Sample records for thermodynamically consistent equation

  1. Some comments on thermodynamic consistency for equilibrium mixture equations of state

    DOE PAGES

    Grove, John W.

    2018-03-28

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  2. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.

    2015-07-01

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  3. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  4. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less

  5. The Markov process admits a consistent steady-state thermodynamic formalism

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, John W.

    We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.

  7. Corridor of existence of thermodynamically consistent solution of the Ornstein-Zernike equation.

    PubMed

    Vorob'ev, V S; Martynov, G A

    2007-07-14

    We obtain the exact equation for a correction to the Ornstein-Zernike (OZ) equation based on the assumption of the uniqueness of thermodynamical functions. We show that this equation is reduced to a differential equation with one arbitrary parameter for the hard sphere model. The compressibility factor within narrow limits of this parameter variation can either coincide with one of the formulas obtained on the basis of analytical solutions of the OZ equation or assume all intermediate values lying in a corridor between these solutions. In particular, we find the value of this parameter when the thermodynamically consistent compressibility factor corresponds to the Carnahan-Stirling formula.

  8. The Operational Equations of State. 5: The APA - Equation of State

    DTIC Science & Technology

    2013-09-01

    Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for...physical measurements. Thermodynamic consistency means that theEOS is totally consistent with the first and second laws of thermodynamics. Remember...form equation 1. From that standpoint, the EOS reminds the classical Boyle- Mariotte-Gay- Lussac model (when the heat capacity must be function of

  9. Thermodynamic consistency test procedure using orthogonal collocation and the Peng-Robinson equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.L.; Van Brunt, V.

    The Christiansen and Fredenslund programs for calculating vapor-liquid equilibria have been modified by replacing the Soave-Redlich-Kwong equation of state with the newly developed Peng-Robinson equation of state. This modification was shown to be a decided improvement for high pressure systems, especially in the critical and upper retrograde regions. Thermodynamic consistency tests were developed and used to evaluate and compare calculated values from both the modified and unmodified programs with reported experimental data for several vapor-liquid systems.

  10. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.

    PubMed

    Pekař, Miloslav

    2018-01-01

    Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.

  11. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  12. The Operational Equations of State, 3: Recovery of the EOS for Hydrocode From the Measured Heat Capacity, Isentrope, and Hugoniot Adiabat

    DTIC Science & Technology

    2012-07-01

    hydrocode from experimental data. It is assumed that the substance in question possesses only two thermodynamic degrees of freedom – the specific volume V...excludes the possibility of phase transformations). 15. SUBJECT TERMS thermodynamics , EOS, hydrocode 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...we gave several examples of generating complete thermodynamically consistent equations of state (EOS). The methodology used there was based on

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Wang, Jin, E-mail: jin.wang.1@stonybrook.edu; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic andmore » thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.« less

  14. Nonequilibrium thermodynamics of the shear-transformation-zone model

    NASA Astrophysics Data System (ADS)

    Luo, Alan M.; Ã-ttinger, Hans Christian

    2014-02-01

    The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.

  15. Sensor fault detection and isolation system for a condensation process.

    PubMed

    Castro, M A López; Escobar, R F; Torres, L; Aguilar, J F Gómez; Hernández, J A; Olivares-Peregrino, V H

    2016-11-01

    This article presents the design of a sensor Fault Detection and Isolation (FDI) system for a condensation process based on a nonlinear model. The condenser is modeled by dynamic and thermodynamic equations. For this work, the dynamic equations are described by three pairs of differential equations which represent the energy balance between the fluids. The thermodynamic equations consist in algebraic heat transfer equations and empirical equations, that allow for the estimation of heat transfer coefficients. The FDI system consists of a bank of two nonlinear high-gain observers, in order to detect, estimate and to isolate the fault in any of both outlet temperature sensors. The main contributions of this work were the experimental validation of the condenser nonlinear model and the FDI system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Thermodynamic properties and equations of state for Ag, Al, Au, Cu and MgO using a lattice vibrational method

    NASA Astrophysics Data System (ADS)

    Jacobs, M.; Schmid-Fetzer, R.

    2012-04-01

    A prerequisite for the determination of pressure in static high pressure measurements, such as in diamond anvil cells is the availability of accurate equations of state for reference materials. These materials serve as luminescence gauges or as X-ray gauges and equations of state for these materials serve as secondary pressure scales. Recently, successful progress has been made in the development of consistency between static, dynamic shock-wave and ultrasonic measurements of equations of state (e.g. Dewaele et al. Phys. Rev. B70, 094112, 2004, Dorogokupets and Oganov, Doklady Earth Sciences, 410, 1091-1095, 2006, Holzapfel, High Pressure Research 30, 372-394, 2010) allowing testing models to arrive at consistent thermodynamic descriptions for X-ray gauges. Apart from applications of metallic elements in high-pressure work, thermodynamic properties of metallic elements are also of mandatory interest in the field of metallurgy for studying phase equilibria of alloys, kinetics of phase transformation and diffusion related problems, requiring accurate thermodynamic properties in the low pressure regime. Our aim is to develop a thermodynamic data base for metallic alloy systems containing Ag, Al, Au, Cu, Fe, Ni, Pt, from which volume properties in P-T space can be predicted when it is coupled to vibrational models. This mandates the description of metallic elements as a first step aiming not only at consistency in the pressure scales for the elements, but also at accurate representations of thermodynamic properties in the low pressure regime commonly addressed in metallurgical applications. In previous works (e.g. Jacobs and de Jong, Geochim. Cosmochim. Acta, 71, 3630-3655, 2007, Jacobs and van den Berg, Phys. Earth Planet. Inter., 186, 36-48, 2011) it was demonstrated that a lattice vibrational framework based on Kieffer's model for the vibrational density of states, is suitable to construct a thermodynamic database for Earth mantle materials. Such a database aims at, when coupled to a thermodynamic computation program, the calculation and prediction of phase equilibria and thermo-physical properties of phase equilibrium assemblages in pressure-temperature-composition space. In Jacobs and van den Berg (2011) the vibrational method, together with a thermodynamic data base, was successfully applied to mantle convection of materials in the Earth. These works demonstrate that the vibrational method has the advantages of (1) computational speed, (2) coupling or making comparisons with ab initio methods and (3) making reliable extrapolations to extreme conditions. We present results of thermodynamic analyses, using lattice vibrational methods, of Ag, Al, Au, Cu and MgO covering the pressure and temperature regime of the Earth's interior. We show results on consistency of the pressure scales for these materials using different equations of state, under the constraint that thermodynamic properties in the low-pressure regime are accurately represented.

  17. On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.

    PubMed

    Tóth, József

    2003-06-01

    It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.

  18. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  19. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less

  20. Geometrothermodynamic model for the evolution of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Christine; Quevedo, Hernando, E-mail: christine.gruber@correo.nucleares.unam.mx, E-mail: quevedo@nucleares.unam.mx

    Using the formalism of geometrothermodynamics to derive a fundamental thermodynamic equation, we construct a cosmological model in the framework of relativistic cosmology. In a first step, we describe a system without thermodynamic interaction, and show it to be equivalent to the standard ΛCDM paradigm. The second step includes thermodynamic interaction and produces a model consistent with the main features of inflation. With the proposed fundamental equation we are thus able to describe all the known epochs in the evolution of our Universe, starting from the inflationary phase.

  1. Nature of self-diffusion in two-dimensional fluids

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun

    2017-12-01

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.

  2. Gas solubility in dilute solutions: A novel molecular thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Chialvo, Ariel A.

    2018-05-01

    We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.

  3. Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.

    PubMed

    Chialvo, Ariel A

    2018-05-07

    We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.

  4. Nature of self-diffusion in two-dimensional fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  5. Nature of self-diffusion in two-dimensional fluids

    DOE PAGES

    Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...

    2017-12-18

    Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less

  6. Implementation of a High Explosive Equation of State into an Eulerian Hydrocode

    NASA Astrophysics Data System (ADS)

    Littlefield, David L.; Baker, Ernest L.

    2004-07-01

    The implementation of a high explosive equation of state into the Eulerian hydrocode CTH is described. The equation of state is an extension to JWL referred to as JWLB, and is intended to model the thermodynamic state of detonation products from a high explosive reaction. The EOS was originally cast in a form p = p(ρ, e), where p is the pressure, ρ is the density and e is the internal energy. However, the target application code requires an EOS of the form p = p(ρ, T), where T is the temperature, so it was necessary to reformulate the EOS in a thermodynamically consistent manner. A Helmholtz potential, developed from the original EOS, insures this consistency. Example calculations are shown that illustrate the veracity of this implementation.

  7. Solid and liquid Equation of state for initially porous aluminum where specific heat is constant

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.; Lemar, E. R.; Brown, Mary

    2011-06-01

    A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.

  8. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    NASA Astrophysics Data System (ADS)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  9. Multiphase flows of N immiscible incompressible fluids: A reduction-consistent and thermodynamically-consistent formulation and associated algorithm

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2018-05-01

    We present a reduction-consistent and thermodynamically consistent formulation and an associated numerical algorithm for simulating the dynamics of an isothermal mixture consisting of N (N ⩾ 2) immiscible incompressible fluids with different physical properties (densities, viscosities, and pair-wise surface tensions). By reduction consistency we refer to the property that if only a set of M (1 ⩽ M ⩽ N - 1) fluids are present in the system then the N-phase governing equations and boundary conditions will exactly reduce to those for the corresponding M-phase system. By thermodynamic consistency we refer to the property that the formulation honors the thermodynamic principles. Our N-phase formulation is developed based on a more general method that allows for the systematic construction of reduction-consistent formulations, and the method suggests the existence of many possible forms of reduction-consistent and thermodynamically consistent N-phase formulations. Extensive numerical experiments have been presented for flow problems involving multiple fluid components and large density ratios and large viscosity ratios, and the simulation results are compared with the physical theories or the available physical solutions. The comparisons demonstrate that our method produces physically accurate results for this class of problems.

  10. Early history of extended irreversible thermodynamics (1953-1983): An exploration beyond local equilibrium and classical transport theory

    NASA Astrophysics Data System (ADS)

    Lebon, G.; Jou, D.

    2015-06-01

    This paper gives a historical account of the early years (1953-1983) of extended irreversible thermodynamics (EIT). The salient features of this formalism are to upgrade the thermodynamic fluxes of mass, momentum, energy, and others, to the status of independent variables, and to explore the consistency between generalized transport equations and a generalized version of the second law of thermodynamics. This requires going beyond classical irreversible thermodynamics by redefining entropy and entropy flux. EIT provides deeper foundations, closer relations with microscopic formalisms, a wider spectrum of applications, and a more exciting conceptual appeal to non-equilibrium thermodynamics. We first recall the historical contributions by Maxwell, Cattaneo, and Grad on generalized transport equations. A thermodynamic theory wide enough to cope with such transport equations was independently proposed between 1953 and 1983 by several authors, each emphasizing different kinds of problems. In 1983, the first international meeting on this theory took place in Bellaterra (Barcelona). It provided the opportunity for the various authors to meet together for the first time and to discuss the common points and the specific differences of their previous formulations. From then on, a large amount of applications and theoretical confirmations have emerged. From the historical point of view, the emergence of EIT has been an opportunity to revisit the foundations and to open new avenues in thermodynamics, one of the most classical and well consolidated physical theories.

  11. Thermodynamically consistent constitutive equations for nonisothermal large strain, elasto-plastic, creep behavior

    NASA Technical Reports Server (NTRS)

    Riff, R.; Carlson, R. L.; Simitses, G. J.

    1985-01-01

    The paper is concerned with the development of constitutive relations for large nonisothermal elastic-viscoplastic deformations for metals. The kinematics of elastic-plastic deformation, valid for finite strains and rotations, is presented. The resulting elastic-plastic uncoupled equations for the deformation rate combined with use of the incremental elasticity law permits a precise and purely deductive development of elastic-viscoplastic theory. It is shown that a phenomenological thermodynamic theory in which the elastic deformation and the temperature are state variables, including few internal variables, can be utilized to construct elastic-viscoplastic constitutive equations, which are appropriate for metals. The limiting case of inviscid plasticity is examined.

  12. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.

    PubMed

    McCarty, J; Clark, A J; Copperman, J; Guenza, M G

    2014-05-28

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  13. Pressure and Chemical Potential: Effects Hydrophilic Soils Have on Adsorption and Transport

    NASA Astrophysics Data System (ADS)

    Bennethum, L. S.; Weinstein, T.

    2003-12-01

    Using the assumption that thermodynamic properties of fluid is affected by its proximity to the solid phase, a theoretical model has been developed based on upscaling and fundamental thermodynamic principles (termed Hybrid Mixture Theory). The theory indicates that Darcy's law and the Darcy-scale chemical potential (which determines the rate of adsorption and diffusion) need to be modified in order to apply to soils containing hydrophilic soils. In this talk we examine the Darcy-scale definition of pressure and chemical potential, especially as it applies to hydrophilic soils. To arrive at our model, we used hybrid mixture theory - first pioneered by Hassanizadeh and Gray in 1979. The technique involves averaging the field equations (i.e. conservation of mass, momentum balance, energy balance, etc.) to obtain macroscopic field equations, where each field variable is defined precisely in terms of its microscale counterpart. To close the system consistently with classical thermodynamics, the entropy inequality is exploited in the sense of Coleman and Noll. With the exceptions that the macroscale field variables are defined precisely in terms of their microscale counterparts and that microscopic interfacial equations can also be treated in a similar manner, the resulting system of equations is consistent with those derived using classical mixture theory. Hence the terminology, Hybrid Mixture Theory.

  14. EOSlib, Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Nathan; Menikoff, Ralph

    2017-02-03

    Equilibrium thermodynamics underpins many of the technologies used throughout theoretical physics, yet verification of the various theoretical models in the open literature remains challenging. EOSlib provides a single, consistent, verifiable implementation of these models, in a single, easy-to-use software package. It consists of three parts: a software library implementing various published equation-of-state (EOS) models; a database of fitting parameters for various materials for these models; and a number of useful utility functions for simplifying thermodynamic calculations such as computing Hugoniot curves or Riemann problem solutions. Ready availability of this library will enable reliable code-to- code testing of equation-of-state implementations, asmore » well as a starting point for more rigorous verification work. EOSlib also provides a single, consistent API for its analytic and tabular EOS models, which simplifies the process of comparing models for a particular application.« less

  15. Consistent description of kinetic equation with triangle anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu Shi; Gao Jianhua; Wang Qun

    2011-05-01

    We provide a consistent description of the kinetic equation with a triangle anomaly which is compatible with the entropy principle of the second law of thermodynamics and the charge/energy-momentum conservation equations. In general an anomalous source term is necessary to ensure that the equations for the charge and energy-momentum conservation are satisfied and that the correction terms of distribution functions are compatible to these equations. The constraining equations from the entropy principle are derived for the anomaly-induced leading order corrections to the particle distribution functions. The correction terms can be determined for the minimum number of unknown coefficients in onemore » charge and two charge cases by solving the constraining equations.« less

  16. Thermodynamically constrained correction to ab initio equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less

  17. Self-consistent geodesic equation and quantum tunneling from charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming

    2017-12-01

    Some urgent shortcomings in previous derivations of geodesic equations are remedied in this paper. In contrast to the unnatural and awkward treatment in previous works, here we derive the geodesic equations of massive and massless particles in a unified and self- consistent manner. Furthermore, we extend to investigate the Hawking radiation via tunneling from charged black holes in the context of AdS spacetime. Of special interest, the application of the first law of black hole thermodynamics in tunneling integration manifestly simplifies the calculation.

  18. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent,more » those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur concentration of 0.01 m, host rock sulfidation can explain the origin of arsenic and antimony minerals within the paragenetic sequence.« less

  19. A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-05-01

    It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Equations of state developed from statistical mechanics typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this paper, we extend a second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We demonstrate that the theory predicts hydrogen bonding structure consistent spectroscopy, neutron diffraction, and molecular simulation data. Finally, we implement the approach into a general equation of state for water.

  20. Thermodynamics of viscoelastic rate-type fluids with stress diffusion

    NASA Astrophysics Data System (ADS)

    Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre

    2018-02-01

    We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.

  1. Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex Fluids, with Particular Reference to the Isothermal Navier-Stokes-Korteweg Equations

    DTIC Science & Technology

    2012-11-01

    multicorrector algorithm . Predictor stage: Set Cρn+1,(0) = C ρ n, (157) Cun+1,(0) = C u n, (158) Cvn+1,(0) = C v n. (159) Multicorrector stage: Repeat the... corrector algorithm given by (157)-(178). Remark 20. We adopt the preconditioned GMRES algorithm [53] from PETSc [2] to solve the linear system given by (175...ICES REPORT 12-43 November 2012 Functional Entropy Variables: A New Methodology for Deriving Thermodynamically Consistent Algorithms for Complex

  2. Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average

    NASA Astrophysics Data System (ADS)

    Scarfone, A. M.; Matsuzoe, H.; Wada, T.

    2016-09-01

    We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov-Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory.

  3. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  4. Numerical Modeling of Nonlinear Thermodynamics in SMA Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D R; Kloucek, P

    We present a mathematical model describing the thermodynamic behavior of shape memory alloy wires, as well as a computational technique to solve the resulting system of partial differential equations. The model consists of conservation equations based on a new Helmholtz free energy potential. The computational technique introduces a viscosity-based continuation method, which allows the model to handle dynamic applications where the temporally local behavior of solutions is desired. Computational experiments document that this combination of modeling and solution techniques appropriately predicts the thermally- and stress-induced martensitic phase transitions, as well as the hysteretic behavior and production of latent heat associatedmore » with such materials.« less

  5. Fluctuations of thermodynamic quantities calculated from the fundamental equation of thermodynamics

    NASA Astrophysics Data System (ADS)

    Yan, Zijun; Chen, Jincan

    1992-02-01

    On the basis of the probability distribution of the various values of the fluctuation and the fundamental equation of thermodynamics of any given system, a simple and useful method of calculating the fluctuations is presented. By using the method, the fluctuations of thermodynamic quantities can be directly determined from the fundamental equation of thermodynamics. Finally, some examples are given to illustrate the use of the method.

  6. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  7. Extension of Gibbs-Duhem equation including influences of external fields

    NASA Astrophysics Data System (ADS)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  8. On the Melting Curve of Sulfur Hexafluoride

    NASA Astrophysics Data System (ADS)

    Harvey, Allan H.

    2017-12-01

    A previous correlation for the melting curve of sulfur hexafluoride (SF6) is inconsistent with the thermodynamic slope at the triple point derived from the Clapeyron equation. It is shown that this is probably due to the previous authors combining an accurate measurement of the triple point with melting-curve data that were distorted by impurities. A new equation is proposed that is consistent with the Clapeyron slope.

  9. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    PubMed

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further reference to the intrinsic degree of freedom within each Markov state. It includes an extended free-energy balance and a second law which are valid for driven stochastic dynamics with an ideal external regenerating system. Our result suggests new ingredients for a generalized thermodynamics of self-organization in driven systems.

  10. A note on the relations between thermodynamics, energy definitions and Friedmann equations

    NASA Astrophysics Data System (ADS)

    Moradpour, H.; Nunes, Rafael C.; Abreu, Everton M. C.; Neto, Jorge Ananias

    2017-04-01

    We investigate the relation between the Friedmann and thermodynamic pressure equations, through solving the Friedmann and thermodynamic pressure equations simultaneously. Our investigation shows that a perfect fluid, as a suitable solution for the Friedmann equations leading to the standard modeling of the universe expansion history, cannot simultaneously satisfy the thermodynamic pressure equation and those of Friedmann. Moreover, we consider various energy definitions, such as the Komar mass, and solve the Friedmann and thermodynamic pressure equations simultaneously to get some models for dark energy fluids. The cosmological consequences of obtained solutions are also addressed. Our results indicate that some of obtained solutions may unify the dominated fluid in both the primary inflationary and current accelerating eras into one model. In addition, by taking into account a cosmic fluid of a known equation of state (EoS), and combining it with the Friedmann and thermodynamic pressure equations, we obtain the corresponding energy of these cosmic fluids and face their limitations. Finally, we point out the cosmological features of this cosmic fluid and also study its observational constraints.

  11. A Hamiltonian approach for the Thermodynamics of AdS black holes

    NASA Astrophysics Data System (ADS)

    Baldiotti, M. C.; Fresneda, R.; Molina, C.

    2017-07-01

    In this work we study the Thermodynamics of D-dimensional Schwarzschild-anti de Sitter (SAdS) black holes. The minimal Thermodynamics of the SAdS spacetime is briefly discussed, highlighting some of its strong points and shortcomings. The minimal SAdS Thermodynamics is extended within a Hamiltonian approach, by means of the introduction of an additional degree of freedom. We demonstrate that the cosmological constant can be introduced in the thermodynamic description of the SAdS black hole with a canonical transformation of the Schwarzschild problem, closely related to the introduction of an anti-de Sitter thermodynamic volume. The treatment presented is consistent, in the sense that it is compatible with the introduction of new thermodynamic potentials, and respects the laws of black hole Thermodynamics. By demanding homogeneity of the thermodynamic variables, we are able to construct a new equation of state that completely characterizes the Thermodynamics of SAdS black holes. The treatment naturally generates phenomenological constants that can be associated with different boundary conditions in underlying microscopic theories. A whole new set of phenomena can be expected from the proposed generalization of SAdS Thermodynamics.

  12. Heat, temperature and Clausius inequality in a model for active Brownian particles

    PubMed Central

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio

    2017-01-01

    Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production. PMID:28429787

  13. Heat, temperature and Clausius inequality in a model for active Brownian particles.

    PubMed

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio

    2017-04-21

    Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system's Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.

  14. New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Riethmann, Thomas; Feistel, Rainer; Harvey, Allan H.

    2011-12-01

    New reference equations, adopted by the International Association for the Properties of Water and Steam (IAPWS), are presented for the sublimation pressure and melting pressure of ice Ih as a function of temperature. These equations are based on input values derived from the phase-equilibrium condition between the IAPWS-95 scientific standard for thermodynamic properties of fluid H2O and the equation of state of H2O ice Ih adopted by IAPWS in 2006, making them thermodynamically consistent with the bulk-phase properties. Compared to the previous IAPWS formulations, which were empirical fits to experimental data, the new equations have significantly less uncertainty. The sublimation-pressure equation covers the temperature range from 50 K to the vapor-liquid-solid triple point at 273.16 K. The ice Ih melting-pressure equation describes the entire melting curve from 273.16 K to the ice Ih-ice III-liquid triple point at 251.165 K. For completeness, we also give the IAPWS melting-pressure equation for ice III, which is slightly adjusted to agree with the ice Ih melting-pressure equation at the corresponding triple point, and the unchanged IAPWS melting-pressure equations for ice V, ice VI, and ice VII.

  15. Thermodynamic constraints on a varying cosmological-constant-like term from the holographic equipartition law with a power-law corrected entropy

    NASA Astrophysics Data System (ADS)

    Komatsu, Nobuyoshi

    2017-11-01

    A power-law corrected entropy based on a quantum entanglement is considered to be a viable black-hole entropy. In this study, as an alternative to Bekenstein-Hawking entropy, a power-law corrected entropy is applied to Padmanabhan's holographic equipartition law to thermodynamically examine an extra driving term in the cosmological equations for a flat Friedmann-Robertson-Walker universe at late times. Deviations from the Bekenstein-Hawking entropy generate an extra driving term (proportional to the α th power of the Hubble parameter, where α is a dimensionless constant for the power-law correction) in the acceleration equation, which can be derived from the holographic equipartition law. Interestingly, the value of the extra driving term in the present model is constrained by the second law of thermodynamics. From the thermodynamic constraint, the order of the driving term is found to be consistent with the order of the cosmological constant measured by observations. In addition, the driving term tends to be constantlike when α is small, i.e., when the deviation from the Bekenstein-Hawking entropy is small.

  16. A two-phase theory for non-Newtonian suspensions

    NASA Astrophysics Data System (ADS)

    Varsakelis, Christos

    In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.

  17. Principles of Considering the Effect of the Limited Volume of a System on Its Thermodynamic State

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-01-01

    The features of a system with a finite volume that affect its thermodynamic state are considered in comparison to describing small bodies in macroscopic phases. Equations for unary and pair distribution functions are obtained using difference derivatives of a discrete statistical sum. The structure of the equation for the free energy of a system consisting of an ensemble of volume-limited regions with different sizes and a full set of equations describing a macroscopic polydisperse system are discussed. It is found that the equations can be applied to molecular adsorption on small faces of microcrystals, to bound and isolated pores of a polydisperse material, and to describe the spinodal decomposition of a fluid in brief periods of time and high supersaturations of the bulk phase when each local region functions the same on average. It is shown that as the size of a system diminishes, corrections must be introduced for the finiteness of the system volume and fluctuations of the unary and pair distribution functions.

  18. Nonideal Solute Chemical Potential Equation and the Validity of the Grouped Solute Approach for Intracellular Solution Thermodynamics.

    PubMed

    Zielinski, Michal W; McGann, Locksley E; Nychka, John A; Elliott, Janet A W

    2017-11-22

    The prediction of nonideal chemical potentials in aqueous solutions is important in fields such as cryobiology, where models of water and solute transport-that is, osmotic transport-are used to help develop cryopreservation protocols and where solutions contain many varied solutes and are generally highly concentrated and thus thermodynamically nonideal. In this work, we further the development of a nonideal multisolute solution theory that has found application across a broad range of aqueous systems. This theory is based on the osmotic virial equation and does not depend on multisolute data. Specifically, we derive herein a novel solute chemical potential equation that is thermodynamically consistent with the existing model, and we establish the validity of a grouped solute model for the intracellular space. With this updated solution theory, it is now possible to model cellular osmotic behavior in nonideal solutions containing multiple permeating solutes, such as those commonly encountered by cells during cryopreservation. In addition, because we show here that for the osmotic virial equation the grouped solute approach is mathematically equivalent to treating each solute separately, multisolute solutions in other applications with fixed solute mass ratios can now be treated rigorously with such a model, even when all of the solutes cannot be enumerated.

  19. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  20. A flamelet model for transcritical LOx/GCH4 flames

    NASA Astrophysics Data System (ADS)

    Müller, Hagen; Pfitzner, Michael

    2017-03-01

    This work presents a numerical framework to efficiently simulate methane combustion at supercritical pressures. A LES flamelet approach is adapted to account for real-gas thermodynamics effects which are a prominent feature of flames at near-critical injection conditions. The thermodynamics model is based on the Peng-Robinson equation of state (PR-EoS) in conjunction with a novel volume-translation method to correct deficiencies in the transcritical regime. The resulting formulation is more accurate than standard cubic EoSs without deteriorating their good computational performance. To consistently account for pressure and strain fluctuations in the flamelet model, an additional enthalpy equation is solved along with the transport equations for mixture fraction and mixture fraction variance. The method is validated against available experimental data for a laboratory scale LOx/GCH4 flame at conditions that resemble those in liquid-propellant rocket engines. The LES result is in good agreement with the measured OH* radiation.

  1. A general approach to the testing of binary solubility systems for thermodynamic consistency. Consolidated Fuel Reprocessing Program

    NASA Astrophysics Data System (ADS)

    Hamm, L. L.; Vanbrunt, V.

    1982-08-01

    The numerical solution to the ordinary differential equation which describes the high-pressure vapor-liquid equilibria of a binary system where one of the components is supercritical and exists as a noncondensable gas in the pure state is considered with emphasis on the implicit Runge-Kuta and orthogonal collocation methods. Some preliminary results indicate that the implicit Runge-Kutta method is superior. Due to the extreme nonlinearity of thermodynamic properties in the region near the critical locus, and extended cubic spline fitting technique is devised for correlating the P-x data. The least-squares criterion is employed in smoothing the experimental data. The technique could easily be applied to any thermodynamic data by changing the endpoint requirements. The volumetric behavior of the systems must be given or predicted in order to perform thermodynamic consistency tests. A general procedure is developed for predicting the volumetric behavior required and some indication as to the expected limit of accuracy is given.

  2. Equation of state and phase diagram of carbon

    NASA Astrophysics Data System (ADS)

    Averin, A. B.; Dremov, V. V.; Samarin, S. I.; Sapozhnikov, A. T.

    1996-05-01

    Thermodynamically consistent equation of state (EOS) for graphite and diamond is proposed. The EOS satisfactorily describes experimental data on shock compression, heat capacity, thermal expansion and phase equilibrium and can be used in mathematical models and computer codes for calculation of graphite-diamond phase transition under dynamic loading. Monte-Carlo calculations of diamond thermodynamic properties have been carried out to check correctness of the EOS in the regions of phase diagram where experimental data are absent. On the basis of the EOS and Grover's model of liquid state the EOS of liquid carbon have been constructed and carbon phase diagram (graphite and diamond melting curves and triple point) have been calculated. Comparison of calculated and experimental Hugoniots has stated a question about diamond melting curve.

  3. Extended forms of the second law for general time-dependent stochastic processes.

    PubMed

    Ge, Hao

    2009-08-01

    The second law of thermodynamics represents a universal principle applicable to all natural processes, physical systems, and engineering devices. Hatano and Sasa have recently put forward an extended form of the second law for transitions between nonequilibrium stationary states [Phys. Rev. Lett. 86, 3463 (2001)]. In this paper we further extend this form to an instantaneous interpretation, which is satisfied by quite general time-dependent stochastic processes including master-equation models and Langevin dynamics without the requirements of the stationarity for the initial and final states. The theory is applied to several thermodynamic processes, and its consistence with the classical thermodynamics is shown.

