Space power reactor in-core thermionic multicell evolutionary (S-prime) design
NASA Astrophysics Data System (ADS)
Determan, William R.; Van Hagan, Tom H.
1993-01-01
A 5- to 40-kWe moderated in-core thermionic space nuclear power system (TI-SNPS) concept was developed to address the TI-SNPS program requirements. The 40-kWe baseline design uses multicell Thermionic Fuel Elements (TFEs) in a zirconium hydride moderated reactor to achieve a specific mass of 18.2 We/kg and a net end-of-mission (EOM) efficiency of 8.2%. The reactor is cooled with a single NaK-78 pumped loop, which rejects the heat through a 24 m2 heat pipe space radiator.
Goals of thermionic program for space power
NASA Technical Reports Server (NTRS)
English, R. E.
1981-01-01
The thermionic and Brayton reactor concepts were compared for application to space power. For a turbine inlet temperature of 15000 K the Brayton powerplant weighted 5 to 40% less than the thermionic concept. The out of core concept separates the thermionic converters from their reactor. Technical risks are diminished by: (1) moving the insolator out of the reactor; (2) allowing a higher thermal flux for the thermionic converters than is required of the reactor fuel; and (3) eliminating fuel swelling's threat against lifetime of the thermionic converters. Overall performance can be improved by including power processing in system optimization for design and technology on more efficient, higher temperature power processors. The thermionic reactors will be larger than those for competitive systems with higher conversion efficiency and lower reactor operating temperatures. It is concluded that although the effect of reactor size on shield weight will be modest for unmanned spacecraft, the penalty in shield weight will be large for manned or man-tended spacecraft.
Thermionic fast spectrum reactor-converter on the basis of multi-cell TFE
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, N. N.; Kompaniets, G. V.; Poliakov, D. N.; Stepennov, B. S.; Andreev, P. V.; Zhabotinsky, E. E.; Nikolaev, Yu. V.; Lapochkin, N. V.
2001-02-01
Today Russian experts have technological experience in development of in-core thermionic converters for reactors of space nuclear power plants. Such a converter contains nuclear fuel inside and really represents a fuel element of a reactor. Two types of reactors can be considered on the basis of these thermionic fuel elements: with thermal or intermediate neutron spectrum, and with fast neutron spectrum. The first type is characterized by the presence of moderator in core that ensures most economical usage of nuclear fuel. The estimation shows that moderated system is the most effective in the power range of about 5 ... 100 kWe. The power systems of higher level are characterized by larger dimensions due to the presence of moderator. The second type of reactor is considered for higher power levels. This power range is about hundreds kWe. Dimensions of the fast reactor and core configuration are determined by the necessity to ensure the required net output power, on the one hand, and the necessity to ensure critical state on the other hand. In the case of using in-core thermionic fuel elements of the specified design, minimal reactor output power is determined by reactor criticality condition, and maximum reactor power output is determined by specifications and launcher capabilities. In the present paper the effective multiplication factor of a fast spectrum reactor on the basis of a multi-cell TFE developed by ``Lutch'' is considered a function of the total number of TFEs in the reactor. The MCU Monte-Carlo code, developed in Russia (Alekseev, et al., 1991), was used for computations. TFE computational models are placed in the nodes of a uniform triangular lattice and surrounded with pressure vessel and a side reflector. Ordinary fuel pins without thermionic converters were used instead of some TFEs to optimize criticality parameters, dimensions and output power of the reactor. General weight parameters of the reactor are presented in the paper. .
Thermionic switched self-actuating reactor shutdown system
Barrus, Donald M.; Shires, Charles D.; Brummond, William A.
1989-01-01
A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.
Thermionic nuclear reactor with internal heat distribution and multiple duct cooling
Fisher, C.R.; Perry, L.W. Jr.
1975-11-01
A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.
Thermionic reactors for space nuclear power
NASA Technical Reports Server (NTRS)
Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.
1985-01-01
Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.
NASA Technical Reports Server (NTRS)
Menke, M. M.; Judd, B. R.
1973-01-01
The development policy for thermionic reactors to provide electric propulsion and power for space exploration was analyzed to develop a logical procedure for selecting development alternatives that reflect the technical feasibility, JPL/NASA project objectives, and the economic environment of the project. The partial evolution of a decision model from the underlying philosophy of decision analysis to a deterministic pilot phase is presented, and the general manner in which this decision model can be employed to examine propulsion development alternatives is illustrated.
NASA Astrophysics Data System (ADS)
Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055
Thermionic converter temperature controller
Shaner, Benjamin J [McMurray, PA; Wolf, Joseph H [Pittsburgh, PA; Johnson, Robert G. R. [Trafford, PA
2001-04-24
A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.
Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter
NASA Technical Reports Server (NTRS)
Schock, A.; Raab, B.
1971-01-01
The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.
High efficiency thermionic converter studies
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.
1977-01-01
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.
Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor
NASA Technical Reports Server (NTRS)
Mayo, W.; Lantz, E.
1973-01-01
A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.
Preliminary plan for testing a thermionic reactor in the Plum Brook Space Power Facility
NASA Technical Reports Server (NTRS)
Haley, F. A.
1972-01-01
A preliminary plan is presented for testing a thermionic reactor in the Plum Brook Space Power Facility (SPF). A technical approach, cost estimate, manpower estimate, and schedule are presented to cover a 2 year full power reactor test.
Lunar in-core thermionic nuclear reactor power system conceptual design
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.
1991-01-01
This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
Split-core heat-pipe reactors for out-of-pile thermionic power systems.
NASA Technical Reports Server (NTRS)
Niederauer, G.; Lantz, E.; Breitweiser, R.
1971-01-01
Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-
Fuel elements of thermionic converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, R.L.; Gontar, A.S.; Nelidov, M.V.
1997-01-01
Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving themore » following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.« less
Summary of space nuclear reactor power systems, 1983--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buden, D.
1993-08-11
This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressedmore » from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.« less
Summary of space nuclear reactor power systems, 1983 - 1992
NASA Astrophysics Data System (ADS)
Buden, D.
1993-08-01
This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987-88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.
Thermionic reactor power conditioner design for nuclear electric propulsion.
NASA Technical Reports Server (NTRS)
Jacobsen, A. S.; Tasca, D. M.
1971-01-01
Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.
Thermion: Verification of a thermionic heat pipe in microgravity
NASA Technical Reports Server (NTRS)
1991-01-01
The design and development is examined of a small excore heat pipe thermionic space nuclear reactor power system (SEHPTR). The need was identified for an in-space flight demonstration of a solar powered, thermionic heat pipe element. A demonstration would examine its performance and verify its operation in microgravity. The design of a microsatellite based technology demonstration experiment is proposed to measure the effects of microgravity on the performance of an integrated thermionic heat pipe device in low earth orbit. The specific objectives are to verify the operation of the liquid metal heat pipe and the cesium reservior in the space environment. Two design configurations are described; THERMION-I and THERMION-II. THERMION-I is designed for a long lifetime study of the operations of the thermionic heat pipe element in low earth orbit. Heat input to the element is furnished by a large mirror which collects solar energy and focuses it into a cavity containing the heat pipe device. THERMION-II is a much simpler device which is used for short term operation. This experiment remains attached to the Delta II second stage and uses energy from 500 lb of alkaline batteries to supply heat energy to the heat pipe device.
Venting of fission products and shielding in thermionic nuclear reactor systems
NASA Technical Reports Server (NTRS)
Salmi, E. W.
1972-01-01
Most thermionic reactors are designed to allow the fission gases to escape out of the emitter. A scheme to allow the fission gases to escape is proposed. Because of the low activity of the fission products, this method should pose no radiation hazards.
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Phillips, W. M.; Hsieh, T.
1976-01-01
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, M.P.
1993-01-15
The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.
NASA Astrophysics Data System (ADS)
Moriarty, Michael P.
1993-01-01
The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.
Mathematical Modeling Of A Nuclear/Thermionic Power Source
NASA Technical Reports Server (NTRS)
Vandersande, Jan W.; Ewell, Richard C.
1992-01-01
Report discusses mathematical modeling to predict performance and lifetime of spacecraft power source that is integrated combination of nuclear-fission reactor and thermionic converters. Details of nuclear reaction, thermal conditions in core, and thermionic performance combined with model of swelling of fuel.
Developmental status of thermionic materials.
NASA Technical Reports Server (NTRS)
Yang, L.; Chin, J.
1972-01-01
Description of the reference materials selected for the major components of the unit cell of a thermionic pile element (TFE), the out-of-pile and in-pile test results, and current efforts for improving the life and performance of thermionic fuel elements. The component materials are required to withstand the fuel burnup and fast neutron fluence dictated by the thermionic reactor system. Tungsten was selected as the cladding material because of its compatibility with both the carbide and the oxide fuel materials. Niobium was selected as the collector material because its thermal expansion coefficient matches closely with that of the thin aluminum oxide layer used to electrically insulate the collector from the TFE sheath. An unfueled converter has performed stably over 41,000 hr. Accelerated irradiation tests have attained burnups equivalent to that for 40,000 hr of the thermionic reactor under consideration.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.
Small reactor power system for space application
NASA Technical Reports Server (NTRS)
Shirbacheh, M.
1987-01-01
A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.
NASA Technical Reports Server (NTRS)
Klann, P. G.; Lantz, E.
1973-01-01
A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.
Thermionic energy conversion technology - Present and future
NASA Technical Reports Server (NTRS)
Shimada, K.; Morris, J. F.
1977-01-01
Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.
NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR
Rasor, N.S.; Hirsch, R.L.
1963-12-01
The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)
Application of a Systems Engineering Approach to Support Space Reactor Development
NASA Astrophysics Data System (ADS)
Wold, Scott
2005-02-01
In 1992, approximately 25 Russian and 12 U.S. engineers and technicians were involved in the transport, assembly, inspection, and testing of over 90 tons of Russian equipment associated with the Thermionic System Evaluation Test (TSET) Facility. The entire Russian Baikal Test Stand, consisting of a 5.79 m tall vacuum chamber and related support equipment, was reassembled and tested at the TSET facility in less than four months. In November 1992, the first non-nuclear operational test of a complete thermionic power reactor system in the U.S. was accomplished three months ahead of schedule and under budget. A major factor in this accomplishment was the application of a disciplined top-down systems engineering approach and application of a spiral development model to achieve the desired objectives of the TOPAZ International Program (TIP). Systems Engineering is a structured discipline that helps programs and projects conceive, develop, integrate, test and deliver products and services that meet customer requirements within cost and schedule. This paper discusses the impact of Systems Engineering and a spiral development model on the success of the TOPAZ International Program and how the application of a similar approach could help ensure the success of future space reactor development projects.
NASA Technical Reports Server (NTRS)
George, Jeffrey
2014-01-01
Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of < 1 yr round trip. Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.
Design of an external-fueled thermionic diode for in-pile testing.
NASA Technical Reports Server (NTRS)
Ernst, D. M.; Peelgren, M. L.
1971-01-01
Description of an external-fueled thermionic diode suitable for in-pile testing in a research reactor. The active electrode area is 94 sq cm. The 10-in. long, 1.5-in.-OD emitter body is tungsten 2% thoria. The fuel is contained in six 0.4-in.-diam holes equally spaced about the 0.5-in. central emitter hole. The collector is niobium-1% zirconium. The expected diode performance is 6 W/sq cm at 2000 K. In addition to following the constraints imposed by the in-pile testing and the electrically heated performance mapping prior to insertion in-pile, the diode will have end configurations prototypical of those anticipated for a flow-through, NaK-cooled, external-fuel thermionic reactor.
Test development for the thermionic system evaluation test (TSET) project
NASA Astrophysics Data System (ADS)
Morris, D. Brent; Standley, Vaughn H.; Schuller, Michael J.
1992-01-01
The arrival of a Soviet TOPAZ-II space nuclear reactor affords the US space nuclear power (SNP) community the opportunity to study an assembled thermionic conversion power system. The TOPAZ-II will be studied via the Thermionic System Evaluation Test (TSET) Project. This paper is devoted to the discussion of TSET test development as related to the objectives contained in the TSET Project Plan (Standley et al. 1991). The objectives contained in the Project Plan are the foundation for scheduled TSET tests on TOPAZ-II and are derived from the needs of the Air Force Thermionic SNP program. Our ability to meet the objectives is bounded by unique constraints, such as procurement requirements, operational limitations, and necessary interaction between US and Soviet Scientists and engineers. The fulfillment of the test objectives involves a thorough methodology of test scheduling and data managment. The overall goals for the TSET program are gaining technical understanding of a thermionic SNP system and demonstrating the capabilities and limitations of such a system while assisting in the training of US scientist and engineers in preparation for US SNP system testing. Tests presently scheduled as part of TSET include setup, demonstration, and verification tests; normal and off-normal operating test, and system and component performance tests.
Heat pipe nuclear reactor for space power
NASA Technical Reports Server (NTRS)
Koening, D. R.
1976-01-01
A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1991-01-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.
Thermionic fuel element for the S-prime reactor
NASA Astrophysics Data System (ADS)
Van Hagan, Thomas H.; Drees, Elizabeth A.
1993-01-01
Technical aspects of the thermionic fuel element (TFE) design proposed for the S-PRIME space nuclear power system are discussed. Topics covered include the rational for selecting a multicell TFE approach, a technical description of the S-PRIME TFE and its estimated performance, and the technology readiness of the design, which emphasizes techology maturity and low risk.
Nuclear thermionic power plants in the 50-300 kWe range.
NASA Technical Reports Server (NTRS)
Van Hoomissen, J. E.; Sawyer, C. D.; Prickett, W. Z.
1972-01-01
This paper reviews the results of recent studies performed by General Electric on in-core thermionic reactor power plants in the 50-300 kWe range. In particular, a 100 kWe manned Space Base mission and a 240 kWe unmanned electric propulsion mission are singled out as representative design points for this concept.
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Hoover, Mark D.
1991-07-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)
Development costs for a nuclear electric propulsion stage.
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Prickett, W. Z.
1973-01-01
Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.
Thermionic reactor ion propulsion system /TRIPS/ - Its multi-mission capability.
NASA Technical Reports Server (NTRS)
Peelgren, M. L.
1972-01-01
The unmanned planetary exploration to be conducted in the last two decades of this century includes many higher energy missions which tax all presently available propulsion systems beyond their limit. One candidate with the versatility and performance to meet these mission objectives is nuclear electric propulsion (NEP). Additionally, the NEP System is feasible in orbit raising operations with the Shuttle or Shuttle/Tug combination. A representative planetary mission is described (Uranus-Neptune flyby with probe), and geocentric performance and tradeoffs are discussed. The NEP System is described in more detail with particular emphasis on the power subsystem consisting of the thermionic reactor, heat rejection subsystem, and neutron shield.
Optimize out-of-core thermionic energy conversion for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.
Effect on Non-Uniform Heat Generation on Thermionic Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Alfred
The penalty resulting from non-uniform heat generation in a thermionic reactor is examined. Operation at sub-optimum cesium pressure is shown to reduce this penalty, but at the risk of a condition analogous to burnout. For high pressure diodes, a simple empirical correlation between current, voltage and heat flux is developed and used to analyze the performance penalty associated with two different heat flux profiles, for series-and parallel-connected converters. The results demonstrate that series-connected converters require much finer power flattening than parallel converters. For example, a ±10% variation in heat generation across a series array can result in a 25 tomore » 50% power penalty.« less
Performance of a thermionic converter module utilizing emitter and collector heat pipes
NASA Technical Reports Server (NTRS)
Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.
1978-01-01
A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.
Pulsed thermionic converter study
NASA Technical Reports Server (NTRS)
1976-01-01
A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.
1989-12-01
SPENT FUEL REPROCESSING COULD ALSO BE EMPLOYED IRRADIATION EXPERIENCE - EXTREMELY LIMITED - JOINT US/UK PROGRAM (ONGOING) - TUI/KFK PROGRAM (CANCELED...only the use of off-the-shelf technologies. For example, conventional fuel technology (uranium dioxide), conventional thermionic conversion...advanced fuel (Americium oxide, A1TI2O3) and advanced thermionic conversion. Concept C involves use of an advanced fuel (Americium oxide, Arri203
NASA Technical Reports Server (NTRS)
Creagh, J. W. R.; Smith, J. R.
1973-01-01
Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors
NASA Astrophysics Data System (ADS)
Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.
1994-07-01
Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.
Nuclear thermionic converter. [tungsten-thorium oxide rods
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Mondt, J. F. (Inventor)
1977-01-01
Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.
Thermionic system evaluated test (TSET) facility description
NASA Astrophysics Data System (ADS)
Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.
1992-01-01
A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.
Optimize out-of-core thermionic energy conversion for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Morris, J. F.
1978-01-01
Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.
NASA Technical Reports Server (NTRS)
Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.
1971-01-01
Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.
Analyzing the thermionic reactor critical experiments. [thermal spectrum of uranium 235 core
NASA Technical Reports Server (NTRS)
Niederauer, G. F.
1973-01-01
The Thermionic Reactor Critical Experiments (TRCE) consisted of fast spectrum highly enriched U-235 cores reflected by different thicknesses of beryllium or beryllium oxide with a transition zone of stainless steel between the core and reflector. The mixed fast-thermal spectrum at the core reflector interface region poses a difficult neutron transport calculation. Calculations of TRCE using ENDF/B fast spectrum data and GATHER library thermal spectrum data agreed within about 1 percent for the multiplication factor and within 6 to 8 percent for the power peaks. Use of GAM library fast spectrum data yielded larger deviations. The results were obtained from DOT R Theta calculations with leakage cross sections, by region and by group, extracted from DOT RZ calculations. Delineation of the power peaks required extraordinarily fine mesh size at the core reflector interface.
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
Nuclear electric propulsion reactor control systems status
NASA Technical Reports Server (NTRS)
Ferg, D. A.
1973-01-01
The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.
Study of the collector/heat pipe cooled externally configured thermionic diode
NASA Technical Reports Server (NTRS)
1973-01-01
A collector/heat pipe cooled, externally configured (heated) thermionic diode module was designed for use in a laboratory test to demonstrate the applicability of this concept as the fuel element/converter module of an in-core thermionic electric power source. During the course of the program, this module evolved from a simple experimental mock-up into an advanced unit which was more reactor prototypical. Detailed analysis of all diode components led to their engineering design, fabrication, and assembly, with the exception of the collector/heat pipe. While several designs of high power annular wicked heat pipes were fabricated and tested, each exhibited unexpected performance difficulties. It was concluded that the basic cause of these problems was the formation of crud which interfered with the liquid flow in the annular passage of the evaporator region.
The past as prologue - A look at historical flight qualifications for space nuclear systems
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1992-01-01
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
The past as prologue - A look at historical flight qualifications for space nuclear systems
NASA Astrophysics Data System (ADS)
Bennett, Gary L.
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to 'flight qualify' a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
In-pile and out-of-pile testing of a molybdenum-uranium dioxide cermet fueled themionic diode
NASA Technical Reports Server (NTRS)
Diianni, D. C.
1972-01-01
The behavior of Mo-UO2 cermet fuel in a diode for thermionic reactor application was studied. The diode had a Mo-0.5 Ti emitter and niobium collector. Output power ranged from 1.4 to 2.8 W/cm squared at emitter and collector temperatures of 1500 deg and 540 C. Thermionic performance was stable within the limits of the instrumentation sensitivity. Through 1000 hours of in-pile operation the emitter was dimensionally stable. However, some fission gases (15 percent) leaked through an inner clad imperfection that occurred during fuel fabrication.
Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations
NASA Technical Reports Server (NTRS)
Peelgren, M. L.; Mondt, J. F.
1974-01-01
Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.
Processing of thermionic power on an electrically propelled spacecraft
NASA Technical Reports Server (NTRS)
Macie, T. W.
1973-01-01
A study to define the power processing equipment required between a thermionic reactor and an array of mercury-ion thrusters for a nuclear electric propulsion system is reported. Observations and recommendations that resulted from this study were: (1) the preferred thermionic-fuel-element source voltages are 23 V or higher; (2) transistor characteristics exert a strong effect on power processor mass; (3) the power processor mass could be considerably reduced should the magnetic materials that exhibit low losses at high frequencies, that have a high Curie point, and that can operate at 15 to 20 kG become avaliable; (4) electrical component packaging on the radiator could reduce the area that is sensitive to meteoroid penetration, thereby reducing the meteoroid shielding mass requirement; (5) an experimental model of the power processor design should be built and tested to verify the efficiencies, masses, and all the automatic operational aspects of the design.
Static and dynamic high power, space nuclear electric generating systems
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Begg, L. L.; Koester, J. K.
1985-01-01
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.
High efficiency thermionic converter studies
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.
1976-01-01
The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.
TOPAZ II Anti-Criticality Device Rapid Prototype
NASA Astrophysics Data System (ADS)
Campbell, Donald R.; Otting, William D.
1994-07-01
The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.
The TEF modeling and analysis approach to advance thermionic space power technology
NASA Astrophysics Data System (ADS)
Marshall, Albert C.
1997-01-01
Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.
The use of dual mode thermionic reactors in supporting Earth orbital and space exploration missions
NASA Astrophysics Data System (ADS)
Zubrin, Robert M.; Sulmeisters, Tal K.
1993-01-01
Missions requiring large amounts of electric power to support their payload functions can be enabled through the employment of nuclear electric power reactors, which in some cases can also assist the mission by making possible the employment of high specific impulse electric propulsion. However it is found that the practicality and versality of using a power reactor to provide advanced propulsion is enormously enhanced if the reactor is configured in such a way to allow it to generate a certain amount of direct thrust as well. The use of such a system allows the creation of a common bus upper stage that can provide both high power and high impulse (with short orbit transfer times). It is shown that such a system, termed an Integral Power and Propulsion Stage (IPAPS), is optimal for supporting many Earth, Lunar, planetary and asteroidal observation, exploration, and communication support missions, and it is therefore recommended that the nuclear power reactor ultimately selected by the government for development and production be one that can be configured for such a function.
Comparative assessment of out-of-core nuclear thermionic power systems
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.
1975-01-01
The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.
