fleet-Wide Prognostic and Health Management (FW-PHM) Suite for diagnosis and prognosis. FW-PHM is a set of web-based diagnostic and prognostic tools and databases, comprised of the Diagnostic Advisor, the Asset Faultmore » Signature Database, the Remaining Useful Life Advisor, and the Remaining Useful Life Database, that serves as an integrated health monitoring architecture. The main focus of this paper is the implementation of prognostic models for generator step-up transformers in the FW-PHM Suite. One prognostic model discussed is based on the functional relationship between degree of polymerization, (the most commonly used metrics to assess the health of the winding insulation in a transformer) and furfural concentration in the insulating oil. The other model is based on thermal-induced degradation of the transformer insulation. By utilizing transformer loading information, established thermal models are used to estimate the hot spot temperature inside the transformer winding. Both models are implemented in the Remaining Useful Life Database of the FW-PHM Suite. The Remaining Useful Life Advisor utilizes the implemented prognostic models to estimate the remaining useful life of the paper winding insulation in the transformer based on actual oil testing and operational data.« less
NASA Astrophysics Data System (ADS)
Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits
2011-12-01
Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. We developed a unique two dimensional cell apparatus equipped with a network of sensors for automated and continuous monitoring of soil moisture, soil and air temperature and relative humidity, and wind velocity. Precision data under well-controlled transient heat and wind boundary conditions was generated. Results from numerical simulations were compared with experimental data. Results demonstrate the importance of properly characterizing soil thermal properties and accounting for dry soil conditions to properly estimate evaporation. Initial comparisons of various formulations of evaporation demonstrate the need for joint evaluation of heat and mass transfer for better modeling accuracy. Detailed comparisons are still underway. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface.
Development of an apparatus to measure thermophysical properties of wind tunnel heat transfer models
NASA Technical Reports Server (NTRS)
Romanowski, R. F.; Steinberg, I. H.
1974-01-01
The apparatus and technique for measuring the thermophysical properties of models used with the phase-change paint method for obtaining wind tunnel heat transfer data are described. The method allows rapid measurement of the combined properties in a transient manner similar to an actual wind tunnel test. An effective value of the thermophysical properties can be determined which accounts for changes in thermal properties with temperature or with depth into the model surface. The apparatus was successfully tested at various heating rates between 19,000 and 124,000 watts per square meter.
NASA Technical Reports Server (NTRS)
Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)
2001-01-01
We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.
Control of large thermal distortions in a cryogenic wind tunnel
NASA Technical Reports Server (NTRS)
Gustafson, J. C.
1983-01-01
The National Transonic Facility (NTF) is a research wind tunnel capable of operation at temperatures down to 89K (160 R) and pressures up to 900,000 Pa (9 atmospheres) to achieve Reynolds numbers approaching 120,000,000. Wide temperature excursions combined with the precise alignment requirements of the tunnel aerodynamic surfaces imposed constraints on the mechanisms supporting the internal structures of the tunnel. The material selections suitable for this application were also limited. A general design philosophy of utilizing a single fixed point for each linear degree of freedom and guiding the expansion as required was adopted. These support systems allow thermal expansion to take place in a manner that minimizes the development of thermally induced stresses while maintaining structural alignment and resisting high aerodynamic loads. Typical of the support mechanisms are the preload brackets used in the fan shroud system and the Watts linkage used to support the upstream nacelle. The design of these mechanisms along with the basic design requirements and the constraints imposed by the tunnel system are discussed.
Thermal structure and heat balance of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.
1989-01-01
Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.
NASA Technical Reports Server (NTRS)
Couturier, P.; Hoang, S.; Meyer-Vernet, N.; Steinberg, J. L.
1983-01-01
The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P.
