Sample records for thermodynamically stable solid

  1. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  2. Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures

    DOE PAGES

    Myint, Philip C.; Nichols, Albert L.

    2016-12-09

    In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less

  3. Thermodynamic, crystallographic, and dielectric study of the nature of glass transitions in cyclo-octanol

    NASA Astrophysics Data System (ADS)

    Puertas, Ricardo; Rute, Maria A.; Salud, Josep; López, David O.; Diez, Sergio; van Miltenburg, J. Kees; Pardo, Luis C.; Tamarit, Josep Ll.; Barrio, Maria; Pérez-Jubindo, Miguel A.; de La Fuente, Maria R.

    2004-06-01

    The stable solid polymorphism of cyclooctanol (C8H16O, for short C8 OH) is revealed to be a complex problem and only two stable solid phases, denoted on cooling from the liquid as phases I and II, are found using static (thermodynamic and x-ray diffraction) as well as dynamic (dielectric spectroscopy) experimental techniques. Both solid phases are known to exhibit glass transitions if they are cooled down fast enough to prevent transition to ordered crystalline states. Although glass transitions corresponding to both phases had been well documented by means of specific heat measurements, x-ray measurements constitute, as far as we know, the first evidence from the structural point of view. In addition, a great amount of dielectric works devoted to phase I and its glass transition, were published in the past but next to nothing relating to the dielectric properties of phase II and its glass transition. The nature of the disorder of phase II will be discussed.

  4. Structural, thermodynamic, and mechanical properties of WCu solid solutions

    NASA Astrophysics Data System (ADS)

    Liang, C. P.; Wu, C. Y.; Fan, J. L.; Gong, H. R.

    2017-11-01

    Various properties of Wsbnd Cu solid solutions are systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures (SQS), and lattice dynamics. It is shown that SQS are effective to unravel the intrinsic nature of solid solutions, and that BCC and FCC W100-xCux solid solutions are energetically more stable when 0 ≤ x ≤ 70 and 70 < x ≤ 100, respectively. Calculations also reveal that the Debye model should be appropriate to derive thermodynamic properties of Wsbnd Cu, and that the coefficients of thermal expansion of W100-xCux solid solutions are much lower than those of corresponding mechanical mixtures. In addition, the G/B values of W100-xCux solid solutions reach a minimum at x = 50, which is fundamentally due to the softening of phonons as well as strong chemical bonding between W and Cu with a mainly metallic feature.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, Philip C.; Nichols, Albert L.

    In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less

  6. Solid-state lithium battery

    DOEpatents

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  7. Formation of co-crystals: Kinetic and thermodynamic aspects

    NASA Astrophysics Data System (ADS)

    Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.

    2009-04-01

    Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.

  8. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    PubMed Central

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-01-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782

  9. Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

    NASA Astrophysics Data System (ADS)

    Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon

    2017-06-01

    The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

  10. Metallurgical features of the formation of a solid-phase metal joint upon electric-circuit heating

    NASA Astrophysics Data System (ADS)

    Latypov, R. A.; Bulychev, V. V.; Zybin, I. N.

    2017-06-01

    The thermodynamic conditions of formation of a joint between metals using the solid-phase methods of powder metallurgy, welding, and deposition of functional coatings upon electric-current heating of the surfaces to be joined are studied. Relations are obtained to quantitatively estimate the critical sizes of the circular and linear active centers that result in the formation of stable bonding zones.

  11. Thermodynamics of Surface Nanobubbles.

    PubMed

    Zargarzadeh, Leila; Elliott, Janet A W

    2016-11-01

    In this paper, we examine the thermodynamic stability of surface nanobubbles. The appropriate free energy is defined for the system of nanobubbles on a solid surface submerged in a supersaturated liquid solution at constant pressure and temperature, under conditions where an individual nanobubble is not in diffusive contact with a gas phase outside of the system or with other nanobubbles on the time scale of the experiment. The conditions under which plots of free energy versus the radius of curvature of the nanobubbles show a global minimum, which denotes the stable equilibrium state, are explored. Our investigation shows that supersaturation and an anomalously high contact angle (measured through the liquid) are required to have stable surface nanobubbles. In addition, the anomalously high contact angle of surface nanobubbles is discussed from the standpoint of a framework recently proposed by Koch, Amirfazli, and Elliott that relates advancing and receding contact angles to thermodynamic equilibrium contact angles, combined with the existence of a gas enrichment layer.

  12. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  13. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    PubMed

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  14. A Tractable Disequilbrium Framework for Integrating Computational Thermodynamics and Geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; Tweed, L. E. L.; Evans, O.; Kelemen, P. B.; Wilson, C. R.

    2017-12-01

    The consistent integration of computational thermodynamics and geodynamics is essential for exploring and understanding a wide range of processes from high-PT magma dynamics in the convecting mantle to low-PT reactive alteration of the brittle crust. Nevertheless, considerable challenges remain for coupling thermodynamics and fluid-solid mechanics within computationally tractable and insightful models. Here we report on a new effort, part of the ENKI project, that provides a roadmap for developing flexible geodynamic models of varying complexity that are thermodynamically consistent with established thermodynamic models. The basic theory is derived from the disequilibrium thermodynamics of De Groot and Mazur (1984), similar to Rudge et. al (2011, GJI), but extends that theory to include more general rheologies, multiple solid (and liquid) phases and explicit chemical reactions to describe interphase exchange. Specifying stoichiometric reactions clearly defines the compositions of reactants and products and allows the affinity of each reaction (A = -Δ/Gr) to be used as a scalar measure of disequilibrium. This approach only requires thermodynamic models to return chemical potentials of all components and phases (as well as thermodynamic quantities for each phase e.g. densities, heat capacity, entropies), but is not constrained to be in thermodynamic equilibrium. Allowing meta-stable phases mitigates some of the computational issues involved with the introduction and exhaustion of phases. Nevertheless, for closed systems, these problems are guaranteed to evolve to the same equilibria predicted by equilibrium thermodynamics. Here we illustrate the behavior of this theory for a range of simple problems (constructed with our open-source model builder TerraFERMA) that model poro-viscous behavior in the well understood Fo-Fa binary phase loop. Other contributions in this session will explore a range of models with more petrologically interesting phase diagrams as well as other rheologies.

  15. Methods of studying aging and stabilization of spray-congealed solid dispersions with carnauba wax. 1. Microcalorimetric investigation.

    PubMed

    Emås, M; Nyqvist, H

    2000-03-20

    Rapidly cooled materials are often unstable as a result of changes in their physical properties due to imperfect crystallization. In the process of spray-congealing, melted material is atomized into droplets which very quickly solidify. This increases the possibility of the material crystallizing in different metastable forms. In this study it is shown that isothermal microcalorimetry can be used to observe the change in the thermodynamic state of spray-congealed carnauba wax during storage. In order to accelerate the thermodynamic change in the spray-congealed wax, three annealing procedures have been developed and compared using isothermal microcalorimetry. By means of annealing, a spray-congealed product closer to a thermodynamically stable state has been achieved.

  16. Configuration-specific synthesis of the facial and meridional isomers of tris(8-hydroxyquinolinate)aluminum (Alq3).

    PubMed

    Katakura, Ryo; Koide, Yoshihiro

    2006-07-24

    Treatment of AlO(OH) with 3 equiv of 8-hydroxyquinolinol in refluxing deionized water provided the meridional and facial isomers of tris(8-hydroxyquinolinate)aluminum (Alq3) with good yields as solid deposits after 1 and 90 h, respectively. X-ray diffraction and solid-state 13C NMR studies revealed that mer-Alq3 is formed in the early stage of the reaction and then gradually converts to fac-Alq3, which is thermodynamically less stable, although no existence of a catalyst substance is implied.

  17. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1995-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

  18. Chemical degradation of proteins in the solid state with a focus on photochemical reactions.

    PubMed

    Mozziconacci, Olivier; Schöneich, Christian

    2015-10-01

    Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. U(v) in metal uranates: A combined experimental and theoretical study of MgUO 4, CrUO 4, and FeUO 4

    DOE PAGES

    Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang; ...

    2016-01-01

    Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO 4, CrUO 4 and FeUO 4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U 5+ has been solidly confirmed in CrUOmore » 4 and FeUO 4, which are thermodynamically stable compounds, and the origin and stability of U 5+ in the system was elaborated by DFT. Lastly, the structural and thermodynamic behaviour of U 5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.« less

  20. Impact of aluminum doping on the thermo-physical properties of refractory medium-entropy alloys

    NASA Astrophysics Data System (ADS)

    Tian, Fuyang; Wang, Yang; Vitos, Levente

    2017-01-01

    We investigate the elastic moduli, ideal tensile strength, and thermodynamic properties of TiVNb and AlTiVNb refractory medium-entropy alloys (HEAs) by using ab initio alloy theories: the coherent potential approximation (CPA), the special quasi-random supercell (SQS), and a 432-atom supercell (SC). We find that with increasing number of alloy components, the SQS elastic constants become sensitive to the supercell size. The predicted elastic moduli are consistent with the available experiments. Aluminum doping decreases the stability of the body centered cubic phase. The ideal tensile strength calculation indicates that adding equiatomic Al to TiVNb random solid solution increases the intrinsic strength (ideal strain increase from 9.6% to 11.8%) and decreases the intrinsic strength (from 9.6 to 5.7 GPa). Based on the equation of states calculated by the CPA and SC methods, the thermodynamic properties obtained by the two ab initio methods are assessed. The L21 AlTiVNb (Ti-Al-V-Nb) alloy is predicted to be thermodynamically and dynamically stable with respect to the solid solution.

  1. Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis

    PubMed Central

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.

    2013-01-01

    Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523

  2. Non-equilibrium freezing behaviour of aqueous systems.

    PubMed

    MacKenzie, A P

    1977-03-29

    The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.

  3. Determination of Thermodynamic Properties of Alkaline Earth-liquid Metal Alloys Using the Electromotive Force Technique

    PubMed Central

    Nigl, Thomas P.; Smith, Nathan D.; Lichtenstein, Timothy; Gesualdi, Jarrod; Kumar, Kuldeep; Kim, Hojong

    2017-01-01

    A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition. PMID:29155770

  4. Thermodynamic Equilibrium Calculations on Cd Transformation during Sewage Sludge Incineration.

    PubMed

    Liu, Jing-yong; Huang, Limao; Sun, Shuiyu; Ning, Xun'an; Kuo, Jiahong; Sun, Jian; Wang, Yujie; Xie, Wuming

    2016-06-01

    Thermodynamic equilibrium calculations were performed to reveal the distribution of cadmium during the sewage sludge incineration process. During sludge incineration in the presence of major minerals, such as SiO2, Al2O3 and CaO, the strongest effect was exerted by SiO2 on the Cd transformation compared with the effect of others. The stable solid product of CdSiO3 was formed easily with the reaction between Cd and SiO2, which can restrain the emissions of gaseous Cd pollutants. CdCl2 was formed more easily in the presence of chloride during incineration, thus, the volatilization of Cd was advanced by increasing chlorine content. At low temperatures, the volatilization of Cd was restrained due to the formation of the refractory solid metal sulfate. At high temperatures, the speciation of Cd was not affected by the presence of sulfur, but sulfur could affect the formation temperature of gaseous metals.

  5. Astronomical observations of solid phase carbon

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1990-01-01

    In the outer envelopes of red giants, when the gas cools sufficiently, molecules and solids form. Thermodynamically, the most stable molecule is CO, and it is usually assumed that all the available carbon and oxygen are consumed in the formation of this molecule (Salpeter 1977). If the carbon abundance is greater than the oxygen abundance, then the carbon left over after the formation of CO is available for solid grains. Because carbon is by far the most abundant species available for making solids in these environments, researchers anticipate that the grains are composed of nearly pure carbon in some form. The observations which can be used to infer the nature of this solid phase carbon are discussed. The observations of the dust around carbon-rich red giants are discussed. These results are then placed into their broader astrophysical context.

  6. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  7. Benchtop Energetics Progress

    DTIC Science & Technology

    2011-07-01

    sensitivity. We employ direct laser irradiation, and indirect laser-driven shock, techniques to initiate thin-film explosive samples contained in a...energetic events in a few minutes. 14. ABSTRACT A detonation wave passing through an organic explosive , such as pentaerythritol tetranitrate (PETN...C5H4N4O12), is remarkably efficient in converting the solid explosive into final thermodynamically-stable gaseous products (e.g. N2, CO2, H2O

  8. Static heterogeneities in liquid water

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas

    2004-10-01

    The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.

  9. Activated microporous materials through polymerization of microemulsion precursors

    NASA Astrophysics Data System (ADS)

    Venkatesan, Arunkumar

    Microemulsions have been well studied for their unique characteristics. They are isotropic, thermodynamically stable and microstructured mixtures of oil and water stabilized by one or more surfactant species. They are formed spontaneously and are thermodynamically stable. Microemulsion precursors can be polymerized to make microporous solids with controlled pore structure and sizes. These polymeric solids have been studied extensively in the past. Although the fundamental properties of the microporous solids have been studied in depth, the development of specific applications that will utilize the unique properties of these solids has not been exhaustively researched. The current work establishes the feasibility of making activated microporous solids from microemulsion precursors, by the use of a ligand that chelates metals and also attaches itself to the polymer monolith. It also uses a novel 'in-situ' incorporation by combining the formulation and incorporation steps into one. The research objectives are, to formulate a microemulsion system that can yield useful microporous solids upon polymerization and activation, to characterize these solids using existing techniques available for analysis of similar microporous solids, to identify and understand the effect of the variables in the system and to study the influence of these variables on the performance characteristics of this material. Characterization techniques like Differential Scanning Calorimetry, Thermogravimetric Analysis and Scanning Electron Microscopy were used. A hydroxyethylmethylmethacrylate/methylmethacrylate/aqueous phase containing 10% SDS' system was chosen as the precursor microemulsion and the corresponding microporous solids were made. A metal chelating ligand, Congo Red, was incorporated onto the microporous polymer using NaOH as a binding agent. The ability of the resultant 'activated' microporous solid to remove metal ions from solution, was evaluated. The metal ion chosen was chromium and the influence of variables such as NaOH loading, Congo Red loading, Cross linker content etc. were studied. It was found that the microporous solids were effective in removing chromium from solution. They outperformed similar polymeric solids with ligands (reported in literature) in chromium removal. A removal of about 1500 micro moles of chromium ions per gram of dry polymer from a solution of 5 mMol/L initial concentration of chromium was observed. This is much more than the removal of 340 micro moles/gram of dry polymer reported in literature for comparable non-microporous systems.

  10. Thermodynamic analysis of vapor-phase epitaxial growth of GaAsN on Ge

    NASA Astrophysics Data System (ADS)

    Kawano, Jun; Kangawa, Yoshihiro; Ito, Tomonori; Kakimoto, Koichi; Koukitu, Akinori

    2012-03-01

    In this paper, we use thermodynamic analysis to determine how the nitrogen (N) ratio in the source gases affects the solid composition of coherently grown GaAs1-xNx(x˜0.03). The source gases for Ga, As, and N are trimethylgallium ((CH3)3Ga), arsine (AsH3), and ammonia (NH3), respectively. The growth occurs on a Ge substrate, and the analysis includes the stress from the substrate-crystal lattice mismatch. Calculation results indicate that to have just a few percent N incorporation into the grown solid, the V/III ratio in the source gases should be several thousands and the input-gas partial-pressure ratio NH3/(NH3+AsH3) should exceed 0.99. We also find that the lattice mismatch stress from the Ge substrate increases the V/III source-gas ratio required for stable growth, whereas an increase in input Ga partial pressure ratio has the opposite effect.

  11. Computational methods in preformulation study for pharmaceutical solid dosage forms of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Majee, Sutapa Biswas; Biswas, Gopa Roy

    2017-06-01

    Design and delivery of protein-based biopharmaceuticals needs detailed planning and strict monitoring of intermediate processing steps, storage conditions and container-closure system to ensure a stable, elegant and biopharmaceutically acceptable dosage form. Selection of manufacturing process variables and conditions along with packaging specifications can be achieved through properly designed preformulation study protocol for the formulation. Thermodynamic stability and biological activity of therapeutic proteins depend on folding-unfolding and three-dimensional packing dynamics of amino acid network in the protein molecule. Lack of favourable environment may cause protein aggregation with loss in activity and even fatal immunological reaction. Although lyophilization can enhance the stability of protein-based formulations in the solid state, it can induce protein unfolding leading to thermodynamic instability. Formulation stabilizers such as preservatives can also result in aggregation of therapeutic proteins. Modern instrumental techniques in conjunction with computational tools enable rapid and accurate prediction of amino acid sequence, thermodynamic parameters associated with protein folding and detection of aggregation "hot-spots." Globular proteins pose a challenge during investigations on their aggregation propensity. Biobetter therapeutic monoclonal antibodies with enhanced stability, solubility and reduced immunogenic potential can be designed through mutation of aggregation-prone zones. The objective of the present review article is to focus on the various analytical methods and computational approaches used in the study of thermodynamic stability and aggregation tendency of therapeutic proteins, with an aim to develop optimal and marketable formulation. Knowledge of protein dynamics through application of computational tools will provide the essential inputs and relevant information for successful and meaningful completion of preformulation studies on solid dosage forms of therapeutic proteins.

  12. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Poizeau, Sophie

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were determined by emf measurements. It was found that Sb as positive electrode would provide the highest voltage for Ca-based liquid metal batteries (1 V). The price of such a battery would be competitive for the grid-scale energy storage market. The impact of Pb, a natural impurity of Sb, was predicted successfully and confirmed via electrochemical measurements. It was shown that the impact on the open circuit voltage would be minor. Indeed, the interaction between Ca and Sb was demonstrated to be much stronger than between Ca and Pb using thermodynamic modeling, which explains why the partial thermodynamic properties of Ca would not vary much with the addition of Pb to Sb. However, the usage of the positive electrode would be reduced, which would limit the interest of a Pb-Sb positive electrode. Throughout this work, the molecular interaction volume model (MIVM) was used for the first time for alloys with thermodynamic properties showing strong negative deviation from ideality. This model showed that systems such as Ca-Sb have strong short-range order: Ca is most stable when its first nearest neighbors are Sb. This is consistent with what the more traditional thermodynamic model, the regular association model, would predict. The advantages of the MIVM are the absence of assumption regarding the composition of an associate, and the reduced number of fitting parameters (2 instead of 5). Based on the parameters derived from the thermodynamic modeling using the MIVM, a new potential of mixing for liquid alloys was defined to compare the strength of interaction in different Ca-based alloys. Comparing this trend with the strength of interaction in the solid state of these systems (assessed by the energy of formation of the intermetallics), the systems with the most stable intermetallics were found to have the strongest interaction in the liquid state. Eventually, a new criteria was formulated to select electrode materials for liquid metal batteries. Systems with the most stable intermetallics, which can be evaluated by the enthalpy of formation of these systems, will yield the highest voltage when assembled as positive and negative electrodes in a liquid metal battery. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  13. Modeling the Hydrogen Solubility in Liquid Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Jean-Philippe; Chartrand, Patrice

    2010-08-01

    The modeling of hydrogen solubility in multicomponent Al-(Li, Mg, Cu, and Si) liquid phase has been performed with a thermodynamic approach using the modified quasichemical model with the pair approximation (MQMPA). All hydrogen solubility data available in literature was assessed critically to obtain the binary parameters of the MQMPA model for the Al-H, Li-H, Mg-H, Cu-H, Zn-H, and Si-H melts. For the Li-H system, a new thermodynamic description of the stable solid lithium hydride was determined based on the c p found in literature. The thermodynamic model for the Al-Li system also was reassessed in this work to take into account the short-range ordering observed for this system. Built-in interpolation techniques allow the model to estimate the thermodynamic properties of the multicomponent liquid solution from the liquid model parameters of the lower order subsystems. A comparison of the calculated hydrogen solubility performed at various equilibrium conditions of temperature, pressure, and composition with the available experimental data found in the literature is presented in this work, as well as a comparison with some results from previous modeling.

  14. Free energy of formation of Mo2C and the thermodynamic properties of carbon in solid molybdenum

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Chang, C. L.; Sharma, T. P.

    1979-01-01

    As part of a study of the thermodynamical properties of interstitial elements in refractory metals, the free energy of formation of Mo2C is determined, and the thermodynamical properties of C in solution in solid Mo evaluated. The activity of C in the two-phase region Mo + Mo2C is obtained from the C content of iron rods equilibrated with metal + carbide powder mixtures. The free energy of formation of alpha-Mo2C is determined from the activity data. The thermodynamic properties of C in the terminal solid solution are calculated from available data on the solid solubility of C in Mo. Lattice distortion due to misfit of the C atoms in the interstitial sites appears to play a significant role in determining the thermodynamic properties of C in solid Mo.

  15. Solid and liquid Equation of state for initially porous aluminum where specific heat is constant

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.; Lemar, E. R.; Brown, Mary

    2011-06-01

    A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.

  16. Molecular dynamics simulation of nanobubble nucleation on rough surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2017-04-01

    Here, we study how nanobubbles nucleate on rough hydrophobic surfaces, using long-time standard simulations to directly observe the kinetic pathways and using constrained simulations combined with the thermodynamic integration approach to quantitatively evaluate the corresponding free energy changes. Both methods demonstrate that a two-step nucleation route involving the formation of an intermediate state is thermodynamically favorable: at first, the system transforms from the Wenzel state (liquid being in full contact with the solid surface) to the Cassie state (liquid being in contact with the peaks of the rough surface) after gas cavities occur in the grooves (i.e., the Wenzel-to-Cassie transition); then, the gas cavities coalesce and form a stable surface nanobubble with pinned contact lines (i.e., the Cassie-to-nanobubble transition). Additionally, the free energy barriers for the two transitions show opposing dependencies on the degree of surface roughness, indicating that the surfaces with moderate roughness are favorable for forming stable surface nanobubbles. Moreover, the simulation results also reveal the coexistence and transition between the Wenzel, Cassie, and nanobubble states on rough surfaces.

  17. Vibrational spectra, DFT quantum chemical calculations and conformational analysis of P-iodoanisole.

    PubMed

    Arivazhagan, M; Anitha Rexalin, D; Geethapriya, J

    2013-09-01

    The solid phase FT-IR and FT-Raman spectra of P-iodoanisole (P-IA) have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by ab initio (HF) and density functional theory (B3LYP) methods with LanL2DZ as basis set. The potential energy surface scan for the selected dihedral angle of P-IA has been performed to identify stable conformer. The optimized structure parameters and vibrational wavenumbers of stable conformer have been predicted by density functional B3LYP method with LanL2DZ (with effective core potential representations of electrons near the nuclei for post-third row atoms) basis set. The nucleophilic and electrophilic sites obtained from the molecular electrostatic potential (MEP) surface were calculated. The temperature dependence of thermodynamic properties has been analyzed. Several thermodynamic parameters have been calculated using B3LYP with LanL2DZ basis set. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

    DOE PAGES

    Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.; ...

    2017-11-21

    Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less

  19. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.

    Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less

  20. Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates.

    PubMed

    Jenkins, H Donald Brooke; Glasser, Leslie

    2004-12-08

    We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent

  1. Catalytic and thermodynamic properties of a tannase produced by Aspergillus niger GH1 grown on polyurethane foam.

    PubMed

    Ramos, Erika L; Mata-Gómez, Marco A; Rodríguez-Durán, Luis V; Belmares, Ruth E; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noe

    2011-11-01

    Tannase is an inducible enzyme with important applications in the food and pharmaceutical industries. This enzyme was produced by the fungus Aspergillus niger GH1 under solid-state fermentation using polyurethane foam as solid support and tannic acid as sole carbon source and tannase inducer. Physicochemical properties of A. niger tannase were characterized, and the kinetic and thermodynamics parameters on methyl gallate hydrolysis were evaluated. The enzyme was stable in a pH range of 2-8 and a functional temperature range of 25-65 °C. The highest k(cat) value was 2,611.10 s(-1) at 65 °C. Tannase had more affinity for methyl gallate at 45 °C with a K(M) value of 1.82 mM and an efficiency of hydrolysis (k(cat)/K(M)) of 330.01 s(-1) mM(-1). The lowest E(a) value was found to be 21.38 kJ/mol at 4.4 mM of methyl gallate. The lowest free energy of Gibbs (ΔG) and enthalpy (ΔH) were found to be 64.86 and 18.56 kJ/mol, respectively. Entropy (ΔS) was -0.22 kJ/mol K. Results suggest that the A. niger GH1 tannase is an attractive enzyme for industrial applications due its catalytic and thermodynamical properties.

  2. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  3. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2012-11-02

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.« less

  4. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    PubMed Central

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305

  5. Molybdenum-titanium phase diagram evaluated from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad

    2017-07-01

    The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.

  6. How interfaces affect hydrophobically driven polymer folding.

    PubMed

    Jamadagni, Sumanth N; Godawat, Rahul; Dordick, Jonathan S; Garde, Shekhar

    2009-04-02

    Studies of folding-unfolding of hydrophobic polymers in water provide an excellent starting point to probe manybody hydrophobic interactions in the context of realistic self-assembly processes. Such studies in bulk water have highlighted the similarities between thermodynamics of polymer collapse and of protein folding, and emphasized the role of hydration-water structure, density, and fluctuations-in the folding kinetics. Hydrophobic polymers are interfacially active-that is, they prefer locations at aqueous interfaces relative to bulk water-consistent with their low solubility. How does the presence of a hydrophobic solid surface or an essentially hydrophobic vapor-water interface affect the structural, thermodynamic, and kinetic aspects of polymer folding? Using extensive molecular dynamics simulations, we show that the large hydrophobic driving force for polymer collapse in bulk water is reduced at a solid alkane-water interface and further reduced at a vapor-water interface. As a result, at the solid-water interface, folded structures are marginally stable, whereas the vapor-liquid interface unfolds polymers completely. Structural sampling is also significantly affected by the interface. For example, at the solid-water interface, polymer conformations are quasi-2- dimensional, with folded states being pancake-like structures. At the vapor-water interface, the hydrophobic polymer is significantly excluded from the water phase and freely samples a broad range of compact to extended structures. Interestingly, although the driving force for folding is considerably lower, kinetics of folding are faster at both interfaces, highlighting the role of enhanced water fluctuations and dynamics at a hydrophobic interface.

  7. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    DTIC Science & Technology

    2008-04-09

    GeSnOOSn sgl [1] As governed by the Nernst equation Open Circuit Voltage (OCV) is inversely proportional to temperature. The OCV of...inherently stable at 1,000°C. The LTA-SOFC electrochemical reaction is based on the following thermodynamic equation . C1000T kJ 311 42 o)(2... equation 1 is 0.8V at 1000°C, using an oxygen partial pressure of one. This equation gives the OCV for a LTA–SOFC functioning as a battery. The tin oxide

  8. Infrared spectroscopic studies of the conformation in ethyl alpha-haloacetates in the vapor, liquid and solid phases.

    PubMed

    Jassem, Naserallah A; El-Bermani, Muhsin F

    2010-07-01

    Infrared spectra of ethyl alpha-fluoroacetate, ethyl alpha-chloroacetate, ethyl alpha-bromoacetate and ethyl alpha-iodoacetate have been measured in the solid, liquid and vapor phases in the region 4000-200 cm(-1). Vibrational frequency assignment of the observed bands to the appropriate modes of vibration was made. Calculations at DFT B3LYP/6-311+G** level, Job: conformer distribution, using Spartan program '08, release 132 was made to determine which conformers exist in which molecule. The results indicated that the first compound exists as an equilibrium mixture of cis and trans conformers and the other three compounds exist as equilibrium mixtures of cis and gauche conformers. Enthalpy differences between the conformers have been determined experimentally for each compound and for every phase. The values indicated that the trans of the first compound is more stable in the vapor phase, while the cis is the more stable in both the liquid and solid phases. In the other three compounds the gauche is more stable in the vapor and liquid phases, while the cis conformer is the more stable in the solid phase for each of the second and third compound, except for ethyl alpha-iodoacetate, the gauche conformer is the more stable over the three phases. Molar energy of activation Ea and the pseudo-thermodynamic parameters of activation DeltaH(double dagger), DeltaS(double dagger) and DeltaG(double dagger) were determined in the solid phase by applying Arrhenius equation; using bands arising from single conformers. The respective E(a) values of these compounds are 5.1+/-0.4, 6.7+/-0.1, 7.5+/-1.3 and 12.0+/-0.6 kJ mol(-1). Potential energy surface calculations were made at two levels; for ethyl alpha-fluoroacetate and ethyl alpha-chloroacetate; the calculations were established at DFT B3LYP/6-311+G** level and for ethyl alpha-bromoacetate and ethyl alpha-iodoacetate at DFT B3LYP/6-311G* level. The results showed no potential energy minimum exists for the gauche conformer in ethyl alpha-fluoroacetate. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  10. Freezing Transition Studies Through Constrained Cell Model Simulation

    NASA Astrophysics Data System (ADS)

    Nayhouse, Michael; Kwon, Joseph Sang-Il; Heng, Vincent R.; Amlani, Ankur M.; Orkoulas, G.

    2014-10-01

    In the present work, a simulation method based on cell models is used to deduce the fluid-solid transition of a system of particles that interact via a pair potential, , which is of the form with . The simulations are implemented under constant-pressure conditions on a generalized version of the constrained cell model. The constrained cell model is constructed by dividing the volume into Wigner-Seitz cells and confining each particle in a single cell. This model is a special case of a more general cell model which is formed by introducing an additional field variable that controls the number of particles per cell and, thus, the relative stability of the solid against the fluid phase. High field values force configurations with one particle per cell and thus favor the solid phase. Fluid-solid coexistence on the isotherm that corresponds to a reduced temperature of 2 is determined from constant-pressure simulations of the generalized cell model using tempering and histogram reweighting techniques. The entire fluid-solid phase boundary is determined through a thermodynamic integration technique based on histogram reweighting, using the previous coexistence point as a reference point. The vapor-liquid phase diagram is obtained from constant-pressure simulations of the unconstrained system using tempering and histogram reweighting. The phase diagram of the system is found to contain a stable critical point and a triple point. The phase diagram of the corresponding constrained cell model is also found to contain both a stable critical point and a triple point.

  11. Communication: Phase diagram of C36 by atomistic molecular dynamics and thermodynamic integration through coexistence regions

    NASA Astrophysics Data System (ADS)

    Abramo, M. C.; Caccamo, C.; Costa, D.; Munaò, G.

    2014-09-01

    We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C36. We first show that free energies obtained via thermodynamic integrations along isotherms displaying "van der Waals loops," are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C36, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400-1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C36 fullerite and of its liquid state, at variance with what previously experienced for C60.

  12. Entropy production in a fluid-solid system far from thermodynamic equilibrium.

    PubMed

    Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin

    2017-11-24

    The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

  13. Physical-Chemical Properties of the Chiral Fungicide Fenamidone and Strategies for Enantioselective Crystallization.

    PubMed

    Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2016-06-01

    Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Lattice mismatch modeling of aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwon; Roy, Shibayan; Watkins, Thomas R.

    We present a theoretical framework to accurately predict the lattice mismatch between the fcc matrix and precipitates in the multi-component aluminum alloys as a function of temperature and composition. We use a computational thermodynamic approach to model the lattice parameters of the multi-component fcc solid solution and θ'-Al2Cu precipitate phase. Better agreement between the predicted lattice parameters of fcc aluminum in five commercial alloys (206, 319, 356, A356, and A356 + 0.5Cu) and experimental data from the synchrotron X-ray diffraction (SXD) has been obtained when simulating supersaturated rather than equilibrium solid solutions. We use the thermal expansion coefficient of thermodynamicallymore » stable θ-Al2Cu to describe temperature-dependent lattice parameters of meta-stable θ' and to show good agreement with the SXD data. Both coherent and semi-coherent interface mismatches between the fcc aluminum matrix and θ' in Al-Cu alloys are presented as a function of temperature. Our calculation results show that the concentration of solute atoms, particularly Cu, in the matrix greatly affects the lattice mismatch« less

  15. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  16. Developpement de techniques numeriques pour l'estimation, la modelisation et la prediction de proprietes thermodynamiques et structurales de systems metalliques a fort ordonnancement chimique

    NASA Astrophysics Data System (ADS)

    Harvey, Jean-Philippe

    In this work, the possibility to calculate and evaluate with a high degree of precision the Gibbs energy of complex multiphase equilibria for which chemical ordering is explicitly and simultaneously considered in the thermodynamic description of solid (short range order and long range order) and liquid (short range order) metallic phases is studied. The cluster site approximation (CSA) and the cluster variation method (CVM) are implemented in a new minimization technique of the Gibbs energy of multicomponent and multiphase systems to describe the thermodynamic behaviour of metallic solid solutions showing strong chemical ordering. The modified quasichemical model in the pair approximation (MQMPA) is also implemented in the new minimization algorithm presented in this work to describe the thermodynamic behaviour of metallic liquid solutions. The constrained minimization technique implemented in this work consists of a sequential quadratic programming technique based on an exact Newton’s method (i.e. the use of exact second derivatives in the determination of the Hessian of the objective function) combined to a line search method to identify a direction of sufficient decrease of the merit function. The implementation of a new algorithm to perform the constrained minimization of the Gibbs energy is justified by the difficulty to identify, in specific cases, the correct multiphase assemblage of a system where the thermodynamic behaviour of the equilibrium phases is described by one of the previously quoted models using the FactSage software (ex.: solid_CSA+liquid_MQMPA; solid1_CSA+solid2_CSA). After a rigorous validation of the constrained Gibbs energy minimization algorithm using several assessed binary and ternary systems found in the literature, the CVM and the CSA models used to describe the energetic behaviour of metallic solid solutions present in systems with key industrial applications such as the Cu-Zr and the Al-Zr systems are parameterized using fully consistent thermodynamic an structural data generated from a Monte Carlo (MC) simulator also implemented in the framework of this project. In this MC simulator, the modified embedded atom model in the second nearest neighbour formalism (MEAM-2NN) is used to describe the cohesive energy of each studied structure. A new Al-Zr MEAM-2NN interatomic potential needed to evaluate the cohesive energy of the condensed phases of this system is presented in this work. The thermodynamic integration (TI) method implemented in the MC simulator allows the evaluation of the absolute Gibbs energy of the considered solid or liquid structures. The original implementation of the TI method allowed us to evaluate theoretically for the first time all the thermodynamic mixing contributions (i.e., mixing enthalpy and mixing entropy contributions) of a metallic liquid (Cu-Zr and Al-Zr) and of a solid solution (face-centered cubic (FCC) Al-Zr solid solution) described by the MEAM-2NN. Thermodynamic and structural data obtained from MC and molecular dynamic simulations are then used to parameterize the CVM for the Al-Zr FCC solid solution and the MQMPA for the Al-Zr and the Cu-Zr liquid phase respectively. The extended thermodynamic study of these systems allow the introduction of a new type of configuration-dependent excess parameters in the definition of the thermodynamic function of solid solutions described by the CVM or the CSA. These parameters greatly improve the precision of these thermodynamic models based on experimental evidences found in the literature. A new parameterization approach of the MQMPA model of metallic liquid solutions is presented throughout this work. In this new approach, calculated pair fractions obtained from MC/MD simulations are taken into account as well as configuration-independent volumetric relaxation effects (regular like excess parameters) in order to parameterize precisely the Gibbs energy function of metallic melts. The generation of a complete set of fully consistent thermodynamic, physical and structural data for solid, liquid, and stoichiometric compounds and the subsequent parameterization of their respective thermodynamic model lead to the first description of the complete Al-Zr phase diagram in the range of composition [0 ≤ XZr ≤ 5 / 9] based on theoretical and fully consistent thermodynamic properties. MC and MD simulations are performed for the Al-Zr system to define for the first time the precise thermodynamic behaviour of the amorphous phase for its entire range of composition. Finally, all the thermodynamic models for the liquid phase, the FCC solid solution and the amorphous phase are used to define conditions based on thermodynamic and volumetric considerations that favor the amorphization of Al-Zr alloys.

