a Thermoacoustically-Driven Pulse Tube Cryocryocooler Operating around 300HZ
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Zhu, S. L.; Dai, W.; Luo, E. C.
2008-03-01
High frequency operation of the thermoacoustic cryocooler system, i.e. pulse tube cryocooler driven by thermoacoustic engine, leads to reduced size, which is quite attractive to small-scale cryogenic applications. In this work, a no-load coldhead temperature of 77.8 K is achieved on a 292 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic engine with 3.92 MPa helium gas and 1750 W heat input. To improve thermal efficiency, a high frequency thermoacoustic-Stirling heat engine is also built to drive the same pulse tube cryocooler, and a no-load temperature of 109 K was obtained with 4.38 MPa helium gas, 292 Hz working frequency and 400W heating power. Ideas such as tapered resonators, acoustic amplifier tubes and simple thin tubes without reservoir are used to effectively suppress harmonic modes, amplify the acoustic pressure wave available to the pulse tube cryocooler and provide desired acoustic impedance for the pulse tube cryocooler, respectively. Comparison of systems with different thermoacoustic engines is made. Numerical simulations based on the linear thermoacoustic theory have also been done for comparison with experimental results, which shows reasonable agreement.
a High Frequency Thermoacoustically-Driven Pulse Tube Cryocooler with Coaxial Resonator
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.
2010-04-01
High frequency thermoacoustically-driven pulse tube cryocoolers are quite promising due to their compact size and high reliability, which can find applications in space use. With continuous effort, a lowest cold head temperature of 68.3 K has been obtained on a 300 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic heat engine with 4.0 MPa helium gas and 750 W heat input. To further reduce the size of the system, a coaxial resonator was designed and the two sub-systems, i.e., the pulse tube cryocooler and the standing-wave thermoacoustic heat engine were properly coupled through an acoustic amplifier tube, which leads to a system axial length of only about 0.7 m. The performance of the system with the coaxial resonator was tested, and shows moderate degradation compared to that with the in-line resonator, which might be attributed to the large flow loss of the 180 degree corner.
NASA Astrophysics Data System (ADS)
Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.
2015-07-01
This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, L. Y.; Hao, H. X.
2014-01-01
Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.
Computational Investigation on the performance of thermo-acoustically driven pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra
2017-02-01
A Thermoacoustic Pulse Tube Refrigeration (TAPTR) system employs a thermo acoustic engine as the pressure wave generator instead of mechanical compressor. Such refrigeration systems are highly reliable due to the absence of moving components, structural simplicity and the use of environmental friendly working fluids. In the present work, a traveling wave thermoacoustic primmover (TWTAPM) has been developed and it is coupled to a pulse tube cryocooler. The performance of TAPTR depends on the operating and working fluid parameters. Simulation studies of the system has been performed using ANSYS Fluent and compared with experimental results.
Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Luo, E. C.; Li, S. F.; Yu, B.; Dai, W.
2008-05-01
A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.
Study on cold head structure of a 300 Hz thermoacoustically driven pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.
2012-04-01
High reliability, compact size and potentially high thermal efficiency make the high frequency thermoacoustically-driven pulse tube cryocooler quite promising for space use. With continuous efforts, the lowest temperature and the thermal efficiency of the coupled system have been greatly improved. So far, a cold head temperature below 60 K has been achieved on such kind of cryocooler with the operation frequency of around 300 Hz. To further improve the thermal efficiency and expedite its practical application, this work focuses on studying the influence of cold head structure on the system performance. Substantial numerical simulations were firstly carried out, which revealed that the cold head structure would greatly influence the cooling power and the thermal efficiency. To validate the predictions, a lot of experiments have been done. The experiments and calculations are in reasonable agreement. With 500 W heating power input into the engine, a no-load temperature of 63 K and a cooling power of 1.16 W at 80 K have been obtained with parallel-plate cold head, indicating encouraging improvement of the thermal efficiency.
Thermoacoustic Contrast of Prostate Cancer due to Heating by Very High Frequency Irradiation
Hull, D; Thomas, M; Griep, SK; Jacobsohn, K; See, WA
2015-01-01
Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo thermoacoustic computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology. PMID:25554968
Low-voltage Driven Graphene Foam Thermoacoustic Speaker.
Fei, Wenwen; Zhou, Jianxin; Guo, Wanlin
2015-05-20
A low-voltage driven thermoacoustic speaker is fabricated based on three-dimensional graphene foams synthesized by a nickel-template assisted chemical vapor deposition method. The corresponding thermoacoustic performances are found to be related to its microstructure. Graphene foams exhibit low heat-leakage to substrates and feasible tunability in structures and thermoacoustic performances, having great promise for applications in flexible or ultrasonic acoustic devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiong; Department of Medical Imaging, The University of Arizona, Tucson, Arizona 85724; School of Information Science and Technology, ShanghaiTech University, Shanghai 200031
2016-04-04
We characterized the thermoacoustic and photoacoustic properties of large-area, few-layer graphene by pulsed microwave and optical excitations. Due to its high electric conductivity and low heat capacity per unit area, graphene lends itself to excellent microwave and optical energy absorption and acoustic signal emanation due to the thermoacoustic effect. When exposed to pulsed microwave or optical radiation, distinct thermoacoustic and photoacoustic signals generated by the few-layer graphene are obtained due to microwave and laser absorption of the graphene, respectively. Clear thermoacoustic and photoacoustic images of large-area graphene sample are achieved. A numerical model is developed and the simulated results aremore » in good accordance with the measured ones. This characterization work may find applications in ultrasound generator and detectors for microwave and optical radiation. It may also become an alternative characterization approach for graphene and other types of two-dimensional materials.« less
Modelling of Thermoacoustic Phenomena in an Electrically Heated Rijke Tube
ERIC Educational Resources Information Center
Beke, Tamas
2010-01-01
Thermoacoustic instability plays an important role in various technical applications, for instance in jet or rocket motors, thermoacoustic engines, pulse combustors and industrial burners. The main objective of this paper is to present the theory of thermoacoustic oscillations, and for this purpose a Rijke-type thermal device was built. The Rijke…
NASA Astrophysics Data System (ADS)
Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.
2017-02-01
Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.
The role of thermoacoustics in the world of commercial cooling
NASA Astrophysics Data System (ADS)
Corey, John A.
2005-09-01
The science of thermoacoustics has been with us for nearly 30 years, but as yet few applications have made their way to the marketplace. Acoustic Stirling cryocoolers (also called pulse-tube Stirling or high-frequency pulse-tube coolers) have been the most successful commercial thermoacoustic devices, because they address a region of the cooling market in terms of temperature and cooling power that is not well served by existing technology. This talk will explore how thermoacoustics might fare in attempting to compete with existing technologies in refrigeration and air conditioning, what niche markets make the most sense as entry points, and how thermoacoustics compares to conventional (kinematic or free-piston) Stirling machines. In particular, why there are relatively few commercial Stirling devices in the marketplace (although Stirling cycle machines have been around for over 150 years) will be discussed, and what lessons learned with Stirlings are applicable to thermoacoustics.
A resonance-free nano-film airborne ultrasound emitter
NASA Astrophysics Data System (ADS)
Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias
2013-01-01
In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
NASA Astrophysics Data System (ADS)
Liew, Soo Chin
Thermoacoustic emissions induced by 2450 MHz microwave pulses in water, tissue-simulating phantoms and dog kidneys have been detected. The analytic signal magnitude has been employed in generating 'A-mode' images with excellent depth resolution. Thermoacoustic emissions have also been detected from the dose-gradient at the beam edges of a 4 MeV x-ray beam in water. These results establish the feasibility of employing thermoacoustic signals in generating diagnostic images, and in locating x-ray beam edges during radiation therapy. A theoretical model for thermoacoustic imaging using a directional transducer has been developed, which may be used in the design of future thermoacoustic imaging system, and in facilitating comparisons with other types of imaging systems. A method of characterizing biological tissues has been proposed, which relates the power spectrum of the detected thermoacoustic signals to the autocorrelation function of the thermoacoustic source distribution in the tissues. The temperature dependence of acoustic signals induced by microwave pulses in water has been investigated. The signal amplitudes vary with temperature as the thermal expansion of water, except near 4^circ C. The signal waveforms show a gradual phase change as the temperature changes from below 4^ circ to above 4^circ C. This anomaly is due to the presence of a nonthermal component detected near 4^circC, whose waveform is similar to the derivative of the room temperature signal. The results are compared to a model based on a nonequilibrium relaxation mechanism proposed by Pierce and Hsieh. The relaxation time was found to be (0.20 +/- 0.02) ns and (0.13 +/- 0.02) ns for 200 ns and 400 ns microwave pulse widths, respectively. A microwave-induced thermoacoustic source capable of launching large aperture, unipolar ultrasonic plane wave pulses in water has been constructed. This source consists of a thin water layer trapped between two dielectric media. Due to the large mismatch in the dielectric constants, the incident microwaves undergo multiple reflections between the dielectric boundaries trapping the water, resulting in an enhanced specific microwave absorption in the thin water layer. This source may be useful in ultrasonic scattering and attenuation experiments.
Recording of Terahertz Pulses of Microsecond Duration Using the Thermoacoustic Effect
NASA Astrophysics Data System (ADS)
Andreev, V. G.; Vdovin, V. A.; Kalynov, Yu. K.
2014-01-01
We consider the possibility of using a thermoacoustic detector (TAD) for recording of high-power pulse radiation at frequencies of 0.55, 0.68, and 0.87 THz. Electromagnetic wave is transformed into an acoustic wave in a structure consisting of a 10-nm thick chromium film deposited on a quartz substrate and a layer of the immersion liquid that is in contact with the film. It is shown that for the pulse of microsecond duration (3-10 μs) the waveform detected by the thermoacoustic detector is matched with high accuracy to the derivative of the terahertz pulse profile. For recording of electromagnetic radiation in the 0.5-0.9 THz frequency range it is possible to employ the simplified design of TAD, in which a transparent quartz substrate is in contact with a layer of water or ethanol.
Investigation on Two-Stage 300 HZ Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Cai, H. K.; Yang, L. W.; Hong, G. T.; Luo, E. C.; Zhou, Y.
2010-04-01
In the past few years, ultra-high frequency pulse tube cryocoolers are becoming a research hotspot for their portability and compactness in aerospace and aviation applications. For preliminary research, a two-stage pulse tube cryocooler working at 300 Hz driven by a thermoacoustic engine is established to investigate the problems due to ultra high frequency, and several results have been derived in our early reports. In order to study the effect of thermal penetration depth, this paper presents the cooler adopting copper mesh as the regenerator, and comparison with stainless steel mesh is given. In addition, the influence of inertance tube on the lowest possible cooler temperature is also tested. Finally, we discuss the improvement for getting a lower temperature.
Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander
NASA Astrophysics Data System (ADS)
Walker, A. R.; Haberbusch, M. S.; Sasson, J.
2015-04-01
A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.
Luo, E C; Dai, W; Zhang, Y; Ling, H
2006-12-22
In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.
Traveling-Wave Thermoacoustic Engines With Internal Combustion
Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William
2004-05-11
Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.
Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation.
Patch, S K; Hull, D; Thomas, M; Griep, S K; Jacobsohn, K; See, W A
2015-01-21
Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology.
Modelling of thermoacoustic phenomena in an electrically heated Rijke tube
NASA Astrophysics Data System (ADS)
Beke, Tamas
2010-11-01
Thermoacoustic instability plays an important role in various technical applications, for instance in jet or rocket motors, thermoacoustic engines, pulse combustors and industrial burners. The main objective of this paper is to present the theory of thermoacoustic oscillations, and for this purpose a Rijke-type thermal device was built. The Rijke tube is a simple device open at both ends with a mean airflow and a concentrated heat source (a heated wire grid). It serves as a convenient prototypical example to understand thermoacoustic effects since it is a simplified thermoacoustic resonator; once excited, under certain conditions, it is capable of creating a sustained sound when thermal energy is added. In this paper we present a project that includes physical measuring, examination and modelling. We have employed electrically heated Rijke tubes in our thermoacoustic school project work, and present a numerical algorithm to predict the transition to instability; in this model the effects of the main system parameters are demonstrated. The aim of our project is to help our students enhance their knowledge about thermoacoustics and develop their applied information technology skills.
Principles of thermoacoustic energy harvesting
NASA Astrophysics Data System (ADS)
Avent, A. W.; Bowen, C. R.
2015-11-01
Thermoacoustics exploit a temperature gradient to produce powerful acoustic pressure waves. The technology has a key role to play in energy harvesting systems. A time-line in the development of thermoacoustics is presented from its earliest recorded example in glass blowing through to the development of the Sondhauss and Rijke tubes to Stirling engines and pulse-tube cryo-cooling. The review sets the current literature in context, identifies key publications and promising areas of research. The fundamental principles of thermoacoustic phenomena are explained; design challenges and factors influencing efficiency are explored. Thermoacoustic processes involve complex multi-physical coupling and transient, highly non-linear relationships which are computationally expensive to model; appropriate numerical modelling techniques and options for analyses are presented. Potential methods of harvesting the energy in the acoustic waves are also examined.
NASA Astrophysics Data System (ADS)
Chunping, Zhang; Wei, Liu; Zhichun, Yang; Zhengyu, Li; Xiaoqing, Zhang; Feng, Wu
2012-05-01
A small size standing wave thermoacoustic refrigerator driven by a high frequency loudspeaker has been experimentally studied. Instead of water cooling, the cold heat exchanger of the refrigerator was cooled by air through fins on it. By working at 600-700 Hz and adjusting the position of the thermoacoustic core components including the stack and adjacent exchangers, the influences of it on the capability of refrigeration were experimentally investigated. The lowest temperature of 4.1 °C in the cold heat exchanger with the highest temperature difference of 21.5 °C between two heat exchangers were obtained. And the maximum cooling power of 9.7 W has been achieved.
Simulation studies on the standing and traveling wave thermoacoustic prime movers
NASA Astrophysics Data System (ADS)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra
2014-01-01
Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standing wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.
Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience
NASA Astrophysics Data System (ADS)
Zhu, Shunmin; Yu, Aifang; Yu, Guoyao; Liu, Yudong; Zhai, Junyi; Dai, Wei; Luo, Ercang
2017-10-01
A thermoacoustic heat engine (TAHE) is a type of regenerative heat engine that converts external heat into mechanical power in the form of an acoustic wave with no moving mechanical components. One significant application of the TAHE is the generation of electricity by coupling an acoustic-to-electric conversion unit such as a linear motor or a piezoelectric ceramic assembly. However, present-day conversion technologies have considerable drawbacks, including structural complexity, high cost, and low reliability. The advent of triboelectric nanogenerators (TENGs) offers an alternative means to overcoming these shortcomings. In this paper, we propose a thermoacoustically driven TENG (TA-TENG) that continuously harvests external heat. A test rig involving a standing-wave TAHE and a contact-separation mode TENG was fabricated to demonstrate this concept. Currently, the TA-TENG produces a maximum output voltage of 10 V and a corresponding output power of 0.008 μW with a load of 400 MΩ, demonstrating the viability of this hybrid combination for electricity generation.
Simulation studies on the standing and traveling wave thermoacoustic prime movers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.
Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standingmore » wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.« less
Method and apparatus for rapid stopping and starting of a thermoacoustic engine
Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.
2003-11-11
A thermoacoustic engine-driven system with a hot heat exchanger, a regenerator or stack, and an ambient heat exchanger includes a side branch load for rapid stopping and starting, the side branch load being attached to a location in the thermoacoustic system having a nonzero oscillating pressure and comprising a valve, a flow resistor, and a tank connected in series. The system is rapidly stopped simply by opening the valve and rapidly started by closing the valve.
NASA Astrophysics Data System (ADS)
Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.
2017-12-01
This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.
High-temperature self-circulating thermoacoustic heat exchanger
NASA Astrophysics Data System (ADS)
Backhaus, S.; Swift, G. W.; Reid, R. S.
2005-07-01
Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.
Microwave-excited ultrasound and thermoacoustic dual imaging
NASA Astrophysics Data System (ADS)
Ding, Wenzheng; Ji, Zhong; Xing, Da
2017-05-01
We designed a microwave-excited ultrasound (MUI) and thermoacoustic dual imaging system. Under the pulsed microwave excitation, the piezoelectric transducer used for thermoacoustic signal detection will also emit a highly directional ultrasonic beam based on the inverse piezoelectric effect. With this beam, the ultrasonic transmitter circuitry of the traditional ultrasound imaging (TUI) system can be replaced by a microwave source. In other words, TUI can be fully integrated into the thermoacoustic imaging system by sharing the microwave excitation source and the transducer. Moreover, the signals of the two imaging modalities do not interfere with each other due to the existence of the sound path difference, so that MUI can be performed simultaneously with microwave-induced thermoacoustic imaging. In the study, the performance characteristics and imaging capabilities of this hybrid system are demonstrated. The results indicate that our design provides one easy method for low-cost platform integration and has the potential to offer a clinically useful dual-modality tool for the detection of accurate diseases.
NASA Astrophysics Data System (ADS)
Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.
2016-08-01
The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.
TH-AB-209-09: Quantitative Imaging of Electrical Conductivity by VHF-Induced Thermoacoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, S; Hull, D; See, W
Purpose: To demonstrate that very high frequency (VHF) induced thermoacoustics has the potential to provide quantitative images of electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Quantitatively imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. VHF irradiation provides superior depth penetration over near infrared used in photoacoustics. Additionally, VHF signalmore » production is proportional to electrical conductivity, and prostate cancer is known to suppress electrical conductivity of prostatic fluid. Methods: A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system augmented by a lower frequency focused single element transducer was developed. Simultaneous acquisition of VHF-induced thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were measured at isocenter. Results: The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a DC offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged ex vivo and volumetric reconstructions reveal structures rarely seen in diagnostic images. Conclusion: Quantitative whole-organ thermoacoustic tomography will be feasible by sparsely interspersing transducer elements sensitive to the low end of the ultrasonic range.« less
Active Control of Combustor Instability Shown to Help Lower Emissions
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Chang, Clarence T.
2002-01-01
In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
Thermoacoustic imaging of prostate cancer: comparison to histology
NASA Astrophysics Data System (ADS)
Patch, S. K.; Griep, S. K.; Jacobsohn, K.; See, W. A.; Hull, D.
2014-03-01
Ex vivo imaging of fresh prostate specimens was performed to test the hypothesis that the thermoacoustic (TA) contrast mechanism generated with very high frequency electromagnetic (EM) irradiation is sensitive to prostate cancer. Ex vivo imaging was performed immediately after radical prostatectomy, performed as part of normal care. Irradiation pulsewidth was 700 ns and duty cycle was extremely low. Typical specific absorption rate (SAR) throughout the prostate was 70-90 kW/kg during pulsing, but time-averaged SAR was below 2 W/kg. TA pressure pulses generated by rapid heating due to EM energy deposition were detected using single element transducers. 15g/L glycine powder mixed into DI water served as acoustic couplant, which was chilled to prevent autolysis. Spatial encoding was performed by scanning in tomographic "step-and-shoot" mode, with 3 mm translation between slices and 1.8-degree rotation between tomographic views. Histology slides for 3 cases scanned with 2.25 MHz transducers were marked for comparison to TA reconstructions. These three cases showed little, moderate, and severe involvement in the histology levels surrounding the verumontanum. TA signal strength decreased with percent cancerous involvement. When VHF is used for tissue heating, the TA contrast mechanism is driven by ionic content and we observed suppressed TA signal from diseased prostate tissue in the peripheral zone. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity.
Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.
2004-06-01
A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.
Generation of thermo-acoustic waves from pulsed solar/IR radiation
NASA Astrophysics Data System (ADS)
Rahman, Aowabin
Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals also showed "transient" behavior, meaning that the RMS amplitudes of TA signals varied over a time interval much greater than the time period of acoustic cycles. Acoustic amplitudes in the range of 75-95 dB were obtained using solar energy as the heat source, within the frequency range of 200 Hz-3 kHz.
Truck Thermoacoustic Generator and Chiller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keolian, Robert
2011-03-31
This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to bemore » tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.« less
Experimental study of microwave-induced thermoacoustic imaging
NASA Astrophysics Data System (ADS)
Jacobs, Ryan T.
Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.
An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
Backhaus, S; Swift, G W
2003-03-01
Thermoacoustic-Stirling hybrid engines and feedback pulse tube refrigerators can utilize jet pumps to suppress streaming that would otherwise cause large heat leaks and reduced efficiency. It is desirable to use jet pumps to suppress streaming because they do not introduce moving parts such as bellows or membranes. In most cases, this form of streaming suppression works reliably. However, in some cases, the streaming suppression has been found to be unstable. Using a simple model of the acoustics in the regenerators and jet pumps of these devices, a stability criterion is derived that predicts when jet pumps can reliably suppress streaming.
Thermoacoustic imaging of fresh prostates up to 6-cm diameter
NASA Astrophysics Data System (ADS)
Patch, S. K.; Hanson, E.; Thomas, M.; Kelly, H.; Jacobsohn, K.; See, W. A.
2013-03-01
Thermoacoustic (TA) imaging provides a novel contrast mechanism that may enable visualization of cancerous lesions which are not robustly detected by current imaging modalities. Prostate cancer (PCa) is the most notorious example. Imaging entire prostate glands requires 6 cm depth penetration. We therefore excite TA signal using submicrosecond VHF pulses (100 MHz). We will present reconstructions of fresh prostates imaged in a well-controlled benchtop TA imaging system. Chilled glycine solution is used as acoustic couplant. The urethra is routinely visualized as signal dropout; surgical staples formed from 100-micron wide wire bent to 3 mm length generate strong positive signal.
In vivo microwave-based thermoacoustic tomography of rats (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lin, Li; Zhou, Yong; Wang, Lihong V.
2016-03-01
Microwave-based thermoacoustic tomography (TAT), based on the measurement of ultrasonic waves induced by microwave pulses, can reveal tissue dielectric properties that may be closely related to the physiological and pathological status of the tissues. Using microwaves as the excitation source improved imaging depth because of their deep penetration into biological tissues. We demonstrate, for the first time, in vivo microwave-based thermoacoustic imaging in rats. The transducer is rotated around the rat in a full circle, providing a full two-dimensional view. Instead of a flat ultrasonic transducer, we used a virtual line detector based on a cylindrically focused transducer. A 3 GHz microwave source with 0.6 µs pulse width and an electromagnetically shielded transducer with 2.25 MHz central frequency provided clear cross-sectional images of the rat's body. The high imaging contrast, based on the tissue's rate of absorption, and the ultrasonically defined spatial resolution combine to reveal the spine, kidney, muscle, and other deeply seated anatomical features in the rat's abdominal cavity. This non-invasive and non-ionizing imaging modality achieved an imaging depth beyond 6 cm in the rat's tissue. Cancer diagnosis based on information about tissue properties from microwave band TAT can potentially be more accurate than has previously been achievable.
Measurement of the Space Thermoacoustic Refrigerator Performance
1990-09-01
the refrigerator was a requisite towards simplifying the process of selecting the operating frequency . The simplest method allowing for the most...LIST OF FIGURES I-1 Pulse Tube Refrigerator.............................. 3 1-2 Hofler Refrigerator.................................. 5 1-3 Acoustical...qualitative manner as did Rayleigh. The first example of an acoustic heat pump was the pulse - tube refrigerator in which Gifford and Longsworth, by applying
Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.
Aliev, Ali E; Codoluto, Daniel; Baughman, Ray H; Ovalle-Robles, Raquel; Inoue, Kanzan; Romanov, Stepan A; Nasibulin, Albert G; Kumar, Prashant; Priya, Shashank; Mayo, Nathanael K; Blottman, John B
2018-08-10
The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10 -5 to 0.1) and the SPL of 120 dB re 20 μPa @ 1 m in air and 170 dB re 1 μPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm -2 ). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.
Nie, Liming; Ou, Zhongmin; Yang, Sihua; Xing, Da
2010-08-01
The primary feasibility steps of demonstrating the ability of microwave-induced thermoacoustic (TA) in phantoms have been previously reported. However, none were shown to target a diseased site in living subjects in thermoacoustic tomography (TAT) field so far. To determine the expressions of oncogenic surface molecules, it is quite necessary to image tumor lesions and acquire pathogenic status on them via TAT. Compared to biological tissues, iron oxide nanoparticles have a much higher microwave absorbance. Fe3O4/polyaniline (PANI) nanoparticles were prepared via polymerization of aniline in the Fe304 superparamagnetic fluids. Then Fe3O4/PANI was conjugated to folic acid (FA), which can bind specifically to the surface of the folate receptor used as a tumor marker. FA-Fe3O4/PANI targeted tumor was irradiated by pulsed microwave at 6 GHz for thermoacoustic detection and imaging. The effect of the Fe3O4/PANI superparamagnetic nanoparticles for enhancing TAT images was successfully investigated in ex vivo human blood and in vivo mouse tail. Intravenous administration of the targeted nanoparticles to mice bearing tumors showed fivefold greater thermoacoustic signal and much longer elimination time than that of mice injected with nontargeted nanoparticles in the tumor. The specific targeting ability of FA-Fe3O4/PANI to tumor was also verified on fluorescence microscopy. Fabricated iron oxide nanoparticles conjugated with tumor ligands for targeted TAT tumor detection at the molecular level was reported for the first time. The results indicate that thermoacoustic molecular imaging with functionalized iron oxide nanoparticles may contribute to targeted and functional early cancer imaging. Also, the modified iron oxide nanoparticles combined with suitable tumor markers may also be used as novel nanomaterials for targeted and guided cancer thermal therapy.