  4. Spinning fluids in general relativity. II - Self-consistent formulation

    NASA Technical Reports Server (NTRS)

    Ray, John R.; Smalley, Larry, L.; Krisch, Jean P.

    1987-01-01

    Methods used earlier to derive the equations of motion for a spinning fluid in the Einstein-Cartan theory are specialized to the case of general relativity. The main idea is to include the spin as a thermodynamic variable in the theory.

  5. Hot string soup: Thermodynamics of strings near the Hagedorn transition

    NASA Astrophysics Data System (ADS)

    Lowe, David A.; Thorlacius, Lárus

    1995-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.

  6. MMA-EoS: A Computational Framework for Mineralogical Thermodynamics

    NASA Astrophysics Data System (ADS)

    Chust, T. C.; Steinle-Neumann, G.; Dolejš, D.; Schuberth, B. S. A.; Bunge, H.-P.

    2017-12-01

    We present a newly developed software framework, MMA-EoS, that evaluates phase equilibria and thermodynamic properties of multicomponent systems by Gibbs energy minimization, with application to mantle petrology. The code is versatile in terms of the equation-of-state and mixing properties and allows for the computation of properties of single phases, solution phases, and multiphase aggregates. Currently, the open program distribution contains equation-of-state formulations widely used, that is, Caloric-Murnaghan, Caloric-Modified-Tait, and Birch-Murnaghan-Mie-Grüneisen-Debye models, with published databases included. Through its modular design and easily scripted database, MMA-EoS can readily be extended with new formulations of equations-of-state and changes or extensions to thermodynamic data sets. We demonstrate the application of the program by reproducing and comparing physical properties of mantle phases and assemblages with previously published work and experimental data, successively increasing complexity, up to computing phase equilibria of six-component compositions. Chemically complex systems allow us to trace the budget of minor chemical components in order to explore whether they lead to the formation of new phases or extend stability fields of existing ones. Self-consistently computed thermophysical properties for a homogeneous mantle and a mechanical mixture of slab lithologies show no discernible differences that require a heterogeneous mantle structure as has been suggested previously. Such examples illustrate how thermodynamics of mantle mineralogy can advance the study of Earth's interior.

  7. Thermodynamic properties of oxygen and nitrogen III

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The final equation for nitrogen was determined. In the work on the equation of state for nitrogen, coefficients were determined by constraining the critical point to selected critical point parameters. Comparisons of this equation with all the P-density-T data were made, as well as comparisons to all other thermodynamic data reported in the literature. The extrapolation of the equation of state was studied for vapor to higher temperatures and lower temperatures, and for the liquid surface to the saturated liquid and the fusion lines. A new vapor pressure equation was also determined which was constrained to the same critical temperature, pressure, and slope (dP/dT) as the equation of state. Work on the equation of state for oxygen included studies for improving the equation at the critical point. Comparisons of velocity of sound data for oxygen were also made between values calculated with a preliminary equation of state and experimental data. Functions for the calculation of the derived thermodynamic properties using the equation of state are given, together with the derivative and integral functions for the calculation of the thermodynamic properties using the equations of state. Summary tables of the thermodynamic properties of nitrogen and oxygen are also included to serve as a check for those preparing computer programs using the equations of state.

  8. Film and membrane-model thermodynamics of free thin liquid films.

    PubMed

    Radke, C J

    2015-07-01

    In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  10. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  11. Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies.

    PubMed

    Olives, Juan

    2010-03-03

    The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.

  12. Consistent description of quantum Brownian motors operating at strong friction.

    PubMed

    Machura, L; Kostur, M; Hänggi, P; Talkner, P; Luczka, J

    2004-09-01

    A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study analytically directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.

  13. Autonomous rotor heat engine

    NASA Astrophysics Data System (ADS)

    Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio

    2017-06-01

    The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

  14. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  15. On the thermodynamics of the Swift-Hohenberg theory

    NASA Astrophysics Data System (ADS)

    Espath, L. F. R.; Sarmiento, A. F.; Dalcin, L.; Calo, V. M.

    2017-11-01

    We present the microbalance including the microforces, the first- and second-order microstresses for the Swift-Hohenberg equation concomitantly with their constitutive equations, which are consistent with the free-energy imbalance. We provide an explicit form for the microstress structure for a free-energy functional endowed with second-order spatial derivatives. Additionally, we generalize the Swift-Hohenberg theory via a proper constitutive process. Finally, we present one highly resolved three-dimensional numerical simulation to demonstrate the particular form of the resulting microstresses and their interactions in the evolution of the Swift-Hohenberg equation.

  16. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    NASA Astrophysics Data System (ADS)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  17. Thermodynamics of Inozemtsev's elliptic spin chain

    NASA Astrophysics Data System (ADS)

    Klabbers, Rob

    2016-06-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  18. Numerical Predictions of Damage and Failure in Carbon Fiber Reinforced Laminates Using a Thermodynamically-Based Work Potential Theory

    NASA Technical Reports Server (NTRS)

    Pineda, Evan Jorge; Waas, Anthony M.

    2013-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.

  19. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  20. Thermodynamically self-consistent theory for the Blume-Capel model.

    PubMed

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  1. Classical and Quantum Thermal Physics

    NASA Astrophysics Data System (ADS)

    Prasad, R.

    2016-11-01

    List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.

  2. Statistical Mechanics and the Climatology of the Arctic Sea Ice Thickness Distribution

    NASA Astrophysics Data System (ADS)

    Wettlaufer, John; Toppaladoddi, Srikanth

    We study the seasonal changes in the thickness distribution of Arctic sea ice, g (h) , under climate forcing. Our analytical and numerical approach is based on a Fokker-Planck equation for g (h) , in which the thermodynamic growth growth rates are determined using observed climatology. In particular, the Fokker-Planck equation is coupled to an observationally consistent thermodynamic model. We find that due to the combined effects of thermodynamics and mechanics, g (h) spreads during winter and contracts during summer. This behavior is in agreement with recent satellite observations from CryoSat-2. Because g (h) is a probability density function, we quantify all of the key moments (e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation time scales) as greenhouse-gas radiative forcing, ΔF0 , increases. The mean ice thickness decays exponentially with ΔF0 , but much slower than do solely thermodynamic models. This exhibits the crucial role that ice mechanics plays in maintaining the ice cover, by redistributing thin ice to thick ice-far more rapidly than can thermal growth alone. NASA Grant NNH13ZDA001N-CRYO and Swedish Research Council Grant No. 638-2013-9243.

  3. A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinh, Thi-Kim-Hoang; Laboratoire de Science des Procédés et des Matériaux; Passarello, Jean-Philippe, E-mail: Jean-Philippe.Passarello@lspm.cnrs.fr

    This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745–756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and thosemore » from molecular simulations.« less

  4. Advanced classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided.

  5. A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Anders, Denis; Weinberg, Kerstin

    2018-04-01

    The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.

  6. A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading

    NASA Technical Reports Server (NTRS)

    Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.

    2006-01-01

    A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.

  7. Revised Perturbation Statistics for the Global Scale Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1975-01-01

    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.

  8. Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron

    NASA Astrophysics Data System (ADS)

    Djurabekova, F.; Malerba, L.; Pasianot, R. C.; Olsson, P.; Nordlund, K.

    2010-07-01

    Monte Carlo models are widely used for the study of microstructural and microchemical evolution of materials under irradiation. However, they often link explicitly the relevant activation energies to the energy difference between local equilibrium states. We provide a simple example (di-vacancy migration in iron) in which a rigorous activation energy calculation, by means of both empirical interatomic potentials and density functional theory methods, clearly shows that such a link is not granted, revealing a migration mechanism that a thermodynamics-linked activation energy model cannot predict. Such a mechanism is, however, fully consistent with thermodynamics. This example emphasizes the importance of basing Monte Carlo methods on models where the activation energies are rigorously calculated, rather than deduced from widespread heuristic equations.

  9. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.

    2015-09-01

    This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.

  10. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  11. Thermodynamic restrictions on the constitutive equations of electromagnetic theory

    NASA Technical Reports Server (NTRS)

    Coleman, B. D.; Dill, E. H.

    1971-01-01

    Thermodynamics second law restrictions on constitutive equations of electromagnetic theory for nonlinear materials with long-range gradually fading memory, considering dissipation principle consequences

  12. Climatology of the Arctic Sea Ice Thickness Distribution as a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, S.; Wettlaufer, J. S.

    2016-12-01

    We study the seasonal changes in the thickness distribution of Arctic sea ice, g(h), under climate forcing. Our analytical and numerical approach is based on a Fokker-Planck equation for g(h) (Toppaladoddi & Wettlaufer Phys. Rev. Lett. 115, 148501, 2015), in which the thermodynamic growth rates are determined using observed climatology. In particular, the Fokker-Planck equation is coupled to the observationally consistent thermodynamic model of Eisenman & Wettlaufer (Proc. Natl. Acad. Sci. USA 106, pp. 28-32, 2009). We find that due to the combined effects of thermodynamics and mechanics, g(h) spreads during winter and contracts during summer. This behavior is in agreement with recent satellite observations from CryoSat-2 (Kwok & Cunningham, Phil. Trans. R. Soc. A 373, 20140157, 2015). Because g(h) is a probability density function, we quantify all of the key moments (e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation time scales) as greenhouse-gas radiative forcing, ΔF0, increases. The mean ice thickness decays exponentially with ΔF0, but much slower than do solely thermodynamic models. This exhibits the crucial role that ice mechanics plays in maintaining the ice cover, by redistributing thin ice to thick ice-far more rapidly than can thermal growth alone.

  13. Statistical Mechanics and the Climatology of the Arctic Sea Ice Thickness Distribution

    NASA Astrophysics Data System (ADS)

    Toppaladoddi, Srikanth; Wettlaufer, J. S.

    2017-05-01

    We study the seasonal changes in the thickness distribution of Arctic sea ice, g( h), under climate forcing. Our analytical and numerical approach is based on a Fokker-Planck equation for g( h) (Toppaladoddi and Wettlaufer in Phys Rev Lett 115(14):148501, 2015), in which the thermodynamic growth rates are determined using observed climatology. In particular, the Fokker-Planck equation is coupled to the observationally consistent thermodynamic model of Eisenman and Wettlaufer (Proc Natl Acad Sci USA 106:28-32, 2009). We find that due to the combined effects of thermodynamics and mechanics, g( h) spreads during winter and contracts during summer. This behavior is in agreement with recent satellite observations from CryoSat-2 (Kwok and Cunningham in Philos Trans R Soc A 373(2045):20140157, 2015). Because g( h) is a probability density function, we quantify all of the key moments (e.g., mean thickness, fraction of thin/thick ice, mean albedo, relaxation time scales) as greenhouse-gas radiative forcing, Δ F_0, increases. The mean ice thickness decays exponentially with Δ F_0, but much slower than do solely thermodynamic models. This exhibits the crucial role that ice mechanics plays in maintaining the ice cover, by redistributing thin ice to thick ice-far more rapidly than can thermal growth alone.

  14. Dirac structures in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-01-01

    Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

  15. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  16. Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, Philip C.; Benedict, Lorin X.; Belof, Jonathan L.

    Here, we present equations of state relevant to conditions encountered in ramp and multiple-shock compression experiments of water. These experiments compress water from ambient conditions to pressures as high as about 14 GPa and temperatures of up to several hundreds of Kelvin. Water may freeze into ice VII during this process. Although there are several studies on the thermodynamic properties of ice VII, an accurate and analytic free energy model from which all other properties may be derived in a thermodynamically consistent manner has not been previously determined. We have developed such a free energy model for ice VII thatmore » is calibrated with pressure-volume-temperature measurements and melt curve data. Furthermore, we show that liquid water in the pressure and temperature range of interest is well-represented by a simple Mie-Grüneisen equation of state. Our liquid water and ice VII equations of state are validated by comparing to sound speed and Hugoniot data. Although they are targeted towards ramp and multiple-shock compression experiments, we demonstrate that our equations of state also behave reasonably well at pressures and temperatures that lie somewhat beyond those found in the experiments.« less

  17. Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations

    DOE PAGES

    Myint, Philip C.; Benedict, Lorin X.; Belof, Jonathan L.

    2017-08-28

    Here, we present equations of state relevant to conditions encountered in ramp and multiple-shock compression experiments of water. These experiments compress water from ambient conditions to pressures as high as about 14 GPa and temperatures of up to several hundreds of Kelvin. Water may freeze into ice VII during this process. Although there are several studies on the thermodynamic properties of ice VII, an accurate and analytic free energy model from which all other properties may be derived in a thermodynamically consistent manner has not been previously determined. We have developed such a free energy model for ice VII thatmore » is calibrated with pressure-volume-temperature measurements and melt curve data. Furthermore, we show that liquid water in the pressure and temperature range of interest is well-represented by a simple Mie-Grüneisen equation of state. Our liquid water and ice VII equations of state are validated by comparing to sound speed and Hugoniot data. Although they are targeted towards ramp and multiple-shock compression experiments, we demonstrate that our equations of state also behave reasonably well at pressures and temperatures that lie somewhat beyond those found in the experiments.« less

  18. Methodology of Thermodynamics

    ERIC Educational Resources Information Center

    Mohan, Gyan

    1969-01-01

    Presents a systematization of the mathematical formulae in thermodynamics. From the set of thermodynamic variables, four equations are derived which contain the total mathematical jargon of thermodynamics. (LC)

  19. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  20. Consistent thermodynamic framework for interacting particles by neglecting thermal noise.

    PubMed

    Nobre, Fernando D; Curado, Evaldo M F; Souza, Andre M C; Andrade, Roberto F S

    2015-02-01

    An effective temperature θ, conjugated to a generalized entropy s(q), was introduced recently for a system of interacting particles. Since θ presents values much higher than those of typical room temperatures T≪θ, the thermal noise can be neglected (T/θ≃0) in these systems. Moreover, the consistency of this definition, as well as of a form analogous to the first law of thermodynamics, du=θds(q)+δW, were verified lately by means of a Carnot cycle, whose efficiency was shown to present the usual form, η=1-(θ(2)/θ(1)). Herein we explore further the heat contribution δQ=θds(q) by proposing a way for a heat exchange between two such systems, as well as its associated thermal equilibrium. As a consequence, the zeroth principle is also established. Moreover, we consolidate the first-law proposal by following the usual procedure for obtaining different potentials, i.e., applying Legendre transformations for distinct pairs of independent variables. From these potentials we derive the equation of state, Maxwell relations, and define response functions. All results presented are shown to be consistent with those of standard thermodynamics for T>0.

  1. Solution of D dimensional Dirac equation for coulombic potential using NU method and its thermodynamics properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id

    2016-02-08

    The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.

  2. Stochastic thermodynamics across scales: Emergent inter-attractoral discrete Markov jump process and its underlying continuous diffusion

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2013-01-01

    We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.

  3. Thermodynamics of high temperature, Mie-Gruneisen solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.; Lund, Carl M.

    1999-12-01

    We construct a set of equations of state for condensed matter at temperatures well above the Debye temperature. These equations incorporate the Mie-Gruneisen equation of state and generic properties of high temperature solids. They are simple enough to provide an alternative to the ideal gas and the van der Waals equations of state for illustrating thermodynamic concepts. (c) 1999 American Association of Physics Teachers.

  4. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  5. Thermodynamics Fundamental Equation of a "Non-Ideal" Rubber Band from Experiments

    ERIC Educational Resources Information Center

    Ritacco, Herna´n A.; Fortunatti, Juan C.; Devoto, Walter; Ferna´ndez-Miconi, Eugenio; Dominguez, Claudia; Sanchez, Miguel D.

    2014-01-01

    In this paper, we describe laboratory and classroom exercises designed to obtain the "fundamental" equation of a rubber band by combining experiments and theory. The procedure shows students how classical thermodynamics formalism can help to obtain empirical equations of state by constraining and guiding in the construction of the…

  6. Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

    NASA Astrophysics Data System (ADS)

    Iannelli, Joe

    2003-10-01

    This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.

  7. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  8. Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2018-04-01

    The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions on the particle surface that generate a mechanochemical coupling between the fluid velocity and the concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic. Coupled Langevin equations describing the translation, rotation, and reaction of such active particles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the interface between the fluid and the particle. These equations are consistent with microreversibility and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermodynamically consistent basis for the investigation of the dynamics of active particles propelled by diffusiophoretic mechanisms.

  9. Towards driving mantle convection by mineral physics

    NASA Astrophysics Data System (ADS)

    Piazzoni, A. S.; Bunge, H.; Steinle-Neumann, G.

    2005-12-01

    Models of mantle convection have become increasingly sophisticated over the past decade, accounting, for example, for 3 D spherical geometry, and changes in mantle rheology due to variations in temperature and stress. In light of such advances it is surprising that growing constraints on mantle structure derived from mineral physics have not yet been fully brought to bear on mantle convection models. In fact, despite much progress in our understanding of mantle mineralogy a partial description of the equation of state is often used to relate density changes to pressure and temperature alone, without taking into account compositional and mineralogical models of the mantle. Similarly, for phase transitions an incomplete description of thermodynamic constraints is often used, resulting in significant uncertainties in model behavior. While a number of thermodynamic models (some with limited scope) have been constructed recently, some lack the rigor in thermodynamics - for example with respect to the treatment of solid solution - that is needed to make predictions about mantle structure. Here we have constructed a new thermodynamic database for the mantle and have coupled the resulting density dynamically with mantle convection models. The database is build on a self-consistent Gibb's free energy minimization of the system MgO-FeO-SiO2-CaO-Al2O3 that is appropriate for standard (dry) chemical models of the Earth's mantle for relevant high pressure and temperature phases. We have interfaced the database with a high-resolution 2-D convection code (2DTERRA), dynamically coupling the thermodynamic model (density) with the conservation equations of mantle flow. The coupled model is run for different parameterizations of viscosity, initial temperature conditions, and varying the internal vs. external heating. We compare the resulting flow and temperature fields to cases with the Boussinesq approximation and other classical descriptions of the equation of state in mantle dynamics to assess the influence of realistic mineralogical density on mantle convection.

  10. Minimal universal quantum heat machine.

    PubMed

    Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2013-01-01

    In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation of motion allows us to compute the stationary power and heat currents in the machine consistent with the second law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

  11. An Interface Damage Model for the Simulation of Delamination Under Variable-Mode Ratio in Composite Materials

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Camanho, Pedro P.; Costa, Josep; Davila, Carlos G.

    2004-01-01

    A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics (DM). The constitutive equations that result from the variation of the free energy with damage are used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. Interfacial penetration of two adjacent layers after complete decohesion is prevented by the formulation of the free energy. The model is implemented into the commercial finite element code ABAQUS by means of a user-written decohesion element. Finally, the numerical predictions given by the model are compared with experimental results.

  12. A Hamiltonian approach to Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less

  13. Hydration of nonelectrolytes in binary aqueous solutions

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.

    2010-10-01

    Literature data on the thermodynamic properties of binary aqueous solutions of nonelectrolytes that show negative deviations from Raoult's law due largely to the contribution of the hydration of the solute are briefly surveyed. Attention is focused on simulating the thermodynamic properties of solutions using equations of the cluster model. It is shown that the model is based on the assumption that there exists a distribution of stoichiometric hydrates over hydration numbers. In terms of the theory of ideal associated solutions, the equations for activity coefficients, osmotic coefficients, vapor pressure, and excess thermodynamic functions (volume, Gibbs energy, enthalpy, entropy) are obtained in analytical form. Basic parameters in the equations are the hydration numbers of the nonelectrolyte (the mathematical expectation of the distribution of hydrates) and the dispersions of the distribution. It is concluded that the model equations adequately describe the thermodynamic properties of a wide range of nonelectrolytes partly or completely soluble in water.

  14. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  15. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  16. Stochastic approach and fluctuation theorem for charge transport in diodes

    NASA Astrophysics Data System (ADS)

    Gu, Jiayin; Gaspard, Pierre

    2018-05-01

    A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.

  17. Equivalent formulations of “the equation of life”

    NASA Astrophysics Data System (ADS)

    Ao, Ping

    2014-07-01

    Motivated by progress in theoretical biology a recent proposal on a general and quantitative dynamical framework for nonequilibrium processes and dynamics of complex systems is briefly reviewed. It is nothing but the evolutionary process discovered by Charles Darwin and Alfred Wallace. Such general and structured dynamics may be tentatively named “the equation of life”. Three equivalent formulations are discussed, and it is also pointed out that such a quantitative dynamical framework leads naturally to the powerful Boltzmann-Gibbs distribution and the second law in physics. In this way, the equation of life provides a logically consistent foundation for thermodynamics. This view clarifies a particular outstanding problem and further suggests a unifying principle for physics and biology.

  18. Thermodynamic and Mechanic Consideration on the stability of Anti-symmetric Schaefer’s equation

    NASA Astrophysics Data System (ADS)

    Suriamihardja, D. A.; Amiruddin; Saaduddin

    2018-03-01

    Schaefer’s equation relates an interaction between population of fishes and the number of units of fishing effort. The population growth of fishes is reduced by the number of units of fishing effort, while the population growth of units of fishing effort depends on the existence of fishes. This paper aims to examine the stability of an anti-symmetric Schaefer’s equation through thermodynamic and mechanic procedure using a formula of entropy production near equilibrium which is recognized as Onsager’s relation. The results confirm that entropic approach (thermodynamics) and dissipative approach (mechanics) are usable to be applied as Lyapunov’s procedure in examining the stability of systems of differential equations.

  19. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.

  20. Viscoelastic Waves Simulation in a Blocky Medium with Fluid-Saturated Interlayers Using High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Sadovskii, Vladimir; Sadovskaya, Oxana

    2017-04-01

    A thermodynamically consistent approach to the description of linear and nonlinear wave processes in a blocky medium, which consists of a large number of elastic blocks interacting with each other via pliant interlayers, is proposed. The mechanical properties of interlayers are defined by means of the rheological schemes of different levels of complexity. Elastic interaction between the blocks is considered in the framework of the linear elasticity theory [1]. The effects of viscoelastic shear in the interblock interlayers are taken into consideration using the Pointing-Thomson rheological scheme. The model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. On the basis of the Biot equations for a fluid-saturated porous medium, a new mathematical model of a blocky medium is worked out, in which the interlayers provide a convective fluid motion due to the external perturbations. The collapse of pores is modeled within the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact [2], which is used to describe the behavior of materials with different resistance to tension and compression. Thermodynamic consistency of the equations in interlayers with the equations in blocks guarantees fulfillment of the energy conservation law for a blocky medium in a whole, i.e. kinetic and potential energy of the system is the sum of kinetic and potential energies of the blocks and interlayers. As a result of discretization of the equations of the model, robust computational algorithm is constructed, that is stable because of the thermodynamic consistency of the finite difference equations at a discrete level. The splitting method by the spatial variables and the Godunov gap decay scheme are used in the blocks, the dissipationless finite difference Ivanov scheme is applied in the interlayers. The parallel program is designed, using the MPI technology. By means of this software, nonlinear wave processes in the case of initial rotation of the central block in a rock mass as well as in the case of concentrated couple stress load, applied at the boundary of a rock mass, are analyzed. Results of computations on the multiprocessor computer systems demonstrate the strong anisotropy of a blocky medium. This work was supported by the Complex Fundamental Research Program no. II.2P "Integration and Development" of Siberian Branch of the Russian Academy of Sciences. References 1. Sadovskii V.M., Sadovskaya O.V. Modeling of Elastic Waves in a Blocky Medium Based on Equations of the Cosserat Continuum // Wave Motion. 2015. V. 52. P. 138-150. 2. Sadovskaya O., Sadovskii V. Mathematical Modeling in Mechanics of Granular Materials. Ser.: Advanced Structured Materials, V. 21. Heidelberg - New York - Dordrecht - London, Springer, 2012. 390 p.

  1. A NOTE ON THE UNIFIED FIRST LAW IN f(R) GRAVITY THEORY

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gong, Yungui; Zhu, Zong-Hong

    2012-04-01

    Because of the dynamical equivalence between the f(R) gravity and the Brans-Dicke theory, the dynamical equation in the f(R) gravity is suggested to be derived from a view point of thermodynamics here. By a conformal transformation, the Brans-Dicke theory in the Jordan frame could be expressed as a minimal coupling scalar field theory in Einstein frame. Using the entropy-area relation d˜ {S} = d˜ {A}/4 G, the correct Friedmann equations could be gotten in both frames. Furthermore, we also discuss the corresponding generalized Misner-Sharp energies for theoretical consistence.

  2. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    ERIC Educational Resources Information Center

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  3. Input guide for computer programs to generate thermodynamic data for air and Freon CF4

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.; Baker, L. R., Jr.

    1975-01-01

    FORTRAN computer programs were developed to calculate the thermodynamic properties of Freon 14 and air for isentropic expansion from given plenum conditions. Thermodynamic properties for air are calculated with equations derived from the Beattie-Bridgeman nonstandard equation of state and, for Freon 14, with equations derived from the Redlich-Quang nonstandard equation of state. These two gases are used in scale model testing of model rocket nozzle flow fields which requires simulation of the prototype plume shape with a cold flow test approach. Utility of the computer programs for use in analytical prediction of flow fields is enhanced by arranging card or tape output of the data in a format compatible with a method-of-characteristics computer program.

  4. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  5. The thermodynamics of dense granular flow and jamming

    NASA Astrophysics Data System (ADS)

    Lu, Shih Yu

    The scope of the thesis is to propose, based on experimental evidence and theoretical validation, a quantifiable connection between systems that exhibit the jamming phenomenon. When jammed, some materials that flow are able to resist deformation so that they appear solid-like on the laboratory scale. But unlike ordinary fusion, which has a critically defined criterion in pressure and temperature, jamming occurs under a wide range of conditions. These condition have been rigorously investigated but at the moment, no self-consistent framework can apply to grains, foam and colloids that may have suddenly ceased to flow. To quantify the jamming behavior, a constitutive model of dense granular flows is deduced from shear-flow experiments. The empirical equations are then generalized, via a thermodynamic approach, into an equation-of-state for jamming. Notably, the unifying theory also predicts the experimental data on the behavior of molecular glassy liquids. This analogy paves a crucial road map for a unifying theoretical framework in condensed matter, for example, ranging from sand to fire retardants to toothpaste.

  6. Subatmospheric vapor pressures evaluated from internal-energy measurements

    NASA Astrophysics Data System (ADS)

    Duarte-Garza, H. A.; Magee, J. W.

    1997-01-01

    Vapor pressures were evaluated from measured internal-energy changes in the vapor+liquid two-phase region, Δ U (2). The method employed a thermodynamic relationship between the derivative quantity (ϖ U (2)/ϖ V) T and the vapor pressure ( p σ) and its temperature derivative (ϖ p/ϖ T)σ. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately ±0.04 kPa (±0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p σ for this substance. It was also applied to evaluate published p σ data which are in disagreement by more than their claimed uncertainty.

  7. The Influence of Unsteadiness on the Analysis of Pressure Gain Combustion Devices

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Kaemming, Tom

    2013-01-01

    Pressure gain combustion (PGC) has been the object of scientific study for over a century due to its promise of improved thermodynamic efficiency. In many recent application concepts PGC is utilized as a component in an otherwise continuous, normally steady flow system, such as a gas turbine or ram jet engine. However, PGC is inherently unsteady. Failure to account for the effects of this periodic unsteadiness can lead to misunderstanding and errors in performance calculations. This paper seeks to provide some clarity by presenting a consistent method of thermodynamic cycle analysis for a device utilizing PGC technology. The incorporation of the unsteady PGC process into the conservation equations for a continuous flow device is presented. Most importantly, the appropriate method for computing the conservation of momentum is presented. It will be shown that proper, consistent analysis of cyclic conservation principles produces representative performance predictions.

  8. Semi-empirical anzatz for Helmholtz free energy calculation: Thermal properties of silver along shock Hugoniot

    NASA Astrophysics Data System (ADS)

    Joshi, R. H.; Thakore, B. Y.; Bhatt, N. K.; Vyas, P. R.; Jani, A. R.

    2018-02-01

    A density functional theory along with electronic contribution is used to compute quasiharmonic total energy for silver, whereas explicit phonon anharmonic contribution is added through perturbative term in temperature. Within the Mie-Grüneisen approach, we propose a consistent computational scheme for calculating various thermophysical properties of a substance, in which the required Grüneisen parameter γth is calculated from the knowledge of binding energy. The present study demonstrates that no separate relation for volume dependence for γth is needed, and complete thermodynamics under simultaneous high-temperature and high-pressure condition can be derived in a consistent manner. We have calculated static and dynamic equation of states and some important thermodynamic properties along the shock Hugoniot. A careful examination of temperature dependence of Grüneisen parameter reveals the importance of temperature-effect on various thermal properties.

  9. Thermodynamically consistent Langevin dynamics with spatially correlated noise predicting frictionless regime and transient attraction effect

    NASA Astrophysics Data System (ADS)

    Majka, M.; Góra, P. F.

    2016-10-01

    While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.

  10. Dissipation effects in mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  11. Critical parameters, thermodynamic functions, and shock Hugoniot of aluminum fluid at high energy density

    NASA Astrophysics Data System (ADS)

    Zaghloul, Mofreh R.

    2018-03-01

    We present estimates of the critical properties, thermodynamic functions, and principal shock Hugoniot of hot dense aluminum fluid as predicted from a chemical model for the equation-of-state of hot dense, partially ionized and partially degenerate plasma. The essential features of strongly coupled plasma of metal vapors, such as multiple ionization, Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion are taken into consideration. Internal partition functions of neutral, excited, and multiply ionized species are carefully evaluated in a statistical-mechanically consistent way. Results predicted from the present model are presented, analyzed and compared with available experimental measurements and other theoretical predictions in the literature.