NASA Astrophysics Data System (ADS)
Santee, Michelle
The thermal structure, dust loading, and meridional transport in the Martian atmosphere are investigated using thermal emission spectra recorded by the Mariner 9 infrared interferometer spectrometer (IRIS). The analysis is restricted to a subset of the IRIS data consisting of approximately 2400 spectra spanning L_{S} = 343^circ-348^ circ, corresponding to late southern summer on Mars. Simultaneous retrieval of the vertical distribution of both atmospheric temperature and dust optical depth is accomplished through an iterative procedure which is performed on each spectrum. Although atmospheric temperatures decrease from equator to pole at lower altitudes, both dayside and nightside temperatures above about 0.1 mbar (~40 km) are warmer over the winter (north) polar region than over the equator or the summer (south) polar region. Zonal-mean zonal winds are derived from the atmospheric temperatures assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense mid-latitude westerly jets (with velocities of 80-90 m/s near 50 km); in the southern tropics the winds are strongly easterly (with velocities of 100 m/s near 50 km). A comprehensive radiative transfer model (Crisp, 1990) is used to compute solar heating and thermal cooling rates from the retrieved IRIS temperature and dust distributions. There are large net heating rates (up to 8 K/day) in the equatorial region and large net cooling rates (up to 20 K/day) in the polar regions. These net heating rates are used in a diagnostic stream function model which solves for the meridional and vertical components of the diabatic circulation simultaneously. The results show a vigorous two-cell circulation, with rising motion over the equatorial region ( ~1.5 cm/s), poleward flow in both hemispheres (~2 m/s), sinking motion over both polar regions (1-2 cm/s), and return flow in the lowest atmospheric levels. The meridional transport time scale is ~13 days. Water vapor desorbed from the low-latitude regolith during late northern winter/early northern spring may be transported upward by the ascending branch of this circulation, where it may be advected back to the polar regions by the high-altitude meridional winds. This process could provide a high-altitude source of water vapor for the formation and maintenance of the north polar hood.
Observational study of surface wind along a sloping surface over mountainous terrain during winter
NASA Astrophysics Data System (ADS)
Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk
2018-03-01
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
NASA Technical Reports Server (NTRS)
1995-01-01
The motor/encoder (henceforth referred to as the UUT) test sequence began with a baseline functional evaluation, which demonstrated that the motor satisfied the operating torque, cogging torque, winding resistance, and mechanical requirements of SOW. In addition, the encoder electrical requirements were verified, as well as the alignment of the encoder outputs relative to the motor shaft position. There were no discrepancies observed in this portion of the test. The UUT was then exposed to a number of environments, including thermal vacuum, thermal cycling, random and sine vibration, and mechanical shock. During the thermal environments, the performance of the UUT under load was verified at specified points in the cycles, as described in ATP 20049. In addition, the UUT was bench tested between the two thermal environments. No anomalies were observed during the thermal tests. The vibration and shock tests were performed by East-West Technology Corporation, West Babylon, New York. The UUT was delivered to the lab in a sealed vibration fixture in order to maintain the cleanliness levels required by the SOW. In addition, a three ounce load was attached to the motor shaft. The attachment method of this load caused damage to the shaft and bearing during random vibration of S/N 0003 on April 28, 1995, and is described further in NCR 00168.
Evaluation tests of platinum resistance thermometers for a cryogenic wind tunnel application
NASA Technical Reports Server (NTRS)
Germain, E. F.; Compton, E. C.
1984-01-01
Thirty-one commercially designed platinum resistance thermometers were evaluated for applicability to stagnation temperature measurements between -190 C and +65 C in the Langley Research Center's National Transonic Facility. Evaluation tests included X-ray shadowgraphs, calibrations before and after aging, and time constant measurements. Two wire-wound low thermal mass probes of a conventional design were chosen as most suitable for this cryogenic wind tunnel application.
NASA Technical Reports Server (NTRS)
1980-01-01
Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.
Anemometers for Mars. [Viking '75 wind measurements
NASA Technical Reports Server (NTRS)
Henry, R. M.; Greene, G. C.
1974-01-01
An investigation is conducted concerning the problems involved in the conduction of wind measurements on the planet Mars, taking into account the currently known characteristics of the Martian atmosphere. Problems introduced by the presence of the lander are examined. The suitability of several different types of anemometers for making the measurements is discussed, giving attention to rotating anemometers, sonic anemometers, ion tracers, drag force anemometers, pitot tubes, and thermal anemometers.
Nova-driven winds in globular clusters
NASA Technical Reports Server (NTRS)
Scott, E. H.; Durisen, R. H.
1978-01-01
Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.
Deceleration of the solar wind in the earth's foreshock region - Isee 2 and Imp 8 observations
NASA Technical Reports Server (NTRS)
Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.
1980-01-01
The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the earth's bow shock and associated waves is studied using a two-spacecraft technique. This deceleration depends on the solar wind bulk velocity; at low velocities (below 300 km/s) the velocity decrease is about 5 km/s, while at higher velocities (above 400 km/s) the decrease may be as large as 30 km/s. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind; therefore at least part of this energy must go into waves and/or into the backstreaming ions.