Design and experimental investigations on a small scale traveling wave thermoacoustic engine
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, Y. L.
2013-02-01
A small scale traveling wave or Stirling thermoacoustic engine with a resonator of only 1 m length was designed, constructed and tested by using nitrogen as working gas. The small heat engine achieved a steady working frequency of 45 Hz. The pressure ratio reached 1.189, with an average charge pressure of 0.53 MPa and a heating power of 1.14 kW. The temperature and the pressure characteristics during the onset and damping processes were also observed and discussed. The experimental results demonstrated that the small engine possessed the potential to drive a Stirling-type pulse tube cryocooler.
A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines
NASA Astrophysics Data System (ADS)
Backhaus, Scott; Reid, Robert S.
2005-02-01
A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
The influence of Reynolds numbers on resistance properties of jet pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Q.; Graduate University of Chinese Academy of Sciences, Beijing 100049; Zhou, G.
2014-01-29
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structuresmore » and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.« less
The influence of Reynolds numbers on resistance properties of jet pumps
NASA Astrophysics Data System (ADS)
Geng, Q.; Zhou, G.; Li, Q.
2014-01-01
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.
Towards a Multi-Scale Understanding of Thermoacoustic Fatigue in Aerospace Materials and Structure
2016-05-31
for public release: distribution unlimited. 3.1.3 Pulsed laser Litron Nano This is a commercially available laser (Nano L200-10, Litron, Rugby , England...to disseminate recent research support by AFOSR and EOARD and associated work supported via European Union FP7 grants entitled ‘AD- VISE’ (Grant no
Ultrashort Microwave-Pumped Real-Time Thermoacoustic Breast Tumor Imaging System.
Ye, Fanghao; Ji, Zhong; Ding, Wenzheng; Lou, Cunguang; Yang, Sihua; Xing, Da
2016-03-01
We report the design of a real-time thermoacoustic (TA) scanner dedicated to imaging deep breast tumors and investigate its imaging performance. The TA imaging system is composed of an ultrashort microwave pulse generator and a ring transducer array with 384 elements. By vertically scanning the transducer array that encircles the breast phantom, we achieve real-time, 3D thermoacoustic imaging (TAI) with an imaging speed of 16.7 frames per second. The stability of the microwave energy and its distribution in the cling-skin acoustic coupling cup are measured. The results indicate that there is a nearly uniform electromagnetic field in each XY-imaging plane. Three plastic tubes filled with salt water are imaged dynamically to evaluate the real-time performance of our system, followed by 3D imaging of an excised breast tumor embedded in a breast phantom. Finally, to demonstrate the potential for clinical applications, the excised breast of a ewe embedded with an ex vivo human breast tumor is imaged clearly with a contrast of about 1:2.8. The high imaging speed, large field of view, and 3D imaging performance of our dedicated TAI system provide the potential for clinical routine breast screening.
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patch, S; Kireeff Covo, M; Jackson, A
Purpose: The potential of particle therapy has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying thermoacoustic localization of the Bragg peak onto an ultrasound image. Methods: Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the inflector of the 88″ cyclotron at Lawrence Berkeley National Lab. 2 Gy were delivered in 2 µs by a beam with peak current of 2 µA. Thermoacoustic emissions were detected by a cardiac array andmore » Verasonics V1 ultrasound system, which also generated a grayscale ultrasound image. 1024 thermoacoustic pulses were averaged before filtering and one-way beamforming focused signal onto the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Experiments were performed with the cavity both empty and filled with olive oil. Results: In the waterbath overlays of the Bragg peak agreed with Monte Carlo simulations to within 800±170 µm. Agreement within 1.3 ± 0.2 mm was achieved in the gelatin phantom, although relative stopping powers were estimated only to first order from CT scans. Protoacoustic signals were detected after travel from the Bragg peak through 29 mm and 65 mm of phantom material when the cavity was empty and full of olive oil, respectively. Conclusion: Protoacoustic range verification is feasible with a commercial clinical ultrasound array, but at doses exceeding the clinical realm. Further optimization of both transducer array and injection line chopper is required to enable range verification within a 2 Gy dose limit, which would enable online adaptive treatment. This work was supported in part by a UWM Intramural Instrumentation Grant and by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. YMQ was supported by a UWM-OUR summer fellowship.« less
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
Report to the Congress on the Strategic Defense Initiative 1990
1990-05-01
thermoacoustic drivers, pulse tube coolers, and sorption coolers. High efficiency is 7-4 I Technology Base expected from the magnetic cooler work, currently in...generated by SDI research, the degree to which certain types of defensive systems discourage an adversary from attempting to overwhelm them with additional...energy interceptor that has replaced earlier approaches. Nevertheless, development of an earlier approach known as SBI (referring to a specific type of
Cascaded thermoacoustic devices
Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.
2003-12-09
A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap
NASA Astrophysics Data System (ADS)
E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei
2017-10-01
Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.
Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir
NASA Astrophysics Data System (ADS)
Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.
2010-04-01
Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
NASA Astrophysics Data System (ADS)
Juniper, Matthew P.; Sujith, R. I.
2018-01-01
Nine decades of rocket engine and gas turbine development have shown that thermoacoustic oscillations are difficult to predict but can usually be eliminated with relatively small ad hoc design changes. These changes can, however, be ruinously expensive to devise. This review explains why linear and nonlinear thermoacoustic behavior is so sensitive to parameters such as operating point, fuel composition, and injector geometry. It shows how nonperiodic behavior arises in experiments and simulations and discusses how fluctuations in thermoacoustic systems with turbulent reacting flow, which are usually filtered or averaged out as noise, can reveal useful information. Finally, it proposes tools to exploit this sensitivity in the future: adjoint-based sensitivity analysis to optimize passive control designs and complex systems theory to warn of impending thermoacoustic oscillations and to identify the most sensitive elements of a thermoacoustic system.
Luo, E C; Ling, H; Dai, W; Yu, G Y
2006-12-22
In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.
Pin stack array for thermoacoustic energy conversion
Keolian, Robert M.; Swift, Gregory W.
1995-01-01
A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.
Thermoacoustics of solids: A pathway to solid state engines and refrigerators
NASA Astrophysics Data System (ADS)
Hao, Haitian; Scalo, Carlo; Sen, Mihir; Semperlotti, Fabio
2018-01-01
Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism exhibits some interesting similarities with its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.
Jacobsen, Matthew K.; Velisavljevic, Nenad; Kono, Yoshio; ...
2017-04-05
Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Furthermore, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K.; Velisavljevic, N.; Kono, Y.
2017-04-01
Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Further, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation ofmore » these can be made through inspection of shear-driven anomalies in other systems.« less
Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging
NASA Astrophysics Data System (ADS)
Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.
2010-02-01
We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.
An adjoint-based sensitivity analysis of thermoacoustic network models
NASA Astrophysics Data System (ADS)
Sogaro, Francesca; Morgans, Aimee; Schmid, Peter
2017-11-01
Thermoacoustic instability is a phenomenon that occurs in numerous combustion systems, from rockets to land-based gas turbines. The acoustic oscillations of these systems are of significant importance as they can result in severe vibrations, thrust oscillations, thermal stresses and mechanical loads that lead to fatigue or even failure. In this work we use a low-order network model representation of a combustor system where linear acoustics are solved together with the appropriate boundary conditions, area change jump conditions, acoustic dampers and an appropriate flame transfer function. Special emphasis is directed towards the interaction between acoustically driven instabilities and flame-intrinsic modes. Adjoint methods are used to perform a sensitivity analysis of the spectral properties of the system to changes in the parameters involved. An exchange of modal identity between acoustic and intrinsic modes will be demonstrated and analyzed. The results provide insight into the interplay between various mode types and build a quantitative foundation for the design of combustors.
Experimental study of thermoacoustic effects on a single plate Part I: Temperature fields
NASA Astrophysics Data System (ADS)
Wetzel, M.; Herman, C.
The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions.
Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA)
NASA Astrophysics Data System (ADS)
Qin, Huan; Yang, Sihua; Xing, Da
2012-01-01
NMG2[Gd(DTPA)], a clinical contrast agent, was investigated for microwave-induced thermoacoustic computed tomography (CT). Due to ionic conduction and magnetic dipole rotation in the presence of microwave field, microwave energy absorbed by NMG2[Gd(DTPA)] would be transformed to thermoacoustic signals based on the thermoelastic effect. The experimental results demonstrated that NMG2[Gd(DTPA)] at a concentration of 10 mM provided effective enhancement compared with water. The enhancement of NMG2[Gd(DTPA)] for thermoacoustic CT was further demonstrated in invivo tumor-bearing mouse. The theory and experimental results indicate that the clinically available NMG2[Gd(DTPA)] will promote the medical applications of thermoacoustic CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie Liming; Xing Da; Yang Diwu
2007-04-23
Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreignmore » objects.« less
NASA Astrophysics Data System (ADS)
Zan, Hao; Li, Haowei; Jiang, Yuguang; Wu, Meng; Zhou, Weixing; Bao, Wen
2018-06-01
As part of our efforts to find ways and means to further improve the regenerative cooling technology in scramjet, the experiments of thermo-acoustic instability dynamic characteristics of hydrocarbon fuel flowing have been conducted in horizontal circular tubes at different conditions. The experimental results indicate that there is a developing process from thermo-acoustic stability to instability. In order to have a deep understanding on the developing process of thermo-acoustic instability, the method of Multi-scale Shannon Wavelet Entropy (MSWE) based on Wavelet Transform Correlation Filter (WTCF) and Multi-Scale Shannon Entropy (MSE) is adopted in this paper. The results demonstrate that the developing process of thermo-acoustic instability from noise and weak signals is well detected by MSWE method and the differences among the stability, the developing process and the instability can be identified. These properties render the method particularly powerful for warning thermo-acoustic instability of hydrocarbon fuel flowing in scramjet cooling channels. The mass flow rate and the inlet pressure will make an influence on the developing process of the thermo-acoustic instability. The investigation on thermo-acoustic instability dynamic characteristics at supercritical pressure based on wavelet entropy method offers guidance on the control of scramjet fuel supply, which can secure stable fuel flowing in regenerative cooling system.
Cao, Caijun; Nie, Liming; Lou, Cunguang; Xing, Da
2010-09-07
Imaging of renal calculi is important for patients who suffered a urinary calculus prior to treatment. The available imaging techniques include plain x-ray, ultrasound scan, intravenous urogram, computed tomography, etc. However, the visualization of a uric acid calculus (radiolucent calculi) is difficult and often impossible by the above imaging methods. In this paper, a new detection method based on microwave-induced thermoacoustic tomography was developed to detect the renal calculi. Thermoacoustic images of calcium oxalate and uric acid calculus were compared with their x-ray images. The microwave absorption differences among the calcium oxalate calculus, uric acid calculus and normal kidney tissue could be evaluated by the amplitude of the thermoacoustic signals. The calculi hidden in the swine kidney were clearly imaged with excellent contrast and resolution in the three orthogonal thermoacoustic images. The results indicate that thermoacoustic imaging may be developed as a complementary method for detecting renal calculi, and its low cost and effective feature shows high potential for clinical applications.
Design of numerical model for thermoacoustic devices using OpenFOAM
NASA Astrophysics Data System (ADS)
Tisovsky, Tomas; Vit, Tomas
2017-09-01
Thermoacoustic devices are increasingly popular especially because of their construction simplicity and the ability to easily convert waste heat into the form of usable energy. Aim of this paper is to introduce some of the effective procedures for creating a complex mathematical model of thermoacoustic devices in OpenFOAM.
Heat Transfer in a Thermoacoustic Process
ERIC Educational Resources Information Center
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
Rijke-Type Thermoacoustic Oscillations
ERIC Educational Resources Information Center
Beke, Tamas
2011-01-01
Thermoacoustic instability can appear in any thermal device when the unsteady heat transfer is favourably coupled with the fluctuations of acoustic pressure. In this paper, we present a project type of physical measuring and modelling task; the aim of our project is to help our students increase their knowledge of thermoacoustics. Our paper…
Physics of thermo-acoustic sound generation
NASA Astrophysics Data System (ADS)
Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.
2013-09-01
We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.
NASA Astrophysics Data System (ADS)
Offner, Avshalom; Ramon, Guy Z.
2016-11-01
Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
Passive control of thermoacoustic oscillations with adjoint methods
NASA Astrophysics Data System (ADS)
Aguilar, Jose; Juniper, Matthew
2017-11-01
Strict pollutant regulations are driving gas turbine manufacturers to develop devices that operate under lean premixed conditions, which produce less NOx but encourage thermoacoustic oscillations. These are a form of unstable combustion that arise due to the coupling between the acoustic field and the fluctuating heat release in a combustion chamber. In such devices, in which safety is paramount, thermoacoustic oscillations must be eliminated passively, rather than through feedback control. The ideal way to eliminate thermoacoustic oscillations is by subtly changing the shape of the device. To achieve this, one must calculate the sensitivity of each unstable thermoacoustic mode to every geometric parameter. This is prohibitively expensive with standard methods, but is relatively cheap with adjoint methods. In this study we first present low-order network models as a tool to model and study the thermoacoustic behaviour of combustion chambers. Then we compute the continuous adjoint equations and the sensitivities to relevant parameters. With this, we run an optimization routine that modifies the parameters in order to stabilize all the resonant modes of a laboratory combustor rig.
NASA Technical Reports Server (NTRS)
Garrett, Steven L.; Hofler, Thomas J.
1991-01-01
A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.
Parallel capillary-tube-based extension of thermoacoustic theory for random porous media.
Roh, Heui-Seol; Raspet, Richard; Bass, Henry E
2007-03-01
Thermoacoustic theory is extended to stacks made of random bulk media. Characteristics of the porous stack such as the tortuosity and dynamic shape factors are introduced into the thermoacoustic wave equation in the low reduced frequency approximation. Basic thermoacoustic equations for a bulk porous medium are formulated analogously to the equations for a single pore. Use of different dynamic shape factors for the viscous and thermal effects is adopted and scaling using the dynamic shape factors and tortuosity is demonstrated. Comparisons of the calculated and experimentally derived thermoacoustic properties of reticulated vitreous carbon and aluminum foam show good agreement. A consistent mathematical model of sound propagation in a random porous medium with an imposed temperature is developed. This treatment leads to an expression for the coefficient of the temperature gradient in terms of scaled cylindrical thermoviscous functions.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
Optical air-coupled NDT system with ultra-broad frequency bandwidth (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fischer, Balthasar; Rohringer, Wolfgang; Heine, Thomas
2017-05-01
We present a novel, optical ultrasound airborne acoustic testing setup exhibiting a frequency bandwidth of 1MHz in air. The sound waves are detected by a miniaturized Fabry-Pérot interferometer (2mm cavity) whilst the sender consists of a thermoacoustic emitter or a short laser pulse We discuss characterization measurements and C-scans of a selected set of samples, including Carbon fiber reinforced polymer (CFRP). The high detector sensitivity allows for an increased penetration depth. The high frequency and the small transducer dimensions lead to a compelling image resolution.
Miniature thermoacoustic cryocooler driven by a vertical comb-drive
NASA Astrophysics Data System (ADS)
Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David
2003-01-01
In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.
A thermoacoustic Stirling heat engine
NASA Astrophysics Data System (ADS)
Backhaus, S.; Swift, G. W.
1999-05-01
Electrical and mechanical power, together with other forms of useful work, are generated worldwide at a rate of about 1012 watts, mostly using heat engines. The efficiency of such engines is limited by the laws of thermodynamics and by practical considerations such as the cost of building and operating them. Engines with high efficiency help to conserve fossil fuels and other natural resources, reducing global-warming emissions and pollutants. In practice, the highest efficiencies are obtained only in the most expensive, sophisticated engines, such as the turbines in central utility electrical plants. Here we demonstrate an inexpensive thermoacoustic engine that employs the inherently efficient Stirling cycle. The design is based on a simple acoustic apparatus with no moving parts. Our first small laboratory prototype, constructed using inexpensive hardware (steel pipes), achieves an efficiency of 0.30, which exceeds the values of 0.10-0.25 attained in other heat engines, with no moving parts. Moreover, the efficiency of our prototype is comparable to that of the common internal combustion engine (0.25-0.40) and piston-driven Stirling engines, (0.20-0.38).
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste
2017-11-01
We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.
Fu, Yong; Ji, Zhong; Ding, Wenzheng; Ye, Fanghao; Lou, Cunguang
2014-11-01
Previous studies demonstrated that thermoacoustic imaging (TAI) has great potential for breast tumor detection. However, large field of view (FOV) imaging remains a long-standing challenge for three-dimensional (3D) breast tumor localization. Here, the authors propose a practical TAI system for noninvasive 3D localization of breast tumors with large FOV through the use of ultrashort microwave pulse (USMP). A USMP generator was employed for TAI. The energy density required for quality imaging and the corresponding microwave-to-acoustic conversion efficiency were compared with that of conventional TAI. The microwave energy distribution, imaging depth, resolution, and 3D imaging capabilities were then investigated. Finally, a breast phantom embedded with a laboratory-grown tumor was imaged to evaluate the FOV performance of the USMP TAI system, under a simulated clinical situation. A radiation energy density equivalent to just 1.6%-2.2% of that for conventional submicrosecond microwave TAI was sufficient to obtain a thermoacoustic signal with the required signal-to-noise ratio. This result clearly demonstrated a significantly higher microwave-to-acoustic conversion efficiency of USMP TAI compared to that of conventional TAI. The USMP TAI system achieved 61 mm imaging depth and 12 × 12 cm(2) microwave radiation area. The volumetric image of a copper target measured at depth of 4-6 cm matched well with the actual shape and the resolution reaches 230 μm. The TAI of the breast phantom was precisely localized to an accuracy of 0.1 cm over an 8 × 8 cm(2) FOV. The experimental results demonstrated that the USMP TAI system offered significant potential for noninvasive clinical detection and 3D localization of deep breast tumors, with low microwave radiation dose and high spatial resolution over a sufficiently large FOV.
Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.
Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da
2016-01-01
The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Review on the conversion of thermoacoustic power into electricity.
Timmer, Michael A G; de Blok, Kees; van der Meer, Theo H
2018-02-01
Thermoacoustic engines convert heat energy into high amplitude acoustic waves and subsequently into electric power. This article provides a review of the four main methods to convert the (thermo)acoustic power into electricity. First, loudspeakers and linear alternators are discussed in a section on electromagnetic devices. This is followed by sections on piezoelectric transducers, magnetohydrodynamic generators, and bidirectional turbines. Each segment provides a literature review of the given technology for the field of thermoacoustics, focusing on possible configurations, operating characteristics, output performance, and analytical and numerical methods to study the devices. This information is used as an input to discuss the performance and feasibility of each method, and to identify challenges that should be overcome for a more successful implementation in thermoacoustic engines. The work is concluded by a comparison of the four technologies, concentrating on the possible areas of application, the conversion efficiency, maximum electrical power output and more generally the suggested focus for future work in the field.
An experimental investigation of thermoacoustic lasers operating in audible frequency range
NASA Astrophysics Data System (ADS)
Kolhe, Sanket Anil
Thermoacoustic lasers convert heat from a high-temperature heat source into acoustic power while rejecting waste heat to a low temperature sink. The working fluids involved can be air or noble gases which are nontoxic and environmentally benign. Simple in construction due to absence of moving parts, thermoacoustic lasers can be employed to achieve generation of electricity at individual homes, water-heating for domestic purposes, and to facilitate space heating and cooling. The possibility of utilizing waste heat or solar energy to run thermoacoustic devices makes them technically promising and economically viable to generate large quantities of acoustic energy. The research presented in this thesis deals with the effects of geometric parameters (stack position, stack length, tube length) associated with a thermoacoustic laser on the output sound wave. The effects of varying input power on acoustic output were also studied. Based on the experiments, optimum operating conditions were identified and qualitative and/or quantitative explanations were provided to justify our observations. It was observed that the maximum sound pressure level was generated for the laser with the stack positioned at a distance of quarter lengths of a resonator from the closed end. Higher sound pressure levels were recorded for the laser with longer stack lengths and longer resonator lengths. Efforts were also made to develop high-frequency thermoacoustic lasers.
NASA Technical Reports Server (NTRS)
Fast, Ronald W. (Editor)
1991-01-01
The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.
Influence of resonance tube geometry shape on performance of thermoacoustic engine.
Bao, Rui; Chen, Guobang; Tang, Ke; Jia, Zhengzhong; Cao, Weihua
2006-12-22
Based on the linear thermoacoustics, a symmetrical standing-wave thermoacoustic engine is simulated with a cylindrical tube and a tapered one as the resonance tube, respectively. The experiments with both cylindrical and tapered tubes are carried out. The suppression of nonlinear effects due to tapered tube as the resonance tube is discussed. Both simulation and experimental results show that the performance of the tapered tube is better than cylindrical one as the resonance tube.
NASA Astrophysics Data System (ADS)
Xing, Qianhe; Li, Shuang; Fan, Xueliang; Bian, Anhua; Cao, Shi-Jie; Li, Cheng
2017-09-01
Graphene thermoacoustic loudspeakers, composed of a graphene film on a substrate, generate sound with heat. Improving thermoacoustic efficiency of graphene speakers is a goal for optimal design. In this work, we first modified the existing TA model with respect to small thermal wavelengths, and then built an acoustic platform for model validation. Additionally, sensitivity analyses for influential factors on thermoacoustic efficiency were performed, including the thickness of multilayered graphene films, the thermal effusivity of substrates, and the characteristics of inserted gases. The higher sensitivity coefficients result in the stronger effects on thermoacoustic efficiency. We find that the thickness (5 nm-15 nm) of graphene films plays a trivial role in efficiency, resulting in the sensitivity coefficient less than 0.02. The substrate thermal effusivity, however, has significant effects on efficiency, with the sensitivity coefficient around 1.7. Moreover, substrates with a lower thermal effusivity show better acoustic performances. For influences of ambient gases, the sensitivity coefficients of density ρg, thermal conductivity κg, and specific heat cp,g are 2.7, 0.98, and 0.8, respectively. Furthermore, large magnitudes of both ρg and κg lead to a higher efficiency and the sound pressure level generated by graphene films is approximately proportional to the inverse of cp,g. These findings can refer to the optimal design for graphene thermoacoustic speakers.
Forced synchronization and asynchronous quenching in a thermo-acoustic system
NASA Astrophysics Data System (ADS)
Mondal, Sirshendu; Pawar, Samadhan A.; Sujith, Raman
2017-11-01
Forced synchronization, which has been extensively studied in theory and experiments, occurs through two different mechanisms known as phase locking and asynchronous quenching. The latter indicates the suppression of oscillation amplitude. In most practical combustion systems such as gas turbine engines, the main concern is high amplitude pressure oscillations, known as thermo-acoustic instability. Thermo-acoustic instability is undesirable and needs to be suppressed because of its damaging consequences to an engine. In the present study, a systematic experimental investigation of forced synchronization is performed in a prototypical thermo-acoustic system, a Rijke tube, in its limit cycle operation. Further, we show a qualitatively similar behavior using a reduced order model. In the phase locking region, the simultaneous occurrence of synchronization and resonant amplification leads to high amplitude pressure oscillations. However, a reduction in the amplitude of natural oscillations by about 78% of the unforced amplitude is observed when the forcing frequency is far lower than the natural frequency. This shows the possibility of suppression of the oscillation amplitude through asynchronous quenching in thermo-acoustic systems.
The Influence of the Density of Coconut Fiber as Stack in Thermo-Acoustics Refrigeration System
NASA Astrophysics Data System (ADS)
Hartulistiyoso, E.; Yulianto, M.; Sucahyo, L.
2018-05-01
An experimental study of using coconut fiber as stack with varying density in thermo-acoustics refrigeration system has been done. Stack is a device which is described as the “heart” in thermo-acoustics refrigeration system. The length of stack is a fix parameter in this experiment. The performance of the coconut fiber was evaluated from the density of stack (varied from 30%, 50% and 70%), position of stack (varied from 0 to 34 cm from the sound generator), and frequency of sound generator (varied from 150 Hz, 200Hz, 250Hz and 300Hz). The inside, outside, and environment temperatures were collected every second using Data Acquisition (DAQ). The result showed that the increase of stack density will increase the performance of thermo-acoustics refrigeration system. The higher density produced temperature differences in cold side and hot side of 5.4°C. In addition, the position of stack and frequency of sound generator have an important role in the performance of thermo-acoustics refrigeration system for all variations of the density.
NASA Astrophysics Data System (ADS)
Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.
2005-09-01
This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.
ISGV Self-rectifying Turbine Design For Thermoacoustic Application
NASA Astrophysics Data System (ADS)
Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh
2014-11-01
Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.