  17. Polymorphism in molecular solids: an extraordinary system of red, orange, and yellow crystals.

    PubMed

    Yu, Lian

    2010-09-21

    Diamond and graphite are polymorphs of each other: they have the same composition but different structures and properties. Many other substances exhibit polymorphism: inorganic and organic, natural and manmade. Polymorphs are encountered in studies of crystallization, phase transition, materials synthesis, and biomineralization and in the manufacture of specialty chemicals. Polymorphs can provide valuable insights into crystal packing and structure-property relationships. 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, known as ROY for its red, orange, and yellow crystals, has seven polymorphs with solved structures, the largest number in the Cambridge Structural Database. First synthesized by medicinal chemists, ROY has attracted attention from solid-state chemists because it demonstrates the remarkable diversity possible in organic solids. Many structures of ROY polymorphs and their thermodynamic properties are known, making ROY an important model system for testing computational models. Though not the most polymorphic substance on record, ROY is extraordinary in that many of its polymorphs can crystallize simultaneously from the same liquid and are kinetically stable under the same conditions. Studies of ROY polymorphs have revealed a new crystallization mechanism that invalidates the common view that nucleation defines the polymorph of crystallization. A slow-nucleating polymorph can still dominate the product if it grows rapidly and nucleates on another polymorph. Studies of ROY have also helped understand a new, surprisingly fast mode of crystal growth in organic liquids cooled to the glass transition temperature. This growth mode exists only for those polymorphs that have more isotropic, and perhaps more liquid-like, packing. The rich polymorphism of ROY results from a combination of favorable thermodynamics and kinetics. Not only must there be many polymorphs of comparable energies or free energies, many polymorphs must be kinetically stable and crystallize at comparable rates to be observed. This system demonstrates the unique insights that polymorphism provides into solid-state structures and properties, as well as the inadequacy of our current understanding of the phenomenon. Despite many studies of ROY, it is still impossible to predict the next molecule that is equally or more polymorphic. ROY is a lucky gift from medicinal chemists.

  18. Understanding the solution phase chemistry and solid state thermodynamic behavior of pharmaceutical cocrystals

    NASA Astrophysics Data System (ADS)

    Maheshwari, Chinmay

    Cocrystals have drawn a lot of research interest in the last decade due to their potential to favorably alter the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients. This dissertation focuses on the thermodynamic stability and solubility of pharmaceutical cocrystals. Specifically, the objectives are to; (i) investigate the influence of coformer properties such as solubility and ionization characteristics on cocrystal solubility and stability as a function of pH, (ii) to measure the thermodynamic solubility of metastable cocrystals, and study the solubility differences measured by kinetic and equilibrium methods, (iii) investigate the role of surfactants on the solubility and synthesis of cocrystals, (iv) investigate the solid state phase transformation of reactants to cocrystals and the factors that influence the reaction kinetics and, (v) provide models that enable the prediction of cocrystal formation by calculating the free energy of formation for a solid to solid transformation of reactants to cocrystals. Cocrystal solubilities were measured directly when cocrystals were thermodynamically stable, while solubilities were calculated from eutectic concentration measurements when cocrystals were of higher solubility than its components. Cocrystal solubility was highly dependent on coformer solubilities for gabapentin-lactam and lamotrigine cocrystals. It was found that melting point is not a good indicator of cocrystal solubility as solute-solvent interactions quantified by the activity coefficient play a huge role in the observed solubility. Similar to salts, cocrystals also exhibit pHmax, however the salts and cocrystals have different dependencies on the parameters that govern the value of pHmax. It is also shown that cocrystals could provide solubility advantage over salts as lamotrigine-nicotinamide cocrystal hydrate has about 6 fold higher solubility relative to lamotrigine-saccharin salt. In the case of mixtures of solid reactants, it was observed that cocrystals can form spontaneously when the reactants are in physical contact and that temperature, relative humidity, and disorder in the reactants caused by mechanical stress such as milling can enhance the reaction rates. Prediction of spontaneous cocrystal formation was investigated by developing models to calculate the Gibbs free energy of formation. Thermal behavior of cocrystal reactants was investigated by calorimetry and the interaction between the reactants is explained by investigating the heats of mixing in the melt. These principles are applied on cocrystals that are divided into two categories; (i) Where the cocrystal melting point is between that of its reactants and, (ii) where the cocrystal melting point is below that of its components. Generalized equations were developed that enable the calculation of Gibbs free energy of formation from fusion temperatures, enthalpy and entropy of fusion.

  19. Thermodynamics of phenanthrene partition into solid organic matter from water.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong; Tao, Shu

    2005-01-01

    The thermodynamic behavior of organic contaminants in soils is essential to develop remediation technologies and assess risk from alternative technologies. Thermodynamics of phenanthrene partition into four solids(three soils and a bentonite) from water were investigated. The thermodynamics parameters (deltaH, deltaG degrees, deltaS degrees) were calculated according to experimental data. The total sorption heats of phenanthrene to solids from water ranged from -7.93 to -17.1 kJ/mol, which were less exothermic than the condensation heat of phenanthrene-solid (i.e., -18.6 kJ/mol). The partition heats of phenanthrene dissolved into solid organic matter ranged from 23.1 to 32.2 kJ/mol, which were less endothermic than the aqueous dissolved heat of phenanthrene (i.e., 40.2 kJ/mol), and were more endothermic than the fusion heat of phenanthrene-solid (i.e., 18.6 kJ/mol). The standard free energy changes, deltaG degrees, are all negative which suggested that phenanthrene sorption into solid was a spontaneous process. The positive values of standard entropy changes, deltaS degrees, show a gain in entropy for the transfer of phenanthrene at the stated standard state. Due to solubility-enhancement of phenanthrene, the partition coefficients normalized by organic carbon contents decrease with increasing system temperature (i.e., ln Koc = -0.284 ln S + 9.82 (n = 4, r2 = 0.992)). The solubility of phenanthrene in solid organic matter increased with increasing temperatures. Transports of phenanthrene in different latitude locations and seasons would be predicted according to its sorption thermodynamics behavior.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travesset, Alex

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists withmore » the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.« less

  1. Structural Search for High Pressure CS2 and Xe-Cl Compounds

    NASA Astrophysics Data System (ADS)

    Zarifi, Niloofar; Tse, John S.

    2018-04-01

    The recent successful implementation of several methodologies for the prediction of crystal structures based on the first-principles electronic structure have ushered in a new area of computational chemistry. In this study, the two most popular methods, namely genetic evolution and particle swarm optimization, were applied to the investigation of stable crystalline polymorphs of solid carbon disulfide and xenon halides at high pressure. It was found that both methods have their own merits. However, there are subtleties that need to be considered for the proper execution of the methods. We found a two-dimensional (2D) layered structure that may be responsible for the superconductivity in CS2. Except for XeCl2, no thermodynamically stable crystalline Xe halides were found under 60 GPa in the halide-rich region of the phase diagram.

  2. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of differentmore » classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.« less

  3. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    DOE PAGES

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...

    2016-07-05

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less

  4. High-performance organic light-emitting diodes comprising ultrastable glass layers

    PubMed Central

    Rodríguez-Viejo, Javier

    2018-01-01

    Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029

  5. Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions.

    PubMed

    Thommes, Markus; Ely, David R; Carvajal, M Teresa; Pinal, Rodolfo

    2011-06-06

    We present a novel extrusion based approach where the dissolution rate of poorly soluble drugs (griseofulvin, phenytoin and spironolactone) is significantly accelerated. The drug and highly soluble mannitol are coprocessed in a hot melt extrusion operation. The obtained product is an intimate mixture of the crystalline drug and crystalline excipient, with up to 50% (w/w) drug load. The in vitro drug release from the obtained solid crystalline suspensions is over 2 orders of magnitude faster than that of the pure drug. Since the resulting product is crystalline, the accelerated dissolution rate does not bear the physical stability concerns inherent to amorphous formulations. This approach is useful in situations where the drug is not a good glass former or in cases where it is difficult to stabilize the amorphous drug. Being thermodynamically stable, the dissolution profile and the solid state properties of the product are maintained after storage at 40 °C, 75% RH for at least 90 days.

  6. Computational designing and screening of solid materials for CO2capture

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    In this presentation, we will update our progress on computational designing and screening of solid materials for CO2 capture. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials have been proposed and validated at NETL. The advantage of this method is that it identifies the thermodynamic properties of the CO2 capture reaction as a function of temperature and pressure without any experimental input beyond crystallographic structural information of the solid phases involved. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to identify only those solid materials for which lower capture energy costs are expected at the desired working conditions. In addition, we present a simulation scheme to increase and decrease the turnover temperature (Tt) of solid capturing CO2 reaction by mixing other solids. Our results also show that some solid sorbents can serve as bi-functional materials: CO2 sorbent and CO oxidation catalyst. Such dual functionality could be used for removing both CO and CO2 after water-gas-shift to obtain pure H2.

  7. Nanoparticle-Seeding Approach to Buried (Semi) Metal Film Growth

    DTIC Science & Technology

    2014-05-20

    semimetals that can be grown epitaxially on zinc-blende III-V substrates, with thermodynamically stable interfaces. However, the rotational symmetry...epitaxially on zinc-blende III-V substrates, with thermodynamically stable interfaces. However, the rotational symmetry mismatch between the III-V and ErAs

  8. Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2014-09-01

    One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point located in the `no-man’s land’. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, as spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon, carbon and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.

  9. Thermodynamic interpretation of reactive processes in Ni-Al nanolayers from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Sandoval, Luis; Campbell, Geoffrey H.; Marian, Jaime

    2014-03-01

    Metals that can form intermetallic compounds by exothermic reactions constitute a class of reactive materials with multiple applications. Ni-Al laminates of thin alternating layers are being considered as model nanometric metallic multilayers for studying various reaction processes. However, the reaction kinetics at short timescales after mixing are not entirely understood. In this work, we calculate the free energies of Ni-Al alloys as a function of composition and temperature for different solid phases using thermodynamic integration based on state-of-the-art interatomic potentials. We use this information to interpret molecular dynamics (MD) simulations of bilayer systems at 800 K and zero pressure, both in isothermal and isenthalpic conditions. We find that a disordered phase always forms upon mixing as a precursor to a more stable nano crystalline B2 phase. We construe the reactions observed in terms of thermodynamic trajectories governed by the state variables computed. Simulated times of up to 30 ns were achieved, which provides a window to phenomena not previously observed in MD simulations. Our results provide insight into the early experimental reaction timescales and suggest that the path (segregated reactants) → (disordered phase) → (B2 structure) is always realized irrespective of the imposed boundary conditions.

  10. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ..delta..G/sub f,298//sup o/, ..delta..H/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reactionmore » (..delta..H/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs.« less

  11. Dissolution of aragonite-strontianite solid solutions in nonstoichiometric Sr (HCO3)2-Ca (HCO3)2-CO2-H2O solutions

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Glynn, P.D.; Blum, A.E.

    1992-01-01

    Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated non-stoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25??C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer ~ 60 A?? on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer ~25 A?? (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2)) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a non-stoichiometric surface reactive zone significantly decreases dissolution rates. ?? 1992.

  12. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  13. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    PubMed

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Pressure-induced phase transition of KTa1/2Nb1/2O3 solid solutions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Huadi; Liu, Bing; Zhang, Cong; Qiu, Chengcheng; Wang, Xuping; Zhang, Yuanyuan; Lv, Xianshun; Wei, Lei; Li, Qinggang

    2018-05-01

    The structures and electronic properties of KTa1/2Nb1/2O3 under high pressures have been investigated using the first-principles calculations. Three candidates with B site cation ordered along the [1 0 0], [1 1 0] and [1 1 1] directions are found stable under different pressures by thermodynamics, mechanics and dynamics stability criteria. Further electronic analysis indicates that three structures are semiconductors with different band-gap characteristics. The peculiar chemical bonds of Nb-O and Ta-O are expected to be related to the different electronegativity of the corresponding cations.

  15. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  16. High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of copper

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni

    2017-01-01

    Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.

  17. Investigating the Crystallization Propensity of Structurally Similar Organic Molecules From Amorphous State

    NASA Astrophysics Data System (ADS)

    Kalra, Arjun

    Combinatorial chemistry and high-throughput screening approaches utilized during drug discovery have resulted in many potent pharmacologically active molecules with low aqueous solubility and consequently poor bioavailability. Enabling technologies, such as amorphous solid dispersions (ASD's), can obviate these challenges and provide an efficient route to formulate the drug as an oral solid dosage form. However, high-energy amorphous materials have an inherent tendency to crystallize and in doing so can negate the apparent solubility advantage achieved by using such formulations. Crystallization can occur during (1) cooling the drug molecule from the melt state (such as during hot melt extrusion); (2) during storage of an amorphous formulation; (3) during pharmaceutical processing unit operations such as compression, granulation etc. Current knowledge with regards to the relationship between crystallization propensity of an active pharmaceutical ingredient (API) from the amorphous state (supercooled liquid and glass) and its thermodynamic, kinetic and molecular properties is limited. Furthermore, examining the mechanistic steps involved in crystallization of organic molecules under conditions of supercooling provides an opportunity to examine supramolecular aggregation events occurring during early stages of crystallization. Studying crystallization mechanism from amorphous state is important for pharmaceutical formulation development because a molecular-level understanding of the crystallization process would provide clues regarding the intermolecular interactions at the early stages of nucleation and help in rational selection of polymeric excipients to hinder such events. The primary goal of this research is to develop an understanding of phase transition from amorphous pharmaceuticals, specifically focusing on the role of thermodynamic, kinetic and molecular properties of a series of structurally similar compounds. It is hypothesized that the there exists a link between thermodynamics quantities, kinetic properties, molecular interactions and glass forming ability. Furthermore, it is hypothesized that the molecular heterogeneity in supercooled liquids and glassy state, manifested through intermolecular interactions and conformational flexibility impacts the observed crystallization behavior. Understanding the phase transition kinetics and mechanism of crystallization from amorphous pharmaceuticals is critical for development of stable formulations for drug delivery. The specific goals of this research include: (1) Investigating the link between thermodynamic and kinetic factors affecting the crystallization propensity of organic compounds from supercooled liquid state. (2) Evaluating the role of intermolecular interactions and conformational distribution on glass forming ability and stability. (3) Examining the relationship between supramolecular aggregates present in glassy state and polymorphic outcome. It is believed that successful completion of this research will provide a fundamental understanding of amorphous solid-state chemistry as well as provide useful tools for the implementation of ASD's as solid oral dosage forms.

  18. Thermodynamic approach to the paradox of diamond formation with simultaneous graphite etching in the low pressure synthesis of diamond

    NASA Astrophysics Data System (ADS)

    Hwang, Nong M.; Yoon, Duk Y.

    1996-03-01

    In spite of the critical handicap from the thermodynamic point of view, the atomic hydrogen hypothesis is strongly supported by experimental observations of diamond deposition with simultaneous graphite etching. Thermodynamic analysis of the CH system showed that at ˜ 1500 K, carbon solubility in the gas phase is minimal and thus, the equilibrium fraction of solid carbon is maximal. Depending on whether gas phase nucleation takes place or not, the driving force is for deposition or for etching of solid carbon below ˜ 1500 K for the input gas of the typical mixture of 1% CH 499% H 2. The previous observation of etching of the graphite substrate is not expected unless solid carbon precipitated in the gas phase. By rigorous thermodynamic analysis of the previous experimental observations of diamond deposition with simultaneous graphite etching, we suggested that the previous implicit assumption that diamond deposits by an atomic unit should be the weakest point leading to the thermodynamic paradox. The experimental observations could be successfully explained without violating thermodynamics by assuming that the diamond phase had nucleated in the gas phase as fine clusters.

  19. Towards Mechanochemistry of Fracture and Cohesion: General Introduction and the Simplest Model of Velcro

    DTIC Science & Technology

    2010-09-01

    reports. This project is aimed at a combined theoretical and experimental analysis of adhesives. The theoretical part of it is based on usage of... Theoretical Difficulties in the Thermodynamics of Heterogeneous Systems and Fracture 3 3. Thermodynamic Model of Velcro 7 3.1 Derivation of Equations 5 and 6...mechanochemical systems). Among those are fracture of solids , analysis of solid explosives , chemical reactions in solids , environmental stress corrosion and

  20. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  1. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  2. Erasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles.

    PubMed

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2014-09-01

    One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point [1] located in the "no-man's land" [2]. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, since spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water [3, 4]. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon [5], carbon [6] and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.

  3. Understanding the glass-forming ability of active pharmaceutical ingredients for designing supersaturating dosage forms.

    PubMed

    Kawakami, Kohsaku; Usui, Toshinori; Hattori, Mitsunari

    2012-09-01

    Amorphous solid dispersions have great potential for enhancing oral absorption of poorly soluble drugs. Crystallization behavior during storage and after exposure to aqueous media must be examined in detail for designing stable and effective amorphous formulations, and it is significantly affected by the intrinsic properties of an amorphous drug. Many attempts have been made to correlate various thermodynamic parameters of pharmaceutical glasses with their crystallization behavior; however, variations in model drugs that could be used for such investigation has been limited because the amorphous characteristics of drugs possessing a high crystallization tendency are difficult to evaluate. In this study, high-speed differential scanning calorimetry, which could inhibit their crystallization using high cooling rates up to 2000°C/s, was employed for assessing such drugs. The thermodynamic parameters of the glasses, including glass transition temperature (T(g)) and fragility, were obtained to show that their crystallization tendency cannot be explained simply by the parameters, although there have been general thought that fragility may be correlated with crystallization tendency. Also investigated was correlation between the thermodynamic parameters and crystallization tendency upon contact with water, which influences in vivo efficacy of amorphous formulations. T(g) was correlated well with the crystallization tendency upon contact with water. Copyright © 2012 Wiley Periodicals, Inc.

  4. Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites

    NASA Astrophysics Data System (ADS)

    Musari, Abolore A.; Joubert, Daniel P.; Olowofela, Joseph A.; Akinwale, Adio T.; Adebayo, Gboyega A.

    2017-12-01

    Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard's law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.

  5. Chemical Equilibrium of Aluminate in Hanford Tank Waste Originating from Tanks 241-AN-105 and 241-AP-108

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoskey, Jacob K.; Cooke, Gary A.; Herting, Daniel L.

    The purposes of the study described in this document follow; Determine or estimate the thermodynamic equilibrium of gibbsite in contact with two real tank waste supernatant liquids through both dissolution of gibbsite (bottom-up approach) and precipitation of aluminum-bearing solids (top-down approach); determine or estimate the thermodynamic equilibrium of a mixture of gibbsite and real tank waste saltcake in contact with real tank waste supernatant liquid through both dissolution of gibbsite and precipitation of aluminum-bearing solids; and characterize the solids present after equilibrium and precipitation of aluminum-bearing solids.

  6. Solid-solution thermodynamics in Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Lukina, E. A.

    2016-05-01

    The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.

  7. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2-9.

    PubMed

    Zhu, Yinian; Huang, Bin; Zhu, Zongqiang; Liu, Huili; Huang, Yanhua; Zhao, Xin; Liang, Meina

    2016-01-01

    The interaction between Ca-HAP and Pb(2+) solution can result in the formation of a hydroxyapatite-hydroxypyromorphite solid solution [(PbxCa1-x)5(PO4)3(OH)], which can greatly affect the transport and distribution of toxic Pb in water, rock and soil. Therefore, it's necessary to know the physicochemical properties of (PbxCa1-x)5(PO4)3(OH), predominantly its thermodynamic solubility and stability in aqueous solution. Nevertheless, no experiment on the dissolution and related thermodynamic data has been reported. Dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3(OH)] in aqueous solution at 25 °C was experimentally studied. The aqueous concentrations were greatly affected by the Pb/(Pb + Ca) molar ratios (XPb) of the solids. For the solids with high XPb [(Pb0.89Ca0.11)5(PO4)3OH], the aqueous Pb(2+) concentrations increased rapidly with time and reached a peak value after 240-720 h dissolution, and then decreased gradually and reached a stable state after 5040 h dissolution. For the solids with low XPb (0.00-0.80), the aqueous Pb(2+) concentrations increased quickly with time and reached a peak value after 1-12 h dissolution, and then decreased gradually and attained a stable state after 720-2160 h dissolution. The dissolution process of the solids with high XPb (0.89-1.00) was different from that of the solids with low XPb (0.00-0.80). The average K sp values were estimated to be 10(-80.77±0.20) (10(-80.57)-10(-80.96)) for hydroxypyromorphite [Pb5(PO4)3OH] and 10(-58.38±0.07) (10(-58.31)-10(-58.46)) for calcium hydroxyapatite [Ca5(PO4)3OH]. The Gibbs free energies of formation (ΔG f (o) ) were determined to be -3796.71 and -6314.63 kJ/mol, respectively. The solubility decreased with the increasing Pb/(Pb + Ca) molar ratios (XPb) of (PbxCa1‒x)5(PO4)3(OH). For the dissolution at 25 °C with an initial pH of 2.00, the experimental data plotted on the Lippmann diagram showed that the solid solution (PbxCa1-x)5(PO4)3(OH) dissolved stoichiometrically at the early stage of dissolution and moved gradually up to the Lippmann solutus curve and the saturation curve for Pb5(PO4)3OH, and then the data points moved along the Lippmann solutus curve from right to left. The Pb-rich (PbxCa1-x)5(PO4)3(OH) was in equilibrium with the Ca-rich aqueous solution. Graphical abstractLippmann diagrams for dissolution of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 ˚C and an initial pH of 2.00.

  8. Theoretical investigation on thermodynamic properties of ZnO1-x Te x alloys

    NASA Astrophysics Data System (ADS)

    Long, Debing; Li, Mingkai; Luo, Minghai; Zhu, Jiakun; Yang, Hui; Huang, Zhongbing; Ahuja, Rajeev; He, Yunbin

    2017-05-01

    In this study, the formation energy, phase diagram (with/without phonon contribution) and the relationship between bond stiffness and bond length for wurtzite (WZ) and zincblende (ZB) structures of ZnO1-x Te x (0  ⩽  x  ⩽  1) alloys have been investigated by combining first-principles calculations and cluster expansion method. The formation energy of ZnO1-x Te x alloys is very high in both structures, which means that it is difficult for ZnO and ZnTe to form stable ternary alloys ZnO1-x Te x . In the phase diagrams, both structures do not have stable phase of ternary alloys and ZnO1-x Te x ternary alloys can only exist in the form of metastable phase. These results indicate that ZnO and ZnTe easily form solid solubility gap when they form alloys. After considering vibrational free energy, we found the solubility of Te in ZnO and O in ZnTe was increased and the vibrational entropy improved the solubility furthermore. The phonon contribution is not ignorable to improve solid solubility. The phonon density of states was analyzed for ZnO1-x Te x alloys and the contribution from vibrational entropy was discussed.

  9. Rotigotine: Unexpected Polymorphism with Predictable Overall Monotropic Behavior.

    PubMed

    Rietveld, Ivo B; Céolin, René

    2015-12-01

    Crystallization of polymorphs still has a touch of art, as even prior observations of polymorphs do not guarantee their crystallization. However, once crystals of various polymorphs have been obtained, their relative stabilities can be established with a straightforward thermodynamic approach even if the conclusion will depend on the quality of the experimental data. Rotigotine is an active pharmaceutical ingredient, which has suffered the same setback as Ritonavir: a sudden appearance of a more stable crystalline polymorph than the one used for the formulation. Although the cause of the defect in the formulation was quickly established, the interpretation of the phase behavior of rotigotine has been lacking in clarity. In the present paper, data published in the patents resulting from the discovery of the new polymorph have been used to establish the pressure-temperature phase diagram of the two known solid forms of rotigotine. The analysis clearly demonstrates that form II is the stable solid phase and form I is metastable in the entire pressure-temperature domain: form I is overall monotropic in relation to form II. Thus, it was a sensible decision of European Medicines Agency to ask for a reformulation, as the first formulation was metastable even if crystallization appeared to be very slow. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications

    NASA Astrophysics Data System (ADS)

    Hutter, Kolumban; Schneider, Lukas

    2010-06-01

    This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid-fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid-Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.

  11. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof-of-concept prototypes are built and tested, demonstrating the potential of the system as HVAC for transportation vehicles. The performance of the concept-demonstration-unit show both high heating/cooling power and high energy densities. An extended cycling test shows degradation on the performance of the system. To solve this problem, a metal hydride hydrogen compressor is proposed for aiding the recharge process of the system.

  12. Electronic and Electrochemical Properties of Li 1–x Mn 1.5 Ni 0.5 O 4 Spinel Cathodes As a Function of Lithium Content and Cation Ordering

    DOE PAGES

    Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...

    2015-10-05

    The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less

  13. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  14. Density functional description of size-dependent effects at nucleation on neutral and charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Shchekin, Alexander K.; Lebedeva, Tatiana S.

    2017-03-01

    A numerical study of size-dependent effects in the thermodynamics of a small droplet formed around a solid nanoparticle has been performed within the square-gradient density functional theory. The Lennard-Jones fluid with the Carnahan-Starling model for the hard-sphere contribution to intermolecular interaction in liquid and vapor phases and interfaces has been used for description of the condensate. The intermolecular forces between the solid core and condensate molecules have been taken into account with the help of the Lennard-Jones part of the total molecular potential of the core. The influence of the electric charge of the particle has been considered under assumption of the central Coulomb potential in the medium with dielectric permittivity depending on local condensate density. The condensate density profiles and equimolecular radii for equilibrium droplets at different values of the condensate chemical potential have been computed in the cases of an uncharged solid core with the molecular potential, a charged core without molecular potential, and a core with joint action of the Coulomb and molecular potentials. The appearance of stable equilibrium droplets even in the absence of the electric charge has been commented. As a next step, the capillary, disjoining pressure, and electrostatic contributions to the condensate chemical potential have been considered and compared with the predictions of classical thermodynamics in a wide range of values of the droplet and the particle equimolecular radii. With the help of the found dependence of the condensate chemical potential in droplet on the droplet size, the activation barrier for nucleation on uncharged and charged particles has been computed as a function of the vapor supersaturation. Finally, the work of droplet formation and the work of wetting the particle have been found as functions of the droplet size.

  15. First Principles Studies for Lithium Intercalation and Diffusion Behaviors in MoS2 treated with the Compressive Sensing Cluster Expansion

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds

    2014-03-01

    Molybdenum disulfide (MoS2) is a good candidate electrode material for high capacity energy storage applications, such as lithium ion batteries and supercapacitors. In this work, we investigate lithium intercalation and diffusion kinetics in MoS2 by using first-principles density-functional theory (DFT) calculations. Two different lithium intercalation sites (1-H and 2-T) in MoS2 are found to be stable for lithium intercalation at different van der Waals' (vdW) gap distances. It is found that both thermodynamic and kinetic properties are highly related to the interlayer vdW gap distance, and that the optimal gap distance leads to effective solid-state diffusion in MoS2. Additionally, through the use of compressive sensing, we build accurate cluster expansion models to study the thermodynamic properties of MoS2 at high lithium content by truncating the higher order effective clusters with significant contributions. The results show that compressive sensing cluster expansion is a rigorous and powerful tool for model construction for advanced electrochemical applications in the future.

  16. Mechanical Stability Criterion, Triple-Phase Condition, and Pressure Differences of Matter Condensed in a Porous Matrix.

    PubMed

    Setzer, Max J.

    2001-03-01

    In contrast to the triple-point condition of bulk material, condensed matter in porous media can coexist stably as liquid, solid, and vapor over a wide temperature range. The necessary conditions are found by a thermodynamic approach starting with the potential which reflects the grand canonical distribution and is characterized by heat and matter exchange. The other parameters are volume and surface. Therefore, it is designated the free mechanical potential. General expressions for mechanical stability are given. On condensation and melting the nonwetting phases vanish. These are thermodynamically stable phase transitions. For the opposing effects evaporation and fusion, an energy barrier must be transgressed either by nucleation or by intrusion as discussed here. These are metastable states. Phase transitions are the conditions which limit the triple-phase region. Within this region high negative pressures are generated in the unfrozen liquid independent of the pore size where it exists. The findings are applied to water in the disperse matrix of hardened cement paste. They are the basis for "micro ice lens pumping". Copyright 2001 Academic Press.

  17. Thermodynamics of high temperature, Mie-Gruneisen solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.; Lund, Carl M.

    1999-12-01

    We construct a set of equations of state for condensed matter at temperatures well above the Debye temperature. These equations incorporate the Mie-Gruneisen equation of state and generic properties of high temperature solids. They are simple enough to provide an alternative to the ideal gas and the van der Waals equations of state for illustrating thermodynamic concepts. (c) 1999 American Association of Physics Teachers.

  18. Predicting New Materials for Hydrogen Storage Application

    PubMed Central

    Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer

    2009-01-01

    Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity in structural arrangements and difficulties involved in establishing hydrogen positions by x-ray diffraction methods, the structural information of hydrides are very limited compared to other classes of materials (like oxides, intermetallics, etc.). This can be overcome by conducting computational simulations combined with selected experimental study which can save environment, money, and man power. The predicting capability of first-principles density functional theory (DFT) is already well recognized and in many cases structural and thermodynamic properties of single/multi component system are predicted. This review will focus on possible new classes of materials those have high hydrogen content, demonstrate the ability of DFT to predict crystal structure, and search for potential meta-stable phases. Stabilization of such meta-stable phases is also discussed.

  19. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    NASA Astrophysics Data System (ADS)

    Bolmatov, Dima; Zav'yalov, Dmitry; Zhernenkov, Mikhail; Musaev, Edvard T.; Cai, Yong Q.

    2015-12-01

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit (cV = 3kB), the ideal gas limit (cV =3/2 kB) and the new thermodynamic limit (cV = 2kB), dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  20. Experimental study and thermodynamic modeling of the phase relation in the Fe-S-Si system with implications for the distribution of S and Si in a partially solidified core

    NASA Astrophysics Data System (ADS)

    Tao, R.; Fei, Y.

    2017-12-01

    Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.

  1. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Phase transition thermodynamics of bisphenols.

    PubMed

    Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F

    2014-10-16

    Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.

  3. Local Characteristics of the Nocturnal Boundary Layer in Response to External Pressure Forcing

    NASA Astrophysics Data System (ADS)

    van der Linden, Steven; Baas, Peter; van Hooft, Antoon; van Hooijdonk, Ivo; Bosveld, Fred; van de Wiel, Bas

    2017-04-01

    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, The Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin-Obukhov stability parameter (z/L) or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speed are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics, and composite profiles of wind and temperature is systematically investigated. We find that the classification results in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a a solid description of other thermodynamic processes such as soil heat conduction and radiative transfer. This prerequisite poses a challenge for Large-Eddy Simulations of weak wind nocturnal boundary layers.

  4. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method.

    PubMed

    Kushida, Ikuo; Gotoda, Masaharu

    2013-10-01

    ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.

  5. Inverse Band Structure Design via Materials Database Screening: Application to Square Planar Thermoelectrics

    DOE PAGES

    Isaacs, Eric B.; Wolverton, Chris

    2018-02-26

    Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less

  6. Inverse Band Structure Design via Materials Database Screening: Application to Square Planar Thermoelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Eric B.; Wolverton, Chris

    Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less

  7. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.

    PubMed

    Lin, Shiang-Tai; Maiti, Prabal K; Goddard, William A

    2010-06-24

    Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

  8. Effects of drug-carrier interactions on drug dissolution from binary and ternary matrices

    NASA Astrophysics Data System (ADS)

    Iqbal, Zafar

    For nearly five decades, pharmaceutical researchers have studied solid solutions of drugs in polymers as a potential means to enhance the dissolution of drugs with poor aqueous solubility. This has become of greater importance in recent years because most new potential drug compounds (new chemical entities) exhibit poor water solubility and present great challenges to scientists who must design dosage forms from which the drugs are bioavailable. During the formulation of a solid solution, the drug undergoes physical but not chemical alterations that increase its chemical potential in the formulation relative to that of the pure drug in its stable form. This increased chemical potential is responsible for enhanced dissolution as well as physical instabilities, such as amorphous to crystalline conversions and precipitation within the solid state. The chemical potential is derived from the Gibbs free energy, so it is reasonable to explain the behavior of solid solution systems in terms of thermodynamics. Solid solutions and dispersions have been extensively studied by pharmaceutical scientists, both with regard to manufacturing aspects and the proposal of various models in attempts to explain the physical bases for how these systems work. Recently, Dave and Bellantone proposed a model based on the thermodynamic changes resulting from the formulation of binary solid solutions of a drug in the polymer PVP. Their model introduced a modification of the F-H theory, which was used to quantify the drug-polymer interaction energies and calculate the entropy of mixing of the drug and polymer. In this work, the model of Dave and Bellantone was extended to include three-component systems, consisting of one drug mixed in a carrier matrix consisting of mixture of two polymers or a polymer and a surfactant. For this research, solid solutions were formed using various drug weight fractions in the formulations. The study focused on the following points: (1) Prepare solid solution formulations and perform appropriate physical characterizations. (2) Characterize the increase in drug dissolution rates resulting from solid solution formulations. (3) Relate the initial dissolution rates to the drug solubility. (4) Explain the solubility enhancement from solid solution dosage in terms of the drug polymer interactions using the extended thermodynamic model. Two poorly water soluble drugs, levonorgestrel (LEVO) and ethinyl estradiol (EE) were formulated in seven solid solution preparations comprised of four carrier systems. Materials used as carriers included various combinations of the polymers PVP K-30, Copovidone (COP), Poloxamer 182, and the surfactant TweenRTM 20. Additionally, ibuprofen (IBU) was used in three formulations consisting of various combinations of PVP K-30, Copovidone and TweenRTM 20. Formulations with various drug weight fractions (0.5%--30%) were prepared using the solvent evaporation technique. Each formulation was tested for dissolution using intrinsic dissolution apparatus (USP). The solid solutions were compressed into tablets into the sample die that maintained a constant surface area during the dissolution process. DSC, XRD and NIRS scans identified that the crystalline peaks of the drug disappeared with the addition of the polymer for all ratios of EE, indicating the formation of solid solutions (to within the limits of detection of the equipment). This was also observed for the LEVO dispersions up to 10% drug loading. At higher drug loading, solutions were formed but some small degree crystallinity was also present. For each experiment, the initial dissolution rates were obtained from the slope of the mass dissolved vs. time plots taken at early times, and volume normalized initial dissolution rates RV were calculated by dividing the initial dissolution rate by the volume fraction of the drug in the formulation. Comparison of the RV values for the various formulations with a reference RV (typically that of the pure drug or of the formulation with the highest polymer content) allowed calculation of relative volume normalized dissolution rates (RNV). The various RNV were used in the thermodynamic model for data analyses and to determine the interactions between the drug and carrier molecules. It was generally seen that RNV increased with decreased drug fraction, and was adequately modeled by the equations derived from the extended thermodynamic model. It was concluded that the model proposed for the binary and ternary systems successfully represented the mechanism of drug-polymer interaction and the energy changes taken place within the dispersion systems. The dissolution data analysis and subsequent understanding of physical modifications in the dispersion systems characterized by XRD, NIRS and DSC further substantiated the findings. The understanding of the fundamental physical might help scientists to predict the effects of mixing various drugs and polymers, and the effects of varying ratios.