Advanced thermionic converter developments with microwave external pumping
NASA Technical Reports Server (NTRS)
Chiu, H. S.; Shaw, D. T.; Manikopulos, C. N.; Lee, C. H.
1977-01-01
This work reports ion generation in a cesium thermionic converter as part of advanced-model thermionic converter development research. A microwave with frequency in the range between 1-2 GHz is used to externally pump a thermionic converter as part of our effort in the verification of Lam's theory. It is found that the motive peak as predicted in the theory disappears whenever microwave power is used to excite the cesium plasma of the converter. The electron temperature is effectively heated by the microwave and the experimental data agrees with theory in the low-power output region.
Self-actuating reactor shutdown system
Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.
1988-01-01
A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.
Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime
NASA Astrophysics Data System (ADS)
Zebarjadi, M.
2017-07-01
Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.
Survey of Current and Next Generation Space Power Technologies
2006-06-26
different thermodynamic cycles, such as the Brayton, Rankine, and Stirling cycles, alkali metal thermal electric converters ( AMTEC ) and thermionic...efficiencies @ 1700K. The primary issue with this system is the integration of the converter technology into the nuclear reactor core. AMTEC (static...Alkali metal thermal to electric converters ( AMTECs ) are thermally powered electrochemical concentration cells that convert heat energy directly to DC
Grossman, Leonard N.; Kaznoff, Alexis I.
1979-01-01
A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.
Research of thermionic converter collector properties in model experiments with surface control
NASA Astrophysics Data System (ADS)
Agafonov, Valerii R.; Vizgalov, Anatolii V.; Iarygin, Valerii I.
Consideration was given to a possible scheme of phenomena on electrodes leading to changes in emission properties (EP) of a thermionic converter (TEC) collector. It was based on technology and materials typical of the TOPAZ-type reactor-converter (TRC). The element composition (EC), near-surface layer (NSL) structure, and work function (WF) of a collector made from niobium-based polycrystal alloy were studied within this scheme experimentally. The influence of any media except for the interelectrode gap (IEG) medium was excluded when investigating the effect of thermovacuum treatment (TVT) as well as the influence of carbon monoxide, hydrogen, and methane on the NSL characteristics. Experimental data and analytical estimates of the impact of fission products of the nuclear fuel on collector EP are presented. The calculation of possible TRC electrical power decrease was also carried out.
Advanced thermionic converter development
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Lieb, D.; Briere, T. R.; Sommer, A. H.; Rufeh, F.
1976-01-01
Recent progress at Thermo Electron in developing advanced thermionic converters is summarized with particular attention paid to the development of electrodes, diodes, and triodes. It is found that one class of materials (ZnO, BaO and SrO) provides interesting cesiated work functions (1.3-1.4 eV) without additional oxygen. The second class of materials studied (rare earth oxides and hexaborides) gives cesiated/oxygenated work functions of less than 1.2 eV. Five techniques of oxygen addition to thermionic converters are discussed. Vapor deposited tungsten oxide collector diodes and the reflux converter are considered.
An overview of thermionic power conversion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
1996-12-01
Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less
Diamond Thin-Film Thermionic Generator
NASA Astrophysics Data System (ADS)
Clewell, J. M.; Ordonez, C. A.; Perez, J. M.
1997-03-01
Since the eighteen-hundreds scientists have sought to develop the highest thermal efficiency in heat engines such as thermionic generators. Modern research in the emerging diamond film industry has indicated the work functions of diamond thin-films can be much less than one electron volt, compelling fresh investigation into their capacity as thermionic generators and inviting new methodology for determining that efficiency. Our objective is to predict the efficiency of a low-work-function, degenerate semiconductor (diamond film) thermionic generator operated as a heat engine between two constant-temperature thermal reservoirs. Our presentation will focus on a theoretical model which predicts the efficiency of the system by employing a Monte Carlo computational technique from which we report results for the thermal efficiency and the thermionic current densities of diamond thin-films.
Examination of UC-ZrC after long term irradiation at thermionic temperature
NASA Technical Reports Server (NTRS)
Yang, L.; Johnson, H. O.
1972-01-01
Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.
The advanced thermionic converter with microwave power as an auxiliary ionization source
NASA Technical Reports Server (NTRS)
Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.
1978-01-01
In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.
Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
A NEW THERMIONIC RF ELECTRON GUN FOR SYNCHROTRON LIGHT SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey; Agustsson, R.; Hartzell, J
A thermionic RF gun is a compact and efficient source of electrons used in many practical applications. RadiaBeam Systems and the Advanced Photon Source at Argonne National Laboratory collaborate in developing of a reliable and robust thermionic RF gun for synchrotron light sources which would offer substantial improvements over existing thermionic RF guns and allow stable operation with up to 1A of beam peak current at a 100 Hz pulse repetition rate and a 1.5 μs RF pulse length. In this paper, we discuss the electromagnetic and engineering design of the cavity and report the progress towards high power testsmore » of the cathode assembly of the new gun.« less
An evolution strategy for lunar nuclear surface power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1992-01-01
The production and transmission of electric power for a permanently inhabited lunar base poses a significant challenge which can best be met through an evolution strategy. Nuclear systems offer the best opportunity for evolution in terms of both life and performance. Applicable nuclear power technology options include isotope systems (either radioisotope thermoelectric generators or dynamic isotope power systems) and reactor systems with either static (thermoelectric or thermionic) or dynamic (Brayton, Stirling, Rankine) conversion. A power system integration approach that takes evolution into account would benefit by reduced development and operations cost, progressive flight experience, and simplified logistics, and would permit unrestrained base expansion. For the purposes of defining a nuclear power system evolution strategy, the lunar base development shall consist of four phases: precursor, emplacement, consolidation, and operations.
Thermionic Power Cell To Harness Heat Energies for Geothermal Applications
NASA Technical Reports Server (NTRS)
Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.
2011-01-01
A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.
DOE/JPL advanced thermionic technology program
NASA Technical Reports Server (NTRS)
1979-01-01
Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.
High-temperature, high-power-density thermionic energy conversion for space
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.
NASA Technical Reports Server (NTRS)
Soffer, L.; Wright, G. N.
1973-01-01
A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.
An out-of-core thermionic-converter system for nuclear space power
NASA Technical Reports Server (NTRS)
Breitwieser, R.
1972-01-01
Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.
NASA Technical Reports Server (NTRS)
1985-01-01
Thermionic energy conversion is the production of energy from a nuclear source. It is a technology advanced by SNSO, a joint research and development organization formed by NASA and the AEC. SNSO contracted with Thermo Electron Corporation to develop high temperature applications, i.e., metals with high melting points. Thermo Electron Corporation's expertise resulted in contracts for products made from exotic metals such as bone implants, artificial hips, and heart pacemakers.
Energy conversion research and development with diminiodes
NASA Technical Reports Server (NTRS)
Morris, J. F.
1974-01-01
Diminiodes are variable-gap cesium diodes with plane miniature guarded electrodes. These converters allow thermionic evaluations of tiny pieces of rare solids. In addition to smallness, diminiode advantages comprise simplicity, precision, fabrication ease, parts interchangeability, cleanliness, full instrumentation, direct calibration, ruggedness, and economy. Diminiodes with computerized thermionic performance mapping make electrode screening programs practical.
The diminiode: A research and development tool for nuclear thermionics
NASA Technical Reports Server (NTRS)
Morris, J. F.
1972-01-01
Diminiodes are fixed-or variable-gap cesium diodes with plane miniature emitters and guarded collectors. In addition to smallness, their relative advantages are simplicity, precision, ease of fabrication, interchangeability of parts, cleanliness, full instrumentation, ruggedness, and economy. With diminiodes and computers used in thermionic performance mapping, a thorough electrode screening program becomes practical.
Power Management and Distribution System Developed for Thermionic Power Converters
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.
1998-01-01
A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.
Nuclear electric propulsion stage requirements and description
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Peelgren, M. L.; Nakashima, A. M.; Nsieh, T. M.; Phillips, W. M.; Kikin, G. M.
1974-01-01
The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented.
NASA Technical Reports Server (NTRS)
Diianni, D. C.; Mayer, J. T.
1974-01-01
Testing of two fuel clad specimens for thermionic reactor application is described. The annular UO2 fuel was clad on both sides with tungsten; heat rejection was radially inward. The tests were intended to study inner clad stability, fuel redistribution, and fuel melting problems. The specimens were tested in a vacuum chamber using electron bombardment heating. Fuel structural changes were studied using periodic gammagraphs and posttest metallography. The first specimen test was terminated at 50 hours because of a braze failure. The second specimen was tested for 240 hours when an outer clad leak developed due to a tungsten-water reaction. The fuel developed numerous cracks on cooldown but the inner clad remained dimensionally stable. The fuel cover gas did not impede the rate of fuel redistribution. Posttest examination showed the fuel had not melted during operation.
Theory and simulation of backbombardment in single-cell thermionic-cathode electron guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Biedron, S. G.; Harris, J. R.
This paper presents a comparison between simulation results and a first principles analytical model of electron back-bombardment developed at Colorado State University for single-cell, thermionic-cathode rf guns. While most previous work on back-bombardment has been specific to particular accelerator systems, this work is generalized to a wide variety of guns within the applicable parameter space. The merits and limits of the analytic model will be discussed. This paper identifies the three fundamental parameters that drive the back-bombardment process, and demonstrates relative accuracy in calculating the predicted back-bombardment power of a single-cell thermionic gun.
Theory and simulation of backbombardment in single-cell thermionic-cathode electron guns
Edelen, J. P.; Biedron, S. G.; Harris, J. R.; ...
2015-04-01
This paper presents a comparison between simulation results and a first principles analytical model of electron back-bombardment developed at Colorado State University for single-cell, thermionic-cathode rf guns. While most previous work on back-bombardment has been specific to particular accelerator systems, this work is generalized to a wide variety of guns within the applicable parameter space. The merits and limits of the analytic model will be discussed. This paper identifies the three fundamental parameters that drive the back-bombardment process, and demonstrates relative accuracy in calculating the predicted back-bombardment power of a single-cell thermionic gun.
Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Jones, B. I.
1987-01-01
The analysis and integration studies of multimegawatt nuclear power conversion systems for potential SDI applications is presented. A study is summarized which considered 3 separate types of power conversion systems for steady state power generation with a duty requirement of 1 yr at full power. The systems considered are based on the following conversion cycles: direct and indirect Brayton gas turbine, direct and indirect liquid metal Rankine, and in core thermionic. A complete mass analysis was performed for each system at power levels ranging from 1 to 25 MWe for both heat pipe and liquid droplet radiator options. In the modeling of common subsystems, reactor and shield calculations were based on multiparameter correlation and an in-house analysis for the heat rejection and other subsystems.
Alkali metal vapors - Laser spectroscopy and applications
NASA Technical Reports Server (NTRS)
Stwalley, W. C.; Koch, M. E.
1980-01-01
The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.
NASA Astrophysics Data System (ADS)
Trushin, Maxim
2018-04-01
The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.
Investigation and Feasibility Assessment of TOPAZ-2 Derivations for Space Power Applications
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Peddicord, Kenneth L.
1998-01-01
The ability to provide continuous power at significant levels is of utmost importance for many space missions, from simple satellite operations to manned Mars missions. One of the main problems faced in delivering solar or chemical space power in the tens of kW range, is the increasingly massive nature of the power source and the costs associated with its launch, operation and maintenance. A national program had been initiated to study the feasibility of using certain advanced technologies in developing an efficient lightweight space power source. The starting point for these studies has been the Russian TOPAZ-2 space reactor system, with the ultimate goal to aid in the development of a TOPAZ-2 derivative which will be ready for flight by the year 2000. The main objective of this project has been to perform feasibility assessment and trade studies which would allow the development of an advanced space nuclear power system based on the in-core thermionic fuel element technology currently used in the Russian TOPAZ-2 reactor. Two of the important considerations in developing the concept are: (1) compliance of the current TOPAZ-2 and of any advanced designs with U.S. nuclear safety expectations, and (2) compliance of the design with the seven years lifetime requirement. The project was composed of two major phases. The initial phase of the project has concentrated on understanding the TOPAZ-2 thermionic reactor in sufficient detail to allow several follow-on tasks. The primary interest during this first phase has been given on identifying the potential of the TOPAZ-2 design for further improvements. The second phase of the project has focused on the feasibility of a TOPAZ-2 system capable of delivering 30-50 kWe. Towards the elimination of single-point failures in the load voltage regulation system an active voltage regulator has been designed to be used in conjunction with the available shunt load voltage regulator. The possible use of a dual-loop, model-based adaptive control system for load-following in the TOPAZ-2 has also been investigated. The objective of this fault-tolerant, autonomous control system is to deliver the demanded electric power at the desired voltage level, by appropriately manipulating the neutron power through the control drums. As a result, sufficient thermal power is produced to meet the required demand in the presence of dynamically changing system operating conditions and potential sensor failures. The designed controller is proposed for use in combination with the currently available shunt regulators, or as a back-up controller when other means of power system control, including some of the sensors, fail.
Hatch, G.L.; Brummond, W.A.; Barrus, D.M.
1984-04-05
The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.
Uranium nitride behavior at thermionic temperatures
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1973-01-01
The feasibility of using uranium nitride for in-core thermionic applications was evaluated in electrically heated thermal gradient tests and in flat plate thermionic converters. These tests indicated that grain boundary penetration of uranium nitride into both tungsten and rhenium will occur under thermal gradient conditions. In the case of the tungsten thermionic converter, this led to grain boundary rupture of the emitter and almost total loss of electrical output from the converter. It appears that uranium nitride is unsuitable for thermionic applications at the 2000 K temperatures used in these tests.
NASA Astrophysics Data System (ADS)
Zhou, Qunfei
First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.
Thermionic photovoltaic energy converter
NASA Technical Reports Server (NTRS)
Chubb, D. L. (Inventor)
1985-01-01
A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.
Cesium vapor thermionic converter anomalies arising from negative ion emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasor, Ned S., E-mail: ned.rasor@gmail.com
2016-08-14
Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects ofmore » negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.« less
A SPACESHIP WITH NUCLEAR PROPULSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polorny, J.
1962-01-01
ABS>A proposed space vehicle with nuclear propulsion for a round-trip Martian mission is described. It would be powered by a 270-Mw graphite- moderated, U-fueled nuclear reactor with a core 1 m high by 1 m in diameter, and use gas as propellant. The gas would be heated to the maximum temperature in the reactor and additionally accelerated by an electromagnetic field. To this end, small quantities of K would be injected into the gas stream to increase its electric conductivity. The required electrical energy would be produced by liquid-Na-cooled thermionic converters. The vehicle would weigh 115000 kg, including 43000 kgmore » of H propellant with tankage, and 7000 kg of sustenance material for one year. Chemical rockets would launch the vehicle with a crew of three men into an earth orbit where nuclear propulsion would take over. Upon reactor start-up, three heat exchangers (minimum dimensions 30 x 18 m) would be fanned out. A shielded well with a diameter of 2.5 m would protect the crew from radiation during reactor operation, passage through the earth radiation belts, and at periods of solar flares. (OTS)« less
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
NASA Astrophysics Data System (ADS)
Onufriyev, Valery. V.
2001-02-01
It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .
Modeling thermionic emission from laser-heated nanoparticles
Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; ...
2016-02-01
An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less
Gridded thermionic gun and integral superconducting ballistic bunch compression cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The general design is a modified ballistic compression cavity pair with two independently powered cells [3]. The first is a cathode cell that includes the thermionic cathode and grid to provide for beam bunching. The second is a full cell with independent phasing and field levels designed to minimize energy spread. The primary goal for Phase II is to manufacture a superconducting gun with a thermionic cathode and imbedded coil. The system developed here is applicable to many high current electron accelerators. The analysis and design constraints imposed by the magnetized cathode make the cathode system developed here more complicated and limited than one without the magnetized beam constraints. High power ERLs would benefit by a gun with the capabilities shown here, 400 mA or more of current. ERLs hold great promise for electron cooling experiments, advanced light sources and Free Electron Lasers. This high current electron injector is a technological advance that will place the requirements for an ERL capable of providing quality bunches needed for cooling within the MEIC circulator ring within reach. This injector would have application to future ERLs around the world.« less
Nuclear fuels for very high temperature applications
NASA Astrophysics Data System (ADS)
Lundberg, L. B.; Hobbins, R. R.
The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.
The status of power supplies for primary electric propulsion in the U.S.A.
NASA Technical Reports Server (NTRS)
Jones, R. M.; Scott-Monck, J. A.
1984-01-01
This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.
Atmospheric reentry of the in-core thermionic SP-100 reactor system
NASA Technical Reports Server (NTRS)
Stamatelatos, M. G.; Barsell, A. W.; Harris, P. A.; Francisco, J.
1987-01-01
Presumed end-of-life atmospheric reentry of the GA SP-100 system was studied to assess dispersal feasibility and associated hazards. Reentry was studied by sequential use of an orbital trajectory and a heat analysis computer program. Two heating models were used. The first model assumed a thermal equilibrium condition between the stagnation point aerodynamic heating and the radiative cooling of the skin material surface. The second model allowed for infinite conductivity of the skin material. Four reentering configurations were studied representing stages of increased SP-100 breakup: (1) radiator, shield and reactor, (2) shield and reactor, (3) reactor with control drums, and (4) reactor without control drums. Each reentering configuration was started from a circular orbit at 116 km having an inertial velocity near Mach 25. The assumed failing criterion was the attainment of melting temperature of a critical system component. The reentry analysis revealed breakup of the vessel in the neighborhood of 61 km altitude and scattering of the fuel elements. Subsequent breakup of the fuel elements was not predicted. Oxidation of the niobium skin material was calculated to cause an increase in surface temperature of less than ten percent. The concept of thermite analogs for enhancing reactor reentry dispersal was assessed and found to be feasible in principle. A conservative worst-case hazards analysis was performed for radioactive and nonradioactive toxic SP-100 materials assumed to be dispersed during end-of-life reentry. The hazards associated with this phase of the SP-100 mission were calculated to be insignificant.
Non-equilibrium thermionic electron emission for metals at high temperatures
NASA Astrophysics Data System (ADS)
Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.
2015-08-01
Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.
Thermionic emission current in a single barrier varactor
NASA Technical Reports Server (NTRS)
Hjelmgren, Hans; East, Jack; Kollberg, Erik
1992-01-01
From I-V measurements on Single Barrier Varactors (SBV) at different temperatures we concluded that thermionic emission across the barrier of the actual device is mainly due to transport through the X band. The same structure was also modeled with a one-dimensional drift-diffusion model, including a 'boundary condition' for thermionic emission across the heterojunction interface. By including thermionic field emission through the top of the triangular barrier of a biased diode and the effect of a non-abrupt interface at the heterojunction, we obtained good agreement between the modeled and measured I-V characteristics.
The mechanism of explosive emission excitation in thermionic energy conversion processes
NASA Astrophysics Data System (ADS)
Bulyga, A. V.
A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.
An Experiment on Thermionic Emission: Back to the Good Old Triode
ERIC Educational Resources Information Center
Azooz, A. A.
2007-01-01
A simple experiment to study thermionic emission, the Richardson-Dushman equation and the energy distribution function of thermionic electrons emitted from a hot cathode using a triode vacuum tube is described. It is pointed out that such a distribution function is directly proportional to the first derivative of the Edison anode current with…
Dexter - A one-dimensional code for calculating thermionic performance of long converters.
NASA Technical Reports Server (NTRS)
Sawyer, C. D.
1971-01-01
This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.
HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limb, Scott J.
2016-05-31
This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
NASA Astrophysics Data System (ADS)
Misra, Shikha; Upadhyay Kahaly, M.; Mishra, S. K.
2017-02-01
A formalism describing the thermionic emission from a single layer graphene sheet operating at a finite temperature and the consequent formation of the thermionic sheath in its proximity has been established. The formulation takes account of two dimensional densities of state configuration, Fermi-Dirac (f-d) statistics of the electron energy distribution, Fowler's treatment of electron emission, and Poisson's equation. The thermionic current estimates based on the present analysis is found to be in reasonably good agreement with experimental observations (Zhu et al., Nano Res. 07, 1 (2014)). The analysis has further been simplified for the case where f-d statistics of an electron energy distribution converges to Maxwellian distribution. By using this formulation, the steady state sheath features, viz., spatial dependence of the surface potential and electron density structure in the thermionic sheath are derived and illustrated graphically for graphene parameters; the electron density in the sheath is seen to diminish within ˜10 s of Debye lengths. By utilizing the graphene based cathode in configuring a thermionic converter (TC), an appropriate operating regime in achieving the efficient energy conversion has been identified. A TC configured with the graphene based cathode (operating at ˜1200 K/work function 4.74 V) along with the metallic anode (operating at ˜400 K/ work function 2.0 V) is predicted to display ˜56% of the input thermal flux into the electrical energy, which infers approximately ˜84% of the Carnot efficiency.
Planetary exploration with electrically propelled vehicles.
NASA Technical Reports Server (NTRS)
Stuhlinger, E.
1972-01-01
The characteristics of propulsion systems required for carrying out flight missions within the solar system, as desired by planetary physicists and astronomers, are reviewed. It is shown that an encouraging answer to these requirements is available in the form of electrostatic or ion propulsion systems. The design and performance characteristics of an electrostatic thrustor employing an ion source, accelerating electrode, beam neutralizer, and power source are discussed, together with those of the Kaufmann engine (electrostatic thrustor employing bombardment type ionization). More demanding missions which will become feasible with the advent of nuclear-electric power sources (such as the incore thermionic reactor) may include close orbiters around all the planets, and asteroid and cometary missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandlakunta, P; Pham, R; Zhang, T
Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less
DEXTER: A one-dimensional code for calculating thermionic performance of long converters
NASA Technical Reports Server (NTRS)
Sawyer, C. D.
1971-01-01
A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.
NASA Technical Reports Server (NTRS)
Davis, P. R.; Swanson, L. W.
1979-01-01
The techniques of fabricating and characterizing the surface properties of electrode materials were investigated. The basic surface properties of these materials were studied with respect to their utilization as thermionic energy converter electrodes. Emphasis was placed on those factors (e.g, cesium disorption kinetic and mechanisms of low work function production) which are of primary concern to thermionic converter performance.