Extreme sensitivity in Thermoacoustics
NASA Astrophysics Data System (ADS)
Juniper, Matthew
2017-11-01
In rocket engines and gas turbines, fluctuations in the heat release rate can lock in to acoustic oscillations and grow catastrophically. Nine decades of engine development have shown that these oscillations are difficult to predict but can usually be eliminated with small ad hoc design changes. The difficulty in prediction arises because the oscillations' growth rate is exceedingly sensitive to parameters that cannot always be measured or simulated reliably, which introduces severe systematic error into thermoacoustic models of engines. Passive control strategies then have to be devised through full scale engine tests, which can be ruinously expensive. For the Apollo F1 engine, for example, 2000 full-scale tests were required. Even today, thermoacoustic oscillations often re-appear unexpectedly at full engine test stage. Although the physics is well known, a novel approach to design is required. In this presentation, the parameters of a thermoacoustic model are inferred from many thousand automated experiments using inverse uncertainty quantification. The adjoint of this model is used to obtain cheaply the gradients of every unstable mode with respect to the model parameters. This gradient information is then used in an optimization algorithm to stabilize every thermoacoustic mode by subtly changing the geometry of the model.
Resonator coiling in thermoacoustic engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, J.R.; Swift, G.W.
1995-11-01
Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Acoustic signal recovery by thermal demodulation
NASA Astrophysics Data System (ADS)
Boullosa, R. R.; Santillán, Arturo O.
2006-10-01
One operating mode of recently developed thermoacoustic transducers is as an audio speaker that uses an input superimposed on a direct current; as a result, the audio signal occurs at the same frequency as the input signal. To extend the potential applications of these kinds of sources, the authors propose an alternative driving mode in which a simple thermoacoustic device, consisting of a metal film over a substrate and a heat sink, is excited with a high frequency sinusoid that is amplitude modulated by a lower frequency signal. They show that the modulating signal is recovered in the radiated waves due to a mechanism that is inherent to this type of thermoacoustic process. If the frequency of the carrier is higher than 30kHz and any modulating signal (the one of interest) is in the audio frequency range, only this signal will be heard. Thus, the thermoacoustic device operates as an audio-band, self-demodulating speaker.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic chips with carbon nanotube thin yarn arrays.
Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan
2013-10-09
Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.
Moss, W.C.
1997-10-07
A thermoacoustic device is described having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material. 13 figs.
Moss, William C.
1997-01-01
A thermoacoustic device having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity is disclosed. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material.
Numerical results on noise-induced dynamics in the subthreshold regime for thermoacoustic systems
NASA Astrophysics Data System (ADS)
Gupta, Vikrant; Saurabh, Aditya; Paschereit, Christian Oliver; Kabiraj, Lipika
2017-03-01
Thermoacoustic instability is a serious issue in practical combustion systems. Such systems are inherently noisy, and hence the influence of noise on the dynamics of thermoacoustic instability is an aspect of practical importance. The present work is motivated by a recent report on the experimental observation of coherence resonance, or noise-induced coherence with a resonance-like dependence on the noise intensity as the system approaches the stability margin, for a prototypical premixed laminar flame combustor (Kabiraj et al., Phys. Rev. E, 4 (2015)). We numerically investigate representative thermoacoustic models for such noise-induced dynamics. Similar to the experiments, we study variation in system dynamics in response to variations in the noise intensity and in a critical control parameter as the systems approach their stability margins. The qualitative match identified between experimental results and observations in the representative models investigated here confirms that coherence resonance is a feature of thermoacoustic systems. We also extend the experimental results, which were limited to the case of subcritical Hopf bifurcation, to the case of supercritical Hopf bifurcation. We identify that the phenomenon has qualitative differences for the systems undergoing transition via subcritical and supercritical Hopf bifurcations. Two important practical implications are associated with the findings. Firstly, the increase in noise-induced coherence as the system approaches the onset of thermoacoustic instability can be considered as a precursor to the instability. Secondly, the dependence of noise-induced dynamics on the bifurcation type can be utilised to distinguish between subcritical and supercritical bifurcation prior to the onset of the instability.
NASA Astrophysics Data System (ADS)
Chishty, Wajid Ali
Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.
Thermoacoustic and photoacoustic sensing of temperature.
Pramanik, Manojit; Wang, Lihong V
2009-01-01
We present a novel temperature-sensing technique using thermoacoustic and photoacoustic measurements. This noninvasive method has been demonstrated using a tissue phantom to have high temporal resolution and temperature sensitivity. Because both photoacoustic and thermoacoustic signal amplitudes depend on the temperature of the source object, the signal amplitudes can be used to monitor the temperature. A temperature sensitivity of 0.15 degrees C was obtained at a temporal resolution as short as 2 s, taking the average of 20 signals. The deep-tissue imaging capability of this technique can potentially lead us to in vivo temperature monitoring in thermal or cryogenic applications.
NASA Astrophysics Data System (ADS)
La Torraca, P.; Larcher, L.; Bobinger, M.; Pavan, P.; Seeber, B.; Lugli, P.
2017-06-01
Recent developments of ultra-low heat capacity nanostructured materials revived the interest in the thermo-acoustic (TA) loudspeaker technology, which shows important advantages compared to the classical dynamic loudspeakers as they feature a lower cost and weight, flexibility, conformability to the surface of various shapes, and transparency. The development of the TA loudspeaker technology requires accurate physical models connecting the material properties to the thermal and acoustic speaker's performance. We present here a combined theoretical and experimental analysis of TA loudspeakers, where the electro-thermal and the thermo-acoustic transductions are handled separately, thus allowing an in-depth description of both the pressure and temperature dynamics. The electro-thermal transduction is analyzed by accounting for all the heat flow processes taking place between the TA loudspeaker and the surrounding environment, with focus on their frequency dependence. The thermo-acoustic conversion is studied by solving the coupled thermo-acoustic equations, derived from the Navier-Stokes equations, and by exploiting the Huygens-Fresnel principle to decompose the TA loudspeaker surface into a dense set of TA point sources. A general formulation of the 3D pressure field is derived summing up the TA point source contributions via a Rayleigh integral. The model is validated against temperature and sound pressure level measured on the TA loudspeaker sample made of a Silver Nanowire random network deposited on a polyimide substrate. A good agreement is found between measurements and simulations, demonstrating that the model is capable of connecting material properties to the thermo-acoustic performance of the device, thus providing a valuable tool for the design and optimization of TA loudspeakers.
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, Y. L.
2017-07-01
Periodic and spontaneous on-off oscillation belongs to the onset and damping behaviors of thermoacoustic engines, and investigations on this phenomenon lead to better operation of the thermoacoustic engines with stable performances. In this paper, the quasi- periodic on-off oscillation in a small-scale traveling wave thermoacoustic heat engine with a resonator length of only 1 m was experimentally investigated. The type of working media, mean pressure and the input heating power are the main operating parameters, which significantly affect the formation of the periodic on-off oscillation. The experimental results demonstrated there was a critical charge pressure over which the periodic on-off oscillation could happen. For the small- scale engine with helium gas as the working media, the mean pressure threshold value was about 1.4 MPa and the on-off oscillation occurred with a single frequency. Using nitrogen and argon gas as the working media, the on-off oscillation was not observed. The reason was qualitatively analyzed as well.
NASA Astrophysics Data System (ADS)
Mironov, Mikhail; Gusev, Vitalyi; Auregan, Yves; Lotton, Pierrick; Bruneau, Michel; Piatakov, Pavel
2002-08-01
It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls. copyright 2002 Acoustical Society of America.
Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
Geometry effects on cooling in a standing wave cylindrical thermoacousic resonator
NASA Astrophysics Data System (ADS)
Mohd-Ghazali, Normah; Ghazali, Ahmad Dairobi; Ali, Irwan Shah; Rahman, Muhammad Aminullah A.
2012-06-01
Numerous reports have established the refrigeration applications of thermoacoustic cooling without compressors and refrigerants. Significant cooling effects can be obtained in a thermoacoustic resonator fitted with a heat exchanging stack and operated at resonance frequency. Past studies, however, have hardly referred to the fundamental relationship between resonant frequency and the resonator geometry. This paper reports the thermoacoustic cooling effects at resonance obtained by changing the diameter of the resonator while holding the length constant and vice versa. Experiments were completed at atmospheric pressure with air as the working fluid using a number of pvc tubes having parallel plate stack from Mylar. The temperature difference measured across the stack showed that a volume increase in the working fluid in general increases the temperature gradient for the quarter-and half-wavelength resonators. Doubling the diameter from 30 mm to 60 mm produced the highest temperature difference due to the greater number of stack plates resulting in a higher overall thermoacaoustic cooling. Increasing the resonator length only produced a small increase in temperature gradient since the resonant frequency at operation is only slightly changed. Investigation on the aspect ratio exhibits no influence on the temperature difference across the stack. This study have shown that the resonator length and diameter do affect the temperature difference across the thermoacoustic stack, and further research should be done to consider the contribution of the stack mass on the overall desired thermoacoustic cooling.
Control of thermoacoustic instability with a drum-like silencer
NASA Astrophysics Data System (ADS)
Zhang, Guangyu; Wang, Xiaoyu; Li, Lei; Jing, Xiaodong; Sun, Xiaofeng
2017-10-01
Theoretical investigation is carried out by a novel method of controlling thermoacoustic instability with a drum-like silencer. It is shown that by decreasing the frequency of thermoacoustic system, the instability can be suppressed with the help of drum-like silencer. The purely reactive silencer, which is composed of a flexible membrane and a backing cavity, is usually known as a noise control device that works effectively in low frequency bandwidth without any aerodynamic loss. In present research, the silencer is exploited in a Rijke tube, as a means of decreasing the natural frequency of the system, and consequently changing the resonance period of the system. The "transfer element method" (TEM) is used to consider the interactions between the acoustic waves and the flexible membranes of the silencer. The effects of all possible properties of the silencer on the growth rate and resonance frequency of the thermoacoustic system are explored. According to the calculation results, it is found that for some properties of the silencer, the resonance frequencies are greatly decreased and then the phase difference between the unsteady heat release and the pressure fluctuation is increased. Consequently, the instability is suppressed with some dissipation that can not be able to control its onset in the original system. Therefore, when the damping is low, but not zero, it is effective to control thermoacoustic instability with this technique.
Forced synchronization of thermoacoustic oscillations in a ducted flame
NASA Astrophysics Data System (ADS)
Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.
2016-11-01
Forced synchronization is a process in which a self-excited system subjected to external forcing starts to oscillate at the forcing frequency ff in place of its own natural frequency fn. There are two motivations for studying this in thermoacoustics: (i) to determine how external forcing could be used to control thermoacoustic oscillations, which are harmful to many combustors; and (ii) to better understand the nonlinear interactions between self-excited hydrodynamic and thermoacoustic oscillations. In this experimental study, we examine the response of a ducted premixed flame to harmonic acoustic forcing, for two natural states of the system: (1) a state with periodic oscillations at f1 and a marginally stable mode at f2; and (2) a state with quasiperiodic oscillations at two incommensurate frequencies f1 and f2. When forcing the periodic state, we find that the forcing amplitude required for lock-in increases linearly with | ff -f1 | and that the marginally stable mode becomes excited when ff f2 . When forcing the quasiperiodic state, we find that the system locks into the forcing when ff f1 or f2 or 1 / 2 (f1 +f2) . These findings should lead to improved control of periodic and aperiodic thermoacoustic oscillations in combustors. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroaki; Gotoda, Hiroshi; Tachibana, Shigeru; Yoshida, Seiji
2017-12-01
We conduct an experimental study using time series analysis based on symbolic dynamics to detect a precursor of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor. With increasing amount of the main fuel, a significant shift in the dominant frequency-mode occurs in noisy periodic dynamics, leading to a notable increase in oscillation amplitudes. The sustainment of noisy periodic dynamics during thermoacoustic combustion oscillations is clearly shown by the multiscale complexity-entropy causality plane in terms of statistical complexity. A modified version of the permutation entropy allows us to detect a precursor of the frequency-mode-shift before the amplification of pressure fluctuations.
Transmission line based thermoacoustic imaging of small animals
NASA Astrophysics Data System (ADS)
Omar, Murad; Kellnberger, Stephan; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis
2013-06-01
We have generated high resolution images of RF-Contrast in small animals using nearfield thermoacoustic system. This enables us to see some anatomical features of a mouse such as the heart, the spine and the boundary. OCIS codes: (000.0000) General; (000.0000) General [8-pt. type. For codes, see www.opticsinfobase.org/submit/ocis.
Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
Weiland, Nathan T; Zinn, Ben T
2003-11-01
In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.
Ultrathin thermoacoustic nanobridge loudspeakers from ALD on polyimide
NASA Astrophysics Data System (ADS)
Brown, J. J.; Moore, N. C.; Supekar, O. D.; Gertsch, J. C.; Bright, V. M.
2016-11-01
The recent development of low-temperature (<200 °C) atomic layer deposition (ALD) for fabrication of freestanding nanostructures has enabled consideration of active device design based on engineered ultrathin films. This paper explores audible sound production from thermoacoustic loudspeakers fabricated from suspended tungsten nanobridges formed by ALD. Additionally, this paper develops an approach to lumped-element modeling for design of thermoacoustic nanodevices and relates the near-field plane wave model of individual transducer beams to the far-field spherical wave sound pressure that can be measured with standard experimental techniques. Arrays of suspended nanobridges with 25.8 nm thickness and sizes as small as 17 μm × 2 μm have been fabricated and demonstrated to produce audible sound using the thermoacoustic effect. The nanobridges were fabricated by ALD of 6.5 nm Al2O3 and 19.3 nm tungsten on sacrificial polyimide, with ALD performed at 130 °C and patterned by standard photolithography. The maximum observed loudspeaker sound pressure level (SPL) is 104 dB, measured at 20 kHz, 9.71 W input power, and 1 cm measurement distance, providing a loudspeaker sensitivity value of ∼64.6 dB SPL/1 mW. Sound production efficiency was measured to vary proportional to frequency f 3 and was directly proportional to input power. The devices in this paper demonstrate industrially feasible nanofabrication of thermoacoustic transducers and a sound production mechanism pertinent to submicron-scale device engineering.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
Thermoacoustic School Project Work with an Electrically Heated Rijke Tube
ERIC Educational Resources Information Center
Beke, Tamas
2010-01-01
In this article we present a project that includes physical measuring, examination and modelling task. The main objective of this article is to present the theory of thermoacoustic oscillations; for this purpose, a simple Rijke-type thermal device was built. The Rijke tube is essentially a pipe open at both ends with a mean flow and a concentrated…
Summary of Research 1998, Department of Mechanical Engineering.
1999-08-01
thermoacoustic behavior in strong zero-mean oscillatory flows with potential application to the design of heat exchangers in thermoacoustic engines...important feature in the thermal characterization of microtubes , which are to be used in microheat exchangers . DoD KEY TECHNOLOGY AREA: Modeling and...Simulation KEYWORDS: Laminar Duct Flows, Convection and Conduction Heat Transfer, Axial Conduction, Micro- heat Exchang - ers DEVELOPMENT AND CALIBRATION
Open-loop control of quasiperiodic thermoacoustic oscillations
NASA Astrophysics Data System (ADS)
Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.
2017-11-01
The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Petawatt pulsed-power accelerator
Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.
2010-03-16
A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.
2016-02-01
Nanomaterials on the Platform Surface by Bryan Glaz Approved for public release; distribution is unlimited...Research Laboratory Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface by Bryan Glaz...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
Yasui, Kyuichi; Izu, Noriya
2017-06-01
Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.
Active control of thermoacoustic amplification in a thermo-acousto-electric engine
NASA Astrophysics Data System (ADS)
Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick
2014-05-01
In this paper, a new approach is proposed to control the operation of a thermoacoustic Stirling electricity generator. This control basically consists in adding an additional acoustic source to the device, connected through a feedback loop to a reference microphone, a phase-shifter, and an audio amplifier. Experiments are performed to characterize the impact of the feedback loop (and especially that of the controlled phase-shift) on the overall efficiency of the thermal to electric energy conversion performed by the engine. It is demonstrated that this external forcing of thermoacoustic self-sustained oscillations strongly impacts the performance of the engine, and that it is possible under some circumstances to improve the efficiency of the thermo-electric transduction, compared to the one reached without active control. Applicability and further directions of investigation are also discussed.
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Thermodynamic Improvements for the Space Thermoacoustic Refrigerator (STAR)
1988-06-01
Sondhauss proved that the vibration of the glass itself did not generate the sound, but he offered no explanation as to what did. In his description...noise of aeroengines above that predicted by theory. He determined that the sound was produced by unsteady heat transfer. Each of these latter three...lifetimes (expendable cryogens) and high vibration levels and low reliability (closed cycle refrigerators). The advantages of the thermoacoustic
Design, construction, and measurement of a large solar powered thermoacoustic cooler
NASA Astrophysics Data System (ADS)
Chen, Reh-Lin
2001-07-01
A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.
Jones, Kevin C; Seghal, Chandra M; Avery, Stephen
2016-03-21
The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.
Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments
NASA Astrophysics Data System (ADS)
Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun
2018-02-01
Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.
Technology push, market pull, and the Valley of Death
NASA Astrophysics Data System (ADS)
Swift, Gregory W.
2005-09-01
The Valley of Death is the gap between fundamental research and product development, where apparently promising technologies can stall or disappear. Fundamental researchers may hope for potential applications of their work, and they try to push technology based on their research. Businesses may hope that new technology might serve their market needs, and they try to find promising new technologies that can be pulled toward practical use. The valley between the researchers and the businesses can be surprisingly twisted and thorny, despite government attempts to build roads across it. The histories of cryogenic engineering in the late 20th century and of thermoacoustics work at Los Alamos offer examples of both useful and misguided strategies in this valley. Although global thermoacoustics R&D has not (yet?) been as successful as cryogenic engineering, thermoacoustics has thus far avoided some of the worst pitfalls in the valley.
NASA Astrophysics Data System (ADS)
He, Yu; Shen, Yuecheng; Feng, Xiaohua; Liu, Changjun; Wang, Lihong V.
2017-08-01
A circularly polarized antenna, providing more homogeneous illumination compared to a linearly polarized antenna, is more suitable for microwave induced thermoacoustic tomography (TAT). The conventional realization of a circular polarization is by using a helical antenna, but it suffers from low efficiency, low power capacity, and limited aperture in TAT systems. Here, we report an implementation of a circularly polarized illumination method in TAT by inserting a single-layer linear-to-circular polarizer based on frequency selective surfaces between a pyramidal horn antenna and an imaging object. The performance of the proposed method was validated by both simulations and experimental imaging of a breast tumor phantom. The results showed that a circular polarization was achieved, and the resultant thermoacoustic signal-to-noise was twice greater than that in the helical antenna case. The proposed method is more desirable in a waveguide-based TAT system than the conventional method.
NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y. Y.; Graduate University of the Chinese Academy of Sciences, Beijing, 100049; Luo, E. C.
2008-03-16
Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermalmore » regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.« less
Effect of temperature on thermoacoustic properties of olive oil in alcohol mixtures
NASA Astrophysics Data System (ADS)
Shriwas, R. S.; Chimankar, O. P.; Tabhane, P. V.; Dange, S. P.; Tembhurkar, Y. D.
2012-12-01
The ultrasonic studies in liquids are great use in understanding the nature and strength of molecular interactions. Recently ultrasonic is the rapidly growing field research, which has been used in the food industry for both analysis and modification of food products. This paper presents ultrasonic velocity, density, adiabatic compressibility in olive oil with alcohol at different concentration that has been measured in the temperature range from 283.15K to 298.15K. The Moelwyn-Hughes parameter has been utilised to establish some simple relations between the available volumes, Bayer's non- linearity parameter, internal pressure, van der Waal's constant, Debye temperature etc. a relationship among the isobaric, isothermal and isochoric thermo-acoustical parameter have been studied and analyzed in the case olive oil with alcohol mixture. The present treatments had the distinct advantages of the thermo-acoustic parameters in the particular mixture.
NASA Astrophysics Data System (ADS)
Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi
2015-06-01
Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest critical temperature difference for He-Armixture gas is around 66 °C which is achieved in pressure range of 1.5 MPa - 2.0 MPa and mole fractions of helium of 0.55 - 0.65. The He-N2 and He-O2 mixture gases demonstrate almost the same performances, both have the lowest critical temperature difference around 59 °C atpressures of 1.0 MPa - 1.5 MPa and helium's mole fractions of 0.35 - 0.55. For all tested gases, the lowest critical temperature difference of around 51 °C is provided by He-CO2 mixture gas at pressures of 0.5 MPa - 1.0 MPa with helium's mole fractions of 0.15 - 0.40.
2015-11-30
Master’s Thesis 3. DATES COVERED (From - To) 01 Nov 2015 – 30 Nov 2015 4. TITLE AND SUBTITLE Advances in Turbulent Combustion Dynamics Simulations...the three main aspects of bluff-body stabilized flames: stationary combustion , lean blow-out, and thermo-acoustic instabilities. For the cases of...stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic
Using the sound of nuclear energy
Garrett, Steven; Smith, James; Smith, Robert; ...
2016-08-01
The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less
Using the sound of nuclear energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Steven; Smith, James; Smith, Robert
The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less
Numerical Modeling of Gas Turbine Combustor Utilizing One-Dimensional Acoustics
NASA Astrophysics Data System (ADS)
Caley, Thomas M.
This study focuses on the numerical modeling of a gas turbine combustor set-up with known regions of thermoacoustic instability. The proposed model takes the form of a hybrid thermoacoustic network, with lumped elements representing boundary conditions and the flame, and 3-dimensional geometry volumes representing the geometry. The model is analyzed using a commercial 3-D finite element method (FEM) software, COMSOL Multiphysics. A great deal of literature is available covering thermoacoustic modeling, but much of it utilizes more computationally expensive techniques such as Large-Eddy Simulations, or relies on analytical modeling that is limited to specific test cases or proprietary software. The present study models the 3-D geometry of a high-pressure combustion chamber accurately, and uses the lumped elements of a thermoacoustic network to represent parts of the combustor system that can be experimentally tested under stable conditions, ensuring that the recorded acoustic responses can be attributed to that element alone. The numerical model has been tested against the experimental model with and without an experimentally-determined impedance boundary condition. Eigenfrequency studies are used to compare the frequency and growth rates (and from that, the thermoacoustic stability) of resonant modes in the combustor. The flame in the combustor is modeled with a flame transfer function that was determined from experimental testing using frequency forcing. The effect of flow rate on the impedance boundary condition is also examined experimentally and numerically to qualify the practice of modeling an orifice plate as an acoustically-closed boundary. Using the experimental flame transfer function and boundary conditions in the numerical model produced results that closely matched previous experimental tests in frequency, but not in stability characteristics. The lightweight nature of the numerical model means additional lumped elements can be easily added when experimental data is available, creating a more accurate model without noticeably increasing the complexity or computational time.
Fission-powered in-core thermoacoustic sensor
Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.; ...
2016-04-07
A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. Furthermore, these signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.
Fission-powered in-core thermoacoustic sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.
2016-04-04
A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.
NASA Astrophysics Data System (ADS)
Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick
2015-10-01
A simplified model of a Stirling-type thermoacoustic engine coupled to a resonant mechanical system is presented. The acoustic network is presented as its temperature-dependent lumped element equivalent, and the nonlinear effects involved in such engines are accounted for in a nonlinear heat equation governing the temperature distribution through the thermoacoustic core. The low-order model is sufficient to capture the behavior of the engine, both in terms of stability and dynamic behavior.
Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring; Bruus, Henrik
2012-11-21
We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Schifer, Nicholas A.
2010-01-01
In support of the Advanced Stirling Radioisotope Generator (ASRG) project and other potential applications, NASA Glenn Research Center (GRC) has initiated convertor technology development efforts in the areas of acoustic emission, electromagnetic field mitigation, thermoacoustic Stirling conversion, and multiple-cylinder alpha arrangements of Stirling machines. The acoustic emission measurement effort was developed as a health monitoring metric for several Stirling convertors undergoing life testing. While accelerometers have been used in the past to monitor dynamic signature, the acoustic sensors were chosen to monitor cycle events, such gas bearing operation. Several electromagnetic interference (EMI) experiments were performed on a pair of Advanced Stirling Convertors (ASC). These tests demonstrated that a simple bucking coil was capable of reducing the alternating current (ac) magnetic field below the ASRG system specification. The thermoacoustic Stirling concept eliminates the displacer typically found in Stirling machines by making use of the pressure oscillations of a traveling acoustic wave. A 100 W-class thermoacoustic Stirling prototype manufactured by Northrop Grumman Space and Technology was received and tested. Another thermoacoustic prototype designed and fabricated by Sunpower, Inc., will be tested in the near future. A four cylinder free piston alpha prototype convertor was received from Sunpower, Inc. and has been tested at GRC. This hardware was used as a proof of concept to validate thermodynamic models and demonstrate stable operation of multiple-cylinder free-piston Stirling conversion. This paper will discuss each of these activities and the results they produced.
Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units
Backhaus, Scott; Swift, Greg
2013-06-25
The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.
High speed, high current pulsed driver circuit
Carlen, Christopher R.
2017-03-21
Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.
Statistical mechanics of self-driven Carnot cycles.
Smith, E
1999-10-01
The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification.
Daschewski, M; Kreutzbruck, M; Prager, J
2015-12-01
In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can be applied for design and optimization of thermo-acoustic airborne ultrasound emitters. Copyright © 2015 Elsevier B.V. All rights reserved.
Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability
NASA Astrophysics Data System (ADS)
Zhao, Dan; Reyhanoglu, Mahmut
2014-08-01
Transient growth of acoustic disturbances could trigger thermoacoustic instability in a combustion system with non-orthogonal eigenmodes, even with stable eigenvalues. In this work, feedback control of transient growth of flow perturbations in a Rijke-type combustion system is considered. For this, a generalized thermoacoustic model with distributed monopole-like actuators is developed. The model is formulated in state-space to gain insights on the interaction between various eigenmodes and the dynamic response of the system to the actuators. Three critical parameters are identified: (1) the mode number, (2) the number of actuators, and (3) the locations of the actuators. It is shown that in general the number of the actuators K is related to the mode number N as K=N2. For simplicity in illustrating the main results of the paper, two different thermoacoustic systems are considered: system (a) with one mode and system (b) that involves two modes. The actuator location effect is studied in system (a) and it is found that the actuator location plays an important role in determining the control effort. In addition, sensitivity analysis of pressure- and velocity-related control parameters is conducted. In system (b), when the actuators are turned off (i.e., open-loop configuration), it is observed that acoustic energy transfers from the high frequency mode to the lower frequency mode. After some time, the energy is transferred back. Moreover, the high frequency oscillation grows into nonlinear limit cycle with the low frequency oscillation amplified. As a linear-quadratic regulator (LQR) is implemented to tune the actuators, both systems become asymptotically stable. However, the LQR controller fails in eliminating the transient growth, which may potentially trigger thermoacoustic instability. In order to achieve strict dissipativity (i.e., unity maximum transient growth), a transient growth controller is systematically designed and tested in both systems. Comparison is then made between the performance of the LQR controller and that of the transient growth controller. It is found in both systems that the transient growth controller achieves both exponential decay of the flow disturbance energy and unity maximum transient growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul
2015-01-15
Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substancemore » to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type. Conclusions: It is concluded that gadolinium based contrast agents, iron oxide particles, and single walled carbon nanotubes have little intrinsic merit as thermoacoustic contrast agents. Simple electrolytes such as saline which yield high contrast based on ionic conductivity provide much higher dielectric contrast per unit solute concentration and are likely to be significantly more effective as contrast agents.« less
Detectability prediction for a thermoacoustic sensor in the breazeale nuclear reactor pool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James; Hrisko, Joshua; Garrett, Steven
2016-03-01
Laboratory experiments have suggested that thermoacoustic engines can be in- corporated within nuclear fuel rods. Such engines would radiate sounds that could be used to measure and acoustically-telemeter information about the op- eration of the nuclear reactor (e.g., coolant temperature or uxes of neutrons or other energetic particles) or the physical condition of the nuclear fuel itself (e.g., changes in temperature, evolved gases) that are encoded as the frequency and/or amplitude of the radiated sound [IEEE Measurement and Instrumen- tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it is important to characterize the vibroacoustical environments within reactors.more » Measurements will be presented of the background noise spectra (with and with- out coolant pumps) and reverberation times within the 70,000 gallon pool that cools and shields the fuel in the 1 MW research reactor on Penn State's campus using two hydrophones, a piezoelectric projector, and an accelerometer. Sev- eral signal-processing techniques will be demonstrated to enhance the measured results. Background vibrational measurement were also taken at the 250 MW Advanced Test Reactor, located at the Idaho National Laboratory, using ac- celerometers mounted outside the reactor's pressure vessel and on plumbing will also be presented. The detectability predictions made in the thesis were validated in September 2015 using a nuclear ssion-heated thermoacoustic sensor that was placed in the core of the Breazeale Nuclear Reactor on Penn State's campus. Some features of the thermoacoustic device used in that experiment will also be revealed. [Work supported by the U.S. Department of Energy.]« less
Ma, Lin; Weisman, Catherine; Baltean-Carlès, Diana; Delbende, Ivan; Bauwens, Luc
2015-08-01
The influence of a resistive load on the starting performance of a standing-wave thermoacoustic engine is investigated numerically. The model used is based upon a low Mach number assumption; it couples the two-dimensional nonlinear flow and heat exchange within the thermoacoustic active cell with one-dimensional linear acoustics in the loaded resonator. For a given engine geometry, prescribed temperatures at the heat exchangers, prescribed mean pressure, and prescribed load, results from a simulation in the time domain include the evolution of the acoustic pressure in the active cell. That signal is then analyzed, extracting growth rate and frequency of the dominant modes. For a given load, the temperature difference between the two sides is then varied; the most unstable mode is identified and so is the corresponding critical temperature ratio between heater and cooler. Next, varying the load, a stability diagram is obtained, potentially with a predictive value. Results are compared with those derived from Rott's linear theory as well as with experimental results found in the literature.
Thermoacoustic focusing lens by symmetric Airy beams with phase manipulations
NASA Astrophysics Data System (ADS)
Liu, Chen; Xia, Jian-Ping; Sun, Hong-Xiang; Yuan, Shou-Qi
2017-12-01
We report the realization of broadband acoustic focusing lenses based on two symmetric thermoacoustic phased arrays of Airy beams, in which the units of thermoacoustic phase control are designed by employing air with different temperatures surrounded by rigid insulated boundaries and thermal insulation films. The phase delays of the transmitted and reflected units could cover a whole 2π interval, which arises from the change of the sound velocity of air induced by the variation of the temperature. Based on the units of phase control, we design the transmitted and reflected acoustic focusing lenses with two symmetric Airy beams, and verify the high self-healing focusing characteristic and the feasibility of the thermal insulation films. Besides, the influences of the bending angle of the Airy beam on the focusing performance are discussed in detail. The proposed acoustic lens has advantages of broad bandwidth (about 4.8 kHz), high focusing performance, self-healing feature, and simple structure, which enable it to provide more schemes for acoustic focusing. It has excellent potential applications in acoustic devices.
Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine
NASA Astrophysics Data System (ADS)
Huang, Xin; Zhou, Gang; Li, Qing
2013-06-01
This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.
Pattern-formation under acoustic driving forces
NASA Astrophysics Data System (ADS)
Valverde, Jose Manuel
2015-07-01
Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.
Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems
Gupta, Prabhat Kumar; Rabehl, Roger
2015-04-02
Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore » also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less
Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach
NASA Astrophysics Data System (ADS)
Aguilar, José G.; Magri, Luca; Juniper, Matthew P.
2017-07-01
Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.
Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.
Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo
2016-08-31
We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.
Light modulated electron beam driven radiofrequency emitter
Wilson, M.T.; Tallerico, P.J.
1979-10-10
The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
Thermoacoustic tomography for an integro-differential wave equation modeling attenuation
NASA Astrophysics Data System (ADS)
Acosta, Sebastián; Palacios, Benjamín
2018-02-01
In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with attenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially dependent parameters. Under the assumption of being able to measure data on the whole boundary, we prove uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series reconstruction formula.
Development of a Thermoacoustic Stirling Engine Technology Demonstrator
NASA Astrophysics Data System (ADS)
Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland
2014-08-01
Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.
Thermoacoustic enhancements for nuclear fuel rods and other high temperature applications
Garrett, Steven L.; Smith, James A.; Kotter, Dale K.
2017-05-09
A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.
Effect of pulse profile and chirp on a laser wakefield generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xiaomei; Shen Baifei; Ji Liangliang
2012-05-15
A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influencemore » of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.« less
Optically Driven Q-Switches For Lasers
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1994-01-01
Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.
Design of a Two-stage High-capacity Stirling Cryocooler Operating below 30K
NASA Astrophysics Data System (ADS)
Wang, Xiaotao; Dai, Wei; Zhu, Jian; Chen, Shuai; Li, Haibing; Luo, Ercang
The high capacity cryocooler working below 30K can find many applications such as superconducting motors, superconducting cables and cryopump. Compared to the GM cryocooler, the Stirling cryocooler can achieve higher efficiency and more compact structure. Because of these obvious advantages, we have designed a two stage free piston Stirling cryocooler system, which is driven by a moving magnet linear compressor with an operating frequency of 40 Hz and a maximum 5 kW input electric power. The first stage of the cryocooler is designed to operate in the liquid nitrogen temperature and output a cooling power of 100 W. And the second stage is expected to simultaneously provide a cooling power of 50 W below the temperature of 30 K. In order to achieve the best system efficiency, a numerical model based on the thermoacoustic model was developed to optimize the system operating and structure parameters.
Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide
NASA Astrophysics Data System (ADS)
Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.
2017-07-01
We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.
Spectroscopic thermoacoustic imaging of water and fat composition
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.
2012-07-01
During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.
Phase-exchange thermoacoustic engine
NASA Astrophysics Data System (ADS)
Offner, Avshalom; Meir, Avishai; Ramon, Guy Z.; WET Lab Team
2017-11-01
Phase-exchange thermoacoustic engines are reliable machines holding great promise in converting heat from low grade heat sources to mechanical or electrical power. In these engines the working fluid is a gas mixture containing one condensable component, decreasing the temperature difference required for ignition and steady state operation. Our experimental setup consists of a vertical acoustic resonator containing a mixture of air-water vapor. Water evaporates near the heat source, condenses at the heat sink and is drawn back down by gravity and capillary forces where it re-evaporates, sustaining a steady state closed thermodynamic cycle. We investigated the stability limit, namely the critical point at which temperature difference in the engine enables onset of self-excited oscillations, and the steady state of the engine. A simple theoretical model was derived, describing mechanisms of irreversible entropy generation and production of acoustic power in such engines. This model captures the essence in the differences between regular and phase-exchange thermoacoustic engines, and shows good agreement with experimental results of stability limit. Steady state results reveal not only a dramatic decrease in temperature difference, but also an increase in engine performances. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
A thermoacoustic-Stirling heat engine: detailed study
Backhaus; Swift
2000-06-01
A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.
Mondal, S; Pawar, S A; Sujith, R I
2017-10-01
Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.
Full-scale simulation and reduced-order modeling of a thermoacoustic engine
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Lin, Jeff; Lele, Sanjiva; Hesselink, Lambertus
2013-11-01
We have carried out the first three-dimensional numerical simulation of a thermoacoustic Stirling heat-engine. The goal is to lay the groundwork for full-scale Navier-Stokes simulations to advance the state-of-the-art low-order modeling and design of such devices. The model adopted is a long resonator with a heat-exchanger/regenerator (HX/REG) unit on one end - the only component not directly resolved. A temperature difference across the HX/REG unit of 200 K is sufficient to initiate the thermoacoustic instability. The latter is a Lagrangian process that only intensifies acoustic waves traveling in the direction of the imposed temperature gradient. An acoustic network of traveling waves is thus obtained and compared against low-order prediction tools such as DeltaEC. Non-linear effects such as system-wide streaming flow patterns are rapidly established. These are responsible for the mean advection of hot fluid away from the HX/REG (i.e. thermal leakage). This unwanted effect is contained by the introduction of a second ambient heat-exchanger allowing for the establishment of a dynamical thermal equilibrium in the system. A limit cycle is obtained at +178 dB.
The influence of combustion liner holes on noise production by ducted burners
NASA Technical Reports Server (NTRS)
Mahan, J. R.; Jones, J. D.
1984-01-01
The thermoacoustic energy conversion process in a turbulent flame is not yet sufficiently well understood to allow accurate prediction of the sound pressure field of even the simplest of laboratory burners. The present contribution is intended to be a step toward fuller understanding of this process. In particular, the possibility is explored that the source structure, in the form of the thermoacoustic efficiency spectrum, might be influenced by the acoustic response of the burner itself. Experimental results are presented which seem to establish that, at least for the gas-fueled laboratory burner studied, source activity is not affected by the addition of downstream combustion liner holes which otherwise alter the acoustic response of the burner.
Capillary-tube-based extension of thermoacoustic theory for a random medium
NASA Astrophysics Data System (ADS)
Roh, Heui-Seol; Raspet, Richard; Bass, Henry E.
2005-09-01
Thermoacoustic theory for a single capillary tube is extended to random bulk medium on the basis of capillary tubes. The characteristics of the porous stack inside the resonator such as the tortuosity, dynamic shape factor, and porosity are introduced for the extension of wave equation by following Attenborough's approach. Separation of the dynamic shape factor for the viscous and thermal effect is adopted and scaling using the dynamic shape factor and tortuosity factor is demonstrated. The theoretical and experimental comparison of thermoviscous functions in reticulated vitreous carbon (RVC) and aluminum foam shows reasonable agreement. The extension is useful for investigations of the properties of a stack with arbitrary shapes of non-parallel pores.
Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue.
Seto, Takeshi; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Nakagawa, Atsuhiro; Tominaga, Teiji
2011-05-01
This paper reports characteristics of an actuator-driven pulsed water jet generator applied, in particular, to dissect soft tissues. Results of experiments, by making use of high speed recording of optical visualization and varying nozzle diameter, actuator time interval, and their effects on dissection performance are presented. Jet penetration characteristics are compared with continuous water jet and hence potential assessment of pulsed water jets to clinical applications is performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.
This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electronmore » bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang
2012-03-01
A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.
Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
Dixit, Neerav; Stang, Pascal P; Pauly, John M; Scott, Greig C
2018-02-01
Patients who have implanted medical devices with long conductive leads are often restricted from receiving MRI scans due to the danger of RF-induced heating near the lead tips. Phantom studies have shown that this heating varies significantly on a case-by-case basis, indicating that many patients with implanted devices can receive clinically useful MRI scans without harm. However, the difficulty of predicting RF-induced lead tip heating prior to scanning prevents numerous implant recipients from being scanned. Here, we demonstrate that thermo-acoustic ultrasound (TAUS) has the potential to be utilized for a pre-scan procedure assessing the risk of RF-induced lead tip heating in MRI. A system was developed to detect TAUS signals by four different TAUS acquisition methods. We then integrated this system with an MRI scanner and detected a peak in RF power absorption near the tip of a model lead when transmitting from the scanner's body coil. We also developed and experimentally validated simulations to characterize the thermo-acoustic signal generated near lead tips. These results indicate that TAUS is a promising method for assessing RF implant safety, and with further development, a TAUS pre-scan could allow many more patients to have access to MRI scans of significant clinical value.
Development of thermoacoustic engine operating by waste heat from cooking stove
NASA Astrophysics Data System (ADS)
Chen, B. M.; Abakr, Y. A.; Riley, P. H.; Hann, D. B.
2012-06-01
There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity, and are too remote to benefit from grid electrical supply. In many rural communities, stoves are made without technical advancements, mostly using open fires cooking stoves which have been proven to be extremely low efficiency, and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost, high efficiency woodstove that uses about half amount of the wood of an open wood fire, and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting, charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.
High-fidelity simulations of a standing-wave thermoacoustic-piezoelectric engine
NASA Astrophysics Data System (ADS)
Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus
2014-11-01
We have carried out time-domain three-dimensional and one-dimensional numerical simulations of a thermoacoustic Stirling heat engine (TASHE). The TASHE model adopted for our study is that of a standing-wave engine: a thermal gradient is imposed in a resonator tube and is capped with a piezoelectric diaphragm in a Helmholtz resonator cavity for acoustic energy extraction. The 0.51 m engine sustains 500 Pa pressure oscillations with atmospheric air and pressure. Such an engine is interesting in practice as an external heat engine with no mechanically-moving parts. Our numerical setup allows for both the evaluation of the nonlinear effects of scaling and the effect of a fully electromechanically-coupled impedance boundary condition, representative of a piezoelectric element. The thermoacoustic stack is fully resolved. Previous modeling efforts have focused on steady-state solvers with impedances or nonlinear effects without energy extraction. Optimization of scaling and the impedance for power output can now be simultaneously applied; engines of smaller sizes and higher frequencies suitable for piezoelectric energy extraction can be studied with three-dimensional solvers without restriction. Results at a low-amplitude regime were validated against results obtained from the steady-state solver DeltaEC and from experimental results in literature. Pressure and velocity amplitudes within the cavities match within 2% difference.
PREDICTIVE MODELING OF ACOUSTIC SIGNALS FROM THERMOACOUSTIC POWER SENSORS (TAPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumm, Christopher M.; Vipperman, Jeffrey S.
2016-06-30
Thermoacoustic Power Sensor (TAPS) technology offers the potential for self-powered, wireless measurement of nuclear reactor core operating conditions. TAPS are based on thermoacoustic engines, which harness thermal energy from fission reactions to generate acoustic waves by virtue of gas motion through a porous stack of thermally nonconductive material. TAPS can be placed in the core, where they generate acoustic waves whose frequency and amplitude are proportional to the local temperature and radiation flux, respectively. TAPS acoustic signals are not measured directly at the TAPS; rather, they propagate wirelessly from an individual TAPS through the reactor, and ultimately to a low-powermore » receiver network on the vessel’s exterior. In order to rely on TAPS as primary instrumentation, reactor-specific models which account for geometric/acoustic complexities in the signal propagation environment must be used to predict the amplitude and frequency of TAPS signals at receiver locations. The reactor state may then be derived by comparing receiver signals to the reference levels established by predictive modeling. In this paper, we develop and experimentally benchmark a methodology for predictive modeling of the signals generated by a TAPS system, with the intent of subsequently extending these efforts to modeling of TAPS in a liquid sodium environmen« less
NASA Astrophysics Data System (ADS)
Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.
2016-05-01
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less
Oscillatory dependence of current driven domain wall motion on current pulse length
NASA Astrophysics Data System (ADS)
Thomas, Luc
2007-03-01
The motion of domain walls (DW) in magnetic nanowires driven by spin torque from spin-polarized current is of considerable interest. Most previous work has considered the effect of dc or ˜microsecond long current pulses. Here, we show that the dynamics of DWs driven by nanosecond-long current pulses is unexpectedly complex. In particular, we show that the current driven motion of a DW, confined to a pinning site in a permalloy nanowire, exhibits an oscillatory dependence on the current pulse length with a period of just a few nanoseconds [1]. This behavior can be understood within a surprisingly straightforward one dimensional analytical model of the DW's motion. When a current pulse is applied, the DW's position oscillates within the pinning potential out of phase with the DW's out-of-plane magnetization, where the latter acts like the DW's momentum. Thus, the current driven motion of the DW is akin to a harmonic oscillator, whose frequency is determined by the ``mass'' of the DW and where the restoring force is related to the slope of the pinning potential. Remarkably, when the current pulse is turned off during phases of the DW motion when it has enough momentum, the amplitude of the oscillations can be amplified such that the DW exits the pinning potential well after the pulse is turned off. This oscillatory depinning occurs for currents smaller than the dc threshold current, and, moreover, the DW moves against the electron flow, opposite to the propagation direction above the dc threshold. These effects can be further amplified by using trains of current pulses whose lengths and separations are matched to the DW's oscillation period. In this way, we have demonstrated a five fold reduction in the threshold current required to move a DW out of a pinning site, making this effect potentially important for technological applications. [1] L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner and S.S.P. Parkin, Nature 443, 197 (2006).
Grid Effects on LES Thermo-Acoustic Limit-Cycle of a Full Annular Aeronautical Engine
NASA Astrophysics Data System (ADS)
Wolf, Pierre; Gicquel, Laurent Y. M.; Staffelbach, Gabriel; Poinsot, Thierry
Recent developments in large scale computer architectures allow Large Eddy Simulation (LES) to be considered for the prediction of turbulent reacting flows in geometries encountered in industry. To do so, various difficulties must be overcome and the first one is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known to be a critical factor in LES of reacting flows. This issue becomes even more crucial when LES is used to compute large configurations such as full annular combustion chambers. Various analysis of mesh effects on LES results have been published before but all are limited to single-sector computational domains. However, real annular gas-turbine engines contain ten to twenty of such sectors and LES must also be used in such full chambers for the study of ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes involving the full annular geometry) remain a critical issue to aeronautical or power-generation industries and LES seems to be a promising path to properly apprehend such complex unsteady couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine combustion chamber (including its casing) is studied here in the context of its azimuthal thermo-acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two meshes yielding two fully unsteady turbulent reacting predictions of the same configuration. The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as obtained by the two LES are gauged against each other for various flow quantities such as mean velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are observed to be relatively indepedent of the grid resolution which comforts the use of LES tools to provide insights and understanding of the mechanisms triggering the coupling between the system acoustic eigenmodes and combustion.
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi
2015-11-01
There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.
Picosecond time scale dynamics of short pulse laser-driven shocks in tin
NASA Astrophysics Data System (ADS)
Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.
2009-05-01
The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.
NASA Astrophysics Data System (ADS)
Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl
2014-09-01
Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.
NASA Astrophysics Data System (ADS)
Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng
2017-08-01
In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.
NASA Astrophysics Data System (ADS)
Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin
2015-02-01
A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.
NASA Technical Reports Server (NTRS)
Klima, S. J.; Vary, A.
1986-01-01
Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1983-10-04
An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.
Laser-driven ion acceleration: methods, challenges and prospects
NASA Astrophysics Data System (ADS)
Badziak, J.
2018-01-01
The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.
Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.
2016-02-23
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.
Acoustic time-of-flight for proton range verification in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.A
2016-09-15
Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom,more » and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam’s position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.« less
Acoustic time-of-flight for proton range verification in water.
Jones, Kevin C; Vander Stappen, François; Sehgal, Chandra M; Avery, Stephen
2016-09-01
Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone's acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam's position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, J.; Max-Planck-Institut für Quantenoptik Garching, Hans-Kopfermann-Str. 1, 85748 Garching bei München; Bolton, P. R.
An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies andmore » typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.« less
NASA Technical Reports Server (NTRS)
Kopasakis, George
2004-01-01
An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.
NASA Astrophysics Data System (ADS)
Onuki, Akira
2007-12-01
We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids. Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary walls and the bulk viscosity. We introduce a coefficient Z(ω) characterizing reflection of sound with frequency ω at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.
Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter
NASA Astrophysics Data System (ADS)
Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi
2006-01-01
As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.
NASA Astrophysics Data System (ADS)
Yu, Z. B.; Li, Q.; Chen, X.; Guo, F. Z.; Xie, X. J.; Wu, J. H.
2003-12-01
The purpose of this paper is to investigate the stability of oscillation modes in a thermoacoustic Stirling prime mover, which is a combination of looped tube and resonator. Two modes, with oscillation frequencies of 76 and 528 Hz, have been observed, stabilities of which are widely different. The stability of the high frequency mode (HFM) is affected by low frequency mode (LFM) strongly. Once the LFM is excited when the HFM is present, the HFM will be gradually slaved and suppressed by the LFM. The details of the transition from HFM to LFM have been described. The two stability curves of the two modes have been measured. Mean pressure Pm is an important control parameter influencing the mode stability in the tested system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-Rosales, E.; Cedeño, E.; Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Colonia Irrigación, CP 11500, México, DF
In this work a combined thermoacoustic and thermoreflectance set-up was designed for imaging biased microelectronic circuits. In particular, it was used with polycrystalline silicon resistive tracks grown on a monocrystalline Si substrate mounted on a test chip. Thermoreflectance images, obtained by scanning a probe laser beam on the sample surface, clearly show the regions periodically heated by Joule effect, which are associated to the electric current distribution in the circuit. The thermoacoustic signal, detected by a pyroelectric/piezoelectric sensor beneath the chip, also discloses the Joule contribution of the whole sample. However, additional information emerges when a non-modulated laser beam ismore » focused on the sample surface in a raster scan mode allowing imaging of the sample. The distribution of this supplementary signal is related to the voltage distribution along the circuit.« less
Autoionizing states driven by stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Mouloudakis, G.; Lambropoulos, P.
2018-01-01
We have examined the profile of an isolated autoionizing resonance driven by a pulse of short duration and moderately strong field. The analysis has been based on stochastic differential equations governing the time evolution of the density matrix under a stochastic field. Having focused our quantitative analysis on the 2{{s}}2{{p}}({}1{{P}}) resonance of helium, we have investigated the role of field fluctuations and of the duration of the pulse. We report surprisingly strong distortion of the profile, even for peak intensity below the strong field limit. Our results demonstrate the intricate connection between intensity and pulse duration, with the latter appearing to be the determining influence, even for a seemingly short pulse of 50 fs. Further effects that would arise under much shorter pulses are discussed.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Katheryn
2018-05-01
An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.
Origin of the pulse-like signature of shallow long-period volcano seismicity
Chouet, Bernard A.; Dawson, Phillip B.
2016-01-01
Short-duration, pulse-like long-period (LP) events are a characteristic type of seismicity accompanying eruptive activity at Mount Etna in Italy in 2004 and 2008 and at Turrialba Volcano in Costa Rica and Ubinas Volcano in Peru in 2009. We use the discrete wave number method to compute the free surface response in the near field of a rectangular tensile crack embedded in a homogeneous elastic half space and to gain insights into the origin of the LP pulses. Two source models are considered, including (1) a vertical fluid-driven crack and (2) a unilateral tensile rupture growing at a fixed sub-Rayleigh velocity with constant opening on a vertical crack. We apply cross correlation to the synthetics and data to demonstrate that a fluid-driven crack provides a natural explanation for these data with realistic source sizes and fluid properties. Our modeling points to shallow sources (<1 km depth), whose signatures are representative of the Rayleigh pulse sampled at epicentral distances >∼1 km. While a slow-rupture failure provides another potential model for these events, the synthetics and resulting fits to the data are not optimal in this model compared to a fluid-driven source. We infer that pulse-like LP signatures are parts of the continuum of responses produced by shallow fluid-driven sources in volcanoes.
Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2015-01-01
Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.
Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2015-01-01
Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at high pressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NO(x) emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8.
FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.
Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan
2018-01-01
The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.
Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.