  9. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    PubMed

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  10. Local thermodynamic mapping for effective liquid density-functional theory

    NASA Technical Reports Server (NTRS)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  11. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  12. Predictive thermodynamics for ionic solids and liquids.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2016-08-21

    The application of thermodynamics is simple, even if the theory may appear intimidating. We describe tools, developed over recent years, which make it easy to estimate often elusive thermodynamic parameter values, generally (but not exclusively) for ionic materials, both solid and liquid, as well as for their solid hydrates and solvates. The tools are termed volume-based thermodynamics (VBT) and thermodynamic difference rules (TDR), supplemented by the simple salt approximation (SSA) and single-ion values for volume, Vm, heat capacity, , entropy, , formation enthalpy, ΔfH°, and Gibbs formation energy, ΔfG°. These tools can be applied to provide values of thermodynamic and thermomechanical properties such as standard enthalpy of formation, ΔfH°, standard entropy, , heat capacity, Cp, Gibbs function of formation, ΔfG°, lattice potential energy, UPOT, isothermal expansion coefficient, α, and isothermal compressibility, β, and used to suggest the thermodynamic feasibility of reactions among condensed ionic phases. Because many of these methods yield results largely independent of crystal structure, they have been successfully extended to the important and developing class of ionic liquids as well as to new and hypothesised materials. Finally, these predictive methods are illustrated by application to K2SnCl6, for which known experimental results are available for comparison. A selection of applications of VBT and TDR is presented which have enabled input, usually in the form of thermodynamics, to be brought to bear on a range of topical problems. Perhaps the most significant advantage of VBT and TDR methods is their inherent simplicity in that they do not require a high level of computational expertise nor expensive high-performance computation tools - a spreadsheet will usually suffice - yet the techniques are extremely powerful and accessible to non-experts. The connection between formula unit volume, Vm, and standard thermodynamic parameters represents a major advance exploited by these techniques.

  13. Thermodynamical stability of FRW models with quintessence

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ashraf, Sara

    2018-03-01

    In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.

  14. First-Principles Prediction of Thermodynamically Stable Two-Dimensional Electrides

    DOE PAGES

    Ming, Wenmei; Yoon, Mina; Univ. of Tennessee, Knoxville, TN; ...

    2016-10-21

    Two-dimensional (2D) electrides, emerging as a new type of layered material whose electrons are confined in interlayer spaces instead of at atomic proximities, are receiving interest for their high performance in various (opto)electronics and catalytic applications. Experimentally, however, 2D electrides have been only found in a couple of layered nitrides and carbides. We report new thermodynamically stable alkaline-earth based 2D electrides by using a first-principles global structure optimization method, phonon spectrum analysis, and molecular dynamics simulation. The method was applied to binary compounds consisting of alkaline-earth elements as cations and group VA, VIA, or VIIA nonmetal elements as anions. Wemore » also revealed that the stability of a layered 2D electride structure is closely related to the cation/anion size ratio; stable 2D electrides possess a sufficiently large cation/anion size ratio to minimize electrostatic energy among cations, anions, and anionic electrons. This work demonstrates a new avenue to the discovery of thermodynamically stable 2D electrides beyond experimental material databases and provides new insight into the principles of electride design.« less

  15. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-04

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.

  16. On the Lennard-Jones and Devonshire theory for solid state thermodynamics

    NASA Astrophysics Data System (ADS)

    Lustig, Rolf

    2017-06-01

    The Lennard-Jones and Devonshire theory is developed into a self-consistent scheme for essentially complete thermodynamic information. The resulting methodology is compared with molecular simulation of the Lennard-Jones system in the face-centred-cubic solid state over an excessive range of state points. The thermal and caloric equations of state are in almost perfect agreement along the entire fluid-solid coexistence lines over more than six orders of magnitude in pressure. For homogeneous densities greater than twice the solid triple point density, the theory is essentially exact for derivatives of the Helmholtz energy. However, the fluid-solid phase equilibria are in disagreement with simulation. It is shown that the theory is in error by an additive constant to the Helmholtz energy A/(NkBT). Empirical inclusion of the error term makes all fluid-solid equilibria indistinguishable from exact results. Some arguments about the origin of the error are given.

  17. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE PAGES

    Abdeljawad, Fadi; Foiles, Stephen M.

    2016-05-04

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  18. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdeljawad, Fadi; Foiles, Stephen M.

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  19. Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO3, M = Li, Na, K

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, J. Karl; Majzoub, Eric H.; Luebke, David R.

    2012-08-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy (FPH) calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the {{HCO}}_{3}^{-} groups in LiHCO3 and NaHCO3 form an infinite chain structure through O⋯H⋯O hydrogen bonds. In contrast, the {{HCO}}_{3}^{-} anions form dimers, ({{HCO}}_{3}^{-})_{2}, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical-transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0-900 K, the FPH and the entropies (S) of MHCO3 (M =Li, Na, K) systems vary as FPH(LiHCO3) > FPH(NaHCO3) > FPH(KHCO3) and S(KHCO3) > S(NaHCO3) > S(LiHCO3), respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  20. Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase.

    PubMed

    Imura, Tomohiro; Yanagishita, Hiroshi; Ohira, Junko; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2005-06-25

    Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.8 were almost zero, the mixed assemblies at the compositions with 0.1 or =0.8 were multilamellar vesicles (L(alpha)) with diameter from 2 to 10 microm. Meanwhile, dynamic light scattering (DLS) measurement revealed that the average size of the vesicles at the composition of X(DLPC)=0.3 was 633.2 nm, which is remarkably small compared to other compositions. Moreover, the mixed vesicle solution at the composition of X(DLPC)=0.3 was slightly bluish and turbid and kept its dispersion stability at 25 degrees C for more than 3 months, indicating the formation of a thermodynamically stable vesicle (L(alpha1)). These results exhibited the formation of a thermodynamically stable vesicle (L(alpha1)) with a high dispersibility from the MEL-A/DLPC mixture. The asymmetric distribution of MEL-A and DLPC in the two vesicle monolayers caused by the difference in geometrical structures is very likely to have changed their self-assembled structure from a sponge phase (L(3)) to a thermodynamically stable vesicle (L(alpha1)).

  1. A Thermodynamic Theory of Solid Viscoelasticity. Part 3: Nonlinear Glassy Viscoelasticity, Stability Constraints, Specifications

    NASA Technical Reports Server (NTRS)

    Freed, Alan; Leonov, Arkady I.

    2002-01-01

    This paper, the last in the series, continues developing the nonlinear constitutive relations for non-isothermal, compressible, solid viscoelasticity. We initially discuss a single integral approach, more suitable for the glassy state of rubber-like materials, with basic functionals involved in the thermodynamic description for this type of viscoelasticity. Then we switch our attention to analyzing stability constraints, imposed on the general formulation of the nonlinear theory of solid viscoelasticity. Finally, we discuss specific (known from the literature or new) expressions for material functions that are involved in the constitutive formulations of both the rubber-like and glassy-like, complementary parts of the theory.

  2. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    PubMed

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  3. Phase transition and thermodynamic stability of topological black holes in Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Zhao, Ren; Liu, Yan-Song

    2017-08-01

    On the basis of horizon thermodynamics, we study the thermodynamic stability and P-V criticality of topological black holes constructed in Hořava-Lifshitz (HL) gravity without the detailed-balance condition (with general ɛ). In the framework of horizon thermodynamics, we do not need the concrete black hole solution (the metric function) and the concrete matter fields. It is shown that the HL black hole for k=0 is always thermodynamically stable. For k=1 , the thermodynamic behaviors and P-V criticality of the HL black hole are similar to those of RN-AdS black hole for some \

  4. A stable compound of helium and sodium at high pressure

    DOE PAGES

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...

    2017-02-06

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  5. A stable compound of helium and sodium at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  6. A stable compound of helium and sodium at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  7. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Wegner, Berthold; Lee, Kyung Min; Fusella, Michael A.; Zhang, Fengyu; Moudgil, Karttikay; Rand, Barry P.; Barlow, Stephen; Marder, Seth R.; Koch, Norbert; Kahn, Antoine

    2017-12-01

    Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer’s effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.

  8. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method.

    PubMed

    Ardham, Vikram Reddy; Deichmann, Gregor; van der Vegt, Nico F A; Leroy, Frédéric

    2015-12-28

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.

  9. Vapor pressures of solid hydrates of nitric acid - Implications for polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Worsnop, Douglas R.; Fox, Lewis E.; Zahniser, Mark S.; Wofsy, Steven C.

    1993-01-01

    Thermodynamic data are presented for hydrates of nitric acid: HNO3.H2O, HNO3.2H2O, HNO3.3H2O, and a higher hydrate. Laboratory data indicate that nucleation and persistence of metastable HNO3.2H2O may be favored in polar stratospheric clouds over the slightly more stable HNO3.3H2O. Atmospheric observations indicate that some polar stratospheric clouds may be composed of HNO3.2H2O and HNO3.3H2O. Vapor transfer from HNO3.2H2O to HNO3.3H2O could be a key step in the sedimentation of HNO3, which plays an important role in the depletion of polar ozone.

  10. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations

    DOE PAGES

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2015-10-06

    First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less

  11. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  12. Thermodynamic and Kinetic Properties of Intrinsic Defects and Mg Transmutants in 3C-SiC Determined by Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.

    2014-02-20

    Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C-SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C-SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg2Si formation demonstrates that the formation of Mg2Si needsmore » to overcome a critical nucleus size and nucleation barrier. It is also found that a compressive stress field exists around the Mg2Si nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures.« less

  13. Ab initio thermodynamic approach to identify mixed solid sorbents for CO 2 capture technology

    DOE PAGES

    Duan, Yuhua

    2015-10-15

    Because the current technologies for capturing CO 2 are still too energy intensive, new materials must be developed that can capture CO 2 reversibly with acceptable energy costs. At a given CO 2 pressure, the turnover temperature (T t) of the reaction of an individual solid that can capture CO 2 is fixed. Such T t may be outside the operating temperature range (ΔT o) for a practical capture technology. To adjust T t to fit the practical ΔT o, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functionalmore » theory and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift T t to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO 2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.« less

  14. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  15. Synthesis and Thermoelectric Properties of Charge-Compensated SyPdxCo4-xSb12 Skutterudites.

    PubMed

    Wan, Shun; Qiu, Pengfei; Huang, Xiangyang; Song, Qingfeng; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-01-10

    Recently, the electronegative elements (e.g., S, Se, Cl, and Br) filled skutterudites have attracted great attention in thermoelectric community. Via doping of some electron donors at the Sb sites, these electronegative elements can be filled into the voids of CoSb 3 forming thermodynamically stable compounds, which greatly extends the scope of filled skutterudites. In this study, we show that doping appropriate elements at the Co sites can also stabilize the electronegative elements in the voids of CoSb 3 . A series of S y Pd x Co 4-x Sb 12 compounds were successfully fabricated by a traditional solid state reaction method combined with a spark plasma sintering technique. The phase composition and electrical and thermal transport properties were systematically characterized, and the related mechanisms were deeply discussed. It is found that the charge compensation between Pd doping and S filling is the main reason for the formation of thermodynamically stable S y Pd x Co 4-x Sb 12 compounds. Filling S element in the voids of CoSb 3 provides additional holes to reduce the carrier concentration while scarcely affecting the carrier mobility. However, doping Pd at the Co sites not only changes the carrier scattering mechanism but also deteriorates the carrier mobility. Low lattice thermal conductivities are observed in these S y Pd x Co 4-x Sb 12 compounds, which are attributed to the low resonant frequency of the S element. Finally, a maximal figure of merit of 0.85 is obtained for S 0.05 Pd 0.25 Co 3.75 Sb 12 at 700 K.

  16. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.

    PubMed

    Svärd, Michael; Valavi, Masood; Khamar, Dikshitkumar; Kuhs, Manuel; Rasmuson, Åke C

    2016-06-01

    Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Thermodynamic study of (anthracene + benzo[a]pyrene) solid mixtures

    PubMed Central

    Rice, James W.; Suuberg, Eric M.

    2010-01-01

    To characterize better the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the {anthracene (1) + benzo[a]pyrene (2)} system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at x1 = 0.26. The eutectic mixture is an amorphous solid that lacks organized crystal structure and melts between T = (414 and 420) K. For mixtures that contain 0.10 < x1 < 0.90, the enthalpy of fusion is dominated by that of the eutectic. Solid-vapor equilibrium studies show that mixtures of anthracene and benzo[a]pyrene at x1 < 0.10 sublime at the vapor pressure of pure benzo[a]pyrene. These results suggest that the solid-vapor equilibrium of benzo[a]pyrene is not significantly influenced by moderate levels of anthracene in the crystal structure. PMID:20814451

  18. Thermodynamic Stability of Low- and High-Index Spinel LiMn 2 O 4 Surface Terminations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Robert E.; Iddir, Hakim; Curtiss, Larry A.

    2016-05-04

    Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of offstoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of whichmore » adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.« less

  19. The global phase diagram of the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    de Miguel, Enrique; Vega, Carlos

    2002-10-01

    The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.

  20. Stability of bound species during alkene reactions on solid acids

    NASA Astrophysics Data System (ADS)

    Sarazen, Michele L.; Iglesia, Enrique

    2017-05-01

    This study reports the thermodynamics of bound species derived from ethene, propene, n-butene, and isobutene on solid acids with diverse strength and confining voids. Density functional theory (DFT) and kinetic data indicate that covalently bound alkoxides form C-C bonds in the kinetically relevant step for dimerization turnovers on protons within TON (0.57 nm) and MOR (0.67 nm) zeolitic channels and on stronger acids HPW (polyoxometalate clusters on silica). Turnover rates for mixed alkenes give relative alkoxide stabilities; the respective adsorption constants are obtained from in situ infrared spectra. Tertiary alkoxides (from isobutene) within larger voids (MOR, HPW) are more stable than less substituted isomers but are destabilized within smaller concave environments (TON) because framework distortions are required to avoid steric repulsion. Adsorption constants are similar on MOR and HPW for each alkoxide, indicating that binding is insensitive to acid strength for covalently bound species. DFT-derived formation free energies for alkoxides with different framework attachments and backbone length/structure agree with measurements when dispersion forces, which mediate stabilization by confinement in host-guest systems, are considered. Theory reveals previously unrecognized framework distortions that balance the C-O bond lengths required for covalency with host-guest distances that maximize van der Waals contacts. These distortions, reported here as changes in O-atom locations and dihedral angles, become stronger for larger, more substituted alkoxides. The thermodynamic properties reported here for alkoxides and acid hosts differing in size and conjugate-anion stability are benchmarked against DFT-derived free energies; their details are essential to design host-guest pairs that direct alkoxide species toward specific products.

  1. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  2. Insights into the crystal-packing effects on the spin crossover of [Fe(II)(1-bpp)](2+)-based materials.

    PubMed

    Vela, Sergi; Novoa, Juan J; Ribas-Arino, Jordi

    2014-12-28

    Iron(II) complexes of the [Fe(II)(1-bpp2)](2+) type (1-bpp = 2,6-di(pyrazol-1-yl)pyridine) have been intensively investigated in the context of crystal engineering of switchable materials because their spin-crossover (SCO) properties dramatically depend on the counterions. Here, by means of DFT + U calculations at the molecular and solid state levels we provide a rationale for the different SCO behaviour of the BF4(-) and ClO4(-) salts of the parent complex; the former features Fe(II) complexes with a regular coordination geometry and undergoes a spin transition, whereas the Fe(II) complexes of the latter adopt a distorted structure and remain in the high-spin state at all temperatures. The different SCO behaviour of both salts can be explained on the basis of a combination of thermodynamic and kinetic effects. The shape of the SCO units at high temperature is thermodynamically controlled by the intermolecular interactions between the SCO units and counterions within the crystal. The spin trapping at low temperatures in the ClO4(-) salt, in turn, is traced back to a kinetic effect because our calculations have revealed the existence of a more stable polymorph having SCO units in their low-spin state that feature a regular structure. From the computational point of view, it is the first time that the U parameter is fine-tuned on the basis of CASPT2 calculations, thereby enabling an accurate description of the energetics of the spin transition at both molecular and solid-state levels.

  3. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

    DOE PAGES

    Gunawardana, K. G.S.H.; Song, Xueyu

    2014-12-22

    Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB 2 and AB 13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu 5Zr(C15 b), Cu 51Zr 14(β), Cu 10Zr 7(φ), CuZr(B2) and CuZr 2 (C11 b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of themore » hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu 10Zr 7(φ). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.« less

  4. Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives and MWCNT

    NASA Astrophysics Data System (ADS)

    Thaweelap, Natthaporn; Utke, Rapee

    2016-11-01

    Dehydrogenation kinetics and reversibility of LiAlH4-LiBH4 doped with Ti-based additives (TiCl3 and Ti-isopropoxide), multiwall carbon nanotubes (MWCNT), and MWCNT impregnated with Ti-based additives are proposed. Reduction of dehydrogenation temperature as well as improvements of kinetics and reversibility, especially decomposition of thermodynamically stable hydride (LiBH4) is obtained from the samples doped with Ti-isopropoxide and MWCNT. This can be due to the fact that the formations of LixAl(1-x)B2 and LiH-Al containing phase during dehydrogenation favor decomposition of LiH, leading to increment of hydrogen capacity, and stabilization of boron in solid state, resulting in improvement of reversibility. Besides, the curvatures and thermal conductivity of MWCNT benefit hydrogen diffusion and heat transfer during de/rehydrogenation. Nevertheless, deficient hydrogen content reversible is observed in all samples due to the irreversible of LiAlH4 and/or Li3AlH6 as well as the formation of stable phase (Li2B12H12) during de/rehydrogenation.

  5. Absorbing a Little Water: The Structural, Thermodynamic, and Kinetic Relationship between Pyrogallol and Its Tetarto-Hydrate

    PubMed Central

    2013-01-01

    The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at aw (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen. PMID:24027438

  6. Absorbing a Little Water: The Structural, Thermodynamic, and Kinetic Relationship between Pyrogallol and Its Tetarto-Hydrate.

    PubMed

    Braun, Doris E; Bhardwaj, Rajni M; Arlin, Jean-Baptiste; Florence, Alastair J; Kahlenberg, Volker; Griesser, Ulrich J; Tocher, Derek A; Price, Sarah L

    2013-09-04

    The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at a w (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen.

  7. The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Freitas, Rodrigo; Azevedo, Rodolfo; de Koning, Maurice

    2016-11-01

    The Uhlenbeck-Ford (UF) model was originally proposed for the theoretical study of imperfect gases, given that all its virial coefficients can be evaluated exactly, in principle. Here, in addition to computing the previously unknown coefficients B11 through B13, we assess its applicability as a reference system in fluid-phase free-energy calculations using molecular simulation techniques. Our results demonstrate that, although the UF model itself is too soft, appropriately scaled Uhlenbeck-Ford (sUF) models provide robust reference systems that allow accurate fluid-phase free-energy calculations without the need for an intermediate reference model. Indeed, in addition to the accuracy with which their free energies are known and their convenient scaling properties, the fluid is the only thermodynamically stable phase for a wide range of sUF models. This set of favorable properties may potentially put the sUF fluid-phase reference systems on par with the standard role that harmonic and Einstein solids play as reference systems for solid-phase free-energy calculations.

  8. Scenarios of stable Vapor→Liquid Droplet→Solid Nanowire growth

    NASA Astrophysics Data System (ADS)

    Nebol`sin, Valery A.; Dunaev, Alexander I.; Tatarenkov, Alexander F.; Shmakova, Svetlana S.

    2016-09-01

    In the process of Nanowire (NW) growth under the Vapor→Liquid Droplet→Solid (VLS) scheme, the stages that reach the boundary of the crystallization front (the triple phase line (TPL)) under the droplet of the catalyst are either absorbed by the TPL, or accumulate ahead of it. It has been shown that, in the first case, TPL can release stages, which leads to a decrease in supersaturation necessary for NW growth. An equation has been derived, which defines the change in free surface energy of the three-phase system in the absorption (release) of a stage, being a function of the contact angle of the droplet, and the ratio between the phase conjugation angles interface at equilibrium shift in the boundary line. A thermodynamic model has been developed and three possible scenarios for sustainable NW growth: Non-Wetting, Wetting and Fully Wetting have been considered in accordance with the processes occurring at the interface of three phases. The results obtained for each scenario were used to analyze the polytypism of GaAs and InAs NW, the radial periodic instability of Si NW and the formation of "negative" NW.

  9. Solubility behavior of lamivudine crystal forms in recrystallization solvents.

    PubMed

    Jozwiakowski, M J; Nguyen, N A; Sisco, J M; Spancake, C W

    1996-02-01

    Lamivudine can be obtained as acicular crystals (form I, 0.2 hydrate) from water or methanol and as bipyramidal crystals (form II, nonsolvated) from many nonaqueous solvents. Form II is thermodynamically favored in the solid state (higher melting point and greater density than form I) at ambient relative humidities. Solubility measurements on both forms versus solvent and temperature was used to determine whether entropy or enthalpy was the driving force for solubility. Solution calorimetry data indicated that form I is favored (less soluble) in all solvents studied on the basis of enthalpy alone. In higher alcohols and other organic solvents, form I has a larger entropy of solution than form II, which compensates for the enthalpic factors and results in physical stability for form II in these systems. The metastable crystal form solubility at 25 degrees C was estimated to be 1.2-2.3 times as high as the equilibrium solubility of the stable form, depending on the temperature, solvent, and crystal form. Binary solvent studies showed that > 18-20% water must be present in ethanol to convert the excess solid to form I at equilibrium.

  10. A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.

    2002-01-01

    The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.

  11. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

    NASA Astrophysics Data System (ADS)

    Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).

  12. Thermodynamic curvature for attractive and repulsive intermolecular forces

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  13. Half-Heusler Alloys as Promising Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Page, Alexander A.

    This thesis describes Ph.D. research on the half-Heusler class of thermoelectric materials. Half-Heusler alloys are a versatile class of materials that have been studied for use in photovoltaics, phase change memory, and thermoelectric power generation. With respect to thermoelectric power generation, new approaches were recently developed in order to improve the thermoelectric figure of merit, ZT, of half-Heusler alloys. Two of the strategies discussed in this work are adding excess Ni within MNiSn (M = Ti, Zr, or Hf) compounds to form full-Heusler nanostructures and using isoelectronic substitution of Ti, Zr, and Hf in MNiSn compounds to create microscale grain boundaries. This work uses computational simulations based on density functional theory, combined with the cluster expansion method, to predict the stable phases of pseudo-binary and pseudo-ternary composition systems. Statistical mechanics methods were used to calculate temperature-composition phase diagrams that relate the equilibrium phases. It is shown that full-Heusler nanostructures are predicted to remain stable even at high temperatures, and the microscale grain boundaries observed in (Ti,Zr,Hf)NiSn materials are found to be thermodynamically unstable at equilibrium. A new strategy of combining MNiSn materials with ZrNiPb has also recently emerged, and theoretical and experimental work show that a solid solution of the two materials is stable.

  14. Four new polymorphic forms of suplatast tosilate.

    PubMed

    Nagai, Keiko; Ushio, Takanori; Miura, Hidenori; Nakamura, Takashi; Moribe, Kunikazu; Yamamoto, Keiji

    2014-01-02

    We found four new polymorphic forms (γ-, ε-, ζ-, and η-forms) of suplatast tosilate (ST) by recrystallization and seeding with ST-analogous compounds; three polymorphic forms (α-, β-, and δ-forms) of ST have been previously reported. The physicochemical properties of these new forms were investigated using infrared (IR) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry. The presence of hydrogen bonds in the new forms was assessed from the IR and solid-state NMR spectra. The crystal structures of the ε- and η-forms were determined from their powder X-ray diffraction data using the direct space approach and the Monte Carlo method, followed by Rietveld refinement. The structures determined for the ε- and η-forms supported the presence of hydrogen bonds between the ST molecules, as the IR and solid-state NMR spectra indicated. The thermodynamic characteristics of the seven polymorphic forms were evaluated by determining the solubility of each form. The α-form was the most insoluble in 2-propanol at 35°C, and was thus concluded to be the most stable form. The ε-form was the most soluble, and a polymorphic transition from the ε- to the α-form was observed during solubility testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Petrogenetic grids for sapphirine-bearing granulites

    NASA Astrophysics Data System (ADS)

    Podlesskii, Konstantin K.

    2010-05-01

    Phase relations involving sapphirine, garnet, spinel, orthopyroxene, olivine, cordierite, alumina silicates, corundum, and quartz have been calculated in the system FeO-MgO-Al2O3-SiO2 based on internally consitent thermodynamic properties of both the end-member minerals and the solid solutions (Gerya et al., 2004; Podlesskii et al., 2008). The derived P-T diagrams imply stable invariant points and stability fields of key assemblages that differ from those proposed by other authors (Kelsey et al., 2004; Harley 2008). The sapphirine + quartz assemblage, which is widely recognized as indicative of ultrahigh-temperature metamorphism, can be stable down to 835° C and ~6 kbar. The sapphirine + kyanite assemblage has been found stable at temperatures below 860° C and 11.3 kbar, whereas the sapphirine + forsterite assemblage may be stable below 800° C only under specific conditions of a very low activity of water. The existing constraints on the thermodynamic properties of sapphirine are considered insufficient to make decisive conclusions about metamorphic conditions. Granulites containing the sapphirine + quartz assemblage have been investigated with the microprobe to apply both the conventional thermobarometry and thermometry based on Ti contents of quartz (TitaniQ, Wark & Watson, 2006). The results demonstrate that, in some cases, this assemblage might have formed at relatively low temperatures during retrograde stages of metamorphism. The research has been supported by the RFBR grant 09-05-00193. References Gerya,T.V., Perchuk,L.L., & Podlesskii,K.K. In: Zharikov,V.A. & Fed'kin,V.V. (eds.) Experimental Mineralogy: Some Results on the Century's Frontier. Moscow: Nauka, Vol. 2, 188-206 (2004). Harley,S.L. Refining the P-T records of UHT crustal metamorphism. Journal of Metamorphic Geology, 26, 125-154 (2008). Kelsey,D.E., White,R.W., Holland,T.J.B., & Powell,R. Journal of Metamorphic Geology, 22, 559-578 (2004). Podlesskii,K.K., Aranovich,L.Y., Gerya,T.V., & Kosyakova,N.A. Sapphirine-bearing assemblages in the system MgO-Al2O3-SiO2: A continuing ambiguity. European Journal of Mineralogy, 20, 721-734 (2008). Wark,D.A. & Watson,E.B. TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743-754 (2006).

  16. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Rényi statistics

    NASA Astrophysics Data System (ADS)

    Czinner, Viktor G.; Iguchi, Hideo

    2017-12-01

    Thermodynamics of rotating black holes described by the Rényi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Rényi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Rényi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence.

  17. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    NASA Astrophysics Data System (ADS)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  18. Effect of Electron Donor and Solution Chemistry on Products of Dissimilatory Reduction of Technetium by Shewanella putrefaciens

    PubMed Central

    Wildung, R. E.; Gorby, Y. A.; Krupka, K. M.; Hess, N. J.; Li, S. W.; Plymale, A. E.; McKinley, J. P.; Fredrickson, J. K.

    2000-01-01

    To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing 99Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O4−] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H2 served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0.85% NaCl and with extracellular particulates (0.2 to 0.001 μm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 μm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O4− in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of Eh and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products. PMID:10831424

  19. Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials

    NASA Astrophysics Data System (ADS)

    Missonnier, Marc; Heuzé, Olivier

    2006-07-01

    When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.

  20. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardham, Vikram Reddy; Leroy, Frédéric, E-mail: vandervegt@csi.tu-darmstadt.de, E-mail: f.leroy@theo.chemie.tu-darmstadt.de; Deichmann, Gregor

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion W{sub SL} calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of W{sub SL} that are larger thanmore » the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and W{sub SL} is elucidated through a detailed study of the energy and entropy components of W{sub SL}. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of W{sub SL}. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.« less

  1. The third law of thermodynamics and the fractional entropies

    NASA Astrophysics Data System (ADS)

    Baris Bagci, G.

    2016-08-01

    We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

  2. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    NASA Astrophysics Data System (ADS)

    Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2015-11-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.

  3. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    PubMed

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  4. Interfacial engineering of solution-processed Ni nanochain-SiO x (x< 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin

    Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less

  5. Interfacial engineering of solution-processed Ni nanochain-SiO x (x< 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE PAGES

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; ...

    2016-04-01

    Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less

  6. Standard Entropy of Crystalline Iodine from Vapor Pressure Measurements: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Harris, Ronald M.

    1978-01-01

    Presents material dealing with an application of statistical thermodynamics to the diatomic solid I-2(s). The objective is to enhance the student's appreciation of the power of the statistical formulation of thermodynamics. The Simple Einstein Model is used. (Author/MA)

  7. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes

    NASA Astrophysics Data System (ADS)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-08-01

    We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.

  8. An equilibrium ab initio atomistic thermodynamics study of chlorine adsorption on the Cu(001) surface.

    PubMed

    Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z

    2011-06-07

    The effect of chlorine (Cl) chemisorption on the energetics and atomic structure of the Cu(001) surface over a wide range of chlorine pressures and temperatures has been studied using equilibrium ab initio atomistic thermodynamics to elucidate the formation of cuprous chloride (CuCl) as part of the Deacon reaction on copper metal. The calculated surface free energies show that the 1/2 monolayer (ML) c(2 × 2)-Cl phase with chlorine atoms adsorbed at the hollow sites is the most stable structure for a wide range of Cl chemical potential, in agreement with experimental observations. It is also found that at very low pressure and exposure, but elevated temperature, the 1/9 ML and 1/4 ML phases become the most stable. By contrast, a high coverage of Cl does not lead to thermodynamically stable geometries. The subsurface adsorption of Cl atoms, however, dramatically increases the stability of the 1 ML and 2 ML adsorption configurations providing a possible pathway for the formation of the bulk-chloride surface phases in the kinetic regime.

  9. Method and apparatus for adapting steady flow with cyclic thermodynamics

    DOEpatents

    Swift, Gregory W.; Reid, Robert S.; Ward, William C.

    2000-01-01

    Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.

  10. Demonstration of Thermodynamics and Kinetics Using FriXion Erasable Pens

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Bosma, Wayne B.; Bannon, Stephen J.; Gunter, Molly M.; Hammar, Margaret K.

    2012-01-01

    FriXion erasable pens contain thermochromic inks that have colored low-temperature forms and colorless high-temperature forms. Liquid nitrogen can be used to kinetically trap the high-temperature forms of the ink at temperatures at which ordinarily the low-temperature forms are more thermodynamically stable. (Contains 2 figures.)

  11. The OpenCalphad thermodynamic software interface.

    PubMed

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2016-12-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into "lookup tables" to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility.

  12. The OpenCalphad thermodynamic software interface

    PubMed Central

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  13. Recovery Act: An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saar, Martin O.; Seyfried, Jr., William E.; Longmire, Ellen K.

    2016-06-24

    A total of 12 publications and 23 abstracts were produced as a result of this study. In particular, the compilation of a thermodynamic database utilizing consistent, current thermodynamic data is a major step toward accurately modeling multi-phase fluid interactions with solids. Existing databases designed for aqueous fluids did not mesh well with existing solid phase databases. Addition of a second liquid phase (CO2) magnifies the inconsistencies between aqueous and solid thermodynamic databases. Overall, the combination of high temperature and pressure lab studies (task 1), using a purpose built apparatus, and solid characterization (task 2), using XRCT and more developed technologies,more » allowed observation of dissolution and precipitation processes under CO2 reservoir conditions. These observations were combined with results from PIV experiments on multi-phase fluids (task 3) in typical flow path geometries. The results of the tasks 1, 2, and 3 were compiled and integrated into numerical models utilizing Lattice-Boltzmann simulations (task 4) to realistically model the physical processes and were ultimately folded into TOUGH2 code for reservoir scale modeling (task 5). Compilation of the thermodynamic database assisted comparisons to PIV experiments (Task 3) and greatly improved Lattice Boltzmann (Task 4) and TOUGH2 simulations (Task 5). PIV (Task 3) and experimental apparatus (Task 1) have identified problem areas in TOUGHREACT code. Additional lab experiments and coding work has been integrated into an improved numerical modeling code.« less

  14. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    PubMed

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  15. Thermodynamic analysis of solid-fuel mixtures glycidyl azide polymer (GAP)/RDX for miniengines of microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Fut'ko, S. I.; Ermolaeva, E. M.; Dobrego, K. V.; Bondarenko, V. P.; Dolgii, L. N.

    2011-09-01

    On the basis of thermodynamic calculations we show that solid-fuel mixtures glycidyl azide polymer/RDX are promising for use in miniengines made on the basis of technologies of microelectromechanical systems of semiconductor microelectronics. It has been shown that small (up to 20 mass percent) additives of RDX to the glycidyl azide polymer markedly increase the values of the theoretical specific impulse and the thermal efficiency of the engine and decrease the quantity of undesirable solid carbon formed in combustion products of the mixed fuel. In so doing, these mixtures provide fairly low combustion temperatures not exceeding the thermostability limit of crystal silicon from which the miniengine case is made. The physicochemical factors influencing the value of the theoretical specific impulse of the mixed solid-fuel charge have been elucidated, and methods for its maximization have been proposed.

