Sample records for thermoelasticity

  1. Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-05-01

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.

  2. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    PubMed

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  3. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  4. Crystal Thermoelasticity at Extreme Loading Rates and Pressures: Analysis of Higher-Order Energy Potentials

    DTIC Science & Technology

    2015-07-01

    ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...ARL-RP-0526 ● JULY 2015 US Army Research Laboratory Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of...2015 4. TITLE AND SUBTITLE Crystal Thermoelasticity at Extreme Loading Rates and Pressures : Analysis of Higher-Order Energy Potentials 5a. CONTRACT

  5. Thermoelastic Damping in FGM Nano-Electromechanical System in Axial Vibration Based on Eringen Nonlocal Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, Z.; Rashahmadi, S.

    2017-11-01

    The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.

  6. Thermo-elastic optical coherence tomography.

    PubMed

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  7. Challenges of designing and testing a highly stable sensor platform: Cesic solves MTG star sensor bracket thermoelastic requirements

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Zauner, Christoph

    2017-09-01

    The Meteosat Third Generation's extreme pointing requirements call for a highly stable bracket for mounting the Star Trackers. HB-Cesic®, a chopped fibre reinforced silicon carbide, was selected as a base material for the sensor bracket. The high thermal conductivity and low thermal expansion of HB-Cesic® were the key properties to fulfil the demanding thermo-elastic pointing requirements of below 1μrad/K for the Star Trackers mounting interfaces. Dominated by thermoelastic stability requirements, the design and analysis of the Bracket required a multidisciplinary approach with the focus on thermal and thermo-elastic analyses. Dedicated modal and thermal post-processing strategies have been applied in the scope of the light weighting process. The experimental verification of this thermo-elastic stable system has been a challenging task of its own. A thermo-elastic distortion measurement rig was developed with a stability of <0.1μrad/K in all three rotational degrees of freedom.

  8. Axisymmetric deformation in a micropolar thermoelastic medium under fractional order theory of thermoelasticity

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Singh, Kulwinder; Pathania, Devinder Singh

    2017-07-01

    The purpose of this paper is to study the variations in temperature, radial and normal displacement, normal stress, shear stress and couple stress in a micropolar thermoelastic solid in the context of fractional order theory of thermoelasticity. Eigen value approach together with Laplace and Hankel transforms are employed to obtain the general solution of the problem. The field variables corresponding to different fractional order theories of thermoelasticity have been obtained in the transformed domain. The general solution is applied to an infinite space subjected to a concentrated load at the origin. To obtained solution in the physical domain numerical inversion technique has been applied and numerically computed results are depicted graphically to analyze the effects of fractional order parameter on the field variables.

  9. Thermoelastic Stress Analysis: The Mean Stress Effect in Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    1999-01-01

    The primary objective of this study involved the utilization of the thermoelastic stress analysis (TSA) method to demonstrate the mean stress dependence of the thermoelastic constant. Titanium and nickel base alloys, commonly employed in aerospace gas turbines, were the materials of interest. The repeatability of the results was studied through a statistical analysis of the data. Although the mean stress dependence was well established, the ability to confidently quantify it was diminished by the experimental variations. If calibration of the thermoelastic response to mean stress can be successfully implemented, it is feasible to use the relationship to determine a structure's residual stress state.

  10. Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor

    NASA Astrophysics Data System (ADS)

    Chen, Xuying; Liu, Xinxin; Wang, Tao; Le, Xianhao; Ma, Fangyi; Lee, Chengkuo; Xie, Jin

    2018-05-01

    Thermoelastic dissipation is one of the main dissipative mechanisms in piezoelectric micromachined ultrasonic transducers (pMUTs). In this paper, we firstly propose pMUTs with etching holes to decrease thermoelastic dissipation and enhance quality factor (Q). The etching holes effectively disturb heat flow, and thus reduce thermoelastic loss. Working mechanism based on the Zener’s model is interpreted. The experiment results show that the Q of pMUT with three rows of holes is increased by 139% from 2050 to 4909 compared with the traditional one. Temperature coefficient of frequency (TCF) and vibration performance are also improved. The enhanced pMUT can be widely used in measurement of Doppler shift and relative high power applications.

  11. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags

    NASA Astrophysics Data System (ADS)

    Karmakar, R.; Sur, A.; Kanoria, M.

    2016-07-01

    The aim of the present contribution is the determination of the thermoelastic temperatures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord-Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model of thermoelasticity are combined into a unified formulation with unified parameters. The medium is assumed to be initially quiescent. The basic equations are written in the form of a vector matrix differential equation in the Laplace transform domain, which is then solved by the state-space approach. The expressions for the conductive temperature and elongation are obtained at small times. The numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion technique. A comparative study is performed for the thermoelastic stresses, conductive temperature, thermodynamic temperature, displacement, and elongation computed by using the Lord-Shulman and dual-phase-lag models.

  12. Interfacial Stresses and the Anomalous Character of Thermoelastic-Deformation Curves of a Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Nikolaev, V. I.; Pulnev, S. A.; Chikiryaka, A. V.

    2017-12-01

    Thermoelastic-deformation curves of a single-crystalline Cu-13.5 wt % Al-4.0 wt % Ni shapememory (SM) alloy have been studied. Cyclic temperature variation in a 300-450 K interval revealed an anomalous character of thermoelastic hysteresis loops with regions of accelerated straining at both heating and cooling stages. The observed phenomenon can be used for increasing the response speed of SM-alloy based drive and sensor devices. Analysis of this phenomenon in the framework of the theory of diffuse martensitic transformations showed that the anomalous character of thermoelastic hysteresis loops may be related to the influence of interfacial stresses on the dynamics of martensitic transformations in these SM alloys.

  13. Porosity influence of power generating equipment structural materials on its thermoelastic characteristics and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2017-11-01

    This paper outlines simulation models that represent the quantitative interdependencies between the thermal conductivity and the thermoelastic properties of composites, on the one hand, and their porous structure and matrix properties, as well as the volume fraction of their reinforcing inclusions, on the other hand. As the reinforcing inclusions, randomly-oriented anisotropic single-wall carbon nanotubes (SWNT) are taken. The key means for constructing the simulation models are the self-matching method and the dual variational formulation of the thermal conductivity/thermoelasticity problem for a non-homogeneous solid body. With the simulation models presented below, it is possible to estimate the effect the nanocomposite porosity has on the thermoelastic properties and thermal conductivity of nanocomposites.

  14. Full thermomechanical coupling in modelling of micropolar thermoelasticity

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Radayev, Y. N.

    2018-04-01

    The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.

  15. Influence of the heat transfer on the thermoelastic response of metals on heating by the laser pulse

    NASA Astrophysics Data System (ADS)

    Sudenkov, Y. V.; Zimin, B. A.; Sventitskaya, V. E.

    2018-05-01

    The paper presents an analysis of the effect of the heat transfer process in metals on the parameters of thermal stresses under pulsed laser action. The dynamic problem of thermoelasticity is considered as a two-stage process. The first stage is determined by the time of action of the radiation pulse. The second stage is caused by the dynamics of the heat transfer process after the end of the laser pulse. For showing the continuity of thermoelastic and thermoelectric processes, the analysis of the electronic mechanism for the propagation of heat in metals and the results of experimental studies of these processes are presented. The results of the experiments demonstrate the high sensitivity of the parameters of thermoelastic and thermoelectric pulses to the microstructure of metals.

  16. Optimal Damping of Perturbations of Moving Thermoelastic Panel

    NASA Astrophysics Data System (ADS)

    Banichuk, N. V.; Ivanova, S. Yu.

    2018-01-01

    The translational motion of a thermoelastic web subject to transverse vibrations caused by initial perturbations is considered. It is assumed that a web moving with a constant translational velocity is described by the model of a thermoelastic panel simply supported at its ends. The problem of optimal damping of vibrations when applying active transverse actions is formulated. For solving the optimization problem, modern methods developed in control theory for systems with distributed parameters described by partial differential equations are used.

  17. Reflection of thermoelastic wave on the interface of isotropic half-space and tetragonal syngony anisotropic medium of classes 4, 4/m with thermomechanical effect

    NASA Astrophysics Data System (ADS)

    Nurlybek, A. Ispulov; Abdul, Qadir; M, A. Shah; Ainur, K. Seythanova; Tanat, G. Kissikov; Erkin, Arinov

    2016-03-01

    The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.

  18. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium

    NASA Astrophysics Data System (ADS)

    Bayones, F. S.; Abd-Alla, A. M.