Dynamics of Intense Currents in the Solar Wind
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.
2018-06-01
Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.
Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.
2018-01-01
Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.
On the regional characteristics of past and future sea-level change (Invited)
NASA Astrophysics Data System (ADS)
Timmermann, A.; McGregor, S.
2010-12-01
Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John; Hirth, Brian; Guynes, Jerry
The National Wind Institute (NWI) at Texas Tech University (TTU) has had an impressive and well documented 46-year history of wind related research activities (http://www.depts.ttu.edu/nwi/). In 2011 with funding from the United States Department of Energy (DOE), an NWI team applied radar technologies and techniques to document the complex flows occurring across a wind plant. The resulting efforts yielded measurements that exceeded the capabilities of commercial lidar technologies with respect to maximum range, range resolution and scan speed. The NWI team was also the first to apply dual-Doppler synthesis and objective analysis techniques to resolve the full horizontal wind fieldmore » (i.e. not just the line-of-sight wind speeds) to successfully define turbine inflow and wake flows across large segments of wind plants. While these successes advanced wind energy interests, the existing research radar platforms were designed to serve a diversity of meteorological applications, not specifically wind energy. Because of this broader focus and the design choices made during their development, the existing radars experienced technical limitations that inhibited their commercial viability and wide spread adoption. This DOE project enabled the development of a new radar prototype specifically designed for the purpose of documenting wind farm complex flows. Relative to other “off the shelf” radar technologies, the specialized transmitter and receiver chains were specifically designed to enhance data availability in non-precipitating atmospheres. The new radar prototype was integrated at TTU using components from various suppliers across the world, and installed at the Reese Technology Center in May 2016. Following installation, functionality and performance testing were completed, and subsequent comparative analysis indicated that the new prototype greatly enhances data availability by a factor of 3.5-50 in almost all atmospheric conditions. The new prototype also provided enhanced signal quality in clear air (i.e. non-precipitating) environments, mitigated atmospheric attenuation, and extended the useful range of data collection to beyond 30km in cooperative atmospheric conditions. Additionally, the new DOE-X prototype appears to benefit from Bragg scattering when the thermal stratification of the atmosphere is strong (i.e. nocturnal hours). This result was not possible in any capacity with the previous technology. Combined, these developments represent the achievement of all project objectives, advance the Technical Readiness Level (TRL) to a level of 7, and open the door for more widespread adoption and usage in the wind energy sector. At the same time, radar induced artifacts from multi-trip echoes and ground targets increased with the new technology, and these required additional attention for some applications. Commercialization activity accelerated in parallel with the DOE funded project, as SmartWind Technologies, L.L.C., was contracted to provide two new radar systems to DONG Energy to monitor the Westermost Rough wind plant off the east coast of the United Kingdom. These new early stage commercial radars systems were closely related to the DOE prototype, but maintain more robust ancillary support systems. The radars were installed during the summer of 2016, and have been operational since that time. Additionally, commercially funded advancements have since been made in processing sophistication to mitigate the previously identified radar artifacts. TTU and SmartWind Technologies stand ready to provide public and private partners focused on wind plant optimization with this new capability. Ancillary interests have also been identified as the initial deployments of the technology have shown the ability to identify and track avian and drone activity, opening up multi-purpose operational opportunities.« less
NASA Technical Reports Server (NTRS)
Guerlet, S.; Fouchet, T.; Bezard, B.; Flasar, F. M.; Simon-Miller, A. A.
2011-01-01
We present an analysis of thermal infrared spectra acquired in limb viewing geometry by Cassini/CIRS in February 2010. We retrieve vertical profiles of Saturn's stratospheric temperature from 20 hPa to 10 (exp -2) hPa, at 9 latitudes between 20 deg N and 20 deg S. Using the gradient thermal wind equation, we derive a map of the zonal wind field. Both the temperature and the zonal wind vertical profiles exhibit an oscillation in the equatorial region. These results are compared to the temperature and zonal wind maps obtained from 2005-2006 CIRS limb data, when this oscillation was first reported. In both epochs, strong temperature anomalies at the equator (up to 20K) are consistent with adiabatic heating (cooling) due to a sinking (rising) motion at a speed of 0.1 - 0.2 mm/s. Finally, we show that the altitude of the maximum eastward wind has moved downwards by 1.3 scale heights in 4.2 years, hence with a 'phase' speed of approximately 0.5 mm/s. This rate is consistent with the estimated period of 14.7 years for the equatorial oscillation, and requires a local zonal acceleration of 1.1 x 10(exp -6) m.s(exp -2) at the 2.5 hPa pressure level. This downward propagation of the oscillation is consistent with it being driven by absorption of upwardly propagating waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten
2012-08-01
We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar tomore » what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v{sub w} {approx} 1000-3000 km s{sup -1}) compared to the standard thermal feedback model (v{sub w} {approx} 50-100 km s{sup -1}). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.« less
NASA Astrophysics Data System (ADS)
Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M.