Fitzpatrick, G.O.
1987-05-19
A thermionic converter is set forth which includes an envelope having an electron collector structure attached adjacent to a wall. An electron emitter structure is positioned adjacent the collector structure and spaced apart from opposite wall. The emitter and collector structures are in a common chamber. The emitter structure is heated substantially only by thermal radiation. Very small interelectrode gaps can be maintained utilizing the thermionic converter whereby increased efficiency results. 10 figs.
NASA Astrophysics Data System (ADS)
Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng
2018-04-01
A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.
Advanced Thermionic Technology Program
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include surface studies (surface theory, basic surface experiments, and activation chamber experiments); plasma studies (converter theory and enhanced mode conversion experiments); and component development (low temperature conversion experiments, high efficiency conversion experiments, and hot shell development).
Evidence for cluster shape effects on the kinetic energy spectrum in thermionic emission.
Calvo, F; Lépine, F; Baguenard, B; Pagliarulo, F; Concina, B; Bordas, C; Parneix, P
2007-11-28
Experimental kinetic energy release distributions obtained for the thermionic emission from C(n) (-) clusters, 10< or =n< or =20, exhibit significant non-Boltzmann variations. Using phase space theory, these different features are analyzed and interpreted as the consequence of contrasting shapes in the daughter clusters; linear and nonlinear isomers have clearly distinct signatures. These results provide a novel indirect structural probe for atomic clusters associated with their thermionic emission spectra.
Thermally actuated thermionic switch
Barrus, Donald M.; Shires, Charles D.
1988-01-01
A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.
Fitzpatrick, Gary O.
1987-05-19
A thermionic converter (10) is set forth which includes an envelope (12) having an electron collector structure (22) attached adjacent to a wall (16). An electron emitter structure (24) is positioned adjacent the collector structure (22) and spaced apart from opposite wall (14). The emitter (24) and collector (22) structures are in a common chamber (20). The emitter structure (24) is heated substantially only by thermal radiation. Very small interelectrode gaps (28) can be maintained utilizing the thermionic converter (10) whereby increased efficiency results.
Thermally actuated thermionic switch
Barrus, D.M.; Shires, C.D.
1982-09-30
A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.
Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan
2018-06-18
Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, Steven H.; Fliflet, Arne W.
2001-08-25
This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, amore » small operational frequency bandwidth and a spectrally pure, single-mode output.« less
Thermodynamics of photon-enhanced thermionic emission solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reck, Kasper, E-mail: kasper.reck@nanotech.dtu.dk; Hansen, Ole, E-mail: ole.hansen@nanotech.dtu.dk; CINF Center for Individual Nanoparticle Functionality, Technical University of Denmark, Kgs. Lyngby 2800
2014-01-13
Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures.
Fundamental studies on a heat driven lamp
NASA Technical Reports Server (NTRS)
Lawless, J. L.
1985-01-01
A detailed theoretical study of a heat-driven lamp has been performed. This lamp uses a plasma produced in a thermionic diode. The light is produced by the resonance transition of cesium. An important result of this study is that up to 30% of the input heat is predicted to be converted to light in this device. This is a major improvement over ordinary thermionic energy converters in which only approx. 1% is converted to resonance radiation. Efficiencies and optimum inter-electrode spacings have been found as a function of cathode temperature and the radiative escape factor. The theory developed explains the operating limits of the device.
Simulations of thermionic suppression during tungsten transient melting experiments
NASA Astrophysics Data System (ADS)
Komm, M.; Tolias, P.; Ratynskaia, S.; Dejarnac, R.; Gunn, J. P.; Krieger, K.; Podolnik, A.; Pitts, R. A.; Panek, R.
2017-12-01
Plasma-facing components receive enormous heat fluxes under steady state and especially during transient conditions that can even lead to tungsten (W) melting. Under these conditions, the unimpeded thermionic current density emitted from the W surfaces can exceed the incident plasma current densities by several orders of magnitude triggering a replacement current which drives melt layer motion via the {\\boldsymbol{J}}× {\\boldsymbol{B}} force. However, in tokamaks, the thermionic current is suppressed by space-charge effects and prompt re-deposition due to gyro-rotation. We present comprehensive results of particle-in-cell modelling using the 2D3V code SPICE2 for the thermionic emissive sheath of tungsten. Simulations have been performed for various surface temperatures and selected inclinations of the magnetic field corresponding to the leading edge and sloped exposures. The surface temperature dependence of the escaping thermionic current and its limiting value are determined for various plasma parameters; for the leading edge geometry, the results agree remarkably well with the Takamura analytical model. For the sloped geometry, the limiting value is observed to be proportional to the thermal electron current and a simple analytical expression is proposed that accurately reproduces the numerical results.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
2002-01-01
A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.
Photon-enhanced thermionic emission for solar concentrator systems.
Schwede, Jared W; Bargatin, Igor; Riley, Daniel C; Hardin, Brian E; Rosenthal, Samuel J; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T; Shen, Zhi-Xun; Melosh, Nicholas A
2010-09-01
Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.
Low work function materials for microminiature energy conversion and recovery applications
Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.
2003-05-13
Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
If Fossil and Fissile Fuels Falter, We've Got. . .
ERIC Educational Resources Information Center
Klaus, Robert L.
1977-01-01
Alternative energy sources and the new systems and techniques required for their development are described: fuel cells, magnetohydrodynamics, thermionics, geothermal, wind, tides, waste consersion, biomass, and ocean thermal energy conversion. (MF)
NASA Technical Reports Server (NTRS)
Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.
1998-01-01
NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.
Microminiature thermionic converters
King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.
2001-09-25
Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.
1992-01-01
The temperature dependence of the gate current versus the gate voltage in complementary heterojunction field-effect transistors (CHFET's) is examined. An analysis indicates that the gate conduction is due to a combination of thermionic emission, thermionic-field emission, and conduction through a temperature-activated resistance. The thermionic-field emission is consistent with tunneling through the AlGaAs insulator. The activation energy of the resistance is consistent with the ionization energy associated with the DX center in the AlGaAs. Methods reducing the gate current are discussed.
Real-time first-principles simulations of thermionic emission from N-doped diamond surfaces
NASA Astrophysics Data System (ADS)
Shinozaki, Tomoki; Hagiwara, Satoshi; Morioka, Naoya; Kimura, Yuji; Watanabe, Kazuyuki
2018-06-01
We investigate thermionic emission from N-doped C(100) surfaces terminated with H or Li atoms using finite-temperature real-time density functional theory simulations. The current–temperature characteristics are found to follow the Richardson–Dushman (RD) equation, which was derived from a semiclassical theory. However, the Richardson constants are two orders of magnitude smaller than the ideal values from the RD theory. This considerable reduction is attributed primarily to the extremely low transmission probability of electrons from the surfaces toward the vacuum. The present method enables straightforward evaluation of the ideal efficiency of a thermionic energy converter.
Thermionic Energy Conversion (TEC) topping thermoelectrics
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Performance expectations for thermionic and thermoelectric energy conversion systems are reviewed. It is noted that internal radiation effects diminish thermoelectric figures of merit significantly at 1000 K and substantially at 2000 K; the effective thermal conductivity contribution of intrathermoelectric radiative dissipation increases with the third power of temperature. It is argued that a consideration of thermoelectric power generation with high temperature heat sources should include utilization of thermionic energy conversion (TEC) topping thermoelectrics. However TEC alone or TEC topping more efficient conversion systems like steam or gas turbines, combined cycles, or Stirling engines would be more desirable generally.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
Deployment history and design considerations for space reactor power systems
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.
2009-05-01
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's "BUK" power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ˜800 km orbit. The US' SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90-96 wt%) and operated at a reactor exit temperature of 833-973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO 2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (˜0.5 kW e and ˜1 year for SNAP-10A, <3.0 kW e and <6 months for BUK, and ˜5.5 kW e and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ˜4.5 months, were boosted into ˜800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000-3000 km orbits would generate significantly more power of 10's to 100's kW e for 5-10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.
Photo-assisted electron emission from illuminated monolayer graphene
NASA Astrophysics Data System (ADS)
Upadhyay Kahaly, M.; Misra, Shikha; Mishra, S. K.
2017-05-01
We establish a formalism to address co-existing and complementing thermionic and photoelectric emission from a monolayer graphene sheet illuminated via monochromatic laser radiation and operating at a finite temperature. Taking into account the two dimensional Fermi-Dirac statistics as is applicable for a graphene sheet, the electron energy redistribution due to thermal agitation via laser irradiation, and Fowler's approach of the electron emission, along with Born's approximation to evaluate the tunneling probability, the expressions for the photoelectric and thermionic emission flux have been derived. The cumulative emission flux is observed to be sensitive to the parametric tuning of the laser and material specifications. Based on the parametric analysis, the photoemission flux is noticed to dominate over its coexisting counterpart thermionic emission flux for smaller values of the material work function, surface temperature, and laser wavelength; the analytical estimates are in reasonably good agreement with the recent experimental observations [Massicotte et al., Nat. Commun. 7, 12174 (2016)]. The results evince the efficient utilization of a graphene layer as a photo-thermionic emitter.
Thermionic cogeneration burner design
NASA Astrophysics Data System (ADS)
Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.
Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.
NASA Astrophysics Data System (ADS)
Rajabi, A.; Jazini, J.; Fathi, M.; Sharifian, M.; Shokri, B.
2018-03-01
The beam produced by a thermionic RF gun has wide energy spread that makes it unsuitable for direct usage in photon sources. Here in the present work, we optimize the extracted beam from a thermionic RF gun by a compact economical bunch compressor. A compact magnetic bunch compressor (Alpha magnet) is designed and constructed. A comparison between simulation results and experimental measurements shows acceptable conformity. The beam dynamics simulation results show a reduction of the energy spread as well as a compression of length less than 1 ps with 2.3 mm-mrad emittance.
Spaceborne power systems preference analyses. Volume 2: Decision analysis
NASA Technical Reports Server (NTRS)
Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.
1985-01-01
Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study.
Amplified Thermionic Cooling Using Arrays of Nanowires
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu
2007-01-01
A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision
Work function determination of promising electrode materials for thermionic converters
NASA Technical Reports Server (NTRS)
Jacobson, D.
1977-01-01
Work performed on this contract was primarily for the evaluation of selected electrode materials for thermionic energy converters. The original objective was to characterize selected nickel based superalloys up to temperatures of 1400 K. It was found that an early selection, Inconel 800 produced a high vapor pressure which interfered with the vacuum emission measurements. The program then shifted to two other areas. The first area was to obtain emission from the superalloys in a cesiated atmosphere. The cesium plasma helps to suppress the vaporization interference. The second area involved characterization of the Lanthanum-Boron series as thermionic emitters. These final two areas resulted in three journal publications which are attached to this report.
Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode
2011-12-01
1 2. MIM Model 1 2.1 Potential Energy and Image Potential . . . . . . . . . . . . . . . . . . . . . . 1 2.2 Thermionic Emission -limited Current ...4 4 Thermionic emission -limited current through the symmetric MIM diode in figure 1...7 7 Absolute value of tunnel-limited, thermal emission -limited, and total currents vs. applied bias for the
Studies of thermionic materials for space power applications
NASA Technical Reports Server (NTRS)
1971-01-01
Service life tests of LC-8 and LC-9 carbide-fueled thermionic converters are discussed. Post operational tests of the converters to show emitter diametric change, microstructures of cladding and fuel, and analysis of fuel composition are described. The fabrication and performance of high temperature thermocouples used in the test procedures are included.
Chemical regeneration of emitter surface increases thermionic diode life
NASA Technical Reports Server (NTRS)
Breiteieser, R.
1966-01-01
Chemical regeneration of sublimated emitter electrode increases the operating efficiency and life of thermionic diodes. A gas which forms chemical compounds with the sublimated emitter material is introduced into the space between the emitter and the collector. The compounds migrate to the emitter where they decompose and redeposit the emitter material.
The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...
Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures
Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.
2017-01-01
Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device. PMID:28387363
Thermionic combustor application to combined gas and steam turbine power plants
NASA Astrophysics Data System (ADS)
Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.
A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.
1974-01-01
Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.
Distributed electrical leads for thermionic converter
Fitzpatrick, Gary O.; Britt, Edward J.
1979-01-01
In a thermionic converter, means are provided for coupling an electrical lead to at least one of the electrodes thereof. The means include a bus bar and a plurality of distributed leads coupled to the bus bar each of which penetrates through one electrode and are then coupled to the other electrode of the converter in spaced apart relation.
Monroe, Jr., James E.
1977-08-09
A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.
Thermionic Emission of Single-Wall Carbon Nanotubes Measured
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.
2004-01-01
Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.
Low work function silicon collector for thermionic converters
NASA Technical Reports Server (NTRS)
Chang, K. H.; Shimada, K.
1976-01-01
To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.
Development and fabrication of insulator seals for thermionic diodes
NASA Technical Reports Server (NTRS)
Poirier, V. L.
1972-01-01
Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.
Electron Thermionic Emission from Graphene and a Thermionic Energy Converter
NASA Astrophysics Data System (ADS)
Liang, Shi-Jun; Ang, L. K.
2015-01-01
In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.
Gas Laser Interferometer in the Electric Conversion Laboratory
1966-10-21
Richard Lancashire operates a gas laser interferometer in the Electric Conversion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis was in the midst of a long-term effort to develop methods of delivering electrical power to spacecraft using nuclear, solar, or electrochemical technologies. Lancashire was measuring the thermionic diode’s plasma particle density. The thermionic diodes were being studied for possible use in radioisotope thermoelectric generators for use in space. Microwave interferometry was one method of measuring transient plasmas. The interferometer measured the difference between the frequencies of two laser beams, one of which passed through the diode. The electron density was measured by revealing the phase shift of the transmitted microwave beam brought about by a change in the plasma refraction. Microwave interferometry, however, offers poor spatial resolution and has limited range of applicability.
Back-bombardment compensation in microwave thermionic electron guns
NASA Astrophysics Data System (ADS)
Kowalczyk, Jeremy M. D.; Madey, John M. J.
2014-12-01
The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.
Thermionic refrigeration at CNT-CNT junctions
NASA Astrophysics Data System (ADS)
Li, C.; Pipe, K. P.
2016-10-01
Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).
EFFECT OF THERMIONIC EMISSION AT ROOM TEMPERATURES IN PHOTOSENSITIVE GEIGERMULLER TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.; Hrynkiewicz, A.Z.; Niewodniczanski, H.
1953-01-01
The temperature-dependence of the background of Geiger-Mueller counting tubes was compared for nonsensitized and sensitized (treated by electric discharge) tubes. A strong increase of background with increasing temperature was observed for phatosensitive counters, while no change was observed in nonsensetized counters. It is shown that the increase is due to thermionic emission of the brass cathode. (T.R.H.)
Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes
NASA Technical Reports Server (NTRS)
Kroeger, E. W.; Bair, V. L.; Morris, J. F.
1978-01-01
Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given.
NASA Astrophysics Data System (ADS)
Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo
2007-01-01
Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.
Work function determination of promising electrode materials for thermionic energy converters
NASA Technical Reports Server (NTRS)
Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.
1976-01-01
The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.
Development of a full-length external-fuel thermionic converter for in-pile testing.
NASA Technical Reports Server (NTRS)
Schock, A.; Raab, B.
1971-01-01
Description of an external-fuel thermionic converter which utilizes a thoriated-tungsten fuel-emitter body. Performance in out-of-pile tests was comparable to that of an arc-cast tungsten emitter body, with 400-eW output power (about 5 W/sq cm) at 10.8% efficiency. Maximum fuel clad temperature averaged from 1650 to 1700 C during the 300-hour test. This converter has been processed for in-pile testing. The various processing steps, including the installation of six emitter thermocouples, encapsulation in the secondary container, and joining to the fission-gas collection system, are described in detail. In addition to the converter assembly, a doubly contained fission gas collection assembly with radiation-hardened differential pressure transducers was fabricated. The experiment support plate required for the in-pile test, containing electrically insulated instrumentation feedthroughs and coolant line feedthroughs to the vacuum test chamber, was also fabricated.
Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter
NASA Technical Reports Server (NTRS)
Kovaleski, S. D.; Burke, Tom (Technical Monitor)
2001-01-01
Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.
Heat Recuperator Engineering for an ARL Liquid-Fueled Thermophotovoltaic Power Source Demonstrator
2014-09-01
using logistics and multiple other fuels. Some potential technologies include thermoelectric , thermophotovoltaic (TPV), and thermionic. For these... thermoelectric , thermophotovoltaic (TPV), and thermionic. For these technologies, thermal efficiency is critical to achieve high energy density and thermal-to... thermoelectric and TPV. The exhaust gas will be above this temperature, but more than 50% of the thermal power of the combustor can be lost to the exhaust
User interface and operational issues with thermionic space power systems
NASA Technical Reports Server (NTRS)
Dahlberg, R. C.; Fisher, C. R.
1987-01-01
Thermionic space power systems have unique features which facilitate predeployment operations, provide operational flexibility and simplify the interface with the user. These were studied in some detail during the SP-100 program from 1983 to 1985. Three examples are reviewed in this paper: (1) system readiness verification in the prelaunch phase; (2) startup, shutdown, and dormancy in the operations phase; (3) part-load operation in the operations phase.
500(deg)C electronics for harsh environments
NASA Technical Reports Server (NTRS)
Sadwick, Laurence P.; Hwu, R. Jennifer; Chern, J. H. Howard; Lin, Ching-Hsu; Castillo, Linda Del; Johnson, Travis
2005-01-01
Solid state vacuum devices (SSVDs) are a relatively new class of electronic devices. Innosys is a leading producer of high frequency SSVDs for a number of applications, including RF communications. SSVDs combine features inherent to both solid state and vacuum transistors. Electron transport can be by solid state or vacuum or both. The focus of this talk is on thermionic SSVDs, in which the primary vacuum transport is by thermionically liberated electron emission.
King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.
2002-06-18
Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.
Thermionic converter output as a function of collector temperature
NASA Technical Reports Server (NTRS)
Stark, G.; Saunders, M.; Lieb, D.
1980-01-01
Surprisingly few data are available on the variation of thermionic converter output with collector temperature. In this study the output power density has been measured as a function of collector temperature (at a fixed emitter temperature of 1650 K) for six converters with different electrode combinations. Collector temperatures ranged from 750 to 1100 K. For collector temperatures below 900 K, converters built with sublimed molybdenum oxide collectors gave the best performance.
NASA Technical Reports Server (NTRS)
1977-01-01
Power levels up to 100 kWe average were baselined for the electrical power system of the space construction base, a long-duration manned facility capable of supporting manufacturing and large scale construction projects in space. Alternatives to the solar array battery systems discussed include: (1) solar concentrator/brayton; (2) solar concentrator/thermionic; (3) isotope/brayton; (4) nuclear/brayton; (5) nuclear thermoelectric; and (6) nuclear thermionic.
Emission properties and back-bombardment for CeB{sub 6} compared to LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakr, Mahmoud, E-mail: m-a-bakr@iae.kyoto-u.ac.jp; Kawai, M.; Kii, T.
The emission properties of CeB{sub 6} compared to LaB{sub 6} thermionic cathodes have been measured using an electrostatic DC gun. Obtaining knowledge of the emission properties is the first step in understanding the back-bombardment effect that limits wide usage of thermionic radio-frequency electron guns. The effect of back-bombardment electrons on CeB{sub 6} compared to LaB{sub 6} was studied using a numerical simulation model. The results show that for 6 μs pulse duration with input radio-frequency power of 8 MW, CeB{sub 6} should experience 14% lower temperature increase and 21% lower current density rise compared to LaB{sub 6}. We conclude that CeB{submore » 6} has the potential to become the future replacement for LaB{sub 6} thermionic cathodes in radio-frequency electron guns.« less
Particle-In-Cell Simulations of a Thermionic Converter
NASA Astrophysics Data System (ADS)
Clark, S. E.
2017-12-01
Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.
Particle-In-Cell Simulations of a Thermionic Converter
NASA Astrophysics Data System (ADS)
Clark, Stephen
2017-10-01
Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.
Enhancement of thermionic emission by light
NASA Astrophysics Data System (ADS)
Sodha, Mahendra Singh; Srivastava, Sweta; Mishra, Rashmi
2017-03-01
In this paper the rate of electron emission from an illuminated hot metallic plate has been evaluated on the basis of the free electron theory of metals and Fowler's theory of photoelectric electron emission. The modification of the electron energy distribution (or enhancement of electron temperature) in the plate by energetic electrons (which get their normal energy enhanced on the surface by incident photons of frequency below threshold and are not emitted) has been taken into account. The thermionic current as modified by the electron temperature so enhanced by irradiation has been evaluated. The results may be applicable to thermionic convertors, as proposed to be operated by Schwede et al. [J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, S.J. Rosenthal, Y. Sun, F. Schmitt, P. Pianette, R.T. Howe, Z. Shen, N.A. Melosh, Nat. Mater. 9, 762 (2010)]. Numerical results have been presented and discussed.
Microfabricated thermionic detector
Lewis, Patrick R; Manginell, Ronald P; Wheeler, David R; Trudell, Daniel E
2012-10-30
A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
An integral nuclear power and propulsion system concept
NASA Astrophysics Data System (ADS)
Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William
An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.
Current transmission and nonlinear effects in un-gated thermionic cathode RF guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Harris, J. R.
Un-gated thermionic cathode RF guns are well known as a robust source of electrons for many accelerator applications. These sources are in principle scalable to high currents without degradation of the transverse emittance due to control grids but they are also known for being limited by back-bombardment. While back-bombardment presents a significant limitation, there is still a lack of general understanding on how emission over the whole RF period will affect the nature of the beams produced from these guns. In order to improve our understanding of how these guns can be used in general we develop analytical models thatmore » predict the transmission efficiency as a function of the design parameters, study how bunch compression and emission enhancement caused by Schottky barrier lowering affect the output current profile in the gun, and study the onset of space-charge limited effects and the resultant virtual cathode formation leading to a modulation in the output current distribution.« less
Tan, Shih-Wei; Lai, Shih-Wen
2012-01-01
Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φ b) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones. PMID:23226352
JSUS solar thermal thruster and its integration with thermionic power converter
NASA Astrophysics Data System (ADS)
Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi
1998-01-01
This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.
Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan; Liao, Tianjun; Zhang, Yanchao
2016-01-28
A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less
Work function and surface stability of tungsten-based thermionic electron emission cathodes
NASA Astrophysics Data System (ADS)
Jacobs, Ryan; Morgan, Dane; Booske, John
2017-11-01
Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.
Air Force Technical Objective Document, FY89.
1988-04-01
threat warning; multimegawatt stand-off jammers; a family of new, broadband , active decoy expendables; E4? subsystems and EW suites for Military...and monolithic integrated circuits. (3) Microwave TWTs Develop microwave tube technology and selected thermionic power sources and amplifiers for ECM...Improved design reliability and multiple application of tube technology are stressed. Improve Traveling Wave Tube ( TWT ) reliability by instrumenting a TWT
NASA Astrophysics Data System (ADS)
Zavadil, Kevin R.; Ruffner, Judith H.; King, Donald B.
1999-01-01
We have successfully developed a method for fabricating scandate-based thermionic emitters in thin film form. The primary goal of our effort is to develop thin film emitters that exhibit low work function, high intrinsic electron emissivity, minimum thermal activation properties and that can be readily incorporated into a microgap converter. Our approach has been to incorporate BaSrO into a Sc2O3 matrix using rf sputtering to produce thin films. Diode testing has shown the resulting films to be electron emissive at temperatures as low as 900 K with current densities of 0.1 mA.cm-2 at 1100 K and saturation voltages. We calculate an approximate maximum work function of 1.8 eV and an apparent emission constant (Richardson's constant, A*) of 36 mA.cm-2.K-2. Film compositional and structural analysis shows that a significant surface and subsurface alkaline earth hydroxide phase can form and probably explains the limited utilization and stability of Ba and its surface complexes. The flexibility inherent in sputter deposition suggests alternate strategies for eliminating undesirable phases and optimizing thin film emitter properties.
King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.
2002-06-25
Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.
Hatch, George L.; Brummond, William A.; Barrus, Donald M.
1986-01-01
A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.
Thermionic energy converter investigations
NASA Technical Reports Server (NTRS)
Goodale, D. B.; Lee, C.; Lieb, D.; Oettinger, P. E.
1979-01-01
This paper presents evaluation of a variety of thermionic converter configurations to obtain improved efficiency. A variable-spacing diode using an iridium emitter gave emission properties comparable to platinum, but the power output from a sintered LaB6 collector diode was not consistent with its work function. Reflectivities above 0.5 were measured at thermal energies on oxygenated-cesiated surfaces using a field emission retarding potential gun. Performance of converters with structured electrodes and the characteristics of a pulsed triode were studied as a function of emitter, collector, cesium reservoir, interelectrode spacing, xenon pressure, and pulsing parameters.
Experimental investigation of electron guns for THz microwave vacuum amplifiers
NASA Astrophysics Data System (ADS)
Burtsev, A. A.; Grigor'ev, Yu. A.; Navrotsky, I. A.; Rogovin, V. I.; Sakhadzhi, G. V.; Shumikhin, K. V.
2016-05-01
Single-sheet and multiple beam electron emitters based on thermionic minicathodes for terahertz traveling-wave tubes have been studied. Data are presented for impregnated blade thermionic cathode with dimensions 0.1 × 0.7 mm and a maximum current density of 114 A/cm2 in a pulsed mode. A variant of the five-beam electron gun with 0.25-mm-diameter cylindrical minicathodes in cells of a control grid is proposed that provides a current density of 85.5 A/cm2 at a grid potential of 900-1000 V.
Attractive potential around a thermionically emitting microparticle.
Delzanno, G L; Lapenta, G; Rosenberg, M
2004-01-23
We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of thermionic electron emission from the grain. It is shown that the orbit motion limited theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well can form, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create nonconventional dust crystals or macromolecules.
Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes
NASA Astrophysics Data System (ADS)
Berger, Joel A.; Rickman, B. L.; Li, T.; Nicholls, A. W.; Andreas Schroeder, W.
2012-11-01
The normalized rms transverse emittance of an electron source is shown to be proportional to √m* , where m* is the effective mass of the state from which the electron is emitted, by direct observation of the transverse momentum distribution for excited-state thermionic emission from two III-V semiconductor photocathodes, GaSb and InSb, together with a control experiment employing two-photon emission from gold. Simulations of the experiment using an extended analytical Gaussian model of electron pulse propagation are in close agreement with the data.
Hybrid thermionic-photovoltaic converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datas, A.
2016-04-04
A conceptual device for the direct conversion of heat into electricity is presented. This concept hybridizes thermionic (TI) and thermophotovoltaic (TPV) energy conversion in a single thermionic-photovoltaic (TIPV) solid-state device. This device transforms into electricity both the electron and photon fluxes emitted by an incandescent surface. This letter presents an idealized analysis of this device in order to determine its theoretical potential. According to this analysis, the key advantage of this converter, with respect to either TPV or TI, is the higher power density in an extended temperature range. For low temperatures, TIPV performs like TPV due to the negligiblemore » electron flux. On the contrary, for high temperatures, TIPV performs like TI due to the great enhancement of the electron flux, which overshadows the photon flux contribution. At the intermediate temperatures, ∼1650 K in the case of this particular study, I show that the power density potential of TIPV converter is twice as great as that of TPV and TI. The greatest impact concerns applications in which the temperature varies in a relatively wide range, for which averaged power density enhancement above 500% is attainable.« less
Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD
NASA Technical Reports Server (NTRS)
Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.
2015-01-01
Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.
Conceptual Design for CLIC Gun Pulser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Tao
The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. G.; Alperovich, V. L.
2017-02-01
The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °С leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.
Carbide fuel pin and capsule design for irradiations at thermionic temperatures
NASA Technical Reports Server (NTRS)
Siegel, B. L.; Slaby, J. G.; Mattson, W. F.; Dilanni, D. C.
1973-01-01
The design of a capsule assembly to evaluate tungsten-emitter - carbide-fuel combinations for thermionic fuel elements is presented. An inpile fuel pin evaluation program concerned with clad temperture, neutron spectrum, carbide fuel composition, fuel geometry,fuel density, and clad thickness is discussed. The capsule design was a compromise involving considerations between heat transfer, instrumentation, materials compatibility, and test location. Heat-transfer calculations were instrumental in determining the method of support of the fuel pin to minimize axial temperature variations. The capsule design was easily fabricable and utilized existing state-of-the-art experience from previous programs.
Hollow-Cathode Source Generates Plasma
NASA Technical Reports Server (NTRS)
Deininger, W. D.; Aston, G.; Pless, L. C.
1989-01-01
Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
Chikhi-Chorfi, N; Pham-Huy, C; Galons, H; Manuel, N; Lowenstein, W; Warnet, J M; Claude, J R
1998-11-06
A rapid gas-liquid chromatographic assay is developed for the quantification of methadone (Mtd) and its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), in biological fluids of opiate addicts. After alkaline extraction from samples with lidocaine hydrochloride as internal standard, Mtd and EDDP are separated on SP-2250 column at 220 degrees C and detected with a thermionic detector. The chromatographic time is about 6 min. The relative standard deviations (R.S.D.) of Mtd and EDDP standards are between 1.5 and 5.5%. Most drugs of abuse (morphine, codeine, narcotine, cocaine, benzoylecgonine, cocaethylene, dextropropoxyphene etc) are shown not to interfere with this technique. The method has been applied to study the levels of Mtd and EDDP metabolite in serum, saliva and urine of patients under maintenance treatment for opiate dependence. EDDP levels were found higher than those of Mtd in urine samples from four treated patients, but lower in serum and undetectable in saliva. However, Mtd concentrations were higher in saliva than in serum.
Analysis of thermionic bare tether operation regimes in passive mode
NASA Astrophysics Data System (ADS)
Sanmartín, J. R.; Chen, Xin; Sánchez-Arriaga, G.
2017-01-01
A thermionic bare tether (TBT) is a long conductor coated with a low work-function material. In drag mode, a tether segment extending from anodic end A to a zero-bias point B, with the standard Orbital-motion-limited current collection, is followed by a complex cathodic segment. In general, as bias becomes more negative in moving from B to cathodic end C, one first finds space-charge-limited (SCL) emission covering up to some intermediate point B*, then full Richardson-Dushman (RD) emission reaching from B* to end C. An approximate analytical study, which combines the current and voltage profile equations with results from asymptotic studies of the Vlasov-Poisson system for emissive probes, is carried out to determine the parameter domain covering two limit regimes, which are effectively controlled by just two dimensionless parameters involving ambient plasma and TBT material properties. In one such limit regime, no point B* is reached and thus no full RD emission develops. In an opposite regime, SCL segment BB* is too short to contribute significantly to the current balance.
Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra
2016-03-01
Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.
Thermionic performance of a cesium diminiode with relatively impure 110-tungsten electrodes
NASA Technical Reports Server (NTRS)
Smith, A. L.; Manista, E. J.; Morris, J. F.
1974-01-01
Thermionic performance data from a miniature plane cesium diode (diminiode) with 110-tungsten electrodes are presented. The diminiode has a guard-ringed collector and a spacing of 0.23 mm. The data were obtained by using a computerized acquisition system. The diode was tested at increments between 1700 and 1900 K for the emitter, 694 and 1101 K for the collector, and 519 and 650 K for the reservoir. A maximum power density of 4.5 W/sq cm was obtained at an emitter temperature of 1900 K. This relatively low output probably results from high carbon and sodium impurities in the electrode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Sun, Y.; Harris, J. R.
In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.
The NASA thermionic-conversion (TEC-ART) program
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
The current emphasis is on out-of-core thermionic conversion (TEC). The additional degrees of freedom offer new potentialities, but high-temperature material effects determine the level and lifetime of TEC performance: New electrodes not only raise power outputs but also maintain them regardless of emitter-vapor deposition on collectors. In addition, effective electrodes serve compatibly with hot-shell alloys. Space TEC withstands external and internal high-temperature vaporization problems, and terrestrial TEC tolerates hot corrosive atmospheres outside and near-vacuum inside. Finally, reduction of losses between converter electrodes is essential even though rather demanding geometries appear to be required for some modes of enhanced operation.
Device for providing high-intensity ion or electron beam
McClanahan, Edwin D.; Moss, Ronald W.
1977-01-01
A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.
NASA Technical Reports Server (NTRS)
Morris, J. F.; Merrill, O. S.; Reddy, H. K.
1981-01-01
Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.
High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes
NASA Technical Reports Server (NTRS)
Morris, J. F.
1974-01-01
Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.
NASA Astrophysics Data System (ADS)
Morris, J. F.; Merrill, O. S.; Reddy, H. K.
Thermionic energy conversion (TEC) is discussed. In recent TEC-topping analyses, overall plant efficiency (OPE) and cost of electricity (COE) improved slightly with current capabilities and substantially with fully matured technologies. Enhanced credibility derives from proven hot-corrosion protection for TEC by silicon-carbide clads in fossil fuel combustion products. Combustion augmentation with TEC (CATEC) affords minimal cost and plant perturbation, but with smaller OPE and COE improvements than more conventional topping applications. Risk minimization as well as comparative simplicity and convenience, favor CATEC for early market penetration. A program-management plan is proposed. Inputs, characteristics, outputs and capabilities are discussed.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.
Surface properties of thermionic electrodes
NASA Technical Reports Server (NTRS)
Stickney, R. E.
1972-01-01
A quasi-equilibrium model which provides semiquantitative predictions of the oxygen reaction with refractory metals was developed at high temperature and low pressure. Extensive experimental data was obtained on adsorption and work function properties for a wide variety of adsorbates (Cs, K, Na, I, Br, Cl, and O) on several refractory metals (W, Ta, Mo, and Re). Conclusions and recommendations for research on alkali metal adsorption, oxygen adsorption, and adsorption of cesium - oxygen mixtures are included.
Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility
NASA Astrophysics Data System (ADS)
Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.
2018-04-01
The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Lee, Yueh-Lin; Booske, John H.; Morgan, Dane; Turek, Ladislav; Kirshner, Mark; Kowalczyk, Richard; Wilsen, Craig
2009-05-01
Scandate cathodes (BaxScyOz on W) are important thermionic electron emission materials whose emission mechanism remains unclear. Ab initio modeling is used to investigate the surface properties of both scandate and traditional B-type (Ba-O on W) cathodes. We demonstrate that the Ba-O dipole surface structure believed to be present in active B-type cathodes is not thermodynamically stable, suggesting that a nonequilibrium steady state dominates the active cathode's surface structure. We identify a stable, low work function BaxScyOz surface structure, which may be responsible for some scandate cathode properties and demonstrate that multicomponent surface coatings can lower cathode work functions.
Why do aged fluorescent tubes flicker?
NASA Astrophysics Data System (ADS)
Plihon, Nicolas; Ferrand, Jérémy; Guyomar, Tristan; Museur, Flavien; Taberlet, Nicolas
2017-11-01
Our everyday experience of aged and defective fluorescent tubes or bulbs informs us that they may flicker and emit a clicking sound while struggling to light up. In this article, the physical mechanisms controlling the initial illumination of a functioning fluorescent tube are investigated using a simple and affordable experimental setup. Thermionic emission from the electrodes of the tube controls the startup of fluorescent tubes. The origin of the faulty startup of aged fluorescent tubes is discussed and flickering regimes using functional tubes are artificially produced using a dedicated setup that decreases electron emission by the thermionic effect in a controlled manner. The physical parameters controlling the occurrence of flickering light are discussed, and their temporal statistics are reported.
Beam dynamics studies of a 30 MeV RF linac for neutron production
NASA Astrophysics Data System (ADS)
Nayak, B.; Krishnagopal, S.; Acharya, S.
2018-02-01
Design of a 30 MeV, 10 Amp RF linac as neutron source has been carried out by means of ASTRA simulation code. Here we discuss details of design simulations for three different cases i.e Thermionic , DC and RF photocathode guns and compare them as injectors to a 30 MeV RF linac for n-ToF production. A detailed study on choice of input parameters of the beam from point of view of transmission efficiency and beam quality at the output have been described. We found that thermionic gun isn't suitable for this application. Both DC and RF photocathode gun can be used. RF photocathode gun would be of better performance.
Single-size thermometric measurements on a size distribution of neutral fullerenes.
Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F
2013-05-10
We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.
Fabrication, Densification and Thermionic Emission Property of Lanthanum Hexaboride
NASA Astrophysics Data System (ADS)
Yu, Yiping; Wang, Song; Li, Wei; Chen, Hongmei; Chen, Zhaohui
2018-03-01
An effective way to improve sintering densification of LaB6 was proposed and confirmed experimentally. Firstly, LaB6 nanopowders with a cube-like shape of 94.7 nm were fabricated by molten salt synthesis route at 800 °C for 1 h. Then, LaB6 bulk material of 98% density was prepared by hot pressing sintering of as-synthesized LaB6 nanopowders under 1800 °C/50 MPa/30 min. The acquired LaB6 bulk material had a work function of 2.87 eV and exhibited an excellent thermionic emission property. The saturation emission current density at 1500 and 1600 °C reached 37.4 and 44.3 A/cm2, respectively.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.
Photon enhanced thermionic emission
Schwede, Jared; Melosh, Nicholas; Shen, Zhixun
2014-10-07
Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
Investigation of miniaturized radioisotope thermionic power generation for general use
NASA Astrophysics Data System (ADS)
Duzik, Adam J.; Choi, Sang H.
2016-04-01
Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only ~7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.
Annual Summary Report on Thermionic Cathode Project.
1986-01-09
Voltage Operation The electron gun cathode is driven negative by a high voltageRadiation pulse modulator in the circuit of Figure 3-1. Typical current...tungsten filament. The bombardment heating system is stabilized by a feed- back control circuit . The power required to heat tne cathode is 315 W bom...project. The primary purpose of the first phase was to develop the bombardment heating circuit used to heat the LaB 6 cathode, and to test the beam
A power propulsion system based on a second-generation thermionic NPS of the ``Topaz'' type
NASA Astrophysics Data System (ADS)
Gryaznov, Georgi M.; Zhabotinski, Eugene E.; Andreev, Pavel V.; Zaritski, Gennadie a.; Koroteev, Anatoly S.; Martishin, Viktor M.; Akimov, Vladimir N.; Ponomarev-Stepnoi, Nikolai N.; Usov, Veniamin A.; Britt, Edward J.
1992-01-01
The paper considers the concept of power propulsion systems-universal space platforms (USPs) on the basis of second-generation thermionic nuclear power system (NPSs) and stationary plasma electric thrusters (SPETs). The composition and the principles of layout of such a system, based on a thermionic NPS with a continuous power of up to 30 kWe allowing power augmentation by a factor of 2-2.5 as long as during a year, as well as SPETs with a specific impulse of at least 20 km/s and a propulsion efficiency of 0.6-0.7 are discussed. The layouts and the basic parameters are presented for a power propulsion system ensuring cargo transportation from an initial radiation-safe 800 km high orbit into a geostationary one using the ``Zenit'' and ``Proton'' launch systems for injection into an initial orbit. It is shown that the mass of mission-oriented equipment in the geostationary orbit in the cases under consideration ranges from 2500 to 5500 kg on condition that the flight time is not longer than a year. The power propulsion system can be applied to autonomous power supply of various spacecraft including remote power delivery. It can be also used for deep space exploration.
Progress Toward a Gigawatt-Class Annular Beam Klystron with a Thermionic Electron Gun
NASA Astrophysics Data System (ADS)
Fazio, M.; Carlsten, B.; Farnham, J.; Habiger, K.; Haynes, W.; Myers, J.; Nelson, E.; Smith, J.; Arfin, B.; Haase, A.
2002-08-01
In an effort to reach the gigawatt power level in the microsecond pulse length regime Los Alamos, in collaboration with SLAC, is developing an annular beam klystron (ABK) with a thermionic electron gun. We hope to address the causes of pulse shortening in very high peak power tubes by building a "hard-vacuum" tube in the 10-10 Torr range with a thermionic electron gun producing a constant impedance electron-beam. The ABK has been designed to operate at 5 Hz pulse repetition frequency to allow for RF conditioning. The electron gun has a magnetron injection gun configuration and uses a dispenser cathode running at 1100 degC to produce a 4 kA electron beam at 800 kV. The cathode is designed to run in the temperature-limited mode to help maintain beam stability in the gun. The beam-stick consisting of the electron gun, an input cavity, an idler cavity, and drift tube, and the collector has been designed collaboratively, fabricated at SLAC, then shipped to Los Alamos for testing. On the test stand at Los Alamos a low voltage emission test was performed, but unfortunately as we prepared for high voltage testing a problem with the cathode heater was encountered that prevented the cathode from reaching a high enough temperature for electron emission. A post-mortem examination will be done shortly to determine the exact cause of the heater failure. The RF design has been proceeding and is almost complete. The output cavity presents a challenging design problem in trying to efficiently extract energy from the low impedance beam while maintaining a gap voltage low enough to avoid breakdown and a Q high enough to maintain mode purity. In the next iteration, the ABK will have a new cathode assembly installed along with the remainder of the RF circuit. This paper will discuss the electron gun and the design of the RF circuit along with a report on the status of the work.
Design and testing a high fuel volume fraction, externally finned, thermionic emitter.
NASA Technical Reports Server (NTRS)
Peelgren, M. L.; Ernst, D. M.
1971-01-01
A prototypical, high fuel volume fraction, thermionic emitter body was designed and tested. The emitter body is all tungsten, with a 1.40-cm ID, a 3.23-cm OD, and eight full-length axial fins. The emitter thickness is 0.15 cm while the fins and outer clad are 0.075 cm thick. Different methods of fabrication were used in making the test samples. Stress analysis was performed with a three-dimensional elastic code. Thermal testing of the samples, duplicating calculated radial temperature gradients, heatup and cooldown rates, and emitter body temperatures in operation, was performed with no structural failures noted (six heatup and cooldown cycles per sample). Further emitter analysis and testing is planned.
Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use
NASA Technical Reports Server (NTRS)
Duzik, Adam J.; Choi, Sang H.
2016-01-01
Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.
1992-01-01
Noise and current-voltage characterization of complementary heterojunction field-effect transistor (CHFET) structures below 8 K are presented. It is shown that the CHFET exhibits normal transistor operation down to 6 K. Some of the details of the transistor operation, such as the gate-voltage dependence of the channel potential, are analyzed. The gate current is examined and is shown to be due to several mechanisms acting in parallel. These include field-emission and thermionic-field-emission, conduction through a temperature-activated resistance, and thermionic emission. The input referred noise for n-channel CHFETs is presented and discussed. The noise has the spectral dependence of 1/f noise, but does not exhibit the usual area dependence.
NASA Technical Reports Server (NTRS)
Davis, P. R.; Swanson, L. W.
1980-01-01
Thermal faceting was observed for the high index planes of LaB6. The (100), (110), and (111) planes were found to be the most thermodynamically stable faces in vacuum in a study of electrode materials for thermionic emitters. The properties of adsorbed carbon, cesium, and cesium-oxygen layers were investigated on LaB6 single crystal surfaces as well as on Zr/0/W(100) and W(100). Cesium was found to increase electron reflection near the collision threshold on LaB6(100) and W(100) and to decrease the reflection on Zr/0/W(100). This difference may be explained by the unusually high threshold reflection coefficient of Zr/0/W without adsorbed cesium.
Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube
NASA Technical Reports Server (NTRS)
Swanson, L. W.; Davis, P. R.; Schwind, G. A.
1984-01-01
The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Status report on nuclear electric propulsion systems
NASA Technical Reports Server (NTRS)
Stearns, J. W.
1975-01-01
Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.
Electronic computers and telephone exchanges
NASA Astrophysics Data System (ADS)
Flowers, T. H.