    2018-03-01

    In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced.

  19. General stability of memory-type thermoelastic Timoshenko beam acting on shear force

    NASA Astrophysics Data System (ADS)

    Apalara, Tijani A.

    2018-03-01

    In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann-Dirichlet-Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895-6906, 2011, Acta Math Sci 33(1):23-40, 2013), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.

  20. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations

    USGS Publications Warehouse

    Tsai, V.C.

    2011-01-01

    It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model parameters are better constrained. Copyright ?? 2011 by the American Geophysical Union.

  1. Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Alesemi, Meshari

    2018-04-01

    The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.

  2. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity

    PubMed Central

    Mallik, Sadek Hossain; Kanoria, M.

    2014-01-01

    A new theory of two-temperature generalized thermoelasticity is constructed in the context of a new consideration of dual-phase-lag heat conduction with fractional orders. The theory is then adopted to study thermoelastic interaction in an isotropic homogenous semi-infinite generalized thermoelastic solids with variable thermal conductivity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by using a state space approach. The inversion of Laplace transforms is computed numerically using the method of Fourier series expansion technique. The numerical estimates of the quantities of physical interest are obtained and depicted graphically. Some comparisons of the thermophysical quantities are shown in figures to study the effects of the variable thermal conductivity, temperature discrepancy, and the fractional order parameter. PMID:27419210

  3. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    NASA Astrophysics Data System (ADS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-09-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  4. Divergent conservation laws in hyperbolic thermoelasticity

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present study is devoted to the problem of formulation of conservation laws in divergent form for hyperbolic thermoelastic continua. The field formalism is applied to study the problem. A natural density of thermoelastic action and the corresponding variational least action principle are formulated. A special form of the first variation of the action is employed to obtain 4-covariant divergent conservation laws. Differential field equations and constitutive laws are derived from a special form of the first variation of the action integral. The objectivity of constitutive equations is provided by the rotationally invariant forms of the Lagrangian employed.

  5. Thermal inertia effect in an axisymmetric thermoelastic problem based on generalized thermoelasticity

    NASA Astrophysics Data System (ADS)

    Xie, Yushu; Li, Fatao

    2010-06-01

    The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.

  6. Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Young; Jang, Kyungmin; Yang, Seung-Jin; Baek, Jun-Hyeok; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-04-01

    We studied the thermal and the mechanical effects induced by pulsed laser absorption in human skin by numerically solving the heat-transfer and the thermoelastic wave equations. The simulation of the heat-transfer equation yielded the spatiotemporal distribution of the temperature increase in the skin, which was then used in the driving term of the thermoelastic wave equation. We compared our simulation results for the temperature increase and the skin displacements with the measured and numerical results, respectively. For the comparison, we used a recent report by Jun et al. [Sci. Rep. 5, 11016 (2015)], who measured in vivo skin temperature and performed numerical simulation of the thermoelastic wave equation using a simple assumption about the temporal evolution of the temperature distribution, and found their results to be in good agreement with our results. In addition, we obtained solutions for the stresses in the human skin and analyzed their dynamic behaviors in detail.

  7. Propagation and attenuation of Rayleigh waves in generalized thermoelastic media

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2014-01-01

    This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.

  8. Thermoelastic Residual Stresses and Deformations at Laser Treatment

    NASA Astrophysics Data System (ADS)

    Gusarov, A. V.; Malakhova-Ziablova, I. S.; Pavlov, M. D.

    A thermoelastic model implying relaxation of stresses at melting is applied for materials with arbitrary thermoelastic properties and the melting point. The range of Poisson's ratio 0.17 - 0.34 is numerically studied. The residual stresses are independent of the space scale. In narrow remelted zones and beads the maximum longitudinal tensile stress is approximately twice as high as the transverse one. The calculations predict cracking of alumina, even with 1600 oC preheating, plastic deformation or cracking of hard metal alloys H13 and TA6 V, and no destruction of polystyrene and thestrongest grades of quartz glass. The calculation results can be used for predicting the thermomechanical stability of materials at laser treatment.

  9. Sensitivity analysis of hybrid thermoelastic techniques

    Treesearch

    W.A. Samad; J.M. Considine

    2017-01-01

    Stress functions have been used as a complementary tool to support experimental techniques, such as thermoelastic stress analysis (TSA) and digital image correlation (DIC), in an effort to evaluate the complete and separate full-field stresses of loaded structures. The need for such coupling between experimental data and stress functions is due to the fact that...

  10. Theory of thermoelasticity

    NASA Technical Reports Server (NTRS)

    Iesan, D.

    1980-01-01

    The development of the theory of thermoelasticity, which examines the interactions between the deformation of elastic media and the thermal field, is traced and the fundamental problems of the theory are presented. Results of recent studies on the subject are presented. Emphasis is primarily on media with generalized anisotropy, or isotropy media. Thermomechanical problems and mathematical formulations and resolutions are included.

  11. Thermoelastic-plastic flow equations in general coordinates

    DOE PAGES

    Blaschke, Daniel N.; Preston, Dean L.

    2018-03-28

    The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl- Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates.

  12. Thermoelastic-plastic flow equations in general coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschke, Daniel N.; Preston, Dean L.

    The equations governing the thermoelastic-plastic flow of isotropic solids in the Prandtl- Reuss and small anisotropy approximations in Cartesian coordinates are generalized to arbitrary coordinate systems. In applications the choice of coordinates is dictated by the symmetry of the solid flow. The generally invariant equations are evaluated in spherical, cylindrical (including uniaxial), and both prolate and oblate spheroidal coordinates.

  13. Thermo-elastic behaviour of liquid crystal elastomer

    NASA Astrophysics Data System (ADS)

    J, Jessy P.; Mani, Santosh A.; Amare, Jyoti R.; Gharde, Rita A.

    2015-06-01

    The effect of temperature on Liquid Crystal Elastomer was studied to understand thermo-elastic behaviour of these fantastic soft materials. The investigations were performed using Polarizing Microscopy Studies (PMS) and Differential Thermal Analysis (DTA). The relative length shows hysteresis as function of temperature. As temperature increases, the length shrinks, while it returns to original shape on cooling.

  14. Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators

    NASA Astrophysics Data System (ADS)

    Grover, D.; Seth, R. K.

    2018-05-01

    Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.

  15. An investigation on a two-dimensional problem of Mode-I crack in a thermoelastic medium

    NASA Astrophysics Data System (ADS)

    Kant, Shashi; Gupta, Manushi; Shivay, Om Namha; Mukhopadhyay, Santwana

    2018-04-01

    In this work, we consider a two-dimensional dynamical problem of an infinite space with finite linear Mode-I crack and employ a recently proposed heat conduction model: an exact heat conduction with a single delay term. The thermoelastic medium is taken to be homogeneous and isotropic. However, the boundary of the crack is subjected to a prescribed temperature and stress distributions. The Fourier and Laplace transform techniques are used to solve the problem. Mathematical modeling of the present problem reduces the solution of the problem into the solution of a system of four dual integral equations. The solution of these equations is equivalent to the solution of the Fredholm's integral equation of the first kind which has been solved by using the regularization method. Inverse Laplace transform is carried out by using the Bellman method, and we obtain the numerical solution for all the physical field variables in the physical domain. Results are shown graphically, and we highlight the effects of the presence of crack in the behavior of thermoelastic interactions inside the medium in the present context, and its results are compared with the results of the thermoelasticity of type-III.

  16. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  17. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  18. Laser pulse, initial stress and modified Ohm's law in micropolar thermoelasticity with microtemperatures

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed I. A.; Tantawi, Ramadan S.; Hilal, Mohamed I. M.

    2018-03-01

    The present manuscript studies the effect of the initial stress in micropolar magneto-thermoelasticity with microtemperatures heated by a laser pulse. The modified Ohm's law illustrates the temperature gradient and the charge density effects in the governing equations of the studied problem. The used analytical method was the normal modes. The physical quantities are established numerically and represented graphically.

  19. The influence of closed brine pockets and permeable brine channels on the thermo-elastic properties of saline ice

    PubMed Central

    Lishman, Ben

    2017-01-01

    A model of the thermo-elastic behaviour of saline ice is formulated, and model solutions describing thermo-elastic waves (TEW) propagating into a half-space of the ice are investigated. The model is based on a proposal that saline ice is a matrix, which encompasses both closed brine pockets and permeable channels filled with brine. Experiments on the thermal expansion of saline ice samples, and on TEW in saline ice, have been performed in the cold laboratories of the University Centre in Svalbard and in University College London. The experimental data are compared with theoretical conclusions. The experimental data support our hypothesis that the brine in saline ice is divided between closed pockets and open, permeable channels. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025299

  20. Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2018-07-01

    Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.