2018-04-01
A non-thermal plasma source based on a surface dielectric barrier discharge (DBD) is developed for purification of recirculating air in operating theatres in hospitals. This is a challenging application due to high flow rates, short treatment times and the low threshold for ozone in the ventilated air. Therefore, the surface DBD was enhanced in order to generate an ionic wind, which can deflect and thus, filter out airborne microorganisms. Electrical and gas diagnostics as well as microbiological experiments were performed in a downscaled plasma source under variation of various electrical parameters, but application-oriented airflow velocity and humidity. The dependence of electrical power and ozone concentration as well as charged particles in the plasma treated air on frequency, voltage and relative humidity is presented and discussed. The presence of humidity causes a more conductive dielectric surface and thus a weaker plasma formation, especially at low frequency. The airborne test bacteria, Escherichia coli, showed significant effect to plasma treatment (up to 20% reduction) and to plasma with ionic wind (up to 90% removal); especially a configuration with 70% removal and an accompanying ozone concentration of only 360 ppb is promising for future application.
Optical and thermal performance of bladed receivers
NASA Astrophysics Data System (ADS)
Pye, John; Coventry, Joe; Ho, Clifford; Yellowhair, Julius; Nock, Ian; Wang, Ye; Abbasi, Ehsan; Christian, Joshua; Ortega, Jesus; Hughes, Graham
2017-06-01
Bladed receivers use conventional receiver tube-banks rearranged into bladed/finned structures, and offer better light trapping, reduced radiative and convective losses, and reduced tube mass, based on the presented optical and thermal analysis. Optimising for optical performance, deep blades emerge. Considering thermal losses leads to shallower blades. Horizontal blades perform better, in both windy and no-wind conditions, than vertical blades, at the scales considered so far. Air curtains offer options to further reduce convective losses; high flux on blade-tips is still a concern.
High-Efficiency, Low-Weight Power Transformer
NASA Technical Reports Server (NTRS)
Welsh, J. P.
1986-01-01
Technology for design and fabrication of radically new type of conductioncooled high-power (25 kVA) lightweight transformer having outstanding thermal and electrical characteristics. Fulfills longstanding need for conduction-cooled transformers and magnetics with low internal thermal resistances. Development techniques limited to conductive heat transfer, since other techniques such as liquid cooling, forced liquid cooling, and evaporative cooling of transformers impractical in zero-gravity space environment. Transformer uniquely designed: mechanical structure also serves as thermal paths for conduction cooling of magnetic core and windings.
Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie
2017-10-01
The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.
Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.
Tung, Chien-Hung; Chen, Chen-Peng; Tsai, Kang-Ting; Kántor, Noémi; Hwang, Ruey-Lung; Matzarakis, Andreas; Lin, Tzu-Ping
2014-11-01
Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.
1993-01-01
The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.
Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile
Tapia, Fabian J.; Largier, John L.; Castillo, Manuel; Wieters, Evie A.; Navarrete, Sergio A.
2014-01-01
Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30–32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4–10 years at 15 sites between 28–35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30–31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30–31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30–31°S. PMID:25334020
Experimental and CFD evidence of multiple solutions in a naturally ventilated building.