  16. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  17. Statistical Thermodynamics and Microscale Thermophysics

    NASA Astrophysics Data System (ADS)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  18. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries

    DOE PAGES

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2015-12-11

    All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Chandan K.; Singh, Jayant K., E-mail: jayantks@iitk.ac.in

    The solid-liquid coexistence of a Lennard-Jones fluid confined in slit pores of variable pore size, H, is studied using molecular dynamics simulations. Three-stage pseudo-supercritical transformation path of Grochola [J. Chem. Phys. 120(5), 2122 (2004)] and multiple histogram reweighting are employed for the confined system, for various pore sizes ranging from 20 to 5 molecular diameters, to compute the solid-liquid coexistence. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid-liquid phases under confinement via one or more intermediate states without any first order phase transition among them. Thermodynamic melting temperature is found to oscillate with wallmore » separation, which is in agreement with the behavior seen for kinetic melting temperature evaluated in an earlier study. However, thermodynamic melting temperature for almost all wall separations is higher than the bulk case, which is contrary to the behavior seen for the kinetic melting temperature. The oscillation founds to decay at around H = 12, and beyond that pore size dependency of the shift in melting point is well represented by the Gibbs-Thompson equation.« less

  20. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less

  1. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  2. Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands.

    PubMed

    Kaeser, Adrien; Mohankumar, Meera; Mohanraj, John; Monti, Filippo; Holler, Michel; Cid, Juan-José; Moudam, Omar; Nierengarten, Iwona; Karmazin-Brelot, Lydia; Duhayon, Carine; Delavaux-Nicot, Béatrice; Armaroli, Nicola; Nierengarten, Jean-François

    2013-10-21

    Preparation of [Cu(NN)(PP)](+) derivatives has been systematically investigated starting from two libraries of phenanthroline (NN) derivatives and bis-phosphine (PP) ligands, namely, (A) 1,10-phenanthroline (phen), neocuproine (2,9-dimethyl-1,10-phenanthroline, dmp), bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, Bphen), 2,9-diphenethyl-1,10-phenanthroline (dpep), and 2,9-diphenyl-1,10-phenanthroline (dpp); (B) bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppFc), and bis[(2-diphenylphosphino)phenyl] ether (POP). Whatever the bis-phosphine ligand, stable heteroleptic [Cu(NN)(PP)](+) complexes are obtained from the 2,9-unsubstituted-1,10-phenanthroline ligands (phen and Bphen). By contrast, heteroleptic complexes obtained from dmp and dpep are stable in the solid state, but a dynamic ligand exchange reaction is systematically observed in solution, and the homoleptic/heteroleptic ratio is highly dependent on the bis-phosphine ligand. Detailed analysis revealed that the dynamic equilibrium resulting from ligand exchange reactions is mainly influenced by the relative thermodynamic stability of the different possible complexes. Finally, in the case of dpp, only homoleptic complexes were obtained whatever the bis-phosphine ligand. Obviously, steric effects resulting from the presence of the bulky phenyl rings on the dpp ligand destabilize the heteroleptic [Cu(NN)(PP)](+) complexes. In addition to the remarkable thermodynamic stability of [Cu(dpp)2]BF4, this negative steric effect drives the dynamic complexation scenario toward almost exclusive formation of homoleptic [Cu(NN)2](+) and [Cu(PP)2](+) complexes. This work provides the definitive rationalization of the stability of [Cu(NN)(PP)](+) complexes, marking the way for future developments in this field.

  3. Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study.

    PubMed

    Heifets, Eugene; Kotomin, Eugene A; Bagaturyants, Alexander A; Maier, Joachim

    2017-02-01

    BiFeO 3 perovskite attracts great attention due to its multiferroic properties and potential use as a parent material for Bi 1-x Sr x FeO 3-δ and Bi 1-x Sr x Fe 1-y Co y O 3-δ solid solutions in intermediate temperature cathodes of oxide fuel cells. Another iron-based LaFeO 3 perovskite is the end member for well-known solid solutions (La 1-x Sr x Fe 1-y Co y O 3-δ ) used for oxide fuel cells and other electrochemical devices. In this study an ab initio hybrid functional approach was used for the study of the thermodynamic stability of both LaFeO 3 and BiFeO 3 with respect to decompositions to binary oxides and to elements, as a function of temperature and oxygen pressure. The localized (LCAO) basis sets describing the crystalline electron wave functions were carefully re-optimized within the CRYSTAL09 computer code. The results obtained by considering Fe as an all-electron atom and within the effective core potential technique are compared in detail. Based on our calculations, the phase diagrams were constructed allowing us to predict the stability region of stoichiometric materials in terms of atomic chemical potentials. This permits determining the environmental conditions for the existence of stable BiFeO 3 and LaFeO 3 . These conditions were presented as contour maps of oxygen atoms' chemical potential as a function of temperature and partial pressure of oxygen gas. A similar analysis was also performed using the experimental Gibbs energies of formation. The obtained phase diagrams and contour maps are compared with the calculated ones.

  4. The major volume /density/ of solid oxygen in equilibrium with vapor

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1979-01-01

    Data from the literature on the molar volume of solid oxygen have been compiled and critically analyzed. A correlated and thermodynamically consistent set of molar volumes, including the volume changes at the various solid phase transitions, is presented. Evidence for the existence of a delta-solid phase is reviewed. Uncertainties in the data and in the recommended set of values are discussed.

  5. Thermodynamic Modeling of the YO(l.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2003-01-01

    The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.

  6. Phase Behavior Modeling of Asphaltene Precipitation for Heavy Crudes: A Promising Tool Along with Experimental Data

    NASA Astrophysics Data System (ADS)

    Tavakkoli, M.; Kharrat, R.; Masihi, M.; Ghazanfari, M. H.; Fadaei, S.

    2012-12-01

    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an increase in the temperature results in a lower amount of asphaltene precipitation and also it causes the convergence of lower and upper boundaries of the asphaltene phase envelope. This work illustrates successful application of a non-isothermal improved solid model for developing the asphaltene phase envelope of heavy crude which can be helpful for monitoring and controlling of asphaltene precipitation through the wellbore and surface facilities during heavy oil production.

  7. Thermodynamics of concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Zhang, C.; Gao, P.

    This study reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation drivingmore » force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed.« less

  8. Thermodynamics of concentrated solid solution alloys

    DOE PAGES

    Gao, Michael C.; Zhang, C.; Gao, P.; ...

    2017-10-12

    This study reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation drivingmore » force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed.« less

  9. Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO 4 over Multiple Lithium Intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuh-Chieh; Wen, Bohua; Wiaderek, Kamila M.

    In this work, we demonstrate the stable cycling of more than one Li in solid-state-synthesized ε-LiVOPO4 over more than 20 cycles for the first time. Using a combination of density functional theory (DFT) calculations, X-ray pair distribution function (PDF) analysis and X-ray absorption near edge structure (XANES) measurements, we present a comprehensive analysis of the thermodynamics, kinetics, and structural evolution of ε-LixVOPO4 over the entire lithiation range. We identify two intermediate phases at x = 1.5 and 1.75 in the low-voltage regime using DFT calculations, and the computed and electrochemical voltage profiles are in excellent agreement. Operando PDF and EXAFSmore » techniques show a reversible hysteretic change in the short (<2 Å) V—O bond lengths coupled with an irreversible extension of the long V—O bond (>2.4 Å) during low-voltage cycling. Hydrogen intercalation from electrolyte decomposition is a possible explanation for the ~2.4 Å V—O bond and its irreversible extension. Finally, we show that ε-LixVOPO4 is likely a pseudo-1D ionic diffuser with low electronic conductivity using DFT calculations, which suggests that nanosizing and carbon coating is necessary to achieve good electrochemical performance in this material.« less

  10. Thermodynamic consideration and ground-state search of icosahedral boron subselenide B12(B1-xSex) 2 from a first-principles cluster expansion

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.

    2018-05-01

    The phase stability of icosahedral boron subselenide B12(B1-xSex) 2 , where 0.5 ≤x ≤1 , is explored using a first-principles cluster expansion. The results shows that, instead of a continuous solid solution, B12(B1-xSex) 2 is thermodynamically stable as an individual line compound at the composition of B9.5Se . The ground-state configuration of B9.5Se is represented by a mixture of B12(Se-Se), B12(B-Se), and B12(Se-B) with a ratio of 1:1:1, where they form a periodic A B C A B C ⋯ stacking sequence of B12(Se-Se), B12(B-Se), and B12(Se-B) layers along the c axis of the hexagonal conventional unit cell. The structural and electronic properties of the ground-state B9.5Se are also derived and discussed. By comparing the derived ground-state properties of B9.5Se to the existing experimental data of boron subselenide B˜13Se , I proposed that the as-synthesized boron subselenide B˜13Se , as reported in the literature, has the actual composition of B9.5Se .

  11. Thermodynamic Stability of Transition Metal Substituted LiMn 2-xMxO 4 (M=Cr, Fe, Co, and Ni) Spinels

    NASA Astrophysics Data System (ADS)

    Lai, Chenying

    The formation enthalpies from binary oxides of LiMn2O 4, LiMn2-xCrxO4 (x = 0.25, 0.5, 0.75 and 1), LiMn2-xFexO4 (x = 0.25 and 0.5), LiMn2-xCoxO4 (x = 0.25, 0.5, and 0.75) and LiMn1.75Ni 0.25O4 at 25 °C have been measured by high-temperature oxide-melt-solution calorimetry and were found to be strongly exothermic. Increasing Cr, Co and Ni content leads to more thermodynamically stable spinels, but increasing Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO 4 (M = Cr, Fe and Co) become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2O4 - LiMnMO 4 solid solutions. These data confirm that transition metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  12. Why don't we find more polymorphs?

    PubMed

    Price, Sarah L

    2013-08-01

    Crystal structure prediction (CSP) studies are not limited to being a search for the most thermodynamically stable crystal structure, but play a valuable role in understanding polymorphism, as shown by interdisciplinary studies where the crystal energy landscape has been explored experimentally and computationally. CSP usually produces more thermodynamically plausible crystal structures than known polymorphs. This article illustrates some reasons why: because (i) of approximations in the calculations, particularly the neglect of thermal effects (see §1.1); (ii) of the molecular rearrangement during nucleation and growth (see §1.2); (iii) the solid-state structures observed show dynamic or static disorder, stacking faults, other defects or are not crystalline and so represent more than one calculated structure (see §1.3); (iv) the structures are metastable relative to other molecular compositions (see §1.4); (v) the right crystallization experiment has not yet been performed (see §1.5) or (vi) cannot be performed (see §1.6) and the possibility (vii) that the polymorphs are not detected or structurally characterized (see §1.7). Thus, we can only aspire to a general predictive theory for polymorphism, as this appears to require a quantitative understanding of the kinetic factors involved in all possible multi-component crystallizations. For a specific molecule, analysis of the crystal energy landscape shows the potential complexity of its crystallization behaviour.

  13. Understanding the true shape of Au-catalyzed GaAs nanowires.

    PubMed

    Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-10-08

    With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.

  14. Thermodynamic properties of asymptotically Reissner–Nordström black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendi, S.H., E-mail: hendi@shirazu.ac.ir

    2014-07-15

    Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariantmore » metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.« less

  15. First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Alling, B.

    2017-07-01

    We examine the thermodynamic stability of compounds and alloys in the ternary B-As-P system theoretically using first-principles calculations. We demonstrate that the icosahedral B12As2 is the only stable compound in the binary B-As system, while the zinc-blende BAs is thermodynamically unstable with respect to B12As2 and the pure arsenic phase at 0 K, and increasingly so at higher temperature, suggesting that BAs may merely exist as a metastable phase. On the contrary, in the binary B-P system, both zinc-blende BP and icosahedral B12P2 are predicted to be stable. As for the binary As-P system, As1 -xPx disordered alloys are predicted at elevated temperature—for example, a disordered solid solution of up to ˜75 at.% As in black phosphorus as well as a small solubility of ˜1 at.% P in gray arsenic at T =750 K, together with the presence of miscibility gaps. The calculated large solubility of As in black phosphorus explains the experimental syntheses of black-phosphorus-type As1 -xPx alloys with tunable compositions, recently reported in the literature. We investigate the phase stabilities in the ternary B-As-P system and demonstrate a high tendency for a formation of alloys in the icosahedral B12(As1 -xPx )2 structure by intermixing of As and P atoms at the diatomic chain sites. The phase diagram displays noticeable mutual solubility of the icosahedral subpnictides in each other even at room temperature as well as a closure of a pseudobinary miscibility gap around 900 K. As for pseudobinary BAs1 -xPx alloys, only a tiny amount of BAs is predicted to be able to dissolve in BP to form the BAs1 -xPx disordered alloys at elevated temperature. For example, less than 5% of BAs can dissolve in BP at T =1000 K. The small solubility limit of BAs in BP is attributed to the thermodynamic instability of BAs with respect to B12As2 and As.

  16. The Deep Crust Magmatic Refinery, Part 1: A Coupled Thermodynamic and Two-phase Flow Model

    NASA Astrophysics Data System (ADS)

    Riel, N., Jr.; Bouilhol, P.; Van Hunen, J.; Velic, M.; Magni, V.

    2016-12-01

    Metamorphic and magmatic processes occurring in the deep crust ultimately control the chemical and physical characteristic of the continental crust. A complex interplay between magma intrusion, crystallization, and reaction with the pre-existing crust provide a wide range of differentiated magma and cumulates (and / or restites) that will feed the upper crustal levels with evolved melt while constructing the lower crust. With growing evidence from field and experimental studies, it becomes clearer that crystallization and melting processes are non-exclusive but should be considered together. Incoming H2O bearing mantle melts will start to fractionate to a certain extent, forming cumulates but also releasing heat and H2O to the intruded host-rock allowing it to melt in saturated conditions. The end-result of such dynamic system is a function of the amount and composition of melt input, and extent of reaction with the host which is itself dependent on the migration mode of the melts. To assess the dynamics of this deep magmatic system we developed a new 2-D two-phase flow code using finite volume method. Our formulation takes into account: (i) melt flow through a viscous porous matrix with temperature- and melt-content dependent host-rock viscosity, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases, (iv) injection of fractionated melt from crystallizing basalt at the Moho and (v) chemical advection of both the solid and liquid compositions. Here we present the core of our modelling approach, especially the petrological implementation. We show in details that our thermodynamic model can reproduce well both the sub- and supra solidus phase relationship and composition of the host-rock. We apply our method to an idealized amphibolite lower crust that is affected by a magmatic event represented by the intrusion of a wet mantle melt into the crust at Moho depth. The models [see Bouilhol et al. associated abstract for results] allow calculating the different proportion of phases present in the system through time.

  17. On the statistical distribution in a deformed solid

    NASA Astrophysics Data System (ADS)

    Gorobei, N. N.; Luk'yanenko, A. S.

    2017-09-01

    A modification of the Gibbs distribution in a thermally insulated mechanically deformed solid, where its linear dimensions (shape parameters) are excluded from statistical averaging and included among the macroscopic parameters of state alongside with the temperature, is proposed. Formally, this modification is reduced to corresponding additional conditions when calculating the statistical sum. The shape parameters and the temperature themselves are found from the conditions of mechanical and thermal equilibria of a body, and their change is determined using the first law of thermodynamics. Known thermodynamic phenomena are analyzed for the simple model of a solid, i.e., an ensemble of anharmonic oscillators, within the proposed formalism with an accuracy of up to the first order by the anharmonicity constant. The distribution modification is considered for the classic and quantum temperature regions apart.

  18. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  19. Coherent thermodynamic model for solid, liquid and gas phases of elements and simple compounds in wide ranges of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Holzapfel, Wilfried B.

    2018-06-01

    Thermodynamic modeling of fluids (liquids and gases) uses mostly series expansions which diverge at low temperatures and do not fit to the behavior of metastable quenched fluids (amorphous, glass like solids). These divergences are removed in the present approach by the use of reasonable forms for the "cold" potential energy and for the thermal pressure of the fluid system. Both terms are related to the potential energy and to the thermal pressure of the crystalline phase in a coherent way, which leads to simpler and non diverging series expansions for the thermal pressure and thermal energy of the fluid system. Data for solid and fluid argon are used to illustrate the potential of the present approach.

  20. A second look at the second law

    NASA Astrophysics Data System (ADS)

    Bejan, Adrian

    1988-05-01

    An account is given of Bejan's (1988) reformulation of the axioms of engineering thermodynamics in terms of heat transfer, rather than mechanics. Attention is given to graphic constructions that can be used to illustrate the properties in question, such as the 'stability star' diagram summarizing various extrema reached by certain thermodynamic properties when a closed system settles into stable (unconstrained) equilibrium. Also noted are the exergy analysis and refrigeration applications to which the present reformulation of the second law of thermodynamics can be put.

  1. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.

    PubMed

    Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf

    2013-02-07

    Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated.

  2. Thermodynamics of Capillary Rise: Why Is the Meniscus Curved?

    ERIC Educational Resources Information Center

    Henriksson, Ulf; Eriksson, Jan Christer

    2004-01-01

    The thermodynamics of capillary rise is explained as the gravitational elevation of the whole column of liquid caused by the positive connection between the liquid, and the solid wall of the capillary tube. The curvature of the meniscus is ascribed to the maintenance of a physiochemical balance throughout the gravitational column of liquid.

  3. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  4. From in silica to in silico: retention thermodynamics at solid-liquid interfaces.

    PubMed

    El Hage, Krystel; Bemish, Raymond J; Meuwly, Markus

    2018-06-28

    The dynamics of solvated molecules at the solid/liquid interface is essential for a molecular-level understanding for the solution thermodynamics in reversed phase liquid chromatography (RPLC). The heterogeneous nature of the systems and the competing intermolecular interactions makes solute retention in RPLC a surprisingly challenging problem which benefits greatly from modelling at atomistic resolution. However, the quality of the underlying computational model needs to be sufficiently accurate to provide a realistic description of the energetics and dynamics of systems, especially for solution-phase simulations. Here, the retention thermodynamics and the retention mechanism of a range of benzene-derivatives in C18 stationary-phase chains in contact with water/methanol mixtures is studied using point charge (PC) and multipole (MTP) electrostatic models. The results demonstrate that free energy simulations with a faithful MTP representation of the computational model provide quantitative and molecular level insight into the thermodynamics of adsorption/desorption in chromatographic systems while a conventional PC representation fails in doing so. This provides a rational basis to develop more quantitative and validated models for the optimization of separation systems.

  5. Thermodynamic assessment of the Sn-Co lead-free solder system

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  6. On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.

    PubMed

    Tóth, József

    2003-06-01

    It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.

  7. A thermodynamic approach to obtain materials properties for engineering applications

    NASA Technical Reports Server (NTRS)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  8. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    NASA Astrophysics Data System (ADS)

    Collell, Julien; Galliero, Guillaume

    2014-05-01

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.

  9. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr

    2014-05-21

    The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less

  10. Computational discovery of stable M2A X phases

    NASA Astrophysics Data System (ADS)

    Ashton, Michael; Hennig, Richard G.; Broderick, Scott R.; Rajan, Krishna; Sinnott, Susan B.

    2016-08-01

    The family of layered Mn +1A Xn compounds provides a large class of materials with applications ranging from magnets to high-temperature coatings to nuclear cladding. In this work, we employ a density-functional-theory-based discovery approach to identify a large number of thermodynamically stable Mn +1A Xn compounds, where n =1 , M =Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta; A =Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, Pb; and X =C, N. We calculate the formation energy for 216 pure M2A X compounds and 10 314 solid solutions, (MM') 2(A A') (X X') , relative to their competing phases. We find that the 49 experimentally known M2A X phases exhibit formation energies of less than 30 meV/atom. Among the 10 530 compositions considered, 3140 exhibit formation energies below 30 meV/atom, most of which have yet to be experimentally synthesized. A significant subset of 301 compositions exhibits strong exothermic stability in excess of 100 meV/atom, indicating favorable synthesis conditions. We identify empirical design rules for stable M2A X compounds. Among the metastable M2A X compounds are two Cr-based compounds with ferromagnetic ordering and expected Curie temperatures around 75 K. These results can serve as a map for the experimental design and synthesis of different M2A X compounds.

  11. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    PubMed

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in <5 min at 180 °C, superior reversibility, and excellent long-term cycling stability over ∼435 h. The significant reduction of the enthalpy and activation energy observed in the MHCH-5 demonstrated enhancement of the kinetics of de-/hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  12. The thermal stability of the nanograin structure in a weak solute segregation system.

    PubMed

    Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren

    2017-02-08

    A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.

  13. Ground state structure of high-energy-density polymeric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.

    2017-04-01

    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.

  14. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo

    2018-01-01

    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  15. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  16. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  17. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    PubMed

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction

    NASA Astrophysics Data System (ADS)

    Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.

    2018-01-01

    Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.

  19. Pressure-stabilized binary compounds of magnesium and silicon

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan

    2018-02-01

    The family of binary compounds composed of magnesium and silicon is rather rich. In addition to the well-known magnesium silicide Mg2Si , other compounds, including MgSi2, Mg4Si7 , Mg5Si6 , MgSi, and Mg9Si5 , have also been identified and/or proposed in precipitated Al-Mg-Si solid solutions. Nevertheless, computational studies show that only Mg2Si is thermodynamically stable at ambient conditions while certain nonzero hydrostatic pressure can stabilize Mg9Si5 so that it can coexist with Mg2Si . We conduct a comprehensive search for viable binary compounds of MgxSi1 -x (1 /3 ≤x ≤2 /3 ) , discovering numerous low-energy structures for all the compounds. On one hand, we find that MgSi2, MgSi, and Mg9Si5 are likely pressure-stabilized materials, while, on the other hand, supporting previous studies, we raise doubt on the existence of Mg5Si6 , and claim that the existence of Mg4Si7 remains an open question. Therefore, we recommend that (hydrostatic and/or nonhydrostatic) pressure should be explicitly considered when discussing the stability of these solids (and maybe other solids as well) by computations. We also find that MgSi2 can potentially exhibit superconducting behaviors within a wide range of pressure with the critical temperature of up to 7 K.

  20. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less

  1. Realization of Quantum Maxwell’s Demon with Solid-State Spins*

    NASA Astrophysics Data System (ADS)

    Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M.

    2018-04-01

    Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.

  2. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    NASA Astrophysics Data System (ADS)

    Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.

    2013-11-01

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  3. Interfacial engineering of solution-processed Ni nanochain-SiO{sub x} (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO{sub x} cermet system compared to conventional Ni-Al{sub 2}O{sub 3} system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, wemore » demonstrate that pre-operation annealing of Ni nanochain-SiO{sub x} cermets at 900 °C in N{sub 2} forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO{sub x} interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N{sub 2} (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO{sub x} interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO{sub x} saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO{sub x} system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO{sub x} cermet absorbers via interfacial engineering.« less

  4. Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films

    PubMed Central

    Xu, Chencheng; Du, Hongchu; van der Torren, Alexander J. H.; Aarts, Jan; Jia, Chun-Lin; Dittmann, Regina

    2016-01-01

    We elucidated the formation process for Ruddlesden-Popper-type defects during pulsed laser deposition of Sr rich SrTiO3 thin films by a combined analysis of in-situ atomic force microscopy, low energy electron diffraction and high resolution scanning transmission electron microscopy. At the early growth stage of 1.5 unit cells, the excess Sr results in the formation of SrO on the surface, resulting in a local termination change from TiO2 to SrO, thereby forming a Sr rich (2 × 2) surface reconstruction. With progressive SrTiO3 growth, islands with thermodynamically stable SrO rock-salt structure are formed, coexisting with TiO2 terminated islands. During the overgrowth of these thermodynamically stable islands, both lateral as well as vertical Ruddlesden-Popper-type anti-phase boundaries are formed, accommodating the Sr excess of the SrTiO3 film. We suggest the formation of thermodynamically stable SrO rock-salt structures as origin for the formation of Ruddlesden-Popper-type antiphase boundaries, which are as a result of kinetic limitations confined to certain regions on the surface. PMID:27922069

  5. Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Xu, Chencheng; Du, Hongchu; van der Torren, Alexander J. H.; Aarts, Jan; Jia, Chun-Lin; Dittmann, Regina

    2016-12-01

    We elucidated the formation process for Ruddlesden-Popper-type defects during pulsed laser deposition of Sr rich SrTiO3 thin films by a combined analysis of in-situ atomic force microscopy, low energy electron diffraction and high resolution scanning transmission electron microscopy. At the early growth stage of 1.5 unit cells, the excess Sr results in the formation of SrO on the surface, resulting in a local termination change from TiO2 to SrO, thereby forming a Sr rich (2 × 2) surface reconstruction. With progressive SrTiO3 growth, islands with thermodynamically stable SrO rock-salt structure are formed, coexisting with TiO2 terminated islands. During the overgrowth of these thermodynamically stable islands, both lateral as well as vertical Ruddlesden-Popper-type anti-phase boundaries are formed, accommodating the Sr excess of the SrTiO3 film. We suggest the formation of thermodynamically stable SrO rock-salt structures as origin for the formation of Ruddlesden-Popper-type antiphase boundaries, which are as a result of kinetic limitations confined to certain regions on the surface.

  6. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua

    2018-05-01

    The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.

  7. The topological pressure-temperature phase diagram of ritonavir, an extraordinary case of crystalline dimorphism.

    PubMed

    Céolin, R; Rietveld, I B

    2015-01-01

    A topological pressure-temperature phase diagram involving the phase relationships of ritonavir forms I and II has been constructed using experimental calorimetric and volumetric data available from the literature. The triple point I-II-liquid is located at a temperature of about 407 K and a pressure as extraordinarily small as 17.5 MPa (175 bar). Thus, the less soluble solid phase (form II) will become metastable on increasing pressure. At room temperature, form I becomes stable around 100 MPa indicating that form II may turn into form I at a relatively low pressure of 1000 bar, which may occur under processing conditions such as mixing or grinding. This case is a good example for which a proper thermodynamic evaluation trumps "rules of thumb" such as the density rule. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Raman studies of methane-ethane hydrate metastability.

    PubMed

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  9. Kinetically and thermodynamically stable isomers of thorium chelates of polyaza polycarboxylic macrocycles

    NASA Astrophysics Data System (ADS)

    Jacques, Vincent; Desreux, Jean F.

    1994-10-01

    The solution conformation of the thorium(IV) complexes of two polyaza polycarboxylic macrocycles, DOTA and HEHA (1,4,7,10-tetraazacyclododecane-N, N', N(double prime), N(triple prime)-tetraacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N, N', N(double prime), N(triple prime), N(double prime)(double prime), N(double prime)(triple prime)-hexaacetic acid), was investigated by one- and two-dimensional nuclear magnetic resonance spectroscopy. ThHEHA(2+) forms a kinetically stable topomer of C2 symmetry and a thermodynamically stable topomer of S6 symmetry. Both complexes are assigned an icosahedral geometry. The activation energy for the intermolecular exchange is very high (214 kJ/mol). The behavior of ThHEHA(2+) contrasts with the properties of the other Th(IV) chelates that are known to be fluxional.

  10. ThermoBuild: Online Method Made Available for Accessing NASA Glenn Thermodynamic Data

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie; Zehe, Michael J.

    2004-01-01

    The new Web site program "ThermoBuild" allows users to easily access and use the NASA Glenn Thermodynamic Database of over 2000 solid, liquid, and gaseous species. A convenient periodic table allows users to "build" the molecules of interest and designate the temperature range over which thermodynamic functions are to be displayed. ThermoBuild also allows users to build custom databases for use with NASA's Chemical Equilibrium with Applications (CEA) program or other programs that require the NASA format for thermodynamic properties. The NASA Glenn Research Center has long been a leader in the compilation and dissemination of up-to-date thermodynamic data, primarily for use with the NASA CEA program, but increasingly for use with other computer programs.

  11. A route to possible civil engineering materials: the case of high-pressure phases of lime

    NASA Astrophysics Data System (ADS)

    Bouibes, A.; Zaoui, A.

    2015-07-01

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  12. A route to possible civil engineering materials: the case of high-pressure phases of lime.

    PubMed

    Bouibes, A; Zaoui, A

    2015-07-23

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  13. Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cui, Senlin; Rao, Weifeng

    2018-07-01

    A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.

  14. Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cui, Senlin; Rao, Weifeng

    2018-05-01

    A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.

  15. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  16. Neutrophilic inflammation is associated with altered airway hydration in stable asthmatics.

    PubMed

    Loughlin, Ceila E; Esther, Charles R; Lazarowski, Eduardo R; Alexis, Neil E; Peden, David B

    2010-01-01

    Airway dehydration is a potential trigger of bronchoconstriction in exercise-induced asthma; however, its role in stable asthma has not been explored. Using sputum percent solids, as an indicator of airway hydration, we sought relationships between airway hydration and other known markers of neutrophilic (TH1) and allergic (TH2) inflammation in stable asthma. Thirty-seven atopic subjects with stable asthma and 15 healthy controls underwent sputum induction. Sputum was analyzed for percent solids, cell counts, cellular and biochemical markers of inflammation and purines. Sputum percent solids was significantly elevated in stable asthmatics vs. controls and positively correlated with markers of neutrophilic/TH1-type inflammation (neutrophils, IL-8 and AMP). Sputum percent solids were not correlated with markers of allergic/TH2-type inflammation. These data suggest a direct relationship between neutrophil inflammation and airway hydration in stable asthmatics. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Spin Crossover in Solid and Liquid (Mg,Fe)O at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Holmstrom, E.

    2016-12-01

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lowermantle (24-136 GPa). Understanding the properties of this component is importantnot only in the solid state, but also in the molten state, as theplanet almost certainly hosted an extensive magma ocean initiallyWith increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties.Using first-principles molecular dynamics simulations,thermodynamic integration, and adiabatic switching, we present a phasediagram of the spin crossover In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasingtemperature favors the high spin state, while in the liquid the oppositeoccurs, due to the higher electronic entropy of the low spin state. Becausethe physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth.

  18. Thermodynamic Properties of CO{sub 2} Capture Reaction by Solid Sorbents: Theoretical Predictions and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua; Luebke, David; Pennline, Henry

    2012-01-01

    It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to anhydrous phase) temperature, which depends on the CO{sub 2} pressure and the steam pressure with the best range being PH{sub 2}O≤1.0 bar. Above the phase-transition temperature, the sorbent will be regenerated into anhydrous K{sub 2}CO{sub 3}. Our theoretical investigations on Na-promoted MgO sorbents revealed that the sorption process takes place through formation of the Na{sub 2}Mg(CO{sub 3}){sub 2} double carbonate with better reaction kinetics over porous MgO, that of pure MgO sorbent. The experimental sorption tests also indicated that the Na-promoted MgO sorbent has high reactivity and capacity towards CO{sub 2} sorption and can be easily regenerated either through pressure or temperature swing processes.« less

  19. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures.

    PubMed

    Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W

    2017-10-12

    Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

  20. Estimation of the Thermodynamic Efficiency of a Solid-State Cooler Based on the Multicaloric Effect

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Rodionov, V. V.; Amirov, A. A.; Starkov, I. A.

    2018-03-01

    The thermodynamic efficiency of using the multicaloric effect (μCE) in solid-state cooler systems has been studied in comparison to single-component caloric effects. This approach is illustrated by example of the Brayton cycle for μCE and magnetocaloric effect (MCE). Based on the results of experiments with Fe48Rh52-PbZr0.53Ti0.47O3 two-layer ferroic composite, the temperature dependence of the relative efficiency is determined and the temperature range is estimated in which the μCE is advantageous to MCE. The proposed theory of μCE is compared to experimental data.

  1. A Thermodynamic Theory of Solid Viscoelasticity. Part II:; Nonlinear Thermo-viscoelasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    This paper, second in the series of three papers, develops a general, nonlinear, non-isothermal, compressible theory for finite rubber viscoelasticity and specifies it in a form convenient for solving problems important to the rubber, tire, automobile, and air-space industries, among others. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory of differential type has been developed for arbitrary non-isothermal deformations of viscoelastic solids. In this theory, the constitutive equations were presented as the sum of a rubber elastic (equilibrium) and a liquid type viscoelastic (non-equilibrium) terms. These equations have then been simplified using several modeling and simplicity arguments.

  2. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    NASA Astrophysics Data System (ADS)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  3. Solitons in Crystalline Processes; Statistical thermodynamics of structural phase transitions and mesoscopic disorder

    NASA Astrophysics Data System (ADS)

    Fujimoto, Minoru

    2017-11-01

    Solitons in Crystalline Processes is an introduction to the statistical thermodynamics of phase transitions in crystallized solids. This book is written as an introductory treatise with respect to the soliton concept, from structural transitions where the crystal symmetry changes, to magnets and superconductors, describing the role of nonlinear excitations in detail.

  4. Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system

    NASA Astrophysics Data System (ADS)

    Tetenbaum, M.; Maroni, V. A.

    1996-02-01

    A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.

  5. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE PAGES

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  6. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    NASA Astrophysics Data System (ADS)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  7. Single-crystal structure determination of hydrous minerals and insights into a wet deep lower mantle

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Yuan, H.; Meng, Y.; Popov, D.

    2017-12-01

    Water enters the Earth's interior through hydrated subducting slabs. How deep within the lower mantle (670-2900 km depth) can water be transported down and stored depends upon the availability of hydrous phases that is thermodynamically stable under the high P-T conditions and have a sufficiently high density to sink through the lower mantle. Phase H [MgSiH2O4] (1) and the δ-AlOOH (2) form solid solutions that are stable in the deep lower mantle (3), but the solid solution phase is 10% lighter than the corresponding lower mantle. Recent experimental discoveries of the pyrite (Py) structured FeO2 and FeOOH (4-6) suggest that these Fe-enriched phases can be transported to the deepest lower mantle owing to their high density. We have further discovered a very dense hydrous phase in (Fe,Al)OOH with a previously unknown hexagonal symmetry and this phase is stable relative to the Py-phase under extreme high P-T conditions in the deep lower mantle. Through in situ multigrain analysis (7) and single-crystal structure determination of the hydrous minerals at P-Tconditions of the deep lower mantle, we can obtain detailed structure information of the hydrous phases and therefore provide insights into the hydration mechanism in the deep lower mantle. These highly stable hydrous minerals extend the water cycle at least to the depth of 2900 km. 1. M. Nishi et al., Nature Geoscience 7, 224-227 (2014). 2. E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Geophysical Research Letters 28, 3991-3993 (2001). 3. I. Ohira et al., Earth and Planetary Science Letters 401, 12-17 (2014). 4. Q. Hu et al., Proceedings of the National Academy of Sciences of the United States of America 114, 1498-1501 (2017). 5. M. Nishi, Y. Kuwayama, J. Tsuchiya, T. Tsuchiya, Nature 547, 205-208 (2017). 6. Q. Hu et al., Nature 534, 241-244 (2016). 7. L. Zhang et al., American Mineralogist 101, 231-234 (2016).