2015-10-20
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M
2016-06-21
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2013-02-01
We analyze the features of the output field of a generic optomechanical system that is driven by a control field and a nanosecond driven pulse, and find a robust high-order sideband generation in optomechanical systems. The typical spectral structure, plateau and cutoff, confirms the nonperturbative nature of the effect, which is similar to high-order harmonic generation in atoms or molecules. Based on the phenomenon, we show that the carrier-envelope phase of laser pulses that contain huge numbers of cycles can cause profound effects.
Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses
Hartig, K. C.; Colgan, J.; Kilcrease, D. P.; ...
2015-07-30
Here, we report on a laser-induced breakdown spectroscopy (LIBS) experiment driven by mid-infrared (2.05-μm) fs pulses, in which time-resolved emission spectra of copper were studied. Ab-initio modeling is consistent with the results of new fs measurements at 2.05 μm and traditional 800-nm fs-LIBS. Ablation by mid-infrared fs pulses results in a plasma with a lower plasma density and temperature compared to fs-LIBS performed at shorter laser wavelength. LIBS driven by mid-infrared fs pulses results in a signal-to-background ratio ~50% greater and a signal-to-noise ratio ~40% lower than fs-LIBS at near-infrared laser wavelength.
NASA Astrophysics Data System (ADS)
Jia, Ren; Jianying, Hu; Ercang, Luo; Xiaotao, Wang
2010-04-01
Because lubricating oil for moving parts is not allowed to go into the pulse tube cryocooler, Stirling type pulse tube cryocoolers are generally driven by oil-free compressors although oil-lubricated compressors are much cheaper and facile. Recently, it was proposed that an acoustic transparent and oil blocking diaphragm could be employed to separate the compressor and the cryocooler. Thus, the cryocooler can be driven by oil-lubricated compressors. In this paper, a pulse tube cryocooler is designed to match a crankcase compressor. Although the efficiency of the crankcase compressor is lower compared with the oil-free linear compressor, the crankcase compressor can easily work at lower frequency which results in higher efficiency for the cryocooler. So the relative high performance of the whole system can be maintained. In this system, the cryocooler delivers 28.5 W of cooling at 80 K with 680 W of electrical input power and operates at 15 Hz. The corresponding Carnot efficiency is 11.52%.
Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum
NASA Astrophysics Data System (ADS)
Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.
This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.
Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective
NASA Astrophysics Data System (ADS)
Moskalenko, Andrey S.; Zhu, Zhen-Gang; Berakdar, Jamal
2017-02-01
This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver information on its spin-dependent dynamics. We review examples of such spectra of photons emitted from pulse-driven nanostructures as well as a possibility to characterize and control the light polarization on an ultrafast time scale. Furthermore, we consider the response of strongly correlated systems to short broadband pulses and show that this case bears a great potential to unveil high order correlations while they build up upon excitations.
An experimental platform for pulsed-power driven magnetic reconnection
NASA Astrophysics Data System (ADS)
Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.
2018-05-01
We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.
Development of large-aperture electro-optical switch for high power laser at CAEP
NASA Astrophysics Data System (ADS)
Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing
2015-02-01
Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.
Nonlinear acoustic streaming in straight and tapered tubes
NASA Astrophysics Data System (ADS)
Tuttle, Brian C.
In thermoacoustic and Stirling devices such as the pulse-tube refrigerator, efficiency is diminished by the formation of a second-order mean velocity known as Rayleigh streaming. This flow emerges from the interaction of the working gas with the wall of the tube in a thin boundary layer. Recent studies have suggested that streaming velocity can be decreased in a tube by tapering it slightly. This research investigates that claim through the development of a numerical model of Rayleigh streaming in variously tapered tubes. It is found that the numerical simulation of streaming in a straight tube compares well with theory, and the application of different thermal boundary conditions at the tube wall shows that for pressurized helium, inner streaming vortices which appear near an adiabatic tube wall do not develop near an isothermal wall. An order analysis indicates that the temperature dependence of viscosity and thermal conductivity contributes appreciably to an accurate numerical model of streaming. Comparison of Rayleigh streaming in tapered tubes shows the effects of taper angle on the circulation and velocity of the mean flow.
Method for generating a plasma wave to accelerate electrons
Umstadter, D.; Esarey, E.; Kim, J.K.
1997-06-10
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.
Method for generating a plasma wave to accelerate electrons
Umstadter, Donald; Esarey, Eric; Kim, Joon K.
1997-01-01
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.
The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation
NASA Astrophysics Data System (ADS)
Zheng, Dianfeng
2016-11-01
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)
Takeshita, Tatsuya; Hara, Michihiro
2018-03-15
Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266nm. Additionally, simultaneous irradiation with 266 and 532nm laser pulses increased the trans-to-cis isomerization yield (Υ t→c ) by 27%. It was concluded that the increase in Υ t→c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (S n ), which was reached by S 1 →S n transition induced by laser pulse excitation at 532nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...
2016-06-02
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.
Early warning signals for critical transitions in a thermoacoustic system
Gopalakrishnan, E. A.; Sharma, Yogita; John, Tony; Dutta, Partha Sharathi; Sujith, R. I.
2016-01-01
Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable state to another at a critical threshold called the tipping point. The decrease in recovery rate to equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify the proximity to a critical transition. Several measures have been adopted to provide early indications of critical transitions that happen in a variety of complex systems. In this study, we use early warning indicators to predict subcritical Hopf bifurcation occurring in a thermoacoustic system by analyzing the observables from experiments and from a theoretical model. We find that the early warning measures perform as robust indicators in the presence and absence of external noise. Thus, we illustrate the applicability of these indicators in an engineering system depicting critical transitions. PMID:27767065
NASA Technical Reports Server (NTRS)
Aldredge, R. C.
2003-01-01
In this analytical work the influence of the Saffman-Taylor instability on flame propagation is formulated for computational investigation. Specifically, it is of interest to examine the influence of this instability as a potential means of eliminating the effect of gravitational acceleration on the development of thermoacoustic instability. Earlier experimental investigations of thermoacoustic instability employed tubes of large circular or annular cross-section, such that neither heat loss nor viscosity at the burner walls was of significant importance in influencing flame behavior. However, it has been demonstrated recently that flames propagating between closely spaced walls, may be subject to long-wavelength wrinkling associated with the Saffman-Taylor instability, known to be relevant when a less-viscous fluid pushes a more-viscous fluid through a porous medium or between two closely spaced walls.
NASA Astrophysics Data System (ADS)
Arya, Bheemsha; Nayak, B. Ramesh; Shivakumara, N. V.
2018-04-01
In practice the refrigerants are being used in the conventional refrigeration system to get the required cooling effect. These refrigerants produce Chlorofluorocarbons (CFCs) and Hydro chlorofluorocarbons (HCFCs) which are highly harmful to the environment, particularly depleting of ozone layers resulting in green house emissions. In order to overcome these effects, the research needs to be focused on the development of an ecofriendly refrigeration system. The thermoacoustic refrigeration system is one among such system where the sound waves are used to compress and expand the gas particles. This study focuses on the effect of dynamic pressure on the thermoacoustic refrigerator made of aluminium with overall length of 748.82 mm, and the entire inner surface of the resonator tube was coated with 2mm thickness of polyurethane to minimize the heat losses to the atmosphere. Experiments were conducted with different stack geometries i.e. parallel plates having 0.119 mm thick with spacing between the plates maintained at 0.358 mm, 1mm diameter pipes, 2mm diameter pipes and 4 mm diameter pipes. Experiments were also conducted with different drive ratios of 0.6%, 1% and 1.6% for a constant dynamic pressure of 2 bar and 10 bar for helium and air as working medium. The results were plotted with the help of graphs, the variation of coefficient of performance (COP) and the relative coefficient of performance (COPR) for the above said conditions were calculated.
Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region
NASA Astrophysics Data System (ADS)
Zhao, Dan; Chow, Z. H.
2013-07-01
In this work, a Rijke tube with a hydrodynamic region confined is considered to investigate its non-normality and the effect of the hydrodynamic region on the system stability behaviors. Experiments are first conducted on Rijke tubes with different lengths. It is found that the fundamental mode frequency is decreased and then increased, as the flame is placed at different axial positions at the bottom half of the tube. This trend agrees well with the prediction from the thermoacoustic model developed, of which the hydrodynamic region is modelled as an oscillating 'airplug' and the flame dynamics is captured by using classical G-equation. In addition, the flame as measured is found to respond differently to oncoming acoustic disturbances. Modal and non-modal stability analyses are then conducted to determine the eigenmode growth rate and the transient one of acoustic disturbances. The 'safest' and most 'dangerous' flame locations as defined as those corresponding to extreme eigenmode and transient growth rate are estimated, and compared with those from the model without the hydrodynamic region. In order to mitigate such detrimental oscillations, identification and mitigation algorithms are experimentally implemented on the Rijke tube. The sound pressure level is reduced by approximately 50 dB. To gain insights on the thermoacoustic system, transfer function of the actuated Rijke tube system is measured by injecting a broad-band white noise. Compared with the estimation from our model, good agreement is observed. Finally, the marginal stability regions are estimated.
Optimal control of quantum rings by terahertz laser pulses.
Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U
2007-04-13
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.
NASA Astrophysics Data System (ADS)
Dedrick, J.; Boswell, R. W.; Charles, C.
2010-09-01
Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.
Laser fusion pulse shape controller
Siebert, Larry D.
1977-01-01
An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.
Pulsed Magnetic Field Driven Gas Core Reactors for Space Power & Propulsion Applications
NASA Technical Reports Server (NTRS)
Anghaie, Samim; Smith, Blair; Knight, Travis; Butler, Carey
2003-01-01
The present results indicated that: 1. A pulsed magnetic driven fission power concept, PMD-GCR is developed for closed (NER) and semi-open (NTR) operations. 2. In power mode, power is generated at alpha less than 1 for power levels of hundreds of KW or higher 3. IN semi open NTR mode, PMD-GCR generates thrust at I(sub sp) approx. 5,000 s and jet power approx. 5KW/Kg. 4. PMD-GCR is highly subcritical and is actively driven to critically. 5. Parallel path with fusion R&D needs in many areas including magnet and plasma.
Heat Transfer Experiments on a Pulse Detonation Driven Combustor
2011-03-01
steps that need to take place before such a hybrid is successfully developed. PDEs obtain their increased efficiency by means of detonation , a pressure...combustion in the Brayton cycle. A PDE utilizes detonations , which offer much higher pressures at the site of fuel ignition, generating less...HEAT TRANSFER EXPERIMENTS ON A PULSE DETONATION DRIVEN COMBUSTOR THESIS Nicholas C. Longo, Captain, USAF AFIT/GAE/ENY/11-M18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, T.; The Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-0193; Arai, T.
A new type of pulse chopper called an Einzel lens chopper is described. An Einzel lens placed immediately after an electron cyclotron resonance ion source is driven by high-voltage pulses generated by a newly developed solid-state Marx generator. A rectangular negative barrier pulse-voltage is controlled in time, and the barrier pulse is turned on only when a beam pulse is required. The results of successful experiments are reported herein.
Variable-pulse-shape pulsed-power accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus, Brian S.; Austin, Kevin; Hutsel, Brian Thomas
A variable-pulse-shape pulsed-power accelerator is driven by a large number of independent LC drive circuits. Each LC circuit drives one or more coaxial transmission lines that deliver the circuit's output power to several water-insulated radial transmission lines that are connected in parallel at small radius by a water-insulated post-hole convolute. The accelerator can be impedance matched throughout. The coaxial transmission lines are sufficiently long to transit-time isolate the LC drive circuits from the water-insulated transmission lines, which allows each LC drive circuit to be operated without being affected by the other circuits. This enables the creation of any power pulsemore » that can be mathematically described as a time-shifted linear combination of the pulses of the individual LC drive circuits. Therefore, the output power of the convolute can provide a variable pulse shape to a load that can be used for magnetically driven, quasi-isentropic compression experiments and other applications.« less
Unsteady Specific Work and Isentropic Efficiency of a Radial Turbine Driven by Pulsed Detonations
2012-06-14
iv AFIT/DS/ENY/12-25 Abstract There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle...10 III.A. Unsteady Flow in Conventional Brayton Cycle Turbines ........................10 III.B. Unsteady Flow in Pulsed Detonation Driven...Szpynda and Nalim 2007) 114 Figure 69. Heiser and Pratt comparison of ideal PDE, Humphrey, and Brayton cycles on a temperature-entropy diagram (Heiser
Experimental studies on twin PTCs driven by dual piston head linear compressor
NASA Astrophysics Data System (ADS)
Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.
2017-02-01
An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.
Observation of Gigawatt-Class THz Pulses from a Compact Laser-Driven Particle Accelerator
NASA Astrophysics Data System (ADS)
Gopal, A.; Herzer, S.; Schmidt, A.; Singh, P.; Reinhard, A.; Ziegler, W.; Brömmel, D.; Karmakar, A.; Gibbon, P.; Dillner, U.; May, T.; Meyer, H.-G.; Paulus, G. G.
2013-08-01
We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×1019W/cm2) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.
Pile-up corrections in laser-driven pulsed X-ray sources
NASA Astrophysics Data System (ADS)
Hernández, G.; Fernández, F.
2018-06-01
A formalism for treating the pile-up produced in solid-state detectors by laser-driven pulsed X-ray sources has been developed. It allows the direct use of X-ray spectroscopy without artificially decreasing the number of counts in the detector, assuming the duration of a pulse is much shorter than the detector response time and the loss of counts from the energy window of the detector can be modeled or neglected. Experimental application shows that having a small amount of pile-up subsequently corrected improves the signal-to-noise ratio, which would be more beneficial than the strict single-hit condition usually imposed on this detectors.
Characterization of a high repetition-rate laser-driven short-pulsed neutron source
NASA Astrophysics Data System (ADS)
Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.
2018-05-01
We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.
Gonen, Eran; Grossman, Gershon
2015-09-01
Conventional reciprocating pistons, normally found in thermoacoustic engines, tend to introduce complex impedance characteristics, including acoustic, mechanical, and electrical portions. System behavior and performance usually rely on proper tuning processes and selection of an optimal point of operation, affected substantially by complementary hardware, typically adjusted for the specific application. The present study proposes an alternative perspective on the alternator behavior, by considering the relative motion between gas and piston during the engine mode of operation. Direct analytical derivation of the velocity distribution inside a tight seal gap and the associated impedance is employed to estimate the electro-acoustic conversion efficiency, thus indicating how to improve the system performance. The influence of acoustic phase, gap dimensions, and working conditions is examined, suggesting the need to develop tighter and longer seal gaps, having increased impedance, to allow optimization for use in upcoming sustainable power generation solutions and smart grids.
High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender
2014-01-01
Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.
Dielectric Barrier Discharges: Pulsed Breakdown, Electrical Characterization and Chemistry
2013-06-01
DIELECTRIC BARRIER DISCHARGES : PULSED BREAKDOWN, ELECTRICAL CHARACTERIZATION AND CHEMISTRY R. Brandenburg, H. Höft, T. Hoder, A. Pipa, R...for pulsed driven Dielectric Barrier Discharges (DBDs) in particular. Fast electrical, optical and spectroscopic methods enable the study of...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dielectric Barrier Discharges : Pulsed Breakdown, Electrical Characterization
Optical breakdown of air triggered by femtosecond laser filaments
NASA Astrophysics Data System (ADS)
Polynkin, Pavel; Moloney, Jerome V.
2011-10-01
We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.
Analytic solution and pulse area theorem for three-level atoms
NASA Astrophysics Data System (ADS)
Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.
2015-12-01
We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.
Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution
Fabiańska, Justyna; Kassier, Günther; Feurer, Thomas
2014-01-01
Through combined three-dimensional electromagnetic and particle tracking simulations we demonstrate a THz driven electron streak camera featuring a temporal resolution on the order of a femtosecond. The ultrafast streaking field is generated in a resonant THz sub-wavelength antenna which is illuminated by an intense single-cycle THz pulse. Since electron bunches and THz pulses are generated with parts of the same laser system, synchronization between the two is inherently guaranteed. PMID:25010060
NASA Astrophysics Data System (ADS)
Scarborough, David E.
Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NO x) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor acoustic pressure amplitude measurements made in using the model combustor were used in conjunction with model predicted fuel system impedances to verify the developed design rules. The FST concept and design methodology presented in this dissertation can be used to design fuel system tuners for new and existing gas turbine combustors to reduce, or eliminate altogether, thermo-acoustic oscillations.
NASA Astrophysics Data System (ADS)
Smith, Robert William
Many electrically driven thermoacoustic refrigerators have employed corrugated metal bellows to couple work from an electro-mechanical transducer to the working fluid typically. An alternative bellows structure to mediate this power transfer is proposed: a laminated hollow cylinder comprised of alternating layers of rubber and metal 'hoop-stack'. Fatigue and visoelastic power dissipation in the rubber are critical considerations; strain energy density plays a role in both. Optimal aspect ratios for a rectangle corss-section in the rubber, for given values of bellows axial strain and oscillatory pressure loads are discussed. Comparisons of tearing energies estimated from known load cases and those obtained by finite element analysis for candidate dimensions are presented. The metal layers of bellows are subject to an out-of-plane buckling instability for the case of external pressure loading; failure of this type was experimentally observed. The proposed structure also exhibits column instability when subject to internal pressure, as do metal bellows. For hoop-stack bellows, shear deflection cannot be ignored and this leads to column instability for both internal and external pressures, the latter being analogous to the case of tension buckling of a beam. During prototype bellows testing, transverse modes of vibration are believed to have been excited parametrically as a consequence of the oscillatory pressures. Some operating frequencies of interest in this study lie above the cut-on frequency at which Timoshenko beam theory (TBT) predicts multiple phase speeds; it is shown that TBT fails to accurately predict both mode shapes and resonance frequencies in this regime. TBT is also shown to predict multiple phase speeds in the presence of axial tension, or external pressures, at magnitudes of interest in this study, over the entire frequency spectrum. For modes below cut-on absent a pressure differential (or equivalently, axial load) TBT predicts decreasing resonance frequencies for both internal external static pressure, and converges on known, valid static buckling solutions. Parametric stability in the presence of oscillatory pressure is discussed for such modes; periodic solutions to the Whittaker-Hill equation are pursued to illustrate the shape of the parametric instability regions, and contrasted with results of the more well-known Mathieu equation.
Velocity measurement using frequency domain interferometer and chirped pulse laser
NASA Astrophysics Data System (ADS)
Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.
2017-02-01
An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.
Completely explosive ultracompact high-voltage nanosecond pulse-generating system
NASA Astrophysics Data System (ADS)
Shkuratov, Sergey I.; Talantsev, Evgueni F.; Baird, Jason; Rose, Millard F.; Shotts, Zachary; Altgilbers, Larry L.; Stults, Allen H.
2006-04-01
A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb (Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The amplitude of the output voltage pulse of the SWFEG-VIG system exceeded 90kV, with a rise time of 5.2ns.
Light modulated switches and radio frequency emitters
Wilson, Mahlon T.; Tallerico, Paul J.
1982-01-01
The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
Hagelstein, P.L.
1984-06-25
A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.
Applications of Ultra-Intense, Short Laser Pulses
NASA Astrophysics Data System (ADS)
Ledingham, Ken W. D.
The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
NASA Astrophysics Data System (ADS)
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST
NASA Astrophysics Data System (ADS)
Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2010-11-01
The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).
Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.
2015-02-15
Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measuredmore » by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound imaging. This acoustic range verification approach could offer the possibility of combining anatomical ultrasound and Bragg peak imaging, but further studies are required for translation of these findings to clinical application.« less
NASA Technical Reports Server (NTRS)
Benner, Steve M (Inventor); Martins, Mario S. (Inventor)
2000-01-01
A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.
Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.
2012-12-15
An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less
Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghai, S.
2008-01-01
This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
Pulse Power Applications of Flux Compression Generators
1981-06-01
Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Polarization control of isolated high-harmonic pulses
NASA Astrophysics Data System (ADS)
Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang
2018-06-01
High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.
NASA Astrophysics Data System (ADS)
Straube, U.; Beige, H.
1999-03-01
An arbitrary waveform generator was introduced to produce pulse bursts with improved time jitter for the generation of ultrasound pulses. The problem of pulse amplification was solved using a ceramic power triode driven by a power FET amplifier. The construction of these special amplifier stages is mainly considered in this paper.
Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.
Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam
2018-04-21
Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ultrasound-aided high-resolution biophotonic imaging
NASA Astrophysics Data System (ADS)
Wang, Lihong V.
2003-10-01
We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.
NASA Astrophysics Data System (ADS)
Jaensch, Stefan; Merk, Malte; Emmert, Thomas; Polifke, Wolfgang
2018-05-01
The Large Eddy Simulation/System Identification (LES/SI) approach is a general and efficient numerical method for deducing a Flame Transfer Function (FTF) from the LES of turbulent reacting flow. The method may be summarised as follows: a simulated flame is forced with a broadband excitation signal. The resulting fluctuations of the reference velocity and of the global heat release rate are post-processed via SI techniques in order to estimate a low-order model of the flame dynamics. The FTF is readily deduced from the low-order model. The SI method most frequently applied in aero- and thermo-acoustics has been Wiener-Hopf Inversion (WHI). This method is known to yield biased estimates in situations with feedback, thus it was assumed that non-reflective boundary conditions are required to generate accurate results with the LES/SI approach. Recent research has shown that the FTF is part of the so-called Intrinsic ThermoAcoustic (ITA) feedback loop. Hence, identifying an FTF from a compressible LES is always a closed-loop problem, and consequently one should expect that the WHI would yield biased results. However, several studies proved that WHI results compare favourably with validation data. To resolve this apparent contradiction, a variety of identification methods are compared against each other, including models designed for closed-loop identification. In agreement with theory, we show that the estimate given by WHI does not converge to the actual FTF. Fortunately, the error made is small if excitation amplitudes can be set such that the signal-to-noise ratio is large, but not large enough to trigger nonlinear flame dynamics. Furthermore, we conclude that non-reflective boundary conditions are not essentially necessary to apply the LES/SI approach.
Covic, Amra; Keitel, Christian; Porcu, Emanuele; Schröger, Erich; Müller, Matthias M
2017-11-01
The neural processing of a visual stimulus can be facilitated by attending to its position or by a co-occurring auditory tone. Using frequency-tagging, we investigated whether facilitation by spatial attention and audio-visual synchrony rely on similar neural processes. Participants attended to one of two flickering Gabor patches (14.17 and 17 Hz) located in opposite lower visual fields. Gabor patches further "pulsed" (i.e. showed smooth spatial frequency variations) at distinct rates (3.14 and 3.63 Hz). Frequency-modulating an auditory stimulus at the pulse-rate of one of the visual stimuli established audio-visual synchrony. Flicker and pulsed stimulation elicited stimulus-locked rhythmic electrophysiological brain responses that allowed tracking the neural processing of simultaneously presented Gabor patches. These steady-state responses (SSRs) were quantified in the spectral domain to examine visual stimulus processing under conditions of synchronous vs. asynchronous tone presentation and when respective stimulus positions were attended vs. unattended. Strikingly, unique patterns of effects on pulse- and flicker driven SSRs indicated that spatial attention and audiovisual synchrony facilitated early visual processing in parallel and via different cortical processes. We found attention effects to resemble the classical top-down gain effect facilitating both, flicker and pulse-driven SSRs. Audio-visual synchrony, in turn, only amplified synchrony-producing stimulus aspects (i.e. pulse-driven SSRs) possibly highlighting the role of temporally co-occurring sights and sounds in bottom-up multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W. L.; Qiao, B., E-mail: bqiao@pku.edu.cn; Huang, T. W.
2016-07-15
Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulsesmore » at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.« less
The nature of combustion noise: Stochastic or chaotic?
NASA Astrophysics Data System (ADS)
Gupta, Vikrant; Lee, Min Chul; Li, Larry K. B.
2016-11-01
Combustion noise, which refers to irregular low-amplitude pressure oscillations, is conventionally thought to be stochastic. It has therefore been modeled using a stochastic term in the analysis of thermoacoustic systems. Recently, however, there has been a renewed interest in the validity of that stochastic assumption, with tests based on nonlinear dynamical theory giving seemingly contradictory results: some show combustion noise to be stochastic while others show it to be chaotic. In this study, we show that this contradiction arises because those tests cannot distinguish between noise amplification and chaos. We further show that although there are many similarities between noise amplification and chaos, there are also some subtle differences. It is these subtle differences, not the results of those tests, that should be the focus of analyses aimed at determining the true nature of combustion noise. Recognizing this is an important step towards improved understanding and modeling of combustion noise for the study of thermoacoustic instabilities. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Modified computation of the nozzle damping coefficient in solid rocket motors
NASA Astrophysics Data System (ADS)
Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.
2018-02-01
In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.
Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B
2014-10-10
Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.
Laser-driven dielectric electron accelerator for radiobiology researches
NASA Astrophysics Data System (ADS)
Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula
2013-05-01
In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.
Geometrical Optimization Approach to Isomerization: Models and Limitations.
Chang, Bo Y; Shin, Seokmin; Engel, Volker; Sola, Ignacio R
2017-11-02
We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.
NASA Astrophysics Data System (ADS)
Takayama, Ken; Briggs*, Richard J.