  1. A massively parallel computational approach to coupled thermoelastic/porous gas flow problems

    NASA Technical Reports Server (NTRS)

    Shia, David; Mcmanus, Hugh L.

    1995-01-01

    A new computational scheme for coupled thermoelastic/porous gas flow problems is presented. Heat transfer, gas flow, and dynamic thermoelastic governing equations are expressed in fully explicit form, and solved on a massively parallel computer. The transpiration cooling problem is used as an example problem. The numerical solutions have been verified by comparison to available analytical solutions. Transient temperature, pressure, and stress distributions have been obtained. Small spatial oscillations in pressure and stress have been observed, which would be impractical to predict with previously available schemes. Comparisons between serial and massively parallel versions of the scheme have also been made. The results indicate that for small scale problems the serial and parallel versions use practically the same amount of CPU time. However, as the problem size increases the parallel version becomes more efficient than the serial version.

  2. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  3. The thermo-elastic instability model of melting of alkali halides in the Debye approximation

    NASA Astrophysics Data System (ADS)

    Owens, Frank J.

    2018-05-01

    The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.

  4. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    NASA Astrophysics Data System (ADS)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  5. Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α'-Thermoelastic Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kretinina, I. V.; Keinikh, K. S.; Kuts, O. A.; Kirillov, V. A.; Karaman, I.; Maier, H.

    2013-12-01

    Using single crystals of a Fe - 28% Ni - 17% Co - 11.5% Al - 25% Ta (аt.%) alloy, oriented for tensile loading along the [001] direction, the shape-memory (SME) and superelasticity (SE) effects caused by reversible thermoelastic martensitic transformations (MTs) from a high-temperature fcc-phase into a bctmartensite are investigated. It is demonstrated that the conditions necessary for the thermoelastic MTs to occur are achieved by aging at 973 K within the time interval (t) from 0.5 to 7.0 hours, which is accompanied by precipitation of the γ'-phase particles, (FeNiCo)3(AlTa), whose d < 8-12 nm. When the size of the γ'-precipitates becomes as large as d ≥ 8-12 nm, the MT becomes partially reversible. The physical causes underlying the kinetics of thermoelstic reversible fcc-bct MTs are discussed.

  6. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Persova, Marina G.; Soloveichik, Yury G.; Belov, Vasiliy K.; Kiselev, Dmitry S.; Vagin, Denis V.; Domnikov, Petr A.; Patrushev, Ilya I.; Kurskiy, Denis N.

    2017-07-01

    In this paper, the problem of numerical modeling of thermoelastic behavior of nose caps of hypersonic vehicles at different angles of attack is considered. 3D finite element modeling is performed by solving the coupled heat and elastic problems taking into account thermal and mechanical properties variations with temperature. A special method for calculating the aerodynamic heat flux entering the nose cap from its surface is proposed. This method is characterized by very low computational costs and allows calculating the aerodynamic heat flux at different values of the Mach number and angles of attack which may vary during the aerodynamic heating. The numerical results obtained by the proposed approach are compared with the numerical results and experimental data obtained by other authors. The developed approach has been used for studying the impact of the angle of attack on the thermoelastic behavior of nose caps main components.

  7. Basic temperature correction of QWIP cameras in thermoelastic/plastic tests of composite materials.

    PubMed

    Boccardi, Simone; Carlomagno, Giovanni Maria; Meola, Carosena

    2016-12-01

    The present work is concerned with the use of a quantum well infrared photodetector (QWIP) infrared camera to measure very small temperature variations, which are related to thermoelastic/plastic effects, developing on composites under relatively low loads, either periodic or due to impact. As is evident from previous work, some temperature variations are difficult to measure, being at the edge of the IR camera resolution and/or affected by the instrument noise. Conversely, they may be valuable to get either information about the material characteristics and its behavior under periodic load (thermoelastic), or to assess the overall extension of delaminations due to impact (thermo-plastic). An image post-processing procedure is herein described that, with the help of a reference signal, allows for suppression of the instrument noise and better discrimination of thermal signatures induced by the two different loads.

  8. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  9. A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics

    NASA Astrophysics Data System (ADS)

    Rawy, E. K.

    2018-06-01

    We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.

  10. Elastocaloric cooling materials and systems

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  11. Global solutions to the equation of thermoelasticity with fading memory

    NASA Astrophysics Data System (ADS)

    Okada, Mari; Kawashima, Shuichi

    2017-07-01

    We consider the initial-history value problem for the one-dimensional equation of thermoelasticity with fading memory. It is proved that if the data are smooth and small, then a unique smooth solution exists globally in time and converges to the constant equilibrium state as time goes to infinity. Our proof is based on a technical energy method which makes use of the strict convexity of the entropy function and the properties of strongly positive definite kernels.

  12. An Electro-Optic Spatial Light Modulator for Thermoelastic Generation of Programmably Focused Ultrasound.

    DTIC Science & Technology

    1984-12-01

    The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)

  13. An efficient solution procedure for the thermoelastic analysis of truss space structures

    NASA Technical Reports Server (NTRS)

    Givoli, D.; Rand, O.

    1992-01-01

    A solution procedure is proposed for the thermal and thermoelastic analysis of truss space structures in periodic motion. In this method, the spatial domain is first descretized using a consistent finite element formulation. Then the resulting semi-discrete equations in time are solved analytically by using Fourier decomposition. Geometrical symmetry is taken advantage of completely. An algorithm is presented for the calculation of heat flux distribution. The method is demonstrated via a numerical example of a cylindrically shaped space structure.

  14. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  15. Closed solutions of singular equations of thermoelasticity of compositions of shells of revolution smoothly connected with each other

    NASA Astrophysics Data System (ADS)

    Belostochny, Grigory; Myltcina, Olga

    2018-05-01

    The paper deals with the main positions of strict continuum model of compositions of shells of revolution smoothly connected with each other. Solutions of singular equations of the membrane conduct thermoelasticity for different species of compositions obtained in a closed form. The ability to eliminate discontinuities of the first kind of one of the tangential force on the lines of the distortion has been proved by using the additional local force impact or temperature.

  16. Control of vibrations of a moving beam

    NASA Astrophysics Data System (ADS)

    Banichuk, N. V.; Ivanova, S. Yu; Makeev, E. V.; Sinitsyn, A. V.

    2018-04-01

    The translational motion of a thermoelastic beam under transverse vibrations caused by initial perturbations is considered. It is assumed that a beam moving at a constant translational speed is described by a model of a thermoelastic panel supported at the edges of the considered span. The problem of optimal suppression of vibrations is formulated when applying active transverse influences to the panel. To solve the optimization problem, modern methods developed in the theory of control of systems with distributed parameters described by partial differential equations are used.

  17. Investigation of thermoelastic problem of multiple-disc friction clutches applying different thermal loads

    NASA Astrophysics Data System (ADS)

    Abdullah, Oday I.; Schlattmann, Josef; Senatore, Adolfo; Al-Shabibi, Abdullah M.

    2018-05-01

    The designers of friction clutch systems in vehicular applications should always take into account a number of essential criteria. The friction clutch should be able to transfer the torque from the driving shaft to the driven one within a short time and minimum amount of shocks and vibrations to make the engagement (disengagement) as gentle as possible. Furthermore, it is well known that high surface temperatures were noticed during the beginning of engagement period due to slipping between the contacting elements of the friction clutch system with ensuing heat generation. The transient thermoelastic problem of multi-disc systems has been deeply investigated by many scientists and researchers using numerical techniques such as finite element method. In this analysis, the influence of the sliding speed on the thermoelastic behavior when the initial heat generated is constant was studied. For this purpose an axisymmetric finite element models were developed and used in the simulation shown in the paper.

  18. Investigation of problems of closing of geophysical cracks in thermoelastic media in the case of flow of fluids with impurities

    NASA Astrophysics Data System (ADS)

    Martirosyan, A. N.; Davtyan, A. V.; Dinunts, A. S.; Martirosyan, H. A.