  8. Final Report for Department of Energy Grant No. DE-FG02-02ER45997, "Alloy Design of Nanoscale Precipitation Strengthened Alloys: Design of a Heat Treatable Aluminum Alloy Useful to 400C"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris E. Fine; Gautam Ghosh; Dieter Isheim

    A creep resistant high temperature Al base alloy made by conventional processing procedures is the subject of this research. The Ni-based superalloys have volume fractions of cubic L1{sub 2} phase precipitates near 50%. This is not attainable with Al base alloys and the approach pursued in this research was to add L1{sub 2} structured precipitates to the Al-Ni eutectic alloy, 2.7 at. % Ni-97.3 at. % Al. The eutectic reaction gives platelets of Al{sub 3}Ni (DO{sub 11} structure) in an almost pure Al matrix. The Al{sub 3}Ni platelets give reinforcement strengthening while the L1{sub 2} precipitates strengthen the Al alloymore » matrix. Based on prior research and the extensive research reported here modified cubic L1{sub 2} Al{sub 3}Zr is a candidate. While cubic Al{sub 3}Zr is metastable, the stable phase is tetragonal, only cubic precipitates were observed after 1600 hrs at 425 C and they hardly coarsened at all with time at this temperature. Also addition of Ti retards the cubic to tetragonal transformation; however, a thermodynamically stable precipitate is desired. A very thorough ab initio computational investigation was done on the stability of L1{sub 2} phases of composition, (Al,X){sub 3}(Zr,Ti) and the possible occurrence of tie lines between a stable L1{sub 2} phase and the Al alloy terminal solid solution. Precipitation of cubic (Al{sub (1-x)}Zn{sub x}){sub 3}Zr in Al was predicted by these computations and subsequently observed by experiment (TEM). To test the combined reinforcement-precipitation concept to obtain a creep resistant Al alloy, Zr and Ti were added to the Al-Ni eutectic alloy. Cubic L1{sub 2} precipitates did form. The first and only Al-Ni-Zr-Ti alloy tested for creep gave a steady state creep rate at 375 C of 8 x 10{sup -9} under 20MPa stress. The goal is to optimize this alloy and add Zn to achieve a thermodynamically stable precipitate.« less

  9. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.

  10. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    PubMed Central

    Zhu, Min; Lu, Yanshan; Ouyang, Liuzhang; Wang, Hui

    2013-01-01

    Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys. PMID:28788353

  11. Calculating phase diagrams using PANDAT and panengine

    NASA Astrophysics Data System (ADS)

    Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.

    2003-12-01

    Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.

  12. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    PubMed

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <--> delta cycles, as predicted by theory; (f) beta <--> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta --> alpha and alpha --> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur.

  13. Thermodynamic integration based on classical atomistic simulations to determine the Gibbs energy of condensed phases: Calculation of the aluminum-zirconium system

    NASA Astrophysics Data System (ADS)

    Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.

    2012-12-01

    In this work, an in silico procedure to generate a fully coherent set of thermodynamic properties obtained from classical molecular dynamics (MD) and Monte Carlo (MC) simulations is proposed. The procedure is applied to the Al-Zr system because of its importance in the development of high strength Al-Li alloys and of bulk metallic glasses. Cohesive energies of the studied condensed phases of the Al-Zr system (the liquid phase, the fcc solid solution, and various orthorhombic stoichiometric compounds) are calculated using the modified embedded atom model (MEAM) in the second-nearest-neighbor formalism (2NN). The Al-Zr MEAM-2NN potential is parameterized in this work using ab initio and experimental data found in the literature for the AlZr3-L12 structure, while its predictive ability is confirmed for several other solid structures and for the liquid phase. The thermodynamic integration (TI) method is implemented in a general MC algorithm in order to evaluate the absolute Gibbs energy of the liquid and the fcc solutions. The entropy of mixing calculated from the TI method, combined to the enthalpy of mixing and the heat capacity data generated from MD/MC simulations performed in the isobaric-isothermal/canonical (NPT/NVT) ensembles are used to parameterize the Gibbs energy function of all the condensed phases in the Al-rich side of the Al-Zr system in a CALculation of PHAse Diagrams (CALPHAD) approach. The modified quasichemical model in the pair approximation (MQMPA) and the cluster variation method (CVM) in the tetrahedron approximation are used to define the Gibbs energy of the liquid and the fcc solid solution respectively for their entire range of composition. Thermodynamic and structural data generated from our MD/MC simulations are used as input data to parameterize these thermodynamic models. A detailed analysis of the validity and transferability of the Al-Zr MEAM-2NN potential is presented throughout our work by comparing the predicted properties obtained from this formalism with available ab initio and experimental data for both liquid and solid phases.

  14. Uniqueness of thermodynamic projector and kinetic basis of molecular individualism

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Iliya V.

    2004-05-01

    Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.

  15. Measuring the Thermodynamics of the Alloy/Scale Interface

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.

  16. Study on the intrinsic defects in tin oxide with first-principles method

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  17. Exploring ultrastability in nanostructured glassy polymer films by fast-scanning calorimetry.

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mithun; Wang, Yucheng; Jeong, Hyuncheol; Cangialosi, Daniele; Priestley, Rodney

    A decade ago ultra-stable small molecule glass formers were discovered. Since then a significant amount of research has been devoted to traverse down the energy landscape of such glass formers via physical vapor deposition (PVD). Matrix assisted pulsed laser evaporation (MAPLE) has the known ability to produce vapour deposited nanostructured polymer glass with exceptional kinetic stability. We explored the role of deposition temperature/ growth rate on thermodynamic and kinetic stabilities of poly (methyl methacrylate) (PMMA) films, deposited over a fast-scanning calorimetry sensor. We found in general any MAPLE deposited glass is kinetically more stable than bulk polymer and its spin-coated film. Moreover slow growth rate and optimum temperature during MAPLE deposition can additionally lead to thermodynamically stable (low-energy) glass. The role of interfaces formed through dramatic nanostructuring and packing of nanoglobules (removal of void space) may have additional role on such ultrastability. NSF-MRSEC through PCCM (Grant: DMR-1420541).

  18. Phase relations in the system Fe-Si determined in an internally-resistive heated DAC

    NASA Astrophysics Data System (ADS)

    Komabayashi, T.; Antonangeli, D.; Morard, G.; Sinmyo, R.; Mezouar, N.

    2015-12-01

    It is believed that the iron-rich Earth's core contains some amounts of light elements on the basis of the density deficit of 7 % compared to pure iron. The identification of the kinds and amounts of the light elements in the core places constraints on the origin, formation, and evolution of the Earth because dissolution of light elements into an iron-rich core should place important constraints on the thermodynamic conditions (pressure (P), temperature (T), and oxygen fugacity) of the equilibration between liquid silicate and liquid iron during the core formation. Among potential light elements, silicon has been attracting attentions because it is abundant in the mantle, partitioned into both solid and liquid irons, and very sensitive to the oxygen fugacity. An important phase relation in iron alloy is a transition between the face-centred cubic (FCC) structure and hexagonal close-packed (HCP) structure. This boundary is a key to infer the stable structure in the inner core and is used to derive thermodynamic properties of the phases (Komabayashi, 2014). In the Fe-Si system, previous reports were based on experiments in laser-heated diamond anvil cells (DAC), which might have included large termperature uncertainties. We have revisited this boundary in the system Fe-Si using an internally resistive-heated DAC combined with synchrotron X-ray diffraction at the beamline ID27, ESRF. The internally-heated DAC (Komabayashi et al., 2009; 2012) provides much more stable heating than the laser-heated DAC and much higher temperature than externally resistive-heated DAC, which enables us to place tight constraints on the P-T locations of the boundaries. Also because the minimum measurable temperature is as low as 1000 K due to the stable electric heating, the internal heating is able to examine the low temperature phase stability which was not studied by the previous studies. We will report the P-T locations of the boundaries and evaluate the effect of Si on the phase relation of Earth's core materials. References Komabayashi, J. Geophys. Res., 119, 2014; Komabayashi et al., Earth Planet. Sci. Lett. 282, 2009; Komabayashi et al., Phys. Chem. Mineral 39, 2012.

  19. MultiLayer solid electrolyte for lithium thin film batteries

    DOEpatents

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  20. Density functional theory study of defects in unalloyed δ-Pu

    DOE PAGES

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    2017-03-19

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  1. Density functional theory study of defects in unalloyed δ-Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, S. C.; Freibert, F. J.; Wills, J. M.

    Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less

  2. A phenomenological continuum model for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali

    2016-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  3. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  4. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism.

    PubMed

    Price, Sarah Sally L

    2009-01-20

    The phenomenon of polymorphism, the ability of a molecule to adopt more than one crystal structure, is a well-established property of crystalline solids. The possible variations in physical properties between polymorphs make the reliable reproduction of a crystalline form essential for all research using organic materials, as well as quality control in manufacture. Thus, the last two decades have seen both an increase in interest in polymorphism and the availability of the computer power needed to make the computational prediction of organic crystal structures a practical possibility. In the past decade, researchers have made considerable improvements in the theoretical basis for calculating the sets of structures that are within the energy range of possible polymorphism, called crystal energy landscapes. It is common to find that a molecule has a wide variety of ways of packing with lattice energy within a few kilojoules per mole of the most stable structure. However, as we develop methods to search for and characterize "all" solid forms, it is also now usual for polymorphs and solvates to be found. Thus, the computed crystal energy landscape reflects and to an increasing extent "predicts" the emerging complexity of the solid state observed for many organic molecules. This Account will discuss the ways in which the calculation of the crystal energy landscape of a molecule can be used as a complementary technique to solid form screening for polymorphs. Current methods can predict the known crystal structure, even under "blind test" conditions, but such successes are generally restricted to those structures that are the most stable over a wide range of thermodynamic conditions. The other low-energy structures can be alternative polymorphs, which have sometimes been found in later experimental studies. Examining the computed structures reveals the various compromises between close packing, hydrogen bonding, and pi-pi stacking that can result in energetically feasible structures. Indeed, we have observed that systems with many almost equi-energetic structures that contain a common interchangeable motif correlate with a tendency to disorder and problems with control of the crystallization product. Thus, contrasting the computed crystal energy landscape with the known crystal structures of a given molecule provides a valuable complement to solid form screening, and the examination of the low-energy structures often leads to a rationalization of the forms found.

  5. First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yildirim, Handan; Kinaci, Alper; Chan, Maria K. Y.

    The formation mechanism and composition of the solid electrolyte interphase (SEI) in lithium ion batteries has been widely explored. However, relatively little is known about the function of the SEI as a transport medium. Such critical information is directly relevant to battery rate performance, power loss, and capacity fading. To partially bridge this gap in the case of inorganic SEI compounds, we report herein the results of first-principles calculations on the defect thermodynamics, the dominant diffusion carriers, and the diffusion pathways associated with crystalline LiF and NaF, which are stable components of the SEI in Li-ion and Na-ion batteries, respectively.more » The thermodynamics of common point defects are computed, and the dominant diffusion carriers are determined over a voltage range of 0-4 V, corresponding to conditions relevant to both anode and cathode SEI's. Our analyses reveal that for both compounds, vacancy defects are energetically more favorable, therefore form more readily than interstitials, due to the close-packed nature of the crystal structures. However, the vacancy concentrations are very small for the diffusion processes facilitated by defects. Ionic conductivities are calculated as a function of voltage, considering the diffusion carrier concentration and the diffusion barriers as determined by nudged elastic band calculations. These conductivities are more than ten orders of magnitude smaller in NaF than in LiF. As compared to the diffusivity of Li in other common inorganic SEI compounds, such as Li2CO3 and Li2O,the cation diffusivity in LiF and NaF is quite low, with at least three orders of magnitude lower ionic conductivities. The results quantify the extent to which fluorides pose rate limitations in Li and Na batteries.« less

  6. Probabilistic Analysis of Solid Oxide Fuel Cell Based Hybrid Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2003-01-01

    The emergence of fuel cell systems and hybrid fuel cell systems requires the evolution of analysis strategies for evaluating thermodynamic performance. A gas turbine thermodynamic cycle integrated with a fuel cell was computationally simulated and probabilistically evaluated in view of the several uncertainties in the thermodynamic performance parameters. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the uncertainties in the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of criteria for gas turbine performance.

  7. Thermodynamics of aragonite-strontianite solid solutions: Results from stoichiometric solubility at 25 and 76°C

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.

    1987-01-01

    Neither equilibrium nor stoichiometric saturation is observed at 76°C during laboratory recrystallization of strontianite-aragonite solid solutions even after apparent 100 percent conversion to a narrow secondary composition and demonstration of a nearly constant composition system for periods of 300 hours.

  8. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr

    2014-10-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energymore » tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole.« less

  9. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    NASA Astrophysics Data System (ADS)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  10. Physical properties of organic fullerene cocrystals

    NASA Astrophysics Data System (ADS)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  11. Solid-solution aqueous-solution equilibria: thermodynamic theory and representation

    USGS Publications Warehouse

    Glynn, P.D.; Reardon, E.J.

    1990-01-01

    Thorstenson and Plummer's (1977) "stoichiometric saturation' model is reviewed, and a general relation between stoichiometric saturation Kss constants and excess free energies of mixing is derived for a binary solid-solution B1-xCxA: GE = RT[ln Kss - xln(xKCA) - (l-x)ln((l-x)KBA)]. This equation allows a suitable excess free energy function, such as Guggenheim's (1937) sub-regular function, to be fitted from experimentally determined Kss constants. Solid-phase free energies and component activity-coefficients can then be determined from one or two fitted parameters and from the endmember solubility products KBA and KCA. A general form of Lippmann's (1977,1980) "solutus equation is derived from an examination of Lippmann's (1977,1980) "total solubility product' model. Lippmann's ??II or "total solubility product' variable is used to represent graphically not only thermodynamic equilibrium states and primary saturation states but also stoichiometric saturation and pure phase saturation states. -from Authors

  12. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  13. Thermodynamically constrained correction to ab initio equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less

  14. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  15. Eu(2+)-Activated Phase-Pure Oxonitridosilicate Phosphor in a Ba-Si-O-N System via Facile Silicate-Assisted Routes Designed by First-Principles Thermodynamic Simulation.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2016-09-06

    Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems.

  16. Geochemical transformations and modeling of two deep-well injected hazardous wastes

    USGS Publications Warehouse

    Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.

    1991-01-01

    Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.

  17. Thermodynamic parameters of U (VI) sorption onto soils in aquatic systems.

    PubMed

    Kumar, Ajay; Rout, Sabyasachi; Ghosh, Malay; Singhal, Rakesh Kumar; Ravi, Pazhayath Mana

    2013-01-01

    The thermodynamic parameters viz. the standard free energy (∆Gº), Standard enthalpy change (∆Hº) and standard entropy change (∆Sº) were determined using the obtained values of distribution coefficient (kd) of U (VI) in two different types of soils (agricultural and undisturbed) by conducting a batch equilibrium experiment with aqueous media (groundwater and deionised water) at two different temperatures 25°C and 50°C. The obtained distribution coefficients (kd) values of U for undisturbed soil in groundwater showed about 75% higher than in agricultural soil at 25°C while in deionised water, these values were highly insignificant for both soils indicating that groundwater was observed to be more favorable for high surface sorption. At 50°C, the increased kd values in both soils revealed that solubility of U decreased with increasing temperature. Batch adsorption results indicated that U sorption onto soils was promoted at higher temperature and an endothermic and spontaneous interfacial process. The high positive values of ∆Sº for agricultural soil suggested a decrease in sorption capacity of U in that soil due to increased randomness at solid-solution interface. The low sorption onto agricultural soil may be due to presence of high amount of coarse particles in the form of sand (56%). Geochemical modeling predicted that mixed hydroxo-carbonato complexes of uranium were the most stable and abundant complexes in equilibrium solution during experimental.

  18. Thermodynamic and kinetic anisotropies in octane thin films.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent structure calculations, and observe no noticeable difference between the free surface and the bulk in efficiently exploring the potential energy landscape. This is unlike the films of model atomic glass formers that tend to sample their respective landscape more efficiently at free surfaces. We discuss the implications of this finding to the ability of octane-and other n-alkanes-to form ultrastable glasses.

  19. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system

    DOE PAGES

    Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...

    2017-01-20

    Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.

  20. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    PubMed

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Doping Li and K into Na2ZrO3 Sorbent to Improve Its CO2 Capture Capability

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change. Solid sorbents have been reported in several previous studies to be promising candidates for CO2 sorbent applications due to their high CO2 absorption capacities at moderate working temperatures. However, at a given CO2 pressure, the turnover temperature (Tt) of an individual solid capture CO2 reaction is fixed and may be outside the operating temperature range (ΔTo) for a particularly capture technology. In order to shift such Tt for a solid into the range of ΔTo, its corresponding thermodynamic property must be changed by changing its structure by reacting (mixing) with other materials or doping with other elements. As an example, by combining thermodynamic database searching with ab initio thermodynamics calculations, in this work, we explored the Li- and K-doping effects on the Tt shifts of Na2ZrO3 at different doping levels. The obtained results showed that compared to pure Na2ZrO3, the Li- and K-doped mixtures Na2-αMαZrO3 (M =Li, K) have lower Tt and higher CO2 capture capacities.

  2. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  3. CO2 packing polymorphism under pressure: Mechanism and thermodynamics of the I-III polymorphic transition

    NASA Astrophysics Data System (ADS)

    Gimondi, Ilaria; Salvalaglio, Matteo

    2017-09-01

    In this work, we describe the thermodynamics and mechanism of CO2 polymorphic transitions under pressure from form I to form III combining standard molecular dynamics, well-tempered metadynamics, and committor analysis. We find that the phase transformation takes place through a concerted rearrangement of CO2 molecules, which unfolds via an anisotropic expansion of the CO2 supercell. Furthermore, at high pressures, we find that defected form I configurations are thermodynamically more stable with respect to form I without structural defects. Our computational approach shows the capability of simultaneously providing an extensive sampling of the configurational space, estimates of the thermodynamic stability, and a suitable description of a complex, collective polymorphic transition mechanism.

  4. CO2 packing polymorphism under pressure: Mechanism and thermodynamics of the I-III polymorphic transition.

    PubMed

    Gimondi, Ilaria; Salvalaglio, Matteo

    2017-09-21

    In this work, we describe the thermodynamics and mechanism of CO 2 polymorphic transitions under pressure from form I to form III combining standard molecular dynamics, well-tempered metadynamics, and committor analysis. We find that the phase transformation takes place through a concerted rearrangement of CO 2 molecules, which unfolds via an anisotropic expansion of the CO 2 supercell. Furthermore, at high pressures, we find that defected form I configurations are thermodynamically more stable with respect to form I without structural defects. Our computational approach shows the capability of simultaneously providing an extensive sampling of the configurational space, estimates of the thermodynamic stability, and a suitable description of a complex, collective polymorphic transition mechanism.

  5. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate.

    PubMed

    Braun, Doris E; Gelbrich, Thomas; Wurst, Klaus; Griesser, Ulrich J

    2016-06-01

    New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic ( A° - C ) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol -1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A ° - C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A ° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities ( a w ) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D . This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system.

  6. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate

    PubMed Central

    Braun, Doris E.; Gelbrich, Thomas; Wurst, Klaus; Griesser, Ulrich J.

    2017-01-01

    New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic (A° – C) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol–1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A° – C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities (aw) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D. This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system. PMID:28663717

  7. Le Chatelier's Principle: The Effect of Temperature on the Solubility of Solids in Liquids.

    ERIC Educational Resources Information Center

    Brice, L. K.

    1983-01-01

    Provides a rigorous but straightforward thermodynamic treatment of the temperature dependence of the solubility of solids in liquids that is suitable for presentation to undergraduates, suggesting how to approach the qualitative aspects of the subject for freshmen. Considers unsolvated/solvated solutes and Le Chatelier's principle. (JN)

  8. Using Peltier Cells to Study Solid-Liquid-Vapour Transitions and Supercooling

    ERIC Educational Resources Information Center

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-01-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states…

  9. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

    NASA Astrophysics Data System (ADS)

    Calvimontes, Alfredo

    2018-05-01

    A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.

  10. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    PubMed

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  11. A New Method of Constructing a Drug-Polymer Temperature-Composition Phase Diagram Using Hot-Melt Extrusion.

    PubMed

    Tian, Yiwei; Jones, David S; Donnelly, Conor; Brannigan, Timothy; Li, Shu; Andrews, Gavin P

    2018-04-02

    Current experimental methodologies used to determine the thermodynamic solubility of an API within a polymer typically involves establishing the dissolution/melting end point of the crystalline API within a physical mixture or through the use of the glass transition temperature measurement of a demixed amorphous solid dispersion. The measurable "equilibrium" points for solubility are normally well above the glass transition temperature of the system, meaning extrapolation is required to predict the drug solubility at pharmaceutically relevant temperatures. In this manuscript, we argue that the presence of highly viscous polymers in these systems results in experimental data that exhibits an under or overestimated value relative to the true thermodynamic solubility. In previous work, we demonstrated the effects of experimental conditions and their impact on measured and predicted thermodynamic solubility points. In light of current understanding, we have developed a new method to limit error associated with viscosity effects for application in small-scale hot-melt extrusion (HME). In this study, HME was used to generate an intermediate (multiphase) system containing crystalline drug, amorphous drug/polymer-rich regions as well as drug that was molecularly dispersed in polymer. An extended annealing method was used together with high-speed differential scanning calorimetry to accurately determine the upper and lower boundaries of the thermodynamic solubility of a model drug-polymer system (felodipine and Soluplus). Compared to our previously published data, the current results confirmed our hypothesis that the prediction of the liquid-solid curve using dynamic determination of dissolution/melting end point of the crystalline API physical mixture presents an underestimation relative to the thermodynamic solubility point. With this proposed method, we were able to experimentally measure the upper and lower boundaries of the liquid-solid curve for the model system. The relationship between inverse temperature and drug-polymer solubility parameter (χ) remained linear at lower drug loadings. Significantly higher solubility and miscibility between the felodipine-Soluplus system were derived from the new χ values.

  12. Stabilization of SiO2 nanoparticle foam system and evaluation of its performance

    NASA Astrophysics Data System (ADS)

    Sun, Chong; Fan, Zhenzhong; Liu, Qingwang; Wang, Jigang; Xu, Jianjun

    2017-05-01

    As tertiary recovery is applied in the oil field, foam flooding technology plays an important role in the oil field. Steam flooding is easy to generate a series of problems such as excessive pressure, gas channelling, heat loss ect. The foam flooding can be better used in the formation of plugging and profile control. However, the foam is not stabilizing in thermodynamics and breaks easily while it encounters oil. So the emphasis of the research is how to make the foam stable. The Warning Blender method is used to evaluate the foam In the course of experiment, which verifies that the modified Nano SiO2 solid not only works very well in coordination with SDS solution but also contributes to the generation of stable foam in solution. The optimum concentration of SDS is determined by 0.5%, and the best concentration is 1.4% of H20 type SiO2 particles that the concentration is 79.26°. Finally, the 0.5%SDS+1.4%H2O type SiO2 is chosen as the complete foam flooding system, and the performance of salt tolerance and oil displacement of composite foam system is evaluated. It is concluded that the stability of foam is the key to improve the oil recovery.

  13. Simulation studies of glassy nanoclusters

    NASA Astrophysics Data System (ADS)

    Bowles, Richard

    2015-03-01

    Glassy materials are amorphous solids usually formed by rapidly cooling a liquid below its equilibrium freezing temperature, trapping the particles in a liquid-like structure at the glass transition temperature. While appearing throughout nature and industry, these systems continue to challenge the way we think about the dynamics and thermodynamics of condensed matter and a fundamental understanding of the glass state remains elusive. This talk describes molecular simulation studies of glassy behaviour in binary Lennard-Jones nanoclusters. We show that the relaxation dynamics of the clusters is nonuniform and the core of the cluster goes through a glass transition at higher temperatures than at the surface. As the nanoclusters are cooled, they also exhibit a fragile-strong crossover in their dynamics and we explore how this phenomena is linked to the potential energy landscape of the clusters. Finally, we compare the properties of nanoclusters formed through vapour condensation, directly to the glassy state, with those of glassy clusters formed through traditional supercooling. The condensation clusters are shown to form ultra-stable glassy states analogous to the ultra-stable glasses formed by thin film vapour deposition onto a cold substrate. In all, our work suggests that nanoscale clusters exhibit some unique glassy features, while also offering potential insights into the fundamental nature of the glass transition.

  14. Thermodynamic behavior of glassy state of structurally related compounds.

    PubMed

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  15. Immersion-scanning-tunneling-microscope for long-term variable-temperature experiments at liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus

    2018-05-01

    Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.

  16. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    NASA Astrophysics Data System (ADS)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  17. Irreversible thermodynamic analysis and application for molecular heat engines

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  18. Orally Disintegrating Tablets Containing Melt Extruded Amorphous Solid Dispersion of Tacrolimus for Dissolution Enhancement.

    PubMed

    Ponnammal, Poovizhi; Kanaujia, Parijat; Yani, Yin; Ng, Wai Kiong; Tan, Reginald B H

    2018-03-16

    In order to improve the aqueous solubility and dissolution of Tacrolimus (TAC), amorphous solid dispersions of TAC were prepared by hot melt extrusion with three hydrophilic polymers, Polyvinylpyrrolidone vinyl acetate (PVP VA64), Soluplus ® and Hydroxypropyl Cellulose (HPC), at a drug loading of 10% w / w . Molecular modeling was used to determine the miscibility of the drug with the carrier polymers by calculating the Hansen Solubility Parameters. Powder X-ray diffraction and differential scanning calorimetry (DSC) studies of powdered solid dispersions revealed the conversion of crystalline TAC to amorphous form. Fourier transform Infrared (FTIR) spectroscopy results indicated formation of hydrogen bond between TAC and polymers leading to stabilization of TAC in amorphous form. The extrudates were found to be stable under accelerated storage conditions for 3 months with no re-crystallization, indicating that hot melt extrusion is suitable for producing stable amorphous solid dispersions of TAC in PVP VA64, Soluplus ® and HPC. Stable solid dispersions of amorphous TAC exhibited higher dissolution rate, with the solid dispersions releasing more than 80% drug in 15 min compared to the crystalline drug giving 5% drug release in two hours. These stable solid dispersions were incorporated into orally-disintegrating tablets in which the solid dispersion retained its solubility, dissolution and stability advantage.

  19. Orally Disintegrating Tablets Containing Melt Extruded Amorphous Solid Dispersion of Tacrolimus for Dissolution Enhancement

    PubMed Central

    Ponnammal, Poovizhi; Kanaujia, Parijat; Ng, Wai Kiong; Tan, Reginald B. H.

    2018-01-01

    In order to improve the aqueous solubility and dissolution of Tacrolimus (TAC), amorphous solid dispersions of TAC were prepared by hot melt extrusion with three hydrophilic polymers, Polyvinylpyrrolidone vinyl acetate (PVP VA64), Soluplus® and Hydroxypropyl Cellulose (HPC), at a drug loading of 10% w/w. Molecular modeling was used to determine the miscibility of the drug with the carrier polymers by calculating the Hansen Solubility Parameters. Powder X-ray diffraction and differential scanning calorimetry (DSC) studies of powdered solid dispersions revealed the conversion of crystalline TAC to amorphous form. Fourier transform Infrared (FTIR) spectroscopy results indicated formation of hydrogen bond between TAC and polymers leading to stabilization of TAC in amorphous form. The extrudates were found to be stable under accelerated storage conditions for 3 months with no re-crystallization, indicating that hot melt extrusion is suitable for producing stable amorphous solid dispersions of TAC in PVP VA64, Soluplus® and HPC. Stable solid dispersions of amorphous TAC exhibited higher dissolution rate, with the solid dispersions releasing more than 80% drug in 15 min compared to the crystalline drug giving 5% drug release in two hours. These stable solid dispersions were incorporated into orally-disintegrating tablets in which the solid dispersion retained its solubility, dissolution and stability advantage. PMID:29547585

  20. Grain boundary premelting and activated sintering in binary refractory alloys

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng

    Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The consistency between GB phase diagram and GB diffusivity was evidently observed. This study revealed the existence of quasi-liquid IGF in Ni-Mo and re-confirmed our prior hypothesis proposed through work in Ni-W system. It also demonstrated further the necessity of a GB phase diagram as a new tool to guide the materials processing or design, such as selection of sintering aid and heat-treatment.

  1. Physical Laws for Mechanobiology

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    2007-01-01

    Higher-level physical laws applicable to biological tissues are presented that will permit the modeling of metabolic activity at the cellular level, including variations in the mass of a tissue. Here the tissue is represented as a fluid/solid mixture, wherein molecular solutes transport within the fluid, and cells can migrate throughout the porous solid. Variations in mass can arise via exchanges in mass between the constituent phases within a control volume such that mass is conserved in the tissue overall. The governing balance laws for mass, momentum, energy, and entropy are a special case of those describing a chemically reacting mixture with diffusion. Thermodynamic constraints on the constitutive structure are addressed. Biophysics; Biomechanics; Brownian motion; Cell migration; Mixture theory; Thermodynamic laws; Tissue mechanics

  2. Temperature Dependence of Thermodynamic Properties of Thallium Chloride and Thallium Bromide

    NASA Astrophysics Data System (ADS)

    Kavanoz, H. B.

    2015-02-01

    Thermodynamic properties as lattice parameters, thermal expansion, heat capacities Cp and Cv, bulk modulus, and Gruneisen parameter of ionic halides TlCl and TlBr in solid and liquid phases were studied using classical molecular dynamics simulation (MD) with interionic Vashistha-Rahman (VR) model potential. In addition to the static and transport properties which have been previously reported by the author [13], this study further confirms that temperature dependence of the calculated thermophysical properties of TlCl and TlBr are in agreement with the available experimental data at both solid and liquid phases in terms of providing an alternative rigid ion potential. The results give a fairly good description of TlCl and TlBr in the temperature range 10-1000 K.

  3. Quantum molecular dynamics simulation of structural and thermodynamic properties of NiAl

    NASA Astrophysics Data System (ADS)

    Karchevskaya, E. S.; Minakov, D. V.; Levashov, P. R.

    2018-01-01

    In this work, structural and thermodynamic properties of a solid and liquid Ni-Al compound are studied using an ab initio method of quantum molecular dynamics (QMD). Simulations were carried out in 700-3000 K temperature range at atmospheric pressure. Radial distribution functions are analyzed to determine the presence of Ni-Al chemical bonds. Diffusion coefficients for individual components are also calculated. Another goal of this work is the investigation of the reaction propagation in thermally-initiated Ni-Al foils. For this purpose, we performed QMD simulations of Ni-Al layers in the microcanonical ensemble. An exothermic reaction between the solid Ni-Al layers is observed in our simulations at temperature less than the melting temperatures of the components.

  4. Thermodynamics and kinetics of vesicles formation processes.

    PubMed

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  5. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188.

    PubMed

    Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin

    2014-04-01

    Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  6. Thermodynamic modeling of Cl(-), NO3(-) and SO4(2-) removal by an anion exchange resin and comparison with Dubinin-Astakhov isotherms.

    PubMed

    Dron, Julien; Dodi, Alain

    2011-03-15

    The removal of chloride, nitrate, and sulfate ions from wastewaters by a macroporous ion-exchange resin is studied through the experimental results obtained for six ion exchange systems, OH(-)/Cl(-), OH(-)/NO3(-), OH(-)/SO4(2-), and HCO3(-)/Cl(-), Cl(-)/NO3(-), Cl(-)/SO4(2-). The results are described through thermodynamic modeling, considering either an ideal or a nonideal behavior of the ionic species in the liquid and solid phases. The nonidealities are determined by the Davies equation and Wilson equations in the liquid and solid phases, respectively. The results show that the resin has a strong affinity for all the target ions, and the order of affinity obtained is OH(-) < HCO3(-) < Cl(-) < NO3(-) < SO4(2-). The calculation of the changes in standard Gibbs free energies (ΔG(0)) shows that even though HCO3(-) has a lower affinity to the resin, it may affect the removal of Cl(-), and in the same way that Cl(-) may affect the removal of NO3(-) and SO4(2-). The application of nonidealities in the thermodynamic model leads to an improved fit of the model to the experimental data with average relative deviations below 1.5% except for the OH(-)/SO4(2-) system. On the other hand, considering ideal or nonideal behaviors has no significant impact on the determination of the selectivity coefficients. The thermodynamic modeling is also compared with the Dubinin-Astakhov adsorption isotherms obtained for the same ion exchange systems. Surprisingly, the latter performs significantly better than the ideal thermodynamic model and nearly as well as the nonideal thermodynamic model.

  7. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    NASA Astrophysics Data System (ADS)

    Song, Shaojie; Gao, Meng; Xu, Weiqi; Shao, Jingyuan; Shi, Guoliang; Wang, Shuxiao; Wang, Yuxuan; Sun, Yele; McElroy, Michael B.

    2018-05-01

    pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between -2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.

  8. Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin.

    PubMed

    Liu, Jin; Svärd, Michael; Hippen, Perschia; Rasmuson, Åke C

    2015-07-01

    Two crystal polymorphs of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) have been obtained by crystallization from ethanol (EtOH) solution. The polymorphs have been characterized by differential scanning calorimetry, infrared spectroscopy, and X-ray powder diffraction and shown to be the previously described forms I and III. The solubility of both polymorphs in EtOH and of one polymorph in ethyl acetate (EA) has been measured between 10°C and 50°C with a gravimetric method. Primary nucleation of curcumin from EtOH solution has been investigated in 520 constant temperature crystallization experiments in sealed, magnetically stirred vials under different conditions of supersaturation, temperature, and agitation rate. By a thermodynamic analysis of the melting data and solubility of form I, the solid-state activity is estimated from 10°C up to the melting point. The solubility is lower in EtOH than in EA, and in both solvents, a positive deviation from Raoult's law is observed. Form I has lower solubility than form III and is accordingly thermodynamically more stable over the investigated temperature interval. Extrapolation of solubility regression models indicates that there should be a low-temperature enantiotropic transition point, below which form I will be metastable. By slurry conversion experiments, it is established that this temperature is below -30°C. All nucleation experiments resulted in the stable form I. The induction time is observed to decrease with increasing agitation rate up to a certain point, and then increase with further increasing agitation rate; a trend previously observed for other compounds. By correlating the induction time data obtained at different supersaturation and temperature, the interfacial energy of form I in EtOH is estimated to be 3.0 mJ/m(2) . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Insights into Hydrate Formation and Stability of Morphinanes from a Combination of Experimental and Computational Approaches

    PubMed Central

    2014-01-01

    Morphine, codeine, and ethylmorphine are important drug compounds whose free bases and hydrochloride salts form stable hydrates. These compounds were used to systematically investigate the influence of the type of functional groups, the role of water molecules, and the Cl– counterion on molecular aggregation and solid state properties. Five new crystal structures have been determined. Additionally, structure models for anhydrous ethylmorphine and morphine hydrochloride dihydrate, two phases existing only in a very limited humidity range, are proposed on the basis of computational dehydration modeling. These match the experimental powder X-ray diffraction patterns and the structural information derived from infrared spectroscopy. All 12 structurally characterized morphinane forms (including structures from the Cambridge Structural Database) crystallize in the orthorhombic space group P212121. Hydrate formation results in higher dimensional hydrogen bond networks. The salt structures of the different compounds exhibit only little structural variation. Anhydrous polymorphs were detected for all compounds except ethylmorphine (one anhydrate) and its hydrochloride salt (no anhydrate). Morphine HCl forms a trihydrate and dihydrate. Differential scanning and isothermal calorimetry were employed to estimate the heat of the hydrate ↔ anhydrate phase transformations, indicating an enthalpic stabilization of the respective hydrate of 5.7 to 25.6 kJ mol–1 relative to the most stable anhydrate. These results are in qualitative agreement with static 0 K lattice energy calculations for all systems except morphine hydrochloride, showing the need for further improvements in quantitative thermodynamic prediction of hydrates having water···water interactions. Thus, the combination of a variety of experimental techniques, covering temperature- and moisture-dependent stability, and computational modeling allowed us to generate sufficient kinetic, thermodynamic and structural information to understand the principles of hydrate formation of the model compounds. This approach also led to the detection of several new crystal forms of the investigated morphinanes. PMID:25036525

  10. Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms.