Heiselberg, P; Li, Y; Andersen, A; Bjerre, M; Chen, Z
2004-02-01
This paper considers the existence of multiple solutions to natural ventilation of a simple one-zone building, driven by combined thermal and opposing wind forces. The present analysis is an extension of an earlier analytical study of natural ventilation in a fully mixed building, and includes the effect of thermal stratification. Both computational and experimental investigations were carried out in parallel with an analytical investigation. When flow is dominated by thermal buoyancy, it was found experimentally that there is thermal stratification. When the flow is wind-dominated, the room is fully mixed. Results from all three methods have shown that the hysteresis phenomena exist. Under certain conditions, two different stable steady-state solutions are found to exist by all three methods for the same set of parameters. As shown by both the computational fluid dynamics (CFD) and experimental results, one of the solutions can shift to another when there is a sufficient perturbation. These results have probably provided the strongest evidence so far for the conclusion that multiple states exist in natural ventilation of simple buildings. Different initial conditions in the CFD simulations led to different solutions, suggesting that caution must be taken when adopting the commonly used 'zero initialization'.
Study on mitigation of pulsed heat load for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.
2015-03-01
One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.
NASA Astrophysics Data System (ADS)
Jaffe, Robert L.; Taylor, Washington
2018-01-01
Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.
A second generation climate index for tourism (CIT): specification and verification.
de Freitas, C R; Scott, Daniel; McBoyle, Geoff
2008-05-01
Climate is a key resource for many types of tourism and as such can be measured and evaluated. An index approach is required for this task because of the multifaceted nature of weather and the complex ways that weather variables come together to give meaning to climate for tourism. Here we address the deficiencies of past indices by devising a theoretically sound and empirically tested method that integrates the various facets of climate and weather into a single index called the Climate Index for Tourism (CIT). CIT rates the climate resource for activities that are highly climate/weather sensitive, specifically, beach "sun, sea and sand" (3S) holidays. CIT integrates thermal (T), aesthetic (A) and physical (P) facets of weather, which are combined in a weather typology matrix to determine a climate satisfaction rating that ranges from very poor (1=unacceptable) to very good (7=optimal). Parameter A refers to sky condition and P to rain or high wind. T is the body-atmosphere energy balance that integrates the environmental and physiological thermal variables, such as solar heat load, heat loss by convection (wind) and by evaporation (sweating), longwave radiation exchange and metabolic heat (activity level). Rather than use T as a net energy (calorific) value, CIT requires that it be expressed as thermal sensation using the standard nine-point ASHRAE scale ("very hot" to "very cold"). In this way, any of the several body-atmosphere energy balance schemes available may be used, maximizing the flexibility of the index. A survey (N=331) was used to validate the initial CIT. Respondents were asked to rate nine thermal states (T) with different sky conditions (A). They were also asked to assess the impact of high winds or prolonged rain on the perceived quality of the overall weather condition. The data was analysed statistically to complete the weather typology matrix, which covered every possible combination of T, A and P. Conditions considered to be optimal (CIT class 6-7) for 3S tourism were those that were "slightly warm" with clear skies or scattered cloud (
A second generation climate index for tourism (CIT): specification and verification
NASA Astrophysics Data System (ADS)
de Freitas, C. R.; Scott, Daniel; McBoyle, Geoff
2008-05-01
Climate is a key resource for many types of tourism and as such can be measured and evaluated. An index approach is required for this task because of the multifaceted nature of weather and the complex ways that weather variables come together to give meaning to climate for tourism. Here we address the deficiencies of past indices by devising a theoretically sound and empirically tested method that integrates the various facets of climate and weather into a single index called the Climate Index for Tourism (CIT). CIT rates the climate resource for activities that are highly climate/weather sensitive, specifically, beach “sun, sea and sand” (3S) holidays. CIT integrates thermal (T), aesthetic (A) and physical (P) facets of weather, which are combined in a weather typology matrix to determine a climate satisfaction rating that ranges from very poor (1 = unacceptable) to very good (7 = optimal). Parameter A refers to sky condition and P to rain or high wind. T is the body-atmosphere energy balance that integrates the environmental and physiological thermal variables, such as solar heat load, heat loss by convection (wind) and by evaporation (sweating), longwave radiation exchange and metabolic heat (activity level). Rather than use T as a net energy (calorific) value, CIT requires that it be expressed as thermal sensation using the standard nine-point ASHRAE scale (“very hot” to “very cold”). In this way, any of the several body-atmosphere energy balance schemes available may be used, maximizing the flexibility of the index. A survey ( N = 331) was used to validate the initial CIT. Respondents were asked to rate nine thermal states (T) with different sky conditions (A). They were also asked to assess the impact of high winds or prolonged rain on the perceived quality of the overall weather condition. The data was analysed statistically to complete the weather typology matrix, which covered every possible combination of T, A and P. Conditions considered to be optimal (CIT class 6-7) for 3S tourism were those that were “slightly warm” with clear skies or scattered cloud (≤25% cloud). Acceptable conditions (CIT = 4-5) fell within the thermal range “indifferent” to “hot” even when the sky was overcast. Wind equal to or in excess of 6 m/s (22 km/h) or rain resulted in the CIT rating dropping to 1 or 2 (unacceptable) and was thus an override of pleasant thermal conditions. Further cross-cultural research is underway to examine whether climate preferences vary with different social and cultural tourist segments internationally.