    2018-04-01

    The purpose of this article is to investigate a problem of closing cracks by building up a layer of sediments on surfaces of a crack in an infinite thermoelastic medium in the presence of a flow of fluids with impurities. The statement of the problem of closing geophysical cracks in the presence of a fluid flow is presented with regard to the thermoelastic stress and the influence of the impurity deposition in the liquid on the crack surfaces due to thermal diffusion at the fracture closure. The Wiener–Hopf method yields an analytical solution in the special case without friction. Numerical calculations are performed in this case and the dependence of the crack closure time on the coordinate is plotted. A similar spatial problem is also solved. These results generalize the results of previous studies of geophysical cracks and debris in rocks, where the closure of a crack due to temperature effects is studied without taking the elastic stresses into account.

  19. Method of determining effects of heat-induced irregular refractive index on an optical system.

    PubMed

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  20. Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components

    NASA Astrophysics Data System (ADS)

    Nazarenko, Lidiya; Khoroshun, Leonid; Müller, Wolfgang H.; Wille, Ralf

    2009-02-01

    In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.

  1. The VLab repository of thermodynamics and thermoelastic properties of minerals

    NASA Astrophysics Data System (ADS)

    Da Silveira, P. R.; Sarkar, K.; Wentzcovitch, R. M.; Shukla, G.; Lindemann, W.; Wu, Z.

    2015-12-01

    Thermodynamics and thermoelastic properties of minerals at planetary interior conditions are essential as input for geodynamics simulations and for interpretation of seismic tomography models. Precise experimental determination of these properties at such extreme conditions is very challenging. Therefore, ab initio calculations play an essential role in this context, but at the cost of great computational effort and memory use. Setting up a widely accessible and versatile mineral physics database can relax unnecessary repetition of such computationally intensive calculations. Access to such data facilitates transactional interaction across fields and can advance more quickly insights about deep Earth processes. Hosted by the Minnesota Supercomputing Institute, the Virtual Laboratory for Earth and Planetary Materials (VLab) was designed to develop and promote the theory of planetary materials using distributed, high-throughput quantum calculations. VLab hosts an interactive database of thermodynamics and thermoelastic properties or minerals computed by ab initio. Such properties can be obtained according to user's preference. The database is accompanied by interactive visualization tools, allowing users to repeat and build upon previously published results. Using VLab2015, we have evaluated thermoelastic properties, such as elastic coefficients (Cij), Voigt, Reuss, and Voigt-Reuss-Hill aggregate averages for bulk (K) and shear modulus (G), shear wave velocity (VS), longitudinal wave velocity (Vp), and bulk sound velocity (V0) for several important minerals. Developed web services are general and can be used for crystals of any symmetry. Results can be tabulated, plotted, or downloaded from the VLab website according to user's preference.

  2. Generalized thermoelastic interaction in an isotropic solid cylinder without energy dissipation

    NASA Astrophysics Data System (ADS)

    Alshaikh, Fatimah

    2018-04-01

    In this paper, we constructed the generalized thermoelastic equations of an isotropic solid cylinder. The formulation is applied in the context of Green and Naghdi theory of types II (without energy dissipation). The material of the cylinder is supposed to be homogeneous isotropic both mechanically and thermally. The governing equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical results for the temperature distribution, displacement and radial stress are represented graphically.

  3. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    NASA Astrophysics Data System (ADS)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  4. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution. [JUDITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.

  5. Accurate thermoelastic tensor and acoustic velocities of NaCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Michel L., E-mail: michel@if.usp.br; Chemical Engineering and Material Science, University of Minnesota, Minneapolis, 55455; Shukla, Gaurav, E-mail: shukla@physics.umn.edu

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor bymore » using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.« less

  6. Transient thermal stresses of work roll by coupled thermoelasticity

    NASA Astrophysics Data System (ADS)

    Lai, W. B.; Chen, T. C.; Weng, C. I.

    1991-01-01

    A numerical method, based on a two-dimensional plane strain model, is developed to predict the transient responses (that include distributions of temperature, thermal deformation, and thermal stress) of work roll during strip rolling by coupled thermoelasticity. The method consists of discretizing the space domain of the problem by finite element method first, and then treating the time domain by implicit time integration techniques. In order to avoid the difficulty in analysis due to relative movement between work roll and its thermal boundary, the energy equation is formulated with respect to a fixed Eulerian reference frame. The effect of thermoelastic coupling term, that is generally disregarded in strip rolling, can be considered and assessed. The influences of some important process parameters, such as rotational speed of the roll and intensity of heat flux, on transient solutions are also included and discussed. Furthermore, since the stress history at any point of the roll in both transient and steady state could be accurately evaluated, it is available to perform the analysis of thermal fatigue for the roll by means of previous data.

  7. Thermoelastic damping in thin microrings with two-dimensional heat conduction

    NASA Astrophysics Data System (ADS)

    Fang, Yuming; Li, Pu

    2015-05-01

    Accurate determination of thermoelastic damping (TED) is very challenging in the design of micro-resonators. Microrings are widely used in many micro-resonators. In the past, to model the TED effect on the microrings, some analytical models have been developed. However, in the previous works, the heat conduction within the microring is modeled by using the one-dimensional approach. The governing equation for heat conduction is solved only for the one-dimensional heat conduction along the radial thickness of the microring. This paper presents a simple analytical model for TED in microrings. The two-dimensional heat conduction over the thermoelastic temperature gradients along the radial thickness and the circumferential direction are considered in the present model. A two-dimensional heat conduction equation is developed. The solution of the equation is represented by the product of an assumed sine series along the radial thickness and an assumed trigonometric series along the circumferential direction. The analytical results obtained by the present 2-D model show a good agreement with the numerical (FEM) results. The limitations of the previous 1-D model are assessed.

  8. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  9. Stress wave focusing transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visuri, S.R., LLNL

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where dmore » = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.« less

  10. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  11. Polynomial stability of a magneto-thermoelastic Mindlin-Timoshenko plate model

    NASA Astrophysics Data System (ADS)

    Ferreira, Marcio V.; Muñoz Rivera, Jaime E.

    2018-02-01

    In this paper, we consider the magneto-thermoelastic interactions in a two-dimensional Mindlin-Timoshenko plate. Our main result is concerned with the strong asymptotic stabilization of the model. In particular, we determine the rate of polynomial decay of the associated energy. In contrast with what was observed in other related articles, geometrical hypotheses on the plate configuration (such as radial symmetry) are not imposed in this study nor any kind of frictional damping mechanism. A suitable multiplier is instrumental in establishing the polynomial stability with the aid of a recent result due to Borichev and Tomilov (Math Ann 347(2):455-478, 2010).

  12. Thermoelastic damping in bilayered microbar resonators with circular cross-section

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoyao; Li, Pu

    2017-11-01

    It is always a challenge to determine the Thermoelastic damping (TED) in bilayered microbars precisely. In this paper, a model for TED in the bilayered and cantilevered microbar was proposed, in which the total damping was derived by calculating the energy evanished in each layer. The distribution of temperature in the bilayered microbar with a thermodynamically ideal boundary receiving a time-harmonic force is obtained. An infinite summation for the computing of TED in the bilayered slender microbars under axial loading is presented, and the convergence rate of it is discussed. There are little differences between the results computed by our model and that by finite element method (FEM).

  13. Approximations of thermoelastic and viscoelastic control systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Liu, Z. Y.; Miller, R. E.

    1990-01-01

    Well-posed models and computational algorithms are developed and analyzed for control of a class of partial differential equations that describe the motions of thermo-viscoelastic structures. An abstract (state space) framework and a general well-posedness result are presented that can be applied to a large class of thermo-elastic and thermo-viscoelastic models. This state space framework is used in the development of a computational scheme to be used in the solution of a linear quadratic regulator (LQR) control problem. A detailed convergence proof is provided for the viscoelastic model and several numerical results are presented to illustrate the theory and to analyze problems for which the theory is incomplete.

  14. Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples

    NASA Astrophysics Data System (ADS)

    Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.

    2018-04-01

    A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.

  15. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    NASA Astrophysics Data System (ADS)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  16. Thermoelastic behaviour of martensitic alloy in the vicinity of critical point in the stress-temperature phase diagram

    NASA Astrophysics Data System (ADS)

    L'vov, V. A.; Matsishin, N.; Glavatska, N.