1980-01-01
A retrospective on the telephone, with emphasis on development of digital methods, is presented. Starting with its invention in 1876, major breakthroughs in transmission and switching circuitry are reviewed. The thermionic valve (1917), the Eccles-Jordan trigger circuit (1921), copper oxide rectifiers (1920's), and the gas-tube binary counter (1931) are highlighted. The evolution of logic design in telephone exchanges and the interaction this had with electronic computers is then traced up to the appearance of COLOSSUS, a specialized electronic computer used for cryptanalysis (1943).
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
1999-01-01
A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paxton, W. F., E-mail: william.f.paxton@vanderbilt.edu; Howell, M.; Kang, W. P.
2014-06-21
The desorption kinetics of deuterium from polycrystalline chemical vapor deposited diamond films were characterized by monitoring the isothermal thermionic emission current behavior. The reaction was observed to follow a first-order trend as evidenced by the decay rate of the thermionic emission current over time which is in agreement with previously reported studies. However, an Arrhenius plot of the reaction rates at each tested temperature did not exhibit the typical linear behavior which appears to contradict past observations of the hydrogen (or deuterium) desorption reaction from diamond. This observed deviation from linearity, specifically at lower temperatures, has been attributed to non-classicalmore » processes. Though no known previous studies reported similar deviations, a reanalysis of the data obtained in the present study was performed to account for tunneling which appeared to add merit to this hypothesis. Additional investigations were performed by reevaluating previously reported data involving the desorption of hydrogen (as opposed to deuterium) from diamond which further indicated this reaction to be dominated by tunneling at the temperatures tested in this study (<775 °C). An activation energy of 3.19 eV and a pre-exponential constant of 2.3 × 10{sup 12} s{sup −1} were determined for the desorption reaction of deuterium from diamond which is in agreement with previously reported studies.« less
Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector
NASA Astrophysics Data System (ADS)
Olawole, Olukunle C.; De, Dilip Kumar
2018-01-01
Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N.
2015-10-15
The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. Whenmore » the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)« less
is shown that the maximum ac efficiency is equal to approximately 70% of the corresponding dc value. An illustrative example, including a proposed design for a rather unconventional transformer, is appended. (Author)
Harvesting Electricity From Wasted Heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwede, Jared
Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.
Harvesting Electricity From Wasted Heat
Schwede, Jared
2018-01-16
Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.
NASA Astrophysics Data System (ADS)
Huang, Wenchao; Xia, Hui; Wang, Shaowei; Deng, Honghai; Wei, Peng; Li, Lu; Liu, Fengqi; Li, Zhifeng; Li, Tianxin
2011-12-01
Scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) both are capable of mapping the 2-demensional carrier distribution in semiconductor device structures, which is essential in determining their electrical and optoelectronic performances. In this work, cross-sectional SCM1,2 is used to study the InGaAs/InP P-i-N junctions prepared by area-selective p-type diffusion. The diffusion lengths in the depth as well as the lateral directions are obtained for junctions under different window sizes in mask, which imply that narrow windows may result in shallow p-n junctions. The analysis is beneficial to design and fabricate focal plane array of near infrared photodetectors with high duty-cycle and quantum efficiency. On the other hand, SSRM provides unparalleled spatial resolution (<10 nm) in electrical characterization3 that is demanded for studying low-dimensional structures. However, to derive the carrier density from the measured local conductance in individual quantum structures, reliable model for SSRM is necessary but still not well established. Based on the carrier concentration related transport mechanisms, i.e. thermionic emission and thermionic field emission4,5, we developed a numerical model for the tip-sample Schottky contact4. The calculation is confronted with SSRM study on the dose-calibrated quantum wells (QWs).
Tunneling contact IGZO TFTs with reduced saturation voltages
NASA Astrophysics Data System (ADS)
Wang, Longyan; Sun, Yin; Zhang, Xintong; Zhang, Lining; Zhang, Shengdong; Chan, Mansun
2017-04-01
We report a tunneling contact indium-gallium-zinc oxide (IGZO) thin film transistor (TFT) with a graphene interlayer technique in this paper. A Schottky junction is realized between a metal and IGZO with a graphene interlayer, leading to a quantum tunneling of the TFT transport in saturation regions. This tunneling contact enables a significant reduction in the saturation drain voltage Vdsat compared to that of the thermionic emission TFTs, which is usually equal to the gate voltage minus their threshold voltages. Measured temperature independences of the subthreshold swing confirm a transition from the thermionic emission to quantum tunneling transports depending on the gate bias voltages in the proposed device. The tunneling contact TFTs with the graphene interlayer have implications to reduce the power consumptions of certain applications such as the active matrix OLED display.
Electric energy production by particle thermionic-thermoelectric power generators
NASA Technical Reports Server (NTRS)
Oettinger, P. E.
1980-01-01
Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.
Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roul, Basanta; Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560013
InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TEmore » and TFE models were 1.08 and 1.43 eV, respectively.« less
NASA Astrophysics Data System (ADS)
Saisut, J.; Kusoljariyakul, K.; Rimjaem, S.; Kangrang, N.; Wichaisirimongkol, P.; Thamboon, P.; Rhodes, M. W.; Thongbai, C.
2011-05-01
The Plasma and Beam Physics Research Facility at Chiang Mai University has established a THz facility to focus on the study of ultra-short electron pulses. Short electron bunches can be generated from a system that consists of a radio-frequency (RF) gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator as a post-acceleration section. The alpha magnet is a conventional and simple instrument for low-energy electron bunch compression. With the alpha magnet constructed in-house, several hundred femtosecond electron bunches for THz radiation production can be generated from the thermionic RF gun. The construction and performance of the alpha magnet, as well as some experimental results, are presented in this paper.
Bohm velocity in the presence of a hot cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palacio Mizrahi, J. H.; Krasik, Ya. E.
2013-08-15
The spatial distribution of the plasma and beam electrons in a region whose extension from a hot cathode is larger than the Debye length, but smaller than the electron mean free path, is analyzed. In addition, the influence of electrons thermionically emitted from a hot cathode and the ratio of electron-to-ion mass on the Bohm velocity and on the ion and electron densities at the plasma-sheath boundary in a gas discharge are studied. It is shown that thermionic emission has the effect of increasing the Bohm velocity, and this effect is more pronounced for lighter ions. In addition, it ismore » shown that the Bohm velocity cannot be increased to more than 24% above its value when there is no electron emission.« less
Development of a High Average Current Thermionic Injector for Free-Electron Lasers
2013-02-11
high average power FEL should produce high ...The cathode heater is powered by a 60 Hz AC feed that floats on the high voltage pulse... high -‐voltage power supply for the IOT gun is a 70 kV Rockwell hard tube modulator with
NASA Astrophysics Data System (ADS)
Garguilo, Jacob
This study explores electronic transitions in carbon based materials through the use of a custom built, non rastering electron emission microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The materials examined fall into two groups, melanosome films isolated from the human body and polycrystalline diamond tip arrays. A novel technique for determining the photothreshold of a heterogeneous material on a microscopic or smaller scale is developed and applied to melanosome films isolated from the hair, eyes, and brain of human donors. The conversion of the measured photothreshold on the vacuum scale to an electrochemical oxidation potential is discussed and the obtained data is considered based on this conversion. Pheomelanosomes isolated from human hair are shown to have significantly lower photoionization energy than eumelanosomes, indicating their likelihood as sources of oxidative stress. The ionization energies of the hair melanosomes are checked with complimentary procedures. Ocular melanosomes from the retinal pigment epithelium are measured as a function of patient age and melanosome shape. Lipofuscin, also found in the eye, is examined with the same microscopy technique and shown to have a significantly lower ionization threshold than RPE melanosomes. Neuromelanin from the substantia nigra is also examined and shown to have an ionization threshold close to that of eumelanin. A neuromelanin formation model is proposed based on these results. Polycrystalline diamond tip arrays are examined for their use as thermionic energy converter emitters. Thermionic energy conversion is accomplished through the combination of a hot electron emitter in conjunction with a somewhat cooler electron collector. The generated electron current can be used to do work in an external load. It is shown that the tipped structures of these samples result in enhanced emission over the surrounding flat areas, which may prove valuable in limiting the negative space charge effect in vacuum energy converting devices. Additionally, the effects of exceeding a threshold temperature for the films are shown, establishing a maximum operating regime for any device which incorporates hydrogen terminated diamond.
Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team
2017-12-01
Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.
Feasibility study of oxygen-dispensing emitters for thermionic converters, phase 1
NASA Technical Reports Server (NTRS)
Desteese, J. G.
1972-01-01
A metal/ceramic Marchuk tube was used to measure work functions of oxygen-doped tantalum, to determine applicability of the material to plasma-mode thermionic converters. Oxygen-doped tantalum was shown to increase in work function monotonically with oxygen doping in the range 0.1 to 0.3 atomic percent. Oxygenated test emitters were run at an average temperature of 2165 K and a T/T sub Cs ratio -5.8 to observe the influence of oxygen depletion. Bare work function decreased with outgassing of oxygen. Projections were made based on outgassing kinetics and area/volume ratios to calculate the longevity of oxygen doping in a practical converter. Calculations indicated that the program goal of 10,000 hr could be achieved at 1800 K with an initial oxygen doping of 1 atomic percent and a practical emitter area/volume ratio.
Delayed Ionization in Transition Metal Carbon Clusters
NASA Astrophysics Data System (ADS)
Kooi, S. E.; Castleman, A. W., Jr.
1997-03-01
Mass spectrometric studies of several single and binary transition metal carbon cluster systems, produced in a laser vaporization source, reveal several species that undergo delayed ionization. Pulsed extraction and blocking electric fields, in a time-of-flight mass spectrometer, allow the study of delayed ionization over a time window after excitation with a pulsed laser. In systems where metallocarbohedrenes (Met-Cars) are produced, the Met-Cars are the dominate delayed species. Delayed ionization of binary metal Met-Cars Ti_xM_yC_12 (M=Zr,Nb,Y; x+y=8) is dependent on the ratio of the two metals. Delayed behavior is investigated over a range of photoionization wavelengths and fluences. In order to determine the degree to which the delayed ionization is thermionic in character, the experimental data have been compared to Klots's model for thermionic emission from small particles.
Current transport across the pentacene/CVD-grown graphene interface for diode applications.
Berke, K; Tongay, S; McCarthy, M A; Rinzler, A G; Appleton, B R; Hebard, A F
2012-06-27
We investigate the electronic transport properties across the pentacene/graphene interface. Current transport across the pentacene/graphene interface is found to be strikingly different from transport across pentacene/HOPG and pentacene/Cu interfaces. At low voltages, diodes using graphene as a bottom electrode display Poole–Frenkel emission, while diodes with HOPG and Cu electrodes are dominated by thermionic emission. At high voltages conduction is dominated by Poole–Frenkel emission for all three junctions. We propose that current across these interfaces can be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Results presented not only suggest that graphene provides low resistive contacts to pentacene where a flat-laying orientation of pentacene and transparent metal electrodes are desired but also provides further understanding of the physics at the organic semiconductor/graphene interface.
NASA Astrophysics Data System (ADS)
Chang, Hsun-Ming; Fan, Kai-Lin; Charnas, Adam; Ye, Peide D.; Lin, Yu-Ming; Wu, Chih-I.; Wu, Chao-Hsin
2018-04-01
Compared to graphene and MoS2, studies on metal contacts to black phosphorus (BP) transistors are still immature. In this work, we present the experimental analysis of titanium contacts on BP based upon the theory of thermionic emssion. The Schottky barrier height (SBH) is extracted by thermionic emission methods to analyze the properties of Ti-BP contact. To examine the results, the band gap of BP is extracted followed by theoretical band alignment by Schottky-Mott rule. However, an underestimated SBH is found due to the hysteresis in electrical results. Hence, a modified SBH extraction for contact resistance that avoids the effects of hysteresis is proposed and demonstrated, showing a more accurate SBH that agrees well with theoretical value and results of transmission electron microscopy and energy-dispersive x-ray spectroscopy.
Thermionic field emission in gold nitride Schottky nanodiodes
NASA Astrophysics Data System (ADS)
Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.
2012-11-01
We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.
Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts.
Kwak, Joon Young; Hwang, Jeonghyun; Calderon, Brian; Alsalman, Hussain; Munoz, Nini; Schutter, Brian; Spencer, Michael G
2014-08-13
The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated. Temperature-dependent I-V measurements indicate the concentration of unintentional donors in exfoliated MoS2 to be 3.57 × 10(11) cm(-2), while the ionized donor concentration is determined as 3.61 × 10(10) cm(-2). The temperature-dependent measurements also reveal two dominant donor levels, one at 0.27 eV below the conduction band and another located at 0.05 eV below the conduction band. The I-V characteristics are asymmetric with drain bias voltage and dependent on the junction used for the source or drain contact. I-V characteristics of the device are consistent with a long channel one-dimensional field-effect transistor model with Schottky contact. Utilizing devices, which have both graphene/MoS2 and Ti/MoS2 contacts, the Schottky barrier heights of both interfaces are measured. The charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bias voltage and temperature. On the basis of a thermionic field emission model, the barrier height at the graphene/MoS2 interface was determined to be 0.23 eV, while the barrier height at the Ti/MoS2 interface was 0.40 eV. The value of Ti/MoS2 barrier is higher than previously reported values, which did not include the effects of thermionic field emission.
Models for Multimegawatt Space Power Systems
1990-06-01
devices such as batteries, flywheels, and large, cryogenic inductors. Turbines with generators, thermionics, thermoelectrics, alkali metal...NTCA Weapons Laboratory Kirtland AFB, NM 87117 C. Perry Bankston California Institute of Technology Jet Propulsion Laboratory 4800 Oak Grove
Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles
NASA Astrophysics Data System (ADS)
Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.
2017-02-01
Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.
RF study and 3-D simulations of a side-coupling thermionic RF-gun
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.
2014-02-01
A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.
Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method
NASA Astrophysics Data System (ADS)
Ciupină, Victor; Lungu, Cristian Petrica; Vladoiu, Rodica; Prodan, Gabriel; Porosnicu, Corneliu; Belc, Marius; Stanescu, Iuliana M.; Vasile, Eugeniu; Rughinis, Razvan
2014-01-01
Thermionic vacuum arc (TVA) method is currently developing, in particular, to work easily with heavy fusible material for the advantage presented by control of directing energy for the elements forming a plasma. The category of heavy fusible material can recall C and W (high-melting point materials), and are difficult to obtain or to control by other means. Carbon is now used in many areas of special mechanical, thermal, and electrical properties. We refer in particular to high-temperature applications where unwanted effects may occur due to oxidation. Changed properties may lead to improper functioning of the item or device. For example, increasing the coefficient of friction may induce additional heat on moving items. One solution is to protect the item in question by coating with proper materials. Silicon carbide (SiC) was chosen mainly due to compatibility with coated carbon substrate. Recently, SiC has been used as conductive transparent window for optical devices, particularly in thin film solar cells. Using the TVA method, SiC coatings were obtained as thin films (multilayer structures), finishing with a thermal treatment up to 1000°C. Structural properties and oxidation behavior of the multilayer films were investigated, and the measurements showed that the third layer acts as a stopping layer for oxygen. Also, the friction coefficient of the protected films is lower relative to unprotected carbon films.
X-ray generation using carbon nanotubes
NASA Astrophysics Data System (ADS)
Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.
2015-01-01
Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.
Summary and evaluation of the Strategic Defense Initiative Space Power Architecture Study
NASA Technical Reports Server (NTRS)
Edenburn, M. (Editor); Smith, J. M. (Editor)
1989-01-01
The Space Power Architecture Study (SPAS) identified and evaluated power subsystem options for multimegawatt electric (MMWE) space based weapons and surveillance platforms for the Strategic Defense Initiative (SDI) applications. Steady state requirements of less than 1 MMWE are adequately covered by the SP-100 nuclear space power program and hence were not addressed in the SPAS. Four steady state power systems less than 1 MMWE were investigated with little difference between them on a mass basis. The majority of the burst power systems utilized H(2) from the weapons and were either closed (no effluent), open (effluent release) or steady state with storage (no effluent). Closed systems used nuclear or combustion heat source with thermionic, Rankine, turboalternator, fuel cell and battery conversion devices. Open systems included nuclear or combustion heat sources using turboalternator, magnetohydrodynamic, fuel cell or battery power conversion devices. The steady state systems with storage used the SP-100 or Star-M reactors as energy sources and flywheels, fuel cells or batteries to store energy for burst applications. As with other studies the open systems are by far the lightest, most compact and simplist (most reliable) systems. However, unlike other studies the SPAS studied potential platform operational problems caused by effluents or vibration.
Radiatively coupled thermionic and thermoelectric power system concept
NASA Technical Reports Server (NTRS)
Shimada, K.; Ewell, R.
1981-01-01
The study presented showed that the large power systems (about 100 kW) utilizing radiatively coupled thermionic or thermoelectric converters could be designed so that the power subsystem could be contained in a Space Shuttle bay as a part of an electrically propelled spacecraft. The radiatively coupled system requires a large number of individual converters since the transferred heat is smaller than with the conductively coupled system, but the advantages of the new system indicates merit for further study. The advantages are (1) good electrical isolation between converters and the heat source, (2) physical separation of converters from the heat source (making the system fabrication manageable), and (3) elimination of radiator heat pipes, which are required in an all-heat-pipe power system. In addition, the specific weight of the radiatively coupled power systems favorably compares with that of the all-heat-pipe systems.
NASA Astrophysics Data System (ADS)
D'Abramo, Germano
2013-05-01
In the present paper, several issues concerning the second law of thermodynamics, Maxwell's demon and Landauer's principle are dealt with. I argue that if the demon and the system on which it operates without dissipation of external energy are made of atoms and molecules (gas, liquid or solid) in thermal equilibrium (whose behaviour is described by a canonical distribution), then the unavoidable reason why the demon cannot successfully operate resides in the ubiquity of thermal fluctuations and friction. Landauer's principle appears to be unnecessary. I also suggest that if the behaviour of the demon and the system on which it acts is not always describable by a canonical distribution, as would happen for instance with the ballistic motion of electrons at early stages of thermionic emission, then a successful working demon cannot be ruled out a priori. A critical review of two recent experiments on thermionic emission Maxwell's demons is also given.
Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure
NASA Astrophysics Data System (ADS)
Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.
2018-02-01
We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.
NASA Technical Reports Server (NTRS)
Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.
1977-01-01
Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
Multiphoton laser ionization for energy conversion in barium vapor
NASA Astrophysics Data System (ADS)
Makdisi, Y.; Kokaj, J.; Afrousheh, K.; Mathew, J.; Nair, R.; Pichler, G.
2013-03-01
We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9 V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79 nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions.
The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique
NASA Astrophysics Data System (ADS)
Mohammadigharehbagh, Reza; Pat, Suat; Musaoglu, Caner; Korkmaz, Şadan; Özen, Soner
2018-02-01
Cr doped ZnO thin films were prepared onto glass and polyethylene terephthalate (PET) substrates using thermionic vacuum arc. XRD patterns show the polycrystalline nature of the films. Cr, Zn, ZnO and Cr2O3 were detected in the layers. The mean crystallite sizes of the films were calculated about 20 nm for the films onto glass and PET substrates. The maximum dislocation density and internal strain values of the films are calculated. According to the optical analysis, the average transmittance and reflectance of the films were found to be approximately 53% and 16% for glass and PET substrates, respectively. The mean refractive index of the layer decreased to 2.15 from 2.38 for the PET substrate. The band gap values of the Cr-doped ZnO thin films were determined as 3.10 and 3.13 eV for glass and PET substrates.
High efficiency and non-Richardson thermionics in three dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Huang, Sunchao; Sanderson, Matthew; Zhang, Yan; Zhang, Chao
2017-10-01
Three dimensional (3D) topological materials have a linear energy dispersion and exhibit many electronic properties superior to conventional materials such as fast response times, high mobility, and chiral transport. In this work, we demonstrate that 3D Dirac materials also have advantages over conventional semiconductors and graphene in thermionic applications. The low emission current suffered in graphene due to the vanishing density of states is enhanced by an increased group velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons in 3D Dirac materials is twice of that in conventional materials with a parabolic electron energy dispersion. As a result, 3D Dirac materials have the best thermal efficiency or coefficient of performance when compared to conventional semiconductors and graphene. The generalized Richardson-Dushman law in 3D Dirac materials is derived. The law exhibits the interplay of the reduced density of states and enhanced emission velocity.
Spring structure for a thermionic converter emitter support arrangement
Allen, D.T.
1992-03-17
A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.
Spring structure for a thermionic converter emitter support arrangement
Allen, Daniel T.
1992-01-01
A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.
Thermionic converter emitter support arrangement
Allen, Daniel T.
1990-01-01
A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.
Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure.
Bescond, M; Logoteta, D; Michelini, F; Cavassilas, N; Yan, T; Yangui, A; Lannoo, M; Hirakawa, K
2018-02-14
We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green's function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.
Life Testing and Diagnostics of a Planar Out-of-Core Thermionic Converter
NASA Astrophysics Data System (ADS)
Thayer, Kevin L.; Ramalingam, Mysore L.; Young, Timothy J.; Lamp, Thomas R.
1994-07-01
This paper details the design and performance of an automated computer data acquisition system for a planar, out-of-core thermionic converter with CVD rhenium electrodes. The output characteristics of this converter have been mapped for emitter temperatures ranging from approximately 1700K to 2000K, and life testing of the converter is presently being performed at the design point of operation. An automated data acquisition system has been constructed to facilitate the collection of current density versus output voltage (J-V) and temperature data from the converter throughout the life test. This system minimizes the amount of human interaction necessary during the lifetest to measure and archive the data and present it in a usable form. The task was accomplished using a Macintosh Ilcx computer, two multiple-purpose interface boards, a digital oscilloscope, a sweep generator, and National Instrument's LabVIEW application software package.
NASA Technical Reports Server (NTRS)
Manista, E. J.
1972-01-01
The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.