NASA Technical Reports Server (NTRS)
Chomiuk, Laura; Krauss, Miriam I.; Rupen, Michael P.; Nelson, Thomas; Roy, Nirupam; Sokoloski, Jennifer L.; Mukai, Koji; Munari, Ulisse; Mioduszewski, Amy; Weston, Jeninfer;
2012-01-01
We present multi-frequency radio observations of the 2010 nova event in the symbiotic binary V407 Cygni, obtained with the Karl G. Jansky Very Large Array (VLA) and spanning 1.45 GHz and 17.770 days following discovery. This nova.the first ever detected in gamma rays.shows a radio light curve dominated by the wind of the Mira giant companion, rather than the nova ejecta themselves. The radio luminosity grewas the wind became increasingly ionized by the nova outburst, and faded as the wind was violently heated from within by the nova shock. This study marks the first time that this physical mechanism has been shown to dominate the radio light curve of an astrophysical transient. We do not observe a thermal signature from the nova ejecta or synchrotron emission from the shock, due to the fact that these components were hidden behind the absorbing screen of the Mira wind. We estimate a mass-loss rate for the Mira wind of .Mw approximately equals 10(exp -6) Solar mass yr(exp -1). We also present the only radio detection of V407 Cyg before the 2010 nova, gleaned from unpublished 1993 archival VLA data, which shows that the radio luminosity of the Mira wind varies by a factor of 20 even in quiescence. Although V407 Cyg likely hosts a massive accreting white dwarf, making it a candidate progenitor system for a Type Ia supernova, the dense and radially continuous circumbinary material surrounding V407 Cyg is inconsistent with observational constraints on the environments of most Type Ia supernovae.
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
NASA Astrophysics Data System (ADS)
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
Measurements of H(+), He(2+), and He(+), in Corotating Interaction Regions at 1 AU
NASA Astrophysics Data System (ADS)
Chotoo, Kancham
Using the Supra-Thermal Ion Composition Spectrometer (STICS) from the SMS experiment on the WIND spacecraft, measurements of H+, He2+, and He+ were made during two corotating interacting regions (CIRs) at 1 AU. The unique energy range of STICS (6-198 keV/e) allowed simultaneous observation of the pre- and post-accelerated ions. These observations gave important clues about the source population, injection, acceleration mechanism, and ion transport in CIRs. The abundance of He2+ relative to H+ in the velocity range 2.5-6.0 times the solar wind velocity, VSW, (5-90 keV/amu) was between 0.11-0.18, which is more than double the solar wind values. However, the same ratio was observed in the suprathermal tail above 1.4 VSW in the spacecraft frame or above ~0.4 VSW in the solar wind frame. This suggests that the H+ and He2+ ions are injected equally into the CIR acceleration process from the suprathermal tail of the solar wind. At 1 AU the H+ and He2+ ions are primarily from the solar wind, but the He+ ions are interstellar pickup ions. The He+/He2+ ratio at 1 AU was ~0.15 for the same velocity range as above. However, this ratio was greater than 1.0 at 4.5 AU as measured previously (Gloeckler et al., 1994). This shows that the relative contribution of the pickup He+ ions to the seed population increases with radial distance away from the Sun. By combining data from three separate sensors on WIND (SMS-MASS, SMS-STICS, and EPACT-STEP), the extended helium distribution was presented for solar wind ions (~1 keV/amu) through energetic particles up to ~1 MeV/amu. The distribution covered 14 orders of magnitude in phase space density. This is the first time such an extended helium distribution is being reported at any radial distance. Using the Fisk and Lee (1980) model to fit the data between ~10-1000 keV/amu, the energetic particles were found to originate from 1.0-1.2 AU and not from beyond 2 AU, as is conventional believed. Anisotropy measurements were made using STICS for both the H+ and He2+ ions in the solar wind frame, and the results were compared to those made by EPACT-STEP. For both time intervals, the anisotropy directions showed significant deviations away from the average magnetic field direction in agreement with the STEP observations of Dwyer et al. (1997).