    PubMed

    Eddleston, Mark D; Madusanka, Nadeesh; Jones, William

    2014-09-01

    In previous studies, cocrystals have been shown to be susceptible to dissociation at high humidity because of differences in the solubilities of the two coformer molecules, especially when these molecules can form hydrates. Contrastingly, however, the propensity of the pharmaceutically active compound caffeine to hydrate formation is reduced by cocrystallization with oxalic acid. Here, the stability of the oxalic acid cocrystal of caffeine is investigated from a thermodynamic perspective through the use of aqueous slurries of caffeine hydrate and oxalic acid dihydrate. Conversion to the anhydrous caffeine-oxalic acid cocrystal occurred under these conditions confirming that this form is thermodynamically stable in an aqueous environment. The slurry methodology was further developed as a general approach to screening for cocrystals that are not susceptible to dissociation at high humidity. In this manner, cocrystals of the hydrate-forming molecules theophylline, carbamazepine, and piroxicam that are stable at high humidity, indefinitely avoiding hydrate formation, were identified. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Phase equilibrium in argon films stabilized by homogeneous surfaces and thermodynamics of two-stage melting transition.

    PubMed

    Ustinov, E A

    2014-02-21

    Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid-solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid-solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the course of simulation according to the Gibbs-Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid-solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.

  12. Phase equilibrium in argon films stabilized by homogeneous surfaces and thermodynamics of two-stage melting transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustinov, E. A., E-mail: eustinov@mail.wplus.net

    Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid–solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid–solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the coursemore » of simulation according to the Gibbs–Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid–solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.« less

  13. High pressure dielectric studies on the structural and orientational glass.

    PubMed

    Kaminska, E; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2016-02-07

    High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the crystallization of fully disordered supercooled van der Waals liquids.

  14. Thermodynamics of higher dimensional black holes with higher order thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.; Kokabi, K.; Rangyan, S.

    2017-12-01

    In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.

  15. Magnetically charged regular black hole in a model of nonlinear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Meng-Sen, E-mail: mengsenma@gmail.com

    2015-11-15

    We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which wemore » know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.« less

  16. Predicting phase equilibria in one-component systems

    NASA Astrophysics Data System (ADS)

    Korchuganova, M. R.; Esina, Z. N.

    2015-07-01

    It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.

  17. Thermodynamics and simulation of hard-sphere fluid and solid: Kinetic Monte Carlo method versus standard Metropolis scheme

    NASA Astrophysics Data System (ADS)

    Ustinov, E. A.

    2017-01-01

    The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.

  18. Interactions of hydrogen with amorphous hafnium oxide

    NASA Astrophysics Data System (ADS)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  19. Experimental and Thermodynamic Constraints on Serpentinization: Implications for Fluid Chemistry, Abiotic Synthesis of Hydrocarbons, and Subsurface Microbial Processes

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.

    2005-12-01

    Serpentinized rocks have received a great deal of attention in recent years, primarily because they are believed to play significant roles in supporting autotrophic, hydrogen-based microbial communities and in the abiotic synthesis of methane and other organic compounds. Both of these processes are a consequence of the high H2 concentrations generated by reaction of water with ultramafic rocks during serpentinization. The amount of H2 produced during serpentinization is dependent on both thermodynamic and kinetic constraints, which can be evaluated through numerical thermodynamic models and laboratory experiments. Because olivine is thermodynamically stable at temperatures above ~375°C, alteration of ultramafic rocks at higher temperatures generates only minor amounts of H2. Even at lower temperatures olivine may equilibrate with the fluid after only partial reaction, so that olivine may persist stably in partially serpentinized rocks. Olivine only becomes completely unstable at ~315°C, so that the maximum potential for H2 production only occurs at or below this temperature. At high temperatures, serpentinization proceeds rapidly, so that thermodynamic constraints provide the primary control on H2 production. However, the rate of serpentinization becomes sufficiently slow below ~150°C that the residence of time of fluids may prevent high concentrations of H2 from accumulating. Since H2 generation during serpentinization is primarily attributable to conversion of ferrous Fe in olivine to ferric Fe in magnetite, another factor that may limit H2 production is the sequestration of ferrous Fe in brucite or serpentine. Some serpentines and brucites are reported to contain significant amounts of Fe, but these data are somewhat uncertain because the analyses may include microcrystalline magnetite. Although the thermodynamic properties of solid solutions of these minerals are highly uncertain, the available data suggest that the Fe content of serpentines and brucite may increase with decreasing temperature. Together, these factors indicate that maximum H2 production may occur during serpentinization at temperatures around 300°C. Production of H2 in many cases may exceed its solubility in water, leading to the exsolution of H2-rich vapor, which may promote abiotic organic synthesis if the reactions are more favorable in a vapor phase. Each kg of ultramafic rock undergoing serpentinization can supply as much as 90 kJ of energy to H2-oxidizing microbes, which is sufficient to produce about 3 grams of biomass.

  20. Aza-Bambusurils En Route to Anion Transporters.

    PubMed

    Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer

    2016-06-20

    Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A new strategy of transforming pharmaceutical crystal forms.

    PubMed

    Tian, Jian; Dalgarno, Scott J; Atwood, Jerry L

    2011-02-09

    The robust nature of network materials allows them to (for example) respond to external stimuli such as pressure, temperature, light, or gas/solvent adsorption and desorption. There is difficulty in retaining long-range order in purely molecular organic solids, due to weak intermolecular interactions such as van der Waals forces. Here, we show gas-induced transformations of the well-known pharmaceuticals clarithromycin and lansoprazole. For clarithromycin, the stimulus is capable of converting the kinetic solvate and guest-free crystal forms to the commercial thermodynamically stable polymorph with a huge saving in energy cost relative to industrially employed methods. The synthesis of the marketing form of lansoprazole involves a solvate that readily decomposes and that is stirred in water, filtered, and dried intensively. Our method readily circumvents such synthetic problems and transforms the sensitive solvate to the marketed drug substance with ease. Such expedient transformations hold great implications for the pharmaceutical industry in general when considering the ease of transformation and mild conditions employed.

  2. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    PubMed

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  3. Superconducting Sr 2- xAxCuO 2F 2+ δ( A=Ca, Ba): Synthetic Pathways and Associated Structural Rearrangements

    NASA Astrophysics Data System (ADS)

    Francesconi, M. G.; Slater, P. R.; Hodges, J. P.; Greaves, C.; Edwards, P. P.; Al-Mamouri, M.; Slaski, M.

    1998-01-01

    The low-temperature fluorination of a range of insulating alkaline earth cuprates Sr2-xAxCuO3(A=Ca (0≤x≤2);A=Ba (0≤x≤0.6)) can result in superconducting oxide fluorides Sr2-xAxCuO2F2+δ. In contrast, conventional high-temperature solid-state reactions produce thermodynamically more stable mixtures of oxides and fluorides. Various soft-chemistry fluorination pathways (utilizing F2gas, NH4F,MF2[M=Cu, Zn, Ni, Ag]) are compared with respect to their efficacy and mechanisms. Attention is also focused on the structural features of the mixed-oxide precursor and the final-oxide fluorides to highlight the remarkable structural rearrangements that occur during the low-temperature fluorination. The effects of fluorination of other Sr-Cu-O systems are used to identify the structural requirements of the precursor oxide in order to achieve such transformations.

  4. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  5. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  6. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme

    PubMed Central

    Flandorfer, Hans

    2016-01-01

    The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries. PMID:27788175

  7. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  8. Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, Lars; Holmstrom, Eero

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).

  9. Free energy of steps using atomistic simulations

    NASA Astrophysics Data System (ADS)

    Freitas, Rodrigo; Frolov, Timofey; Asta, Mark

    The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.

  10. Fate of heavy metals during municipal solid waste incineration.

    PubMed

    Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D

    2002-02-01

    A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.

  11. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    PubMed

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.

  12. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  13. A thermodynamic equation of jamming

    NASA Astrophysics Data System (ADS)

    Lu, Kevin; Pirouz Kavehpour, H.

    2008-03-01

    Materials ranging from sand to fire-retardant to toothpaste are considered fragile, able to exhibit both solid and fluid-like properties across the jamming transition. Guided by granular flow experiments, our equation of jammed states is path-dependent, definable at different athermal equilibrium states. The non-equilibrium thermodynamics based on a structural temperature incorporate physical ageing to address the non-exponential, non-Arrhenious relaxation of granular flows. In short, jamming is simply viewed as a thermodynamic transition that occurs to preserve a positive configurational entropy above absolute zero. Without any free parameters, the proposed equation-of-state governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.

  14. Improving the quality of learning discipline “Technical thermodynamics and heat exchange” at ONMU

    NASA Astrophysics Data System (ADS)

    Vasserman, A. A.; Malchevsky, V. P.

    2017-11-01

    Discipline «Technical thermodynamics and heat exchange» creates a theoretical basis for students of ship-engineering faculty of Odessa National Maritime University to learn special subjects such as: Internal Combustion Engines, Steam and Gas Turbines, Steam Boilers, Refrigerating Plants. This course forms future specialist and provides the deep understanding of essence of thermodynamic processes which run in machines and apparatus of ship. Also different kinds of heat exchange in solid, liquid and gaseous bodies which take place almost in all technological processes are considered. The quality of training ship engineers depends on the knowledge of mentioned discipline.

  15. An Examination of the Phase Transition Thermodynamics of (S)- and (RS)-Naproxen as a Basis for the Design of Enantioselective Crystallization Processes.

    PubMed

    Buchholz, Hannes; Emel'yanenko, Vladimir N; Lorenz, Heike; Verevkin, Sergey P

    2016-05-01

    A detailed experimental analysis of the phase transition thermodynamics of (S)-naproxen and (RS)-naproxen is reported. Vapor pressures were determined experimentally via the transpiration method. Sublimation enthalpies were obtained from the vapor pressures and from independent TGA measurements. Thermodynamics of fusion which have been well-studied in the literature were systematically remeasured by DSC. Both sublimation and fusion enthalpies were adjusted to one reference temperature, T = 298 K, using measured heat capacities of the solid and the melt phase by DSC. Average values from the measurements and from literature data were suggested for the sublimation and fusion enthalpies. In order to prove consistency of the proposed values the vaporization enthalpies obtained by combination of both were compared to vaporization enthalpies obtained by the group-additivity method and the correlation-gas chromatography method. The importance of reliable and precise phase transition data for thermochemical calculations such as the prediction of solid/liquid phase behaviour of chiral compounds is highlighted. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    PubMed

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  17. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2018-05-01

    Nonequilibrium interfacial thermodynamics is formulated in the presence of surface reactions for the study of diffusiophoresis in isothermal systems. As a consequence of microreversibility and Onsager-Casimir reciprocal relations, diffusiophoresis, i.e., the coupling of the tangential components of the pressure tensor to the concentration gradients of solute species, has a reciprocal effect where the interfacial currents of solutes are coupled to the slip velocity. The presence of surface reactions is shown to modify the diffusiophoretic and reciprocal effects at the fluid-solid interface. The thin-layer approximation is used to describe the solution flowing near a reactive solid interface. Analytic formulas describing the diffusiophoretic and reciprocal effects are deduced in the thin-layer approximation and tested numerically for the Poiseuille flow of a solution between catalytic planar surfaces.

  18. Computer-Based Methods for Thermodynamic Analysis of Materials Processing.

    DTIC Science & Technology

    1983-11-30

    metallic alloys (12,13), silicides (14),and oxynitride * . systems (15). - . 2. Thermochemical System Employed to Characterize Binary Ill-V Phase Diagrams The...reference to Figure I shows that the stable form of RbF is the sodium chloride S form. Table I shows that OGH -oS -RFRFLS-RFRFLM-12866-.381T J/g.at. (5...KF, BF=(I/3)8aF LF-(I/4)LaF3V PF-(113)PbF 2 S- Sodium Chloride Structures Stable form of NF, KE, RE and (;F L-Liquid, M-Stable form of ZF, KeStable form

  19. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide

    PubMed Central

    Jolley, Elizabeth A.

    2017-01-01

    Abstract Non-standard nucleotides are ubiquitous in RNA. Thermodynamic studies with RNA duplexes containing non-standard nucleotides, whether incorporated naturally or chemically, can provide insight into the stability of Watson–Crick pairs and the role of specific functional groups in stabilizing a Watson–Crick pair. For example, an A-U, inosine•U and pseudouridine•A pair each form two hydrogen bonds. However, an RNA duplex containing a central I•U pair or central Ψ•A pair is 2.4 kcal/mol less stable or 1.7 kcal/mol more stable, respectively, than the corresponding duplex containing an A-U pair. In the non-standard nucleotide purine, hydrogen replaces the exocyclic amino group of A. This replacement results in a P•U pair containing only one hydrogen bond. Optical melting studies were performed with RNA duplexes containing P•U pairs adjacent to different nearest neighbors. The resulting thermodynamic parameters were compared to RNA duplexes containing A-U pairs in order to determine the contribution of the hydrogen bond involving the exocyclic amino group. Results indicate a loss of 1.78 kcal/mol, on average, when an internal P•U replaces A-U in an RNA duplex. This value is compared to the thermodynamics of a hydrogen bond determined by similar methods. Nearest neighbor parameters were derived for use in free energy and secondary structure prediction software. PMID:28180321

  20. Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles.

    PubMed

    Chen, Dong; Santore, Maria M

    2014-01-07

    Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid-fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid-solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid-solid transition temperatures, and produce a triple-point-like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure.

  1. Extreme thermodynamic conditions: novel stoichiometries, violations of textbook chemistry, and intriguing possibilities for the synthesis of new materials

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios

    As evidenced by numerous experimental and theoretical studies, application of high pressure can dramatically modify the atomic arrangement and electronic structures of both elements and compounds. However, the great majority of research has been focused on the effect of pressure on compounds with constant stoichiometries (typically those stable under ambient conditions). Recent theoretical predictions, using advanced search algorithms, suggest that composition is another important variable in the search for stable compounds, i.e. that the more stable stoichiometry at elevated pressures is not a priory the same as that at ambient pressure. Indeed, thermodynamically stable compounds with novel compositions were theoretically predicted and experimentally verified even in relatively simple chemical systems including: Na-Cl, C-N, Li-H, Na-H, Cs-N, H-N, Na-He, Xe-Fe. These materials are stable due to the formation of novel chemical bonds that are absent, or even forbidden, at ambient conditions. Tuning the composition of the system thus represents another important, but poorly explored approach to the synthesis of novel materials. By varying the stoichiometry one can design novel materials with enhanced properties (e.g. high energy density, hardness, superconductivity etc.), that are metastable at ambient conditions and synthesized at thermodynamic conditions less extreme than that those required for known stoichiometries. Moreover, current outstanding questions, ``anomalies'' and ``paradoxes'' in geo- and planetary science (e.g. the Xenon paradox) could be addressed based on the stability of surprising, stoichiometries that challenge our traditional ``textbook'' picture. In this talk, I will briefly present recent results and highlight the need of close synergy between experimental and theoretical efforts to understand the challenging and complex field of variable stoichiometry under pressure. Finally, possible new routes for the synthesis of novel materials will be discussed. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  2. Application of the endochronic theory of viscoplasticity to solid propellants and sandasphalt concrete

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Valanis, K. C.

    1977-01-01

    Solid propellants, sand-asphalt concrete and hard plastics showed rate sensitive mechanical behavior which, in addition, indicated that these materials have a permanent memory of the strain (or loading) path by which their present state was attained. A constitutive equation was formulated in general three dimensional tensorial form by means of irreversible thermodynamics. By using a very simple analytical form, it was shown that the mechanical behavior of solid propellants and sand-asphalt concrete can be readily described.

  3. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  4. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  5. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    PubMed Central

    Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  6. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    PubMed

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.

  7. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation constants from Franck (1956a,b) for temperatures from 300-550??C. Compared to the conductance-derived results of Frantz and Marshall (1984), our dissociation constants agree well at the highest densities, but are greater at lower densities. At the lowest density, at 600??C and 1 kbar, the discrepancy of 0.9 log units is within the overall uncertainties associated with our experimental results and those associated with deriving dissociation constants from conductance measurements in highly associated solutions (Oelkers and Helgeson, 1988). Finally, we also report an equation of state fit to the standard thermodynamic properties of the aqueous HCl molecule that is consistent with a wide array of independently determined dissociation constants of HCl and permits interpolation and extrapolation of the dissociation constant of HCl to 1000??C and 5.0 kbars. ?? 1991.

  8. Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir

    2017-01-01

    In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.

  9. Solid state characterization of E2101, a novel antispastic drug.

    PubMed

    Kushida, Ikuo; Ashizawa, Kazuhide

    2002-10-01

    E2101, a novel antispastic drug, was found to exist in at least two polymorphs that were confirmed by X-ray powder diffraction (XRD). These two species are designated forms I and II. The physicochemical and thermodynamic properties of these polymorphs were characterized by variable temperature XRD, thermal analysis, hygroscopicity measurements, and dissolution studies. The transition temperature was also estimated from the solubilities determined at various temperatures. The E2101 polymorphs were anhydrous and adsorbed little moisture under high humidity conditions. The melting onsets and heats of fusion for form I were 148.1 +/- 0.2 degrees C and 38.2 +/- 1.0 kJ/mol, respectively, and for form II were 139.8 +/- 0.4 degrees C and 35.2 +/- 0.5 kJ/mol, respectively. The intrinsic dissolution rate of form II in JP 2 medium was 1.5-fold faster than that of form I, corresponding to the rank order of the aqueous solubility and the enthalpy of fusion. Accordingly, form I was thought to be thermodynamically more stable than form II and thus suitable for further development. According to the thermal analysis and variable temperature XRD results, the recrystallization of form I occurred at approximately 145 degrees C after form II melted, however, no crystal transition behavior was observed below the lower melting point. The DSC thermograms at various heating rates and van't Hoff plots from the solubility studies indicated that the polymorphic pair would be monotropic. Copyright 2002 Wiley-Liss Inc. and the American Pharmaceutical Association

  10. Kinetic control in the synthesis of metastable polymorphs: Bixbyite-to-Rh{sub 2}O{sub 3}(II)-to-corundum transition in In{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de; Fachgebiet Keramische Werkstoffe, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin; Schwarz, Marcus R.

    2015-09-15

    An example for kinetic control of a solid-state phase transformation, in which the system evolves via the path with the lowest activation barrier rather than ending in the thermodynamically most favorable state, has been demonstrated. As a case study, the phase transitions of indium sesquioxide (In{sub 2}O{sub 3}) have been guided by theoretical calculations and followed in situ under high-pressure high-temperature conditions in multi-anvil assemblies. The corundum-type rh-In{sub 2}O{sub 3} has been synthesized from stable bixbyite-type c-In{sub 2}O{sub 3} in two steps: first generating orthorhombic Rh{sub 2}O{sub 3}-II-type o′-In{sub 2}O{sub 3} which is thermodynamically stable at 8.5 GPa/850 °C and,more » thereafter, exploiting the preferred kinetics in the subsequent transformation to the rh-In{sub 2}O{sub 3} during decompression. This synthesis strategy of rh-In{sub 2}O{sub 3} was confirmed ex situ in a toroid-type high-pressure apparatus at 8 GPa and 1100 °C. The pressure–temperature phase diagrams have been constructed and the stability fields of In{sub 2}O{sub 3} polymorphs and the crystallographic relationship between them have been discussed. - Graphical abstract: In situ energy-dispersive XRD patterns in multi-anvil assemblies show the sequence of phase transition c-In{sub 2}O{sub 3}→o′-In{sub 2}O{sub 3}→rh-In{sub 2}O{sub 3} under particular pressure and temperature conditions. The tick marks refer to the calculated Bragg positions of bixbyite-type (c-In{sub 2}O{sub 3}), Rh{sub 2}O{sub 3}-II-type (o–-In2O{sub 3}) and corundum-type (rh-In{sub 2}O{sub 3}). - Highlights: • The solid-state synthesis methods can be employed for obtaining metastable phases. • The phase transition of In{sub 2}O{sub 3} was guided by DFT calculations. • The phase transition of In{sub 2}O{sub 3} was followed in situ under HP–HT conditions. • Orthorhombic o′-In{sub 2}O{sub 3} polymorph was synthesized from c-In{sub 2}O{sub 3} at 8.5 GPa/850 °C. • Metastable rh-In{sub 2}O{sub 3} was obtained from o′-In{sub 2}O{sub 3} at 5.5 GPa during decompression.« less

  11. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species.more » The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.« less

  12. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford

    2002-01-01

    This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.

  13. On the determination of the glass forming ability of AlxZr1-x alloys using molecular dynamics, Monte Carlo simulations, and classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice

    2012-10-01

    In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.

  14. Asymptotically flat, stable black hole solutions in Einstein-Yang-Mills-Chern-Simons theory.

    PubMed

    Brihaye, Yves; Radu, Eugen; Tchrakian, D H

    2011-02-18

    We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordström solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.

  15. Experimental and Theoretical Evaluation of the Stability of True MOF Polymorphs Explains Their Mechanochemical Interconversions.

    PubMed

    Akimbekov, Zamirbek; Katsenis, Athanassios D; Nagabhushana, G P; Ayoub, Ghada; Arhangelskis, Mihails; Morris, Andrew J; Friščić, Tomislav; Navrotsky, Alexandra

    2017-06-14

    We provide the first combined experimental and theoretical evaluation of how differences in ligand structure and framework topology affect the relative stabilities of isocompositional (i.e., true polymorph) metal-organic frameworks (MOFs). We used solution calorimetry and periodic DFT calculations to analyze the thermodynamics of two families of topologically distinct polymorphs of zinc zeolitic imidazolate frameworks (ZIFs) based on 2-methyl- and 2-ethylimidazolate linkers, demonstrating a correlation between measured thermodynamic stability and density, and a pronounced effect of the ligand substituent on their stability. The results show that mechanochemical syntheses and transformations of ZIFs are consistent with Ostwald's rule of stages and proceed toward thermodynamically increasingly stable, more dense phases.

  16. Interstitial diffusion in lithium-ion battery electrodes and structural phase transitions in crystalline solids from first principles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Jishnu

    We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.

  17. Exploring N-Rich Phases in Li(x)N(y) Clusters for Hydrogen Storage at Nanoscale.

    PubMed

    Bhattacharya, Amrita; Bhattacharya, Saswata

    2015-09-17

    We have performed cascade genetic algorithm and ab initio atomistic thermodynamics under the framework of first-principles-based hybrid density functional theory to study the (meta-)stability of a wide range of Li(x)N(y) clusters. We found that hybrid xc-functional is essential to address this problem as a local/semilocal functional simply fails even to predict a qualitative prediction. Most importantly, we find that though in bulk lithium nitride, the Li-rich phase, that is, Li3N, is the stable stoichiometry; in small Li(x)N(y) clusters, N-rich phases are more stable at thermodynamic equilibrium. We further show that these N-rich clusters are promising hydrogen storage material because of their easy adsorption and desorption ability at respectively low (≤300 K) and moderately high temperature (≥600 K).

  18. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  19. An Introduction to the Understanding of Solubility.

    ERIC Educational Resources Information Center

    Letcher, Trevor M.; Battino, Rubin

    2001-01-01

    Explores different solubility processes and related issues, including the second law of thermodynamics and ideal mixtures, real liquids, intermolecular forces, and solids in liquids or gases in liquids. (Contains 22 references.) (ASK)

  20. Thermodynamic assessment of the Pr-O system

    DOE PAGES

    McMurray, Jake W.

    2015-12-24

    We found that the Calphad method was used to perform a thermodynamic assessment of the Pr–O system. Compound energy formalism representations were developed for the fluorite α-PrO 2–x and bixbyite σ-Pr 3 O 5 ± x solid solutions while the two-sublattice liquid model was used to describe the binary melt. The series of phases between Pr 2 O 3 and PrO 2 were taken to be stoichiometric. Moreover, the equilibrium oxygen pressure, phase equilibria, and enthalpy data were used to optimize the adjustable parameters of the models for a self-consistent representation of the thermodynamic behavior of the Pr–O system frommore » 298 K to melting.« less

  1. Identification of thermodynamically stable ceramic reinforcement materials for iron aluminide matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1990-01-01

    Aluminide-base intermetallic matrix composites are currently being considered as potential high-temperature materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between iron aluminides and several potential reinforcement materials, which include carbides, oxides, borides, and nitrides, are analyzed from thermodynamic considerations. Several chemically compatible reinforcement materials are identified for the iron aluminides with Al concentrations ranging from 40 to 50 at. pct.

  2. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  3. Modeling of Water-Breathing Propulsion Systems Utilizing the Aluminum-Seawater Reaction and Solid-Oxide Fuel Cells

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component

  4. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the current state of CRYOCHEM in representing the SVE and SLV of chemical systems at temperatures and pressures relevant to Titan's tropopause and Pluto and the upper crusts of these objects.

  5. Le Chatelier's principle in replicator dynamics

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  6. Le Chatelier's principle in replicator dynamics.

    PubMed

    Allahverdyan, Armen E; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  7. Calorimetric determination of energetics of solid solutions of UO 2+ x with CaO and Y 2O 3

    NASA Astrophysics Data System (ADS)

    Mazeina, Lena; Navrotsky, Alexandra; Greenblatt, Martha

    2008-02-01

    Quantitative study of thermodynamic properties of solid solutions of UO 2+ x with divalent and trivalent oxides is important for predicting the behavior of oxide fuel. Although early literature work measured vapor pressure in some of these solid solutions, direct calorimetric measurements of enthalpies of formation have been hampered by the refractory nature of such oxides. First measurements of the enthalpies of formation in the systems UO 2+ x-CaO and UO 2+ x-YO 1.5, obtained by high-temperature oxide melt solution calorimetry, are reported. Both systems show significantly negative (exothermic) heats of formation from binary oxides (UO 2, plus O 2 and CaO or YO 1.5, as well as from UO 2 plus UO 3 and CaO or YO 1.5), consistent with reported free energy measurements in the urania-yttria system. The energetic contributions of oxygen content (oxidation of U 4+) and of charge balanced ionic substitution as well as defect clustering are discussed. Behavior of urania-yttria is compared to that of corresponding systems in which the tetravalent ion is Ce, Zr, or Hf. The substantial additional stability in the solid solutions compared to pure UO 2+ x may retard, in both thermodynamic and kinetic sense, the oxidation and leaching of spent fuel to form aqueous U 6+ and solid uranyl phases.

  8. Total solids content and degree of hydrolysis influence proteolytic inactivation kinetics following whey protein hydrolysate manufacture.

    PubMed

    Conesa, Celia; FitzGerald, Richard J

    2013-10-23

    The kinetics and thermodynamics of the thermal inactivation of Corolase PP in two different whey protein concentrate (WPC) hydrolysates with degree of hydrolysis (DH) values of ~10 and 21%, and at different total solids (TS) levels (from 5 to 30% w/v), were studied. Inactivation studies were performed in the temperature range from 60 to 75 °C, and residual enzyme activity was quantified using the azocasein assay. The inactivation kinetics followed a first-order model. Analysis of the activation energy, thermodynamic parameters, and D and z values, demonstrated that the inactivation of Corolase PP was dependent on solution TS. The intestinal enzyme preparation was more heat sensitive at low TS. Moreover, it was also found that the enzyme was more heat sensitive in solutions at higher DH.

  9. Physics and Chemistry of Earth Materials

    NASA Astrophysics Data System (ADS)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  10. Phase formation of V{sub 2}O{sub 5}.xNb{sub 2}O{sub 5} compounds via gels and freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langbein, Hubert; Mayer-Uhma, Tobias

    2009-03-05

    An X-ray powder diffraction study of the phase formation in the system V{sub 2}O{sub 5}/Nb{sub 2}O{sub 5} is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V{sub 2}O{sub 5}-Nb{sub 2}O{sub 5} metastable VNbO{sub 5}, V{sub 4}Nb{sub 18}O{sub 55}, VNb{sub 9}O{sub 25} and solid solutions of V{sub 2}O{sub 5} in TT-Nb{sub 2}O{sub 5} as also thermodynamically stable VNb{sub 9}O{sub 25} exist. The thermal decomposition of freeze-driedmore » vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction.« less

  11. Navigating the Waters of Unconventional Crystalline Hydrates

    PubMed Central

    2015-01-01

    Elucidating the crystal structures, transformations, and thermodynamics of the two zwitterionic hydrates (Hy2 and HyA) of 3-(4-dibenzo[b,f][1,4]oxepin-11-yl-piperazin-1-yl)-2,2-dimethylpropanoic acid (DB7) rationalizes the complex interplay of temperature, water activity, and pH on the solid form stability and transformation pathways to three neutral anhydrate polymorphs (Forms I, II°, and III). HyA contains 1.29 to 1.95 molecules of water per DB7 zwitterion (DB7z). Removal of the essential water stabilizing HyA causes it to collapse to an amorphous phase, frequently concomitantly nucleating the stable anhydrate Forms I and II°. Hy2 is a stoichiometric dihydrate and the only known precursor to Form III, a high energy disordered anhydrate, with the level of disorder depending on the drying conditions. X-ray crystallography, solid state NMR, and H/D exchange experiments on highly crystalline phase pure samples obtained by exquisite control over crystallization, filtration, and drying conditions, along with computational modeling, provided a molecular level understanding of this system. The slow rates of many transformations and sensitivity of equilibria to exact conditions, arising from its varying static and dynamic disorder and water mobility in different phases, meant that characterizing DB7 hydration in terms of simplified hydrate classifications was inappropriate for developing this pharmaceutical. PMID:26075319

  12. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties.

    PubMed

    Grossjohann, Christine; Serrano, Dolores R; Paluch, Krzysztof J; O'Connell, Peter; Vella-Zarb, Liana; Manesiotis, Panagiotis; Mccabe, Thomas; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2015-04-01

    Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1385-1398, 2015. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells

    PubMed Central

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-01-01

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795

  14. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao

    2005-05-01

    The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .

  16. Entropy in Spacetime and Topological Hair

    NASA Astrophysics Data System (ADS)

    Hyun, Young-Hwan; Kim, Yoonbai

    2018-01-01

    Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.

  17. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGES

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  18. First-principles calculations of the thermodynamic properties of transuranium elements in a molten salt medium

    NASA Astrophysics Data System (ADS)

    Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan

    2014-03-01

    We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.

  19. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry.

    PubMed

    Fotticchia, Iolanda; Fotticchia, Teresa; Mattia, Carlo Andrea; Netti, Paolo Antonio; Vecchione, Raffaele; Giancola, Concetta

    2014-12-09

    The stabilization of oil in water nano-emulsions by means of a polymer coating is extremely important; it prolongs the shelf life of the product and makes it suitable for a variety of applications ranging from nutraceutics to cosmetics and pharmaceutics. To date, an effective methodology to assess the best formulations in terms of thermodynamic stability has yet to be designed. Here, we perform a complete physicochemical characterization based on isothermal titration calorimetry (ITC) compared to conventional dynamic light scattering (DLS) to identify polymer concentration domains that are thermodynamically stable and to define the degree of stability through thermodynamic functions depending upon any relevant parameter affecting the stability itself, such as type of polymer coating, droplet distance, etc. For instance, the method was proven by measuring the energetics in the case of two different biopolymers, chitosan and poly-L-lysine, and for different concentrations of the emulsion coated with poly-L-lysine.

  20. Towards accurate free energy calculations in ligand protein-binding studies.

    PubMed

    Steinbrecher, Thomas; Labahn, Andreas

    2010-01-01

    Cells contain a multitude of different chemical reaction paths running simultaneously and quite independently next to each other. This amazing feat is enabled by molecular recognition, the ability of biomolecules to form stable and specific complexes with each other and with their substrates. A better understanding of this process, i.e. of the kinetics, structures and thermodynamic properties of biomolecule binding, would be invaluable in the study of biological systems. In addition, as the mode of action of many pharmaceuticals is based upon their inhibition or activation of biomolecule targets, predictive models of small molecule receptor binding are very helpful tools in rational drug design. Since the goal here is normally to design a new compound with a high inhibition strength, one of the most important thermodynamic properties is the binding free energy DeltaG(0). The prediction of binding constants has always been one of the major goals in the field of computational chemistry, because the ability to reliably assess a hypothetical compound's binding properties without having to synthesize it first would save a tremendous amount of work. The different approaches to this question range from fast and simple empirical descriptor methods to elaborate simulation protocols aimed at putting the computation of free energies onto a solid foundation of statistical thermodynamics. While the later methods are still not suited for the screenings of thousands of compounds that are routinely performed in computational drug design studies, they are increasingly put to use for the detailed study of protein ligand interactions. This review will focus on molecular mechanics force field based free energy calculations and their application to the study of protein ligand interactions. After a brief overview of other popular methods for the calculation of free energies, we will describe recent advances in methodology and a variety of exemplary studies of molecular dynamics simulation based free energy calculations.

  1. Thermodynamics of Pb17Li-bismuth interactions

    NASA Astrophysics Data System (ADS)

    Hubberstey, Peter; Sample, Tony

    1994-09-01

    Thermodynamic calculations of the PbBiLi ternary system have been completed to rationalise the formation of solid Li 3Bi on reaction of liquid Pb17Li with bismuth. At 723 K, the bismuth activity in equilibrium with liquid Pi17Li and solid Li 3Bi is calculated to be 9.50 × 10 -4; this can be correlated to a solubility of 2.09 × 10 -1 mol% Bi(2520 wppm). The corresponding bismuth activity in equilibrium with liquid Pb17Li and solid LiBi is 5.04 × 10 -2 (an extrapolated value as LiBi decomposes peritectically at 688 K). The minimum lithium content of PbLi alloys required to react with unit activity bismuth to form Li 3Bi at 723 K is calculated to be ˜ 1.8 mol% Li. The dominance of Li 3Bi in the PbBiLi system is attributed to its extreme stability as evidenced by both its high melting point (1418 K) and free energy of formation [ ΔGf0(Li 3Bi, c 723 K) = 212.8 kJ mol -1].