NASA Astrophysics Data System (ADS)
Among the topics discussed are: advanced energy conversion concepts, power sources for aircraft and spacecraft, alternate fuels for industrial and vehicular applications, biomass-derived fuels, electric vehicle design and development status, electrochemical energy conversion systems, electric power generation cycles, energy-efficient industrial processes, and energy policy and system analysis. Also discussed are advanced methods for energy storage and transport, fossil fuel conversion systems, geothermal energy system development and performance, novel and advanced heat engines, hydrogen fuel-based energy systems, MHD technology development status, nuclear energy systems, solar energy conversion methods, advanced heating and cooling systems, Stirling cycle device development, terrestrial photovoltaic systems, and thermoelectric and thermionic systems.
Negative space charge effects in photon-enhanced thermionic emission solar converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segev, G.; Weisman, D.; Rosenwaks, Y.
2015-07-06
In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less
Doyle, S J; Salvador, P R; Xu, K G
2017-11-01
The paper examines the effect of exposure time of Langmuir probes in an atmospheric premixed methane-air flame. The effects of probe size and material composition on current measurements were investigated, with molybdenum and tungsten probe tips ranging in diameter from 0.0508 to 0.1651 mm. Repeated prolonged exposures to the flame, with five runs of 60 s, resulted in gradual probe degradations (-6% to -62% area loss) which affected the measurements. Due to long flame exposures, two ion saturation currents were observed, resulting in significantly different ion densities ranging from 1.16 × 10 16 to 2.71 × 10 19 m -3 . The difference between the saturation currents is caused by thermionic emissions from the probe tip. As thermionic emission is temperature dependent, the flame temperature could thus be estimated from the change in current. The flame temperatures calculated from the difference in saturation currents (1734-1887 K) were compared to those from a conventional thermocouple (1580-1908 K). Temperature measurements obtained from tungsten probes placed in rich flames yielded the highest percent error (9.66%-18.70%) due to smaller emission current densities at lower temperatures. The molybdenum probe yielded an accurate temperature value with only 1.29% error. Molybdenum also demonstrated very low probe degradation in comparison to the tungsten probe tips (area reductions of 6% vs. 58%, respectively). The results also show that very little exposure time (<5 s) is needed to obtain a valid ion density measurement and that prolonged flame exposures can yield the flame temperature but also risks damage to the Langmuir probe tip.
Graphene for thermoelectronic solar energy conversion
NASA Astrophysics Data System (ADS)
De, Dilip K.; Olukunle, Olawole C.
2017-08-01
Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.
Development of chemically vapor deposited rhenium emitters of (0001) preferred crystal orientation
NASA Technical Reports Server (NTRS)
Yang, L.; Hudson, R. G.
1973-01-01
Rhenium thermionic emitters were prepared by the pyrolysis of rhenium chlorides formed by the chlorination of rhenium pellets. The impurity contents, microstructures, degrees of (0001) preferred crystal orientation, and vacuum electron work functions of these emitters were determined as a function of deposition parameters, such as substrate temperature, rhenium pellet temperature and chlorine flow rate. A correlation between vacuum electron work function and degree of (0001) preferred crystal orientation was established. Conditions for depositing porosity-free rhenium emitters of high vacuum electron work functions were defined. Finally, three cylindrical rhenium emitters were prepared under the optimum deposition conditions.
Solar thermal power generation. A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1979-01-01
Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.
Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode
NASA Astrophysics Data System (ADS)
Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi
2018-04-01
A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.
2012-11-28
strong linear absorption giving rise to thermionic emission, resulting in avalanche ionization and thus, nanoplasmas that absorb and scatter the...point of water is reached before the sublimation point of carbon black. If nanoplasmas are the source of the nonlinear absorption seen in CBS-1, then
Cesium-diode performances from the 1963-to-1971 Thermionic Conversion Specialist Conferences
NASA Technical Reports Server (NTRS)
Morris, J. F.
1972-01-01
Indexes and summaries of the conference papers containing cesium-diode results are presented. Lists of converter materials, geometries, conditions, outputs, and lifetimes accompany the references. Simple chemical designations for emitters, collectors, and additives direct the reader to appropriate selections.
High temperature fuel/emitter system for advanced thermionic fuel elements
NASA Astrophysics Data System (ADS)
Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny
1997-01-01
Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.
Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode.
Bücker, K; Picher, M; Crégut, O; LaGrange, T; Reed, B W; Park, S T; Masiel, D J; Banhart, F
2016-12-01
High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. Copyright © 2016 Elsevier B.V. All rights reserved.
Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team
2018-02-01
Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.
High temperature electronic gain device
McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.
1979-01-01
An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A. V.; Agustsson, R.; Berg, W. J.
We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less
A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current
NASA Astrophysics Data System (ADS)
Chien, Wei-Chih; Chen, Yi-Chou; Lee, Feng-Ming; Lin, Yu-Yu; Lai, Erh-Kun; Yao, Yeong-Der; Gong, Jeng; Horng, Sheng-Fu; Yeh, Chiao-Wen; Tsai, Shih-Chang; Lee, Ching-Hsiung; Huang, Yu-Kai; Chen, Chun-Fu; Kao, Hsiao-Feng; Shih, Yen-Hao; Hsieh, Kuang-Yeu; Lu, Chih-Yuan
2011-04-01
The behavior of WOX resistive random access memory (ReRAM) is a strong function of the top electrode material, which controls the conduction mechanism and the forming process. When using a top electrode with low work function, the current conduction is limited by space charges. On the other hand, the mechanism becomes thermionic emission for devices with a high work function top electrode. These (thermionic) devices are also found to have higher initial resistance, reduced forming current, and larger resistance window. Based on these insights and considering the compatibility to complementary metal-oxide-semiconductor (CMOS) process, we proposed to use Ni as the top electrode for high performance WOX ReRAM devices. The new Ni/WOX/W device can be switched at a low current density less than 8×105 A/cm2, with RESET/SET resistance ratio greater than 100, and extremely good data retention of more than 300 years at 85 °C.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Burns, R. K.
1982-01-01
The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brachmann, A.; Clendenin, J.E.; Maruyama, T.
2006-02-27
The GaAsP/GaAs strained superlattice photocathode structure has proven to be a significant advance for polarized electron sources operating with high peak currents per microbunch and relatively low duty factor. This is the characteristic type of operation for SLAC and is also planned for the ILC. This superlattice structure was studied at SLAC [1], and an optimum variation was chosen for the final stage of E-158, a high-energy parity violating experiment at SLAC. Following E-158, the polarized source was maintained on standby with the cathode being re-cesiated about once a week while a thermionic gun, which is installed in parallel withmore » the polarized gun, supplied the linac electron beams. However, in the summer of 2005, while the thermionic gun was disabled, the polarized electron source was again used to provide electron beams for the linac. The performance of the photocathode 24 months after its only activation is described and factors making this possible are discussed.« less
Thermionic converter performance with oxide collectors
NASA Technical Reports Server (NTRS)
Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.
1977-01-01
Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.
NASA Astrophysics Data System (ADS)
Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki
2018-04-01
We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.
Diminiode thermionic conversion with 111-iridium electrodes
NASA Technical Reports Server (NTRS)
Koeger, E. W.; Bair, V. L.; Morris, J. F.
1976-01-01
Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA.
On thermionic emission and the use of vacuum tubes in the advanced physics laboratory
NASA Astrophysics Data System (ADS)
Angiolillo, Paul J.
2009-12-01
Two methods are outlined for measuring the charge-to-mass ratio e /me of the electron using thermionic emission as exploited in vacuum tube technology. One method employs the notion of the space charge in the vacuum tube diode as described by the Child-Langmuir equation; the other method uses the electron trajectories in vacuum tube pentodes with cylindrical electrodes under conditions of orthogonally related electric and magnetic fields (the Hull magnetron method). The vacuum diode method gave e /me=1.782±0.166×10+11 C/kg (averaged over the vacuum diodes studied), and the Hull magnetron method gave e /me=1.779±0.208×10+11 C/kg (averaged over both pentodes and the anode voltages studied). These methods afford opportunities for students to determine the e /me ratio without using the Bainbridge tube method and to become familiar with phenomena not normally covered in a typical experimental methods curriculum.
Photoemission experiments of a large area scandate dispenser cathode
NASA Astrophysics Data System (ADS)
Zhang, Huang; Liu, Xing-guang; Chen, Yi; Chen, De-biao; Jiang, Xiao-guo; Yang, An-min; Xia, Lian-sheng; Zhang, Kai-zhi; Shi, Jin-shui; Zhang, Lin-wen
2010-09-01
A 100-mm-diameter scandate dispenser cathode was tested as a photocathode with a 10 ns Nd:YAG laser (266 nm) on an injector test stand for linear induction accelerators. This thermionic dispenser cathode worked at temperatures ranging from room temperature to 930 °C (below or near the thermionic emission threshold) while the vacuum was better than 4×10 -7 Torr. The laser pulse was synchronized with a 120 ns diode voltage pulse stably and they were in single pulse mode. Emission currents were measured by a Faraday cup. The maximum peak current collected at the anode was about 100 A. The maximum quantum efficiency measured at low laser power was 2.4×10 -4. Poisoning effect due to residual gas was obvious and uninterrupted heating was needed to keep cathode's emission capability. The cathode was exposed to air one time between experiments and recovered after being reconditioned. Photoemission uniformity of the cathode was also explored by changing the laser spot's position.
Solar energy conversion with photon-enhanced thermionic emission
NASA Astrophysics Data System (ADS)
Kribus, Abraham; Segev, Gideon
2016-07-01
Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.
Lanthanum hexaboride for solar energy applications.
Sani, Elisa; Mercatelli, Luca; Meucci, Marco; Zoli, Luca; Sciti, Diletta
2017-04-06
We investigate the optical properties of LaB 6 - based materials, as possible candidates for solid absorbers in Concentrating Solar Power (CSP) systems. Bulk LaB 6 materials were thermally consolidated by hot pressing starting from commercial powders. To assess the solar absorbance and spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the ultraviolet to the mid-infrared, considering different compositions, porosities and surface roughnesses. Thermal emittance at around 1100 K has been measured. Experimental results showed that LaB 6 can have a solar absorbance comparable to that of the most advanced solar absorber material in actual plants such as Silicon Carbide, with a higher spectral selectivity. Moreover, LaB 6 has also the appealing characteristics to be a thermionic material, so that it could act at the same time both as direct high-temperature solar absorber and as electron source, significantly reducing system complexity in future concentrating solar thermionic systems and bringing a real innovation in this field.
NASA Astrophysics Data System (ADS)
Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel
2017-11-01
The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.
Smirnov, A. V.; Agustsson, R.; Berg, W. J.; ...
2015-09-29
We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lingqin, E-mail: lqhuang@jsnu.edu.cn, E-mail: dwang121@dlut.edu.cn; Wang, Dejun, E-mail: lqhuang@jsnu.edu.cn, E-mail: dwang121@dlut.edu.cn
The barrier characteristics of Pt contacts to relatively highly doped (∼1 × 10{sup 18 }cm{sup −3}) 4H-SiC were investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements in the temperature range of 160–573 K. The barrier height and ideally factor estimated from the I-V characteristics based on the thermionic emission model are abnormally temperature-dependent, which can be explained by assuming the presence of a double Gaussian distribution (GD) of inhomogeneous barrier heights. However, in the low temperature region (160–323 K), the obtained mean barrier height according to GD is lower than the actual mean value from C-V measurement. The values of barrier height determined from themore » thermionic field emission model are well consistent with those from the C-V measurements, which suggest that the current transport process could be modified by electron tunneling at low temperatures.« less
NASA Astrophysics Data System (ADS)
Durmuş, Perihan; Altindal, Şemsettin
2017-10-01
In this study, electrical parameters of the Al/Bi4Ti3O12/p-Si metal-ferroelectric-semiconductor (MFS) structure and their temperature dependence were investigated using current-voltage (I-V) data measured between 120 K and 300 K. Semi-logarithmic I-V plots of the structure revealed that fabricated structure presents two-diode behavior that leads to two sets of ideality factor, reverse saturation current and zero-bias barrier height (BH) values. Obtained results of these parameters suggest that current conduction mechanism (CCM) deviates strongly from thermionic emission theory particularly at low temperatures. High values of interface states and nkT/q-kT/q plot supported the idea of deviation from thermionic emission. In addition, ln(I)-ln(V) plots suggested that CCM varies from one bias region to another and depends on temperature as well. Series resistance values were calculated using Ohm’s law and Cheungs’ functions, and they decreased drastically with increasing temperature.
Terrella for Advanced Undergraduate Physics Laboratory
NASA Astrophysics Data System (ADS)
Reardon, Jim; Endrizzi, Douglass; Forest, Cary; Oliva, Steven
2017-10-01
A terrella has been in use in the Advanced Laboratory for undergraduates in the Physics Department at the University of Wisconsin-Madison since spring 2016. Our terrella is a permanent magnet on a pedestal which may be biased in various ways. In the vacuum region B <= 200 gauss; for typical operation p10-4 Torr. Plasma may be created by thermionic emission from a filament or by an S-band magnetron. Students are guided through diagnosis of the terrella plasma using spectroscopy and swept Langmuir probes. A suite of supporting experiments has been developed to introduce basic plasma phenomena, such as the Child-Langmuir law. University of Wisconsin-Madison.
Femtosecond electron bunches, source and characterization
NASA Astrophysics Data System (ADS)
Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M. W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.
2008-03-01
A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z˜180 fs with (1-6)×10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described.
NASA Technical Reports Server (NTRS)
Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.
1989-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.
Nanostructured Materials Development for Space Power
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.
2003-01-01
There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
Characterization of tungsten films and their hydrogen permeability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemanič, Vincenc, E-mail: vincenc.nemanic@ijs.si; Kovač, Janez; Lungu, Cristian
2014-11-01
Prediction of tritium migration and its retention within fusion reactors is uncertain due to a significant role of the structural disorder that is formed on the surface layer after plasma exposure. Tungsten films deposited by any of the suitable methods are always disordered and contain a high density of hydrogen traps. Experiments on such films with hydrogen isotopes present a suitable complementary method, which improves the picture of the hydrogen interaction with fusion relevant materials. The authors report on the morphology, composition, and structure of tungsten films deposited by the thermionic vacuum arc method on highly permeable Eurofer substrates. Subsequently,more » hydrogen permeation studies through these films were carried out in a wide pressure range from 20 to 1000 mbars at 400 °C. The final value of the permeation coefficient for four samples after 24 h at 400 °C was between P = 3.2 × 10{sup −14} mol H{sub 2}/(m s Pa{sup 0.5}) and P = 1.1 × 10{sup −15} mol H{sub 2}/(m s Pa{sup 0.5}). From the time evolution of the permeation flux, it was shown that diffusivity was responsible for the difference in the steady fluxes, as solubility was roughly the same. This is confirmed by XRD data taken on these samples.« less
Development of multi-pixel x-ray source using oxide-coated cathodes.
Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi
2017-07-07
Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.
Distillation device supplies cesium vapor at constant pressure
NASA Technical Reports Server (NTRS)
Basiulis, A.; Shefsiek, P. K.
1968-01-01
Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.
Performance analysis and an assessment of operational issues of Ya-21U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paramonov, D.V.; El-Genk, M.S.
1996-03-01
Extensive testing of the Soviet made TOPAZ-II space nuclear power system unit designated {open_quote}{open_quote}Ya-21U{close_quote}{close_quote} was conducted both in the USSR (1989{endash}1990) and in the US (August 1993 to March 1995). The unit underwent a total of 15 tests for a cumulative test/operation time of almost 8000 hours. These tests included steady-state operation at different power levels, fast startups and power optimizations. Leaks were detected in some of the Thermionic Fuel Elements (TFEs) after the first test in the US. These leaks that facilitated air incursion into the interelectrode gap caused operational changes in both electric power and conversion efficiency andmore » changed the optimum cesium pressure and load voltage. Additional changes in operational performance were detected following shock and vibration tests performed in August 1994. Test data was examined and analyzed to assess the performance of not only individual TFEs, and also the whole Ya-21U unit, and identify causes for measured operational performance changes; most probable causes were identified and discussed. The Ya-21U unit remained operational throughout extensive testing for 8000 hours at conditions far exceeding the design limits of the TOPAZ-II system. No single TFE was damaged during testing and measured operational performance changes were uniform among working section TFEs. In addition to providing a unique knowledge base for future development and operation of thermionic power systems, the test results testify to the reliability and ruggedness of the TOPAZ-II system design. {copyright} {ital 1996 American Institute of Physics.}« less
Beam Measurement of 11.424 GHz X-Band Linac for Compton Scattering X-ray Source
NASA Astrophysics Data System (ADS)
Natsui, Takuya; Mori, Azusa; Masuda, Hirotoshi; Uesaka, Mitsuru; Sakamoto, Fumito
2010-11-01
An inverse Compton scattering X-ray source for medical applications, consisting of an X-band (11.424 GHz) linac and Q-switched Nd:YAG laser, is currently being developed at the University of Tokyo. This system uses an X-band 3.5-cell thermionic cathode RF gun for electron beam generation. We can obtain a multi-bunch electron beam with this gun. The beam is accelerated to 30 MeV by a traveling-wave accelerating tube. So far, we have verified stable beam generation (around 2.3 MeV) by using the newly designed RF gun and we have succeeded in beam transportation to a beam dump.
NASA Astrophysics Data System (ADS)
McClenahan, Charles R.; Weber, Gerald J.; Omalley, Martin W.; Stewart, Joseph; Rinehart, Larry F.; Buttram, Malcolm T.
1990-10-01
A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 microseconds. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.
NASA Astrophysics Data System (ADS)
Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.
2018-04-01
The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.
Rasor, Ned S.; Britt, Edward J.
1976-01-01
A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.
Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai
2012-06-21
Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.
Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan
2016-01-01
The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic. © Wiley Periodicals, Inc.
Some properties of low-vapor-pressure braze alloys for thermionic converters
NASA Technical Reports Server (NTRS)
Bair, V. L.
1978-01-01
Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.
NASA Astrophysics Data System (ADS)
Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.
2018-07-01
The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized ( I- V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.
Fabrication and life testing of thermionic converters
NASA Technical Reports Server (NTRS)
Yang, L.; Bruce, R.
1973-01-01
An unfueled converter containing a chloride-fluoride duplex tungsten emitter of 4.78 eV vacuum work function was tested for 46,647 hours at an emitter temperature of 1973 K and an electrode power output of about 8 watts/sq cm. The test demonstrated the superior and stable performance of the (110) oriented tungsten emitter at high temperatures. Three 90 UC-10 ZrC(C/U = 1.04, tungsten additive = 4 wt %) fueled converters were fabricated and tested at an emitter temperature of 1873 K. Converter containing chloride-arc-cast duplex tungsten cladding showed temperature thermionic performance and slower rate of performance drop than converter containing chloride-fluoride duplex tungsten cladding. This is believed to be due to the superior fuel component diffusion resistance of the arc-cast tungsten substrate used in the fuel cladding. It was shown that a converter containing a carbide fueled chloride-arc-cast duplex tungsten emitter with an initial electrode power output of 6.80 watts/sq cm could still deliver an electrode power output of 6.16 watts/sq cm after 18,632 hours of operation at an emitter temperature of 1873 K.
A description of the new 3D electron gun and collector modeling tool: MICHELLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petillo, J.; Mondelli, A.; Krueger, W.
1999-07-01
A new 3D finite element gun and collector modeling code is under development at SAIC in collaboration with industrial partners and national laboratories. This development program has been designed specifically to address the shortcomings of current simulation and modeling tools. In particular, although there are 3D gun codes that exist today, their ability to address fine scale features is somewhat limited in 3D due to disparate length scales of certain classes of devices. Additionally, features like advanced emission rules, including thermionic Child's law and comprehensive secondary emission models also need attention. The program specifically targets problems classes including gridded-guns, sheet-beammore » guns, multi-beam devices, and anisotropic collectors. The presentation will provide an overview of the program objectives, the approach to be taken by the development team, and a status of the project.« less
Design and development of a 40 kV pierce electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com
A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
1992-03-15
Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
Etude Experimentale du Photo-Injecteur de Fermilab (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, Jean-Paul
2001-01-01
TESLA (TeV Superconducting Linear Accelerator) is an international collaboration which is studying the feasibility of anmore » $e^+e^-$ collider of energy 0.8 TeV in the center of mass. One of the first goals of this collaboration was to construct a prototype linear accelerator at the DESY Laboratory in Hamburg, the TESLA Test Facility (TTF), in order to establish the technical basis for the collider. Two injectors were developed for TTF: a thermionic injector (developed by LAL-Orsay, IPN-Orsay, and CEA-Saclay) and a photo-injector (developed by Fermilab). The thermionic injector was used from February 1997 to October 1998, and then it was replaced by the photo-injector, which was first operated in December 1998. Another photo-injector, identical to the one delivered to TTF, was installed at Fermilab in the $$A{\\emptyset}$$ Building. The first beam from the latter was produced on 3 March 1999. The photo-injector consists of an RF gun, followed by a superconducting cavity. The RF gun is a 1.625-cell copper cavity with a resonant frequency of 1.3 GHz. The gun contains a cesium telluride ($$C_{s_2}$$Te) photo-cathode, which is illuminated by UV pulses from a Nd:YLF laser. The system can produce trains of 800 bunches of photo-electrons of charge 8 nC per bunch with spacing between bunches of 1$$\\mu$$s and 10 Hz repetition rate. Upon emerging from the RF gun, the beam energy is 4 to 5 MeV; the beam is then rapidly accelerated by the superconducting cavity to an energy of 17 to 20 MeV. Finally, a magnetic chicane, consisting of 4 dipoles, produces longitudinal compression of the electron bunches. This thesis describes the installation of the photo-injector at Fermilab and presents the experimentally-measured characteristics of the injector. The principal measurements were quantum eciency, dark current, transverse emittance, and bunch length. The conclusion from these studies is that the quality of the photo-injector beam fullls the design goals. The photo-injector at Fermilab is presently available for user experiments, including the production of at beams and plasma wake eld acceleration.« less
NASA Astrophysics Data System (ADS)
Baik, Chan-Wook; Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Jeon, So-Yeon; Yu, SeGi; Collins, George; Read, Michael E.; Lawrence Ives, R.; Kim, Jong Min; Hwang, Sungwoo
2015-11-01
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baik, Chan-Wook, E-mail: cw.baik@samsung.com; Ahn, Ho Young; Kim, Yongsung
2015-11-09
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
Barium-Dispenser Thermionic Cathode
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Green, M.; Feinleib, M.