    2010-04-01

    The theoretical phase diagram of the shape memory alloy, which exhibits the first-order martensitic phase transition of the cubic-tetragonal type, has been considered. The thermoelastic behaviour of the ultra-soft Ni-Mn-Ga alloy in the vicinity of the endpoint of the phase transitions line has been modelled. To this end, the strain-temperature and stress-strain dependencies have been computed with the account of the temperature dependence of the elastic modulus of the alloy. Two important features of thermoelastic behaviour of the alloy have been disclosed: (1) even in the case of complete stress-induced martensitic transformation (MT), the MT strain determined from the length of the plateaus at the stress-strain curves is smaller than the 'spontaneous' tetragonal distortion of the crystal lattice, which arises on cooling of the alloy and (2) the stress-strain loops may include the plateau-like segment even at temperatures above the critical temperature, which corresponds to the endpoint of the stress-strain phase diagram. These features render the observation of the endpoint of phase transitions line impossible with the help of the stress-strain tests and make preferable the direct structural studies of MTs in the stressed single-crystalline specimens.

  17. Studies on thermo-elastic heating of horns used in ultrasonic plastic welding.

    PubMed

    Roopa Rani, M; Prakasan, K; Rudramoorthy, R

    2015-01-01

    Ultrasonic welding horn is half wavelength section or tool used to focus the ultrasonic vibrations to the components being welded. The horn is designed in such a way that it maximizes the amplitude of the sound wave passing through it. The ends of the horn represent the displacement anti-nodes and the center the 'node' of the wave. As the horns perform 20,000 cycles of expansion and contraction per second, they are highly stressed at the nodes and are heated owing to thermo-elastic effects. Considerable temperature rise may be observed in the horn, at the nodal region when working at high amplitudes indicating high stress levels leading to failure of horns due to cyclic loading. The limits for amplitude must therefore be evaluated for the safe working of the horn. Horns made of different materials have different thermo-elastic behaviors and hence different temperatures at the nodes and antinodes. This temperature field can be used as a control mechanism for setting the amplitude/weld parameters. Safe stress levels can be predicted using modal and harmonic analyses followed by a stress analysis to study the effect of cyclic loads. These are achieved using 'Ansys'. The maximum amplitude level obtained from the stress analysis is used as input for 'Comsol' to predict the temperature field. The actual temperature developed in the horn during operation is measured using infrared camera and compared with the simulated temperature. From experiments, it is observed that horn made of titanium had the lowest temperature rise at the critical region and can be expected to operate at amplitudes up to 77 μm without suffering failure due to cyclic loading. The method of predicting thermo-elastic stresses and temperature may be adopted by the industry for operating the horn within the safe stress limits thereby extending the life of the horn. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Meshless methods in shape optimization of linear elastic and thermoelastic solids

    NASA Astrophysics Data System (ADS)

    Bobaru, Florin

    This dissertation proposes a meshless approach to problems in shape optimization of elastic and thermoelastic solids. The Element-free Galerkin (EFG) method is used for this purpose. The ability of the EFG to avoid remeshing, that is normally done in a Finite Element approach to correct highly distorted meshes, is clearly demonstrated by several examples. The shape optimization example of a thermal cooling fin shows a dramatic improvement in the objective compared to a previous FEM analysis. More importantly, the new solution, displaying large shape changes contrasted to the initial design, was completely missed by the FEM analysis. The EFG formulation given here for shape optimization "uncovers" new solutions that are, apparently, unobtainable via a FEM approach. This is one of the main achievements of our work. The variational formulations for the analysis problem and for the sensitivity problems are obtained with a penalty method for imposing the displacement boundary conditions. The continuum formulation is general and this facilitates 2D and 3D with minor differences from one another. Also, transient thermoelastic problems can use the present development at each time step to solve shape optimization problems for time-dependent thermal problems. For the elasticity framework, displacement sensitivity is obtained in the EFG context. Excellent agreements with analytical solutions for some test problems are obtained. The shape optimization of a fillet is carried out in great detail, and results show significant improvement of the EFG solution over the FEM or the Boundary Element Method solutions. In our approach we avoid differentiating the complicated EFG shape functions, with respect to the shape design parameters, by using a particular discretization for sensitivity calculations. Displacement and temperature sensitivities are formulated for the shape optimization of a linear thermoelastic solid. Two important examples considered in this work, the optimization of a thermal fin and of a uniformly loaded thermoelastic beam, reveal new characteristics of the EFG method in shape optimization applications. Among other advantages of the EFG method over traditional FEM treatments of shape optimization problems, some of the most important ones are shown to be: elimination of post-processing for stress and strain recovery that directly gives more accurate results in critical positions (near the boundaries, for example) for shape optimization problems; nodes movement flexibility that permits new, better shapes (previously missed by an FEM analysis) to be discovered. Several new research directions that need further consideration are exposed.

  19. Electro-magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Ezzat, M. A.; El-Bary, A. A.

    2018-01-01

    A unified mathematical model of Green-Naghdi's thermoelasticty theories (GN), based on fractional time-derivative of heat transfer is constructed. The model is applied to solve a one-dimensional problem of a perfect conducting unbounded body with a cylindrical cavity subjected to sinusoidal pulse heating in the presence of an axial uniform magnetic field. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Comparisons are made with the results predicted by the two theories. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

  20. Autonomous stress imaging cores: from concept to reality

    NASA Astrophysics Data System (ADS)

    van der Velden, Stephen; Rajic, Nik; Brooks, Chris; Galea, Steve

    2016-04-01

    The historical reliance of thermoelastic stress analysis on cooled infrared detection has created significant cost and practical impediments to the widespread use of this powerful full-field stress measurement technique. The emergence of low-cost microbolometers as a practical alternative has allowed for an expansion of the traditional role of thermoelastic stress analysis, and raises the possibility that it may in future become a viable structural health monitoring modality. Experimental results are shown to confirm that high resolution stress imagery can be obtained from an uncooled thermal camera core significantly smaller than any infrared imaging device previously applied to TSA. The paper provides a summary of progress toward the development of an autonomous stress-imaging capability based on this core.

  1. Analysis of thermoelastic characteristics in a thick walled FGM cylinder

    NASA Astrophysics Data System (ADS)

    Tanvir, A. N. M.; Islam, Md. Didarul; Ahmed, Faisal

    2017-12-01

    This study is concerned with the behavior of stress and strain in a thick walled functionally graded material (FGM) cylinder under internal pressure. The incompatible eigenstrain and equivalent eigenstrain developed in the cylinder, are taken into account. As a demonstration, a TiC/Al2O3 FGM cylinder is considered and different components of stress and strain are presented in order to study the effects of internal pressure, temperature difference (between room and sintering temperature), cylinder wall thickness and material distribution. The numerical result presented here shows that the thermoelastic characteristic like stress and strain of an FGM cylinder is significantly influenced by some of the above-mentioned parameters and can be controlled by properly controlling these parameters.

  2. Acoustic fingerprints of dye-labeled protein submicrosphere photoacoustic contrast agents

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2009-05-01

    Dye-labeled protein microspheres, submicron in size and capable of producing thermoelastically generated ultrasound in response to laser stimulation, are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by fluorescein isothiocyanate (FITC)-labeled elastin submicrospheres results in thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and a greater than two orders of magnitude increase in signal amplitude subsequent to converting FITC elastin into submicrospheres (despite a four orders of magnitude decrease in concentration). Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of FITC-elastin submicrospheres in a water-filled phantom vessel shows enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  3. Determination of thermoelastic material properties by differential heterodyne detection of impulsive stimulated thermal scattering

    PubMed Central

    Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.

    2015-01-01

    The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643

  4. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  5. Thermoelastic stress analysis to validate tibial fixation technique in total ankle prostheses - a pilot study.

    PubMed

    Ficklscherer, Andreas; Wegener, Bernd; Niethammer, Thomas; Pietschmann, Matthias F; Müller, Peter E; Jansson, Volkmar; Trouillier, Hans-Heinrich

    2013-03-01

    Recent literature has shown a persistently high rate of aseptic loosening of the tibial component in total ankle prostheses. We analyzed the interface between the tibial bone and tibial component with a thermoelastic stress analysis to demonstrate load transmission onto the distal tibia. In this regard, we used two established ankle prostheses, which were implanted in two human cadaveric and in two third-generation composite tibia bones (Sawbones®, Sweden). Subsequently, the bones were attached to a hydropulser and a sinusoidal load of 700 N was applied. Both prostheses had an inhomogeneous load transmission onto the distal tibia. Instead of distributing load equally to the subarticular bone, forces were focused around the bolting stem, accumulating as stress maxima with forces up to 90 MPa. Furthermore, we were able to demonstrate load transmission into the metaphysis of the bone. As demonstrated in this study, anchoring systems with stems used in all established total ankle prostheses lead to an inhomogeneous load transmission onto the distal tibia, and furthermore, to a distribution of load into the weaker metaphyseal bone. For these reasons, we favor a prosthetic design with minimal bone resection and without any stem or stem-like anchoring system, which facilitates a homogeneous load transmission onto the distal tibia. Thermoelastic stress analysis proved to be a fast and easy-to-perform method to visualize load transmission.