  12. Performance of Kobryn-Gusarov-Kovalenko closure from a thermodynamic viewpoint for one-component Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Miyata, Tatsuhiko; Tange, Kentaro

    2018-05-01

    The performance of Kobryn-Gusarov-Kovalenko (KGK) closure was examined in terms of the thermodynamics for one-component Lennard-Jones fluids. The result was compared to molecular dynamics simulation as well as to hypernetted chain, Kovalenko-Hirata (KH), Percus-Yevick and Verlet-modified closures. As the density increases, the error of KGK closure shows a turnover, regarding the excess internal energy, pressure and isothermal compressibility. On the other hand, it was numerically confirmed that the energy and the virial equations are consistent under both KH and KGK closures. The accuracies of density-derivative and temperature-derivative of the radial distribution function are also discussed.

  13. Geometrothermodynamics for black holes and de Sitter space

    NASA Astrophysics Data System (ADS)

    Kurihara, Yoshimasa

    2018-02-01

    A general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g., via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr-Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black holes.

  14. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  15. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  16. Thermodynamic properties of nitrogen gas derived from measurements of sound speed. [for cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Younglove, B.; Mccarty, R. D.

    1979-01-01

    A virial equation of state for nitrogen was determined by use of newly measured speed-of-sound data and existing pressure-density-temperature data in a multiproperty-fitting technique. The experimental data taken were chosen to optimize the equation of state for a pressure range of 0 to 10 atm and for a temperature range of 60 to 350 K. Comparisons are made for thermodynamic properties calculated both from the new equation and from existing equations of state.

  17. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelanti, Marica, E-mail: marica.pelanti@ensta-paristech.fr; Shyue, Keh-Ming, E-mail: shyue@ntu.edu.tw

    2014-02-15

    We model liquid–gas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of Saurel–Petitpas–Berry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxationmore » terms to model heat and mass transfer and hence liquid–vapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquid–vapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.« less

  18. A non-conventional discontinuous Lagrangian for viscous flow

    PubMed Central

    Marner, F.

    2017-01-01

    Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided. PMID:28386415

  19. A non-conventional discontinuous Lagrangian for viscous flow.

    PubMed

    Scholle, M; Marner, F

    2017-02-01

    Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier-Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier-Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided.

  20. A Potential Function Derivation of a Constitutive Equation for Inelastic Material Response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Elfoutouh, N. A.

    1983-01-01

    Physical and thermodynamic concepts are used to develop a potential function for application to high temperature polycrystalline material response. Inherent in the formulation is a differential relationship between the potential function and constitutive equation in terms of the state variables. Integration of the differential relationship produces a state variable evolution equation that requires specification of the initial value of the state variable and its time derivative. It is shown that the initial loading rate, which is directly related to the initial hardening rate, can significantly influence subsequent material response. This effect is consistent with observed material behavior on the macroscopic and microscopic levels, and may explain the wide scatter in response often found in creep testing.

  1. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  2. Comment on 'Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies'.

    PubMed

    Gutman, E M

    2010-10-27

    In a recent publication by Olives (2010 J. Phys.: Condens. Matter 22 085005) he studied 'the thermodynamics and mechanics of the surface of a deformable body, following and refining the general approach of Gibbs' and believed that 'a new definition of the surface stress is given'. However, using the usual way of deriving the equations of Gibbs-Duhem type the author, nevertheless, has fallen into a mathematical discrepancy because he has tried to unite in one equation different thermodynamic systems and 'a new definition of the surface stress' has appeared known in the usual theory of elasticity.

  3. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Study of stability of the difference scheme for the model problem of the gaslift process

    NASA Astrophysics Data System (ADS)

    Temirbekov, Nurlan; Turarov, Amankeldy

    2017-09-01

    The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.

  5. Multicomponent, Multiphase Thermodynamics of Swelling Porous Media With Electroquasistatics. 1. Macroscale Field Equations

    DTIC Science & Technology

    2001-08-08

    entropy inequality with independent variables consistent with several natural systems and apply the resulting constitutive theory near equi- librium...1973. [3] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - I: Balance laws. International Journal of...Engineering Science, 34(2):125–145, 1996. [4] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - II: Constitutive

  6. A sharp interface model for void growth in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  7. A Connection between Transport Phenomena and Thermodynamics

    ERIC Educational Resources Information Center

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  8. Application of a single model to study the adsorption equilibrium of prednisolone on six carbonaceous materials.

    PubMed

    Valenzuela-Calahorro, C; Cuerda-Correa, E; Navarrete-Guijosa, A; Gonzalez-Pradas, E

    2002-06-01

    The knowledge of sorption processes of nonelectrolytes in solution by solid adsorbents implies the study of kinetics, equilibrium, and thermodynamic functions. However, quite frequently the equilibrium isotherms are studied by comparing them with those corresponding to the Giles et al. classification (1); these isotherms are also analyzed by fitting them to equations based on thermodynamic or kinetic criteria, and even to empirical equations. Nevertheless, information obtained is more coherent and satisfactory if the adsorption isotherms are fitted by using an equation describing the equilibrium isotherms according to the kinetic laws. These mentioned laws would determine each one of the unitary processes (one or more) which condition the global process. In this paper, an adsorption process of prednisolone in solution by six carbonaceous materials is explained according to a previously proposed single model, which allows to establish a kinetic law which fits satisfactorily most of C vs t isotherms (2). According to the above-mentioned kinetic law, equations describing sorption equilibrium processes have been deducted, and experimental data points have been fitted to these equations; such a fitting yields to different values of adsorption capacity and kinetic equilibrium constants for the different processes at several temperatures. However, in spite of their practical interest, these constants have no thermodynamic signification. Thus, the thermodynamic equilibrium constant (K) has been calculated by using a modified expression of the Gaines et al. equation (3). Global average values of the thermodynamic functions have also been calculated from the K values. Information related to variations of DeltaH and DeltaS with the surface coverage fraction was obtained by using the corresponding Clausius-Clapeyron equations.

  9. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  10. A Modified Benedict-Webb-Rubin Equation of State for the Thermodynamic Properties of R152a (1,1-difluoroethane)

    NASA Astrophysics Data System (ADS)

    Outcalt, Stephanie L.; McLinden, Mark O.

    1996-03-01

    A modified Benedict-Webb-Rubin (MBWR) equation of state has been developed for R152a (1,1-difluoroethane). The correlation is based on a selection of available experimental thermodynamic property data. Single-phase pressure-volume-temperature (PVT), heat capacity, and sound speed data, as well as second virial coefficient, vapor pressure, and saturated liquid and saturated vapor density data, were used with multi-property linear least-squares fitting to determine the 32 adjustable coefficients of the MBWR equation. Ancillary equations representing the vapor pressure, saturated liquid and saturated vapor densities, and the ideal gas heat capacity were determined. Coefficients for the equation of state and the ancillary equations are given. Experimental data used in this work covered temperatures from 162 K to 453 K and pressures to 35 MPa. The MBWR equation established in this work may be used to predict thermodynamic properties of R152a from the triple-point temperature of 154.56 K to 500 K and for pressures up to 60 MPa except in the immediate vicinity of the critical point.

  11. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science.

    PubMed

    Kaptay, George

    2018-06-01

    In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Black hole thermodynamics under the microscope

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; Litim, Daniel F.

    2014-04-01

    A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.

  13. Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system

    NASA Astrophysics Data System (ADS)

    Degterov, Sergei A.; Pelton, Arthur D.; Jak, Evgueni; Hayes, Peter C.

    2001-08-01

    The Fe-Zn-O phase diagram in air was studied over the temperature range from 900 °C to 1500 °C. The compositions of the phases in quenched samples were obtained by electron probe X-ray microanalysis (EPMA). This experimental technique is not affected by zinc losses resulting from vaporization of zinc at high temperatures. The model for the spinel solid solution was developed within the framework of the compound-energy formalism (CEF). The choice of parameters of the CEF and the sequence of their optimization can have a major influence on the predictions in multicomponent phases. These choices can only be made rationally by reference to the specific model being represented in the CEF. This is discussed for the case of the two-sublattice spinel model. In the limiting case, the proposed model reduces to the model by O’Neill and Navrotsky for spinels. When the CEF is used in combination with the equation of Hillert and Jarl to describe the magnetic contribution to thermodynamic functions of a solution, it is necessary to assign certain values of magnetic properties to all pseudocomponents and to magnetic interaction parameters to obtain the most reasonable approximation of the magnetic properties of a solution. It was shown how this can be done based on very limited experimental data. The same equations can be used when the Murnaghan or the Birch-Murnaghan equation is combined with the CEF to describe the pressure dependence of thermodynamic functions. The polynomial model was used to describe the properties of wustite and zincite, and the modified quasichemical model was used for the liquid slag. All thermodynamic and phase-equilibria data on the Fe-O and Fe-Zn-O systems were critically evaluated, and parameters of the models were optimized to give a self-consistent set of thermodynamic functions of the phases in these systems. All experimental data are reproduced within experimental error limits. These include the thermodynamic properties of phases (such as specific heat, heat content, entropy, enthalpy, and Gibbs energy); the cation distribution between octahedral and tetrahedral sites in spinel; the oxygen partial pressure over single-phase, two-phase, and three-phase regions; the phase boundaries (liquidus, solidus, and subsolidus); and the tie-lines.

  14. Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. W.; Shen, H., E-mail: shennankai@gmail.com

    We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ρ {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermimore » approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.« less

  15. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  16. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  17. Microscopic theory for the time irreversibility and the entropy production

    NASA Astrophysics Data System (ADS)

    Chun, Hyun-Myung; Noh, Jae Dong

    2018-02-01

    In stochastic thermodynamics, the entropy production of a thermodynamic system is defined by the irreversibility measured by the logarithm of the ratio of the path probabilities in the forward and reverse processes. We derive the relation between the irreversibility and the entropy production starting from the deterministic equations of motion of the whole system consisting of a physical system and a surrounding thermal environment. The derivation assumes the Markov approximation that the environmental degrees of freedom equilibrate instantaneously. Our approach provides a guideline for the choice of the proper reverse process to a given forward process, especially when there exists a velocity-dependent force. We demonstrate our idea with an example of a charged particle in the presence of a time-varying magnetic field.

  18. Inter-conversion of Work and Heat With Plasma Electric Fields

    NASA Astrophysics Data System (ADS)

    Avinash, K.

    2010-11-01

    Thermodynamics of a model system where a group of cold charged particles locally confined in a volume VP within a warm plasma of temperature T and fixed volume V (VP<

  19. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  20. Generalized Dynamic Equations Related to Condensation and Freezing Processes

    NASA Astrophysics Data System (ADS)

    Wang, Xingrong; Huang, Yong

    2018-01-01

    The generalized thermodynamic equation related to condensation and freezing processes was derived by introducing the condensation and freezing probability function into the dynamic framework based on the statistical thermodynamic fluctuation theory. As a result, the physical mechanism of some weather phenomena covered by using δ(0,1) can in turn be studied and uncovered. From the generalized dynamic equations, the tendency equation of the generalized potential vorticity (GPV) is derived. From the discussion of tendency equation of GPV, in some very thin transitional areas, GPV is found nonconserved because of the introduction of the condensation and freezing probability function, even in frictionless and moist adiabatic air motion.

  1. Spacetime thermodynamics in the presence of torsion

    NASA Astrophysics Data System (ADS)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-12-01

    It was shown by Jacobson in 1995 that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. With the aim to understand if such thermodynamical description is an intrinsic property of gravitation, many attempts have been made so far to generalize this treatment to a broader class of gravitational theories. Here we consider the case of the Einstein-Cartan theory as a prototype of theories with nonpropagating torsion. In doing so, we study the properties of Killing horizons in the presence of torsion, establish the notion of local causal horizon in Riemann-Cartan spacetimes, and derive the generalized Raychaudhuri equation for these kinds of geometries. Then, starting with the entropy that can be associated to these local causal horizons, we derive the Einstein-Cartan equation by implementing the Clausius equation. We outline two ways of proceeding with the derivation depending on whether we take torsion as a geometric field or as a matter field. In both cases we need to add internal entropy production terms to the Clausius equation as the shear and twist cannot be taken to be 0 a priori for our setup. This fact implies the necessity of a nonequilibrium thermodynamics treatment for the local causal horizon. Furthermore, it implies that a nonzero twist at the horizon in general contributes to the Hartle-Hawking tidal heating for black holes with possible implications for future observations.

  2. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  3. On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia

    NASA Astrophysics Data System (ADS)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.

    2018-03-01

    Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.

  4. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    NASA Astrophysics Data System (ADS)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  5. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    NASA Astrophysics Data System (ADS)

    Kadoura, Ahmad; Sun, Shuyu; Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.

  6. A reformulation of mechanics and electrodynamics.

    PubMed

    Pinheiro, Mario J

    2017-07-01

    Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.

  7. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  8. Thermodynamically consistent data-driven computational mechanics

    NASA Astrophysics Data System (ADS)

    González, David; Chinesta, Francisco; Cueto, Elías

    2018-05-01

    In the paradigm of data-intensive science, automated, unsupervised discovering of governing equations for a given physical phenomenon has attracted a lot of attention in several branches of applied sciences. In this work, we propose a method able to avoid the identification of the constitutive equations of complex systems and rather work in a purely numerical manner by employing experimental data. In sharp contrast to most existing techniques, this method does not rely on the assumption on any particular form for the model (other than some fundamental restrictions placed by classical physics such as the second law of thermodynamics, for instance) nor forces the algorithm to find among a predefined set of operators those whose predictions fit best to the available data. Instead, the method is able to identify both the Hamiltonian (conservative) and dissipative parts of the dynamics while satisfying fundamental laws such as energy conservation or positive production of entropy, for instance. The proposed method is tested against some examples of discrete as well as continuum mechanics, whose accurate results demonstrate the validity of the proposed approach.

  9. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  10. Thermodynamic properties by Equation of state of liquid sodium under pressure

    NASA Astrophysics Data System (ADS)

    Li, Huaming; Sun, Yongli; Zhang, Xiaoxiao; Li, Mo

    Isothermal bulk modulus, molar volume and speed of sound of molten sodium are calculated through an equation of state of a power law form within good precision as compared with the experimental data. The calculated internal energy data show the minimum along the isothermal lines as the previous result but with slightly larger values. The calculated values of isobaric heat capacity show the unexpected minimum in the isothermal compression. The temperature and pressure derivative of various thermodynamic quantities in liquid Sodium are derived. It is discussed about the contribution from entropy to the temperature and pressure derivative of isothermal bulk modulus. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid Sodium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. By comparison with the results from experimental measurements and quasi-thermodynamic theory, the calculated values are found to be very close at melting point at ambient condition. Furthermore, several other thermodynamic quantities are also presented. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 11204200.

  11. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    NASA Astrophysics Data System (ADS)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  12. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    NASA Astrophysics Data System (ADS)

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.

    2015-09-01

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. The corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.

  13. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model

    NASA Astrophysics Data System (ADS)

    Kundu, Prosenjit; Khanra, Pitambar; Hens, Chittaranjan; Pal, Pinaki

    2017-11-01

    We investigate transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto (SK) model on complex networks both analytically and numerically. We analytically derive self-consistent equations for group angular velocity and order parameter for the model in the thermodynamic limit. Using the self-consistent equations we investigate transition to synchronization in SK model on uncorrelated scale-free (SF) and Erdős-Rényi (ER) networks in detail. Depending on the degree distribution exponent (γ ) of SF networks and phase-frustration parameter, the population undergoes from first-order transition [explosive synchronization (ES)] to second-order transition and vice versa. In ER networks transition is always second order irrespective of the values of the phase-lag parameter. We observe that the critical coupling strength for the onset of synchronization is decreased by phase-frustration parameter in case of SF network where as in ER network, the phase-frustration delays the onset of synchronization. Extensive numerical simulations using SF and ER networks are performed to validate the analytical results. An analytical expression of critical coupling strength for the onset of synchronization is also derived from the self-consistent equations considering the vanishing order parameter limit.

  14. Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2016-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.

  15. Central Upwind Scheme for a Compressible Two-Phase Flow Model

    PubMed Central

    Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242

  16. Central upwind scheme for a compressible two-phase flow model.

    PubMed

    Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  17. Uniqueness of thermodynamic projector and kinetic basis of molecular individualism

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.

    2004-05-01

    Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.

  18. Geometry and symmetry in non-equilibrium thermodynamic systems

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio

    2017-06-01

    The ultimate aim of this series of works is to establish the closure equations, valid for thermodynamic systems out from the Onsager region, and to describe the geometry and symmetry in thermodynamic systems far from equilibrium. Geometry of a non-equilibrium thermodynamic system is constructed by taking into account the second law of thermodynamics and by imposing the validity of the Glansdorff-Prigogine Universal Criterion of Evolution. These two constraints allow introducing the metrics and the affine connection of the Space of the Thermodynamic Forces, respectively. The Lie group associated to the nonlinear Thermodynamic Coordinate Transformations (TCT) leaving invariant both the entropy production σ and the Glansdorff-Prigogine dissipative quantity P, is also described. The invariance under TCT leads to the formulation of the Thermodynamic Covariance Principle (TCP): The nonlinear closure equations, i.e. the flux-force relations, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces (i.e. under TCT). The symmetry properties of a physical system are intimately related to the conservation laws characterizing the thermodynamic system. Noether's theorem gives a precise description of this relation. The macroscopic theory for closure relations, based on this geometrical description and subject to the TCP, is referred to as the Thermodynamic Field Theory (TFT). This theory ensures the validity of the fundamental theorems for systems far from equilibrium.

  19. How to make thermodynamic perturbation theory to be suitable for low temperature?

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2009-02-01

    Low temperature unsuitability is a problem plaguing thermodynamic perturbation theory (TPT) for years. Present investigation indicates that the low temperature predicament can be overcome by employing as reference system a nonhard sphere potential which incorporates one part of the attractive ingredient in a potential function of interest. In combination with a recently proposed TPT [S. Zhou, J. Chem. Phys. 125, 144518 (2006)] based on a λ expansion (λ being coupling parameter), the new perturbation strategy is employed to predict for several model potentials. It is shown that the new perturbation strategy can very accurately predict various thermodynamic properties even if the potential range is extremely short and hence the temperature of interest is very low and current theoretical formalisms seriously deteriorate or critically fail to predict even the existence of the critical point. Extensive comparison with existing liquid state theories and available computer simulation data discloses a superiority of the present TPT to two Ornstein-Zernike-type integral equation theories, i.e., hierarchical reference theory and self-consistent Ornstein-Zernike approximation.

  20. How to make thermodynamic perturbation theory to be suitable for low temperature?

    PubMed

    Zhou, Shiqi

    2009-02-07

    Low temperature unsuitability is a problem plaguing thermodynamic perturbation theory (TPT) for years. Present investigation indicates that the low temperature predicament can be overcome by employing as reference system a nonhard sphere potential which incorporates one part of the attractive ingredient in a potential function of interest. In combination with a recently proposed TPT [S. Zhou, J. Chem. Phys. 125, 144518 (2006)] based on a lambda expansion (lambda being coupling parameter), the new perturbation strategy is employed to predict for several model potentials. It is shown that the new perturbation strategy can very accurately predict various thermodynamic properties even if the potential range is extremely short and hence the temperature of interest is very low and current theoretical formalisms seriously deteriorate or critically fail to predict even the existence of the critical point. Extensive comparison with existing liquid state theories and available computer simulation data discloses a superiority of the present TPT to two Ornstein-Zernike-type integral equation theories, i.e., hierarchical reference theory and self-consistent Ornstein-Zernike approximation.

  1. Introduction to Physical Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    A slight deviation from Newtonian dynamics can lead to new effects associated with the concept of physical intelligence. Non-Newtonian effects such as deviation from classical thermodynamic as well as quantum-like properties have been analyzed. A self-supervised (intelligent) particle that can escape from Brownian motion autonomously is introduced. Such a capability is due to a coupling of the particle governing equation with its own Liouville equation via an appropriate feedback. As a result, the governing equation is self-stabilized, and random oscillations are suppressed, while the Liouville equation takes the form of the Fokker-Planck equation with negative diffusion. Non- Newtonian properties of such a dynamical system as well as thermodynamical implications have been evaluated.

  2. Hamiltonian and Thermodynamic Modeling of Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Grmela, Miroslav

    2010-10-01

    The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.

  3. Student Interpretations of Equations Related to the First Law of Thermodynamics

    ERIC Educational Resources Information Center

    Hadfield, Linda C.; Wieman, Carl E.

    2010-01-01

    Student interpretations of the equation for the first law of thermodynamics, [delta]U = q + w, an expression defining work done on or by a gas, w = -[image omitted]PdV, and an expression defining heat, q = [image omitted]C[subscript v]dT were investigated through a multiple-choice survey, a free-response written survey, and interviews. The…

  4. Comment on "Simple thermodynamic derivation of the electrocapillary equations" by E.M. Gutman [Surf. Sci. 639 (2015) L5-L8

    NASA Astrophysics Data System (ADS)

    Makkonen, Lasse

    2016-05-01

    Gutman [1] presents strongly worded criticism on the recent effort to simplify the derivations of the electrocapillary equations by a clear-cut thermodynamic analysis [2]. It is outlined here that the points raised by Gutman [1] are misunderstandings of the purpose and the details of the criticized paper [2].

  5. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  6. Fick's second law transformed: one path to cloaking in mass diffusion.

    PubMed

    Guenneau, S; Puvirajesinghe, T M

    2013-06-06

    Here, we adapt the concept of transformational thermodynamics, whereby the flux of temperature is controlled via anisotropic heterogeneous diffusivity, for the diffusion and transport of mass concentration. The n-dimensional, time-dependent, anisotropic heterogeneous Fick's equation is considered, which is a parabolic partial differential equation also applicable to heat diffusion, when convection occurs, for example, in fluids. This theory is illustrated with finite-element computations for a liposome particle surrounded by a cylindrical multi-layered cloak in a water-based environment, and for a spherical multi-layered cloak consisting of layers of fluid with an isotropic homogeneous diffusivity, deduced from an effective medium approach. Initial potential applications could be sought in bioengineering.

  7. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    NASA Astrophysics Data System (ADS)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  8. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.

  9. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q.

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments relies upon the global momentum conservation of the fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. Numerical examples illustrate the method's application to predicting bulk fluid motion including lateral propellant slosh in low-g conditions.

  10. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  11. Tables of thermodynamic properties of helium magnet coolant, revision A

    NASA Astrophysics Data System (ADS)

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: 'Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10(exp 8) Pa', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923-1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: 'Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it.

  12. An evolving effective stress approach to anisotropic distortional hardening

    DOE PAGES

    Lester, B. T.; Scherzinger, W. M.

    2018-03-11

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  13. An evolving effective stress approach to anisotropic distortional hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, B. T.; Scherzinger, W. M.

    A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less

  14. Thermodynamics of bread baking: A two-state model

    NASA Astrophysics Data System (ADS)

    Zürcher, Ulrich

    2014-03-01

    Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.

  15. Lovelock black holes surrounded by quintessence

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun

    2018-02-01

    Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r_h

  16. Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of the linear compressor for the pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Dang, H. Z.; Tan, J.; Bao, D.; Zhao, Y. B.; Qian, G. Z.

    2015-12-01

    Theoretical and experimental investigations on the dynamic and thermodynamic characteristics of a linear compressor incorporating the thermodynamic characteristics of the inertance tube pulse tube cold finger have been made. Both the compressor and cold finger are assumed as a one-dimensional thermodynamic model. The governing equations of the thermodynamic characteristics of the working gas are summarized, and the effects of the cooling performance on the working gas in the compression space are discussed. Based on the analysis of the working gas, the governing equations of the dynamic and thermodynamic characteristics of the compressor are deduced, and then the principles of achieving the optimal performance of the compressor are discussed in detail. Systematic experimental investigations are conducted on a developed moving-coil linear compressor which drives a pulse tube cold finger, which indicate the general agreement with the simulated results, and thus verify the rationality of the theoretical model and analyses.

  17. Properties of the two-dimensional heterogeneous Lennard-Jones dimers: An integral equation study

    PubMed Central

    Urbic, Tomaz

    2016-01-01

    Structural and thermodynamic properties of a planar heterogeneous soft dumbbell fluid are examined using Monte Carlo simulations and integral equation theory. Lennard-Jones particles of different sizes are the building blocks of the dimers. The site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions and the thermodynamic properties. Obtained results are compared to Monte Carlo simulation data. The critical parameters for selected types of dimers were also estimated and the influence of the Lennard-Jones parameters was studied. We have also tested the correctness of the site-site integral equation theory using different closures. PMID:27875894

  18. On the thermodynamics of smooth muscle contraction

    NASA Astrophysics Data System (ADS)

    Stålhand, Jonas; McMeeking, Robert M.; Holzapfel, Gerhard A.

    2016-09-01

    Cell function is based on many dynamically complex networks of interacting biochemical reactions. Enzymes may increase the rate of only those reactions that are thermodynamically consistent. In this paper we specifically treat the contraction of smooth muscle cells from the continuum thermodynamics point of view by considering them as an open system where matter passes through the cell membrane. We systematically set up a well-known four-state kinetic model for the cross-bridge interaction of actin and myosin in smooth muscle, where the transition between each state is driven by forward and reverse reactions. Chemical, mechanical and energy balance laws are provided in local forms, while energy balance is also formulated in the more convenient temperature form. We derive the local (non-negative) production of entropy from which we deduce the reduced entropy inequality and the constitutive equations for the first Piola-Kirchhoff stress tensor, the heat flux, the ion and molecular flux and the entropy. One example for smooth muscle contraction is analyzed in more detail in order to provide orientation within the established general thermodynamic framework. In particular the stress evolution, heat generation, muscle shorting rate and a condition for muscle cooling are derived.

  19. Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise.

    PubMed

    Ribeiro, Mauricio S; Nobre, Fernando D

    2016-08-01

    A recent proposal of an effective temperature θ, conjugated to a generalized entropy s_{q}, typical of nonextensive statistical mechanics, has led to a consistent thermodynamic framework in the case q=2. The proposal was explored for repulsively interacting vortices, currently used for modeling type-II superconductors. In these systems, the variable θ presents values much higher than those of typical room temperatures T, so that the thermal noise can be neglected (T/θ≃0). The whole procedure was developed for an equilibrium state obtained after a sufficiently long-time evolution, associated with a nonlinear Fokker-Planck equation and approached due to a confining external harmonic potential, ϕ(x)=αx^{2}/2 (α>0). Herein, the thermodynamic framework is extended to a quite general confining potential, namely ϕ(x)=α|x|^{z}/z (z>1). It is shown that the main results of the previous analyses hold for any z>1: (i) The definition of the effective temperature θ conjugated to the entropy s_{2}. (ii) The construction of a Carnot cycle, whose efficiency is shown to be η=1-(θ_{2}/θ_{1}), where θ_{1} and θ_{2} are the effective temperatures associated with two isothermal transformations, with θ_{1}>θ_{2}. The special character of the Carnot cycle is indicated by analyzing another cycle that presents an efficiency depending on z. (iii) Applying Legendre transformations for a distinct pair of variables, different thermodynamic potentials are obtained, and furthermore, Maxwell relations and response functions are derived. The present approach shows a consistent thermodynamic framework, suggesting that these results should hold for a general confining potential ϕ(x), increasing the possibility of experimental verifications.

  20. Teaching Differentials in Thermodynamics Using Spatial Visualization

    ERIC Educational Resources Information Center

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  1. ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.

    USGS Publications Warehouse

    Ling, Chi-Hai; Parkinson, Claire L.

    1986-01-01

    A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.

  2. The thermodynamic properties of oxygen and nitrogen

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The development of a single equation of state for oxygen and nitrogen based on the thermodynamic properties of the gases is described. The coefficients of the equation of state were determined by simultaneous least squares fits to values of isochoric heat capacity and saturation density values used to define the criteria for phase equilibrium. Tables of data for the conditions of both gases are included.

  3. Stochastic thermodynamics, fluctuation theorems and molecular machines.

    PubMed

    Seifert, Udo

    2012-12-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.

  4. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperwas, K., E-mail: kkoperwas@us.edu.pl; Grzybowski, A.; Grzybowska, K.

    2015-07-14

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since thismore » relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.« less

  5. Theoretical astrophysics in the 19th century (Homage to Radó von Kövesligethy)

    NASA Astrophysics Data System (ADS)

    Balázs, Lajos G.