1989-01-01
Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.
Comments on ""Contact Diffusion Interaction of Materials with Cladding''
NASA Technical Reports Server (NTRS)
Morris, J. F.
1972-01-01
A Russian paper by A. A. Babad-Zakhryapina contributes much to the understanding of fuel, clad interactions, and thus to nuclear thermionic technology. In that publication the basic diffusion expression is a simple one. A more general but complicated equation for this mass transport results from the present work. With appropriate assumptions, however, the new relation reduces to Babad-Zakhryapina's version.
NASA Astrophysics Data System (ADS)
Wang, Jinshu; Liu, Wei; Liu, Yanqin; Zhou, Meiling
2005-09-01
As an alternative for thoriated tungsten thermionic cathodes, molybdenum doped with either a single rare earth oxide such as La 2O 3, Y 2O 3 and Sc 2O 3 or a mixture thereof has been produced by powder metallurgy. It is shown that carbonization can greatly improve the emission properties (i.e. emission capability and stability) of RE 2O 3 doped molybdenum due to the formation of a (metallic) rare earth atomic layer on the surface of the cathode by the reduction reaction of molybdenum carbide and rare earth oxide. Among all the carbonized samples, La 2O 3 and Y 2O 3 co-doped molybdenum cathode showed the best performance in emission. In addition, computer pattern recognition technique has been used to optimize the composition of the material and of the cathode preparation technique. We derive the equation of the emission efficiency as a function of cathode composition and carbonization degree. Based on the projecting coordinates obtained from the equation, the optimum projection region was identified, which can serve as guide for the composition and carbonization degree design.
Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures
NASA Astrophysics Data System (ADS)
Ťapajna, M.; Paskaleva, A.; Atanassova, E.; Dobročka, E.; Hušeková, K.; Fröhlich, K.
2010-07-01
Leakage conduction mechanisms in Ru/Ta2O5/SiON/Si structures with rf-sputtered Ta2O5 with thicknesses ranging from 13.5 to 1.8 nm were systematically studied. Notable reaction at the Ru/Ta2O5 interface was revealed by capacitance-voltage measurements. Temperature-dependent current-voltage characteristics suggest the bulk-limited conduction mechanism in all metal-oxide-semiconductor structures. Under gate injection, Poole-Frenkel emission was identified as a dominant mechanism for 13.5 nm thick Ta2O5. With an oxide thickness decreasing down to 3.5 nm, the conduction mechanism transforms to thermionic trap-assisted tunnelling through the triangular barrier. Under substrate injection, the dominant mechanism gradually changes with decreasing thickness from thermionic trap-assisted tunnelling to trap-assisted tunnelling through the triangular barrier; Poole-Frenkel emission was not observed at all. A 0.7 eV deep defect level distributed over Ta2O5 is assumed to be responsible for bulk-limited conduction mechanisms and is attributed to H-related defects or oxygen vacancies in Ta2O5.
Study of a contracted glow in low-frequency plasma-jet discharges operating with argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minotti, F.; Giuliani, L.; Xaubet, M.
2015-11-15
In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium betweenmore » electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.« less
THz and Sub-THz Capabilities of a Table-Top Radiation Source Driven by an RF Thermionic Electron Gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, Alexei V.; Agustsson, R.; Boucher, S.
Design features and experimental results are presented for a sub-mm wave source [1] based on APS RF thermionic electron gun. The setup includes compact alpha-magnet, quadrupoles, sub-mm-wave radiators, and THz optics. The sub-THz radiator is a planar, oversized structure with gratings. Source upgrade for generation frequencies above 1 THz is discussed. The THz radiator will use a short-period undulator having 1 T field amplitude, ~20 cm length, and integrated with a low-loss oversized waveguide. Both radiators are integrated with a miniature horn antenna and a small ~90°-degree in-vacuum bending magnet. The electron beamline is designed to operate different modes includingmore » conversion to a flat beam interacting efficiently with the radiator. The source can be used for cancer diagnostics, surface defectoscopy, and non-destructive testing. Sub-THz experiment demonstrated a good potential of a robust, table-top system for generation of a narrow bandwidth THz radiation. This setup can be considered as a prototype of a compact, laser-free, flexible source capable of generation of long trains of Sub-THz and THz pulses with repetition rates not available with laser-driven sources.« less
Study and modeling of the transport mechanism in a semi insulating GaAs Schottky diode
NASA Astrophysics Data System (ADS)
Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi. R.
2012-09-01
The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of carriers from the semiconductor into the metal, thermionic emission-diffusion (TED) of carriers across the Schottky barrier and quantum-mechanical tunneling through the barrier. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behavior of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase of the process of thermionic electrons and holes, which will in turn the IV characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.
Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, A. G.; Romanov, A. S.; Alperovich, V. L., E-mail: alper@isp.nsc.ru
2014-12-22
Photon-enhanced thermionic emission (PETE), which is promising for increasing the efficiency of solar energy conversion, is studied during cesium deposition on the As- and Ga-rich p-GaAs(001) surfaces and subsequent relaxation in the nonequilibrium Cs overlayer by means of photoemission quantum yield spectroscopy adapted for systems with time-variable parameters. Along with direct photoemission of “hot” electrons excited by light above the vacuum level, the spectra contain PETE contribution of “thermalized” electrons, which are excited below the vacuum level and emit in vacuum due to thermalization up in energy by phonon absorption. Comparing the measured and calculated spectra, the effective electron affinitymore » and escape probabilities of hot and thermalized electrons are obtained as functions of submonolayer Cs coverage. The minima in the affinity and pronounced peaks in the escape probabilities are observed for Cs deposition on both the As- and Ga-rich surfaces. Possible reasons for the low mean values of the electron escape probabilities and for the observed enhancement of the probabilities at certain Cs coverages are discussed, along with the implications for the PETE device realization.« less
Graphene-based vdW heterostructure Induced High-efficiency Thermoelectric Devices
NASA Astrophysics Data System (ADS)
Liang, Shijun; Ang, Lay Kee
Thermoelectric material (TE) can convert the heat into electricity to provide green energy source and its performance is characterized by a figure of merit (ZT) parameter. Traditional TE materials only give ZT equal to around 1 at room temperature. But, it is believed that materials with ZT >3 will find wide applications at this low temperature range. Prior studies have implied that the interrelation between electric conductivity and lattice thermal conductivity renders the goal of engineering ZT of bulk materials to reach ZT >3. In this work, we propose a high-efficiency van del Waals (vdW) heterostructure-based thermionic device with graphene electrodes, which is able to harvest wasted heat (around 400K) based on the newly established thermionic emission law of graphene electrodes instead of Seebeck effect, to boost the efficiency of power generation over 10% around room temperature. The efficiency can be above 20% if the Schottky barrier height and cross-plane lattice thermal conductivity of transition metal dichacogenides (TMD) materials can be fine-engineered. As a refrigerator at 260 K, the efficiency is 50% to 80% of Carnot efficiency. Finally, we identify two TMD materials as the ideal candidates of graphene/TMD/graphene devices based on the state-of-art technology.
JPRS Report, Science & Technology, China: Energy.
1992-03-30
breeder reactors should become...the primary type of reactors . In developing breeder reactors , we should follow the path of using metal fuel. Breeder reactors give us more time to...first reactor used for power generation was a fast reactor : the " Breeder 1" reactor at the Idaho National Reactor Test Center which was used to
Nanoscale solid-state cooling: a review.
Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali
2016-09-01
The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.
Determination of parameters of a nuclear reactor through noise measurements
Cohn, C.E.
1975-07-15
A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, A.; Herrick, R.; Gunn, J.
2007-07-01
Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal ofmore » the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)« less
Next generation fuel irradiation capability in the High Flux Reactor Petten
NASA Astrophysics Data System (ADS)
Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo
2009-07-01
This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Gohar, Yousry
2015-11-01
In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate themore » dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.« less
Research Program of a Super Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less
The Simulator Development for RDE Reactor
NASA Astrophysics Data System (ADS)
Subekti, Muhammad; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
BATAN is proposing the construction of experimental power reactor (RDE reactor) for increasing the public acceptance on NPP development plan, proofing the safety level of the most advanced reactor by performing safety demonstration on the accidents such as Chernobyl and Fukushima, and owning the generation fourth (G4) reactor technology. For owning the reactor technology, the one of research activities is RDE’s simulator development that employing standard equation. The development utilizes standard point kinetic and thermal equation. The examination of the simulator carried out comparison in which the simulation’s calculation result has good agreement with assumed parameters and ChemCAD calculation results. The transient simulation describes the characteristic of the simulator to respond the variation of power increase of 1.5%/min, 2.5%/min, and 3.5%/min.
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber
2012-01-01
Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasten, P.R.; Rittenhouse, P.L.; Bartine, D.E.
1983-06-01
During 1982 the High-Temperature Gas-Cooled Reactor (HTGR) Technology Program at Oak Ridge National Laboratory (ORNL) continued to develop experimental data required for the design and licensing of cogeneration HTGRs. The program involves fuels and materials development (including metals, graphite, ceramic, and concrete materials), HTGR chemistry studies, structural component development and testing, reactor physics and shielding studies, performance testing of the reactor core support structure, and HTGR application and evaluation studies.
DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Paul Y
2010-12-10
An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.
Plasma Accelerator and Energy Conversion Research
1982-10-29
performance tests have been accomplished. A self-contained recirculating AMTEC device with a thermal to electric conversion efficiency of 19% has been...combined efficiency . These two match up particularly well, because thermionic conversion is a high temperature technique, whereas AMTEC is limited to...EXPERIENTAL: Samples: The samples were prepared with a high rate DC magnetron sputtering apparatus ( SFI model 1 ). The sample set consisted of four
The HelCat dual-source plasma device.
Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue
2009-10-01
The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.
Mechanism of carrier injection in (Ni/Au)/p-AlxGa1-xN:Mg(0<=x<0.1) Ohmic contacts
NASA Astrophysics Data System (ADS)
Nikishin, S.; Chary, I.; Borisov, B.; Kuryatkov, V.; Kudryavtsev, Yu.; Asomoza, R.; Karpov, S. Yu.; Holtz, M.
2009-10-01
We report the mechanism of current injection in (Ni/Au)/p-AlxGa1-xN:Mg(0≤x<0.1) Ohmic contacts based on the temperature dependence of hole concentrations (p) and specific contact resistance (ρc). The injection mechanism is found to be thermionic emission in all cases. A model is developed to describe the temperature dependences of p and ρc for Mg concentrations from 1019 to 1020 cm-3. The model takes into account splitting in the valence band structure, hole activation energy, and Schottky barrier height. For GaN (AlGaN) these are found to be 132-140 (135-150) meV and 66-88 (84-93) meV, respectively.
NASA Astrophysics Data System (ADS)
Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.
2017-01-01
In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).
NASA Astrophysics Data System (ADS)
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
NASA Astrophysics Data System (ADS)
Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin
2015-11-01
High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.
A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.
1995-09-01
This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.
Reactor monitoring using antineutrino detectors
NASA Astrophysics Data System (ADS)
Bowden, N. S.
2011-08-01
Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.
Generating unstructured nuclear reactor core meshes in parallel
Jain, Rajeev; Tautges, Timothy J.
2014-10-24
Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
Neutron flux and power in RTP core-15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis
PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less
High-Current-Density Thermionic Cathodes and the Generation of High-Voltage Electron Beams
1989-04-30
Cathode Temperature =1700 OC Figure 37: Peak gun voltage = 90 kV -57- 60- 0 EGUN 327 ~40 0S 20’ Vacuum 5 .2 x 10 Tor 0 o 0 15202 30 Time (jis...by modeling the filament as a thin disk. The shape of the H - V -, 2 actual filament is sketched in Fig. 2. The EGUN code 1 131 is used to calculate
2010-06-01
QCM Quartz Crystal Deposition Monitor SEM Scanning Electron Microscope SRF Superconducting Radio Frequency T Torr Ti Titanium UHV Ultra...High Vacuum ( -7 Torr) UM University of Maryland QCM Quartz Crystal Deposition Monitor V Volt VAC Voltage-Alternating Current xvii...event. The two originally had problems with their tungsten filaments crystallizing and breaking. Being experimentalists, they added thorium in an
Thermo electronic laser energy conversion
NASA Technical Reports Server (NTRS)
Hansen, L. K.; Rasor, N. S.
1976-01-01
The thermo electronic laser energy converter (TELEC) is described and compared to the Waymouth converter and the conventional thermionic converter. The electrical output characteristics and efficiency of TELEC operation are calculated for a variety of design variables. Calculations and results are briefly outlined. It is shown that the TELEC concept can potentially convert 25 to 50 percent of incident laser radiation into electric power at high power densities and high waste heat rejection temperatures.
CdS-metal contact at higher current densities.
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Boeer, K. W.; Dussel, G. A.
1973-01-01
An investigation is conducted concerning the mechanisms by which a steady flow of current proceeds through the contact when an external voltage is applied. The main characteristics of current mechanisms are examined, giving attention to photoemission from the cathode, thermionic emission, minority-carrier extraction, and the tunneling of electrons. A high-field domain analysis is conducted together with experimental studies. Particular attention is given to the range in which tunneling predominates.
Close-Spaced High Temperature Knudsen Flow.
1986-07-15
work~was a study of discharge processes in Knudsen mode (collisionless), thermionic energy converters. Areas of research involve’mechanisms for reducing ...power densities. The mechanisms/we have chosen to study are: reduction of space-charge through a very close interelectrode gap (less than 10 microns...In order to operate at practical current densities, the effect of electron space charge must be reduced . This can be done through very close
1978-02-01
ii•t, difforonc wit h ono data not’ hoV14. a nq I til i. It n 1.1 y Hho i~r fitltrevi rato, TIhil # da tai ou t W~AP i’eiwivod and th I’ll oeitnniciw...consideration. Wolfram, molybdenum, and carbon are able to sustain an arc without reaching their melting point (sufficient thermionic emission occurs at
Direct Energy Conversion Literature Abstracts
1962-12-01
1961. are reviewed. Various types of solar power systems are discussed and compar- " Methods are discussed for providing ed with respect to weight...electron gas to and relate to thermoelectric methods ; convert heat to electrical energy with no thermionic, photovoltaic and electro- moving mechanical...Europ.Mach.Rev. 11:20-25,1961. appears most practical source. Direct methods of generating electrical 2853 energy without the use of fossil fuels are Power
Semiconductor nanostructures for plasma energetic systems
NASA Astrophysics Data System (ADS)
Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris
2017-10-01
In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.
Investigation of significantly high barrier height in Cu/GaN Schottky diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R.
2016-01-15
Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantlymore » higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.« less
NASA Technical Reports Server (NTRS)
Morris, J. F.
1980-01-01
Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.
Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching
NASA Astrophysics Data System (ADS)
McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.
2016-10-01
The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 < x < 0.17) layers. SPV measurements reveal significant deviation from previous SPV studies on p-GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.
Steep-slope hysteresis-free negative capacitance MoS2 transistors
NASA Astrophysics Data System (ADS)
Si, Mengwei; Su, Chun-Jung; Jiang, Chunsheng; Conrad, Nathan J.; Zhou, Hong; Maize, Kerry D.; Qiu, Gang; Wu, Chien-Ting; Shakouri, Ali; Alam, Muhammad A.; Ye, Peide D.
2018-01-01
The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec-1 at room temperature and therefore precludes lowering of the supply voltage and overall power consumption1,2. Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier3. Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel4-12. Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 μA μm-1 and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.
NASA Astrophysics Data System (ADS)
Musaoğlu, Caner; Pat, Suat; Özen, Soner; Korkmaz, Şadan; Mohammadigharehbagh, Reza
2018-03-01
In this study, investigation of some physical properties of In-doped CuxO thin films onto amorphous glass substrates were done. The thin films were depsoied by thermionic vacuum arc technique (TVA). TVA technique gives a thin film with lower precursor impurity according to the other chemical and physical depsoition methods. The microstructural properties of the produced thin films was determined by x-ray diffraction device (XRD). The thickness values were measured as to be 30 nm and 60 nm, respectively. The miller indices of the thin films’ crystalline planes were determined as to be Cu (111), CuO (\\bar{1} 12), CuInO2 (107) and Cu2O (200), Cu (111), CuO (\\bar{1} 12), CuO (\\bar{2} 02), CuInO2 (015) for sample C1 and C2, respectively. The produced In-doped CuO thin films are in polycrystalline structure. The surface properties of produced In doped CuO thin films were determined by using an atomic force microscope (AFM) and field emission scanning electron microscope (FESEM) tools. The optical properties of the In doped CuO thin films were determined by UV–vis spectrophotometer, interferometer, and photoluminescence devices. p-type semiconductor thin film was obtained by TVA depsoition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tongning, E-mail: TongningHu@hust.edu.cn, E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping
A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables themore » injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.« less
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique
NASA Astrophysics Data System (ADS)
Pakluea, S.; Rimjaem, S.
2017-09-01
Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.
Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo
2014-01-01
An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.
Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs
NASA Astrophysics Data System (ADS)
Towell, Rusty; Niffte Collaboration
2015-10-01
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.
Update on reactors and reactor instruments in Asia
NASA Astrophysics Data System (ADS)
Rao, K. R.
1991-10-01
The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.
Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...
2017-03-01
The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less
Vibro-acoustic Imaging at the Breazeale Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James Arthur; Jewell, James Keith; Lee, James Edwin
2016-09-01
The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spentmore » TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.« less
Developing the European Center of Competence on VVER-Type Nuclear Power Reactors
ERIC Educational Resources Information Center
Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily
2017-01-01
This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.
The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, andmore » other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snoj, L.; Sklenka, L.; Rataj, J.
2012-07-01
The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three differentmore » research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)« less
Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
Toh, Ren Wei; Li, Jie Sheng; Wu, Jie
2018-01-04
A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.
Bunch compression efficiency of the femtosecond electron source at Chiang Mai University
NASA Astrophysics Data System (ADS)
Thongbai, C.; Kusoljariyakul, K.; Saisut, J.
2011-07-01
A femtosecond electron source has been developed at the Plasma and Beam Physics Research Facility (PBP), Chiang Mai University (CMU), Thailand. Ultra-short electron bunches can be produced with a bunch compression system consisting of a thermionic cathode RF-gun, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. To obtain effective bunch compression, it is crucial to provide a proper longitudinal phase-space distribution at the gun exit matched to the subsequent beam transport system. Via beam dynamics calculations and experiments, we investigate the bunch compression efficiency for various RF-gun fields. The particle distribution at the RF-gun exit will be tracked numerically through the alpha-magnet and beam transport. Details of the study and results leading to an optimum condition for our system will be presented.
Reactor Operations Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M.M.
1989-01-01
The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less
Breeder Reactors, Understanding the Atom Series.
ERIC Educational Resources Information Center
Mitchell, Walter, III; Turner, Stanley E.
The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Sridharan, K.
2015-12-01
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less
A search for space energy alternatives
NASA Technical Reports Server (NTRS)
Gilbreath, W. P.; Billman, K. W.
1978-01-01
This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.
FUSION WELDING METHOD AND APPARATUS
Wyman, W.L.; Steinkamp, W.I.
1961-01-17
An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.
Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2010-01-01
A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.
A Review of the Science and Technology of Cathodes from the Viewpoint of Spacecraft TWT Applications
1980-06-01
thermionic emitters for various applications. Of the pure metals, only tungsten , rhenium , and tantalum have sufficiently high melting temperatures to yield...the activation process. These ele- ments, carbon , zirconium, magnesium, manganese, aluminum, silicon, and, perhaps, tungsten , were originally added to...in the cavity. The porous tungsten plug has a density between 73 to 83% of the maxi- mum theoretical density of tungsten . The carbonates are
High Current Density Cathodes for Future Vacuum Electronics Applications
2008-05-30
Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a
Design of a power management and distribution system for a thermionic-diode powered spacecraft
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.
1996-01-01
The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.
Indrasena, W M; Ackman, R G; Gill, T A
1999-09-10
Thin-layer chromatography (TLC) on Chromarods-SIII with the Iatroscan (Mark-5) and a flame thermionic detector (FTID) was used to develop a rapid method for the detection of paralytic shellfish poisoning (PSP) toxins. The effect of variation in hydrogen (H2) flow, air flow, scan time and detector current on the FTID peak response for both phosphatidylcholine (PC) and PSP were studied in order to define optimum detection conditions. A combination of hydrogen and air flow-rates of 50 ml/min and 1.5-2.0 l/min respectively, along with a scan time of 40 s/rod and detector current of 3.0 A (ampere) or above were found to yield the best results for the detection of PSP compounds. Increasing the detector current level to as high as 3.3 A gave about 130 times more FTID response than did flame ionization detection (FID), for PSP components. Quantities of standards as small as 1 ng neosaxitoxin (NEO), 5 ng saxitoxin (STX), 5 ng B1-toxins (B1), 2 ng gonyautoxin (GTX) 2/3, 6 ng GTX 1/4 and 6 ng C-toxins (C1/C2) could be detected with the FTID. The method detection limits for toxic shellfish tissues using the FTID were 0.4, 2.1, 0.8 and 2.5 micrograms per g tissue for GTX 2/3, STX, NEO and C toxins, respectively. The FTID response increased with increasing detector current and with increasing the scan time. Increasing hydrogen and air flow-rates resulted in decreasing sensitivity within defined limits. Numerous solvent systems were tested, and, solvent consisting of chloroform: methanol-water-acetic acid (30:50:8:2) could separate C toxins from GTX, which eluted ahead of NEO and STX. Accordingly, TLC/FTID with the Iatroscan (Mark-5) seems to be a promising, relatively inexpensive and rapid method of screening plant and animal tissues for PSP toxins.
NASA Astrophysics Data System (ADS)
Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan
2017-09-01
The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.
NASA Astrophysics Data System (ADS)
Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.