  6. Resonant loading of aircraft secondary structure panels for use with thermoelastic stress analysis and digital image correlation

    NASA Astrophysics Data System (ADS)

    Waugh, Rachael C.; Dulieu-Barton, Janice M.; Quinn, S.

    2015-03-01

    Thermoelastic stress analysis (TSA) is an established active thermographic approach which uses the thermoelastic effect to correlate the temperature change that occurs as a material is subjected to elastic cyclic loading to the sum of the principal stresses on the surface of the component. Digital image correlation (DIC) tracks features on the surface of a material to establish a displacement field of a component subjected to load, which can then be used to calculate the strain field. The application of both DIC and TSA on a composite plate representative of aircraft secondary structure subject to resonant frequency loading using a portable loading device, i.e. `remote loading' is described. Laboratory based loading for TSA and DIC is typically imparted using a test machine, however in the current work a vibration loading system is used which is able to excite the component of interest at resonant frequency which enables TSA and DIC to be carried out. The accuracy of the measurements made under remote loading of both of the optical techniques applied is discussed. The data are compared to extract complimentary information from the two techniques. This work forms a step towards a combined strain based non-destructive evaluation procedure able to identify and quantify the effect of defects more fully, particularly when examining component performance in service applications.

  7. A non-local model of fractional heat conduction in rigid bodies

    NASA Astrophysics Data System (ADS)

    Borino, G.; di Paola, M.; Zingales, M.

    2011-03-01

    In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.

  8. Theoretical modelling of residual and transformational stresses in SMA composites

    NASA Astrophysics Data System (ADS)

    Berman, J. B.; White, S. R.

    1996-12-01

    SMA composites are a class of smart materials in which shape memory alloy (SMA) actuators are embedded in a polymer matrix composite. The difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. Similarly, the SMA transformations from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/epoxy interfacial debonding or microcracking of the composite phase. In this study the residual and transformational stresses are investigated for a nitinol wire embedded in a graphite/epoxy composite. A three-phase micromechanical model is developed. The nitinol wire is assumed to behave as a thermoelastic material. Nitinol austenitic and martensitic transformations are modelled using linear piecewise interpolation of experimental data. The interphase is modelled as a thermoelastic polymer. A transversely isotropic thermoelastic composite is used for the outer phase. Stress-free conditions are assumed immediately before cool down from the cure temperature. The effect of nitinol, coating and composite properties on residual and transformational stresses are evaluated. Fiber architectures favoring the axial direction decrease the magnitude of all residual stresses. A decrease in stresses at the composite/coating interface is also predicted through the use of thick, compliant coatings. Reducing the recovery strain and moving the transformation to higher temperatures were found to be most effective in reducing residual stresses.

  9. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1990-01-01

    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.

  10. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  11. Thermoelastic Formulation of Stiffened, Unsymmetric Composite Panels for Finite Element Analysis of High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Collier, Craig S.

    2004-01-01

    An emerging technology need for capturing 3-D panel thermoelastic response with 2-D planar finite element models (FEMs) is aided with an equivalent plate stiffness and thermal coefficient formulation. The formulation is general and applies to all panel concepts. Included with the formulation is the ability to provide membrane-bending coupling of unsymmetric sections and calculation of all thermal expansion and bending responses from in-plane and through-the-thickness temperature gradients. Thermal residual strains for both the laminates and plies are included. The general formulation is defined and then applied to a hat-shaped, corrugated stiffened panel. Additional formulations are presented where required to include all of the hat's unique characteristics. Each formulation is validated independently with 3-D FEA.

  12. An Exponential Stability Result of a Timoshenko System with Thermoelasticity with Second Sound and in the Presence of Delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apalara, Tijani A., E-mail: tijani@kfupm.edu.sa; Messaoudi, Salim A., E-mail: messaoud@kfupm.edu.sa

    In this paper, we consider a one-dimensional linear thermoelastic system of Timoshenko type with a delay, where the heat flux is given by Cattaneo’s law. We prove an exponential decay result under a smallness condition on the delay and a stability number introduced first in Santos et al. (J Diff Eqs 253:2715–2733, 2012), using a method different from that of Santos et al. (J Diff Eqs 253:2715–2733, 2012). We also reproduce the polynomial decay of Santos et al. (J Diff Eqs 253:2715–2733, 2012) using the multiplier method in the case of absence of delay. The polynomial decay issue in themore » presence of a small delay is an open question.« less

  13. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature

    NASA Astrophysics Data System (ADS)

    Lotfy, K.; Sarkar, N.

    2017-11-01

    In this work, a novel generalized model of photothermal theory with two-temperature thermoelasticity theory based on memory-dependent derivative (MDD) theory is performed. A one-dimensional problem for an elastic semiconductor material with isotropic and homogeneous properties has been considered. The problem is solved with a new model (MDD) under the influence of a mechanical force with a photothermal excitation. The Laplace transform technique is used to remove the time-dependent terms in the governing equations. Moreover, the general solutions of some physical fields are obtained. The surface taken into consideration is free of traction and subjected to a time-dependent thermal shock. The numerical Laplace inversion is used to obtain the numerical results of the physical quantities of the problem. Finally, the obtained results are presented and discussed graphically.

  14. Thermoelastic vibration test techniques

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Snyder, H. Todd

    1991-01-01

    The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.

  15. A thermoelastic transversely isotropic thick walled cylinder/disk application: An analytical solution and study

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is utilized to represent the thermoelastic behavior of a thick walled composite cylinder that can be idealized as transversely isotropic. A multiaxial statement of the constitutive theory employed is presented, as well as the out of the plane of isotropy, plane stress, and plane strain reductions. The derived analytical solution presented is valid for a cylindrical tube or thin disk with a concentric hole, subjected to internal and/or external pressure and a general radial temperature distribution. A specific problem examined is that of a thick walled cylinder subjected to an internal and external pressure loading and a linear radial temperature distribution. The results are expressed in nondimensional form and the effects on the response behavior are examined for various material properties, fiber orientation and types of loadings.

  16. Modeling thermoelastic distortion of optics using elastodynamic reciprocity

    NASA Astrophysics Data System (ADS)

    King, Eleanor; Levin, Yuri; Ottaway, David; Veitch, Peter

    2015-07-01

    Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high-power beams. In advanced-generation laser-interferometric gravitational wave detectors, for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector, thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants, and so predictive feed-forward control systems could be required, but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate, using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.

  17. Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1992-01-01

    Analytic three-dimensional thermoelasticity solutions are presented for the thermal buckling of multilayered angle-ply composite plates with temperature-dependent thermoelastic properties. Both the critical temperatures and the sensitivity derivatives are computed. The sensitivity derivatives measure the sensitivity of the buckling response to variations in the different lamination and material parameters of the plate. The plates are assumed to have rectangular geometry and an antisymmetric lamination with respect to the middle plane. The temperature is assumed to be independent of the surface coordinates, but has an arbitrary symmetric variation through the thickness of the plate. The prebuckling deformations are accounted for. Numerical results are presented, for plates subjected to uniform temperature increase, showing the effects of temperature-dependent material properties on the prebuckling stresses, critical temperatures, and their sensitivity derivatives.

  18. Thermoelastic properties of grossular–andradite solid solution at high pressures and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Dawei; Kuang, Yunqian; Xu, Jingui

    2016-09-21

    The pressure–volume–temperature (P–V–T) equation of state (EoS) of synthetic grossular (Grs)–andradite (And) solid-solution garnet sample have been measured at high temperature up to 900 K and high pressures up to 22.75 GPa for Grs50And50, by using in situ angle-dispersive X-ray diffraction and diamond anvil cell. Analysis of room-temperature P–V data to a third-order Birch–Murnaghan (BM) EoS yields: V0 = 1706.8 ± 0.2 Å3, K0 = 164 ± 2 GPa and K'0 = 4.7 ± 0.5. Fitting of our P–V–T data by means of the high-temperature third-order BM EoS gives the thermoelastic parameters: V0 = 1706.9 ± 0.2 Å3, K0 =more » 164 ± 2 GPa, K'0 = 4.7 ± 0.2, (∂K/∂T)P = -0.018 ± 0.002 GPa K-1, and α0 = (2.94 ± 0.07) × 10-5 K-1. The results also confirm that grossular content increases the bulk modulus of the Grs-And join following a nearly ideal mixing model. The relation between bulk modulus and Grs mole fraction (XGrs) in this garnet join is derived to be K0 (GPa) = (163.7 ± 0.7) + (0.14 ± 0.02) XGrs (R2 = 0.985). Present results are also compared to previously studies determined the thermoelastic properties of Grs-And garnets.« less

  19. Origin of the low-frequency internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1986-11-01

    The internal friction (IF) background of gold is studied in the kHz frequency range. Systematic measurements of IF as a function of frequency, strain amplitude, and temperature show that the IF is due to the superposition of two contributions: the thermoelastic effect and a dislocation effect. The thermoelastic effect is responsible for the IF background observed when the strain amplitude tends to zero. It is the only contribution to the IF background which is strain amplitude independent. On the contrary, the dislocation effect contributes only to the strain amplitude-dependent IF background. This effect is proportional to the strain amplitude. In particular, it is zero when the strain amplitude tends to zero. Furthermore, the dislocation contribution is frequency independent. The experimental results show that the dislocation effect cannot be explained by a viscous damping of dislocation motion, but must be related to an hysteretic and athermal motion of dislocations.