    The nature of astronomical information is determined mostly by the incoming light. Theoretical astrophysics means basically the theory of light emission and its relation to the physical constitution of the emitting celestial bodies. The necessary physical disciplines include theory of gravitation, theory of radiation, thermodynamics, matter--radiation interaction. The most significant theoretical achievement in the 17th - 18th century was the axiomatic foundation of mechanics and the law of gravitation. In the context of the nature of light, there were two conceptions: Newton contra Huygens, i.e. particle versus wave phenomenon. Using the theory of gravitation, first speculations appeared on black holes (Michell, Laplace), cosmogony (Kant-Laplace theory), the structure of the Milky Way (Kant), and the explanation of motion of the celestial bodies. The Olbers Paradox, formulated in the 19th century, is still one of the most significant constraints on observational cosmology. The development of thermodynamics, matter-radiation interaction, development of the theory of electromagnetism became important milestones. Maxwell's theory was the classical framework of the interaction between matter and radiation. Kirchhoff and Bunsen's revolutionary discovery of spectral analysis (1859) showed that observation of spectra makes it possible to study the chemical composition of emitting bodies. Thermodynamics predicted the existence of the black body radiation. It did not succeed, however, to determine the functional form of the wavelength dependence. A combination of the thermodynamic equation of state with the equation of hydrostatics resulted in the first stellar models (Lane, Ritter, Schuster). The first successful spectral equation of black body radiation was the theory of continuous spectra of celestial bodies by Radó von Kövesligethy (published 1885 in Hungarian, 1890 in German). Kövesligethy made several assumptions on the matter-radiation interaction: radiating matter consists of interacting particles, the form of interaction is an inverse power law, the radiation field is represented by the aether, aether is made also from interacting particles, light is the propagation of the oscillation of the aether particles, there is an equipartition between the oscillations energy of material and aetheric particles. Based on these assumptions, he derived a spectral equation with the following properties: the spectral distribution of radiation depends only on the temperature, the total irradiated energy is finite (15 years before Planck!), the wavelength of the intensity maximum is inversely proportional to the temperature (eight years before Wien!). Using his spectral equation, he estimated the temperature of several celestial bodies, including the Sun.

  6. Understanding Product Optimization: Kinetic versus Thermodynamic Control.

    ERIC Educational Resources Information Center

    Lin, King-Chuen

    1988-01-01

    Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)

  7. DIY EOS: Experimentally Validated Equations of State for Planetary Fluids to GPa Pressures, Tools for Understanding Planetary Processes and Habitability

    NASA Astrophysics Data System (ADS)

    Vance, Steven; Brown, J. Michael; Bollengier, Olivier

    2016-10-01

    Sound speeds are fundamental to seismology, and provide a path allowing the accurate determination of thermodynamic potentials. Prior equations of state (EOS) for pure ammonia (Harr and Gallagher 1978, Tillner-Roth et al. 1993) are based primarily on measured densities and heat capacities. Sound speeds, not included in the fitting, are poorly predicted.We couple recent high pressure sound speed data with prior densities and heat capacities to generate a new equation of state. Our representation fits both the earlier lower pressure work as well as measured sound speeds to 4 GPa and 700 K and the Hugoniot to 70 GPa and 6000 K.In contrast to the damped polynomial representation previously used, our equation of state is based on local basis functions in the form of tensor b-splines. Regularization allows the thermodynamic surface to be continued into regimes poorly sampled by experiments. We discuss application of this framework for aqueous equations of state validated by experimental measurements. Preliminary equations of state have been prepared applying the local basis function methodology to aqueous NH3, Mg2SO4, NaCl, and Na2SO4. We describe its use for developing new equations of state, and provide some applications of the new thermodynamic data to the interior structures of gas giant planets and ocean worlds.References:L. Haar and J. S. Gallagher. Thermodynamic properties of ammonia. American Chemical Society and the American Institute of Physics for the National Bureau of Standards, 1978.R. Tillner-Roth, F. Harms-Watzenberg, and H. Baehr. Eine neue fundamentalgleichung fuer ammoniak. DKV TAGUNGSBERICHT, 20:67-67, 1993.

  8. Phases, phase equilibria, and phase rules in low-dimensional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  10. Chemical potential, Gibbs-Duhem equation and quantum gases

    NASA Astrophysics Data System (ADS)

    Lee, M. Howard

    2017-05-01

    Thermodynamic relations like the Gibbs-Duhem are valid from the lowest to the highest temperatures. But they cannot by themselves provide any specific temperature behavior of thermodynamic functions like the chemical potential. In this work, we show that if some general conditions are attached to the Gibbs-Duhem equation, it is possible to obtain the low temperature form of the chemical potential for the ideal Fermi and Bose gases very directly.

  11. Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. II. The generalized Laplace, Gibbs-Kelvin, and Young equations and application to nucleation.

    PubMed

    Noppel, M; Vehkamäki, H; Winkler, P M; Kulmala, M; Wagner, P E

    2013-10-07

    Based on the results of a previous paper [M. Noppel, H. Vehkamäki, P. M. Winkler, M. Kulmala, and P. E. Wagner, J. Chem. Phys. 139, 134107 (2013)], we derive a thermodynamically consistent expression for reversible or minimal work needed to form a dielectric liquid nucleus of a new phase on a charged insoluble conducting sphere within a uniform macroscopic one- or multicomponent mother phase. The currently available model for ion-induced nucleation assumes complete spherical symmetry of the system, implying that the seed ion is immediately surrounded by the condensing liquid from all sides. We take a step further and treat more realistic geometries, where a cap-shaped liquid cluster forms on the surface of the seed particle. We derive the equilibrium conditions for such a cluster. The equalities of chemical potentials of each species between the nucleus and the vapor represent the conditions of chemical equilibrium. The generalized Young equation that relates contact angle with surface tensions, surface excess polarizations, and line tension, also containing the electrical contribution from triple line excess polarization, expresses the condition of thermodynamic equilibrium at three-phase contact line. The generalized Laplace equation gives the condition of mechanical equilibrium at vapor-liquid dividing surface: it relates generalized pressures in neighboring bulk phases at an interface with surface tension, excess surface polarization, and dielectric displacements in neighboring phases with two principal radii of surface curvature and curvatures of equipotential surfaces in neighboring phases at that point. We also re-express the generalized Laplace equation as a partial differential equation, which, along with electrostatic Laplace equations for bulk phases, determines the shape of a nucleus. We derive expressions that are suitable for calculations of the size and composition of a critical nucleus (generalized version of the classical Kelvin-Thomson equation).

  12. Thermodynamic Equations of State for Aqueous Solutions Applied to Deep Icy Satellite and Exoplanet Oceans

    NASA Astrophysics Data System (ADS)

    Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.

    2014-12-01

    Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High pressure ices should not be present on Titan if its ocean composition is Dead-Sea like, as recently inferred from tidal dissipation and topography, and if Titan's moment of inertia has the published value of C/MR2 = 0.3414.

  13. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  14. Thermodynamics of Highly Concentrated Aqueous Electrolytes: Based on Boltzmann's eponymous equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ally, Moonis Raza

    This sharply focused book invites the reader to explore the chemical thermodynamics of highly concentrated aqueous electrolytes from a different vantage point than traditional methods. The book's foundation is deeply rooted in Ludwig Boltzmann's eponymous equation. The pathway from micro to macro thermodynamics is explained heuristically, in a step-by-step approach. Concepts and mathematical formalism are explained in detail to captivate and maintain interest as the algebra twists and turns. Every significant result is derived in a lucid and piecemeal fashion. Application of the theory is exemplified with examples. It is amazing to realize that Boltamann's simple equation contains sufficient informationmore » from which such an elaborate theory can emerge. This book is suitable for undergraduate and graduate level classes in chemical engineering, chemistry, geochemistry, environmental sciences, and those studying aerosol particles in the troposphere. Students interested in understanding how thermodynamic theories may be developed would be inspired by the methodology. The author wishes that readers get as much excitement reading this book as he did writing it.« less

  15. From the Boltzmann to the Lattice-Boltzmann Equation:. Beyond BGK Collision Models

    NASA Astrophysics Data System (ADS)

    Philippi, Paulo Cesar; Hegele, Luiz Adolfo; Surmas, Rodrigo; Siebert, Diogo Nardelli; Dos Santos, Luís Orlando Emerich

    In this work, we present a derivation for the lattice-Boltzmann equation directly from the linearized Boltzmann equation, combining the following main features: multiple relaxation times and thermodynamic consistency in the description of non isothermal compressible flows. The method presented here is based on the discretization of increasingly order kinetic models of the Boltzmann equation. Following a Gross-Jackson procedure, the linearized collision term is developed in Hermite polynomial tensors and the resulting infinite series is diagonalized after a chosen integer N, establishing the order of approximation of the collision term. The velocity space is discretized, in accordance with a quadrature method based on prescribed abscissas (Philippi et al., Phys. Rev E 73, 056702, 2006). The problem of describing the energy transfer is discussed, in relation with the order of approximation of a two relaxation-times lattice Boltzmann model. The velocity-step, temperature-step and the shock tube problems are investigated, adopting lattices with 37, 53 and 81 velocities.

  16. The development of methods for the prediction of primary creep behavior in metals

    NASA Technical Reports Server (NTRS)

    Zerwekh, R. P.

    1978-01-01

    The applicability of a thermodynamic constitutive theory of deformation to the prediction of primary creep and creep strain relaxation behavior in metals is examined. Constitutive equations derived from the theory are subjected to a parametric analysis in order to determine the influence of several parameters on the curve forms generated by the equations. A computer program is developed which enables the solution of a generalized constitutive equation using experimental data as input. Several metals were tested to form a data base of primary creep and relaxation behavior. The extent to which these materials conformed to the constitutive equation showed wide variability, with the alloy Ti-6Al-4V exhibiting the most consistent results. Accordingly, most of the analysis is concentrated upon data from that alloy, although creep and relaxation data from all the materials tested are presented. Experimental methods are outlined as well as some variations in methods of analysis. Various theoretical and practical implications of the work are discussed.

  17. An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy

    DOE PAGES

    Kilcrease, D. P.; Colgan, J.; Hakel, P.; ...

    2015-06-20

    We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less

  18. Closed system of coupling effects in generalized thermo-elastoplasticity

    NASA Astrophysics Data System (ADS)

    Śloderbach, Z.

    2016-05-01

    In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.

  19. Modeling of heat conduction via fractional derivatives

    NASA Astrophysics Data System (ADS)

    Fabrizio, Mauro; Giorgi, Claudio; Morro, Angelo

    2017-09-01

    The modeling of heat conduction is considered by letting the time derivative, in the Cattaneo-Maxwell equation, be replaced by a derivative of fractional order. The purpose of this new approach is to overcome some drawbacks of the Cattaneo-Maxwell equation, for instance possible fluctuations which violate the non-negativity of the absolute temperature. Consistency with thermodynamics is shown to hold for a suitable free energy potential, that is in fact a functional of the summed history of the heat flux, subject to a suitable restriction on the set of admissible histories. Compatibility with wave propagation at a finite speed is investigated in connection with temperature-rate waves. It follows that though, as expected, this is the case for the Cattaneo-Maxwell equation, the model involving the fractional derivative does not allow the propagation at a finite speed. Nevertheless, this new model provides a good description of wave-like profiles in thermal propagation phenomena, whereas Fourier's law does not.

  20. Thermodynamic Study of Solid-Liquid Equilibrium in NaCl-NaBr-H2O System at 288.15 K

    NASA Astrophysics Data System (ADS)

    Li, Dan; Meng, Ling-zong; Deng, Tian-long; Guo, Ya-fei; Fu, Qing-Tao

    2018-06-01

    The solubility data, composition of the solid solution and refractive indices of the NaCl-NaBr-H2O system at 288.15 K were studied with the isothermal equilibrium dissolution method. The solubility diagram and refractive index diagram of this system were plotted at 288.15 K. The solubility diagram consists of two crystallization zones for solid solution Na(Cl,Br) · 2H2O and Na(Cl,Br), one invariant points cosaturated with two solid solution and two univariant solubility isothermal curves. On the basis of Pitzer and Harvie-Weare (HW) chemical models, the composition equations and solubility equilibrium constant equations of the solid solutions at 288.15 K were acquired using the solubility data, the composition of solid solutions, and binary Pitzer parameters. The solubilities calculated using the new method combining the equations are in good agreement with the experimental data.

  1. A multiphase equation of state of three solid phases, liquid, and gas for titanium

    NASA Astrophysics Data System (ADS)

    Pecker, S.; Eliezer, S.; Fisher, D.; Henis, Z.; Zinamon, Z.

    2005-08-01

    A multiple-phase equation of state of the α phase, β phase, ω phase, liquid, and gas for titanium is presented. This equation of state is thermodynamically consistent, based on a three-term semiempirical model for the Helmholtz free energy. The parameters of the free energy are first evaluated from the experimental data and solid-state theoretical calculations. Then, the values of the parameters are adjusted using a numerical minimization scheme based on the simplex algorithm, to values that best reproduce measured phase diagrams and other experimental data. The predicted phase diagram shows a compression-induced β-ω transition, up to a β-ω-liquid triple point at ˜45GPa and ˜2200K. For pressures above this triple point, the melting occurs from the ω phase. Moreover, no β-ω transition is predicted along the Hugoniot curve starting at STP conditions.

  2. Thermodynamics of urban population flows.

    PubMed

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  3. Reclaiming the Central Role of Equations of State in Thermodynamics

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2006-01-01

    The power of thermodynamics as a tool to derive useful information for a variety of systems is described, stressing the central role of the measurement of thermodynamics properties having experimental physical chemistry. The strategy relies on the use of "response coefficients" that can be measured experimentally and on the systematic manipulation…

  4. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  5. Cluster expansion for ground states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  6. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictionsmore » also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.« less

  7. Scale covariance and G-varying cosmology. II - Thermodynamics, radiation, and the 3 K background

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Hsieh, S.-H.

    1979-01-01

    Within the framework of a scale-covariant theory of gravitation, a semiclassical description of particles and photons is given. Thermodynamic relations consistent with the modified conservation equations are derived. Application to a system of radiation shows that the observed 3-K background radiation can be interpreted, within the present framework, as a remnant of equilibrium radiation in the past. As the theory postulates a nonstandard coupling between gravitation and electrodynamics, the assumption that Einstein's theory of gravitation is unchanged forces modifications at the atomic level. The use of Minkowskian spacetime in atomic physics is found to be adequate only over small, but not large, time scales compared with the age of the universe. As a result, a relation between energy and the frequency of a free photon is demonstrated. Possible observational consequences of this relation are discussed.

  8. Evaluation of the Thermodynamic Consistency of Closure Approximations in Several Models Proposed for the Description of Liquid Crystalline Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, Brian J.

    2002-05-01

    Given the premise that a set of dynamical equations must possess a definite, underlying mathematical structure to ensure local and global thermodynamic stability, as has been well documented, several different models for describing liquid crystalline dynamics are examined with respect to said structure. These models, each derived during the past several years using a specific closure approximation for the fourth moment of the distribution function in Doi's rigid rod theory, are all shown to be inconsistent with this basic mathematical structure. The source of this inconsistency lies in Doi's expressions for the extra stress tensor and temporal evolution of the order parameter, which are rederived herein using a transformation that allows for internal compatibility with the underlying mathematical structure that is present on the distribution function level of description.

  9. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species.more » The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.« less

  10. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren; Kelley, Maxwell; Marshall, John

    2017-08-01

    Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

  11. Problems of low-parameter equations of state

    NASA Astrophysics Data System (ADS)

    Petrik, G. G.

    2017-11-01

    The paper focuses on the system approach to problems of low-parametric equations of state (EOS). It is a continuation of the investigations in the field of substantiated prognosis of properties on two levels, molecular and thermodynamic. Two sets of low-parameter EOS have been considered based on two very simple molecular-level models. The first one consists of EOS of van der Waals type (a modification of van der Waals EOS proposed for spheres). The main problem of these EOS is a weak connection with the micro-level, which raise many uncertainties. The second group of EOS has been derived by the author independently of the ideas of van der Waals based on the model of interacting point centers (IPC). All the parameters of the EOS have a meaning and are associated with the manifestation of attractive and repulsive forces. The relationship between them is found to be the control parameter of the thermodynamic level. In this case, EOS IPC passes into a one-parameter family. It is shown that many EOS of vdW-type can be included in the framework of the PC model. Simultaneously, all their parameters acquire a physical meaning.

  12. Stochastic thermodynamics and entropy production of chemical reaction systems

    NASA Astrophysics Data System (ADS)

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  13. The Noble-Abel Stiffened-Gas equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Métayer, Olivier, E-mail: olivier.lemetayer@univ-amu.fr; Saurel, Richard, E-mail: richard.saurel@univ-amu.fr; RS2N, 371 Chemin de Gaumin, 83640 Saint-Zacharie

    2016-04-15

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOSmore » named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.« less

  14. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    Work done in the period Jan. - June 1994 is summarized. Two threads of research have been followed. First, the thermodynamics approach was used to model the chemical and mechanical responses of composites exposed to high temperatures. The thermodynamics approach lends itself easily to the usage of variational principles. This thermodynamic-variational approach has been applied to the transpiration cooling problem. The second thread is the development of a better algorithm to solve the governing equations resulting from the modeling. Explicit finite difference method is explored for solving the governing nonlinear, partial differential equations. The method allows detailed material models to be included and solution on massively parallel supercomputers. To demonstrate the feasibility of the explicit scheme in solving nonlinear partial differential equations, a transpiration cooling problem was solved. Some interesting transient behaviors were captured such as stress waves and small spatial oscillations of transient pressure distribution.

  15. Thermodynamic properties and static structure factor for a Yukawa fluid in the mean spherical approximation.

    PubMed

    Montes-Perez, J; Cruz-Vera, A; Herrera, J N

    2011-12-01

    This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.

  16. A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration

    NASA Astrophysics Data System (ADS)

    Nonaka, Andrew; Day, Marcus S.; Bell, John B.

    2018-01-01

    We present a numerical approach for low Mach number combustion that conserves both mass and energy while remaining on the equation of state to a desired tolerance. We present both unconfined and confined cases, where in the latter the ambient pressure changes over time. Our overall scheme is a projection method for the velocity coupled to a multi-implicit spectral deferred corrections (SDC) approach to integrate the mass and energy equations. The iterative nature of SDC methods allows us to incorporate a series of pressure discrepancy corrections naturally that lead to additional mass and energy influx/outflux in each finite volume cell in order to satisfy the equation of state. The method is second order, and satisfies the equation of state to a desired tolerance with increasing iterations. Motivated by experimental results, we test our algorithm on hydrogen flames with detailed kinetics. We examine the morphology of thermodiffusively unstable cylindrical premixed flames in high-pressure environments for confined and unconfined cases. We also demonstrate that our algorithm maintains the equation of state for premixed methane flames and non-premixed dimethyl ether jet flames.

  17. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Shock, Everetr L.; Koretsky, Carla M.

    1995-04-01

    Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.

  18. Thermodynamics of a periodically driven qubit

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  19. Symmetric and antisymmetric forms of the Pauli master equation.

    PubMed

    Klimenko, A Y

    2016-07-21

    When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter - this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future.

  20. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  1. Structure and thermodynamics of liquid alkali metals in variational modified hypernetted-chain theory

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Lai, S. K.

    1992-03-01

    The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.

  2. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  3. Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys

    NASA Astrophysics Data System (ADS)

    Tian, Fuyang; Wang, Yang; Vitos, Levente

    2017-01-01

    We investigate the elastic moduli, ideal tensile strength, and thermodynamic properties of TiVNb and AlTiVNb refractory medium-entropy alloys (HEAs) by using ab initio alloy theories: the coherent potential approximation (CPA), the special quasi-random supercell (SQS), and a 432-atom supercell (SC). We find that with increasing number of alloy components, the SQS elastic constants become sensitive to the supercell size. The predicted elastic moduli are consistent with the available experiments. Aluminum doping decreases the stability of the body centered cubic phase. The ideal tensile strength calculation indicates that adding equiatomic Al to TiVNb random solid solution increases the intrinsic strength (ideal strain increase from 9.6% to 11.8%) and decreases the intrinsic strength (from 9.6 to 5.7 GPa). Based on the equation of states calculated by the CPA and SC methods, the thermodynamic properties obtained by the two ab initio methods are assessed. The L21 AlTiVNb (Ti-Al-V-Nb) alloy is predicted to be thermodynamically and dynamically stable with respect to the solid solution.

  4. Cosmic censorship conjecture in Kerr-Sen black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  5. Equation of State for the Thermodynamic Properties of 1,1,2,2,3-Pentafluoropropane (R-245ca)

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Lemmon, Eric W.

    2016-03-01

    An equation of state for the calculation of the thermodynamic properties of 1,1,2,2,3-pentafluoropropane (R-245ca), which is a hydrofluorocarbon refrigerant, is presented. The equation of state (EOS) is expressed in terms of the Helmholtz energy as a function of temperature and density, and can calculate all thermodynamic properties through the use of derivatives of the Helmholtz energy. The equation is valid for all liquid, vapor, and supercritical states of the fluid, and is valid from the triple point to 450 K, with pressures up to 10 MPa. Comparisons to experimental data are given to verify the stated uncertainties in the EOS. The estimated uncertainty for density is 0.1 % in the liquid phase between 243 K and 373 K with pressures up to 6.5 MPa; the uncertainties increase outside this range, and are unknown. The uncertainty in vapor-phase speed of sound is 0.1 %. The uncertainty in vapor pressure is 0.2 % between 270 K and 393 K. The uncertainties in other regions and properties are unknown due to a lack of experimental data.

  6. Equation of State for the Thermodynamic Properties of trans-1,3,3,3-Tetrafluoropropene [R-1234ze(E)

    NASA Astrophysics Data System (ADS)

    Thol, Monika; Lemmon, Eric W.

    2016-03-01

    An equation of state for the calculation of the thermodynamic properties of the hydrofluoroolefin refrigerant R-1234ze(E) is presented. The equation of state (EOS) is expressed in terms of the Helmholtz energy as a function of temperature and density. The formulation can be used for the calculation of all thermodynamic properties through the use of derivatives of the Helmholtz energy. Comparisons to experimental data are given to establish the uncertainty of the EOS. The equation of state is valid from the triple point (169 K) to 420 K, with pressures to 100 MPa. The uncertainty in density in the liquid and vapor phases is 0.1 % from 200 K to 420 K at all pressures. The uncertainty increases outside of this temperature region and in the critical region. In the gaseous phase, speeds of sound can be calculated with an uncertainty of 0.05 %. In the liquid phase, the uncertainty in speed of sound increases to 0.1 %. The estimated uncertainty for liquid heat capacities is 5 %. The uncertainty in vapor pressure is 0.1 %.

  7. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  8. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  9. Thermodynamics and emergent universe

    NASA Astrophysics Data System (ADS)

    Ghosh, Saumya; Gangopadhyay, Sunandan

    2017-05-01

    We show that in the isentropic scenario, the first-order thermodynamical particle creation model gives an emergent universe solution even when the chemical potential is nonzero. However, there exists no emergent universe scenario in the second-order non-equilibrium theory for the particle creation model. We then point out a correspondence between the particle creation model with barotropic equation of state and the equation of state giving rise to an emergent universe without particle creation in spatially flat FRW cosmology.

  10. Thermodynamic equilibrium-air correlations for flowfield applications

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  11. Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides

    NASA Astrophysics Data System (ADS)

    Shukla, Adarsh

    In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-CaO-MgO system has been built quite satisfactorily. The aim of the present work was to improve the applicability of this five component database by adding SrO and BaO to it. The databases prepared in this work will be of special importance to the glass and steel industries. In the SiO2-B2O3-Al2O 3-CaO-MgO-BaO-SrO system there are 11 binary systems and 25 ternary systems which contain either BaO or SrO or both. For most of these binary systems, and for none of these ternary systems, is there a previous thermodynamic optimization available in the literature. In this thesis, thermodynamic evaluation and optimization for the 11 binary, 17 ternary and 5 quaternary BaO- and SrO- containing systems in the SiO2-B2O3-Al 2O3-CaO-MgO-BaO-SrO system is presented. All these thermodynamic optimizations were performed based on the experimental data available in the literature, except for the SrO-B2O3-SiO2 system. This latter system was optimized on the basis of a few experimental data points generated in the present work together with the data from the literature. In the present work, all the calculations were performed using the FactSage™ thermochemical software. The Modified Quasichemical Model (MQM), which is capable of taking short-range ordering into account, was used for the liquid phase. All the binary systems were critically evaluated and optimized using available phase equilibrium and thermodynamic data. The model parameters obtained as a result of this simultaneous optimization were used to represent the Gibbs energies of all phases as functions of temperature and composition. Optimized binary model parameters were used to estimate the thermodynamic properties of phases in the ternary systems. Proper “geometric” models were used for these estimations. Ternary phase diagram were calculated and compared with available experimental data. Wherever required, ternary interaction parameters were also added. The first part of this thesis comprises a general literature review on the subject of thermodynamic modeling and experimental techniques for phase diagram determination. The next chapters include the literature review and the thermodynamic optimizations of the various systems. The last part of the thesis is the presentation of experiments performed in the present work, by quenching and EPMA, in the SrO-B2O3-SiO2 system. The experiments were designed to generate the maximum amount of information with the minimum number of experiments using the thermodynamic optimization, based only on the data available in the literature, as a guide. These newly-obtained data improved the (preceding) thermodynamic optimization, based on the experimental data in the literature, of this ternary system.

  12. Investigation of two and three parameter equations of state for cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Jenkins, Susan L.; Majumdar, Alok K.; Hendricks, Robert C.

    1990-01-01

    Two-phase flows are a common occurrence in cryogenic engines and an accurate evaluation of the heat-transfer coefficient in two-phase flow is of significant importance in their analysis and design. The thermodynamic equation of state plays a key role in calculating the heat transfer coefficient which is a function of thermodynamic and thermophysical properties. An investigation has been performed to study the performance of two- and three-parameter equations of state to calculate the compressibility factor of cryogenic fluids along the saturation loci. The two-parameter equations considered here are van der Waals and Redlich-Kwong equations of state. The three-parameter equation represented here is the generalized Benedict-Webb-Rubin (BWR) equation of Lee and Kesler. Results have been compared with the modified BWR equation of Bender and the extended BWR equations of Stewart. Seven cryogenic fluids have been tested; oxygen, hydrogen, helium, nitrogen, argon, neon, and air. The performance of the generalized BWR equation is poor for hydrogen and helium. The van der Waals equation is found to be inaccurate for air near the critical point. For helium, all three equations of state become inaccurate near the critical point.

  13. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation constants from Franck (1956a,b) for temperatures from 300-550??C. Compared to the conductance-derived results of Frantz and Marshall (1984), our dissociation constants agree well at the highest densities, but are greater at lower densities. At the lowest density, at 600??C and 1 kbar, the discrepancy of 0.9 log units is within the overall uncertainties associated with our experimental results and those associated with deriving dissociation constants from conductance measurements in highly associated solutions (Oelkers and Helgeson, 1988). Finally, we also report an equation of state fit to the standard thermodynamic properties of the aqueous HCl molecule that is consistent with a wide array of independently determined dissociation constants of HCl and permits interpolation and extrapolation of the dissociation constant of HCl to 1000??C and 5.0 kbars. ?? 1991.

  14. Arrhenius thermodynamics and birth defects: chemical teratogen synergy. Untested, testable, and projected relevance.

    PubMed

    Miller, Morton W; Church, Charles C

    2013-03-01

    This article addresses the issue of hyperthermia-induced birth defects with an accompanying additional teratogen, be it a chemical or a physical agent (i.e., a simultaneous "combinational" exposure to two teratogens, one of which is hyperthermia). Hyperthermia per se is a recognized human and animal teratogen. An excellent example of such combinational exposures is an epileptic woman who becomes pregnant while taking valproic acid (VPA) to control seizures. VPA is a recognized chemical teratogen, and fever (hyperthermia) is not an uncommon event during pregnancy. While VPA also may occasionally induce fever as a side effect, we are concerned here with fevers arising from other, unrelated causes. There is a small but internally consistent literature on these combinational-teratogen exposures involving hyperthermia plus a chemical teratogen; in each instance, the effect level has been observed to be synergistically elevated above levels induced by the separate teratogenic components. The data were empirical. The observed synergy is, however, consistent with Arrhenius thermodynamics, a well-known chemical rate equation. The need for information about combinational teratogen exposures is acute; fever is a common occurrence during pregnancy; and there are many instances whereby there is also the simultaneous presence of some other teratogen(s). Given that the rate of autism spectrum disorders in the United States was recently presented as 1 in 88 births, it seems reasonable to suspect that such combinational regimens are much more prevalent than previously thought. Our hypothesis is that synergistic birth defect levels from combinational regimens are consistent with Arrhenius thermodynamics. Copyright © 2013 Wiley Periodicals, Inc.

  15. Calculating the thermodynamic properties of aqueous solutions of alkali metal carboxylates

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.; Zhukova, T. V.

    2014-06-01

    A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.

  16. Nonequilibrium Entropy in a Shock

    DOE PAGES

    Margolin, Len G.