  2. Protonation enthalpies of metal oxides from high temperature electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa modelmore » for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.« less

  3. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one ismore » based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.« less

  4. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-09-01

    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  5. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    PubMed

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Vibrational contributions to the phase stability of PbS-PbTe alloys

    NASA Astrophysics Data System (ADS)

    Doak, Jeff W.; Wolverton, C.; OzoliĆš, Vidvuds

    2015-11-01

    The thermoelectric figure of merit (Z T ) of semiconductors such as PbTe can be improved by forming nanostructures within the bulk of these materials. Alloying PbTe with PbS causes PbS-rich nanostructures to precipitate from the solid solution, scattering phonons and increasing Z T . Understanding the thermodynamics of this process is crucial to optimizing the efficiency gains of this technique. Previous calculations of the thermodynamics of PbS-PbTe alloys [(J. W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012), 10.1103/PhysRevB.86.144202] found that mixing energetics alone were not sufficient to quantitatively explain the thermodynamic driving force for phase separation in these materials: first-principles calculations of the thermodynamics of phase separation overestimate the thermodynamic driving force for precipitation of PbS-rich nanostructures from PbS-PbTe alloys. In this work, we re-examine the thermodynamics of PbS-PbTe, including the effects of vibrational entropy in the free energy through frozen-phonon calculations of special quasirandom structures (SQS) to explain this discrepancy between first-principles and experimental phase stability. We find that vibrational entropy of mixing reduces the calculated maximum miscibility gap temperature TG of PbS-PbTe by 470 K, bringing the error between calculated and experimental TG down from 700 to 230 K. Our calculated vibrational spectra of PbS-PbTe SQS exhibit dynamic instabilities of S ions that corroborate reports of low-T ferroelectriclike phase transitions in solid solutions of PbS and PbTe, which are not present in either of the constituent compounds. We use our calculated vibrational spectra to obtain phase transition temperatures, which are in qualitative agreement with experimental results for PbTe-rich alloys, as well as to predict the existence of a low-T displacive phase transition in PbS-rich PbS-PbTe, which has not yet been experimentally investigated.

  7. The Thermodynamics of General and Local Anesthesia

    PubMed Central

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-01-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates, and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. Using this analysis, we are able to describe experimentally observed calorimetric profiles and predict the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff effect of long-chain alcohols and the additivity of the effect of general and local anesthetics. PMID:24853743

  8. The Thermodynamics of General and Local Anesthesia

    NASA Astrophysics Data System (ADS)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  9. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  10. Generalized Grueneisen tensor from solid nonlinearity parameters

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1980-01-01

    Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.

  11. The thermodynamical foundation of electronic conduction in solids

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one homogeneous temperature. The generalisation of the thermodynamical framework to an inhomogeneous temperature field is sketched in an appendix. A fluid-mechanical picture of electronic conduction is obtained as a by-product of that framework.

  12. Actinides-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  13. Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study

    NASA Astrophysics Data System (ADS)

    Re Fiorentin, Michele; Gaspari, Roberto; Quaglio, Marzia; Massaglia, Gulia; Saracco, Guido

    2018-04-01

    Nitrogen-doped graphene has raised considerable interest for its possible applications as carbon dioxide adsorber and catalyst. In this paper, we provide a theoretical study of graphitic, pyridiniclike and pyrroliclike nitrogen defects in a free-standing graphene layer, focusing on their formation and adsorption behavior. Using density functional theory and thermodynamics, we analyze the various defects, highlighting the great stability of graphitic nitrogen in a wide temperature and pressure range. CO2 adsorption proves to be moderately thermodynamically disfavored around standard conditions for the most stable nitrogen defects and slightly favored for the more energetic ones. The combination of the results on defect stability and CO2 adsorption may open interesting possibilities in the design of carbon-based materials with promising adsorption performances.

  14. Quintessence background for 5D Einstein-Gauss-Bonnet black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Amir, Muhammed; Maharaj, Sunil D.

    2017-08-01

    As we know that the Lovelock theory is an extension of the general relativity to the higher-dimensions, in this theory the first- and the second-order terms correspond to general relativity and the Einstein-Gauss-Bonnet gravity, respectively. We obtain a 5D black hole solution in Einstein-Gauss-Bonnet gravity surrounded by the quintessence matter, and we also analyze their thermodynamical properties. Owing to the quintessence corrected black hole, the thermodynamic quantities have also been corrected except for the black hole entropy, and a phase transition is achievable. The phase transition for the thermodynamic stability is characterized by a discontinuity in the specific heat at r=r_C, with the stable (unstable) branch for r < (>) r_C.

  15. Li 2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGES

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; ...

    2016-01-22

    In a classic example of stability from instability, we show that Li 2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li 2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li 2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl systemmore » of crystalline solid electrolytes where Li 2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li 2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li 2OHCl solid electrolyte.« less

  16. Calculation and design of a ramjet missile

    NASA Astrophysics Data System (ADS)

    Schubert, Johannes

    The fundamentals for the design of a ramjet missile are treated. The chemical fundamentals of the solid rocket propellants used for ramjet missiles are outlined. The determination of the most favorable flying speed is discussed. The thermodynamic fundamentals (calculation of the solid propellant missile, calculation of the mixing procedure and the after burning in the pressure nozzle, and power calculation) are presented. The design specifications of the propulsion system are given.

  17. Thermodynamic stability and structure of cuprous chloride surfaces: a DFT investigation.

    PubMed

    Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z

    2015-03-14

    Density functional theory together with ab initio atomistic thermodynamics has been utilized to study the structures and stabilities of the low index CuCl surfaces. It is shown that the Cl-terminated structures are more stable than the Cu-terminated configurations, and that the defective CuCl(110)-Cu structure is more stable than the stoichiometric CuCl(110) surface. The equilibrium shape of a cuprous chloride nanostructure terminated by low-index CuCl surfaces has also been predicted using a Wulff construction. It was found that the (110) facets dominate at low chlorine concentration. As the chlorine concentration is increased, however, the contributions of the (100) and (111) facets to the Wulff construction also increase giving the crystal a semi-prism shape. At high chlorine concentration, and close to the rich limit, the (111) facets were found to be the only contributors to the Wulff construction, resulting in prismatic nanocrystals.

  18. Thermodynamics of de Sitter Black Holes in Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Bo; Zhang, Si-Xuan; Wu, Yan; Ma, Li; Cao, Shuo

    2018-05-01

    In this paper, by taking de Sitter space-time as a thermodynamic system, we study the effective thermodynamic quantities of de Sitter black holes in massive gravity, and furthermore obtain the effective thermodynamic quantities of the space-time. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordström-de Sitter space-time, which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future. Moreover, our analysis indicates that the effective thermodynamic quantities and relevant parameters play a very important role in the investigation of the stability and evolution of de Sitter space-time. Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos. 11605107 and 11503001, the National Natural Science Foundation of China under Grant No. 11475108, Program for the Innovative Talents of Higher Learning Institutions of Shanxi, the Natural Science Foundation of Shanxi Province under Grant No. 201601D102004, the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No. 201601D021022, and the Natural Science Foundation of Datong City under Grant No. 20150110

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, K., E-mail: ku.fujiwara@screen.co.jp; Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Shibahara, M., E-mail: siba@mech.eng.osaka-u.ac.jp

    A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure componentsmore » and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.« less

  20. The validation and preference among different EAM potentials to describe the solid-liquid transition of aluminum

    NASA Astrophysics Data System (ADS)

    Jiang, Yewei; Luo, Jie; Wu, Yongquan

    2017-06-01

    Empirical potential is vital to the classic atomic simulation, especially for the study of phase transitions, as well as the solid-interface. In this paper, we attempt to set up a uniform procedure for the validation among different potentials before the formal simulation study of phase transitions of metals. Two main steps are involved: (1) the prediction of the structures of both solid and liquid phases and their mutual transitions, i.e. melting and crystallization; (2) the prediction of vital thermodynamic (the equilibrium melting point at ambient pressure) and dynamic properties (the degrees of superheating and undercooling). We applied this procedure to the testing of seven published embedded-atom potentials (MKBA (Mendelev et al 2008 Philos. Mag. 88 1723), MFMP (Mishin et al 1999 Phys. Rev. B 59 3393), MDSL (Sturgeon and Laird 2000 Phys. Rev. B 62 14720), ZM (Zope and Mishin 2003 Phys. Rev. B 68 024102), LEA (Liu et al 2004 Model. Simul. Mater. Sci. Eng. 12 665), WKG (Winey et al 2009 Model. Simul. Mater. Sci. Eng. 17 055004) and ZJW (Zhou et al 2004 Phys. Rev. B 69 144113)) for the description of the solid-liquid transition of Al. All the predictions of structure, melting point and superheating/undercooling degrees were compared with the experiments or theoretical calculations. Then, two of them, MKBA and MDSL, were proven suitable for the study of the solid-liquid transition of Al while the residuals were unqualified. However, potential MKBA is more accurate to predict the structures of solid and liquid, while MDSL works a little better in the thermodynamic and dynamic predictions of solid-liquid transitions.

  1. Optimum Chemical Regeneration of the Gases Burnt in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Volkova, Yu. V.; Plotnikov, N. S.

    2014-07-01

    A simplified method of calculating the concentrations of the components of a thermodynamically equilibrium mixture (a synthesis gas) supplied to the anode channel of a battery of solid oxide fuel cells and the change in these concentrations along the indicated channel is proposed and results of corresponding calculations are presented. The variants of reforming of a natural gas (methane) by air and steam as well as by a part of the exhaust combustion products for obtaining a synthesis gas are considered. The amount of the anode gases that should be returned for the complete chemical regeneration of the gases burnt in the fuel cells was determined. The dependence of the electromotive force of an ideal oxide fuel element (the electric circuit of which is open) on the degree of absorption of oxygen in a thermodynamically equilibrium fuel mixture was calculated.

  2. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  3. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    NASA Astrophysics Data System (ADS)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  4. JAGUAR Procedures for Detonation Behavior of Silicon Containing Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos; Poulos, William; Pincay, Jack

    2007-06-01

    Improved relationships for the thermodynamic properties of solid and liquid silicon and silicon oxide for use with JAGUAR thermo-chemical equation of state routines were developed in this study. Analyses of experimental melting temperature curves for silicon and silicon oxide indicated complex phase behavior and that improved coefficients were required for solid and liquid thermodynamic properties. Advanced optimization routines were utilized in conjunction with the experimental melting point data to establish volumetric coefficients for these substances. The new property libraries resulted in agreement with available experimental values, including Hugoniot data at elevated pressures. Detonation properties were calculated with JAGUAR using the revised property libraries for silicon containing explosives. Constants of the JWLB equation of state were established for varying extent of silicon reaction. Supporting thermal heat transfer analyses were conducted for varying silicon particle sizes to establish characteristic times for melting and silicon reaction.

  5. Thermodynamic properties of small aggregates of rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Kaelberer, J.

    1975-01-01

    The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.

  6. Thermodynamic and radiative structure of stratocumulus-topped boundary layers*

    DOE PAGES

    Ghate, Virendra P.; Miller, Mark A.; Albrecht, Bruce A.; ...

    2015-01-05

    Stratocumulus Topped Boundary Layers (STBL) observed in three different regions with distinctive environments are described in the context of their thermodynamic and radiative properties. Here, the primary data set consisted of 131 soundings from the South East Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic and 83 soundings from the US Southern Great Plains (SGP). A new technique that preserves the depths of the sub-layers within a STBL is proposed for averaging the profiles of thermodynamic and radiative variables. The STBL was deepest over SEP and had the strongest radiative cooling rates near cloudmore » top among the three locations. Although the radiative cooling rates were comparable over GRW and SGP, the STBL was deeper over GRW compared to that over SGP. On average the STBL inversion was strongest over SEP (11.7 k and -5.43 g kg -1) and weakest over the SGP (6.89 k and -0.41 g kg -1). Significantly larger liquid water path, integrated water vapor, and variability in these two properties was found over GRW and evidence presented suggests that conditions at cloud top may play a lesser role in determining the resident cloud structure over GRW than over SEP. A modal analysis revealed ~26% of the STBL to be well-mixed, ~20% of STBL to be stable and ~30% STBL having a stable layer in-between a surface mixed layer and the cloud layer. Over all the three locations, the STBL was shallowest in well-mixed mode and deepest in the stable mode.« less

  7. Encapsulation of testosterone by chitosan nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5'-phosphate with isoniazid in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.

    2017-05-01

    Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.

  9. Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; Lobanov, Sergey S.; Zaug, Joseph M.; Liu, Hanyu; Greenberg, Eran; Prakapenka, Vitali B.

    2018-03-01

    Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe (Fe ,Fe /Ni )3 and XeNi3 compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.

  10. Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.

    PubMed

    Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng

    2018-05-21

    Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.

  11. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE PAGES

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    2015-11-05

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  12. Phase Stability for the Pd-Si System. First-Principles, Experiments, and Solution-Based Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S. H.; Huo, Y.; Napolitano, Ralph E.

    Relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that Pd 5Si-μ, Pd 9Si 2-α, Pd 3 Si-β, Pd 2 Si-γ, and PdSi-δ are the stable phases at 0 K (-273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the PdSi-δ phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds Pd 5 Si-μ, Pd 9 Si 2-α, Pd 3Si-β, and Pdmore » 2Si-γ are treated as stable phases down to 0 K (-273 °C), while the PdSi-δ is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. Moreover, the liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for Pd 5Si-μ, Pd 9Si 2-α, Pd 3Si-β, Pd 2Si-γ, and PdSi-δ. Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.« less

  13. Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione.

    PubMed

    Barakat, Assem; Al-Najjar, Hany J; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-05

    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces

    DOE PAGES

    Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...

    2016-07-26

    Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less

  15. Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies.

    PubMed

    Olives, Juan

    2010-03-03

    The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.

  16. Evaluation of the 95% limits of agreement of the volumes of 5-year clinically stable solid nodules for the development of a follow-up system for indeterminate solid nodules in CT lung cancer screening

    PubMed Central

    Muramatsu, Yukio; Yamamichi, Junta; Gomi, Shiho; Oubel, Estanislao; Moriyama, Noriyuki

    2018-01-01

    Background This study sought to evaluate the 95% limits of agreement of the volumes of 5-year clinically stable solid nodules for the development of a follow-up system for indeterminate solid nodules. Methods The volumes of 226 solid nodules that had been clinically stable for 5 years were measured in 186 patients (53 female never-smokers, 36 male never-smokers, 51 males with <30 pack-years, and 46 males with ≥30 pack-years) using a three-dimensional semiautomated method. Volume changes were evaluated using three methods: percent change, proportional change and growth rate. The 95% limits of agreement were evaluated using the Bland-Altman method. Results The 95% limits of agreement were as follows: range of percent change, from ±34.5% to ±37.8%; range of proportional change, from ±34.1% to ±36.8%; and range of growth rate, from ±39.2% to ±47.4%. Percent change-based, proportional change-based, and growth rate-based diagnoses of an increase or decrease in ten solid nodules were made at a mean of 302±402, 367±455, and 329±496 days, respectively, compared with a clinical diagnosis made at 809±616 days (P<0.05). Conclusions The 95% limits of agreement for volume change in 5-year stable solid nodules may enable the detection of an increase or decrease in the solid nodule at an earlier stage than that enabled by a clinical diagnosis, possibly contributing to the development of a follow-up system for reducing the number of additional Computed tomography (CT) scans performed during the follow-up period. PMID:29600047

  17. Evaluation of the 95% limits of agreement of the volumes of 5-year clinically stable solid nodules for the development of a follow-up system for indeterminate solid nodules in CT lung cancer screening.

    PubMed

    Kakinuma, Ryutaro; Muramatsu, Yukio; Yamamichi, Junta; Gomi, Shiho; Oubel, Estanislao; Moriyama, Noriyuki

    2018-01-01

    This study sought to evaluate the 95% limits of agreement of the volumes of 5-year clinically stable solid nodules for the development of a follow-up system for indeterminate solid nodules. The volumes of 226 solid nodules that had been clinically stable for 5 years were measured in 186 patients (53 female never-smokers, 36 male never-smokers, 51 males with <30 pack-years, and 46 males with ≥30 pack-years) using a three-dimensional semiautomated method. Volume changes were evaluated using three methods: percent change, proportional change and growth rate. The 95% limits of agreement were evaluated using the Bland-Altman method. The 95% limits of agreement were as follows: range of percent change, from ±34.5% to ±37.8%; range of proportional change, from ±34.1% to ±36.8%; and range of growth rate, from ±39.2% to ±47.4%. Percent change-based, proportional change-based, and growth rate-based diagnoses of an increase or decrease in ten solid nodules were made at a mean of 302±402, 367±455, and 329±496 days, respectively, compared with a clinical diagnosis made at 809±616 days (P<0.05). The 95% limits of agreement for volume change in 5-year stable solid nodules may enable the detection of an increase or decrease in the solid nodule at an earlier stage than that enabled by a clinical diagnosis, possibly contributing to the development of a follow-up system for reducing the number of additional Computed tomography (CT) scans performed during the follow-up period.

  18. Constitution of the Sr-Ni-O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkevich, M.

    2005-09-15

    The constitution of the Sr-Ni-O system was studied experimentally for the first time. Samples were prepared either from SrCO{sub 3} and NiO or from Sr(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2}.6H{sub 2}O and characterized by high-temperature X-ray powder diffraction, scanning electron microscopy, thermogravimetric and differential thermal analyses. In the SrO-NiO quasibinary system an eutectic reaction: liquid-bar SrO+NiO was found to occur at 1396+/-5{sup o}C, while the homogeneity range of terminal solid solutions is negligible. Thermodynamic calculations using the regular solution model for the liquid and rocksalt-type phases were employed to predict liquidus and solidus curves. Three ternary compounds, SrNiO{sub 2.5},more » Sr{sub 5}Ni{sub 4}O{sub 11}, and Sr{sub 9}Ni{sub 7}O{sub 21} were observed in the samples prepared from nitrate solutions, but only Sr{sub 9}Ni{sub 7}O{sub 21} was proved to be thermodynamically stable in air up to 1030+/-6{sup o}C. When heating in air, SrNiO{sub 2.5} and Sr{sub 5}Ni{sub 4}O{sub 11} were found to transform irreversibly into a mixture of Sr{sub 9}Ni{sub 7}O{sub 21} and NiO. Isothermal section of the SrO-NiO-O subsystem, which represents phase equilibria at 950-1030{sup o}C as well as an isobaric section of the Sr-Ni-O system in air were constructed.« less

  19. Exploring connections between statistical mechanics and Green's functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order Green's function

    NASA Astrophysics Data System (ADS)

    Welden, Alicia Rae; Rusakov, Alexander A.; Zgid, Dominika

    2016-11-01

    Including finite-temperature effects from the electronic degrees of freedom in electronic structure calculations of semiconductors and metals is desired; however, in practice it remains exceedingly difficult when using zero-temperature methods, since these methods require an explicit evaluation of multiple excited states in order to account for any finite-temperature effects. Using a Matsubara Green's function formalism remains a viable alternative, since in this formalism it is easier to include thermal effects and to connect the dynamic quantities such as the self-energy with static thermodynamic quantities such as the Helmholtz energy, entropy, and internal energy. However, despite the promising properties of this formalism, little is known about the multiple solutions of the non-linear equations present in the self-consistent Matsubara formalism and only a few cases involving a full Coulomb Hamiltonian were investigated in the past. Here, to shed some light onto the iterative nature of the Green's function solutions, we self-consistently evaluate the thermodynamic quantities for a one-dimensional (1D) hydrogen solid at various interatomic separations and temperatures using the self-energy approximated to second-order (GF2). At many points in the phase diagram of this system, multiple phases such as a metal and an insulator exist, and we are able to determine the most stable phase from the analysis of Helmholtz energies. Additionally, we show the evolution of the spectrum of 1D boron nitride to demonstrate that GF2 is capable of qualitatively describing the temperature effects influencing the size of the band gap.

  20. Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P).

    PubMed

    Wang, Xiaoyu; Hoshika, Shuichi; Peterson, Raymond J; Kim, Myong-Jung; Benner, Steven A; Kahn, Jason D

    2017-05-19

    Synthetic nucleobases presenting non-Watson-Crick arrangements of hydrogen bond donor and acceptor groups can form additional nucleotide pairs that stabilize duplex DNA independent of the standard A:T and G:C pairs. The pair between 2-amino-3-nitropyridin-6-one 2'-deoxyriboside (presenting a {donor-donor-acceptor} hydrogen bonding pattern on the Watson-Crick face of the small component, trivially designated Z) and imidazo[1,2-a]-1,3,5-triazin-4(8H)one 2'-deoxyriboside (presenting an {acceptor-acceptor-donor} hydrogen bonding pattern on the large component, trivially designated P) is one of these extra pairs for which a substantial amount of molecular biology has been developed. Here, we report the results of UV absorbance melting measurements and determine the energetics of binding of DNA strands containing Z and P to give short duplexes containing Z:P pairs as well as various mismatches comprising Z and P. All measurements were done at 1 M NaCl in buffer (10 mM Na cacodylate, 0.5 mM EDTA, pH 7.0). Thermodynamic parameters (ΔH°, ΔS°, and ΔG° 37 ) for oligonucleotide hybridization were extracted. Consistent with the Watson-Crick model that considers both geometric and hydrogen bonding complementarity, the Z:P pair was found to contribute more to duplex stability than any mismatches involving either nonstandard nucleotide. Further, the Z:P pair is more stable than a C:G pair. The Z:G pair was found to be the most stable mismatch, forming either a deprotonated mismatched pair or a wobble base pair analogous to the stable T:G mismatch. The C:P pair is less stable, perhaps analogous to the wobble pair observed for C:O 6 -methyl-G, in which the pyrimidine is displaced into the minor groove. The Z:A and T:P mismatches are much less stable. Parameters for predicting the thermodynamics of oligonucleotides containing Z and P bases are provided. This represents the first case where this has been done for a synthetic genetic system.

  1. Stability of dense liquid carbon dioxide.

    PubMed

    Boates, Brian; Teweldeberhan, Amanuel M; Bonev, Stanimir A

    2012-09-11

    We present ab initio calculations of the phase diagram of liquid CO(2) and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid-liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid-liquid-solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO(2) phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid-liquid transitions. Furthermore, the previously suggested phase separation of CO(2) into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO(2) does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.

  2. Experimental Investigation of Flame Stability in Porous Media Burners

    NASA Astrophysics Data System (ADS)

    Mohaddes, Danyal; Sobhani, Sadaf; Boigne, Emeric; Muhunthan, Priyanka; Ihme, Matthias

    2017-11-01

    Porous media burners (PMBs) facilitate the stabilization of a flame inside the pores of a solid porous material, and have benefits when compared to traditional burners in terms of emissions reduction and operating envelope extension. PMBs can potentially find application in a wide variety of domains, including household and industrial heating, internal combustion engines, and gas turbine engine combustors. The current study aims to motivate the use of PMBs in such applications on a thermodynamic basis, and subsequently compares the performance of two PMB designs. To this end, an experiment was devised and conducted to determine the stable operating conditions of a continuously varying and a discontinuously varying pore diameter profile PMB. In addition to investigating the stability regime of each design, pressure drop and axial temperatures were measured and compared at different operating conditions. The collected experimental data will be used both to inform computational studies of combustion within porous media and to aid in future optimizations of the design of PMBs. This work is supported by a Leading Edge Aeronautics Research for NASA (LEARN) Grant (Award No. NNX15AE42A).

  3. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  4. Designing superhard metals: The case of low borides

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun

    2018-04-01

    The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.

  5. Mineralogical controls on aluminum and magnesium in uranium mill tailings: Key Lake, Saskatchewan, Canada.

    PubMed

    Gomez, M A; Hendry, M J; Koshinsky, J; Essilfie-Dughan, J; Paikaray, S; Chen, J

    2013-07-16

    The mineralogy and evolution of Al and Mg in U mill tailings are poorly understood. Elemental analyses (ICP-MS) of both solid and aqueous phases show that precipitation of large masses of secondary Al and Mg mineral phases occurs throughout the raffinate neutralization process (pH 1-11) at the Key Lake U mill, Saskatchewan, Canada. Data from a suite of analytical methods (ICP-MS, EMPA, laboratory- and synchrotron-based XRD, ATR-IR, Raman, TEM, EDX, ED) and equilibrium thermodynamic modeling showed that nanoparticle-sized, spongy, porous, Mg-Al hydrotalcite is the dominant mineralogical control on Al and Mg in the neutralized raffinate (pH ≥ 6.7). The presence of this secondary Mg-Al hydrotalcite in mineral samples of both fresh and 15-year-old tailings indicates that the Mg-Al hydrotalcite is geochemically stable, even after >16 years in the oxic tailings body. Data shows an association between the Mg-Al hydrotalcite and both As and Ni and point to this Mg-Al hydrotalcite exerting a mineralogical control on the solubility of these contaminants.

  6. Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation.

    PubMed

    Carlsson, Daniel O; Lindh, Jonas; Strømme, Maria; Mihranyan, Albert

    2015-05-11

    The susceptibility of Iα- and Iβ-dominated cellulose to TEMPO-mediated oxidation was studied in this work since the cellulose Iα-allomorph is generally considered to be thermodynamically less stable and therefore more reactive than the cellulose Iβ-allomorph. Highly crystalline Cladophora nanocellulose, which is dominated by the Iα-allomorph, was oxidized to various degrees with TEMPO oxidant via bulk electrolysis in the absence of co-oxidants. Further, the Cladophora nanocellulose was thermally annealed in glycerol to produce its Iβ-dominated form and then oxidized. The produced materials were subsequently studied using FTIR, CP/MAS (13)C NMR, XRD, and SEM. The solid-state analyses confirmed that the annealed Cladophora cellulose was successfully transformed from an Iα- to an Iβ-dominated form. The results of the analyses of pristine and annealed TEMPO-oxidized samples suggest that Iα- and Iβ-dominated cellulose do not differ in susceptibility to TEMPO-oxidation. This work hence suggests that cellulose from different sources are not expected to differ in susceptibility to the oxidation due to differences in allomorph composition.

  7. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  8. Nanothermodynamics Applied to Thermal Processes in Heterogeneous Materials

    DTIC Science & Technology

    2012-08-03

    models agree favorably with a wide range of measurements of local thermal and dynamic properties. Progress in understanding basic thermodynamic...Monte- Carlo (MC) simulations of the Ising model .7 The solid black lines in Fig. 4 show results using the uncorrected (Metropolis) algorithm on the...parameter g=0.5 (green, dash-dot), g=1 (black, solid ), and g=2 (blue, dash-dot-dot). Note the failure of the standard Ising model (g=0) to match

  9. Physical aspects of dexibuprofen and racemic ibuprofen.

    PubMed

    Leising, G; Resel, R; Stelzer, F; Tasch, S; Lanziner, A; Hantich, G

    1996-12-01

    This article presents a comparative study of ibuprofen materials in their solid state. Ibuprofen crystallizes into two different structures for the S(+) enantiomer (dexibuprofen) and racemic ibuprofen. The crystal structure of ibuprofen, its optical absorption and photoluminescence, and the thermodynamic results (melting point and heat of fusion) are discussed. From these physicochemical properties, the authors conclude that dexibuprofen, which is the most active species pharmaceutically, and racemic ibuprofen are inherently different solid-state materials.

  10. Characterization of racemic species of chiral drugs using thermal analysis, thermodynamic calculation, and structural studies.

    PubMed

    Li, Z J; Zell, M T; Munson, E J; Grant, D J

    1999-03-01

    The identification of the racemic species, as a racemic compound, a racemic conglomerate, or a racemic solid solution (pseudoracemate), is crucial for rationalizing the potential for resolution of racemates by crystallization. The melting points and enthalpies of fusion of a number of chiral drugs and their salts were measured by differential scanning calorimetry. Based on a thermodynamic cycle involving the solid and liquid phases of the enantiomers and racemic species, the enthalpy, entropy and Gibbs free energy of the racemic species were derived from the thermal data. The Gibbs free energy of formation, is always negative for a racemic compound, if it can exist, and the contribution from the entropy of mixing in the liquid state to the free energy of formation is the driving force for the process. For a racemic conglomerate, the entropy of mixing in the liquid state is close to the ideal value of R ln 2 (1.38 cal.mol-1. K-1). Pseudoracemates behave differently from the other two types of racemic species. When the melting points of the racemic species is about 30 K below that of the homochiral species, is approximately zero, indicating that the racemic compound and racemic conglomerate possess similar relative stabilities. The powder X-ray diffraction patterns and 13C solid-state nuclear magnetic resonance spectra are valuable for revealing structural differences between a racemic compound and a racemic conglomerate. Thermodynamic prediction, thermal analysis, and structural study are in excellent agreement for identifying the nature of the racemic species.

  11. Different amorphous solid-state forms of roxithromycin: A thermodynamic and morphological study.

    PubMed

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique Elizabeth

    2016-02-10

    The striking impact that different preparation methods have on the characteristics of amorphous solid-state forms has attracted considerable attention during the last two decades. The pursuit of more extensive knowledge regarding polyamorphism therefore continues. The aim of this study was firstly, to investigate the influence of different preparation techniques to obtain amorphous solid-state forms for the same active pharmaceutical ingredient, namely roxithromycin. The preparation techniques also report on a method utilizing hot air, which although it is based on a melt intermediary step, is considered a novel preparation method. Secondly, to conduct an in-depth investigation into any physico-chemical differences between the resulting amorphous forms and thirdly, to bring our findings into context with that of previous work done, whilst simultaneously discussing a well-defined interpretation for the term polyamorphism and propose a discernment between true polyamorphism and pseudo-polyamorphism/atypical-polyamorphism. The preparation techniques included melt, solution, and a combination of solution-mechanical disruption as intermediary steps. The resulting amorphous forms were investigated using differential scanning calorimetry, X-ray powder diffraction, hot-stage microscopy, scanning electron microscopy, and vapor sorption. Clear and significant thermodynamic differences were determined between the four amorphous forms. It was also deduced from this study that different preparation techniques have a mentionable impact on the morphological properties of the resulting amorphous roxithromycin powders. Thermodynamic properties as well as the physical characteristics of the amorphous forms greatly governed other physico-chemical properties i.e. solubility and dissolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Energy repartition in the nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  13. University Physics, Study Guide, Revised Edition

    NASA Astrophysics Data System (ADS)

    Benson, Harris

    1996-01-01

    Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.

  14. Spatiotemporal control over the co-conformational switching in pH-responsive flavylium-based multistate pseudorotaxanes.

    PubMed

    Diniz, Ana Marta; Basílio, Nuno; Cruz, Hugo; Pina, Fernando; Parola, A Jorge

    2015-01-01

    A multistate molecular dyad containing flavylium and viologen units was synthesized and the pH dependent thermodynamics of the network completely characterized by a variety of spectroscopic techniques such as NMR, UV-vis and stopped-flow. The flavylium cation is only stable at acidic pH values. Above pH ≈ 5 the hydration of the flavylium leads to the formation of the hemiketal followed by ring-opening tautomerization to give the cis-chalcone. Finally, this last species isomerizes to give the trans-chalcone. For the present system only the flavylium cation and the trans-chalcone species could be detected as being thermodynamically stable. The hemiketal and the cis-chalcone are kinetic intermediates with negligible concentrations at the equilibrium. All stable species of the network were found to form 1 : 1 and 2 : 1 host : guest complexes with cucurbit[7]uril (CB7) with association constants in the ranges 10(5)-10(8) M(-1) and 10(3)-10(4) M(-1), respectively. The 1 : 1 complexes were particularly interesting to devise pH responsive bistable pseudorotaxanes: at basic pH values (≈12) the flavylium cation interconverts into the deprotonated trans-chalcone in a few minutes and under these conditions the CB7 wheel was found to be located around the viologen unit. A decrease in pH to values around 1 regenerates the flavylium cation in seconds and the macrocycle is translocated to the middle of the axle. On the other hand, if the pH is decreased to 6, the deprotonated trans-chalcone is neutralized to give a metastable species that evolves to the thermodynamically stable flavylium cation in ca. 20 hours. By taking advantage of the pH-dependent kinetics of the trans-chalcone/flavylium interconversion, spatiotemporal control of the molecular organization in pseudorotaxane systems can be achieved.

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Describes a lecture demonstration of a solid state phase transition using a thermodynamic material which changes state at room temperature. Also describes a demonstration on kinetics using a "Big Bang" (trade mark) calcium carbide cannon. Indicates that the cannon is safe to use. (JN)

  16. Chemical composition of drinking water as a possible environment-specific factor modifying the thyroid risk in the areas subjected to radioiodine contamination

    NASA Astrophysics Data System (ADS)

    Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris

    2015-04-01

    Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration in landscapes (according Perel'man, 1975). Obtained data will be used for evaluation of contribution of I and Se status of drinking water to the risk of thyroid diseases among local population.

  17. Path-integral simulation of solids.

    PubMed

    Herrero, C P; Ramírez, R

    2014-06-11

    The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.

  18. Cavitation in liquid cryogens. 2: Hydrofoil

    NASA Technical Reports Server (NTRS)

    Hord, J.

    1973-01-01

    Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

  19. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  20. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.

  1. Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses.

    PubMed

    Meysman, Filip J R; Bruers, Stijn

    2010-05-12

    The idea that entropy production puts a constraint on ecosystem functioning is quite popular in ecological thermodynamics. Yet, until now, such claims have received little quantitative verification. Here, we examine three 'entropy production' hypotheses that have been forwarded in the past. The first states that increased entropy production serves as a fingerprint of living systems. The other two hypotheses invoke stronger constraints. The state selection hypothesis states that when a system can attain multiple steady states, the stable state will show the highest entropy production rate. The gradient response principle requires that when the thermodynamic gradient increases, the system's new stable state should always be accompanied by a higher entropy production rate. We test these three hypotheses by applying them to a set of conventional food web models. Each time, we calculate the entropy production rate associated with the stable state of the ecosystem. This analysis shows that the first hypothesis holds for all the food webs tested: the living state shows always an increased entropy production over the abiotic state. In contrast, the state selection and gradient response hypotheses break down when the food web incorporates more than one trophic level, indicating that they are not generally valid.

  2. Surface thermodynamic analysis of fluid confined in a cone and comparison with the sphere-plate and plate-plate geometries.

    PubMed

    Zargarzadeh, Leila; Elliott, Janet A W

    2013-10-22

    The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.

  3. Structural, thermodynamic, and kinetic aspects of the trimorphism of hydrocortisone.

    PubMed

    Suitchmezian, Viktor; Jess, Inke; Näther, Christian

    2008-10-01

    Hydrocortisone was investigated for polymorphism and pseudopolymorphism and three different polymorphic modifications (I-III) and one 2-propanol solvate were found. Forms I and III crystallize in the orthorhombic space group P2(1)2(1)2(1), whereas form II and the 2-propanol solvate crystallize monoclinic in space group P2(1). In all the modifications the molecules are connected by intermolecular O--H...O hydrogen bonding. In the 2-propanol solvate, channels are formed in which the solvent molecules are embedded. Solvent-mediated conversion experiments reveal that the commercially available form I represents the thermodynamically most stable modification at room temperature, whereas forms II and III are metastable. On heating, form III transforms into form II in an endothermic reaction, which shows that an enantiotropic relationship exists between these forms. Form I exhibits the highest melting point and the highest heat of fusion and thus represents the thermodynamically most stable form over the whole temperature range. DSC measurements indicate that form I behaves monotropic to forms II and III. Desolvation of the 2-propanol solvate at higher temperatures results in a transformation into form II, whereas the removal of 2-propanol at room temperature and in vacuum reduced pressure leads to the formation of form III. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon

    Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).