  20. Effects of stress waves on cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, H L; Da Silva, L B; Visuri, S R

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse deliveredmore » to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.« less

  1. Thermoelastic Analysis of Hyper-X Camera Windows Suddenly Exposed to Mach 7 Stagnation Aerothermal Shock

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie

    2000-01-01

    To visually record the initial free flight event of the Hyper-X research flight vehicle immediately after separation from the Pegasus(registered) booster rocket, a video camera was mounted on the bulkhead of the adapter through which Hyper-X rides on Pegasus. The video camera was shielded by a protecting camera window made of heat-resistant quartz material. When Hyper-X separates from Pegasus, this camera window will be suddenly exposed to Mach 7 stagnation thermal shock and dynamic pressure loading (aerothermal loading). To examine the structural integrity, thermoelastic analysis was performed, and the stress distributions in the camera windows were calculated. The critical stress point where the tensile stress reaches a maximum value for each camera window was identified, and the maximum tensile stress level at that critical point was found to be considerably lower than the tensile failure stress of the camera window material.

  2. Characterization of Thermo-Elastic Properties and Microcracking Behaviors of CFRP Laminates Using Cup-Stacked Carbon Nanotubes (CSCNT) Dispersed Resin

    NASA Astrophysics Data System (ADS)

    Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin

    This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.

  3. Mitigating Thermoelastic Dissipation of Flexural Micromechanical Resonators by Decoupling Resonant Frequency from Thermal Relaxation Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie

    2017-12-01

    This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.

  4. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  5. Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.

  6. A thermal, thermoelastic, and wear analysis of high-energy disk brakes

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E., Jr.; Wu, J. J.; Ling, F. F.

    1974-01-01

    A thermomechanical investigation of the sliding contact problem encountered in high-energy disk brakes is described. The analysis includes a modelling, using the finite element method of the thermoelastic instabilities that cause transient changes in contact area to occur on the friction surface. In order to include the effect of wear at the contact surface, a wear criterion is proposed that results in the prediction of wear rates for disk brakes that are quite close to experimentally determined wear rates. The thermal analysis shows that the transient temperature distribution in a disk brake assembly can be determined more accurately by use of this thermomechanical analysis than by a more conventional analysis that assumes constant contact conditions. It also shows that lower, more desirable, temperatures in disk brakes can be attained by increasing the volume, the thermal conductivity, and, especially, the heat capacity of the brake components.

  7. Usefulness and limitation of measurement methods for evaluation of tissue-engineered cartilage function and characterization using nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Sato, Masato; Kaneshiro, Nagatoshi; Mitani, Genya; Nagai, Toshihiro; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto

    2007-02-01

    There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and characterizations of engineered tissue. Regenerative medicine involving the articular cartilage in particular requires measurement of viscoelastic properties and characterization of the extracellular matrix, which plays a major role in articular cartilage. To meet this demand, we previously proposed a noninvasive method for determination of the viscoelasticity using laser-induced thermoelastic wave (1,2). We also proposed a method for characterization of the extracellular matrix using time-resolved autofluorescence spectroscopy, which could be performed simultaneously with laser-induced thermoelastic wave measurement(3). The purpose of this study was to verify the usefulness and limitation of these methods for evaluation of actual engineered cartilage. 3rd Q-SW Nd:YAG laser pulses, which are delivered through optical fiber, were used for the light source. Laser-induced thermoelastic waves were detected by a sensor consisting of a piezoelectric transducer, which was designed for use in arthroscopy(4). The time-resolved fluorescence spectroscopy was measured by a photonic multichannel analyzer with 4ch digital signal generator. Various tissue-engineered cartilages were developed as samples. Only a limited range of sample thickness could be measured, however, the measured viscoelastic parameters had a positive correlation with culture time, that is, the degree of formation of extracellular matrix(5,6). There were significant differences in the fluorescent parameters among the phenotypic expressions of cartilage because chondrocyte produces specific extracellular matrix as in collagen types depending on its phenotype.

  8. A stress-free model for residual stress assessment using thermoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.

    2015-03-01

    Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.

  9. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    USGS Publications Warehouse

    Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.

  10. Thermo-elastic wave model of the photothermal and photoacoustic signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meja, P.; Steiger, B.; Delsanto, P.P.

    1996-12-31

    By means of the thermo-elastic wave equation the dynamical propagation of mechanical stress and temperature can be described and applied to model the photothermal and photoacoustic signal. Analytical solutions exist only in particular cases. Using massively parallel computers it is possible to simulate the photothermal and photoacoustic signal in a most sufficient way. In this paper the method of local interaction simulation approach (LISA) is presented and selected examples of its application are given. The advantages of this method, which is particularly suitable for parallel processing, consist in reduced computation time and simple description of the photoacoustic signal in opticalmore » materials. The present contribution introduces the authors model, the formalism and some results in the 1 D case for homogeneous nonattenuative materials. The photoacoustic wave can be understood as a wave with locally limited displacement. This displacement corresponds to a temperature variation. Both variables are usually measured in photoacoustics and photothermal measurements. Therefore the temperature and displacement dependence on optical, elastic and thermal constants is analysed.« less

  11. Thermoelastic damping effect of the micro-ring resonator with irregular mass and stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hwan; Kim, Ji-Hwan

    2016-05-01

    Fundamentally, vibration characteristic is a main factor for the stability of structures. In this regard, the irregularity of mass and stiffness distributions for the structure have been an interesting issue for many years. Recently, the Micro Electro Mechanical Systems (MEMS) are developed for various applications such as gyro sensors. In the present work, in-plane vibration of micro-ring structure with multiple finite-sized imperfections is investigated. Then, the unbalance of the structure is represented using Heaviside Step Function for the inextensional modeling of the ring. Also, thermoelastic damping (TED) due to internal friction is studied based on Fourier's one-dimensional heat conduction equation using Laplace Transform. To obtain the quality-factors (Q-factors) for imperfect micro-ring, analytical solutions are calculated from governing equations of motion with TED. And then, the natural frequencies and the Q-factors are observed to separate into lower and higher modes. Additionally, the vibration mode shapes are presented, and the frequency trimming concept due to attached imperfections is investigated.

  12. Martensite Embryology

    NASA Astrophysics Data System (ADS)

    Reid, Andrew C. E.; Olson, Gregory B.

    2000-03-01

    Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.

  13. Laser-Excited Electronic and Thermal Elastic Vibrations in a Semiconductor Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Todorović, D. M.; Cretin, B.; Vairac, P.; Song, Y. Q.; Rabasović, M. D.; Markushev, D. D.

    2013-09-01

    Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.

  14. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  15. Evaluation of an optical fiber probe for in vivo measurement of the photoacoustic response of tissues

    NASA Astrophysics Data System (ADS)

    Beard, Paul C.; Mills, Timothy N.

    1995-05-01

    A miniature (1 mm diameter) all-optical photoacoustic probe for generating and detecting ultrasonic thermoelastic waves in biological media at the tip of an optical fiber has been developed. The probe provides a compact and convenient means of performing pulsed photoacoustic spectroscopy for the characterization of biological tissue. The device is based upon a transparent Fabry Perot polymer film ultrasound sensor mounted directly over the end of a multimode optical fiber. The optical fiber is used to deliver nanosecond laser pulses to the tissue producing thermoelastic waves which are then detected by the sensor. Detection sensitivities of 53 mv/MPa and a 10 kPa acoustic noise floor have been demonstrated giving excellent signal to noise ratios in a strong liquid absorber. Lower, but clearly detectable, signals in post mortem human aorta have also been observed. The performance and small physical size of the device suggest that it has the potential to perform remote in situ photoacoustic measurements in tissue.