    2017-07-19

    In a classic paper, Morduchow and Libby use an analytic solution for the profile of a Navier–Stokes shock to show that the equilibrium thermodynamic entropy has a maximum inside the shock. There is no general nonequilibrium thermodynamic formulation of entropy; the extension of equilibrium theory to nonequililbrium processes is usually made through the assumption of local thermodynamic equilibrium (LTE). However, gas kinetic theory provides a perfectly general formulation of a nonequilibrium entropy in terms of the probability distribution function (PDF) solutions of the Boltzmann equation. In this paper I will evaluate the Boltzmann entropy for the PDF that underlies themore » Navier–Stokes equations and also for the PDF of the Mott–Smith shock solution. I will show that both monotonically increase in the shock. As a result, I will propose a new nonequilibrium thermodynamic entropy and show that it is also monotone and closely approximates the Boltzmann entropy.« less

  17. Nonequilibrium Entropy in a Shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, Len G.

    In a classic paper, Morduchow and Libby use an analytic solution for the profile of a Navier–Stokes shock to show that the equilibrium thermodynamic entropy has a maximum inside the shock. There is no general nonequilibrium thermodynamic formulation of entropy; the extension of equilibrium theory to nonequililbrium processes is usually made through the assumption of local thermodynamic equilibrium (LTE). However, gas kinetic theory provides a perfectly general formulation of a nonequilibrium entropy in terms of the probability distribution function (PDF) solutions of the Boltzmann equation. In this paper I will evaluate the Boltzmann entropy for the PDF that underlies themore » Navier–Stokes equations and also for the PDF of the Mott–Smith shock solution. I will show that both monotonically increase in the shock. As a result, I will propose a new nonequilibrium thermodynamic entropy and show that it is also monotone and closely approximates the Boltzmann entropy.« less

  18. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  19. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less

  20. Equation of State of Detonation Products for TNT by Aquarium Technique

    NASA Astrophysics Data System (ADS)

    Han, Yong

    2017-06-01

    During explosive detonation, the detonation pressure (P) and temperature (T) will decay quickly with the expansion of detonation products, and the damage effect is determined by the thermodynamic state of detonation products under high pressure. The traditional and important method for calibrating the parameters of thermodynamic state is cylinder test, but the results showed that when the cylinder expanded to a certain distance, the cylinder wall would break up and the detonation products would jet out, which would affect the accuracy of the calibration parameters of thermodynamic state. In this paper, the aquarium technique was used to study the detonation product thermodynamic state of TNT explosive, obtaining the shock wave track under the water and the trace of the interface between water and detonation products in the specific position with the high speed rotating mirror camera. By thermodynamic calculation program BKW and VHL, the parameters of equation of state were obtained. Using the parameters and the dynamic software LS-DYNA, the underwater explosion of TNT was simulated. Comparison with experimental results shows that the thermodynamic state parameters which is calculated by VHL is more accurate than that of BKW. It is concluded that the aquarium test is a more effective method to calibrate the thermodynamic state than cylinder test.

  1. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    PubMed

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  2. Thermodynamic States in Explosion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T

  3. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  4. Solid-phase equilibria on Pluto's surface

    NASA Astrophysics Data System (ADS)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  5. Entropy inequality and hydrodynamic limits for the Boltzmann equation.

    PubMed

    Saint-Raymond, Laure

    2013-12-28

    Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!).

  6. Cosmic censorship of rotating Anti-de Sitter black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwak, Bogeun; Lee, Bum-Hoon, E-mail: rasenis@sogang.ac.kr, E-mail: bhl@sogang.ac.kr

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  7. Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels

    DOE PAGES

    Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...

    2016-07-29

    Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.

  8. On a partial differential equation method for determining the free energies and coexisting phase compositions of ternary mixtures from light scattering data.

    PubMed

    Ross, David S; Thurston, George M; Lutzer, Carl V

    2008-08-14

    In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.

  9. On the Lennard-Jones and Devonshire theory for solid state thermodynamics

    NASA Astrophysics Data System (ADS)

    Lustig, Rolf

    2017-06-01

    The Lennard-Jones and Devonshire theory is developed into a self-consistent scheme for essentially complete thermodynamic information. The resulting methodology is compared with molecular simulation of the Lennard-Jones system in the face-centred-cubic solid state over an excessive range of state points. The thermal and caloric equations of state are in almost perfect agreement along the entire fluid-solid coexistence lines over more than six orders of magnitude in pressure. For homogeneous densities greater than twice the solid triple point density, the theory is essentially exact for derivatives of the Helmholtz energy. However, the fluid-solid phase equilibria are in disagreement with simulation. It is shown that the theory is in error by an additive constant to the Helmholtz energy A/(NkBT). Empirical inclusion of the error term makes all fluid-solid equilibria indistinguishable from exact results. Some arguments about the origin of the error are given.

  10. A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation

    NASA Astrophysics Data System (ADS)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2017-07-01

    The extracellular matrix (ECM) of a solid tumor not only affords scaffolding to support tumor architecture and integrity but also plays an essential role in tumor growth, invasion, metastasis, and therapeutics. In this paper, a non-equilibrium thermodynamic theory is established to study the chemo-mechanical behaviors of tumor ECM, which is modeled as a poroelastic polyelectrolyte consisting of a collagen network and proteoglycans. By using the principle of maximum energy dissipation rate, we deduce a set of governing equations for drug transport and mechanosensitive enzymatic degradation in ECM. The results reveal that osmosis is primarily responsible for the compression resistance of ECM. It is suggested that a well-designed ECM degradation can effectively modify the tumor microenvironment for improved efficiency of cancer therapy. The theoretical predictions show a good agreement with relevant experimental observations. This study aimed to deepen our understanding of tumor ECM may be conducive to novel anticancer strategies.

  11. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  12. Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2017-12-01

    Microscopic dynamical aspects of the propulsion of nanomotors by self-phoretic mechanisms are considered. Propulsion by self-diffusiophoresis relies on the mechanochemical coupling between the fluid velocity field and the concentration fields induced by asymmetric catalytic reactions on the motor surface. The consistency between the thermodynamics of this coupling and the microscopic reversibility of the underlying molecular dynamics is investigated. For this purpose, a mechanochemical fluctuation theorem for the joint probability to find the motor at position r after n reactive events have occurred during the time interval t is derived, starting from coupled Langevin equations for the translational, rotational, and chemical fluctuations of self-phoretic motors. An important result that follows from this analysis is the identification of an effect that is reciprocal to self-propulsion by diffusiophoresis, which leads to a dependence of the reaction rate on the value of an externally applied force.

  13. On nonlinear thermo-electro-elasticity.

    PubMed

    Mehnert, Markus; Hossain, Mokarram; Steinmann, Paul

    2016-06-01

    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.

  14. On nonlinear thermo-electro-elasticity

    PubMed Central

    Mehnert, Markus; Hossain, Mokarram

    2016-01-01

    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings. PMID:27436985

  15. Thermodynamic properties derived from the free volume model of liquids

    NASA Technical Reports Server (NTRS)

    Miller, R. I.

    1974-01-01

    An equation of state and expressions for the isothermal compressibility, thermal expansion coefficient, heat capacity, and entropy of liquids have been derived from the free volume model partition function suggested by Turnbull. The simple definition of the free volume is used, and it is assumed that the specific volume is directly related to the cube of the intermolecular separation by a proportionality factor which is found to be a function of temperature and pressure as well as specific volume. When values of the proportionality factor are calculated from experimental data for real liquids, it is found to be approximately constant over ranges of temperature and pressure which correspond to the dense liquid phase. This result provides a single-parameter method for calculating dense liquid thermodynamic properties and is consistent with the fact that the free volume model is designed to describe liquids near the solidification point.

  16. Implications of causality for quantum biology - I: topology change

    NASA Astrophysics Data System (ADS)

    Scofield, D. F.; Collins, T. C.

    2018-06-01

    A framework for describing the causal, topology changing, evolution of interacting biomolecules is developed. The quantum dynamical manifold equations (QDMEs) derived from this framework can be related to the causality restrictions implied by a finite speed of light and to Planck's constant to set a transition frequency scale. The QDMEs imply conserved stress-energy, angular-momentum and Noether currents. The functional whose extremisation leads to this result provides a causal, time-dependent, non-equilibrium generalisation of the Hohenberg-Kohn theorem. The system of dynamical equations derived from this functional and the currents J derived from the QDMEs are shown to be causal and consistent with the first and second laws of thermodynamics. This has the potential of allowing living systems to be quantum mechanically distinguished from non-living ones.

  17. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pineau, Nicolas

    2016-01-01

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  18. Toward the Kelvin’s Formula Paradox

    DTIC Science & Technology

    2016-09-01

    at rest no matter what its constitutive equation will be. 15. SUBJECT TERMS thermodynamics , electromagnetism, ponderomotive forces, Kelvin’s...a novel, mostly thermodynamic , analysis of the electromagnetic forces, acting in polarizable materials. When fulfilling those V&V studies of

  19. Compression Shocks in Two-Dimensional Gas Flows

    NASA Technical Reports Server (NTRS)

    Busemann, A.

    1949-01-01

    The following are arguments on the compression shocks in gas flow start with a simplified representation of the results of the study made by Th. Meyer as published in the Forschungsheft 62 of the VDI, supplemented by several amplifications for the application.In the treatment of compression shocks, the equation of energy, the equation of continuity, the momentum equation, the equation of state of the particular gas, as well as the condition Of the second law of thermodynamics that no decrease of entropy is possible in an isolated system, must be taken into consideration. The result is that, in those cases where the sudden change of state according to the second law of thermodynamics is possible, there always occurs a compression of the gas which is uniquely determined by the other conditions.

  20. Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations

    NASA Astrophysics Data System (ADS)

    Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav

    2018-01-01

    Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).

  1. On adiabatic pair potentials of highly charged colloid particles

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.

    2018-03-01

    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  2. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-04-01

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Müller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail.

  3. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  4. Analytical description of concentration dependence of surface tension in multicomponent systems

    NASA Astrophysics Data System (ADS)

    R, Dadashev; R, Kutuev; D, Elimkhanov

    2008-02-01

    From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.

  5. Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes

    NASA Astrophysics Data System (ADS)

    Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru

    2017-10-01

    We present a more refined version of rational extended thermodynamics of rarefied polyatomic gases in which molecular rotational and vibrational relaxation processes are treated individually. In this case, we need a triple hierarchy of the moment system and the system of balance equations is closed via the maximum entropy principle. Three different types of the production terms in the system, which are suggested by a generalized BGK-type collision term in the Boltzmann equation, are adopted. In particular, the rational extended thermodynamic theory with seven independent fields (ET7) is analyzed in detail. Finally, the dispersion relation of ultrasonic wave derived from the ET7 theory is confirmed by the experimental data for CO2, Cl2, and Br2 gases.

  6. Symmetric and antisymmetric forms of the Pauli master equation

    PubMed Central

    Klimenko, A. Y.

    2016-01-01

    When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter — this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future. PMID:27440454

  7. Partially ionized hydrogen plasma in strong magnetic fields.

    PubMed

    Potekhin, A Y; Chabrier, G; Shibanov, Y A

    1999-08-01

    We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.

  8. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  9. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  10. Evaluation of temperature history of a spherical nanosystem irradiated with various short-pulse laser sources

    NASA Astrophysics Data System (ADS)

    Lahiri, Arnab; Mondal, Pranab K.

    2018-04-01

    Spatiotemporal thermal response and characteristics of net entropy production rate of a gold nanosphere (radius: 50-200 nm), subjected to a short-pulse, femtosecond laser is reported. In order to correctly illustrate the temperature history of laser-metal interaction(s) at picoseconds transient with a comprehensive single temperature definition in macroscale and to further understand how the thermophysical response of the single-phase lag (SPL) and dual-phase lag (DPL) frameworks (with various lag-ratios') differs, governing energy equations derived from these benchmark non-Fourier frameworks are numerically solved and thermodynamic assessment under both the classical irreversible thermodynamics (CIT) as well as extended irreversible thermodynamics (EIT) frameworks is subsequently carried out. Under the frameworks of SPL and DPL with small lag ratio, thermophysical anomalies such as temperature overshooting characterized by adverse temperature gradient is observed to violate the local thermodynamic equilibrium (LTE) hypothesis. The EIT framework, however, justifies the compatibility of overshooting of temperature with the second law of thermodynamics under a nonequilibrium paradigm. The DPL framework with higher lag ratio was however observed to remain free from temperature overshooting and finds suitable consistency with LTE hypothesis. In order to solve the dimensional non-Fourier governing energy equation with volumetric laser-irradiation source term(s), the lattice Boltzmann method (LBM) is extended and a three-time level, fully implicit, second order accurate finite difference method (FDM) is illustrated. For all situations under observation, the LBM scheme is featured to be computationally superior to remaining FDM schemes. With detailed prediction of maximum temperature rise and the corresponding peaking time by all the numerical schemes, effects of the change of radius of the gold nanosphere, the magnitude of fluence of laser, and laser irradiation with multiple pulses on thermal energy transport and lagging behavior (if any) are further elucidated at different radial locations of the gold nanosphere. Last, efforts are further made to address the thermophysical characteristics when effective thermal conductivity (with temporal and size effects) is considered instead of the usual bulk thermal conductivity.

  11. The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcer, Peter J.; Rowlands, Peter

    2010-11-24

    The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes 'a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (Themore » UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E{sup 2}-p{sup 2}m{sup 2}) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of Thermodynamics, formalized by the UNCRS regress, so as to become (as UNCRS rewrites already published at CASYS), firstly the Quantum Laws of Physics in the form of the generalized Dirac equation and later at higher stages of QCE ensemble complexity, the Laws of Life in the form of Nature's (DNA / RNA genetic) Code and then subsequently those of Intelligence and Consciousness (Nature's Rules).« less

  12. Equation of state of liquid Indium under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaming, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; Li, Mo, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids,more » these detailed predictions are yet to be confirmed by further experiment.« less

  13. Thermodynamic energy balance equations for Space Shuttle Orbiter gas compartment during ascent and re-entry

    NASA Technical Reports Server (NTRS)

    Ting, P. C.

    1982-01-01

    Thermodynamic energy balance equations are derived and applied to midsection Orbiter-payload atmospheric thermal math models (TMMs) to predict Orbiter component, element, compartment, internal insolation and structure temperatures in support of NASA/JSC mission planning, postflight thermal analysis and payload thermal integration planning. The equations are extended and applied to the forward section, midsection, and aft section of the TMMs for five Orbiter mission phases: prelaunch on pad with purge, lift-off to ascent, re-entry to touchdown, post landing without purge, and post-landing with purge. Predicted results from the 390 node/DFI atmospheric TMM are in good agreement with STS-1 flight measurement data.

  14. Analysis of a diffuse interface model of multispecies tumor growth

    NASA Astrophysics Data System (ADS)

    Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.

    2017-04-01

    We consider a diffuse interface model for tumor growth recently proposed in Chen et al (2014 Int. J. Numer. Methods Biomed. Eng. 30 726-54). In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity \\mathbf{u} satisfies \\mathbf{u}\\centerdot ν >0 , where ν is the outer normal to the boundary of the domain.

  15. Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions

    PubMed Central

    Joung, In Suk; Luchko, Tyler; Case, David A.

    2013-01-01

    Using the dielectrically consistent reference interaction site model (DRISM) of molecular solvation, we have calculated structural and thermodynamic information of alkali-halide salts in aqueous solution, as a function of salt concentration. The impact of varying the closure relation used with DRISM is investigated using the partial series expansion of order-n (PSE-n) family of closures, which includes the commonly used hypernetted-chain equation (HNC) and Kovalenko-Hirata closures. Results are compared to explicit molecular dynamics (MD) simulations, using the same force fields, and to experiment. The mean activity coefficients of ions predicted by DRISM agree well with experimental values at concentrations below 0.5 m, especially when using the HNC closure. As individual ion activities (and the corresponding solvation free energies) are not known from experiment, only DRISM and MD results are directly compared and found to have reasonably good agreement. The activity of water directly estimated from DRISM is nearly consistent with values derived from the DRISM ion activities and the Gibbs-Duhem equation, but the changes in the computed pressure as a function of salt concentration dominate these comparisons. Good agreement with experiment is obtained if these pressure changes are ignored. Radial distribution functions of NaCl solution at three concentrations were compared between DRISM and MD simulations. DRISM shows comparable water distribution around the cation, but water structures around the anion deviate from the MD results; this may also be related to the high pressure of the system. Despite some problems, DRISM-PSE-n is an effective tool for investigating thermodynamic properties of simple electrolytes. PMID:23387564

  16. Astrophysical fluid simulations of thermally ideal gases with non-constant adiabatic index: numerical implementation

    NASA Astrophysics Data System (ADS)

    Vaidya, B.; Mignone, A.; Bodo, G.; Massaglia, S.

    2015-08-01

    Context. An equation of state (EoS) is a relation between thermodynamic state variables and it is essential for closing the set of equations describing a fluid system. Although an ideal EoS with a constant adiabatic index Γ is the preferred choice owing to its simplistic implementation, many astrophysical fluid simulations may benefit from a more sophisticated treatment that can account for diverse chemical processes. Aims: In the present work we first review the basic thermodynamic principles of a gas mixture in terms of its thermal and caloric EoS by including effects like ionization, dissociation, and temperature dependent degrees of freedom such as molecular vibrations and rotations. The formulation is revisited in the context of plasmas that are either in equilibrium conditions (local thermodynamic- or collisional excitation-equilibria) or described by non-equilibrium chemistry coupled to optically thin radiative cooling. We then present a numerical implementation of thermally ideal gases obeying a more general caloric EoS with non-constant adiabatic index in Godunov-type numerical schemes. Methods: We discuss the necessary modifications to the Riemann solver and to the conversion between total energy and pressure (or vice versa) routinely invoked in Godunov-type schemes. We then present two different approaches for computing the EoS. The first employs root-finder methods and it is best suited for EoS in analytical form. The second is based on lookup tables and interpolation and results in a more computationally efficient approach, although care must be taken to ensure thermodynamic consistency. Results: A number of selected benchmarks demonstrate that the employment of a non-ideal EoS can lead to important differences in the solution when the temperature range is 500-104 K where dissociation and ionization occur. The implementation of selected EoS introduces additional computational costs although the employment of lookup table methods (when possible) can significantly reduce the overhead by a factor of ~ 3-4.

  17. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2016-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.

  18. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  19. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can bemore » derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.« less

  20. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  1. Scaled equation of state parameters for gases in the critical region

    NASA Technical Reports Server (NTRS)

    Sengers, J. M. H. L.; Greer, W. L.; Sengers, J. V.

    1976-01-01

    In the light of recent theoretical developments, the paper presents an accurate characterization of anomalous thermodynamic behavior of xenon, helium 4, helium 3, carbon dioxide, steam and oxygen in the critical region. This behavior is associated with long range fluctuations in the system and the physical properties depend primarily on a single variable, namely, the correlation length. A description of the thermodynamic behavior of fluids in terms of scaling laws is formulated, and the two successfully used scaled equations of state (NBS equation and Linear Model parametric equation) are compared. Methods for fitting both equations to experimental equation of state data are developed and formulated, and the optimum fit for each of the two scaled equations of the above gases are presented and the results are compared. By extending the experimental data for the above one-component fluids to partially miscible binary liquids, superfluid liquid helium, ferromagnets and solids exhibiting order-disorder transitions, the principle of universality is concluded. Finally by using this principle, the critical regions for nine additional fluids are described.

  2. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  3. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  4. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  5. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  6. Outer boundary as arrested history in general relativity

    NASA Astrophysics Data System (ADS)

    Lau, Stephen R.

    2002-06-01

    We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.

  7. Recent developments in the kinetic theory of nucleation.

    PubMed

    Ruckenstein, E; Djikaev, Y S

    2005-12-30

    A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation, but the hierarchy of time scales does allow one to reduce it to the Fokker-Plank equation in the energy space. The new theory provides an equation for the critical radius of a new-phase particle which in the limit of large clusters (low supersaturations) yields the Kelvin equation and hence an expression for the macroscopic surface tension. The theory was illustrated with numerical calculations for a molecular pair interaction potential combining the dispersive attraction with the hard-sphere repulsion. The results for the liquid-to-solid nucleation clearly show that at given supersaturation the nucleation rate depends on the cluster structure (for three cluster structures considered-amorphous, fcc, and icosahedral). For both the liquid-to-solid and vapor-to-liquid nucleation, the predictions of the theory are consistent with the results of classical nucleation theory (CNT) in the limit of large critical clusters (low supersaturations). For small critical clusters the new theory provides higher nucleation rates than CNT. This can be accounted for by the fact that CNT uses the macroscopic interfacial tension which presumably overpredicts the surface tension of small clusters, and hence underpredicts nucleation rates.

  8. Communication: Analytic continuation of the virial series through the critical point using parametric approximants.

    PubMed

    Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  9. Shear viscosity of binary mixtures: The Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  10. Statistical Mechanical Derivation of Jarzynski's Identity for Thermostated Non-Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-03-01

    The recent Jarzynski identity (JI) relates thermodynamic free energy differences to nonequilibrium work averages. Several proofs of the JI have been provided on the thermodynamic level. They rely on assumptions such as equivalence of ensembles in the thermodynamic limit or weakly coupled infinite heat baths. However, the JI is widely applied to NVT computer simulations involving finite numbers of particles, whose equations of motion are strongly coupled to a few extra degrees of freedom modeling a thermostat. In this case, the above assumptions are no longer valid. We propose a statistical mechanical approach to the JI solely based on the specific equations of motion, without any further assumption. We provide a detailed derivation for the non-Hamiltonian Nosé-Hoover dynamics, which is routinely used in computer simulations to produce canonical sampling.

  11. Solubility of gas in confined systems. Nonextensive thermodynamics approach.

    PubMed

    Letellier, Pierre; Turmine, Mireille

    2013-02-15

    The use of the concepts of the nonextensive thermodynamics allows reconsidering the equilibrium of bubble solubilization and more commonly of gaseous aggregates in supersaturated solutions of gas. The introduced relations are general and include as particular cases the equations usually used to describe these phenomena. These equations are discussed. Especially, we specified the domain of application of Kelvin's relation which was illustrated by the solubility of gases in fogs and clouds. Various possibilities of thoughts on the behavior of the gaseous aggregates and nano-systems are proposed. Thus, the introduced relations permit to consider the presence of gaseous aggregates in equilibrium with the solution even for under-saturated solution. Nonextensive thermodynamics admits the notion of negative pressure at the inner of confined phases (solid or liquid). Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Computer program for calculating thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  13. Effects of physical properties on thermo-fluids cavitating flows

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  14. A thermodynamic framework for the study of crystallization in polymers

    NASA Astrophysics Data System (ADS)

    Rao, I. J.; Rajagopal, K. R.

    In this paper, we present a new thermodynamic framework within the context of continuum mechanics, to predict the behavior of crystallizing polymers. The constitutive models that are developed within this thermodynamic setting are able to describe the main features of the crystallization process. The model is capable of capturing the transition from a fluid like behavior to a solid like behavior in a rational manner without appealing to any adhoc transition criterion. The anisotropy of the crystalline phase is built into the model and the specific anisotropy of the crystalline phase depends on the deformation in the melt. These features are incorporated into a recent framework that associates different natural configurations and material symmetries with distinct microstructural features within the body that arise during the process under consideration. Specific models are generated by choosing particular forms for the internal energy, entropy and the rate of dissipation. Equations governing the evolution of the natural configurations and the rate of crystallization are obtained by maximizing the rate of dissipation, subject to appropriate constraints. The initiation criterion, marking the onset of crystallization, arises naturally in this setting in terms of the thermodynamic functions. The model generated within such a framework is used to simulate bi-axial extension of a polymer film that is undergoing crystallization. The predictions of the theory that has been proposed are consistent with the experimental results (see [28] and [7]).

  15. Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ju, E-mail: jliu@ices.utexas.edu; Gomez, Hector; Evans, John A.

    2013-09-01

    We propose a new methodology for the numerical solution of the isothermal Navier–Stokes–Korteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionallymore » stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.« less

  16. Thermodynamics on the Molality Scale

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Maheswaran, M.

    2013-01-01

    For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…

  17. Computer-Generated Phase Diagrams for Binary Mixtures.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    1983-01-01

    Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…

  18. Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-06-01

    The Onsager's reciprocal relation plays a fundamental role in the nonequilibrium thermodynamics. However, unfortunately, its classical version is valid only within a narrow region near equilibrium due to the linear regression hypothesis, which largely restricts its usage. In this paper, based on the conservation-dissipation formalism, a generalized version of Onsager's relations for the master equations and Fokker-Planck equations was derived. Nonlinear constitutive relations with nonsymmetric and positively stable operators, which become symmetric under the detailed balance condition, constitute key features of this new generalization. Similar conclusions also hold for many other classical models in physics and chemistry, which in turn make the current study as a benchmark for the application of generalized Onsager's relations in nonequilibrium thermodynamics.

  19. Effect of capillary forces on the nonstationary fall of a drop in an infinite fluid

    NASA Astrophysics Data System (ADS)

    Antanovskii, L. K.

    1991-12-01

    An explicit solution is presented for the linear problem concerning the motion of a drop in an infinite fluid in the presence of any number of surfactants (chemical reactions are not considered in the first approximation). It is shown that the behavior of the system considered is consistent with the Le Chatelier principle. The reactivity of the capillary forces is directly related to the fundamental principles of thermodynamics, which makes it possible to write equations of surfactant thermodiffusion in symmetric form and obtain a relatively simple solution to the linearized problem.

  20. Nonextensive kinetic theory and H-theorem in general relativity

    NASA Astrophysics Data System (ADS)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  1. A poroelastic medium saturated by a two-phase capillary fluid

    NASA Astrophysics Data System (ADS)

    Shelukhin, V. V.

    2014-09-01

    By Landau's approach developed for description of superfluidity of 2He, we derive a mathematical model for a poroelastic medium saturated with a two-phase capillary fluid. The model describes a three-velocity continuum with conservation laws which obey the basic principles of thermodynamics and which are consistent with the Galilean transformations. In contrast to Biot' linear theory, the equations derived allow for finite deformations. As the acoustic analysis reveals, there is one more longitudinal wave in comparison with the poroelastic medium saturated with a one-phase fluid. We prove that such a result is due to surface tension.

  2. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them many leading experts in the field. During the program, the most recent developments, open questions and new ideas in stochastic thermodynamics were presented and discussed. From the talks and debates, the notion of information in stochastic thermodynamics, the fundamental properties of entropy production (rate) in non-equilibrium, the efficiency of small thermodynamic machines and the characteristics of optimal protocols for the applied (cyclic) forces were crystallizing as main themes. Surprisingly, the long-studied adiabatic piston, its peculiarities and its relation to stochastic thermodynamics were also the subject of intense discussions. The comment on the Nordita program Stochastic Thermodynamics published in this issue of Physica Scripta exploits the Jarzynski relation for determining free energy differences in the adiabatic piston. This scientific program and the contribution presented here were made possible by the financial and administrative support of The Nordic Institute for Theoretical Physics.

  3. Thermodynamics of a lattice gas with linear attractive potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirjol, Dan; Schat, Carlos

    We study the equilibrium thermodynamics of a one-dimensional lattice gas with interaction V(|i−j|)=−1/(μn) (ξ−1/n |i−j|) given by the superposition of a universal attractive interaction with strength −1/(μn) ξ<0, and a linear attractive potential 1/(μn{sup 2}) |i−j|. The interaction is rescaled with the lattice size n, such that the thermodynamical limit n → ∞ is well-behaved. The thermodynamical properties of the system can be found exactly, both for a finite size lattice and in the thermodynamical limit n → ∞. The lattice gas can be mapped to a system of non-interacting bosons which are placed on known energy levels. The exactmore » solution shows that the system has a liquid-gas phase transition for ξ > 0. In the large temperature limit T ≫ T{sub 0}(ρ) = ρ{sup 2}/(4μ) with ρ the density, the system becomes spatially homogeneous, and the equation of state is given to a good approximation by a lattice version of the van der Waals equation, with critical temperature T{sub c}{sup (vdW)}=1/(12μ) (3ξ−1)« less

  4. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2003-01-01

    The availability and proper utilization of fluid properties is of fundamental importance in the process of mathematical modeling of propulsion systems. Real fluid properties provide the bridge between the realm of pure analytiis and empirical reality. The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described, for example, in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to be used to facilitate the accurate interpretation of fluid thermodynamic property data generated by existing property packages. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package (based on fundamental equations of state approach). The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  5. A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.

    NASA Technical Reports Server (NTRS)

    Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.

    1972-01-01

    The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.

  6. A general theory of kinetics and thermodynamics of steady-state copolymerization.

    PubMed

    Shu, Yao-Gen; Song, Yong-Shun; Ou-Yang, Zhong-Can; Li, Ming

    2015-06-17

    Kinetics of steady-state copolymerization has been investigated since the 1940s. Irreversible terminal and penultimate models were successfully applied to a number of comonomer systems, but failed for systems where depropagation is significant. Although a general mathematical treatment of the terminal model with depropagation was established in the 1980s, a penultimate model and higher-order terminal models with depropagation have not been systematically studied, since depropagation leads to hierarchically-coupled and unclosed kinetic equations which are hard to solve analytically. In this work, we propose a truncation method to solve the steady-state kinetic equations of any-order terminal models with depropagation in a unified way, by reducing them into closed steady-state equations which give the exact solution of the original kinetic equations. Based on the steady-state equations, we also derive a general thermodynamic equality in which the Shannon entropy of the copolymer sequence is explicitly introduced as part of the free energy dissipation of the whole copolymerization system.

  7. Variational objective analysis for cyclone studies

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1989-01-01

    Significant accomplishments during 1987 to 1988 are summarized with regard to each of the major project components. Model 1 requires satisfaction of two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. Model 2 requires satisfaction of model 1 plus the thermodynamic equation for a dry atmosphere. Model 3 requires satisfaction of model 2 plus the radiative transfer equation. Model 4 requires satisfaction of model 3 plus a moisture conservation equation and a parameterization for moist processes.

  8. Modelling `Life' against `heat death'

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    2018-01-01

    This work is inspired by the discovery of a new class of dynamical system described by ordinary differential equations coupled with their Liouville equation. These systems called self-controlled since the role of actuators is played by the probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, non-Newtonian properties such as randomness, entanglement and probability interference typical for quantum systems have been described. Special attention was paid to the capability to violate the second law of thermodynamics, which makes these systems neither Newtonian, nor quantum. It has been shown that self-controlled dynamical systems can be linked to mathematical models of living systems. The discovery of isolated dynamical systems that can decrease entropy in violation of the second law of thermodynamics, and resemblances of these systems to livings suggests that `Life' can slow down the `heat death' of the Universe and that can be associated with the Purpose of Life.