NASA Astrophysics Data System (ADS)
Casagrande, F.; Souza, R.; Pezzi, L.
2013-05-01
In the Southwest Atlantic close to 40oS, the meeting of two ocean currents with distinct characteristics, the Brazil Current (BC), warm and saline, and the Malvinas Current (MC), cold and low salinity, resulting in strong activity marked by the formation of mesoscale eddies, this region is known as Brazil Malvinas Confluence (BMC). The INTERCONF project (Ocean Atmosphere Interaction over the region of CBM) perfoms since the 2002 data collection in situ radiosondes and XBTs onboard the Oceanographic Support Ship Ary Rongel during its trajectory of Brazil to the Antarctic continent. This paper analyzes the thermal contrast and ocean atmosphere coupling on the ocean front from the INTERCONF data, and compares the results to satellite data (QuikSCAT) and numerical models (Eta-CPTEC / INPE). The results indicate that the Sea Surface Temperature (SST) is driving the atmosphere, on the warm waters of the BC occurs an intensification of the winds and heat fluxes, and the reverse occurs on the cold waters of the MC. The data collected in 2009 include the presence of a warm core eddy (42 oS to 43.1 oS) which recorded higher values of heat fluxes and wind speed in relation to its surroundings. On the warm core eddy wind speed recorded was about 10 m.s-1, while on the BC and MC was approximately 7 m.s-1 and 2 m.s-1, respectively. Satellite data and numerical model tends to overestimate the wind speed data in the region in relation to data collected in situ. The heat flux data from the numerical model tend to increase over the warm waters and cold waters on the decline, though the amounts recorded by the model have low correlation.
Thermal stress weathering and the spalling of Antarctic rocks
NASA Astrophysics Data System (ADS)
Lamp, J. L.; Marchant, D. R.; Mackay, S. L.; Head, J. W.
2017-01-01
Using in situ field measurements, laboratory analyses, and numerical modeling, we test the potential efficacy of thermal stress weathering in the flaking of millimeter-thick alteration rinds observed on cobbles and boulders of Ferrar Dolerite on Mullins Glacier, McMurdo Dry Valleys (MDV). In particular, we examine whether low-magnitude stresses, arising from temperature variations over time, result in thermal fatigue weathering, yielding slow crack propagation along existing cracks and ultimate flake detachment. Our field results show that during summer months clasts of Ferrar Dolerite experience large-temperature gradients across partially detached alteration rinds (>4.7°C mm-1) and abrupt fluctuations in surface temperature (up to 12°C min-1); the latter are likely due to the combined effects of changing solar irradiation and cooling from episodic winds. The results of our thermal stress model, coupled with subcritical crack growth theory, suggest that thermal stresses induced at the base of thin alteration rinds 2 mm thick, common on rocks exposed for 105 years, may be sufficient to cause existing cracks to propagate under present-day meteorological forcing, eventually leading to rind detachment. The increase in porosity observed within alteration rinds relative to unaltered rock interiors, as well as predicted decreases in rind strength based on allied weathering studies, likely facilitates thermal stress crack propagation through a reduction of fracture toughness. We conclude that thermal stress weathering may be an active, though undervalued, weathering process in hyperarid, terrestrial polar deserts such as the stable upland region of the MDV.
'Wind-up' in Parkinson's disease: A functional magnetic resonance imaging study.
Aschermann, Z; Nagy, F; Perlaki, G; Janszky, J; Schwarcz, A; Kovacs, N; Bogner, P; Komoly, S; Orsi, G
2015-10-01
Parkinson's disease (PD) is a neurodegenerative disorder mainly marked by selective degeneration of dopaminergic neurons that leads to disabling motor and cognitive impairment. This condition is less widely appreciated as a disease associated with a substantial variety of pain syndromes, although the prevalence of pain is relatively high. Repeated painful stimulation of peripheral nerves can cause pain 'wind-up' if the frequency of the stimulation is adequate and specifically stimulates the afferent C-fibres. We presumed that in case of PD, pain or pain severeness might be frequently caused by the aggravation of the 'wind-up' phenomenon due to any central or peripheral lesions or functional alterations. To test for this hypothesis, we compared three groups (patients with left- and right-dominant PD and control subjects) using functional magnetic resonance imaging and thermally induced pain. Patient showed higher average 'wind-up' scores, compared to the healthy subjects, with lower values on the more affected sides compared to the less affected ones. In group level comparisons, patients had higher activation during 'wind-up' compared to control subjects in two main areas; these were the posterior division of cingulate gyrus and the precuneus cortex. In case of patients, further analyses showed that applied heat pain on the less affected side elicited higher activation in the supramarginal and postcentral gyri. These differences may arise from the deficiency in the efferent information, as well as the alterations in the central processing. It is highly likely that both processes contribute to this phenomenon simultaneously. © 2015 European Pain Federation - EFIC®
Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability
NASA Astrophysics Data System (ADS)
Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.