  5. Punctuated equilibrium as an emergent process and its modified thermodynamic characterization.

    PubMed

    Wosniack, M E; da Luz, M G E; Schulman, L S

    2017-01-07

    We address evolutionary dynamics and consider under which conditions the ecosystem interaction network allows punctuated equilibrium (i.e., alternation between hectic and quasi-stable phases). We focus on the links connecting various species and on the strength and sign of those links. For this study we consider the Tangled Nature model, which allows considerable flexibility and plasticity in the analysis of interspecies interactions. We find that it is necessary to have a proper balance of connectivity and interaction intensities so as to establish the kind of mutual cooperation and competition found in nature. It suggests evolutionary punctuated equilibrium as an emergent process, thus displaying features of complex systems. To explicitly demonstrate this fact we consider an extended form of thermodynamics, defining (for the present context) relevant out-of-equilibrium "collective" functions. We then show how to characterize the punctuated equilibrium through entropy-like and free energy-like quantities. Finally, from a close analogy to thermodynamic systems, we propose a protocol similar to simulated annealing. It is based on controlling the species' rate of mutation during the hectic periods, in this way enhancing the exploration of the genome space (similar to the known behavior of bacteria in stressful environments). This allows the system to more rapidly converge to long-duration quasi-stable phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations with charge-balancing oxygen vacancies. At higher temperatures near 700 °C, maximum enthalpy of formation shifts toward higher dopant concentrations, as a result of defect disordering. This concentration coincides with that of maximum ionic conductivity, extending the correlation seen previously near room temperature. It is also possible to co-dope these systems with Sm and Nd to further enhance ionic conductivity. For doubly doped ceria electrolytes, the solid solution phase of Ce1-xSm0.5xNd0.5xO2-0.5x (0 ≤ x ≤ 0.30) was investigated. It has been shown that for doubly doped ceria, the maximum enthalpy of formation occurs towards higher dopant concentration than that of singly doped counterparts, with less exothermic association enthalpies. These studies provide insight into the structure-composition-property-stability relations and aid in the rational design of the future SOFCs electrolytes.

  7. Building of Equations of State with Numerous Phase Transitions — Application to Bismuth

    NASA Astrophysics Data System (ADS)

    Heuzé, Olivier

    2006-07-01

    We propose an algorithm to build complete equation of state EOS including several solid/solid or solid/liquid phase transitions. Each phase has its own EOS and independent parameters. The phase diagram is deduced from the thermodynamic equilibrium assumption. Until now, such an approach was used in simple cases and limited to 2 or 3 phases. We have applied it in the general case to bismuth for which up to 13 phases have been identified. This study shows the great influence of binary mixtures and triple points properties in released isentropes after shock waves.

  8. Analysis and Thermodynamic Prediction of Hydrogen Solution in Solid and Liquid Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anyalebechi, P. N.

    Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.

  9. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.

    PubMed

    Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody

    2012-03-01

    Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.

  10. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less

  11. A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei

    2014-07-01

    We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.

  12. An advanced model framework for solid electrolyte intercalation batteries.

    PubMed

    Landstorfer, Manuel; Funken, Stefan; Jacob, Timo

    2011-07-28

    Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011

  13. Chiral Symmetry Breaking and Complete Chiral Purity by Thermodynamic-Kinetic Feedback Near Equilibrium: Implications for the Origin of Biochirality

    NASA Astrophysics Data System (ADS)

    Viedma, Cristobal

    2007-05-01

    Chiral symmetry breaking occurs when a physical or chemical process spontaneously generates a large excess of one of the two enantiomers-left-handed (L) or right-handed (D)--with no preference as to which of the two enantiomers is produced. From the viewpoint of energy, these two enantiomers can exist with an equal probability, and inorganic processes that involve chiral products commonly yield a racemic mixture of both. The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking in chirality and has long intrigued the science community. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, some 140 years ago. Here, it is shown that two populations of chiral crystals of left and right hand cannot coexist in solution: one of the chiral populations disappears in an irreversible autocatalytic process that nurtures the other one. Final and complete chiral purity seems to be an inexorable fate in the course of the common process of growth-dissolution. This unexpected chiral symmetry breaking can be explained by the feedback between the thermodynamic control of dissolution and the kinetics of the growth process near equilibrium. This ``thermodynamic-kinetic feedback near equilibrium'' is established as a mechanism to achieve complete chiral purity in solid state from a previously solid racemic medium. The way in which this mechanism could operate in solutions of chiral biomolecules is described. Finally, based on this mechanism, experiments designed to search for chiral purity in a new way are proposed: chiral purity of amino acids or biopolymers is predicted in solid phase from a previously solid racemic medium. This process may have played a key role in the origin of biochirality.

  14. Thermodynamic variables of first-order entropy corrected Lovelock-AdS black holes: P{-}V criticality analysis

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-06-01

    We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.

  15. Studies on Pidotimod Enantiomers With Chiralpak-IA: Crystal Structure, Thermodynamic Parameters and Molecular Docking.

    PubMed

    Dou, Xiaorui; Su, Xin; Wang, Yue; Chen, Yadong; Shen, Weiyang

    2015-11-01

    Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x-ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak-IA based on amylose derivatized with tris-(3, 5-dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl-tert-butyl-ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak-IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP. © 2015 Wiley Periodicals, Inc.

  16. Energy-dependent topological anti-de Sitter black holes in Gauss-Bonnet Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Behnamifard, H.; Bahrami-Asl, B.

    2018-03-01

    Employing higher-curvature corrections to Einstein-Maxwell gravity has garnered a great deal of attention motivated by the high-energy regime in the quantum nature of black hole physics. In addition, one may employ gravity's rainbow to encode quantum gravity effects into black hole solutions. In this paper, we regard an energy-dependent static spacetime with various topologies and study its black hole solutions in the context of Gauss-Bonnet Born-Infeld (GB-BI) gravity. We study the thermodynamic properties and examine the first law of thermodynamics. Using a suitable local transformation, we endow the Ricci-flat black hole solutions with a global rotation and study the effects of rotation on thermodynamic quantities. We also investigate thermal stability in a canonical ensemble by calculating the heat capacity. We obtain the effects of various parameters on the horizon radius of stable black holes. Finally, we discuss a second-order phase transition in the extended phase space thermodynamics and investigate the critical behavior.

  17. Thermodynamic study of dihydrogen phosphate dimerisation and complexation with novel urea- and thiourea-based receptors.

    PubMed

    Bregović, Nikola; Cindro, Nikola; Frkanec, Leo; Užarević, Krunoslav; Tomišić, Vladislav

    2014-11-24

    Complexation of dihydrogen phosphate by novel thiourea and urea receptors in acetonitrile and dimethyl sulfoxide was studied in detail by an integrated approach by using several methods (isothermal titration calorimetry, ESI-MS, and (1)H NMR and UV spectroscopy). Thermodynamic investigations into H2PO4(-) dimerisation, which is a process that has been frequently recognised, but rarely quantitatively described, were carried out as well. The corresponding equilibrium was taken into account in the anion-binding studies, which enabled reliable determination of the complexation thermodynamic quantities. In both solvents the thiourea derivatives exhibited considerably higher binding affinities with respect to those containing the urea moiety. In acetonitrile, 1:1 and 2:1 (anion/receptor) complexes formed, whereas in dimethyl sulfoxide only the significantly less stable complexes of 1:1 stoichiometry were detected. The solvent effects on the thermodynamic parameters of dihydrogen phosphate dimerisation and complexation reactions are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The modelling routes for the chemical vapour deposition process: application to Si 1- xGe x deposition

    NASA Astrophysics Data System (ADS)

    Pons, M.; Bernard, C.; Rouch, H.; Madar, R.

    1995-10-01

    The purpose of this article is to present the modelling routes for the chemical vapour deposition process with a special emphasis on mass transport models with near local thermochemical equilibrium imposed in the gas-phase and at the deposition surface. The theoretical problems arising from the linking of the two selected approaches, thermodynamics and mass transport, are shown and a solution procedure is proposed. As an illustration, selected results of thermodynamic and mass transport analysis and of the coupled approach showed that, for the deposition of Si 1- xGe x solid solution at 1300 K (system SiGeClHAr), the thermodynamic heterogeneous stability of the reactive gases and the thermal diffusion led to the germanium depletion of the deposit.

  19. Thermodynamically equilibrium roton states of nanoparticles in molten and vapour phases

    NASA Astrophysics Data System (ADS)

    Karasevskii, A. I.

    2015-05-01

    We show a possibility for a thermodynamically equilibrium nanocrystalline structure consisting of nanosized solid inclusions to appear in a melt just beyond the melting curve. Thermodynamic stability of the nanocrystalline structure in the melt results from the free energy lowering due to rotational motion of nanoparticles. The main contribution to the reduction of the free energy of the system is due to an increase in the rotational entropy and change in formation energy of nanocrystals, i.e. the nanocrystalline structure in the melt, like vacancies in a crystal, is an equilibrium defect structure of the melt. It is demonstrated that similar nanocrystalline structures can also appear in the vapour phase in the form of liquid nanodrops and in liquid solutions, e.g. in He II.

  20. Solubility of gas in confined systems. Nonextensive thermodynamics approach.

    PubMed

    Letellier, Pierre; Turmine, Mireille

    2013-02-15

    The use of the concepts of the nonextensive thermodynamics allows reconsidering the equilibrium of bubble solubilization and more commonly of gaseous aggregates in supersaturated solutions of gas. The introduced relations are general and include as particular cases the equations usually used to describe these phenomena. These equations are discussed. Especially, we specified the domain of application of Kelvin's relation which was illustrated by the solubility of gases in fogs and clouds. Various possibilities of thoughts on the behavior of the gaseous aggregates and nano-systems are proposed. Thus, the introduced relations permit to consider the presence of gaseous aggregates in equilibrium with the solution even for under-saturated solution. Nonextensive thermodynamics admits the notion of negative pressure at the inner of confined phases (solid or liquid). Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Folding thermodynamics of model four-strand antiparallel beta-sheet proteins.

    PubMed Central

    Jang, Hyunbum; Hall, Carol K; Zhou, Yaoqi

    2002-01-01

    The thermodynamic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated. Discontinuous molecular dynamic simulations have been performed for different sizes of the bias gap g, an artificial measure of a model protein's preference for its native state. The thermodynamic transition temperatures are obtained by calculating the squared radius of gyration R(g)(2), the root-mean-squared pair separation fluctuation Delta(B), the specific heat C(v), the internal energy of the system E, and the Lindemann disorder parameter Delta(L). Despite these models' simplicity, they exhibit a complex set of protein transitions, consistent with those observed in experimental studies on real proteins. Starting from high temperature, these transitions include a collapse transition, a disordered-to-ordered globule transition, a folding transition, and a liquid-to-solid transition. The high temperature transitions, i.e., the collapse transition and the disordered-to-ordered globule transition, exist for all three beta-strand proteins, although the native-state geometry of the three model proteins is different. However the low temperature transitions, i.e., the folding transition and the liquid-to-solid transition, strongly depend on the native-state geometry of the model proteins and the size of the bias gap. PMID:11806908

  2. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  3. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  4. A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoLong; Zhong, Zheng

    2017-08-01

    In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.

  5. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO 2 –UO 2 solid solutions

    DOE PAGES

    Liu, B.; Aidhy, D. S.; Zhang, Y.; ...

    2014-10-16

    The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO 2 –UO 2 solid solutions are investigated by density functional theory calculations. In pure ThO 2, the formation energy of oxygen vacancy is 7.58 eV and 1.46 eV under O rich and O poor conditions, respectively, while its migration energy barrier is 1.97 eV. The addition of UO 2 into ThO 2 significantly decreases the energetics of formation and migration of the oxygen vacancy. Among the range of UO 2-ThO 2 solid solutions studied in this work, UO 2 exhibits the lowest formation energy (5.99 eV andmore » -0.13 eV under O rich and O poor conditions, respectively) and Th 0.25U0 .75O 2 exhibits the lowest migration energy barrier (~ 1 eV). Moreover, by considering chemical potential, the phase diagram of oxygen vacancy as a function of both temperature and oxygen partial pressure is shown, which could help to gain experimental control over oxygen vacancy concentration.« less

  6. Simulating the Stability of Colloidal Amorphous Iron Oxide in Natural Water

    EPA Science Inventory

    Considerable uncertainty exists as to whether existing thermodynamic equilibrium solid/water partitioning paradigms can be used to assess the mobility of insoluble manufactured nanomaterials in the aquatic environment. In this work, the traditional Derjaguin–Landau–Verwey–Overbee...

  7. Equilibrium studies of oxalate and aluminum containing solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.; King, W. D.; Peters, T. B.

    2015-11-01

    The Savannah River National Laboratory (SRNL) was tasked to develop data on the solubility and conditions leading to precipitation of sodium oxalate, sodium nitrate, Bayerite (a polymorph of gibbsite, Al(OH) 3), and sodium aluminosilicate solids recently found in the Modular Caustic Side Solvent Extraction Unit (MCU). The data generated will be used to improve the OLI Systems thermodynamic database for these compounds allowing better prediction of solids formation by the modeling software in the future.

  8. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    PubMed Central

    Chavez, Pierre-François; Meeus, Joke; Robin, Florent; Schubert, Martin Alexander; Somville, Pascal

    2018-01-01

    The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD) manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling), and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width), and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs). Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w). Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD). Principal component analysis (PCA) was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development. PMID:29518936

  9. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  10. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  11. Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Ivanov, V. A.; Yamshchikov, L. F.; Volkovich, V. A.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-06-01

    Thermodynamic properties of Ga-In eutectic alloys saturated with praseodymium were determined for the first time employing the electromotive force method. The equilibrium potentials of the Pr-In alloys saturated with praseodymium (8.7-12.1 mol.% Pr) and Pr-Ga-In alloys (containing 0.0012-6.71 mol.% Pr) were measured between 573-1073 K. Pr-In alloy containing solid PrIn3 with known thermodynamic properties was used as the reference electrode when measuring the potentials of ternary Pr-In-Ga alloys. Activity, partial and excessive thermodynamic functions of praseodymium in alloys with indium and Ga-In eutectic were calculated. Activity (a), activity coefficients (γ) and solubility (X) of praseodymium in the studied temperature range can be expressed by the following equations: lgaα-Pr(In) = 4.425 - 11965/T ± 0.026. lgаα-Pr(Ga-In) = 5.866 - 14766/T ± 0.190. lgγα-Pr(Ga-In) = 2.351 - 9996/T ± 0.39. lgХPr(Ga-In) = 3.515 - 4770/T ± 0.20.

  12. Corrosion Thermodynamics of Magnesium and Alloys from First Principles as a Function of Solvation

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Williams, Kristen; Andzelm, Jan

    Thermodynamics of corrosion processes occurring on magnesium surfaces, such as hydrogen evolution and water dissociation, have been examined with density functional theory (DFT) to evaluate the effect of impurities and dilute alloying additions. The modeling of corrosion thermodynamics requires examination of species in a variety of chemical and electronic states in order to accurately represent the complex electrochemical corrosion process. In this study, DFT calculations for magnesium corrosion thermodynamics were performed with two DFT codes (VASP and DMol3), with multiple exchange-correlation functionals for chemical accuracy, as well as with various levels of implicit and explicit solvation for surfaces and solvated ions. The accuracy of the first principles calculations has been validated against Pourbaix diagrams constructed from solid, gas and solvated charged ion calculations. For aqueous corrosion, it is shown that a well parameterized implicit solvent is capable of accurately representing all but the first coordinating layer of explicit water for charged ions.

  13. A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

    NASA Astrophysics Data System (ADS)

    Matelli, José Alexandre; Bazzo, Edson

    This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.

  14. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%Cu alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweiacker, K. W.; Liu, Can; Gordillo, M. A.

    Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less

  15. Composition and automated crystal orientation mapping of rapid solidification products in hypoeutectic Al-4 at.%Cu alloys

    DOE PAGES

    Zweiacker, K. W.; Liu, Can; Gordillo, M. A.; ...

    2017-12-05

    Rmore » apid solidification can produce metastable phases and unusual microstructure modifications in multi-component alloys during additive manufacturing or laser beam welding. Composition and phase mapping by transmission electron microscopy have been used in this paper to characterize the morphologically distinct zones developing in hypoeutectic Al-4 at.% Cu alloy after pulsed laser melting for different crystal growth rate regimes. Deviations of the compositions of the alloy phases from equilibrium predictions and unique orientation relationships between the solidification transformation products have been determined. Specifically, for the columnar growth zone at solidification rates of 0.8 m s - 1 < v < v a = 1.8 m s - 1 , two distinct orientation relationships were established between the concomitantly forming non-equilibrium phases, supersaturated α-Al solid solution and the discontinuously distributed α-Al 2Cu-based θ'-phase, which can be described as {110} θ ∥ {001} α, [001] θ ∥ [110] α and {001} θ ∥ {001} α, [100] θ ∥ [100] α. These orientation relationships permit formation of coherent interphase interfaces with low interfacial free energy. Finally, this endows a kinetic advantage to the thermodynamically less stable θ'-Al 2Cu phase relative to the more stable equilibrium θ-Al 2Cu phase during formation of the morphologically modified eutectic of the columnar growth zone grains, since repeated nucleation is required to establish the discontinuous distribution of θ'-Al 2Cu phase.« less

  16. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    NASA Astrophysics Data System (ADS)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  17. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  18. The Local Atomic Structure and Chemical Bonding in Sodium Tin Phases

    DOE PAGES

    Baggetto, Loic; Bridges, Craig A.; Jumas, Dr. Jean-Claude; ...

    2014-09-25

    To understand these electrochemically-derived materials we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x ≥ 1 (NaxSn) and characterized the local bonding around the Sn atoms with X-ray diffraction, 119Sn M ssbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na 7Sn 3 is a new thermodynamically-stable phase with a rhombohedral structure and R-3m space group; (ii) orthorhombic Namore » 9Sn 4 (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic Na 14.78Sn 4 (Pnma), better described as Na 16-xSn 4, is Na-richer than cubic Na 15Sn 4 (I-43d). Characterization of electrochemically prepared Na-Sn alloys indicate that, at the exception of Na 7Sn 3 and Na 15Sn 4, different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.« less

  19. Hard convex lens-shaped particles: Densest-known packings and phase behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinacchi, Giorgio, E-mail: giorgio.cinacchi@uam.es; Torquato, Salvatore, E-mail: torquato@princeton.edu

    2015-12-14

    By using theoretical methods and Monte Carlo simulations, this work investigates dense ordered packings and equilibrium phase behavior (from the low-density isotropic fluid regime to the high-density crystalline solid regime) of monodisperse systems of hard convex lens-shaped particles as defined by the volume common to two intersecting congruent spheres. We show that, while the overall similarity of their shape to that of hard oblate ellipsoids is reflected in a qualitatively similar phase diagram, differences are more pronounced in the high-density crystal phase up to the densest-known packings determined here. In contrast to those non-(Bravais)-lattice two-particle basis crystals that are themore » densest-known packings of hard (oblate) ellipsoids, hard convex lens-shaped particles pack more densely in two types of degenerate crystalline structures: (i) non-(Bravais)-lattice two-particle basis body-centered-orthorhombic-like crystals and (ii) (Bravais) lattice monoclinic crystals. By stacking at will, regularly or irregularly, laminae of these two crystals, infinitely degenerate, generally non-periodic in the stacking direction, dense packings can be constructed that are consistent with recent organizing principles. While deferring the assessment of which of these dense ordered structures is thermodynamically stable in the high-density crystalline solid regime, the degeneracy of their densest-known packings strongly suggests that colloidal convex lens-shaped particles could be better glass formers than colloidal spheres because of the additional rotational degrees of freedom.« less

  20. Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping

    2009-01-15

    Both batch and column methods are conventionally utilized to determine some critical parameters for assessing the transport of contaminants of concern. The validity of using these parameters is somewhat confusing, however, since outputs such as distribution coefficient (Kd) from these two approaches are often discrepant. To bridge this gap, all possible factors that might contribute to this discrepancy were thoroughly investigated in this report by a case study of Cs sorption to crushed granite under various conditions. Our results confirm an important finding that solid/liquid (S/L) ratio is the dominant factor responsible for this discrepancy. As long as the S/L ratio exceeds 0.25, a consistent Kd value can be reached by the two methods. Under these conditions (S/L ratios>0.25), the sorption capacity of the solid is about an order of magnitude less than that in low S/L ratios (<0.25). Although low sorption capacity is observed in the cases of high S/L ratios, the sorption usually takes place preferentially on the most favorable (thermodynamically stable) sorption sites to form a stronger binding. This is verified by our desorption experiments in which a linear isotherm feature is shown either in deionized water or in 1M of ammonium acetate solutions. It may be concluded that batch experiment with an S/L ratio exceeding 0.25 is crucial to obtain convincing Kd values for safety assessment of radioactive waste repository.

  1. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples.

    PubMed

    Qi, Xue; Gao, Shuang; Ding, Guosheng; Tang, An-Na

    2017-01-01

    A facile, rapid and selective magnetic dispersed solid-phase extraction (dSPE) method for the extraction and enrichment of Cr (VI) prior to flame atomic absorption spectrometry (AAS) was introduced. For highly selective and efficient extraction, magnetic Cr (VI)-imprinted nanoparticles (Fe 3 O 4 @ Cr (VI) IIPs) were prepared by hyphenating surface ion-imprinted with sol-gel techniques. In the preparation process, chromate (Cr(VI)) was used as the template ion; vinylimidazole and 3-aminopropyltriethoxysilane were selected as organic functional monomer and co-monomer respectively. Another reagent, methacryloxypropyltrimethoxysilane was adopted as coupling agent to form the stable covalent bonding between organic and inorganic phases. The effects of various parameters on the extraction efficiency, such as pH of sample solution, the amount of adsorbent, extraction time, the type and concentration of eluent were systematically investigated. Furthermore, the thermodynamic and kinetic properties of the adsorption process were studied to explore the internal adsorption mechanism. Under optimized conditions, the preconcentration factor, limit of detection and linear range of the established dSPE-AAS method for Cr (VI) were found to be 98, 0.29μgL -1 and 4-140μgL -1 , respectively. The developed method was also successfully applied to the analysis of Cr (VI) in different water samples with satisfactory results, proving its reliability and feasibility in real sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nonclassical nucleation pathways in protein crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fajun

    2017-11-01

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  3. Nonclassical nucleation pathways in protein crystallization.

    PubMed

    Zhang, Fajun

    2017-11-08

    Classical nucleation theory (CNT), which was established about 90 years ago, has been very successful in many research fields, and continues to be the most commonly used theory in describing the nucleation process. For a fluid-to-solid phase transition, CNT states that the solute molecules in a supersaturated solution reversibly form small clusters. Once the cluster size reaches a critical value, it becomes thermodynamically stable and favored for further growth. One of the most important assumptions of CNT is that the nucleation process is described by one reaction coordinate and all order parameters proceed simultaneously. Recent studies in experiments, computer simulations and theory have revealed nonclassical features in the early stage of nucleation. In particular, the decoupling of order parameters involved during a fluid-to-solid transition leads to the so-called two-step nucleation mechanism, in which a metastable intermediate phase (MIP) exists between the initial supersaturated solution and the final crystals. Depending on the exact free energy landscapes, the MIPs can be a high density liquid phase, mesoscopic clusters, or a pre-ordered state. In this review, we focus on the studies of nonclassical pathways in protein crystallization and discuss the applications of the various scenarios of two-step nucleation theory. In particular, we focus on protein solutions in the presence of multivalent salts, which serve as a model protein system to study the nucleation pathways. We wish to point out the unique features of proteins as model systems for further studies.

  4. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure-Property Relationships with Solid-State NMR.

    PubMed

    Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri

    2016-05-02

    Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.

  5. Sensitivity of predicted scaling and permeability in Enhanced Geothermal Systems to Thermodynamic Data and Activity Models

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj

    2010-05-01

    A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the Pitzer-EUNIQUAC benchmark applied to relevant aqueous solutions at elevated temperature, pressure and ionic strength will be presented.

  6. A Direct Experimental Evidence For the New Thermodynamic Boundary in the Supercritical State: Implications for Earth and Planetary Sciences.

    NASA Astrophysics Data System (ADS)

    Bolmatov, D.

    2015-12-01

    While scientists have a good theoretical understanding of the heat capacity of both solids and gases, a general theory of the heat capacity of liquids has always remained elusive. Apart from being an awkward hole in our knowledge, heat capacity - the amount of heat needed to change a substance's temperature by a certain amount - is a relevant quantity that it would be nice to be able to predict. I will introduce a phonon-based approach to liquids and supercritical fluids to describe its thermodynamics in terms of sound propagation. I will show that the internal liquid energy has a transverse sound propagation gaps and explain their evolution with temperature variations on the P-T diagram. I will explain how this theoretical framework covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Delong-Petit and the ideal gas thermodynamic limits. As a results, the experimental evidence for the new thermodynamic boundary in the supercritical state (the Frenkel line) on the P-T phase diagram will be demonstrated. Then, I will report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. As a result, a universal link will be demonstrated between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in compressed liquids. Both can be considered as a universal fingerprint of the dynamic response of a liquid. They can be used then for a signal detection and analysis of a dynamic response in deep water and other fluids which is relevant for describing the thermodynamics of gas giants. The consequences of this finding will be discussed, including a physically justified way to demarcate the interior and the atmosphere in gas giants such as Jupiter and Saturn.

  7. CTserver: A Computational Thermodynamics Server for the Geoscience Community

    NASA Astrophysics Data System (ADS)

    Kress, V. C.; Ghiorso, M. S.

    2006-12-01

    The CTserver platform is an Internet-based computational resource that provides on-demand services in Computational Thermodynamics (CT) to a diverse geoscience user base. This NSF-supported resource can be accessed at ctserver.ofm-research.org. The CTserver infrastructure leverages a high-quality and rigorously tested software library of routines for computing equilibrium phase assemblages and for evaluating internally consistent thermodynamic properties of materials, e.g. mineral solid solutions and a variety of geological fluids, including magmas. Thermodynamic models are currently available for 167 phases. Recent additions include Duan, Møller and Weare's model for supercritical C-O-H-S, extended to include SO2 and S2 species, and an entirely new associated solution model for O-S-Fe-Ni sulfide liquids. This software library is accessed via the CORBA Internet protocol for client-server communication. CORBA provides a standardized, object-oriented, language and platform independent, fast, low-bandwidth interface to phase property modules running on the server cluster. Network transport, language translation and resource allocation are handled by the CORBA interface. Users access server functionality in two principal ways. Clients written as browser- based Java applets may be downloaded which provide specific functionality such as retrieval of thermodynamic properties of phases, computation of phase equilibria for systems of specified composition, or modeling the evolution of these systems along some particular reaction path. This level of user interaction requires minimal programming effort and is ideal for classroom use. A more universal and flexible mode of CTserver access involves making remote procedure calls from user programs directly to the server public interface. The CTserver infrastructure relieves the user of the burden of implementing and testing the often complex thermodynamic models of real liquids and solids. A pilot application of this distributed architecture involves CFD computation of magma convection at Volcan Villarrica with magma properties and phase proportions calculated at each spatial node and at each time step via distributed function calls to MELTS-objects executing on the CTserver. Documentation and programming examples are provided at http://ctserver.ofm- research.org.

  8. Disulphide bond exchange inhibited by air - kinetic and thermodynamic products in a library of macrocyclic cysteine derivatives.

    PubMed

    Cholewiak, Agnieszka; Dobrzycki, Łukasz; Jurczak, Janusz; Ulatowski, Filip

    2018-04-04

    In this paper we present the synthesis and reactivity of dithiols comprising of two cysteine moieties attached to a dipicolinic acid core. Oxidation of these thiols provides oligomeric macrocycles. Monomers with 13-membered rings are kinetic products which are, however, strained and readily transform into higher oligomers under basic conditions or elevated temperature via a disulphide exchange reaction. Dimers, which are the most stable thermodynamic products, equilibrate only under inert conditions with thiolate as a catalyst. Under aerobic conditions, the thiols are oxidised before the equilibrium is reached.

  9. Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth’s Core Thermodynamic Conditions

    DOE PAGES

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...

    2018-02-28

    In this study, using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe ,Fe/Ni) 3 and XeNi 3 compounds at thermodynamic conditions representative of Earth’s core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. In conclusion, the results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.

  10. Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-03-01

    In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.

  11. Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka

    2014-09-01

    An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.

  12. Canonical fluid thermodynamics

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1972-01-01

    The space-time integral of the thermodynamic pressure plays the role of the thermodynamic potential for compressible, adiabatic flow in the sense that the pressure integral for stable flow is less than for all slightly different flows. This stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and the temperature, which are the arguments of the pressure function, to be generalized velocities, that is, the proper-time derivatives of scalar spare-time functions which are generalized coordinates in the canonical formalism. In a fluid context, proper-time differentiation must be expressed in terms of three independent quantities that specify the fluid velocity. This can be done in several ways, all of which lead to different variants (canonical transformations) of the same constraint-free action integral whose Euler-Lagrange equations are just the well-known equations of motion for adiabatic compressible flow.

  13. Wafer-scale Thermodynamically Stable GaN Nanorods via Two-Step Self-Limiting Epitaxy for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Kum, Hyun; Seong, Han-Kyu; Lim, Wantae; Chun, Daemyung; Kim, Young-Il; Park, Youngsoo; Yoo, Geonwook

    2017-01-01

    We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morphology as a function of growth time for the two self-limiting steps elucidate the growth dynamics, which show that formation of an Ehrlich-Schwoebel barrier and preferential growth in the c-plane direction governs the growth process. This process allows monolithic formation of dimensionally uniform nanowires on templates with varying filling matrix patterns for a variety of novel electronic and optoelectronic applications. A color tunable phosphor-free white light LED with a coaxial architecture is fabricated as a demonstration of the applicability of these nanorods grown by TSSLG.

  14. Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma

    PubMed Central

    Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid

    2011-01-01

    Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614

  15. Retained austenite thermal stability in a nanostructured bainitic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avishan, Behzad, E-mail: b_avishan@sut.ac.ir; Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es; Yazdani, Sasan, E-mail: yazdani@sut.ac.ir

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation.more » Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.« less

  16. Thermodynamic and structural characterization of 2′-nitrogen-modified RNA duplexes

    PubMed Central

    Pham, John W.; Radhakrishnan, Ishwar; Sontheimer, Erik J.

    2004-01-01

    2′-aminonucleosides are commonly used as sites of post-synthetic chemical modification within nucleic acids. As part of a larger cross-linking strategy, we appended alkyl groups onto the N2′ position of 2′-amino-modified RNAs via 2′-ureido and 2′-amido linkages. We have characterized the thermodynamics of 2′-amino, 2′-alkylamido and 2′-alkylureido-modified RNA duplexes and show that 2′-ureido-modified RNAs are significantly more stable than analogous 2′-amido-modified RNAs. Using NMR spectroscopy and NMR-based molecular modeling of 2′-modified RNA duplexes, we examined the effects that 2′-nitrogen modifications have on RNA helices. Our data suggest that the 2′-ureido group forms a specific intra-nucleoside interaction that cannot occur within 2′-amido-modified helices. These results indicate that 2′-ureido modifications are superior to analogous 2′-amido ones for applications that require stable base pairing. PMID:15247335

  17. Role of Boron Element on the Electronic Properties of α-Nb5Si3: A First-Principle Study

    NASA Astrophysics Data System (ADS)

    Pan, Yong; Lin, Yuanhua

    2018-03-01

    Transition metal silicides (TMSis) are attracting increasing interest from the microelectronics and nanoelectronic industries. In this paper, we use the first-principles method to investigate the B-doped mechanism and the influence of B on the electronic properties of α-Nb5Si3. The calculated results show that B-doped Nb5Si3 is thermodynamically stable at the ground state. The calculated electronic structure shows that the thermodynamically stable B-doped Nb5Si3 is attributed to the 3D-network B-Si bonds and B-Nb bond. In particular, B element prefers to occupy B -IT4 site in comparison to other sites. Moreover, the calculated band structure indicates that Nb5Si3 exhibits metallic behavior at the ground state. We find that B-doping can improve charge overlap between conduction band and the valence band, which effectively improves the electronic properties of Nb5Si3.

  18. Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO2 (110) Model Electrode.

    PubMed

    Exner, Kai S; Anton, Josef; Jacob, Timo; Over, Herbert

    2016-06-20

    Current progress in modern electrocatalysis research is spurred by theory, frequently based on ab initio thermodynamics, where the stable reaction intermediates at the electrode surface are identified, while the actual energy barriers are ignored. This approach is popular in that a simple tool is available for searching for promising electrode materials. However, thermodynamics alone may be misleading to assess the catalytic activity of an electrochemical reaction as we exemplify with the chlorine evolution reaction (CER) over a RuO2 (110) model electrode. The full procedure is introduced, starting from the stable reaction intermediates, computing the energy barriers, and finally performing microkinetic simulations, all performed under the influence of the solvent and the electrode potential. Full kinetics from first-principles allows the rate-determining step in the CER to be identified and the experimentally observed change in the Tafel slope to be explained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermodynamics of dilute 3He-4He solid solutions with hcp structure

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.

    2018-02-01

    To interpret the anomalies in heat capacity CV(T) and temperature-dependent pressure P(T) of solid hexagonal close-packed (hcp) 4He we exploit the model of hcp crystalline polytype with specific lattice degrees of freedom and describe the thermodynamics of impurity-free 4He solid as superposition of phononic and polytypic contributions. The hcp-based polytype is a stack of 2D basal atomic monolayers on triangular lattice packed with arbitrary long (up to infinity) spatial period along the hexagonal c axis perpendicular to the basal planes. It is a crystal with perfect ordering along the layers, but without microscopic translational symmetry in perpendicular direction (which remains, nevertheless, the rotational crystallographic axis of third order, so that the polytype can be considered as semidisordered system). Each atom of the hcp polytype has twelve crystallographic neighbors in both first and second coordination spheres at any arbitrary packing order. It is shown that the crystal of such structure behaves as anisotropic elastic medium with specific dispersion law of phonon excitations along c axis. The free energy and the heat capacity consist of two terms: one of them is a normal contribution [with CV(T) ˜ T3] from phonon excitations in an anisotropic lattice of hexagonal symmetry, and another term (an "excessive" heat) is a contribution resulted by packing entropy from quasi-one-dimensional system of 2D basal planes on triangular lattice stacked randomly along c axis without braking the closest pack between neighboring atomic layers. The excessive part of the free energy has been treated within 1D quasi-Ising (lattice gas) model using the transfer matrix approach. This model makes us possible to interpret successfully the thermodynamic anomaly (heat capacity peak in hcp 4He) observed experimentally.

  20. A sharp interface model for void growth in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

Top