  9. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.

  10. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less

  11. A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1971-01-01

    An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.

  12. Theory of the milieu dependent isomerisation dynamics of reducing sugars applied to d-erythrose.

    PubMed

    Kaufmann, Martin; Mügge, Clemens; Kroh, Lothar W

    2015-12-11

    Quantitative (1)H selective saturation transfer NMR spectroscopy ((1)H SST qNMR) was used to fully describe the milieu dependent dynamics of the isomeric system of d-erythrose. Thermodynamic activation parameters are calculated for acidic as well as for basic catalysis combining McConnell's modified Bloch equations for the chemical exchange solved for the constraint of saturating the non-hydrated acyclic isomer, the Eyring equation and Hudson's equation for pH dependent catalysis. A detailed mathematical examination describing the milieu dependent dynamics of sugar isomerisation is provided. Thermodynamic data show evidence that photo-catalysed sugar isomerisation as well as degradation has to be considered. Approximations describing the pH and temperature dependence of thermodynamic activation parameters are derived that indicate the possibility of photo-affecting equilibrium constants. Moreover, the results show that isomerisation dynamics are closely related to degradation kinetics and that sugars' reactivities are altered by the concentration of acyclic carbonyl isomer and the sum of its ring closing rate constants. Additionally, it is concluded that sugar solutions show a limited self-stabilising behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: polyampholyte and polyelectrolyte solutions.

    PubMed

    Jiang, Hao; Adidharma, Hertanto

    2014-11-07

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.

  14. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.

    PubMed

    Onal, Yunus

    2006-10-11

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.

  15. Integral equation and thermodynamic perturbation theory for a two-dimensional model of dimerising fluid

    PubMed Central

    Urbic, Tomaz

    2016-01-01

    In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles. PMID:28529396

  16. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  17. Locality of the Thomas-Fermi-von Weizsäcker Equations

    NASA Astrophysics Data System (ADS)

    Nazar, F. Q.; Ortner, C.

    2017-06-01

    We establish a pointwise stability estimate for the Thomas-Fermi-von Weiz-säcker (TFW) model, which demonstrates that a local perturbation of a nuclear arrangement results also in a local response in the electron density and electrostatic potential. The proof adapts the arguments for existence and uniqueness of solutions to the TFW equations in the thermodynamic limit by Catto et al. (The mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York, 1998). To demonstrate the utility of this combined locality and stability result we derive several consequences, including an exponential convergence rate for the thermodynamic limit, partition of total energy into exponentially localised site energies (and consequently, exponential locality of forces), and generalised and strengthened results on the charge neutrality of local defects.

  18. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  19. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    PubMed

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  20. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.

    PubMed

    Horno, J; González-Caballero, F; González-Fernández, C F

    1990-01-01

    Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.

  1. Elementary functions in thermodynamic Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Suzuki, J.

    2015-05-01

    Some years ago, Fendley found an explicit solution to the thermodynamic Bethe ansatz (TBA) equation for an N=2 supersymmetric theory in 2D with a specific F-term. Motivated by this, we seek explicit solutions for other super-potential cases utilizing the idea from the ODE/IM correspondence. We find that the TBA equations, corresponding to a wider class of super-potentials, admit solutions in terms of elementary functions such as modified Bessel functions and confluent hyper-geometric series. Based on talks given at ‘Infinite Analysis 2014’ (Tokyo, 2014) and at ‘Integrable lattice models and quantum field theories’ (Bad Honnef, 2014).

  2. Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures

    NASA Astrophysics Data System (ADS)

    Dadzie, S. Kokou

    2012-10-01

    We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations.

  3. Radiative interactions in molecular gases under local and nonlocal thermodynamic equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Jha, M. K.

    1993-01-01

    Basic formulations, analyses, and numerical procedures are presented to investigate radiative heat interactions in diatomic and polyatomic gases under local and nonlocal thermodynamic equilibrium conditions. Essential governing equations are presented for both gray and nongray gases. Information is provided on absorption models, relaxation times, and transfer equations. Radiative flux equations are developed which are applicable under local and nonlocal thermodynamic equilibrium conditions. The problem is solved for fully developed laminar incompressible flows between two parallel plates under the boundary condition of a uniform surface heat flux. For specific applications, three diatomic and three polyatomic gases are considered. The results are obtained numerically by employing the method of variation of parameters. The results are compared under local and nonlocal thermodynamic equilibrium conditions at different temperature and pressure conditions. Both gray and nongray studies are conducted extensively for all molecular gases considered. The particular gases selected for this investigation are CO, NO, OH, CO2, H2O, and CH4. The temperature and pressure range considered are 300-2000 K and 0.1-10 atmosphere, respectively. In general, results demonstrate that the gray gas approximation overestimates the effect of radiative interaction for all conditions. The conditions of NLTE, however, result in underestimation of radiative interactions. The method developed for this study can be extended to solve complex problems of radiative heat transfer involving nonequilibrium phenomena.

  4. Nonlinear magnetoacoustic wave propagation with chemical reactions

    NASA Astrophysics Data System (ADS)

    Margulies, Timothy Scott

    2002-11-01

    The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.

  5. Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method.

    PubMed

    Lv, Na; Wang, Xiaoli; Peng, Shitao; Zhang, Huaqin; Luo, Lei

    2018-05-12

    A new kind of hydrophobic and oil sorbent based on jute fiber was successfully prepared by the integration of silica onto a fiber surface via the sol-gel method and subsequent hydrophobic modification with octadecyltrichlorosilane (OTS). Compared with the hydrophilic raw fiber, the modified fiber had a water contact angle (CA) of 136.2°, suggesting that the material has good hydrophobicity. Furthermore, the ability of oil in the oil/water system (taking diesel for example) to absorb was revealed by the kinetics, the isotherm equation, and the thermodynamic parameters. Adsorption behavior was kinetically investigated using pseudo first-order and pseudo second-order models. The data mostly correlated with the pseudo first-order model. The equilibrium adsorption at 298 K was assessed by using the Langmuir and Freundlich isotherm models. The Freundlich model had greater consistency with the experimental data. The obtained thermodynamic parameters demonstrate that the adsorption of diesel is spontaneous, favorable, and exothermic.

  6. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    PubMed

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  7. Modelling electro-active polymers with a dispersion-type anisotropy

    NASA Astrophysics Data System (ADS)

    Hossain, Mokarram; Steinmann, Paul

    2018-02-01

    We propose a novel constitutive framework for electro-active polymers (EAPs) that can take into account anisotropy with a chain dispersion. To enhance actuation behaviour, particle-filled EAPs become promising candidates nowadays. Recent studies suggest that particle-filled EAPs, which can be cured under an electric field during the manufacturing time, do not necessarily form perfect anisotropic composites, rather they create composites with dispersed chains. Hence in this contribution, an electro-mechanically coupled constitutive model is devised that considers the chain dispersion with a probability distribution function in an integral form. To obtain relevant quantities in discrete form, numerical integration over the unit sphere is utilized. Necessary constitutive equations are derived exploiting the basic laws of thermodynamics that result in a thermodynamically consistent formulation. To demonstrate the performance of the proposed electro-mechanically coupled framework, we analytically solve a non-homogeneous boundary value problem, the extension and inflation of an axisymmetric cylindrical tube under electro-mechanically coupled load. The results capture various electro-mechanical couplings with the formulation proposed for EAP composites.

  8. Thermodynamic Modeling of the Ge-Nd Binary System

    NASA Astrophysics Data System (ADS)

    Liu, Miao; Li, Changrong; Du, Zhenmin; Guo, Cuiping; Niu, Chunju

    The Ge-Nd has been critically assessed by means of the CALculation of PHAse Diagram (CALPHAD) technique. For the liquid phase, the associate model was used with the constituent species Ge, Nd, Ge3Nd5 and Ge1.6Nd in the Ge-Nd system. The terminal solid solution diamond-(Ge), dhcp-(Nd) and bcc_A2-(Nd) in the Ge-Nd system were described using the substitutional model, in which the excess Gibbs energy was formulated with the Redlich-Kister equation. The compounds with homogeneity ranges, α(Ge1.6Nd), β(Ge1.6Nd), (GeNd), (Ge4Nd5) and (Ge3Nd5) were modeled using two sublattices as α(Ge,Nd)1.6Nd, β(Ge,Nd)1.6Nd, (Ge,Nd)Nd, (Ge,Nd)4Nd5 and (Ge,Nd)3Nd5, respectively. A set of self-consistent thermodynamic parameters for each of the Ge-Nd binary systems was obtained. The calculation results agree well with the available experimental data from literatures.

  9. A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis

    NASA Astrophysics Data System (ADS)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2018-06-01

    A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.

  10. Probing free jet expansions of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Christen, W.; Rademann, K.

    2009-10-01

    Attempting to improve the comprehension of supersonic molecular beams at elevated pressures we present a comparative study of thermodynamic descriptions of the terminal flow velocity in free jet expansions. As model system we choose carbon dioxide due to its widespread utilization in supercritical fluid technology. Numerical results for the thermodynamic quantities are obtained using a high accuracy equation of state explicit in the Helmholtz free energy. The influence of pressure and temperature on the beam velocity is investigated for a broad range of stagnation conditions. A consistent physical picture is obtained for calculations employing the initial and final molar enthalpies, while enormous discrepancies are found for descriptions based on the molar isobaric heat capacity or the heat capacity ratio. The deviations are particularly pronounced at the gas-liquid phase transition and in the vicinity of the critical point and can be related to the diverse assumptions of ideal gas behavior. It is shown that computations using real fluid enthalpies permit to assess the fraction of condensation in supersonic jets.

  11. Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K. (Inventor)

    2009-01-01

    A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.

  12. Development of a representational conceptual evaluation in the first law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Sriyansyah, S. P.; Suhandi, A.

    2016-08-01

    As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics.

  13. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  14. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  15. Hyper-elastoplastic/damage modeling of rock with application to porous limestone

    DOE PAGES

    Bennett, Kane C.; Borja, Ronaldo I.

    2018-03-13

    Relations between porosity, damage, and bulk plasticity are examined in the context of continuum damage and hyper-elastoplasticity of porous rocks. Attention is given to a thermodynamically consistent derivation of the damage evolution equations and their role in the constitutive equations, for which the Eshelby stress is found to be important. The provided phenomenological framework allows for volumetric damage associated with pore growth to be distinguished from the isochoric damage associated with distributed microcracks, and a novel Drucker-Prager/cap type material model that includes damage evolution is presented. The model is shown to capture well the hardening/softening behavior and pressure dependence ofmore » the so-called brittle-ductile transition by comparison with confined triaxial compression measurements from the literature. Non-linear finite element simulations are also provided of the prediction of damage within porous limestone around a horizontal borehole wall.« less

  16. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

    DOE PAGES

    Huang, Xiaoli; Li, Fangfei; Zhou, Qiang; ...

    2016-02-17

    Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem.more » B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.« less

  17. Hyper-elastoplastic/damage modeling of rock with application to porous limestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kane C.; Borja, Ronaldo I.

    Relations between porosity, damage, and bulk plasticity are examined in the context of continuum damage and hyper-elastoplasticity of porous rocks. Attention is given to a thermodynamically consistent derivation of the damage evolution equations and their role in the constitutive equations, for which the Eshelby stress is found to be important. The provided phenomenological framework allows for volumetric damage associated with pore growth to be distinguished from the isochoric damage associated with distributed microcracks, and a novel Drucker-Prager/cap type material model that includes damage evolution is presented. The model is shown to capture well the hardening/softening behavior and pressure dependence ofmore » the so-called brittle-ductile transition by comparison with confined triaxial compression measurements from the literature. Non-linear finite element simulations are also provided of the prediction of damage within porous limestone around a horizontal borehole wall.« less

  18. Geodesic Motion of Particles and Quantum Tunneling from Reissner-Nordström Black Holes in Anti-de Sitter Spacetime

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Huang, Yong-Chang

    2018-03-01

    The geodesics of tunneling particles were derived unnaturally and awkwardly in previous works. For one thing, the previous derivation was inconsistent with the variational principle of action. Moreover, the definition of geodesic equations for massive particles was quite different from that of massless case. Even worse, the relativistic and nonrelativistic foundations were mixed with each other during the past derivation of geodesics. As a highlight, remedying the urgent shortcomings, we improve treatment to derive the geodesic equations of massive and massless particles in a unified and self-consistent way. Besides, we extend to investigate the Hawking radiation via tunneling from Reissner-Nordström black holes in the context of AdS spacetime. Of special interest, the trick of utilizing the first law of black hole thermodynamics manifestly simplifies the calculation of tunneling integration.

  19. XSEOS: An Open Software for Chemical Engineering Thermodynamics

    ERIC Educational Resources Information Center

    Castier, Marcelo

    2008-01-01

    An Excel add-in--XSEOS--that implements several excess Gibbs free energy models and equations of state has been developed for educational use. Several traditional and modern thermodynamic models are available in the package with a user-friendly interface. XSEOS has open code, is freely available, and should be useful for instructors and students…

  20. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    USDA-ARS?s Scientific Manuscript database

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  1. Infinitesimal Legendre symmetry in the Geometrothermodynamics programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Peláez, D., E-mail: dgarciap@up.edu.mx; Universidad Panamericana, Tecoyotitla 366. Col. Ex Hacienda Guadalupe Chimalistac, 01050 México D.F., México; López-Monsalvo, C. S., E-mail: cesar.slm@correo.nucleares.unam.mx

    2014-08-15

    The work within the Geometrothermodynamics programme rests upon the metric structure for the thermodynamic phase-space. Such structure exhibits discrete Legendre symmetry. In this work, we study the class of metrics which are invariant along the infinitesimal generators of Legendre transformations. We solve the Legendre-Killing equation for a K-contact general metric. We consider the case with two thermodynamic degrees of freedom, i.e., when the dimension of the thermodynamic phase-space is five. For the generic form of contact metrics, the solution of the Legendre-Killing system is unique, with the sole restriction that the only independent metric function – Ω – should bemore » dragged along the orbits of the Legendre generator. We revisit the ideal gas in the light of this class of metrics. Imposing the vanishing of the scalar curvature for this system results in a further differential equation for the metric function Ω which is not compatible with the Legendre invariance constraint. This result does not allow us to use Quevedo's interpretation of the curvature scalar as a measure of thermodynamic interaction for this particular class.« less

  2. Transport processes in magnetically confined plasmas in the nonlinear regime.

    PubMed

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  3. Thermodynamic and Optical Response of Multiply Shocked Liquid Nitromethane

    NASA Astrophysics Data System (ADS)

    Flanders, B. M.; Winey, J. M.; Gupta, Y. M.

    2015-06-01

    To investigate the thermodynamic and optical response of multiply shocked liquids, particle velocity profiles were measured for liquid nitromethane (NM) subjected to stepwise loading to a peak pressure of 10 GPa. Using a multi-point velocity interferometer (VISAR), wave profiles were obtained at both the front and rear interfaces of the thin (200 μm) liquid sample to obtain data regarding the thermodynamic response and the refractive index at the intermediate stepwise loading states, in addition to the peak state. Changes in the apparent velocity at the front sample interface were well accounted for by using a Gladstone-Dale relationship to describe the NM index of refraction. The thermodynamic states of multiply shocked NM were examined by comparing the measured wave profiles to those calculated using a published NM equation of state. Although the calculated and measured particle velocity states are in good overall agreement, comparison of the calculated shock wave reverberation times at the front and rear sample interfaces with the measured values suggests that the published NM equation of state can be improved. Work supported by DOE/NNSA.

  4. Introduction to the thermodynamic Bethe ansatz

    NASA Astrophysics Data System (ADS)

    van Tongeren, Stijn J.

    2016-08-01

    We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.

  5. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their modelmore » does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune explains the transition from a prograde to a retrograde equatorial jet, while the broader jets are due to the deformation radius being a larger fraction of the planetary radius.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altabet, Y. Elia; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu; Stillinger, Frank H.

    In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρ{sub S}. The tensile limit at ρ{sub S} is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρ{sub S} is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherentmore » structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.« less

  7. A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    1998-01-01

    An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.

  8. Radiation and matter: Electrodynamics postulates and Lorenz gauge

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.

    2016-11-01

    In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.

  9. Phenomenological QCD equation of state for massive neutron stars

    DOE PAGES

    Kojo, Toru; Powell, Philip D.; Song, Yifan; ...

    2015-02-03

    Here, we construct an equation of state for massive neutron stars based on quantum chromodynamics phenomenology. Our primary purpose is to delineate the relevant ingredients of equations of state that simultaneously have the required stiffness and satisfy constraints from thermodynamics and causality. These ingredients are (i) a repulsive density-density interaction, universal for all flavors, (ii) the color-magnetic interaction active from low to high densities, (iii) confining effects, which become increasingly important as the baryon density decreases, and (iv) nonperturbative gluons, which are not very sensitive to changes of the quark density. We use the following “3-window” description: At baryon densitiesmore » below about twice normal nuclear density, 2n 0, we use the Akmal-Pandharipande-Ravenhall (APR) equation of state, and at high densities, ≥(4–7)n 0, we use the three-flavor Nambu-Jona-Lasinio (NJL) model supplemented by vector and diquark interactions. In the transition density region, we smoothly interpolate the hadronic and quark equations of state in the chemical potential-pressure plane. Requiring that the equation of state approach APR at low densities, we find that the quark pressure in nonconfining models can be larger than the hadronic pressure, unlike in conventional equations of state. We show that consistent equations of state of stiffness sufficient to allow massive neutron stars are reasonably tightly constrained, suggesting that gluon dynamics remains nonperturbative even at baryon densities ~10n 0.« less

  10. Strong Helioseismic Constraints on Weakly-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Nayfonov, Alan

    The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.

  11. Turboexpander calculations using a generalized equation of state correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M.S.; Starling, K.E.

    1975-01-01

    A generalized method for predicting the thermodynamic properties of natural gas fluids has been developed and tested. The results of several comparisons between thermodynamic property values predicted by the method and experimental data are presented. Comparisons of predicted and experimental vapor-liquid equilibrium are presented. These comparisons indicate that the generalized correlation can be used to predict many thermodynamic properties of natural gas and LNG. Turboexpander calculations are presented to show the utility of the generalized correlation for process design calculations.

  12. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  13. Thermodynamic model effects on the design and optimization of natural gas plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, S.; Zabaloy, M.; Brignole, E.A.

    1999-07-01

    The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less

  14. A thermodynamic definition of protein domains.

    PubMed

    Porter, Lauren L; Rose, George D

    2012-06-12

    Protein domains are conspicuous structural units in globular proteins, and their identification has been a topic of intense biochemical interest dating back to the earliest crystal structures. Numerous disparate domain identification algorithms have been proposed, all involving some combination of visual intuition and/or structure-based decomposition. Instead, we present a rigorous, thermodynamically-based approach that redefines domains as cooperative chain segments. In greater detail, most small proteins fold with high cooperativity, meaning that the equilibrium population is dominated by completely folded and completely unfolded molecules, with a negligible subpopulation of partially folded intermediates. Here, we redefine structural domains in thermodynamic terms as cooperative folding units, based on m-values, which measure the cooperativity of a protein or its substructures. In our analysis, a domain is equated to a contiguous segment of the folded protein whose m-value is largely unaffected when that segment is excised from its parent structure. Defined in this way, a domain is a self-contained cooperative unit; i.e., its cooperativity depends primarily upon intrasegment interactions, not intersegment interactions. Implementing this concept computationally, the domains in a large representative set of proteins were identified; all exhibit consistency with experimental findings. Specifically, our domain divisions correspond to the experimentally determined equilibrium folding intermediates in a set of nine proteins. The approach was also proofed against a representative set of 71 additional proteins, again with confirmatory results. Our reframed interpretation of a protein domain transforms an indeterminate structural phenomenon into a quantifiable molecular property grounded in solution thermodynamics.

  15. Volumetrically Derived Thermodynamic Profile of Interactions of Urea with a Native Protein.

    PubMed

    Son, Ikbae; Chalikian, Tigran V

    2016-11-29

    We report the first experimental characterization of the full thermodynamic profile for binding of urea to a native protein. We measured the volumetric parameters of lysozyme at pH 7.0 as a function of urea within a temperature range of 18-45 °C. At neutral pH, lysozyme retains its native conformation between 0 and 8 M urea over the entire range of temperatures studied. Consequently, our measured volumetric properties reflect solely the interactions of urea with the native protein and do not involve contributions from urea-induced conformational transitions. We analyzed our data within the framework of a statistical thermodynamic analytical model in which urea-protein interactions are viewed as solvent exchange in the vicinity of the protein. The analysis produced the equilibrium constant, k, for an elementary reaction of urea-protein binding with a change in standard state free energy (ΔG° = -RT ln k) at each experimental temperature. We used the van't Hoff equation to compute from the temperature dependence of the equilibrium constant, k, changes in enthalpy, ΔH°, and entropy, ΔS°, accompanying binding. The thermodynamic profile of urea-protein interactions, in conjunction with published molecular dynamics simulation results, is consistent with the picture in which urea molecules, being underhydrated in the bulk, form strong, enthalpically favorable interactions with the surface protein groups while paying a high entropic price. We discuss ramifications of our results for providing insights into the combined effects of urea, temperature, and pressure on the conformational preferences of proteins.

  16. Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle

    NASA Astrophysics Data System (ADS)

    Canovas, Peter A.; Shock, Everett L.

    2016-12-01

    Integrating microbial metabolism into geochemical modeling allows assessments of energy and mass transfer between the geosphere and the microbial biosphere. Energy and power supplies and demands can be assessed from analytical geochemical data given thermodynamic data for compounds involved in catabolism and anabolism. Results are reported here from a critique of the available standard state thermodynamic data for organic acids and acid anions involved in the citric acid cycle (also known as the tricarboxylic acid cycle or the Krebs cycle). The development of methods for estimating standard state data unavailable from experiments is described, together with methods to predict corresponding values at elevated temperatures and pressures using the revised Helgeson-Kirkham-Flowers (HKF) equation of state for aqueous species. Internal consistency is maintained with standard state thermodynamic data for organic and inorganic aqueous species commonly used in geochemical modeling efforts. Standard state data and revised-HKF parameters are used to predict equilibrium dissociation constants for the organic acids in the citric acid cycle, and to assess standard Gibbs energies of reactions for each step in the cycle at elevated temperatures and pressures. The results presented here can be used with analytical data from natural and experimental systems to assess the energy and power demands of microorganisms throughout the habitable ranges of pressure and temperature, and to assess the consequences of abiotic organic compound alteration processes at conditions of subsurface aquifers, sedimentary basins, hydrothermal systems, meteorite parent bodies, and ocean worlds throughout the solar system.

  17. Non-hard sphere thermodynamic perturbation theory.

    PubMed

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  18. Fluctuation relation based continuum model for thermoviscoplasticity in metals

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun

    2016-11-01

    A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.

  19. Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures

    DOE PAGES

    Myint, Philip C.; Nichols, Albert L.

    2016-12-09

    In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less

  20. Real-Gas Effects on Binary Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora; Bellan, Josette

    2003-01-01

    This paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles

  1. Electromagnetic momentum and the energy–momentum tensor in a linear medium with magnetic and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil

    2014-04-15

    In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less

  2. Self-consistent description of a system of interacting phonons

    NASA Astrophysics Data System (ADS)

    Poluektov, Yu. M.

    2015-11-01

    A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.

  3. An Entropy-Based Approach to Nonlinear Stability

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1989-01-01

    Many numerical methods used in computational fluid dynamics (CFD) incorporate an artificial dissipation term to suppress spurious oscillations and control nonlinear instabilities. The same effect can be accomplished by using upwind techniques, sometimes augmented with limiters to form Total Variation Diminishing (TVD) schemes. An analysis based on numerical satisfaction of the second law of thermodynamics allows many such methods to be compared and improved upon. A nonlinear stability proof is given for discrete scalar equations arising from a conservation law. Solutions to such equations are bounded in the L sub 2 norm if the second law of thermodynamics is satisfied in a global sense over a periodic domain. It is conjectured that an analogous statement is true for discrete equations arising from systems of conservation laws. Analysis and numerical experiments suggest that a more restrictive condition, a positive entropy production rate in each cell, is sufficient to exclude unphysical phenomena such as oscillations and expansion shocks. Construction of schemes which satisfy this condition is demonstrated for linear and nonlinear wave equations and for the one-dimensional Euler equations.

  4. On the joint bimodality of temperature and moisture near stratocumulus cloud tops

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1983-01-01

    The observed distributions of the thermodynamic variables near stratocumulus top are highly bimodal. Two simple models of sub-grid fractional cloudiness motivated by this observed bimodality are examined. In both models, certain low order moments of two independent, moist-conservative thermodynamic variables are assumed to be known. The first model is based on the assumption of two discrete populations of parcels: a warm-day population and a cool-moist population. If only the first and second moments are assumed to be known, the number of unknowns exceeds the number of independent equations. If the third moments are assumed to be known as well, the number of independent equations exceeds the number of unknowns. The second model is based on the assumption of a continuous joint bimodal distribution of parcels, obtained as the weighted sum of two binormal distributions. For this model, the third moments are used to obtain 9 independent nonlinear algebraic equations in 11 unknowns. Two additional equations are needed to determine the covariance within the two subpopulations. In case these two internal covariance vanish, the system of equations can be solved analytically.

  5. On the Divergence of the Velocity Vector in Real-Gas Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette

    2009-01-01

    A theoretical study was performed addressing the degree of applicability or inapplicability, to a real gas, of the occasionally stated belief that for an ideal gas, incompressibility is synonymous with a zero or very low Mach number. The measure of compressibility used in this study is the magnitude of the divergence of the flow velocity vector [V(bar) (raised dot) u (where u is the flow velocity)]. The study involves a mathematical derivation that begins with the governing equations of flow and involves consideration of equations of state, thermodynamics, and fluxes of heat, mass, and the affected molecular species. The derivation leads to an equation for the volume integral of (V(bar) (raised dot) u)(sup 2) that indicates contributions of several thermodynamic, hydrodynamic, and species-flux effects to compressibility and reveals differences between real and ideal gases. An analysis of the equation leads to the conclusion that for a real gas, incompressibility is not synonymous with zero or very small Mach number. Therefore, it is further concluded, the contributions to compressibility revealed by the derived equation should be taken into account in simulations of real-gas flows.

  6. From square-well to Janus: Improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacometti, Achille, E-mail: achille.giacometti@unive.it; Gögelein, Christoph, E-mail: christoph.goegelein@ds.mpg.de; Lado, Fred, E-mail: lado@ncsu.edu

    2014-03-07

    Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)], we perform a detailed study of integral equation theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for this problem is implemented that significantly extends the range of applicability of RHNC. Results for both structure and thermodynamics are presented and compared with numerical simulations. Unlike previous attempts, this algorithm is shown to be stable down to themore » Janus limit, thus paving the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus system. The results are also compared with Barker-Henderson thermodynamic perturbation theory on the same model. We then discuss the pros and cons of both approaches within a unified treatment. On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is found to be a good compromise between accuracy of the results, computational effort, and uniform quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement in RHNC however clearly requires an anisotropic reference bridge function.« less

  7. Entropy production of active particles and for particles in active baths

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Seifert, Udo

    2018-01-01

    Entropy production of an active particle in an external potential is identified through a thermodynamically consistent minimal lattice model that includes the chemical reaction providing the propulsion and ordinary translational noise. In the continuum limit, a unique expression follows, comprising a direct contribution from the active process and an indirect contribution from ordinary diffusive motion. From the corresponding Langevin equation, this physical entropy production cannot be inferred through the conventional, yet here ambiguous, comparison of forward and time-reversed trajectories. Generalizations to several interacting active particles and passive particles in a bath of active ones are presented explicitly, further ones are briefly indicated.

  8. Workshop Physics Activity Guide, Module 3: Heat Temperature and Nuclear Radiation, Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 & 28)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.

  9. Thermodynamics of hairy black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  10. Non-equilibrium thermodynamics in cells.

    PubMed

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  11. [Thermodynamic analysis of water adsorption and desorption process of Chinese herbal decoction pieces].

    PubMed

    Cheng, Lin; Luo, Xiao-Jian; Han, Xiu-Lin; Wang, Wen-Kai; Rao, Xiao-Yong; Xu, Shao-Zhong; He, Yan

    2016-09-01

    Based on the basic theory of thermodynamics, the thermodynamic parameters and related equations in the process of water adsorption and desorption of Chinese herbal decoction pieces were established, and their water absorption and desorption characteristics were analyzed. The physical significance of the thermodynamic parameters, such as differential adsorption enthalpy, differential adsorption entropy, integral adsorption enthalpy, integral adsorption entropy and the free energy of adsorption, were discussed in this paper to provide theoretical basis for the research on the water adsorption and desorption mechanism, optimum drying process parameters, storage conditions and packaging methods of Chinese herbal decoction pieces. Copyright© by the Chinese Pharmaceutical Association.

  12. Distribution of nuclei in equilibrium stellar matter from the free-energy density in a Wigner-Seitz cell

    NASA Astrophysics Data System (ADS)

    Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.

    2018-03-01

    The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.

  13. Gassmann Theory Applies to Nanoporous Media

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Gurevich, Boris

    2018-01-01

    Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.

  14. Thermodynamic framework for compact q-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Souza, Andre M. C.; Andrade, Roberto F. S.; Nobre, Fernando D.; Curado, Evaldo M. F.