2018-02-01
Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.
NASA Technical Reports Server (NTRS)
Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.
1981-01-01
A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.
Polar Wind Measurements with TIDE/PSI and HYDRA on the Polar Spacecraft
NASA Technical Reports Server (NTRS)
Su, Y. J.; Horwitz, J. L.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.
1998-01-01
The Thermal Ion Dynamics Experiment (TIDE) on the POLAR spacecraft has allowed sampling of the three-dimensional ion distributions with excellent energy, angular, and mass resolution. The companion Plasma Source Instrument, when operated, allows sufficient diminution of the electric potential to observe the polar wind at very high altitudes. In this presentation, we will describe the results of polar wind characteristics H+, He+, and 0+ as observed by TIDE at 5000 km and 8 RE altitudes. The relationship of the polar wind parameters with the solar zenith angle and with the day-night distance in the Solar Magnetic coordinate system will also be presented. We will compare these measurements with recent simulations of the photoelectron-driven polar wind using a couple fluid-semikinetic model. In addition, we will compare these polar wind observations with low-energy electrons sampled by the HYDRA experiment on POLAR to examine possible effects of the polar rain and photoelectrons and hopefully explain the large ion outflow velocity variations at POLAR apogee.
A simulation model for wind energy storage systems. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Warren, A. W.; Edsinger, R. W.; Chan, Y. K.
1977-01-01
A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers.
Erosion of carbon/carbon by solar wind charged particle radiation during a solar probe mission
NASA Technical Reports Server (NTRS)
Sokolowski, Witold; O'Donnell, Tim; Millard, Jerry
1991-01-01
The possible erosion of a carbon/carbon thermal shield by solar wind-charged particle radiation is reviewed. The present knowledge of erosion data for carbon and/or graphite is surveyed, and an explanation of erosion mechanisms under different charged particle environments is discussed. The highest erosion is expected at four solar radii. Erosion rates are analytically estimated under several conservative assumptions for a normal quiet and worst case solar wind storm conditions. Mass loss analyses and comparison studies surprisingly indicate that the predicted erosion rate by solar wind could be greater than by nominal free sublimation during solar wind storm conditions at four solar radii. The predicted overall mass loss of a carbon/carbon shield material during the critical four solar radii flyby can still meet the mass loss mission requirement of less than 0.0025 g/sec.
Transient Stability of the US Western Interconnection with High Wind and Solar Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
The Potential for Harvesting Energy from the Movement of Trees
McGarry, Scott; Knight, Chris
2011-01-01
Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node. PMID:22163695
The potential for harvesting energy from the movement of trees.
McGarry, Scott; Knight, Chris
2011-01-01
Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node.
Analysis of Wind Forces on Roof-Top Solar Panel
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Kudav, Ganesh
2011-03-01
Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the RLV hangar at KSC, Steve Harrington talks to workers about the equipment removed from the hurricane-ravaged Thermal Protection System Facility (TPSF) now being stored in the hangar. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the RLV hangar at KSC, United Space Alliance workers Frank Rhodes and Lynn Rosenbauer look at wrapped material removed from the hurricane-ravaged Thermal Protection System Facility (TPSF). The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers Dallas Lewis (left) and Damon Petty carry out equipment from the Thermal Protection System Facility (TPSF). The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof due to Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment is being moved to the RLV hangar at KSC. The maximum wind at the surface from Hurricane Frances was 94 mph from the northeast at 6:40 a.m. on Sunday, September 5. It was recorded at a weather tower located on the east shore of the Mosquito Lagoon near the Cape Canaveral National Seashore. The highest sustained wind at KSC was 68 mph.