The motivation for the initial development of linear induction accelerators starting in the early 1960s came mainly from applications requiring intense electron pulses with beam currents and a charge per pulse above the range accessible to RF accelerators, and with particle energies beyond the capabilities of single stage pulsed-power diodes. The linear induction accelerators developed to meet these needs utilize a series of induction cells containing magnetic cores (torroidal geometry) driven directly by pulse modulators (pulsed power sources). This multistage "one-to-one transformer" configuration with non-resonant, low impedance induction cells accelerates kilo-Ampere-scale electron beam current pulses in induction linacs.
Subfemtosecond directional control of chemical processes in molecules
NASA Astrophysics Data System (ADS)
Alnaser, Ali S.; Litvinyuk, Igor V.
2017-02-01
Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.
MeV electron acceleration at 1kHz with <10 mJ laser pulses
NASA Astrophysics Data System (ADS)
Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard
2016-10-01
We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.
Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo
2015-08-18
Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, H. F.; MacGowan, B. J.; Landen, O. L.
Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shapemore » (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. W., E-mail: li-jiwei@iapcm.ac.cn; He, X. T.; Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094
In order to reduce the effect of laser imprint in direct-drive ignition scheme a low-density foam buffered target has been proposed. This target is driven by a laser pulse with a low-intensity foot at the early stage of implosion, which heats the foam and elongates the thermal conduction zone between the laser absorption region and ablation front, increasing the thermal smoothing effect. In this paper, a relatively strong foot pulse is adopted to irradiate the critical-density foam buffered target. The stronger foot, near 1 × 10{sup 14 }W/cm{sup 2}, is able to drive a radiative shock in the low-density foam, which helps smoothmore » the shock and further reduce the effect of laser imprint. The radiative shock also forms a double ablation front structure between the two ablation fronts to further stabilize the hydrodynamics, achieving the similar results to a target with a high-Z dopant in the ablator. 2D analysis shows that for the critical-density foam buffered target irradiated by the strong foot pulse, the laser imprint can be reduced due to the radiative shock in the foam and an increased thermal smoothing effect. It seems viable for the critical-density foam buffered target to be driven by a relatively strong foot pulse with the goal of reducing the laser imprint and achieving better implosion symmetry in the direct-drive laser fusion.« less
Experimental Studies of Radial Wave Thermoacoustic Engines. Navy Environmentally Safe Ships Program.
1995-07-15
4 B. Pressure and specific acoustic impedance differer.: hd equation. .... ................ 6...the engine, Arf Sr) the resonator cross-see:iona! area at r. Ap(r) the cross-sectional area of" a porn at r, V; >h :c .... ,Ar tk. resonator at r
Long pulse production from short pulses
Toeppen, J.S.
1994-08-02
A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.
NASA Astrophysics Data System (ADS)
Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.
2016-09-01
The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.
Advances in the computation of the Sjöstrand, Rossi, and Feynman distributions
Talamo, A.; Gohar, Y.; Gabrielli, F.; ...
2017-02-01
This study illustrates recent computational advances in the application of the Sjöstrand (area), Rossi, and Feynman methods to estimate the effective multiplication factor of a subcritical system driven by an external neutron source. The methodologies introduced in this study have been validated with the experimental results from the KUKA facility of Japan by Monte Carlo (MCNP6 and MCNPX) and deterministic (ERANOS, VARIANT, and PARTISN) codes. When the assembly is driven by a pulsed neutron source generated by a particle accelerator and delayed neutrons are at equilibrium, the Sjöstrand method becomes extremely fast if the integral of the reaction rate frommore » a single pulse is split into two parts. These two integrals distinguish between the neutron counts during and after the pulse period. To conclude, when the facility is driven by a spontaneous fission neutron source, the timestamps of the detector neutron counts can be obtained up to the nanosecond precision using MCNP6, which allows obtaining the Rossi and Feynman distributions.« less
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Hang
2018-04-01
The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.
Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.
Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Cole, Matthew Thomas; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing
2017-08-01
Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Control of femtosecond laser driven retro-Diels-Alder-like reaction of dicyclopentadiene
Das, Dipak Kumar; Goswami, Tapas; Goswami, Debabrata
2013-01-01
Using femtosecond time resolved degenerate pump-probe mass spectrometry coupled with simple linearly chirped frequency modulated pulse, we elucidate that the dynamics of retro-Diels-Alder-like reaction of diclopentadiene (DCPD) to cyclopentadiene (CPD) in supersonic molecular beam occurs in ultrafast time scale. Negatively chirped pulse enhances the ion yield of CPD, as compared to positively chirped pulse. This indicates that by changing the frequency (chirp) of the laser pulse we can control the ion yield of a chemical reaction. PMID:23814449
Experimental demonstration of a compact epithermal neutron source based on a high power laser
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.
2017-07-01
Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.
Ion acceleration by laser hole-boring into plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelsky, I. V.; Dover, N. P.; Babzien, M.
By experiment and simulations, we study the interaction of an intense CO{sub 2} laser pulse with slightly overcritical plasmas of fully ionized helium gas. Transverse optical probing is used to show a recession of the front plasma surface with an initial velocity >10{sup 6} m/s driven by hole-boring by the laser pulse and the resulting radiation pressure driven electrostatic shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These observations are supported by PIC simulations which prove the conclusion that monoenergetic protons observed in our earlier reportedmore » experiment with a hydrogen jet result from ion trapping and reflection from a shock wave driven through the plasma.« less
ERIC Educational Resources Information Center
Beke, Tamás
2009-01-01
Teaching Science can only be successful if we are able to answer the challenges of the 21st century. Teaching Physics, Chemistry and Biology with the traditional methods is unintelligible and considered unnecessary for most students. This situation needs to be changed. Students can only develop their abilities and skills to the full extent and can…
Radiobiological study by using laser-driven proton beams
NASA Astrophysics Data System (ADS)
Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.
2009-07-01
Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.
Enhanced photon indistinguishability in pulse-driven quantum emitters
NASA Astrophysics Data System (ADS)
Fotso, Herbert F.
2017-04-01
Photon indistinguishability is an essential ingredient for the realization of scalable quantum networks. For quantum bits in the solid state, this is hindered by spectral diffusion, the uncontrolled random drift of the emission/absorption spectrum as a result of fluctuations in the emitter's environment. We study optical properties of a quantum emitter in the solid state when it is driven by a periodic sequence of optical pulses with finite detuning with respect to the emitter. We find that a pulse sequence can effectively mitigate spectral diffusion and enhance photon indistinguishability. The bulk of the emission occurs at a set target frequency; Photon indistinguishability is enhanced and is restored to its optimal value after every even pulse. Also, for moderate values of the sequence period and of the detuning, both the emission spectrum and the absorption spectrum have lineshapes with little dependence on the detuning. We describe the solution and the evolution of the emission/absorption spectrum as a function time.
Resistive pulse sensing of magnetic beads and supraparticle structures using tunable pores
Willmott, Geoff R.; Platt, Mark; Lee, Gil U.
2012-01-01
Tunable pores (TPs) have been used for resistive pulse sensing of 1 μm superparamagnetic beads, both dispersed and within a magnetic field. Upon application of this field, magnetic supraparticle structures (SPSs) were observed. Onset of aggregation was most effectively indicated by an increase in the mean event magnitude, with data collected using an automated thresholding method. Simulations enabled discrimination between resistive pulses caused by dimers and individual particles. Distinct but time-correlated peaks were often observed, suggesting that SPSs became separated in pressure-driven flow focused at the pore constriction. The distinct properties of magnetophoretic and pressure-driven transport mechanisms can explain variations in the event rate when particles move through an asymmetric pore in either direction, with or without a magnetic field applied. Use of TPs for resistive pulse sensing holds potential for efficient, versatile analysis and measurement of nano- and microparticles, while magnetic beads and particle aggregation play important roles in many prospective biosensing applications. PMID:22662090
Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV
Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.
2013-01-01
Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359
NASA Astrophysics Data System (ADS)
Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain
2017-10-01
A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.
Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave.
Thompson, Michael W; Atchley, Anthony A; Maccarone, Michael J
2005-04-01
Following the experimental method of Thompson and Atchley [J. Acoust. Soc. Am. 117, 1828-1838 (2005)] laser Doppler anemometry (LDA) is used to investigate the influences of a thermoacoustically induced axial temperature gradient and of fluid inertia on the acoustic streaming generated in a cylindrical standing-wave resonator filled with air driven sinusoidally at a frequency of 308 Hz. The axial component of Lagrangian streaming velocity is measured along the resonator axis and across the diameter at acoustic-velocity amplitudes of 2.7, 4.3, 6.1, and 8.6 m/s at the velocity antinodes. The magnitude of the axial temperature gradient along the resonator wall is varied between approximately 0 and 8 K/m by repeating measurements with the resonator either surrounded by a water jacket, suspended within an air-filled tank, or wrapped in foam insulation. A significant correlation is observed between the temperature gradient and the behavior of the streaming: as the magnitude of the temperature gradient increases, the magnitude of the streaming decreases and the shape of the streaming cell becomes increasingly distorted. The observed steady-state streaming velocities are not in agreement with any available theory.
Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K
NASA Astrophysics Data System (ADS)
Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang
2016-12-01
This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.
Fiber optic mounted laser driven flyer plates
Paisley, Dennis L.
1991-01-01
A laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs.
Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch
1993-11-10
plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with
Low Capacity Reliquefier for Storage of Cryogenic Fluids.
1993-11-01
comparably derated mechanically driven Stirling cryocooler could have low pressure ratio and forces without the high temperature problems. Pulse Tube ...than conventional Stirling refrigerators. Pulse tube cryocoolers have reached temperatures below 35 K with 1 or 2 stages and below 10 K with 3 stages...temperatures below 20 K with regenerative cycle cryocoolers (e.g. Stirling , Gifford- McMahan, pulse tube , etc.). Ideally, the regenerator should have high
Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X
2009-06-01
We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.
Survival of tumor cells after proton irradiation with ultra-high dose rates
2011-01-01
Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289
Acoustic-based proton range verification in heterogeneous tissue: simulation studies
NASA Astrophysics Data System (ADS)
Jones, Kevin C.; Nie, Wei; Chu, James C. H.; Turian, Julius V.; Kassaee, Alireza; Sehgal, Chandra M.; Avery, Stephen
2018-01-01
Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxel’s material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2× lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.
Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg
2016-01-01
Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287
Laser-driven localization of collective CO vibrations in metal-carbonyl complexes
NASA Astrophysics Data System (ADS)
Lisaj, Mateusz; Kühn, Oliver
2014-11-01
Using the example of a cobalt dicarbonyl complex it is shown that two perpendicular linearly polarized IR laser pulses can be used to trigger an excitation of the delocalized CO stretching modes, which corresponds to an alternating localization of the vibration within one CO bond. The switching time for localization in either of the two bonds is determined by the energy gap between the symmetric and asymmetric fundamental transition frequencies. The phase of the oscillation between the two local bond excitations can be tuned by the relative phase of the two pulses. The extend of control of bond localization is limited by the anharmonicity of the potential energy surfaces leading to wave packet dispersion. This prevents such a simple pulse scheme from being used for laser-driven bond breaking in the considered example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sha; Jones, R. R.
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less
Li, Sha; Jones, R. R.
2016-11-10
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less
Energy-resolved coherent diffraction from laser-driven electronic motion in atoms
NASA Astrophysics Data System (ADS)
Shao, Hua-Chieh; Starace, Anthony F.
2017-10-01
We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Chu, Tianshu
2017-10-01
Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.
NASA Astrophysics Data System (ADS)
Liu, Bin; Meyer-Ter-Vehn, Juergen; Ruhl, Hartmut
2017-10-01
We introduce an alternative approach for laser driven self-injected high quality ion acceleration. We call it ion wave breaking acceleration. It operates in relativistic self-transparent plasma for ultra-intense ultra-short laser pulses. Laser propagating in a transparent plasma excites an electron wave as well as an ion wave. When the ion wave breaks, a fraction of ions is self-injected into the positive part of the laser driven wake. This leads to a superior ion pulse with peaked energy spectra; in particular in realistic three-dimensional geometry, the injection occurs localized close to the laser axis producing highly directed bunches. A theory is developed to investigate the ion wave breaking dynamics. Three dimensional Particle-in-Cell simulations with pure-gaussian laser pulses and pre-expanded near-critical density plasma targets have been done to verify the theoretical results. It is shown that hundreds of MeV, easily controllable and manipulable, micron-scale size, highly collimated and quasi-mono-energetic ion beams can be produced by using ultra-intense ultra-short laser pulses with total laser energies less than 10 Joules. Such ion beams may find important applications in tumour therapy. B. Liu acknowledges support from the Alexander von Humboldt Foundation. B. Liu and H. Ruhl acknowledge supports from the Gauss Centre for Supercomputing (GCS), and the Cluster-of-Excellence Munich Centre for Advanced Photonics (MAP).
Quantum dynamics of a two-state system induced by a chirped zero-area pulse
NASA Astrophysics Data System (ADS)
Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2016-02-01
It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.
An Experiment on Repetitive Pulse Operation of Microwave Rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya
2008-04-28
Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.
Thermoacoustic inductor for heavy oil extraction
NASA Astrophysics Data System (ADS)
Tyncherov, K. T.; Mukhametshin, V. Sh; Paderin, M. G.; Selivanova, M. V.; Shokurov, I. V.; Almukhametova, E. M.
2018-03-01
The problem of enhancing heavy oil reservoir performance is a matter of relevance for many years. Among the technologies aimed at solving this problem, the technology of the bottom-hole and well casing heating is the most interesting. This is a real possibility to transform thickened hydrocarbon into a recoverable state, as well as to solve the tasks of cleaning the borehole from asphaltenes, resins, and paraffin sediments. In both cases, the borehole area is generally warmed up and the product is then pumped out by the known techniques. The type of the equipment, the way of the well operation, the stage of reservoir development, physical and chemical properties of paraffin sediments, etc. are taken into consideration. In the article, basing on the electromagnetic induction method and the Joule effect, the advantages of induction heating compared to the traditional resistive and steam methods are presented. It is shown that under the induction exposure, the heat is not focused on the apparatus, but on heating the oily product. Basing on the method, a thermoacoustic inductor with unique technical characteristics has been developed.
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
NASA Technical Reports Server (NTRS)
Parang, Masood
1986-01-01
An experimental and analytical study of Thermoacoustic Convection heat transfer in gravity and zero-gravity environments is presented. The experimental apparatus consisted of a cylinder containing air as a fluid. The side wall of the cylinder was insulated while the bottom wall was allowed to remain at the ambient temperature. The enclosed air was rapidly heated by the top surface which consisted of a thin stainless steel foil connected to a battery pack as the power source. Thermocouples were used to measure the transient temperature of the air on the axis of the cylinder. The ouput of the thermocouples was displayed on digital thermometers and the temperature displays were recorded on film using a high-speed movie camera. Temperature measurements were obtained in the zero-gravity environment by dropping the apparatus in the 2-Seconds Zero-Gravity Drop Tower Facilities of NASA Lewis Research Center. In addition, experiments were also performed in the gravity environment and the results are compared in detail with those obtained under zero-gravity conditions.
Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor
NASA Astrophysics Data System (ADS)
Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John
2016-11-01
In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.
Minimum envelope roughness pulse design for reduced amplifier distortion in parallel excitation.
Grissom, William A; Kerr, Adam B; Stang, Pascal; Scott, Greig C; Pauly, John M
2010-11-01
Parallel excitation uses multiple transmit channels and coils, each driven by independent waveforms, to afford the pulse designer an additional spatial encoding mechanism that complements gradient encoding. In contrast to parallel reception, parallel excitation requires individual power amplifiers for each transmit channel, which can be cost prohibitive. Several groups have explored the use of low-cost power amplifiers for parallel excitation; however, such amplifiers commonly exhibit nonlinear memory effects that distort radio frequency pulses. This is especially true for pulses with rapidly varying envelopes, which are common in parallel excitation. To overcome this problem, we introduce a technique for parallel excitation pulse design that yields pulses with smoother envelopes. We demonstrate experimentally that pulses designed with the new technique suffer less amplifier distortion than unregularized pulses and pulses designed with conventional regularization.
Long pulse production from short pulses
Toeppen, John S.
1994-01-01
A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
High pulse rate high resolution optical radar system
NASA Technical Reports Server (NTRS)
Goss, W. C.; Burns, R. H.; Chi, K. (Inventor)
1973-01-01
The system is composed of an optical cavity with a laser and a mode locking means to build up an optical pulse. An optical switch is also provided within the cavity to convert the polarization of the optical pulse generated within the cavity. The optical switch comprises an electro-optical crystal driven by a time delayed driver circuit which is triggered by a coincident signal made from an optical pulse signal and a gating pulse signal. The converted optical pulse strikes a polarization sensitive prism and is deflected out of the cavity toward the pending target in the form of a pulse containing most of the optical energy generated by the laser in the pulse build-up period. After striking the target, the reflected energy is picked up by a transceiver with the total travel time of the pulse being recorded.
Xing, Jida; Chen, Jie
2015-06-23
In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor's average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively.
Xing, Jida; Chen, Jie
2015-01-01
In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor’s average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively. PMID:26110412
Characteristics of a Direct Current-driven plasma jet operated in open air
NASA Astrophysics Data System (ADS)
Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting
2013-09-01
A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.
NASA Astrophysics Data System (ADS)
Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.
2016-09-01
Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.
THz-driven zero-slippage IFEL scheme for phase space manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, E.; Fabbri, S.; Musumeci, P.
In this paper, we describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With amore » $$10\\,\\mathrm{MV}\\,{{\\rm{m}}}^{-1}$$ THz peak field, our simulation model predicts compression of a $$6\\,\\mathrm{MeV}$$ $$100\\,\\mathrm{fs}$$ electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter.« less
THz-driven zero-slippage IFEL scheme for phase space manipulation
Curry, E.; Fabbri, S.; Musumeci, P.; ...
2016-11-24
In this paper, we describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With amore » $$10\\,\\mathrm{MV}\\,{{\\rm{m}}}^{-1}$$ THz peak field, our simulation model predicts compression of a $$6\\,\\mathrm{MeV}$$ $$100\\,\\mathrm{fs}$$ electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter.« less
Assessment of Proton Deflectometry for Exploding Wire Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, Farhat Nadeem
2013-09-25
This project provides the first demonstration of the application of proton deflectometry for the diagnosis of electromagnetic field topology and current-carrying regions in Z-pinch plasma experiments. Over the course of this project several milestones were achieved. High-energy proton beam generation was demonstrated on the short-pulse high-intensity Leopard laser, (10 Joules in ~350 femtoseconds, and the proton beam generation was shown to be reproducible. Next, protons were used to probe the electromagnetic field structure of short circuit loads in order to benchmark the two numerical codes, the resistive-magnetohydrodynamics (MHD) code, Gorgon, and the hybrid particle-in-cell code, LSP for the interpretation ofmore » results. Lastly, the proton deflectometry technique was used to map the magnetic field structure of pulsed-power-driven plasma loads including wires and supersonic jets formed with metallic foils. Good agreement between the modeling and experiments has been obtained. The demonstrated technique holds great promise to significantly improve the understanding of current flow and electromagnetic field topology in pulsed power driven high energy density plasmas. Proton probing with a high intensity laser was for the first time implemented in the presence of the harsh debris and x-ray producing z-pinch environment driven by a mega-ampere-scale pulsed-power machine. The intellectual merit of the program was that it investigated strongly driven MHD systems and the influence of magnetic field topology on plasma evolution in pulsed power driven plasmas. The experimental program involved intense field-matter interaction in the generation of the proton probe, as well as the generation of plasma subjected to 1 MegaGauss scale magnetic fields. The computational aspect included two well-documented codes, in combination for the first time to provide accurate interpretation of the experimental results. The broader impact included the support of 2 graduate students, one at UCSD and one at NTF, who were exposed to both the experimental physics work, the MHD and PIC modeling of the system. A first generation college undergraduate student was employed to assist in experiments and data analysis throughout the project. Data resulting from the research program were broadly disseminated by publication in scientific journals, and presentation at international and national conferences and workshops.« less
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Efficient semiconductor multicycle terahertz pulse source
NASA Astrophysics Data System (ADS)
Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.
2018-05-01
Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.
Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source
NASA Astrophysics Data System (ADS)
Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire
2000-11-01
We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.
Rose, D. V.; Madrid, E. A.; Welch, D. R.; ...
2015-03-04
Numerical simulations of a vacuum post-hole convolute driven by magnetically insulated vacuum transmission lines (MITLs) are used to study current losses due to charged particle emission from the MITL-convolute-system electrodes. This work builds on the results of a previous study [E.A. Madrid et al. Phys. Rev. ST Accel. Beams 16, 120401 (2013)] and adds realistic power pulses, Ohmic heating of anode surfaces, and a model for the formation and evolution of cathode plasmas. The simulations suggest that modestly larger anode-cathode gaps in the MITLs upstream of the convolute result in significantly less current loss. In addition, longer pulse durations leadmore » to somewhat greater current loss due to cathode-plasma expansion. These results can be applied to the design of future MITL-convolute systems for high-current pulsed-power systems.« less
Iron Opacity Platform Performance Characterization at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Opachich, Y. P.; Ross, P. W.; Heeter, R. F.; Barrios, M. A.; Liedahl, D. A.; May, M. J.; Schneider, M. B.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Weaver, J. L.; Flippo, K. A.; Kline, J. L.; Perry, T. S.; Los Alamos National Laboratory Collaboration; Naval Research Laboratory Collaboration; University of Rochester LaboratoryLaser Energetics Collaboration; Lawrence Livermore National Lab Collaboration; National Security Technologies, LLC Collaboration
2016-10-01
A high temperature opacity platform has been fielded at the National Ignition Facility (NIF). The platform will be used to study opacity in iron at a temperature of 160 eV. The platform uses a 6 mm diameter hohlraum driven by 128 laser beams with 530 kJ of energy in a 3 ns pulse to heat an iron sample. Absorption spectra of the heated sample are generated with a broadband pulsed X-ray backlighter produced by imploding a vacuum-filled CH shell. The shell is 2 mm in diameter and 20 microns thick, driven by 64 beams with 250 kJ in a 2.5 ns pulse. The hohlraum and backlighter performance have both been investigated recently and will be discussed in this presentation. This work was performed by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-2892.
Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus
2017-05-01
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Measuring Energy Scaling of Laser Driven Magnetic Fields
NASA Astrophysics Data System (ADS)
Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John
2016-10-01
Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers
Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio
2014-01-01
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866
Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.
Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio
2014-06-10
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.
Visible and near infrared resonance plasmonic enhanced nanosecond laser optoporation of cancer cells
St-Louis Lalonde, Bastien; Boulais, Étienne; Lebrun, Jean-Jacques; Meunier, Michel
2013-01-01
In this paper, we report a light driven, non-invasive cell membrane perforation technique based on the localized field amplification by a nanosecond pulsed laser near gold nanoparticles (AuNPs). The optoporation phenomena is investigated with pulses generated by a Nd:YAG laser for two wavelengths that are either in the visible (532 nm) or near infrared (NIR) (1064 nm). Here, the main objective is to compare on and off localized surface plasmonic resonance (LSPR) to introduce foreign material through the cell membrane using nanosecond laser pulses. The membrane permeability of human melanoma cells (MW278) has been successfully increased as shown by the intake of a fluorescent dye upon irradiation. The viability of this laser driven perforation method is evaluated by propidium iodide exclusion as well as MTT assay. Our results show that up to 25% of the cells are perforated with 532 nm pulses at 50 mJ/cm2 and around 30% of the cells are perforated with 1064 nm pulses at 1 J/cm2. With 532 nm pulses, the viability 2 h after treatment is 64% but it increases to 88% 72 h later. On the other hand, the irradiation with 1064 nm pulses leads to an improved 2 h viability of 81% and reaches 98% after 72 h. Scanning electron microscopy images show that the 5 pulses delivered during treatment induce changes in the AuNPs size distribution when irradiated by a 532 nm beam, while this distribution is barely affected when 1064 nm is used. PMID:23577284
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
Lightning driven EMP in the upper atmosphere
NASA Technical Reports Server (NTRS)
Rowland, H. L.; Fernsler, R. F.; Huba, J. D.; Bernhardt, P. A.
1995-01-01
Large lightning discharges can drive electromagnetic pulses (EMP) that cause breakdown of the neutral atmosphere between 80 and 95 km leading to order of magnitude increases in the plasma density. The increase in the plasma density leads to increased reflection and absorption, and limits the pulse strength that propagates higher into the ionosphere.
Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber
NASA Astrophysics Data System (ADS)
Michaeli, Linor; Bahabad, Alon
2018-05-01
We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.
NASA Astrophysics Data System (ADS)
Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol
2018-06-01
The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.
Mistry, Devendra S.; Tsutsumi, Rie; Fernandez, Marina; Sharma, Shweta; Cardenas, Steven A.; Lawson, Mark A.