    2018-02-01

    Recent works have associated systems of particles, characterized by short-range repulsive interactions and evolving under overdamped motion, to a nonlinear Fokker-Planck equation within the class of nonextensive statistical mechanics, with a nonlinear diffusion contribution whose exponent is given by ν = 2 - q. The particular case ν = 2 applies to interacting vortices in type-II superconductors, whereas ν > 2 covers systems of particles characterized by short-range power-law interactions, where correlations among particles are taken into account. In the former case, several studies presented a consistent thermodynamic framework based on the definition of an effective temperature θ (presenting experimental values much higher than typical room temperatures T, so that thermal noise could be neglected), conjugated to a generalized entropy sν (with ν = 2). Herein, the whole thermodynamic scheme is revisited and extended to systems of particles interacting repulsively, through short-ranged potentials, described by an entropy sν, with ν > 1, covering the ν = 2 (vortices in type-II superconductors) and ν > 2 (short-range power-law interactions) physical examples. One basic requirement concerns a cutoff in the equilibrium distribution Peq(x) , approached due to a confining external harmonic potential, ϕ(x) = αx2 / 2 (α > 0). The main results achieved are: (a) The definition of an effective temperature θ conjugated to the entropy sν; (b) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 -(θ2 /θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 >θ2; (c) Thermodynamic potentials, Maxwell relations, and response functions. The present thermodynamic framework, for a system of interacting particles under the above-mentioned conditions, and associated to an entropy sν, with ν > 1, certainly enlarges the possibility of experimental verifications.

  15. Combined Effects Aluminized Explosives

    DTIC Science & Technology

    2010-07-01

    1 4 5 AREA EXPANSIONS Figure 4 Cylinder velocities for PAX-3 (left) and an empirical PAX-30 JWL (right) THERMODYNAMIC EQUATIONS OF...STATE The JWLB and Jones-Wilkins-Lee ( JWL ) equations of state were parameterized for combined effects explosives using fairly conventional methodology...state. Such warning messages should be ignored when using these JWLB and JWL equations of state representing eigenvalue detonation behavior. Table 1

  16. Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2

    NASA Astrophysics Data System (ADS)

    Kwang-Hua, Chu Rainer

    2018-05-01

    The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.

  17. A Thermodynamic Theory of Solid Viscoelasticity. Part II:; Nonlinear Thermo-viscoelasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    This paper, second in the series of three papers, develops a general, nonlinear, non-isothermal, compressible theory for finite rubber viscoelasticity and specifies it in a form convenient for solving problems important to the rubber, tire, automobile, and air-space industries, among others. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory of differential type has been developed for arbitrary non-isothermal deformations of viscoelastic solids. In this theory, the constitutive equations were presented as the sum of a rubber elastic (equilibrium) and a liquid type viscoelastic (non-equilibrium) terms. These equations have then been simplified using several modeling and simplicity arguments.

  18. Comparison and extension of free dendritic growth models through application to silver-15 mass percent copper alloy

    NASA Astrophysics Data System (ADS)

    Onel, Selis

    Modeling free dendritic growth in supercooled alloys is a critical requirement in controlling the microstructure of materials during rapid solidification processing of materials. Recent models developed to predict the growth of a dendrite in a highly supercooled melt adopt modifications that account for the interface kinetics and thermodynamics at high interface velocities, but the assumptions necessary to simplify the mathematical problem impose inherent restrictions. The assumption of straight phase boundaries adopted in early models often loses validity at high supercoolings, where phase boundaries are often curved. The use of equations with Henrian restrictions, such as the Baker-Cahn equation for the interfacial driving force and the Aziz equation for solute trapping confine these models to dilute solutions. Turnbull's collision-limited linear kinetic equation for interface growth may not apply to large interfacial driving forces. Therefore, a useful application and modification of free dendritic growth models require a thorough understanding of their limitations in producing consistent results. One of the objectives of this research is to numerically compare the free dendritic growth models derived from the earlier LGK model developed by Lipton et al. The subsequent LKT model by Lipton et al., the TLK model by Trivedi et al., and the BCT model by Boettinger et al., together with a modification of the TLK model, and the DA model by DiVenuti and Ando are compared through application to an Ag-15 mass % Cu alloy. In addition, a new model to extend the DA model is developed by incorporating a thermodynamic solution model for the calculation of the interfacial driving force, thereby eliminating the Baker-Cahn equation that limits the use of the correct BCT and DA models to dilute solutions. Direct computation of the interfacial driving force by calculating a metastable phase diagram for the Ag-Cu system using a temperature dependent subregular solution model is carried out. Comparison of the results of the new model with the DA model confirms that the Baker-Cahn equation is applicable at low solute concentrations. As a future research direction, the new model can be extended to apply to higher concentration alloys by using a new solute trapping equation to further eliminate the dilute solution limitations.

  19. Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Adidharma, Hertanto, E-mail: adidharm@uwyo.edu

    The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must thereforemore » be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.« less

  20. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  1. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu

    This work investigates the promise of a “bottom-up” extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstratemore » that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative “structure” within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.« less

  2. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures.

    PubMed

    Dunn, Nicholas J H; Noid, W G

    2016-05-28

    This work investigates the promise of a "bottom-up" extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstrate that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative "structure" within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.

  3. An Undergraduate Exercise in the First Law of Relativistic Thermodynamics

    ERIC Educational Resources Information Center

    Guemez, J.

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, D. N., E-mail: d.n.kagan@mtu-net.ru; Krechetova, G. A.; Shpil'rain, E. E.

    A detailed procedural analysis is given and results of implementation of the new version of the effusion method for determining the Gibbs energy (thermodynamic activity) of binary and ternary systems of alkali metals Cs-Na, K-Na, Cs-K, and Cs-K-Na are presented. The activity is determined using partial pressures of the components measured according the effusion method by the intensity of their atomic beams. The pressure range used in the experiment is intermediate between the Knudsen and hydrodynamic effusion modes. A generalized version of the effusion method involves the pressure range beyond the limits of the applicability of the Hertz-Knudsen equation. Employmentmore » of this method provides the differential equation of chemical thermodynamics; solution of this equation makes it possible to construct the Gibbs energy in the range of temperatures 400 {<=} T {<=} 1200 K and concentrations 0 {<=} x{sub i} {<=} 1.« less

  5. Mayer-cluster expansion of instanton partition functions and thermodynamic bethe ansatz

    NASA Astrophysics Data System (ADS)

    Meneghelli, Carlo; Yang, Gang

    2014-05-01

    In [19] Nekrasov and Shatashvili pointed out that the = 2 instanton partition function in a special limit of the Ω-deformation parameters is characterized by certain thermodynamic Bethe ansatz (TBA) like equations. In this work we present an explicit derivation of this fact as well as generalizations to quiver gauge theories. To do so we combine various techniques like the iterated Mayer expansion, the method of expansion by regions, and the path integral tricks for non-perturbative summation. The TBA equations derived entirely within gauge theory have been proposed to encode the spectrum of a large class of quantum integrable systems. We hope that the derivation presented in this paper elucidates further this completely new point of view on the origin, as well as on the structure, of TBA equations in integrable models.

  6. Numerical modelling of multiphase multicomponent reactive transport in the Earth's interior

    NASA Astrophysics Data System (ADS)

    Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio; Diez, Pedro

    2018-01-01

    We present a conceptual and numerical approach to model processes in the Earth's interior that involve multiple phases that simultaneously interact thermally, mechanically and chemically. The approach is truly multiphase in the sense that each dynamic phase is explicitly modelled with an individual set of mass, momentum, energy and chemical mass balance equations coupled via interfacial interaction terms. It is also truly multicomponent in the sense that the compositions of the system and its constituent phases are expressed by a full set of fundamental chemical components (e.g. SiO2, Al2O3, MgO, etc.) rather than proxies. These chemical components evolve, react with and partition into different phases according to an internally consistent thermodynamic model. We combine concepts from Ensemble Averaging and Classical Irreversible Thermodynamics to obtain sets of macroscopic balance equations that describe the evolution of systems governed by multiphase multicomponent reactive transport (MPMCRT). Equilibrium mineral assemblages, their compositions and physical properties, and closure relations for the balance equations are obtained via a `dynamic' Gibbs free-energy minimization procedure (i.e. minimizations are performed on-the-fly as needed by the simulation). Surface tension and surface energy contributions to the dynamics and energetics of the system are taken into account. We show how complex rheologies, that is, visco-elasto-plastic, and/or different interfacial models can be incorporated into our MPMCRT ensemble-averaged formulation. The resulting model provides a reliable platform to study the dynamics and nonlinear feedbacks of MPMCRT systems of different nature and scales, as well as to make realistic comparisons with both geophysical and geochemical data sets. Several numerical examples are presented to illustrate the benefits and limitations of the model.

  7. Second relativistic mean field and virial equation of state for astrophysical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, G.; Horowitz, C. J.; O'Connor, E.

    2011-06-15

    We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. Wemore » calculate the resulting EOS at over 100 000 grid points in the temperature range T=0 to 80 MeV, the density range n{sub B}=10{sup -8} to 1.6 fm{sup -3}, and the proton fraction range Y{sub p}=0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.« less

  8. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  9. Thermodynamics of the variable modified Chaplygin gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panigrahi, D.; Chatterjee, S., E-mail: dibyendupanigrahi@yahoo.co.in, E-mail: chat_sujit1@yahoo.com

    A cosmological model with a new variant of Chaplygin gas obeying an equation of state (EoS), P = A ρ − B /ρ{sup α} where B = B {sub 0} a {sup n} is investigated in the context of its thermodynamical behaviour. Here B {sub 0} and n are constants and a is the scale factor. We show that the equation of state of this 'Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following standard thermodynamical criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, nmore » introduced in VMCG plays a crucial role in determining the stability considerations and should always be negative. We further observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for 0 n < our model points to a phantom type of expansion which, however, is found to be compatible with current SNe Ia observations and CMB anisotropy measurements. Further the third law of thermodynamics is obeyed in our case. Our model is very general in the sense that many of earlier works in this field may be obtained as a special case of our solution. An interesting point to note is that the model also apparently suggests a smooth transition from the big bang to the big rip in its whole evaluation process.« less

  10. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  11. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  12. Modeling of dielectric properties of aqueous salt solutions with an equation of state.

    PubMed

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M; Thomsen, Kaj

    2013-09-12

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles in the electrical field surrounding ions. Kinetic depolarization may explain 25-75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich to associating mixtures. Wertheim's association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion-solvent association. Finally, we compare the Debye-Hückel Helmholtz energy obtained using an empirical model with the new physical model and show that the empirical models may introduce unphysical behavior in the equation of state.

  13. Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces.

    PubMed

    Chen, Szu-Ying; Kaufman, Yair; Schrader, Alex M; Seo, Dongjin; Lee, Dong Woog; Page, Steven H; Koenig, Peter H; Isaacs, Sandra; Gizaw, Yonas; Israelachvili, Jacob N

    2017-09-26

    Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±V, focusing on the thermodynamic limit of ±V → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of "contact mechanics" and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from V ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (V > 0) and receding (V < 0) adhesion energies and/or contact angles converged toward the same theoretical (thermodynamic) values as V → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular length/dimension or area and characteristic bond formation/rupture lifetime or velocity. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, quasi-static, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the interfacial velocities of our experiments, i.e., V < (1-10) mm/s (for water and hexadecane, but for viscous polymers it may be different), consistent with previously reported studies.

  14. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    PubMed

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  15. ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, Kevin; Tsai, Shang-Min; Lyons, James R., E-mail: kevin.heng@csh.unibe.ch

    2016-01-10

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equatemore » to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.« less

  16. Thermodynamic Properties of Dimethyl Carbonatea)

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wu, Jiangtao; Lemmon, Eric W.

    2011-12-01

    A thermodynamic property formulation for dimethyl carbonate has been developed with the use of available experimental thermodynamic property data. The equation of state was developed with multiproperty fitting methods involving pressure-density-temperature (pρT), heat capacity, vapor pressure, and saturated-liquid density data. The equation of state conforms to the Maxwell criterion for two-phase liquid-vapor equilibrium states, and is valid for temperatures from the triple-point temperature (277.06 ± 0.63) K to 600 K, for pressures up to 60 MPa, and for densities up to 12.12 mol dm-3. The extrapolation behavior of the equation of state at low and high temperatures and pressures is reasonable. The uncertainties (k = 2, indicating a 95% confidence level) of the equation of state in density are 0.05% for saturated-liquid states below 350 K, rising to 0.1% in the single phase between 278 K and 400 K at pressures up to 60 MPa. Due to the lack of reliable data outside this region, the estimated uncertainties increase to 0.5% to 1% in the vapor and critical regions. The uncertainties in vapor pressure are 0.6% from 310 K to 400 K, and increase to 1% at higher temperatures and to 2% at lower temperatures due to a lack of experimental data. The uncertainty in isobaric heat capacity and speed of sound in the liquid phase at saturation or atmospheric pressure is 0.5% from 280 K to 335 K. The uncertainties are higher for all properties in the critical region. Detailed comparisons between experimental and calculated data, and an analysis of the equation, have been performed.

  17. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  18. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  19. Towards a Self-Consistent Physical Framework for Modeling Coupled Human and Physical Activities during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2014-12-01

    Studies of the response of global climate to anthropogenic activities rely upon scenarios for future human activity to provide a range of possible trajectories for greenhouse gases emissions over the coming century. Sophisticated integrated models are used to explore not only what will happen, but what should happen in order to optimize societal well-being. Hundreds of equations might be used to account for the interplay between human decisions, technological change, and macroeconomic priniciples. In contrast, the model equations used to describe geophysical phenomena look very different because they are a) purely deterministic and b) consistent with basic thermodynamic laws. This inconsistency between macroeconomics and physics suggests a rather unhappy marriage. During the Anthropocene the evolution of humanity and our environment will become increasingly intertwined. Representing such a coupling suggests a need for a common theoretical basis. To this end, the approach that is described here is to treat civilization like any other physical process, that is as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Theoretical arguments and over 40 years of measurements show that a very general representation of global economic wealth (not GDP) has been tied to rates of global primary energy consumption through a constant 7.1 ± 0.1 mW per year 2005 USD. This link between physics and economics leads to very simple expressions for how fast civilization and its rate of energy consumption grow. These are expressible as a function of rates of energy and material resource discovery and depletion, and of the magnitude of externally imposed decay. The equations are validated through hindcasts that show, for example, that economic conditions in the 1950s can be invoked to make remarkably accurate forecasts of present rates of global GDP growth and primary energy consumption. One implication for the future is that the unusually rapid growth that has been seen in past 60 years may predispose civilization to an equally rapid decline, especially should resource depletion and climate change start to take their toll.

  20. Self-consistent quantum kinetic theory of diatomic molecule formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrey, Robert C.

    2015-07-14

    A quantum kinetic theory of molecule formation is presented which includes three-body recombination and radiative association for a thermodynamically closed system which may or may not exchange energy with its surrounding at a constant temperature. The theory uses a Sturmian representation of a two-body continuum to achieve a steady-state solution of a governing master equation which is self-consistent in the sense that detailed balance between all bound and unbound states is rigorously enforced. The role of quasibound states in catalyzing the molecule formation is analyzed in complete detail. The theory is used to make three predictions which differ from conventionalmore » kinetic models. These predictions suggest significant modifications may be needed to phenomenological rate constants which are currently in wide use. Implications for models of low and high density systems are discussed.« less

  1. Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Amend, Jan P.; Helgeson, Harold C.

    1997-01-01

    Group additivity equations of state for aqueous organic molecules have been generated by combining the revised Helgeson-Kirkham-Flowers (HKF) equations of state ( Shock and Helgeson, 1988, 1990; Tanger and Helgeson, 1988; Shock et al., 1989, 1992) with experimental values of the standard molal properties of aqueous alkanes, alkanols, alkylbenzenes, car☐ylic acids, amides, and amines. Equations of state parameters for the groups represented by -CH 2-, -CH 3, -CHCH 3-, -C 6H 5, -CH 2OH, -COOH, -CONH 2, and -CH 2NH 2 were determined by regression of the experimental data. This procedure permits calculation of the standard molal thermodynamic properties of these groups at elevated temperatures and pressures. Although curves representing the apparent standard molal Gibbs free energies (Δ G°) and enthalpies (Δ H°) of formation, and the standard molal entropies ( S°) of the groups as a function of temperature and pressure are respectively similar for each of them, the temperature dependence of the standard molal heat capacities ( Cp°) and volumes ( V°) of a number of the groups are quite different from one another. For example, the standard molal heat capacities of the hydrocarbon groups minimize with increasing temperature, but those of -CH 2OH and -CH 2NH 2 maximize. Computed values of Δ G°, Δ H°, S°, Cp°, V°, and the equations of state parameters for the various groups were used together with group additivity relations to generate corresponding values of these properties for aqueous n-alkanes, 2-methylalkanes, n-alkylbenzenes, n-alkanols, n-car☐ylic acids, n-amides, and n-amines at temperatures ≤ 250°C and pressures ≤ 1 kbar. The validity and generality of the equations of state are supported by the fact that predicted equilibrium constants for liquid n-alkane solubility reactions in water compare favorably with experimental values reported in the literature for temperatures as high as 200°C. Furthermore, equilibrium constants for aqueous ethane coexisting with ethene at 325 and 350°C at 350 bars predicted from the equations of state are in close agreement with independently determined experimental values reported by Seewald (1994). The standard molal thermodynamic properties and equations of state parameters reported below provide the means to characterize the thermodynamic behavior of a wide variety of aqueous organic species involved in hydrothermal reactions at elevated temperatures and pressures.

  2. Master curves and radial distribution functions for shear dilatancy of liquid n-hexadecane via nonequilibrium molecular dynamics simulations.

    PubMed

    Tseng, Huan-Chang; Wu, Jiann-Shing; Chang, Rong-Yeu

    2009-04-28

    Shear dilatancy, a significant nonlinear behavior of nonequilibrium thermodynamics states, has been observed in nonequilibrium molecular dynamics (NEMD) simulations for liquid n-hexadecane fluid under extreme shear conditions. The existence of shear dilatancy is relevant to the relationship between the imposed shear rate gamma and the critical shear rate gamma(c). Consequently, as gammagamma(c), the intermolecular distance is lengthened substantially by strong shear deformation breaking the equilibrium thermodynamic state so that shear dilatancy takes place. Notably, a characteristic shear rate gamma(m), which depends on the root mean square molecular velocity and the average free molecular distance, is found in nonequilibrium thermodynamics state curves. Studies of the variations in the intermolecular radial distribution function (RDF) with respect to the shear rate provide a direct measure of the variation in the degree of intermolecular separation. Additionally, the variations of the RDF curve in the microscopic regime are consistent with those of the nonequilibrium thermodynamic state in the macroscopic world. By inspecting the overall shape of the RDF curve, it can be readily corroborated that the fluid of interest exists in the liquid state. More importantly, both primary characteristic values, the equilibrium thermodynamic state variable and a particular shear rate of gamma(p), are determined cautiously, with gamma(p) depending on the gamma(m) value and the square root of pressure. Thereby, the nonequilibrium thermodynamic state curves can be normalized as temperature-, pressure-, and density-invariant master curves, formulated by applying the Cross constitutive equation. Clearly, gamma(c) occurs at which a reduced shear rate gamma/gamma(p) approaches 0.1. Furthermore, the trends in the rates of shear dilatancy in both the constant-pressure and constant-volume NEMD systems under isothermal conditions conform to the cyclic rule of pressure, as a function of density and shear rate.

  3. Nonequilibrium-thermodynamics approach to open quantum systems

    NASA Astrophysics Data System (ADS)

    Semin, Vitalii; Petruccione, Francesco

    2014-11-01

    Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local-in-time master equation that provides a direct connection for dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated by the application to the damped harmonic oscillator and the damped driven two-level system, resulting in analytical expressions for the non-Markovian and nonequilibrium entropy and inverse temperature.

  4. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  5. Use of Tabulated Thermochemical Data for Pure Compounds

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1999-01-01

    Thermodynamic data for inorganic compounds is found in a variety of tabulations and computer databases. An extensive listing of sources of inorganic thermodynamic data is provided. The three major tabulations are the JANAF tables. Thermodynamic Properties of Individual Substances, and the tabulation by Barin. The notation and choice of standard states is different in each of these tabulations, so combining data from the different tabulations is often a problem. By understanding the choice of standard states, it is possible to develop simple equations for conversion of the data from one form to another.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C., E-mail: pandyatc@gmail.com

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  7. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.

    PubMed

    Qian, Hong; Beard, Daniel A

    2005-04-22

    The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.

  8. Equation of state of dense plasmas with pseudoatom molecular dynamics

    DOE PAGES

    Starrett, C. E.; Saumon, D.

    2016-06-14

    Here, we present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. And while the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method ismore » validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We also calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flego, S.P.; Plastino, A.; Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  10. Mechanical approach to chemical transport

    PubMed Central

    Kocherginsky, Nikolai; Gruebele, Martin

    2016-01-01

    Nonequilibrium thermodynamics describes the rates of transport phenomena with the aid of various thermodynamic forces, but often the phenomenological transport coefficients are not known, and the description is not easily connected with equilibrium relations. We present a simple and intuitive model to address these issues. Our model is based on Lagrangian dynamics for chemical systems with dissipation, so one may think of the model as physicochemical mechanics. Using one main equation, the model allows a systematic derivation of all transport and equilibrium equations, subject to the limitation that heat generated or absorbed in the system must be small for the model to be valid. A table with all major examples of transport and equilibrium processes described using physicochemical mechanics is given. In equilibrium, physicochemical mechanics reduces to standard thermodynamics and the Gibbs–Duhem relation, and we show that the First and Second Laws of thermodynamics are satisfied for our system plus bath model. Out of equilibrium, our model provides relationships between transport coefficients and describes system evolution in the presence of several simultaneous external fields. The model also leads to an extension of the Onsager–Casimir reciprocal relations for properties simultaneously transported by many components. PMID:27647899

  11. Zeroth Law, Entropy, Equilibrium, and All That

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2008-05-01

    The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the traditional approach to thermodynamics is discussed. It is shown that the traditional approach does not need to appeal to the second law to solve with rigor the type of problems discussed by Gislason and Craig: in problems not involving chemical reaction, the zeroth law and the condition for mechanical equilibrium, complemented by the first law and any necessary equations of state, are sufficient to determine the final state. We have to invoke the second law only if we wish to calculate the change of entropy. Since most students are exposed to a traditional approach to thermodynamics, the examples of Gislason and Craig are re-examined in terms of the traditional formulation. The maximization of the entropy in the final state can be verified in the traditional approach quite directly by the use of the fundamental equations of thermodynamics. This approach uses relatively simple mathematics in as general a setting as possible.

  12. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Robert; Seniow, Kendra

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with severalmore » important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known as the HTWOS Pitzer database. Using Microsoft Excel to formulate the Gibbs energy minimization method and the multi-component Pitzer ion interaction equations, several predictions of the solubility of solute mixtures at various temperatures were made using the HTWOS Pitzer database coefficients. Examples of these predictions are shown in Figure 3 and Figure 4. A listing of the entire HTWOS Pitzer database can be found in RPP-RPT-50703. Currently, work is underway to install the Pitzer ion interaction model in HTWOS as the mechanism for determining the solid-liquid phase distributions of select waste constituents during tank retrievals and subsequent washing and leaching of the waste. Validation of the Pitzer ion interaction model in HTWOS will be performed with analytical laboratory data of actual tank waste. This change in HTWOS is expected to elicit shifts in mission criteria, such as mission end date and quantity of high-level waste glass produced by WTP, as predicted by HTWOS. These improvements to the speciation calculations in HTWOS, however, will establish a better planning basis and facilitate more effective and efficient future operations of the WTP. (authors)« less

  13. Numerical study of a Vlasov equation for systems with interacting particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Dianela; Curilef, Sergio

    2015-03-10

    We solve numerically the Vlasov equation for the self-gravitating sheet model. We used the method introduced by Cheng and Knorr [Comput Phys 22, 330-351 (1976)]. We discuss the quasi-stationary state for some thermodynamical observables, specifically the kinetic energy, whose trend is depicted for early evolution.

  14. Thermodynamically consistent model calibration in chemical kinetics

    PubMed Central

    2011-01-01

    Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can provide dimensionality reduction, better estimation performance, and lower computational complexity, and can help to alleviate the problem of data overfitting. PMID:21548948

  15. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    PubMed

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  16. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  17. Van der Waals equation of state revisited: importance of the dispersion correction.

    PubMed

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  18. Taub–Bolt heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2018-02-01

    It is shown that aspects of the extended thermodynamic properties of the Taub–Bolt–AdS spacetime in four dimensions are similar to those of the Schwarzschild–AdS black hole. In a high temperature expansion, the equations of state begin to deviate only at next-to-subleading orders. By analogy with what has been done for black holes, Taub–Bolt’s thermodynamic equations are used to define holographic heat engines, the first examples of gravitational heat engines defined using a spacetime that is not a black hole. As a further comparison, the Taub–Bolt engine efficiency is computed for two special kinds of engine cycle and compared to the results for analogous Schwarzschild black hole engine cycles.

  19. Complete spectrum of long operators in Script N = 4 SYM at one loop

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Kazakov, Vladimir A.; Sakai, Kazuhiro; Zarembo, Konstantin

    2005-07-01

    We construct the complete spectral curve for an arbitrary local operator, including fermions and covariant derivatives, of one-loop Script N = 4 gauge theory in the thermodynamic limit. This curve perfectly reproduces the Frolov-Tseytlin limit of the full spectral curve of classical strings on AdS5 × S5 derived in [64]. To complete the comparison we introduce stacks, novel bound states of roots of different flavors which arise in the thermodynamic limit of the corresponding Bethe ansatz equations. We furthermore show the equivalence of various types of Bethe equations for the underlying fraktur sfraktur u(2,2|4) superalgebra, in particular of the type ``Beauty'' and ``Beast''.

  20. A gravitational energy–momentum and the thermodynamic description of gravity

    NASA Astrophysics Data System (ADS)

    Acquaviva, G.; Kofroň, D.; Scholtz, M.

    2018-05-01

    A proposal for the gravitational energy–momentum tensor, known in the literature as the square root of Bel–Robinson tensor (SQBR), is analyzed in detail. Being constructed exclusively from the Weyl part of the Riemann tensor, such tensor encapsulates the geometric properties of free gravitational fields in terms of optical scalars of null congruences: making use of the general decomposition of any energy–momentum tensor, we explore the thermodynamic interpretation of such geometric quantities. While the matter energy–momentum is identically conserved due to Einstein’s field equations, the SQBR is not necessarily conserved and dissipative terms could arise in its vacuum continuity equation. We discuss the possible physical interpretations of such mathematical properties.

  1. Numerical Implementation of a Multiple-ISV Thermodynamically-Based Work Potential Theory for Modeling Progressive Damage and Failure in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.

    2011-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.

  2. A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.

    2012-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.

  3. A Thermodynamic Approach to Soil-Plant-Atmosphere Modeling: From Metabolic Biochemical Processes to Water-Carbon-Nitrogen Balance

    NASA Astrophysics Data System (ADS)

    Clavijo, H. W.

    2016-12-01

    Modeling the soil-plant-atmosphere continuum has been central part of understanding interrelationships among biogeochemical and hydrological processes. Theory behind of couplings Land Surface Models (LSM) and Dynamical Global Vegetation Models (DGVM) are based on physical and physiological processes connected by input-output interactions mainly. This modeling framework could be improved by the application of non-equilibrium thermodynamic basis that could encompass the majority of biophysical processes in a standard fashion. This study presents an alternative model for plant-water-atmosphere based on energy-mass thermodynamics. The system of dynamic equations derived is based on the total entropy, the total energy balance for the plant, the biomass dynamics at metabolic level and the water-carbon-nitrogen fluxes and balances. One advantage of this formulation is the capability to describe adaptation and evolution of dynamics of plant as a bio-system coupled to the environment. Second, it opens a window for applications on specific conditions from individual plant scale, to watershed scale, to global scale. Third, it enhances the possibility of analyzing anthropogenic impacts on the system, benefiting from the mathematical formulation and its non-linearity. This non-linear model formulation is analyzed under the concepts of qualitative system dynamics theory, for different state-space phase portraits. The attractors and sources are pointed out with its stability analysis. Possibility of bifurcations are explored and reported. Simulations for the system dynamics under different conditions are presented. These results show strong consistency and applicability that validates the use of the non-equilibrium thermodynamic theory.

  4. Transition and separation process in brine channels formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, Alessia, E-mail: alessia.berti@unibs.it; Bochicchio, Ivana, E-mail: ibochicchio@unisa.it; Fabrizio, Mauro, E-mail: mauro.fabrizio@unibo.it

    2016-02-15

    In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.

  5. Theory of phase diagrams described by thermodynamic potentials with T d symmetry

    NASA Astrophysics Data System (ADS)

    Mukovnin, A. A.; Talanov, V. M.

    2014-09-01

    Phase diagrams of crystals induced by irreducible representations with symmetry group ( T d ) are constructed within the phenomenological theory of second-order phase transitions. A model of the Landau thermodynamic potential is studied, state equations of all symmetry-conditioned phases are obtained, and general conditions for their thermodynamic stability are formulated. Equations for the boundaries of phase areas and lines of phase transitions are obtained for the fourth order of expansion of the potential via components of the order parameter. Some types of the collapse of the multicritical point of the phase diagram for the eighth order of potential expansion are studied using computer calculations. The possible existence of phase diagrams that contain one or more triple points and areas of existence of three and four phases is shown for the first time for the potentials with the above symmetry. Examples are given of crystals that undergo phase transitions in the considered symmetry of the order parameter.