2014-08-01
The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon were developed. The following tasks were accomplished: (1) formulation of a model for silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse (2) modification of an available general parabolic code to achieve solutions to the governing partial differential equations (boundary layer type) which describe migration of the vapor to the reactor walls, (3) a parametric study using the boundary layer code to optimize the performance characteristics of the Westinghouse reactor, (4) calculations relating to the collection efficiency of the new AeroChem reactor, and (5) final testing of the modified LAPP code for use as a method of predicting Si(1) droplet sizes in these reactors.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.
Five Lectures on Nuclear Reactors Presented at Cal Tech
DOE R&D Accomplishments Database
Weinberg, Alvin M.
1956-02-10
The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Sanchez, Travis
2005-02-06
The operation of space reactors for both in-space and planetary operations will require unprecedented levels of autonomy and control. Development of these autonomous control systems will require dynamic system models, effective control methodologies, and autonomous control logic. This paper briefly describes the results of reactor, power-conversion, and control models that are implemented in SIMULINK{sup TM} (Simulink, 2004). SIMULINK{sup TM} is a development environment packaged with MatLab{sup TM} (MatLab, 2004) that allows the creation of dynamic state flow models. Simulation modules for liquid metal, gas cooled reactors, and electrically heated systems have been developed, as have modules for dynamic power-conversion componentsmore » such as, ducting, heat exchangers, turbines, compressors, permanent magnet alternators, and load resistors. Various control modules for the reactor and the power-conversion shaft speed have also been developed and simulated. The modules are compiled into libraries and can be easily connected in different ways to explore the operational space of a number of potential reactor, power-conversion system configurations, and control approaches. The modularity and variability of these SIMULINK{sup TM} models provides a way to simulate a variety of complete power generation systems. To date, both Liquid Metal Reactors (LMR), Gas Cooled Reactors (GCR), and electric heaters that are coupled to gas-dynamics systems and thermoelectric systems have been simulated and are used to understand the behavior of these systems. Current efforts are focused on improving the fidelity of the existing SIMULINK{sup TM} modules, extending them to include isotopic heaters, heat pipes, Stirling engines, and on developing state flow logic to provide intelligent autonomy. The simulation code is called RPC-SIM (Reactor Power and Control-Simulator)« less
Grandin, Karl; Jagers, Peter; Kullander, Sven
2010-01-01
Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less
A Review of Gas-Cooled Reactor Concepts for SDI Applications
1989-08-01
710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests
Vacuum and the electron tube industry
NASA Astrophysics Data System (ADS)
Redhead, P. A.
2005-07-01
The electron tube industry started with the patenting of the thermionic diode by John Ambrose Fleming in 1904. The vacuum technology used by the infant tube industry was copied from the existing incandescent lamp industry. The growing demands for electron tubes for the military in the first world war led to major improvements in pumps and processing methods. By the 1920s, mass production methods were developing to satisfy the demands for receiving tubes by the burgeoning radio industry. Further expansion in the 1930s and 1940s resulted in improvements in automatic equipment for pumping vacuum tubes leading to the massive production rates of electron tubes in the second world war and the following two decades. The demand for radar during the war resulted in the development of techniques for large-scale production of microwave tubes and CRTs, the latter technology being put to good use later in TV picture tube production. The commercial introduction of the transistor ended the massive demand for receiving tubes. This review concentrates on the vacuum technology developed for receiving tube production.
The cesiator - A device for cesium vapor control and impurity purge
NASA Astrophysics Data System (ADS)
Rasor, N. S.; Desplat, J.-L.
A new type of liquid cesium reservoir that maintains a temperature-independent cesium pressure, continuously recirculates cesium vapor through the TFE (thermionic fuel element), and purges it of impurities is discussed. This device, the cesiator, is based on well-established gas-buffered heat pipe principles. The cesiator offers new TFE design options for fission product/impurity handling that eliminate the need for an intercell insulator seal and associated failure modes. Cesiator performance requirements are estimated based on data for expected release of fission products and their effect on TFE performance. The effect of design parameters on cesiator performance is described. Experimentation with an ethanol-metal mock-up revealed an unexpected but desirable mode of operation that autoregulates the pressure drop and flow of vapor in the external circuit and that has been incorporated in the reference design for phase II development. Experimental techniques for measuring the local temperature, pressure, and composition in a condensing vapor were successfully developed. A reference design for a TFE cesiator was defined for prototype design, development, and test.
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
Development of Cross Section Library and Application Programming Interface (API)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Marin-Lafleche, A.; Smith, M. A.
2014-04-09
The goal of NEAMS neutronics is to develop a high-fidelity deterministic neutron transport code termed PROTEUS for use on all reactor types of interest, but focused primarily on sodium-cooled fast reactors. While PROTEUS-SN has demonstrated good accuracy for homogeneous fast reactor problems and partially heterogeneous fast reactor problems, the simulation results were not satisfactory when applied on fully heterogeneous thermal problems like the Advanced Test Reactor (ATR). This is mainly attributed to the quality of cross section data for heterogeneous geometries since the conventional cross section generation approach does not work accurately for such irregular and complex geometries. Therefore, onemore » of the NEAMS neutronics tasks since FY12 has been the development of a procedure to generate appropriate cross sections for a heterogeneous geometry core.« less
1963-01-01
This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.
Interim waste storage for the Integral Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, R.W.; Phipps, R.D.; Condiff, D.W.
1991-01-01
The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less
Alternative nuclear technologies
NASA Astrophysics Data System (ADS)
Schubert, E.
1981-10-01
The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.
Radiation chemistry for modern nuclear energy development
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Szołucha, Monika M.
2016-07-01
Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.
Development of a Model and Computer Code to Describe Solar Grade Silicon Production Processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
The program aims at developing mathematical models and computer codes based on these models, which allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. The major interest is in collecting silicon as a liquid on the reactor walls and other collection surfaces. Two reactor systems are of major interest, a SiCl4/Na reactor in which Si(l) is collected on the flow tube reactor walls and a reactor in which Si(l) droplets formed by the SiCl4/Na reaction are collected by a jet impingement method. During this quarter the following tasks were accomplished: (1) particle deposition routines were added to the boundary layer code; and (2) Si droplet sizes in SiCl4/Na reactors at temperatures below the dew point of Si are being calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1993-02-01
The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V.
2015-04-15
A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.
Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
Merk, B; Litskevich, D; Gregg, R; Mount, A R
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
NASA Technical Reports Server (NTRS)
Bourasseau, S.; Martin, J. R.; Juillet, F.; Teichner, S. J.
1977-01-01
The study of the variation of thermoelectronic work function potential of TiO2 in the presence of isobutane shows that this gas is not adsorbed on this solid, in either the presence or the absence of ultraviolet radiation. These results, as well as those obtained in a previous work, lead to the mechanism of the photo-oxidation of isobutane at room temperature, in which excited atomic oxygen is the active species.
Correy, Thomas B.
1989-01-01
An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.
Extreme sub-threshold swing in tunnelling relays
NASA Astrophysics Data System (ADS)
AbdelGhany, M.; Szkopek, T.
2014-01-01
We propose and analyze the theory of the tunnelling relay, a nanoscale active device in which tunnelling current is modulated by electromechanical actuation of a suspended membrane above a fixed electrode. The tunnelling current is modulated exponentially with vacuum gap length, permitting an extreme sub-threshold swing of ˜10 mV/decade breaking the thermionic limit. The predicted performance suggests that a significant reduction in dynamic energy consumption over conventional field effect transistors is physically achievable.
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 28.
1978-02-07
some part of the planet. However, this may not be a cause-and-effect situation, but a simple coin- cidence. For example, at Tashkent in 1966, some...to observe such thermionic emission separately from photoemission in the most simple experiment; superposition of both mechanisms leads to a...is realized: 83 Parameter y on the left side of the inequality has a simple meaning [15, 50]: it is equal to the ratio of light frequency to
Thermionic System Evaluation Test: Ya-21U System Topaz International Program
1996-07-01
by enriched uranium dioxide (U02) fuel pellets, as illustrated by Figure 5. The work section of the converter contained 34 TFEs that provided power...power system. This feature permitted transportation of the highly enriched uranium oxide fuel in separate containers from the space power system and...by Figure 8. The radial reflector contained three safety and nine control drums. Each drum contained a section of boron carbide (B4C) neutron poison
Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Grandy, C.; Natesan, K.
The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less
NASA Astrophysics Data System (ADS)
Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; Hu, Peng; Wang, Changhao; Wang, Ruzhi; Miao, Naihua
2018-05-01
The Scandia doped thermionic cathodes have received great attention owing to their high electron emission density in past two decades. Here, Scandia doped Re3W matrix scandate (RS) cathodes are fabricated by using Sc2O3 doped Re3W powders that prepared by spray drying method. The micromorphology, surface composition and chemical states of RS cathode are investigated with various modern technologies. It reveals that the reduction temperature of RS powders is dramatically increased by Sc2O3. On the surface of RS cathode, a certain amount of Sc2O3 nanoparticles and barium salt submicron particles are observed. According to the in situ Auger electron spectroscopy analysis, the concentration ratio of Ba:Sc:O is determined to be 2.9:1.1:2.7. The X-ray photoelectron spectroscopy data indicates that low oxidation state of Sc is clearly observed in scandate cathodes. The high atomic ratio of Ba on RS cathode surface is suggested due to the high adsorption of Re3W to Ba. Moreover, RS cathode shows better adsorption to Sc by comparison with conventional tungsten matrix scandate cathode. For RS cathode, the main depletion of Sc is suggested to -OSc desorbing from RS cathode surface. RS cathode is expected to be an impressive thermionic cathode with good emission properties and ion anti-bombarding insensitivity.
Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation
NASA Astrophysics Data System (ADS)
Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.
2017-06-01
The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.
Vertical electron transport in van der Waals heterostructures with graphene layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 111005; Otsuji, T.
We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equationmore » which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.« less
Improved understanding of the hot cathode current modes and mode transitions
NASA Astrophysics Data System (ADS)
Campanell, M. D.; Umansky, M. V.
2017-12-01
Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.
NASA Astrophysics Data System (ADS)
Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong
2016-03-01
We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.
Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.
Li, Xuefei; Grassi, Roberto; Li, Sichao; Li, Tiaoyang; Xiong, Xiong; Low, Tony; Wu, Yanqing
2018-01-10
Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.
Aging management program of the reactor building concrete at Point Lepreau Generating Station
NASA Astrophysics Data System (ADS)
Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.
2011-04-01
In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.
FY16 Status Report for the Uranium-Molybdenum Fuel Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.
2016-09-22
The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less
Modelling of the anti-neutrino production and spectra from a Magnox reactor
NASA Astrophysics Data System (ADS)
Mills, Robert W.; Mountford, David J.; Coleman, Jonathon P.; Metelko, Carl; Murdoch, Matthew; Schnellbach, Yan-Jie
2018-01-01
The anti-neutrino source properties of a fission reactor are governed by the production and beta decay of the radionuclides present and the summation of their individual anti-neutrino spectra. The fission product radionuclide production changes during reactor operation and different fissioning species give rise to different product distributions. It is thus possible to determine some details of reactor operation, such as power, from the anti-neutrino emission to confirm safeguards records. Also according to some published calculations, it may be feasible to observe different anti-neutrino spectra depending on the fissile contents of the reactor fuel and thus determine the reactor's fissile material inventory during operation which could considerable improve safeguards. In mid-2014 the University of Liverpool deployed a prototype anti-neutrino detector at the Wylfa R1 station in Anglesey, United Kingdom based upon plastic scintillator technology developed for the T2K project. The deployment was used to develop the detector electronics and software until the reactor was finally shutdown in December 2015. To support the development of this detector technology for reactor monitoring and to understand its capabilities, the National Nuclear Laboratory modelled this graphite moderated and natural uranium fuelled reactor with existing codes used to support Magnox reactor operations and waste management. The 3D multi-physics code PANTHER was used to determine the individual powers of each fuel element (8×6152) during the year and a half period of monitoring based upon reactor records. The WIMS/TRAIL/FISPIN code route was then used to determine the radionuclide inventory of each nuclide on a daily basis in each element. These nuclide inventories were then used with the BTSPEC code to determine the anti-neutrino spectra and source strength using JEFF-3.1.1 data. Finally the anti-neutrino source from the reactor for each day during the year and a half of monitored reactor operation was calculated. The results of the preliminary calculations are shown and limitations in the methods and data discussed.
The RERTR Program status and progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travelli, A.
1995-12-01
The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. The major events, findings, and activities of 1995 are reviewed after a brief summary of the results which the RERTR Program had achieved by the end of 1994. The revelation that Iraq was on the verge of developing a nuclear weapon at the time of the Gulf War, and that it was planning to do so by extracting HEU from the fuel of its research reactors, has given new impetus and urgency to the RERTR commitment of eliminating HEU use in research and test reactors worldwide.more » Development of advanced LEU research reactor fuels is scheduled to begin in October 1995. The Russian RERTR program, which aims to develop and demonstrate within the next five years the technical means needed to convert Russian-supplied research reactors to LEU fuels, is now in operation. A Statement of Intent was signed by high US and Chinese officials, endorsing cooperative activities between the RERTR program and Chinese laboratories involved in similar activities. Joint studies of LEU technical feasibility were completed for the SAFARI-I reactor in South Africa and for the ANS reactor in the US. A new study has been initiated for the FRM-II reactor in Germany. Significant progress was made on several aspects of producing {sup 99}Mo from fission targets utilizing LEU instead of HEU. A cooperation agreements is in place with the Indonesian BATAN. The first prototypical irradiation of an LEU metal-foil target for {sup 99}Mo production was accomplished in Indonesia. The TR-2 reactor, in Turkey, began conversion. SAPHIR, in Switzerland, was shut down. LEU fuel fabrication has begun for the conversion of two more US reactors. Twelve foreign reactors and nine domestic reactors have been fully converted. Approximately 60 % of the work required to eliminate the use of HEU in US-supplied research reactors has been accomplished.« less
The paper gives results of a study to develop baseline engineering data to demonstrate the feasibility of application of plasma reactors to the destruction of various volatile organic compounds at ppm levels. Two laboratory-scale reactors, an alternating current energized ferroel...
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Developments and Tendencies in Fission Reactor Concepts
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Fuji-Ie, Y.
This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.
The plasmatron: Advanced mode thermionic energy conversion
NASA Technical Reports Server (NTRS)
Hansen, L. K.; Hatch, G. L.; Rasor, N. S.
1976-01-01
A theory of the plasmatron was developed. Also, a wide range of measurements were obtained with two versatile, research devices. To gain insight into plasmatron performance, the experimental results are compared with calculations based on the theoretical model of plasmatron operation. Results are presented which show that the plasma arc drop of the conventional arc (ignited) mode converter can be suppressed by use of an auxiliary ion source. The improved performance, however, is presently limited to low current densities because of voltage losses due to plasma resistance. This resistance loss could be suppressed by an increase in the plasma electron temperature or a decrease in spacing. Plasmatron performance characteristics for both argon and cesium are reported. The argon plasmatron has superior performance. Results are also presented for magnetic cutoff effects and for current distributing effects. These are shown to be important factors for the design of practical devices.
NASA Technical Reports Server (NTRS)
Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.
1988-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.
III-V heterostructure tunnel field-effect transistor.
Convertino, C; Zota, C B; Schmid, H; Ionescu, A M; Moselund, K E
2018-07-04
The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III-V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.; Sagerman, G. D.
1980-01-01
Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.
Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results
NASA Technical Reports Server (NTRS)
1984-01-01
CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.
III–V heterostructure tunnel field-effect transistor
NASA Astrophysics Data System (ADS)
Convertino, C.; Zota, C. B.; Schmid, H.; Ionescu, A. M.; Moselund, K. E.
2018-07-01
The tunnel field-effect transistor (TFET) is regarded as one of the most promising solid-state switches to overcome the power dissipation challenge in ultra-low power integrated circuits. TFETs take advantage of quantum mechanical tunneling hence exploit a different current control mechanism compared to standard MOSFETs. In this review, we describe state-of-the-art development of TFET both in terms of performances and of materials integration and we identify the main remaining technological challenges such as heterojunction defects and oxide/channel interface traps causing trap-assisted-tunneling (TAT). Mesa-structures, planar as well as vertical geometries are examined. Conductance slope analysis on InAs/GaSb nanowire tunnel diodes are reported, these two-terminal measurements can be relevant to investigate the tunneling behavior. A special focus is dedicated to III–V heterostructure TFET, as different groups have recently shown encouraging results achieving the predicted sub-thermionic low-voltage operation.
Barrier inhomogeneities at vertically stacked graphene-based heterostructures.
Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito
2014-01-21
The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.
Space station prototype Sabatier reactor design verification testing
NASA Technical Reports Server (NTRS)
Cusick, R. J.
1974-01-01
A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.M. McEligot; K. G. Condie; G. E. McCreery
2005-10-01
Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less
Design of megawatt power level heat pipe reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao
An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors.more » The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.« less
MYRRHA: A multipurpose nuclear research facility
NASA Astrophysics Data System (ADS)
Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert
2014-12-01
MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2010-06-10
scale pressurized water reactors suitable for destroyer-sized vessels or for alternative nuclear power systems using thorium liquid salt technology...or to design a new reactor type potentially using a thorium liquid salt reactor developed for maritime use. The committee recommends an increase of...either using a pressurized water reactor or a thorium liquid salt reactor . (Page 158) Senate The Senate Armed Services Committee, in its report
Numerical Simulations of a 96-rod Polysilicon CVD Reactor
NASA Astrophysics Data System (ADS)
Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang
2018-05-01
With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.
Lozada, Mariana; Basile, Laura; Erijman, Leonardo
2007-01-01
The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.
A Potential NASA Research Reactor to Support NTR Development
NASA Technical Reports Server (NTRS)
Eades, Michael; Gerrish, Harold; Hardin, Leroy
2013-01-01
In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list
Litskevich, D.; Gregg, R.; Mount, A. R.
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations...
NASA Astrophysics Data System (ADS)
Nishimura, Shun; Ebitani, Kohki
2018-01-01
Development of a compact fast pyrolysis reactor constructed using Auger-type technology to afford liquid biofuel with high yield has been an interesting concept in support of local production for local consumption. To establish a widely useable module package, details of the performance of the developing compact module reactor were investigated. This study surveyed the properties of as-produced pyrolysis oil as a function of operation time, and clarified the recent performance of the developing compact fast pyrolysis reactor. Results show that after condensation in the scrubber collector, e.g. approx. 10 h for a 25 kg/h feedstock rate, static performance of pyrolysis oil with approximately 20 MJ/kg (4.8 kcal/g) calorific values were constantly obtained after an additional 14 h. The feeding speed of cedar chips strongly influenced the time for oil condensation process: i.e. 1.6 times higher feeding speed decreased the condensation period by half (approx. 5 h in the case of 40 kg/h). Increasing the reactor throughput capacity is an important goal for the next stage in the development of a compact fast pyrolysis reactor with Auger-type modules.
Nuclear power in the 21st century: Challenges and possibilities.
Horvath, Akos; Rachlew, Elisabeth
2016-01-01
The current situation and possible future developments for nuclear power--including fission and fusion processes--is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields--from material sciences to safety demonstration--to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.
2018-01-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.
NASA's Kilopower Reactor Development and the Path to Higher Power Missions
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick
2017-01-01
The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
NASA's Kilopower Reactor Development and the Path to Higher Power Missions
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick
2017-01-01
The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
Liquid fuel molten salt reactors for thorium utilization
Gehin, Jess C.; Powers, Jeffrey J.
2016-04-08
Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing thorium-based MSRs.« less
Multi-phase CFD modeling of solid sorbent carbon capture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, E. M.; DeCroix, D.; Breault, R.
2013-07-01
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Emily M.; DeCroix, David; Breault, Ronald W.
2013-07-30
Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less
CORE SATURATION BLOCKING OSCILLATOR
Spinrad, R.J.
1961-10-17
A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)
Numerical Simulation of the Permeable Base Transistor.
1987-05-04
chi report has ben reviWed d saprovco for Ptb"Ic r!a4e , -AW AFR 190.12.Distrquti.n Is unlimitedMATTH-: J. KERPERChief# Technca I.1omt DivisIoM 87 5 21...significant clustering within the vicinity of the base region. Further, a cursory examination of the unscaled contours (figure 6) and the depletion...be published by the authors. 8. E.L. Chaffee, Theory of Thermionic Vacuum Tubes, McGraw-Hill (1933), Cf figures 75 and 76. 9. Y. Avano, K . Tomizawa and
Correy, T.B.
1989-05-09
An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.
Satellite Charge Control with Lithium Ion Source and Electron Emission
1990-12-01
for the spacecraft charge control. C. THERMIONIC ELECTRON EMISSION Electrons may be emitted by surfaces at high temperature in a process, called...data in the high voltage region and 1300 to 1600 °K temperature range may be fitted to the following equation, for a 50 % lithium sample: log01 =logos...in Figure 15, is similar to a high - temperature quartz structure, yet differs from it in that half of the silicon atoms are repiaced by aluminum atoms
1986-08-01
the U.S. Customs thermionic acetone vapor detector and a non -commercial Gas Chromatograph with electron capture detection as the main types. Each had...detector would only detect RDX or HMX or other explosives that had residual solvent with an alpha keto group like acetone or methylethyl ketone...8217.’=- evaluation for both vapor and non -vapor methods. The NAVSEA was not prepared to engage in r comprehensive study but did fund a reviev of improved
Close-Spaced High Temperature Knudsen Flow.
1984-06-15
study of discharge processes in Knudsen mode (collisionless), thermionic energy converters. Areas of research involve mechanism for reducing the...The mechanisms we have chosen to study are: reduction of space-charge through a very close inter- electrode gap (less than 10 microns); transport and...AD-AI4U 471 :NNTIM R~ A Rl M ,i; ,11 , i J)W R8 1070 1 I~ "i E~Hhhh IIt Ll ~ : RASOR ASSOCIATES, INC.- AFOSR.TR. 84-1070 NSR-22-2 CLOSE -SPACED HIGH
Pollock, George G.
1997-01-01
Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.