2011-01-01
Gonadotropin synthesis and release is dependent on pulsatile stimulation by the hypothalamic neuropeptide GnRH. Generally, slow GnRH pulses promote FSH production, whereas rapid pulses favor LH, but the molecular mechanism underlying this pulse sensitivity is poorly understood. In this study, we developed and tested a model for FSHβ regulation in mouse LβT2 gonadotropes. By mining a previous microarray data set, we found that mRNA for positive regulators of Fshb expression, such as Fos and Jun, were up-regulated at slower pulse frequencies than a number of potential negative regulators, such as the corepressors Skil, Crem, and Tgif1. These latter corepressors reduced Fshb promoter activity whether driven by transfection of individual transcription factors or by treatment with GnRH and activin. Overexpression of binding or phosphorylation-defective ski-oncogene-like protein (SKIL) and TG interacting factor (TGIF1) mutants, however, failed to repress Fshb promoter activity. Knockdown of the endogenous repressors SKIL and TGIF1, but not cAMP response element-modulator, increased Fshb promoter activity driven by constant GnRH or activin. Chromatin immunoprecipitation analysis showed that FOS, SKIL, and TGIF1 occupy the FSHβ promoter in a cyclical manner after GnRH stimulation. Overexpression of corepressors SKIL or TGIF1 repressed induction of the Fshb promoter at the slow GnRH pulse frequency but had little effect at the fast pulse frequency. In contrast, knockdown of endogenous SKIL or TGIF1 selectively increased Fshb mRNA at the fast GnRH pulse frequency. Therefore, we propose a potential mechanism by which production of gonadotropin Fshb is modulated by positive transcription factors and negative corepressors with different pulse sensitivities. PMID:21659477
Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators
NASA Astrophysics Data System (ADS)
Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.
2016-01-01
Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.
Compact 200 kHz HHG source driven by a few-cycle OPCPA
NASA Astrophysics Data System (ADS)
Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.
2018-01-01
We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.
Skyrmion-based high-frequency signal generator
NASA Astrophysics Data System (ADS)
Luo, Shijiang; Zhang, Yue; Shen, Maokang; Ou-Yang, Jun; Yan, Baiqian; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long
2017-03-01
Many concepts for skyrmion-based devices have been proposed, and most of their possible applications are based on the motion of skyrmions driven by a dc current in an area with a constricted geometry. However, skyrmion motion driven by a pulsed current has not been investigated so far. In this work, we propose a skyrmion-based high-frequency signal generator based on the pulsed-current-driven circular motion of skyrmions in a square-shaped film by micromagnetic simulation. The results indicate that skyrmions can move in a closed curve with central symmetry. The trajectory and cycle period can be adjusted by tuning the size of the film, the current density, the Dzyaloshinskii-Moriya interaction constant, and the local in-plane magnetic anisotropy. The period can be tuned from several nanoseconds to tens of nanoseconds, which offers the possibility to prepare high-frequency signal generator based on skyrmions.
Evaluation of laser-driven ion energies for fusion fast-ignition research
NASA Astrophysics Data System (ADS)
Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.
2017-10-01
We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.
Propagation characteristics of two-color laser pulses in homogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemlata,; Saroch, Akanksha; Jha, Pallavi
2015-11-15
An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less
Directly driven source of multi-gigahertz, sub-picosecond optical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.
2015-10-20
A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less
Optical pulse evolution in the Stanford free-electron laser and in a tapered wiggler
NASA Technical Reports Server (NTRS)
Colson, W. B.
1982-01-01
The Stanford free electron laser (FEL) oscillator is driven by a series of electron pulses from a high-quality superconducting linear accelerator (LINAC). The electrons pass through a transverse and nearly periodic magnetic field, a 'wiggler', to oscillate and amplify a superimposed optical pulse. The rebounding optical pulse must be closely synchronized with the succession of electron pulses from the accelerator, and can take on a range of structures depending on the precise degree of synchronism. Small adjustments in desynchronism can make the optical pulse either much shorter or longer than the electron pulse, and can cause significant subpulse structure. The oscillator start-up from low level incoherent fields is discussed. The effects of desynchronism on coherent pulse propagation are presented and compared with recent Stanford experiments. The same pulse propagation effects are studied for a magnet design with a tapered wavelength in which electrons are trapped in the ponderomotive potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firouzjaei, Ali Shekari; Shokri, Babak
In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, wemore » present the optimum pulse duration for such wakes.« less
Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene
Goswami, Tapas; Das, Dipak K.; Goswami, Debabrata
2013-01-01
Dynamics of the chemical transformation of dicyclopentadiene into cyclopentadiene in a supersonic molecular beam is elucidated using femtosecond time-resolved degenerate pump–probe mass spectrometry. Control of this ultrafast chemical reaction is achieved by using linearly chirped frequency modulated pulses. We show that negatively chirped femtosecond laser pulses enhance the cyclopentadiene photoproduct yield by an order of magnitude as compared to that of the unmodulated or the positively chirped pulses. This demonstrates that the phase structure of femtosecond laser pulse plays an important role in determining the outcome of a chemical reaction. PMID:24098059
Two stroke homogenous charge compression ignition engine with pulsed air supplier
Clarke, John M.
2003-08-05
A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.
Dark pulse generation in fiber lasers incorporating carbon nanotubes.
Liu, H H; Chow, K K
2014-12-01
We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.
NASA Astrophysics Data System (ADS)
Murakami, Mitsuko; Zhang, G. P.; Chu, Shih-I.
2017-05-01
We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration) based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with the frozen-core approximation and TDDFT, indicating an interference of its M -shell wave functions during the ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.
Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release
NASA Astrophysics Data System (ADS)
Park, Sammy Ace
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
NASA Astrophysics Data System (ADS)
Hu, Q.; Joshi, R. P.
2017-07-01
Electric pulse driven membrane poration finds applications in the fields of biomedical engineering and drug/gene delivery. Here we focus on nanosecond, high-intensity electroporation and probe the role of pulse shape (e.g., monopolar-vs-bipolar), multiple electrode scenarios, and serial-versus-simultaneous pulsing, based on a three-dimensional time-dependent continuum model in a systematic fashion. Our results indicate that monopolar pulsing always leads to higher and stronger cellular uptake. This prediction is in agreement with experimental reports and observations. It is also demonstrated that multi-pronged electrode configurations influence and increase the degree of cellular uptake.
Generation of flat-top pulsed magnetic fields with feedback control approach.
Kohama, Yoshimitsu; Kindo, Koichi
2015-10-01
We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.
Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste
2013-09-09
We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.
NASA Technical Reports Server (NTRS)
Woods, J. M. (Inventor)
1973-01-01
An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.
A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers
Janene Auger; Susan E. Meyer; Stephen H. Jenkins
2016-01-01
Granivorous rodent populations in deserts are primarily regulated through precipitation-driven resource pulses rather than pulses associated with mast-seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast-seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the MojaveâGreat Basin...
High power neutron production targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wender, S.
1996-06-01
The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.
Review of laser-driven ion sources and their applications.
Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S
2012-05-01
For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.
Infrared laser driven double proton transfer. An optimal control theory study
NASA Astrophysics Data System (ADS)
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
Advances in Optical Fiber-Based Faraday Rotation Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A D; McHale, G B; Goerz, D A
2009-07-27
In the past two years, we have used optical fiber-based Faraday Rotation Diagnostics (FRDs) to measure pulsed currents on several dozen capacitively driven and explosively driven pulsed power experiments. We have made simplifications to the necessary hardware for quadrature-encoded polarization analysis, including development of an all-fiber analysis scheme. We have developed a numerical model that is useful for predicting and quantifying deviations from the ideal diagnostic response. We have developed a method of analyzing quadrature-encoded FRD data that is simple to perform and offers numerous advantages over several existing methods. When comparison has been possible, we have seen good agreementmore » with our FRDs and other current sensors.« less
Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.
Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing
2016-06-03
In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.
Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics
Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing
2016-01-01
In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904
A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems
Collins, Scott L.; Belnap, Jayne; Grimm, N. B.; Rudgers, J. A.; Dahm, Clifford N.; D'Odorico, P.; Litvak, M.; Natvig, D. O.; Peters, Douglas C.; Pockman, W. T.; Sinsabaugh, R. L.; Wolf, B. O.
2014-01-01
Ecological processes in arid lands are often described by the pulse-reserve paradigm, in which rain events drive biological activity until moisture is depleted, leaving a reserve. This paradigm is frequently applied to processes stimulated by one or a few precipitation events within a growing season. Here we expand the original framework in time and space and include other pulses that interact with rainfall. This new hierarchical pulse-dynamics framework integrates space and time through pulse-driven exchanges, interactions, transitions, and transfers that occur across individual to multiple pulses extending from micro to watershed scales. Climate change will likely alter the size, frequency, and intensity of precipitation pulses in the future, and arid-land ecosystems are known to be highly sensitive to climate variability. Thus, a more comprehensive understanding of arid-land pulse dynamics is needed to determine how these ecosystems will respond to, and be shaped by, increased climate variability.
High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis
Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less
High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses
Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis; ...
2018-02-20
Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less
High energy protons generation by two sequential laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn
2015-04-15
The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. Inmore » a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.« less
Performance and environmental impact assessment of pulse detonation based engine systems
NASA Astrophysics Data System (ADS)
Glaser, Aaron J.
Experimental research was performed to investigate the feasibility of using pulse detonation based engine systems for practical aerospace applications. In order to carry out this work a new pulse detonation combustion research facility was developed at the University of Cincinnati. This research covered two broad areas of application interest. The first area is pure PDE applications where the detonation tube is used to generate an impulsive thrust directly. The second focus area is on pulse detonation based hybrid propulsion systems. Within each of these areas various studies were performed to quantify engine performance. Comparisons of the performance between detonation and conventional deflagration based engine cycles were made. Fundamental studies investigating detonation physics and flow dynamics were performed in order to gain physical insight into the observed performance trends. Experimental studies were performed on PDE-driven straight and diverging ejectors to determine the system performance. Ejector performance was quantified by thrust measurements made using a damped thrust stand. The effects of PDE operating parameters and ejector geometric parameters on thrust augmentation were investigated. For all cases tested, the maximum thrust augmentation is found to occur at a downstream ejector placement. The optimum ejector geometry was determined to have an overall length of LEJECT/DEJECT =5.61, including an intermediate-straight section length of LSTRT /DEJECT=2, and diverging exhaust section with 4 deg half-angle. A maximum thrust augmentation of 105% was observed while employing the optimized ejector geometry and operating the PDE at a fill-fraction of 0.6 and a frequency of 10 Hz. When operated at a fill-fraction of 1.0 and a frequency of 30 Hz, the thrust augmentation of the optimized PDE-driven ejector system was observed to be 71%. Static pressure was measured along the interior surface of the ejector, including the inlet and exhaust sections. The diverging ejector pressure distribution shows that the diverging section acts as a subsonic diffuser. To provide a better explanation of the observed performance trends, shadowgraph images of the detonation wave and starting vortex interacting with the ejector inlet were obtained. The acoustic signature of a pulse detonation engine was characterized in both the near-field and far-field regimes. Experimental measurements were performed in an anechoic test facility designed for jet noise testing. Both shock strength and speed were mapped as a function of radial distance and direction from the PDE exhaust plane. It was found that the PDE generated pressure field can be reasonably modeled by a theoretical point-source explosion. The effect of several exit nozzle configurations on the PDE acoustic signature was studies. These included various chevron nozzles, a perforated nozzle, and a set of proprietary noise attenuation mufflers. Experimental studies were carried out to investigate the performance of a hybrid propulsion system integrating an axial flow turbine with multiple pulse detonation combustors. The integrated system consisted of a circular array of six pulse detonation combustor (PDC) tubes exhausting through an axial flow turbine. Turbine component performance was quantified by measuring the amount of power generated by the turbine section. Direct comparisons of specific power output and turbine efficiency between a PDC-driven turbine and a turbine driven by steady-flow combustors were made. It was found that the PDC-driven turbine had comparable performance to that of a steady-burner-driven turbine across the operating map of the turbine.
An explosively driven high-power microwave pulsed power system.
Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L
2012-02-01
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.
An explosively driven high-power microwave pulsed power system
NASA Astrophysics Data System (ADS)
Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.
2012-02-01
The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.
Gas breakdown driven by L band short-pulse high-power microwave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Yiming; Yuan Chengwei; Qian Baoliang
2012-12-15
High power microwave (HPM) driven gas breakdown is a major factor in limiting the radiation and transmission of HPM. A method that HPM driven gas breakdown could be obtained by changing the aperture of horn antenna is studied in this paper. Changing the effective aperture of horn antenna can adjust the electric field in near field zone, leading to gas breakdown. With this method, measurements of air and SF{sub 6} breakdowns are carried out on a magnetically insulated transmission-line oscillators, which is capable of generating HPM with pulse duration of 30 ns, and frequency of 1.74 GHz. The typical breakdownmore » waveforms of air and SF{sub 6} are presented. Besides, the breakdown field strengths of the two gases are derived at different pressures. It is found that the effects of air and SF{sub 6} breakdown on the transmission of HPM are different: air breakdown mainly shortens the pulse width of HPM while SF{sub 6} breakdown mainly reduces the peak output power of HPM. The electric field threshold of SF{sub 6} is about 2.4 times larger than that of air. These differences suggest that gas properties have a great effect on the transmission characteristic of HPM in gases.« less
Eliminating Nonlinear Acoustical Effects From Thermoacoustic Refrigeration Systems
NASA Astrophysics Data System (ADS)
Garrett, Steven L.; Smith, Robert W. M.; Poese, Matthew E.
2006-05-01
Nonlinear acoustical effects dissipate energy that degrades thermoacoustic refrigerator performance. The largest of these effects occur in acoustic resonators and include shock formation; turbulence and boundary layer disruption; and entry/exit (minor) losses induced by changes in resonator cross-sectional area. Effects such as these also make the creation of accurate performance models more complicated. Suppression of shock formation by intentional introduction of resonator anharmonicity has been common practice for the past two decades. Recent attempts to increase cooling power density by increasing pressure amplitudes has required reduction of turbulence and minor loss by using an new acousto-mechanical resonator topology. The hybrid resonator still stores potential energy in the compressibility of the gaseous working fluid, but stores kinetic energy in the moving (solid) mass of the motor and piston. This talk will first present nonlinear acoustical loss measurements obtained in a "conventional" double-Helmholtz resonator geometry (TRITON) that dissipated four kilowatts of acoustic power. We will then describe the performance of the new "bellows bounce" resonator configuration and "vibromechanical multiplier" used in the first successful implementation of this approach that created an ice cream freezer produced at Penn State for Ben & Jerry's.
Use of thermoacoustic excitation for control of turbulent flow over a wall-mounted hump
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Munday, Phillip; Taira, Kunihiko
2014-11-01
We numerically examine the effectiveness of high-frequency acoustic excitation for drag reduction control of turbulent flow over a wall-mounted hump at a free stream Reynolds number of 500,000 and Mach number of 0.25. Actuation frequencies around Helmholtz number of 3 are considered based on the characteristics of recently developed graphene/carbon nanotube-based surface compliant loud speakers. The present study utilizes LES (CharLES) with an oscillatory heat flux boundary condition to produce high-intensity acoustic waves, which interact with the turbulent flow structures by introducing small-scale perturbations to the shear layer in the wake of the hump. With thermoacoustic control, the recirculation zone downstream of the hump becomes elongated with thinner shear layer profile compared to the uncontrolled case. This change in the flow shifts the low-pressure region of the wake further downstream and results in reduction in drag by 10% for two-dimensional and 15% for three-dimensional flows. The influence of actuation frequency and amplitude is also examined. This work is supported by the US Army Research Office (W911NF-13-1-0062, W911NF-14-1-0224).
Compact sub-nanosecond pulse seed source with diode laser driven by a high-speed circuit
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Wang, Bo; Wang, Junhua; Cheng, Wenyong
2018-06-01
A compact sub-nanosecond pulse seed source with 1550 nm diode laser (DL) was obtained by employing a high-speed circuit. The circuit mainly consisted of a short pulse generator and a short pulse driver. The short pulse generator, making up of a complex programmable logic device (CPLD), a level translator, two programmable delay chips and an AND gate chip, output a triggering signal to control metal-oxide-semiconductor field-effect transistor (MOSFET) switch of the short pulse driver. The MOSFET switch with fast rising time and falling time both shorter than 1 ns drove the DL to emit short optical pulses. Performances of the pulse seed source were tested. The results showed that continuously adjustable repetition frequency ranging from 500 kHz to 100 MHz and pulse duration in the range of 538 ps to 10 ns were obtained, respectively. 537 μW output was obtained at the highest repetition frequency of 100 MHz with the shortest pulse duration of 538 ps. These seed pulses were injected into an fiber amplifier, and no optical pulse distortions were found.
13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier
2011-11-11
compressed through a CaF2 prism pair at Brewster angle , and directed to the second OPA stage after a periscope flipping its polarization. The 90% part of...FWHM pulse duration. HHG setup The OPA pulses are sent into a vacuum chamber and focused in an Argon ( lens focal length 150 mm) or Helium (focal
NASA Astrophysics Data System (ADS)
Psikal, J.; Matys, M.
2018-04-01
Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.
Interaction of laser beams with magnetized substance in a strong magnetic field
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.
2018-03-01
Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.
High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu
2013-06-01
A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.
Development of a Low Cost High Frequency Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Wang, C.; Caughley, A. J.; Haywood, D. J.
2008-03-01
In cooperation with Industrial Research Ltd (IRL), Cryomech, Inc. is developing a low cost high frequency pulse tube cryocooler. The valveless compressor, developed at IRL, employs two S.S. diaphragms and a novel kinematics driven mechanism. The pulse tube cold head has co-axial configuration. It is separated from the compressor with a SS flexible line of 1 meter long. The test results demonstrate a very small orientation effect of the cold head (<3 K at any orientation). This pulse tube cryocooler provides flexibility for user's integration. It can provide 108W at 77K with an electric input power of 3.7 kW in the primary test.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
NASA Astrophysics Data System (ADS)
Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich
2018-04-01
We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine; ...
2018-02-09
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
NASA Astrophysics Data System (ADS)
Li, H. Y.; Liu, J. S.
2010-06-01
The simulations of three-dimensional particle dynamics are carried out to investigate the Coulomb explosion dynamics of deuterated methane clusters under the irradiation of an ultrashort intense laser pulse. The final kinetic energy of deuterons produced from the cluster explosion is calculated as a function of the pulse width, the laser intensity and the pulse chirp. It is found that the deuteron energy obtained in an intense laser pulse with negative chirp is higher than that with positive chirp, which agrees qualitatively with the experimental results reported by Fukuda et al. [Y. Fukuda et al., Phys. Rev. A 67, 061201 (2003)].
The shaped pulses control and operation on the SG-III prototype facility
NASA Astrophysics Data System (ADS)
Ping, Li; Wei, Wang; Sai, Jin; Wanqing, Huang; Wenyi, Wang; Jingqin, Su; Runchang, Zhao
2018-04-01
The laser driven inertial confined fusion experiments require careful temporal shape control of the laser pulse. Two approaches are introduced to improve the accuracy and efficiency of the close loop feedback system for long term operation in TIL; the first one is a statistical model to analyze the variation of the parameters obtained from previous shots, the other is a matrix algorithm proposed to relate the electrical signal and the impulse amplitudes. With the model and algorithm applied in the pulse shaping in TIL, a variety of shaped pulses were produced with a 10% precision in half an hour for almost three years under different circumstance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-14
The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less
Li, Sha; Jones, R. R.
2016-01-01
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm
Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.
2001-10-01
When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Feng, A. Yuanzi
2018-04-01
The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei
2018-05-01
A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.
Next Generation Driver for Attosecond and Laser-plasma Physics.
Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L
2017-07-12
The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20 W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.
Dislocation structure produced by an ultrashort shock pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, Tomoki, E-mail: t-matsu@mapse.eng.osaka-u.ac.jp; Hirose, Akio; Sano, Tomokazu
We found an ultrashort shock pulse driven by a femtosecond laser pulse on iron generates a different dislocation structure than the shock process which is on the nanosecond timescale. The ultrashort shock pulse produces a highly dense dislocation structure that varies by depth. According to transmission electron microscopy, dislocations away from the surface produce microbands via a network structure similar to a long shock process, but unlike a long shock process dislocations near the surface have limited intersections. Considering the dislocation motion during the shock process, the structure near the surface is attributed to the ultrashort shock duration. This approachmore » using an ultrashort shock pulse will lead to understanding the whole process off shock deformation by clarifying the early stage.« less
Thermally controlled femtosecond pulse shaping using metasurface based optical filters
NASA Astrophysics Data System (ADS)
Rahimi, Eesa; Şendur, Kürşat
2018-02-01
Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.
Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses
NASA Astrophysics Data System (ADS)
Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto
2015-02-01
We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.
NASA Astrophysics Data System (ADS)
Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto
2017-10-01
The hard x-ray free electron laser has proven to be a valuable tool for high energy density (HED) physics as it is able to produce well-characterized samples of HED matter at exactly solid density and homogeneous temperatures. However, if the x-ray pulses are focused to sub-micron spot sizes, where peak intensities can exceed 1020 W/cm2, the plasmas driven by sources of non-thermal photoelectrons and Auger electrons can be highly dynamic and so cannot be modeled by atomic kinetics or fluid codes. We apply the 2D/3D particle-in-cell code, PICLS-which has been extended with numerous physics models to enable the simulation of XFEL-driven plasmas-to the modeling of such dynamic plasmas driven by nano-focused XFEL pulses in solid iron targets. In the case of the smallest focal spot investigated of just 100 nm in diameter, keV plasmas induce strong radial E-fields that accelerate keV ions radially as well as sheath fields that accelerate surface ions to hundreds of keV. The heated spot, which is initially larger than the laser spot due to the kinetic nature of the fast Auger electrons, expands as ion and electron waves propagate radially, leaving a low density region along the laser axis. This research was supported by the US DOE-OFES under Grant No. DE-SC0008827, the DOE-NNSA under Grant No. DE-NA0002075, and the JSPS KAKENHI under Grant No. JP15K21767.
Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits
NASA Astrophysics Data System (ADS)
Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.
2018-05-01
We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be <2.2 × 10^{-4} for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is <0.1 μm for a 45 {μ }m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below 10^{-6} per gate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, X., E-mail: xi.zeng@csem.ch, E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.
2015-02-16
In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injectedmore » photons.« less
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.
The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less
NASA Astrophysics Data System (ADS)
Sakata, H.; Kimpara, K.; Komori, K.; Tomiki, M.
2014-05-01
We report Q-switched pulse generation in Tm-doped fiber lasers by introducing piezoelectric-driven microbend into an elliptical coating fiber in a fiber ring resonator. Compared with the untreated circular fiber having a diameter of 240 μm, the elliptical coating fiber was flattened to have a major axis diameter of about 300 μm. We employed a pair of comblike plates attached on the piezoelectric actuators in order to bend the fiber from both sides. The output pulse power is improved by optimizing the tooth-width and spatial period of the comb-like plates, so that the elliptical coating fiber is easily bent and the propagation mode is efficiently coupled to radiation modes around λ = 1.9 μm. The Tm-doped fiber is pumped by a laser diode emitting at 1.63 μm and the pump light is introduced to the fiber ring resonator via the wavelength division multiplexing coupler. The emission spectra showed that the center oscillation wavelength was typically 1.92 μm. When the pump power was increased to 156 mW, the output pulse showed a peak power of 42.5 W with a pulse width of 1.06 μs. We expect that the in-fiber Q-switching technique will provide simple laser systems for environmental sensing and medical applications.
NASA Astrophysics Data System (ADS)
Pipa, A. V.; Koskulics, J.; Brandenburg, R.; Hoder, T.
2012-11-01
The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge qmax, and (iii) the development of a graphical method for the determination of qmax from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of qmax is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current jR(t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance Cd. Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the Cd is important.
Program to Research Laser-Driven Thermionic Electron Sources for Free Electron Lasers.
1988-01-01
by sinal I lengths of coaxial cable. With the ’. corresponding charge to the diode also reduced, a series of temporall y sho rter -Ioctron pulse-s was...e combination of approximately 1.6 eV. With the Nd:glass laser beam pulse heating the cathode " and the charge supplied by 0.5/ F capacitor, a series ...available charge stored in the h-arg ing ’apar i tor. A series of experiments was performed wilh lowetr capacitances of sevoral tens of picofarads furnished
High-repetition-rate short-pulse gas discharge.
Tulip, J; Seguin, H; Mace, P N
1979-09-01
A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.
Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G
2014-10-21
We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.
Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup
2015-10-01
We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
Direct longitudinal laser acceleration of electrons in free space
NASA Astrophysics Data System (ADS)
Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.
2016-02-01
Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].
Quantum dynamics of light-driven chiral molecular motors.
Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi
2009-03-21
The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Treatment of Breast Tumors using Pulsed HIFU for Delivery and Activation of Sonosensitizers
2010-02-14
ABSTRACT High intensity focused ultrasound ( HIFU ) has been combined with a Rose Bengal derivative (RB2) to provide a synergistic cytotoxicity requiring...vivo in combination with cavitation driven by high intensity focused ultrasound ( HIFU ). Applying HIFU in pulsed mode (to avoid overheating) has...treated and control tumors. 15. SUBJECT TERMS high intensity focused ultrasound , sonodynamic, cavitation, free radicals, chemotherapy, targeted
Carbon nanomaterials as broadband airborne ultrasound transducer
NASA Astrophysics Data System (ADS)
Daschewski, M.; Harrer, A.; Prager, J.; Kreutzbruck, M.; Guderian, M.; Meyer-Plath, A.
2012-05-01
A method has been developed for the generation of airborne ultrasound using the thermoacoustic principle applied to carbon materials at the micro- and nanoscale. Such materials are shown to be capable to emitting the ultrasound. We tested the acoustic performance of electrospun polyacrylonitrile-derived carbon nanofibers tissues and determined the sound pressure for frequencies up to 350 kHz. The experimental results are compared to analytic calculations.