  6. Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.

    PubMed

    Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2011-05-28

    Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics

  7. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  8. Comparison of Caplan's irreversible thermodynamic theory of muscle contraction with chemical data.

    PubMed

    Bornhorst, W J; Minardi, J E

    1969-05-01

    Recently Caplan (1) applied the concepts of irreversible thermodynamics and cybernetics to contracting muscle and derived Hill's force-velocity relation. Wilkie and Woledge (2) then compared Caplan's theory to chemical rates inferred from heat data and concluded that the theory was not consistent with the data. Caplan defended his theory in later papers (3, 4) but without any direct experimental verifications. As Wilkie and Woledge (2) point out, the rate of phosphorylcreatine (PC) breakdown during steady states of shortening has not been observed because of technical difficulties. In this paper it is shown that the rate equations may be directly integrated with time to obtain relations among actual quantities instead of rates. The validity of this integration is based on experimental evidence which indicates that certain combinations of the transport coefficients are constant with muscle length. These equations are then directly compared to experimental data of Cain, Infante, and Davies (5) with the following conclusions: (a) The measured variations of DeltaPC for isotonic contractions are almost exactly as predicted by Caplan's theory. (b) The value of the chemical rate ratio, nu(m)/nu(o), obtained from these data was 3.53 which is close to the value of 3 suggested by Caplan (3). (c) The maximum value of the chemical affinity for PC splitting was found to be 10.6 k cal/mole which is as expected from in vitro measurements (2). Because of the excellent agreement between theory and experiment, we conclude that Caplan's theory definitely warrants further investigation.

  9. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    NASA Astrophysics Data System (ADS)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe

    2014-10-01

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan & Chen [1] [2] (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented [4] [5]. Multi-range interactions have been used for SC model [8], but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong & Cheng [6] [7]. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  10. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles

    2014-10-06

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence tomore » isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.« less

  11. The thermodynamic properties of oxygen and nitrogen. Part 2: Thermodynamic properties of oxygen from 100 R to 600 R with pressure to 5000 psia

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    An equation of state is presented for liquid and gaseous oxygen for temperatures from 100 R to 600 R and pressures to 5000 psia. The pressure-density-temperature data available from the published literature have been reviewed, and appropriate corrections have been applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. Representative comparisons of property values calculated from the equation of state to measured values are included to illustrate the accuracy of the equation of state. The coefficients of the equation of state were determined by a weighted least squares fit to selected published data, and simultaneously to isochoric heat capacity data, and to data which define the phase equilibrium for the saturated liquid and saturated vapor. The equation of state is estimated to be accurate for the liquid to within 0.1 percent in density, to within 0.2 percent for the vapor below the critical temperature and for states above the critical temperatures to 250 K, and within 0.1 percent for supercritical states at temperatures from 250 K to 300 K. The vapor pressure equation is accurate to within + or - 0.01 K between the triple point and the critical point.

  12. Nonlinear integral equations for the sausage model

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  13. A cavitation transition in the energy landscape of simple cohesive liquids and glasses

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-12-01

    In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.

  14. The equation of state of Song and Mason applied to fluorine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, H.; Boushehri, A.

    1999-03-01

    An analytical equation of state is applied to calculate the compressed and saturation thermodynamic properties of fluorine. The equation of state is that of Song and Mason. It is based on a statistical mechanical perturbation theory of hard convex bodies and is a fifth-order polynomial in the density. There exist three temperature-dependent parameters: the second virial coefficient, an effective molecular volume, and a scaling factor for the average contact pair distribution function of hard convex bodies. The temperature-dependent parameters can be calculated if the intermolecular pair potential is known. However, the equation is usable with much less input than themore » full intermolecular potential, since the scaling factor and effective volume are nearly universal functions when expressed in suitable reduced units. The equation of state has been applied to calculate thermodynamic parameters including the critical constants, the vapor pressure curve, the compressibility factor, the fugacity coefficient, the enthalpy, the entropy, the heat capacity at constant pressure, the ratio of heat capacities, the Joule-Thomson coefficient, the Joule-Thomson inversion curve, and the speed of sound for fluorine. The agreement with experiment is good.« less

  15. Modelling of reactive fluid transport in deformable porous rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a representative volume element and subsequent averaging of microscopic constitutive laws. Micromechanical and thermodynamic modelling is performed in such a way that the consistency of the obtained rheology and thermodynamically admissible closed system of equations with the exact Gassman's relationship and Terzaghi effective stress law in the simplified case of poroelasticity is guaranteed. In such environments as subduction zones or mid-ocean ridge, metamorphic rocks exhibit a lack of chemical homogenisation. Geochemistry suggests that in order to produce chemical heterogeneity, the fluids generated during high-pressure metamorphism must have been strongly channelled. The following three major mechanisms of fluid flow focusing have been proposed: fluid flow in open fractures and two different types of flow instabilities that do not require the pre-existing fracture network. Of the latter, the first represents a purely mechanical instability of Darcian flow through the deformable porous rock while the second is reactive infiltration instability. Both mechanical and reactive instabilities are expected to occur in the mantle and should probably reinforce each other. However, little research has been done in this direction. In order to investigate how the focusing of a fluid flow occurs, how mechanical and reactive infiltration instabilities influence each other, and what their relative importance in rocks with different rheologies is, linear and non-linear stability analysis is applied to derived governing equations.

  16. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    PubMed

    Alekseechkin, Nikolay V

    2015-08-07

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  17. The mass formula for an exotic BTZ black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com

    2016-04-15

    An exotic Bañados–Teitelboim–Zanelli (BTZ) black hole has an angular momentum larger than its mass in three dimension (3D), which suggests the possibility that cosmic censorship could be violated if angular momentum is extracted by the Penrose process. In this paper, we propose a mass formula for the exotic BTZ black hole and show no violation of weak cosmic censorship in the gedanken process above by understanding properly its mass formula. Unlike the other black holes, the total energy of the exotic BTZ black hole is represented by the angular momentum instead of the mass, which supports a basic point ofmore » view that the same geometry should be determined by the same energy in 3D general relativity whose equation of motion can be given either by normal 3D Einstein gravity or by exotic 3D Einstein gravity. However, only the mass of the exotic black hole is related to the thermodynamics and other forms of energy are “dumb”, which is consistent with the earlier thermodynamic analysis about exotic black holes.« less

  18. Stochastic many-particle model for LFP electrodes

    NASA Astrophysics Data System (ADS)

    Guhlke, Clemens; Gajewski, Paul; Maurelli, Mario; Friz, Peter K.; Dreyer, Wolfgang

    2018-02-01

    In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage-charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.

  19. Thermo-optical Modelling of Laser Matter Interactions in Selective Laser Melting Processes.

    NASA Astrophysics Data System (ADS)

    Vinnakota, Raj; Genov, Dentcho

    Selective laser melting (SLM) is one of the promising advanced manufacturing techniques, which is providing an ideal platform to manufacture components with zero geometric constraints. Coupling the electromagnetic and thermodynamic processes involved in the SLM, and developing the comprehensive theoretical model of the same is of great importance since it can provide significant improvements in the printing processes by revealing the optimal parametric space related to applied laser power, scan velocity, powder material, layer thickness and porosity. Here, we present a self-consistent Thermo-optical model which simultaneously solves the Maxwell's and the heat transfer equations and provides an insight into the electromagnetic energy released in the powder-beds and the concurrent thermodynamics of the particles temperature rise and onset of melting. The numerical calculations are compared with developed analytical model of the SLM process providing insight into the dynamics between laser facilitated Joule heating and radiation mitigated rise in temperature. These results provide guidelines toward improved energy efficiency and optimization of the SLM process scan rates. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.

  20. Magnetothermodynamics: measurements of the thermodynamic properties in a relaxed magnetohydrodynamic plasma

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Schaffner, D. A.; Brown, M. B.; Woodruff, S.; Meyer, T.

    2018-02-01

    We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies `magnetothermodynamics'. The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetized plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature and a proxy for the volume of the magnetized plasma. Different equations of state are analysed to evaluate the adiabatic nature of the compressed plasma. A three-dimensional resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and shows stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments.

  1. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  2. Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-04-01

    We study some aspects of nonequilibrium thermodynamics and heat diffusion processes based on Suykens's nonlocal-in-time kinetic energy approach recently introduced in the literature. A number of properties and insights are obtained in particular the emergence of oscillating entropy and nonlocal diffusion equations which are relevant to a number of physical and engineering problems. Several features are obtained and discussed in details.

  3. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  4. COED Transactions, Vol. 8, No. 10, October 1976. The Computer Generation of Thermodynamic Phase Diagrams.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    A technique is described for the generation of perspective views of three-dimensional models using computer graphics. The technique is applied to models of familiar thermodynamic phase diagrams and the results are presented for the ideal gas and van der Waals equations of state as well as the properties of liquid water and steam from the Steam…

  5. Entropy is in Flux V3.4

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2017-05-01

    The science of thermodynamics was put together in the Nineteenth Century to describe large systems in equilibrium. One part of thermodynamics defines entropy for equilibrium systems and demands an ever-increasing entropy for non-equilibrium ones. Since thermodynamics does not define entropy out of equilibrium, pure thermodynamics cannot follow the details of how this increase occurs. However, starting with the work of Ludwig Boltzmann in 1872, and continuing to the present day, various models of non-equilibrium behavior have been put together with the specific aim of generalizing the concept of entropy to non-equilibrium situations. This kind of entropy has been termed kinetic entropy to distinguish it from the thermodynamic variety. Knowledge of kinetic entropy started from Boltzmann's insight about his equation for the time dependence of gaseous systems. In this paper, his result is stated as a definition of kinetic entropy in terms of a local equation for the entropy density. This definition is then applied to Landau's theory of the Fermi liquid thereby giving the kinetic entropy within that theory. The dynamics of many condensed matter systems including Fermi liquids, low temperature superfluids, and ordinary metals lend themselves to the definition of kinetic entropy. In fact, entropy has been defined and used for a wide variety of situations in which a condensed matter system has been allowed to relax for a sufficient period so that the very most rapid fluctuations have been ironed out. One of the broadest applications of non-equilibrium analysis considers quantum degenerate systems using Martin-Schwinger Green's functions (Phys Rev 115:1342-1373, 1959) as generalized Wigner functions, g^<({p},ω ,{R},T) and g^>({p},ω ,{R},T). This paper describes once again how the quantum kinetic equations for these functions give locally defined conservation laws for mass momentum and energy. In local thermodynamic equilibrium, this kinetic theory enables a reasonable definition of the density of kinetic entropy. However, when the system is outside of local equilibrium, this definition fails. It is speculated that quantum entanglement is the source of this failure.

  6. Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan

    NASA Technical Reports Server (NTRS)

    Kouvaris, Louis C.; Flasar, F. M.

    1991-01-01

    Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.

  7. Entropy corrected holographic dark energy models in modified gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Azhar, Nadeem; Rani, Shamaila

    We consider the power law and the entropy corrected holographic dark energy (HDE) models with Hubble horizon in the dynamical Chern-Simons modified gravity. We explore various cosmological parameters and planes in this framework. The Hubble parameter lies within the consistent range at the present and later epoch for both entropy corrected models. The deceleration parameter explains the accelerated expansion of the universe. The equation of state (EoS) parameter corresponds to quintessence and cold dark matter (ΛCDM) limit. The ωΛ-ωΛ‧ approaches to ΛCDM limit and freezing region in both entropy corrected models. The statefinder parameters are consistent with ΛCDM limit and dark energy (DE) models. The generalized second law of thermodynamics remain valid in all cases of interacting parameter. It is interesting to mention here that our results of Hubble, EoS parameter and ωΛ-ωΛ‧ plane show consistency with the present observations like Planck, WP, BAO, H0, SNLS and nine-year WMAP.

  8. The H-theorem and equation of state for kinetic model of imperfect gas

    NASA Astrophysics Data System (ADS)

    Bishaev, A. M.; Rikov, V. A.; Abgaryan, M. V.

    2018-03-01

    In the offered article, having used earlier constructed kinetic model for imperfect gas, the equation of state for such gas which takes place which is able in a thermodynamic equilibrium is received and also expression for critical temperature as functions is received from an interaction potential between molecules.

  9. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling.

    PubMed

    Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian

    2014-09-28

    We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

  10. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling

    NASA Astrophysics Data System (ADS)

    Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian

    2014-09-01

    We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

  11. Hydrodynamic theory of active matter

    NASA Astrophysics Data System (ADS)

    Jülicher, Frank; Grill, Stephan W.; Salbreux, Guillaume

    2018-07-01

    We review the general hydrodynamic theory of active soft materials that is motivated in particular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we identify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues.

  12. Optimal Protocols and Optimal Transport in Stochastic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-01

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  13. Thermodynamical effects and high resolution methods for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Li, Jiequan; Wang, Yue

    2017-08-01

    One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.

  14. Optimal protocols and optimal transport in stochastic thermodynamics.

    PubMed

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-24

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  15. Universal ideal behavior and macroscopic work relation of linear irreversible stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ma, Yi-An; Qian, Hong

    2015-06-01

    We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic ‘equation of state’ of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.

  16. JWL Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2015-12-15

    The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits themore » low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.« less

  17. Beyond the single-file fluid limit using transfer matrix method: Exact results for confined parallel hard squares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurin, Péter; Varga, Szabolcs

    2015-06-14

    We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less

  18. Statistical thermodynamics foundation for photovoltaic and photothermal conversion. II. Application to photovoltaic conversion

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.

    1995-08-01

    The general theory developed in part I was applied to build up two models of photovoltaic conversion. To this end two different systems were analyzed. The first system consists of the whole absorber (converter), for which the balance equations for energy and entropy are written and then used to derive an upper bound for solar energy conversion. The second system covers a part of the absorber (converter), namely the valence and conduction electronic bands. The balance of energy is used in this case to derive, under additional assumptions, another upper limit for the conversion efficiency. This second system deals with the real location where the power is generated. Both models take into consideration the radiation polarization and reflection, and the effects of concentration. The second model yields a more accurate upper bound for the conversion efficiency. A generalized solar cell equation is derived. It is proved that other previous theories are particular cases of the present more general formalism.

  19. On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.

    1991-01-01

    A complete potential based framework using internal state variables is put forth for the derivation of reversible and irreversible constitutive equations. In this framework, the existence of the total (integrated) form of either the (Helmholtz) free energy or the (Gibbs) complementary free energy are assumed a priori. Two options for describing the flow and evolutionary equations are described, wherein option one (the fully coupled form) is shown to be over restrictive while the second option (the decoupled form) provides significant flexibility. As a consequence of the decoupled form, a new operator, i.e., the Compliance operator, is defined which provides a link between the assumed Gibb's and complementary dissipation potential and ensures a number of desirable numerical features, for example the symmetry of the resulting consistent tangent stiffness matrix. An important conclusion reached, is that although many theories in the literature do not conform to the general potential framework outlined, it is still possible in some cases, by slight modifications of the used forms, to restore the complete potential structure.

  20. Derivation of a continuum model and the energy law for moving contact lines with insoluble surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen, E-mail: matzz@nus.edu.sg; Xu, Shixin, E-mail: matxs@nus.edu.sg; Ren, Weiqing, E-mail: matrw@nus.edu.sg

    2014-06-15

    A continuous model is derived for the dynamics of two immiscible fluids with moving contact lines and insoluble surfactants based on thermodynamic principles. The continuum model consists of the Navier-Stokes equations for the dynamics of the two fluids and a convection-diffusion equation for the evolution of the surfactant on the fluid interface. The interface condition, the boundary condition for the slip velocity, and the condition for the dynamic contact angle are derived from the consideration of energy dissipations. Different types of energy dissipations, including the viscous dissipation, the dissipations on the solid wall and at the contact line, as wellmore » as the dissipation due to the diffusion of surfactant, are identified from the analysis. A finite element method is developed for the continuum model. Numerical experiments are performed to demonstrate the influence of surfactant on the contact line dynamics. The different types of energy dissipations are compared numerically.« less

  1. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Manski, Detlef; Martin, James A.

    1988-07-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  2. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Manski, Detlef; Martin, James A.

    1988-01-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  3. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Kenji

    A mathematical model to predict the extraction behavior of metal ion between a polymer gel and an aqueous solution was proposed. It consists of the Flory-Huggins formula for evaluating thermodynamically the physico-chemical properties of polymer gel, the modified Stokes-Einstein equation to evaluate the mass transfer rate of metal ion into polymer gel and the equation to evaluate the extraction equilibrium. The extraction of lanthanide elements, Nd(III), Sm(III) and Gd(III), from an aqueous solution containing nitrate ion was carried out by the use of SDB (styrene-divinylbenzene copolymer) gel swollen with a bidentate organophosphorus compound, CMP (dihexyl-N,N-diethylcarbamoylmethylpohosphonate). The binary extraction and themore » effect of the crosslinking degree of SDB gel on the extraction rate were examined. These experimental results were in agreement with the predictions calculated by the proposed model. It was confirmed that the extraction behavior of lanthanide ions into the SDB gel was predicted accurately, when the physico-chemical properties of SDB gel, such as the affinity between SDB and CMP ({chi}) and the crosslinking degree ({nu}{sub e}), and a coefficient defined in the modified Stokes-Einstein equation (K{sub 0}) were known. This model is available as a tool to design an extraction chromatographic process using polymer gel.« less

  5. Equation of State for Supercooled Water at Pressures up to 400 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holten, Vincent; Sengers, Jan V.; Anisimov, Mikhail A., E-mail: anisimov@umd.edu

    2014-12-01

    An equation of state is presented for the thermodynamic properties of cold and supercooled water. It is valid for temperatures from the homogeneous ice nucleation temperature up to 300 K and for pressures up to 400 MPa, and can be extrapolated up to 1000 MPa. The equation of state is compared with experimental data for the density, expansion coefficient, isothermal compressibility, speed of sound, and heat capacity. Estimates for the accuracy of the equation are given. The melting curve of ice I is calculated from the phase-equilibrium condition between the proposed equation and an existing equation of state for icemore » I.« less

  6. A thought construction of working perpetuum mobile of the second kind

    NASA Astrophysics Data System (ADS)

    Čápek, V.; Bok, J.

    1999-12-01

    The previously published model of the isothermal Maxwell demon as one of models of open quantum systems endowed with the faculty of selforganization is reconstructed here. It describes an open quantum system interacting with a single thermodynamic bath but otherwise not aided from outside. Its activity is given by the standard linear Liouville equation for the system and bath. Owing to its selforganization property, the model then yields cyclic conversion of heat from the bath into mechanical work without compensation. Hence, it provides an explicit thought construction of perpetuum mobile of the second kind, contradicting thus the Thomson formulation of the second law of thermodynamics. No approximation is involved as a special scaling procedure is used which makes the employed kinetic equations exact.

  7. Small Systems and Limitations on the Use of Chemical Thermodynamics

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  8. An Investigation of Applications for Thermodynamic Work Potential Methods: Working Tables and Charts for Estimation of Thermodynamic Work Potential in Equilibrium Mixtures of Jet-A and Air

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri; Roth, Bryce; McDonald, Rob

    2002-01-01

    The objective of this report is to provide a tool to facilitate the application of thermodynamic work potential methods to aircraft and engine analysis. This starts with a discussion of the theoretical background underlying these methods, which is then used to derive various equations useful for thermodynamic analysis of aircraft engines. The work potential analysis method is implemented in the form of a set of working charts and tables that can be used to graphically evaluate work potential stored in high-enthalpy gas. The range of validity for these tables is 300 to 36,000 R, pressures between between 0.01 atm and 100 atm, and fuel-air ratios from zero to stoichiometric. The derivations and charts assume mixtures of Jet-A and air as the working fluid. The thermodynamic properties presented in these charts were calculated based upon standard thermodynamic curve fits.

  9. Thermodynamics of a Higher Dimensional Noncommutative Inspired Anti-de Sitter-Einstein-Born-Infeld Black Hole

    NASA Astrophysics Data System (ADS)

    González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar

    2018-04-01

    We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties such as the equation of state are explicitly calculated. In the (3 + 1)-dimensional case the Gibbs energy function of each model is used to discuss the presence of phase transitions.

  10. Improved Estimates of Thermodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  11. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    PubMed

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  12. Correlations for determining thermodynamic properties of hydrogen-helium gas mixtures at temperatures from 7,000 to 35,000 K

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Gnoffo, P. A.; Graves, R. A., Jr.

    1976-01-01

    Simple relations for determining the enthalpy and temperature of hydrogen-helium gas mixtures were developed for hydrogen volumetric compositions from 1.0 to 0.7. These relations are expressed as a function of pressure and density and are valid for a range of temperatures from 7,000 to 35,000 K and pressures from 0.10 to 3.14 MPa. The proportionality constant and exponents in the correlation equations were determined for each gas composition by applying a linear least squares curve fit to a large number of thermodynamic calculations obtained from a detailed computer code. Although these simple relations yielded thermodynamic properties suitable for many engineering applications, their accuracy was improved significantly by evaluating the proportionality constants at postshock conditions and correlating these values as a function of the gas composition and the product of freestream velocity and shock angle. The resulting equations for the proportionality constants in terms of velocity and gas composition and the corresponding simple realtions for enthalpy and temperature were incorporated into a flow field computational scheme. Comparison was good between the thermodynamic properties determined from these relations and those obtained by using a detailed computer code to determine the properties. Thus, an appreciable savings in computer time was realized with no significant loss in accuracy.

  13. An Interpolation Method for Obtaining Thermodynamic Properties Near Saturated Liquid and Saturated Vapor Lines

    NASA Technical Reports Server (NTRS)

    Nguyen, Huy H.; Martin, Michael A.

    2004-01-01

    The two most common approaches used to formulate thermodynamic properties of pure substances are fundamental (or characteristic) equations of state (Helmholtz and Gibbs functions) and a piecemeal approach that is described in Adebiyi and Russell (1992). This paper neither presents a different method to formulate thermodynamic properties of pure substances nor validates the aforementioned approaches. Rather its purpose is to present a method to generate property tables from existing property packages and a method to facilitate the accurate interpretation of fluid thermodynamic property data from those tables. There are two parts to this paper. The first part of the paper shows how efficient and usable property tables were generated, with the minimum number of data points, using an aerospace industry standard property package. The second part describes an innovative interpolation technique that has been developed to properly obtain thermodynamic properties near the saturated liquid and saturated vapor lines.

  14. Analytical exploration of the thermodynamic potentials by using symbolic computation software

    NASA Astrophysics Data System (ADS)

    Hantsaridou, Anastasia P.; Polatoglou, Hariton M.

    2005-09-01

    Thermodynamics is a very general theory, based on fundamental symmetries. It generalizes classical mechanics and incorporates theoretical concepts such as field and field equations. Although all these ingredients are of the highest importance for a scientist, they are not given the attention they perhaps deserve in most undergraduate courses. Nowadays, powerful computers in conjunction with equally powerful software can ease the exploration of the crucial ideas of thermodynamics. The purpose of the present work is to show how the utilization of symbolic computation software can lead to a complementary understanding of thermodynamics. The method was applied to first and second year physics students in the Aristotle University of Thessaloniki (Greece) during the 2002-2003 academic year. The results indicate that symbolic computation software is appropriate not only for enhancing the teaching of the fundamental principles in thermodynamics and their applications, but also for increasing students' motivation for learning.

  15. Thermodynamic modeling of Cl(-), NO3(-) and SO4(2-) removal by an anion exchange resin and comparison with Dubinin-Astakhov isotherms.

    PubMed

    Dron, Julien; Dodi, Alain

    2011-03-15

    The removal of chloride, nitrate, and sulfate ions from wastewaters by a macroporous ion-exchange resin is studied through the experimental results obtained for six ion exchange systems, OH(-)/Cl(-), OH(-)/NO3(-), OH(-)/SO4(2-), and HCO3(-)/Cl(-), Cl(-)/NO3(-), Cl(-)/SO4(2-). The results are described through thermodynamic modeling, considering either an ideal or a nonideal behavior of the ionic species in the liquid and solid phases. The nonidealities are determined by the Davies equation and Wilson equations in the liquid and solid phases, respectively. The results show that the resin has a strong affinity for all the target ions, and the order of affinity obtained is OH(-) < HCO3(-) < Cl(-) < NO3(-) < SO4(2-). The calculation of the changes in standard Gibbs free energies (ΔG(0)) shows that even though HCO3(-) has a lower affinity to the resin, it may affect the removal of Cl(-), and in the same way that Cl(-) may affect the removal of NO3(-) and SO4(2-). The application of nonidealities in the thermodynamic model leads to an improved fit of the model to the experimental data with average relative deviations below 1.5% except for the OH(-)/SO4(2-) system. On the other hand, considering ideal or nonideal behaviors has no significant impact on the determination of the selectivity coefficients. The thermodynamic modeling is also compared with the Dubinin-Astakhov adsorption isotherms obtained for the same ion exchange systems. Surprisingly, the latter performs significantly better than the ideal thermodynamic model and nearly as well as the nonideal thermodynamic model.

  16. Shock Melting of Iron Silicide as Determined by In Situ X-ray Diffraction.

    NASA Astrophysics Data System (ADS)

    Newman, M.; Kraus, R. G.; Wicks, J. K.; Smith, R.; Duffy, T. S.

    2016-12-01

    The equation of state of core alloys at pressures and temperatures near the solid-liquid coexistence curve is important for understanding the dynamics at the inner core boundary of the Earth and super-Earths. Here, we present a series of laser driven shock experiments on textured polycrystalline Fe-15Si. These experiments were conducted at the Omega and Omega EP laser facilities. Particle velocities in the Fe-15Si samples were measured using a line VISAR and were used to infer the thermodynamic state of the shocked samples. In situ x-ray diffraction measurements were used to probe the melting transition and investigate the potential decomposition of Fe-15Si in to hcp and B2 structures. This work examines the kinetic effects of decomposition due to the short time scale of dynamic compression experiments. In addition, the thermodynamic data collected in these experiments adds to a limited body of information regarding the equation of state of Fe-15Si, which is a candidate for the composition in Earth's outer core. Our experimental results show a highly textured solid phase upon shock compression to pressures ranging from 170 to 300 GPa. Below 320 GPa, we observe diffraction peaks consistent with decomposition of the D03 starting material in to an hcp and a cubic (potentially B2) structure. Upon shock compression above 320 GPa, the intense and textured solid diffraction peaks give way to diffuse scattering and loss of texture, consistent with melting along the Hugoniot. When comparing these results to that of pure iron, we can ascertain that addition of 15 wt% silicon increases the equilibrium melting temperature significantly, or that the addition of silicon significantly increases the metastability of the solid phase, relative to the liquid. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. New Equation for Prediction of Martensite Start Temperature in High Carbon Ferrous Alloys

    NASA Astrophysics Data System (ADS)

    Park, Jihye; Shim, Jae-Hyeok; Lee, Seok-Jae

    2018-02-01

    Since previous equations fail to predict M S temperature of high carbon ferrous alloys, we first propose an equation for prediction of M S temperature of ferrous alloys containing > 2 wt pct C. The presence of carbides (Fe3C and Cr-rich M 7C3) is thermodynamically considered to estimate the C concentration in austenite. Especially, equations individually specialized for lean and high Cr alloys very accurately reproduce experimental results. The chemical driving force for martensitic transformation is quantitatively analyzed based on the calculation of T 0 temperature.

  18. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    DTIC Science & Technology

    2008-04-09

    GeSnOOSn sgl [1] As governed by the Nernst equation Open Circuit Voltage (OCV) is inversely proportional to temperature. The OCV of...inherently stable at 1,000°C. The LTA-SOFC electrochemical reaction is based on the following thermodynamic equation . C1000T kJ 311 42 o)(2... equation 1 is 0.8V at 1000°C, using an oxygen partial pressure of one. This equation gives the OCV for a LTA–SOFC functioning as a battery. The tin oxide

  19. Predicting phase equilibria in one-component systems

    NASA Astrophysics Data System (ADS)

    Korchuganova, M. R.; Esina, Z. N.

    2015-07-01

    It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.

  20. Exploring connections between statistical mechanics and Green's functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order Green's function

    NASA Astrophysics Data System (ADS)

    Welden, Alicia Rae; Rusakov, Alexander A.; Zgid, Dominika

    2016-11-01

    Including finite-temperature effects from the electronic degrees of freedom in electronic structure calculations of semiconductors and metals is desired; however, in practice it remains exceedingly difficult when using zero-temperature methods, since these methods require an explicit evaluation of multiple excited states in order to account for any finite-temperature effects. Using a Matsubara Green's function formalism remains a viable alternative, since in this formalism it is easier to include thermal effects and to connect the dynamic quantities such as the self-energy with static thermodynamic quantities such as the Helmholtz energy, entropy, and internal energy. However, despite the promising properties of this formalism, little is known about the multiple solutions of the non-linear equations present in the self-consistent Matsubara formalism and only a few cases involving a full Coulomb Hamiltonian were investigated in the past. Here, to shed some light onto the iterative nature of the Green's function solutions, we self-consistently evaluate the thermodynamic quantities for a one-dimensional (1D) hydrogen solid at various interatomic separations and temperatures using the self-energy approximated to second-order (GF2). At many points in the phase diagram of this system, multiple phases such as a metal and an insulator exist, and we are able to determine the most stable phase from the analysis of Helmholtz energies. Additionally, we show the evolution of the spectrum of 1D boron nitride to demonstrate that GF2 is capable of qualitatively describing the temperature effects influencing the size of the band gap.

Top