NASA Astrophysics Data System (ADS)
Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang
2015-04-01
A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of numerical combustion simulations.
2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.
Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F
2017-10-30
Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.
Single qubit operations using microwave hyperbolic secant pulses
NASA Astrophysics Data System (ADS)
Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.
2017-10-01
It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.
Prantil, Matthew A.; Cormier, Eric; Dawson, Jay W.; ...
2013-08-19
An 11 GHz fiber laser built on a modulated CW platform is described and characterized. This compact, vibrationinsensitive, fiber based system can be operated at wavelengths compatible with high energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micro-pulses produced at a macro-pulse rate of 83 kHz where the macro-pulse and micro-pulse energies are 1.8 μJ and 3.2 nJ respectively. Micro-pulse durations of 850 fs are demonstrated. Finally, we discuss extensions to shortermore » duration.« less
Nonlinear Electron and Ion Density Modulations Driven by Interfering High-Intensity Laser Pulses
NASA Astrophysics Data System (ADS)
Chen, S.; Zhang, P.; Saleh, N.; Sheng, Z. M.; Widjaja, C.; Umstadter, D.
2002-11-01
The optical spectrum from interaction of two crossed ultra short laser beams (400 fs) with underdense plasma is measured at various angles. Enhancement and broadening of the spectrum in the forward direction of one of the beams shows evidence of energy transfer between the two laser beams(G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. E 60, 2218 (1999).), which is confirmed by a 2-D PIC simulation. The spectrum and scattered power indicate that a large amplitude electron density modulation is driven, which is attributed to the ponderomotive force of the interference, in agreement with simple analysis and simulation(δn/n_0>10). Stokes and anti-Stokes satellites reveals that the energy transfer is accompanied by a large amplitude nonlinear ion acoustic wave created by the laser interference in the strongly driven limit. The wavelength shift indicates that the ion acoustic wave's speed is 2.3×10^6m/s, corresponding to the electron temperature 119 keV, which is attributed to stochastic heating, also found in the simulation. Besides being of interest in basic plasma physics, this research is also relevant to fast igniter fusion or ion acceleration experiments, in which a laser pulse may potentially beat with a reflected weaker pulse, with intensities comparable to those used in the experiment(Y. Sentoku, et al., Appl. Phys. B 74, 207-215 (2002).).
Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations
NASA Astrophysics Data System (ADS)
Rouser, Kurt P.
There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.
NASA Astrophysics Data System (ADS)
Kukhar, Egor I.
2018-01-01
Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.
Numerical modeling of Harmonic Imaging and Pulse Inversion fields
NASA Astrophysics Data System (ADS)
Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis
2003-10-01
Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
NASA Astrophysics Data System (ADS)
Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.
2016-06-01
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
Higgs Mode in the d -Wave Superconductor Bi2Sr2CaCu2O8 +x Driven by an Intense Terahertz Pulse
NASA Astrophysics Data System (ADS)
Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; Matsunaga, Ryusuke; Schneeloch, John; Zhong, Ruidan D.; Gu, Genda D.; Aoki, Hideo; Gallais, Yann; Shimano, Ryo
2018-03-01
We investigate the terahertz (THz)-pulse-driven nonlinear response in the d -wave cuprate superconductor Bi2Sr2CaCu2O8 +x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below Tc . The corresponding third-order nonlinear effect exhibits both A1 g and B1 g symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A1 g component is associated with the Higgs mode of the d -wave order parameter.
Terahertz emission driven by two-color laser pulses at various frequency ratios
NASA Astrophysics Data System (ADS)
Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.
2017-08-01
We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.
We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.
Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; ...
2018-03-14
We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.
An Automatic Portable Telecine Camera.
1978-08-01
five television frames to achieve synchronous operation, that is about 0.2 second. 6.3 Video recorder noise imnunity The synchronisation pulse separator...display is filmed by a modified 16 am cine camera driven by a control unit in which the camera supply voltage is derived from the field synchronisation ...pulses of the video signal. Automatic synchronisation of the camera mechanism is achieved over a wide range of television field frequencies and the
NASA Astrophysics Data System (ADS)
Li, Mei; Wang, Jianbo; Lu, Jie
2017-02-01
The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.
First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems
NASA Astrophysics Data System (ADS)
Göksel, B.; Mashek, I. Ch
2017-04-01
A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickling, S; El Naqa, I
Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less
NASA Astrophysics Data System (ADS)
Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie
2008-04-01
We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.
Magnus expansion method for two-level atom interacting with few-cycle pulse
NASA Astrophysics Data System (ADS)
Begzjav, T.; Ben-Benjamin, J. S.; Eleuch, H.; Nessler, R.; Rostovtsev, Y.; Shchedrin, G.
2018-06-01
Using the Magnus expansion to the fourth order, we obtain analytic expressions for the atomic state of a two-level system driven by a laser pulse of arbitrary shape with small pulse area. We also determine the limitation of our obtained formulas due to limited range of convergence of the Magnus series. We compare our method to the recently developed method of Rostovtsev et al. (PRA 2009, 79, 063833) for several detunings. Our analysis shows that our technique based on the Magnus expansion can be used as a complementary method to the one in PRA 2009.
Theoretical and Experimental Study of Thermoacoustic Engines
1991-12-31
possible. In particulbr, we have considered use of extruded ceramic monolithic catalyst supports (for example, the ceramic used in some automobile...approximation. Heat exchangers retaken r be of negligible thickness and thus not to affect near-standing wave phasing. The TAB (or snack ) of length d is assumed...Heat exchangers were parallel plates of copper and the TAE is a monolithic catalyst support extruded ceramic. 13 15 The two-microphone-technique
Active Flow Control with Thermoacoustic Actuators
2014-01-31
AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput
Quality at a price you can afford
NASA Astrophysics Data System (ADS)
Garrett, Steven; Smith, Robert; Poese, Matthew
2005-09-01
The transition of thermoacoustics from the laboratory to the commercial sector involves a process that is very different from science. In the laboratory, when an experiment fails to produce the expected result, it is possible to make modifications, followed by further measurements, to isolate the discrepancy. After discussions with nearly 40 different companies over the past 5 years, there is rarely any feedback about why a given company decides not to proceed. In such an open-loop environment, we are left with only speculation regarding this obscure process. This talk will postulate some reasons that have led to our failure, thus far, to team with an early adaptor of the technology. These include their general lack of familiarity with acoustics, difficulties surrounding licensing of existing and future intellectual property controlled by a university, and the drift away from the maintenance of an active in-house research capability in industry [see H. W. Chesbrough, Open Innovation (Harvard, 2003)]. The sequence of events that lead to formation of the ThermoAcoustics Corporation, an investor-funded start-up, will be related, along with the changes that licensure of intellectual property have made to our ability to deal with industry on a business-to-business basis without intervention of university tech-transfer professionals.
NASA Astrophysics Data System (ADS)
Nalle, Pallavi B.; Deshmukh, S. S.; Dorik, R. G.; Jadhav, K. M.
2016-12-01
The ultrasonic velocity (U), density (ρ), and viscosity (η) of an ethanolic extract of drug Piper nigrum with MgCl2 (metal ions) have been measured as a function of the number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 303.15, 308.15, 313.15 and 318.15 K temperature. Various thermoacoustic and their excess values such as adiabatic compressibilities (β), intermolecular free lengths (Lf), excess adiabatic compressibility (βE), excess intermolecular free length (?) have been computed using values of ultrasonic velocity (U), density (ρ), and viscosity (η). The excess values of ultrasonic velocity, specific acoustic impedance are positive, whereas isentropic compressibility and intermolecular free lengths are negative over the entire composition range of MgCl2 + P. nigrum which indicates the presence of specific interactions between unlike molecules. Molecular association is reflected by ultrasonic investigation. This may be interpreted due to the of complex formation. The chemical interaction may involve the association due to the solute-solvent and ion-solvent interaction and due to the formation of charge-transfer complexes, which is useful to understand the mechanism of their metabolism in living systems. The results obtained from these studies are helpful for pharmacological applications of drugs, transport of drugs across biological membranes.
Electroacoustic control of Rijke tube instability
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Huang, Lixi
2017-11-01
Unsteady heat release coupled with pressure fluctuation triggers the thermoacoustic instability which may damage a combustion chamber severely. This study demonstrates an electroacoustic control approach of suppressing the thermoacoustic instability in a Rijke tube by altering the wall boundary condition. An electrically shunted loudspeaker driver device is connected as a side-branch to the main tube via a small aperture. Tests in an impedance tube show that this device has sound absorption coefficient up to 40% under normal incidence from 100 Hz to 400 Hz, namely over two octaves. Experimental result demonstrates that such a broadband acoustic performance can effectively eliminate the Rijke-tube instability from 94 Hz to 378 Hz (when the tube length varies from 1.8 m to 0.9 m, the first mode frequency for the former is 94 Hz and the second mode frequency for the latter is 378 Hz). Theoretical investigation reveals that the devices act as a damper draining out sound energy through a tiny hole to eliminate the instability. Finally, it is also estimated based on the experimental data that small amount of sound energy is actually absorbed when the system undergoes a transition from the unstable to stable state if the contrpaol is activated. When the system is actually stabilized, no sound is radiated so no sound energy needs to be absorbed by the control device.
In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition
NASA Technical Reports Server (NTRS)
Parang, M.; Crocker, D. S.
1991-01-01
The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.
NASA Astrophysics Data System (ADS)
Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.
2017-08-01
We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.
NASA Astrophysics Data System (ADS)
Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.
2017-06-01
Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.
Progress on a novel VM-type pulse tube cryocooler for 4 K
NASA Astrophysics Data System (ADS)
Pan, Changzhao; Wang, Jue; Luo, Kaiqi; Wang, Junjie; Zhou, Yuan
2017-12-01
VM type pulse tube cryocooler is a new type pulse tube cryocooler driven by the thermal-compressor. This paper presented the recent experimental results on a novel single-stage VM type pulse tube cryocooler with multi-bypass. The low temperature double-inlet, orifice and gas reservoir, and multi-bypass were used as phase shifters. With the optimal operating frequency of 1.6 Hz and optimal average pressure of 1.4 MPa, a no-load temperature of 4.9 K has been obtained and 30 mW@5.6 K cooling power has been achieved. It was the first time for the single-stage VM-PTC obtaining liquid helium temperature reported so far. Moreover, it was also the first time for the multi-bypass being used in the low-frequency Stirling type pulse tube cryocooler.
Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius
2017-02-15
We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.
Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility
Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; ...
2016-10-17
Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the basic acceleration mechanism, which remains an ongoing challenge.« less
Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea
Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the basic acceleration mechanism, which remains an ongoing challenge.« less
Laser acceleration of quasi-monoenergetic MeV ion beams.
Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C
2006-01-26
Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.
Numerical optimization of a picosecond pulse driven Ni-like Nb x-ray laser at 20.3 nm
NASA Astrophysics Data System (ADS)
Lu, X.; Zhong, J. Y.; Li, Y. J.; Zhang, J.
2003-07-01
Detailed simulations of a Ni-like Nb x-ray laser pumped by a nanosecond prepulse followed by a picosecond main pulse are presented. The atomic physics data are obtained using the Cowan code [R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981)]. The optimization calculations are performed in terms of the intensity of prepulse and the time delay between the prepulse and the main pulse. A high gain over 150 cm-1 is obtained for the optimized drive pulse configuration. The ray-tracing calculations suggest that the total pump energy for a saturated x-ray laser can be reduced to less than 1 J.
Ultrashort laser pulse driven inverse free electron laser accelerator experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, J. T.; Anderson, S. G.; Anderson, G.
In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less
Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions
NASA Astrophysics Data System (ADS)
Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.
2018-05-01
We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.
Ultrashort laser pulse driven inverse free electron laser accelerator experiment
Moody, J. T.; Anderson, S. G.; Anderson, G.; ...
2016-02-29
In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less
Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ferri, J.; Senje, L.; Dalui, M.; Svensson, K.; Aurand, B.; Hansson, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Gremillet, L.; Siminos, E.; DuBois, T. C.; Yi, L.; Martins, J. L.; Fülöp, T.
2018-04-01
We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ˜0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.
Laser-driven clockwise molecular rotation for a transient spinning waveplate.
York, Andrew G
2009-08-03
Our simulations show a copropagating pair of laser pulses polarized in two different directions can selectively excite clockwise or counterclockwise molecular rotation in a gas of linear molecules. The resulting birefringence of the gas rotates on a femtosecond timescale and shows a periodic revival structure. The total duration of the pulse pair can be subpicosecond, allowing molecular alignment at the high densities and temperatures necessary to create a transient spinning waveplate.
Ultrashort Pulse (USP) Laser-Matter Interactions
2013-03-05
spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity Service Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB
NASA Astrophysics Data System (ADS)
Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T.; Spielman, R. B.
2016-06-01
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.
Waisman, E M; Reisman, D B; Stoltzfus, B S; Stygar, W A; Cuneo, M E; Haill, T A; Davis, J-P; Brown, J L; Seagle, C T; Spielman, R B
2016-06-01
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.
Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan
2010-12-01
Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.
MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation
NASA Astrophysics Data System (ADS)
Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti
2018-02-01
This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.
Method and apparatus for plasma source ion implantation
Conrad, J.R.
1988-08-16
Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.
Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals
NASA Astrophysics Data System (ADS)
Kurebayashi, Daichi; Nomura, Kentaro
2016-10-01
We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.
Multiplexed image storage by electromagnetically induced transparency in a solid
NASA Astrophysics Data System (ADS)
Heinze, G.; Rentzsch, N.; Halfmann, T.
2012-11-01
We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.
Method and apparatus for plasma source ion implantation
Conrad, John R.
1988-01-01
Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.
Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets
NASA Astrophysics Data System (ADS)
Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.
2017-10-01
We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.
The Moving Thermoacoustic Array.
1986-07-25
generated by an MTS was implemented on a CYBER 830 computer. One of its features is the inclusion in the calculations of the effects of diffraction...property common to all matter." Bell’s experiment resulted in the construction of a " photophone ", or apparatus for the production of sound by light...Bell’s invention of the photophone was neglected for many years, but recently it has received more attention because new developments in high power
An Evaluation of EHD Enhancement and Thermoacoustic Refrigeration for Naval Applications
1991-12-01
unlimited FedDocs D 208. 14/2 NPS-ME-91-05 *d for: Taylor Research Center, Annapolis, MD NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral R. W...West, Jr H. Shull Superintendent Provost This report was prepared for and funded by the David Taylor Research Center, Annapolis, MD 21402-5067...MONITORING ORGANIZATION David Taylor Research Center 6c. ADDRESS [City, State, and ZIP Code) Mechanical Engineering Department (Code ME] Monterey, CA
Turbulent Flow Modification With Thermoacoustic Waves for Separation Control
2017-08-24
analyses using two different approaches in order to provide guidance to physics-based design of active flow control using thermal-based actuators. RPPR... control effects are also observed by Post & Corke (2004) on the same airfoil. The uses of plasma actuators on other shear layer setups have been...region may be a more practical approach than introducing control inputs externally. On the other hand, Barone & Lele (2005) studied the receptivity of the
A looped-tube traveling-wave engine with liquid pistons
NASA Astrophysics Data System (ADS)
Hyodo, H.; Tamura, S.; Biwa, T.
2017-09-01
This report describes the operation of a liquid piston engine that uses thermoacoustic spontaneous oscillations of liquid and gas columns connected in series to form a loop. Analysis of the analogous mass-spring model and the numerical calculation based on hydrodynamic equations shows that the natural mode oscillations of the system allow the working gas to execute a Stirling thermodynamic cycle. Numerical results of the operating temperature difference were confirmed from experimentally obtained results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, K. P.; Wu, Z.; Cowan, B. M.
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
Laser-plasma accelerator-based single-cycle attosecond undulator source
NASA Astrophysics Data System (ADS)
Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.
2018-06-01
Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.
The free-electron laser - Maxwell's equations driven by single-particle currents
NASA Technical Reports Server (NTRS)
Colson, W. B.; Ride, S. K.
1980-01-01
It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.
Doss, F. W.; Flippo, K. A.; Capelli, D.; ...
2016-05-26
Updates to the Los Alamos laser-driven high-energy-density Shock/Shear mixing- layer experiment are reported, which have collectively increased the platform's shot and data acquisition rates. Also, the strategies employed have included a move from two-strip to four-strip imagers (allowing four times to be recorded per shot instead of two), the implementation of physics-informed rules of engagements allowing for the maximum flexibility in a shot's total energy and symmetry performance, and by splitting the laser's main drive pulse from a monolithic single pulse equal to all beams into a triply-segmented pulse which minimizes optics damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, F. W.; Flippo, K. A.; Capelli, D.
Updates to the Los Alamos laser-driven high-energy-density Shock/Shear mixing- layer experiment are reported, which have collectively increased the platform's shot and data acquisition rates. Also, the strategies employed have included a move from two-strip to four-strip imagers (allowing four times to be recorded per shot instead of two), the implementation of physics-informed rules of engagements allowing for the maximum flexibility in a shot's total energy and symmetry performance, and by splitting the laser's main drive pulse from a monolithic single pulse equal to all beams into a triply-segmented pulse which minimizes optics damage.
Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.
Kemp, A J; Divol, L
2012-11-09
We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael
2012-08-01
This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.
A high-power synthesized ultrawideband radiation source
NASA Astrophysics Data System (ADS)
Efremov, A. M.; Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-09-01
A high-power ultrawideband radiation source has been developed which is capable of synthesizing electromagnetic pulses with different frequency bands in free space. To this end, a new circuit design comprising a four-channel former of bipolar pulses of durations 2 and 3 ns has been elaborated and conditions for the stable operation of gas gaps of independent channels without external control pulses have been determined. Each element of the 2 × 2 array of combined antennas is driven from an individual channel of the pulse former. Antennas excited by pulses of the same duration are arranged diagonally. Two radiation synthesis modes have been examined: one aimed to attain ultimate field strength and the other aimed to attain an ultimate width of the radiation spectrum. The modes were changed by changing the time delay between the 2-ns and 3-ns pulses. For the first mode, radiation pulses with a frequency band of 0.2-0.8 GHz and an effective potential of 500 kV have been obtained. The synthesized radiation pulses produced in the second mode had an extended frequency band (0.1-1 GHz) and an effective potential of 220 kV. The pulse repetition frequency was 100 Hz.
High speed imager test station
Yates, George J.; Albright, Kevin L.; Turko, Bojan T.
1995-01-01
A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.
High speed imager test station
Yates, G.J.; Albright, K.L.; Turko, B.T.
1995-11-14
A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.
Understanding the C-pulse device and its potential to treat heart failure.
Sales, Virna L; McCarthy, Patrick M
2010-03-01
The Sunshine Heart C-Pulse (C-Pulse; Sunshine Heart Inc., Tustin, CA) device is an extra-aortic implantable counterpulsation pump designed as a non-blood contacting ambulatory heart assist device, which may provide relief from symptoms for class II-III congestive heart failure patients. It has a comparable hemodynamic augmentation to intra-aortic balloon counterpulsation devices. The C-Pulse cuff is implanted through a median sternotomy, secured around the ascending aorta, and pneumatically driven by an external system controller. Pre-clinical studies in the acute pig model, and initial temporary clinical studies in patients undergoing off-pump coronary bypass surgery have shown substantial increase in diastolic perfusion of the coronary vessels, which translated to a favorable improvement in ventricular function. A U.S. prospective multi-center trial to evaluate the safety and efficacy of the C-Pulse in class III patients with moderate heart failure is now in progress.
Frequency-chirp rates of harmonics driven by a few-cycle pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, M.; Mauritsson, J.; Gaarde, M.B.
2005-08-15
We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less
Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement
NASA Astrophysics Data System (ADS)
Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2014-03-01
We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.
Kohler, Daniel D.; Thompson, Blaise J.; Wright, John C.
2017-08-31
Ultrafast spectroscopy is often collected in the mixed frequency/time domain, where pulse durations are similar to system dephasing times. In these experiments, expectations derived from the familiar driven and impulsive limits are not valid. This work simulates the mixed-domain four-wave mixing response of a model system to develop expectations for this more complex field-matter interaction. We also explore frequency and delay axes. We show that these line shapes are exquisitely sensitive to excitation pulse widths and delays. Near pulse overlap, the excitation pulses induce correlations that resemble signatures of dynamic inhomogeneity. We describe these line shapes using an intuitive picturemore » that connects to familiar field-matter expressions. We develop strategies for distinguishing pulse-induced correlations from true system inhomogeneity. Our simulations provide a foundation for interpretation of ultrafast experiments in the mixed domain.« less
NASA Astrophysics Data System (ADS)
Liping, Y.; He, J.; Peter, H.; Tu, C. Y.; Feng, X. S.
2015-12-01
In the solar atmosphere, the jets are ubiquitous and found to be at various spatia-temporal scales. They are significant to understand energy and mass transport in the solar atmosphere. Recently, the high-speed transition region jets are reported from the observation. Here we conduct a numerical simulation to investigate the mechanism in their formation, as well as their mass and energy contributions to the solar wind. Driven by the supergranular convection motion, the magnetic reconnection between the magnetic loop and the background open flux occurring in the transition region is simulated with a two-dimensional MHD model. The simulation results show that not only a fast hot jet, much resemble the found transition region jets, but also a adjacent slow cool jet, mostly like classical spicules, is launched. The force analysis shows that the fast hot jet is continually driven by the Lorentz force around the reconnection region, while the slow cool jet is induced by an initial kick through the Lorentz force associated with the emerging magnetic flux. Also, the features of the driven jets change with the amount of the emerging magnetic flux, giving the varieties of both jets.With the developed one-dimensional hydrodynamic solar wind model, the time-dependent pulses are imposed at the bottom to simulate the jet behaviors. The simulation results show that without other energy source, the injected plasmas are accelerated effectively to be a transonic wind with a substantial mass flux. The rapid acceleration occurs close to the Sun, and the resulting asymptotic speeds, number density at 0.3 AU, as well as mass flux normalized to 1 AU are compatible with in site observations. As a result of the high speed, the imposed pulses lead to a train of shocks traveling upward. By tracing the motions of the injected plasma, it is found that these shocks heat and accelerate the injected plasma to make part of them propagate upward and eventually escape. The parametric study shows that as the speed and temperature of the imposed pulses increase, we get an increase of the speed and temperature of the driven solar wind, which do not be influenced by the increase of the number density of the imposed pulses. When the recurring period of the imposed pulses decreases, the obtained solar wind becomes slower and cooler.
Laser Boron Fusion Reactor With Picosecond Petawatt Block Ignition
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Eliezer, Shalom; Wang, Jiaxiang; Korn, Georg; Nissim, Noaz; Xu, Yan-Xia; Lalousis, Paraskevas; Kirchhoff, Gotz J.; Miley, George H.
2018-05-01
For developing a laser boron fusion reactor driven by picosecond laser pulses of more than 30 petawatts power, advances are reported about computations for the plasma block generation by the dielectric explosion of the interaction. Further results are about the direct drive ignition mechanism by a single laser pulse without the problems of spherical irradiation. For the sufficiently large stopping lengths of the generated alpha particles in the plasma results from other projects can be used.
Characteristics of Muti-pulsing CHI driven ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
Faatz, B.; Plönjes, E.; Ackermann, S.; ...
2016-06-20
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less
Controlling chaos with localized heterogeneous forces in oscillator chains.
Chacón, Ricardo
2006-10-01
The effects of decreasing the impulse transmitted by localized periodic pulses on the chaotic behavior of homogeneous chains of coupled nonlinear oscillators are studied. It is assumed that when the oscillators are driven synchronously, i.e., all driving pulses transmit the same impulse, the chains display chaotic dynamics. It is shown that decreasing the impulse transmitted by the pulses of the two free end oscillators results in regularization with the whole array exhibiting frequency synchronization, irrespective of the chain size. A maximum level of amplitude desynchrony as the pulses of the two end oscillators narrow is typically found, which is explained as the result of two competing universal mechanisms: desynchronization induced by localized heterogeneous pulses and oscillation death of the complete chain induced by drastic decreasing of the impulse transmitted by such localized pulses. These findings demonstrate that decreasing the impulse transmitted by localized external forces can suppress chaos and lead to frequency-locked states in networks of dissipative systems.
Marro, James B.; Darroudi, Taghi; Okoro, Chukwudi A.; Obeng, Yaw S.; Richardson, Kathleen C.
2017-01-01
In this work we studied the impact of pulse electroplating parameters on the cross-sectional and surface microstructures of blanket copper films using electron backscattering diffraction and x-ray diffraction. The films evaluated were highly (111) textured in the direction perpendicular to the film surface. The degree of preferential orientation was found to decrease with longer pulse on-times, due to strain energy driven growth of other grain orientations. Residual biaxial stresses were also measured in the films and higher pulse frequencies during deposition led to smaller biaxial stresses in the films. Film stress was also found to correlate with the amount of twinning in the copper film cross-sections. This has been attributed to the twins’ thermal stability and mechanical properties. PMID:28239200
Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hongyu; Liu Jiansheng; Wang Cheng
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less
Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse
NASA Astrophysics Data System (ADS)
Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan
2006-08-01
The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.
NASA Astrophysics Data System (ADS)
Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin
2012-01-01
A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.
PW-class laser-driven super acceleration systems in underdense plasmas
NASA Astrophysics Data System (ADS)
Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke
2017-10-01
Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.