  16. Evaluation of fatigue-prone details using a low-cost thermoelastic stress analysis system.

    DOT National Transportation Integrated Search

    2016-11-01

    This study was designed to develop a novel approach for in situ evaluation of stress fields in the vicinity of fatigue-prone details on highway bridges using a low-cost microbolometer thermal imager. : The method was adapted into a field-deployable i...

  17. Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1976-01-01

    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.

  18. Analysis of thermoelastic damping in laminated composite micromechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Vengallatore, Srikar

    2005-12-01

    Minimization of structural damping is an essential requirement in the design of multifunctional composite micromachined resonators used for sensing and communications applications. Here, we study thermoelastic damping in symmetric, three-layered, laminated, micromechanical Euler-Bernoulli beams using an analytical framework developed by Bishop and Kinra in 1997. The frequency dependence of damping in two representative sets of structures—metallized ceramic beams and ceramic/ceramic laminates—is investigated in detail. The effects of material properties and relative volume fractions are numerically evaluated. The results indicate that metallization of Si and SiC beams using Al, Cu, Ag or Au leads to a considerable increase in damping over a broad frequency range. Similarly, coating silicon with SiC leads to a monotonic increase of the peak damping value as a function of the volume fraction of silicon carbide but, remarkably, there exists a range of frequencies at which the damping in the composite is less than that of bare silicon. Implications for the design of metallized ceramic beams, and for the simultaneous optimization of natural frequency and damping, are discussed.

  19. Thermoelastic damping in microrings with circular cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Fang, Yuming; Zhang, Jianrun

    2016-01-01

    Predicting thermoelastic damping (TED) is crucial in the design of high Q micro-resonators. Microrings are often critical components in many micro-resonators. Some analytical models for TED in microrings have already been developed in the past. However, the previous works are limited to the microrings with rectangular cross-section. The temperature field in the rectangular cross-section is one-dimensional. This paper deals with TED in the microrings with circular cross-section. The temperature field in the circular cross-section is two-dimensional. This paper first presents a 2-D analytical model for TED in the microrings with circular cross-section. Only the two-dimensional heat conduction in the circular cross-section is considered. The heat conduction along the circumferential direction of the microring is neglected in the 2-D model. Then the 2-D model has been extended to cover the circumferential heat conduction, and a 3-D analytical model for TED has been developed. The analytical results from the present 2-D and 3-D models show good agreement with the numerical results of FEM model. The limitations of the present 2-D analytical model are assessed.

  20. Characterization of the Mechanical Stress-Strain Performance of Aerospace Alloy Materials Using Frequency-Domain Photoacoustic Ultrasound and Photothermal Methods: An FEM Approach

    NASA Astrophysics Data System (ADS)

    Huan, Huiting; Mandelis, Andreas; Liu, Lixian

    2018-04-01

    Determining and keeping track of a material's mechanical performance is very important for safety in the aerospace industry. The mechanical strength of alloy materials is precisely quantified in terms of its stress-strain relation. It has been proven that frequency-domain photothermoacoustic (FD-PTA) techniques are effective methods for characterizing the stress-strain relation of metallic alloys. PTA methodologies include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound (PAUS) generation which must be separately discussed because the relevant frequency ranges and signal detection principles are widely different. In this paper, a detailed theoretical analysis of the connection between thermoelastic parameters and stress/strain tensor is presented with respect to FD-PTA nondestructive testing. Based on the theoretical model, a finite element method (FEM) was further implemented to simulate the PT and PAUS signals at very different frequency ranges as an important analysis tool of experimental data. The change in the stress-strain relation has an impact on both thermal and elastic properties, verified by FEM and results/signals from both PT and PAUS experiments.

  1. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  2. Laser-induced thermoelastic effects can evoke tactile sensations

    NASA Astrophysics Data System (ADS)

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-06-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.

  3. Laser-induced thermoelastic effects can evoke tactile sensations.

    PubMed

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-06-05

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.

  4. Temperature Dependence Of Elastic Constants Of Polymers

    NASA Technical Reports Server (NTRS)

    Simha, Robert; Papazoglou, Elisabeth

    1989-01-01

    Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.

  5. Dynamic Processes in Nanostructured Crystals Under Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.

    2018-02-01

    The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.

  6. Relaxation model of the heat production

    NASA Astrophysics Data System (ADS)

    Zimin, B. A.; Zorin, I. S.; Sventitskaya, V. E.

    2018-05-01

    The work is devoted to the study of the heat generation process in the problem of the dynamics of oscillations of a one-dimensional chain simulating heat formation in an elastic continuous medium under mechanical influences. Formulas for estimating the effect of thermoelasticity are obtained and an analogy is made with the energy of damped oscillations of an anharmonic oscillator.

  7. Constitutive Equations: Plastic and Viscoelastic Properties. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.

  8. Thermoelastic characteristics testing on kevlar samples for spacecraft structures

    NASA Astrophysics Data System (ADS)

    Crema, L. Balis; Barboni, R.; Castellani, A.; Peroni, I.

    The tensile properties, the thermal expansion coefficient and the thermal conductivity of woven roving (WR) reinforced Kevlar fabrics were experimentally determined. Theoretical values for tensile Young's modulus were calculated by simulating a fabric as an equivalent cross-ply laminate. As thermal expansion coefficient concerns the fabrics have shown an isotropic behaviour. The thermal conductivity normal to fabric plane has also been determined.

  9. Quality-assurance study of the special - purpose finite-element program - SPECTROM: I. Thermal, thermoelastic, and viscoelastic problems. [Comparison with MARC-CDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, R.A.

    1980-12-01

    This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems.

  10. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  11. Nonlinear Eulerian Thermoelasticity for Anisotropic Crystals

    DTIC Science & Technology

    2013-08-01

    the applied pressure. However, some crystalline materials such as ceramics and hard minerals may retain significant shear strength at finite strain...which elastic properties have been measured. Benefits of using Eulerian strain measures for nonlinear elasticity of isotropic materials were extolled by...highly symmetric anharmonic properties . Deviations may be expected for highly anisotropic materials , as shown in Section 4. This work is focused

  12. A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.

  13. Thermoelastic Damping in Cone Microcantilever Resonator

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with continuous or discontinuous variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators, such as tapered microbeam, torsion microbeam and stepped microbeam. Thermoelastic damping (TED), which is verified as a fundamental energy lost mechanism for microresonators, is calculated by the Zener’s model and Lifshits and Roukes’s (LR) model in general. However, for non-uniform microbeam resonators, these two classical models are not suitable in some cases. On the basis of Zener’s theory, a TED model for cone microcantilever with rectangular cross-section has been derived in this study. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the proposed model is able to predict TED value for cone microcantilever. In addition, TED in cone microcantilever is nearly same as TED in wedge microcantilever. The results show that quality factors (Q-factors) of cone microcantilever and wedge microcantilever are larger than Q-factor of uniform microbeam at low frequencies. The Debye peak value of a uniform microcantilever is equal to 0.5Δ E , while those of cone microcantilever and wedge microcantilever are about 0.438ΔE and 0.428ΔE, respectively.

  14. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2017-07-01

    The dual-phase-lag (DPL) model with two different time translations and Lord-Shulman (LS) theory with one relaxation time are applied to study the effect of hydrostatic initial stress on medium under the influence of two temperature parameter(a new model will be introduced using two temperature theory) and photothermal theory. We solved the thermal loading at the free surface in the semi-infinite semiconducting medium-coupled plasma waves with the effect of mechanical force during a photothermal process. The exact expressions of the considered variables are obtained using normal mode analysis also the two temperature coefficient ratios were obtained analytically. Numerical results for the field quantities are given in the physical domain and illustrated graphically under the effects of several parameters. Comparisons are made between the results of the two different models with and without two temperature parameter, and for two different values of the hydrostatic initial stress. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the LS theory in the absence and presence of the thermoelastic and thermoelectric coupling parameters.

  15. Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity

    NASA Astrophysics Data System (ADS)

    Shahani, Amir Reza; Sharifi Torki, Hamid

    2018-01-01

    The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction-traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction-displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.

  16. Numerical simulation of evaluation of surface breaking cracks by array-lasers generated narrow-band SAW

    NASA Astrophysics Data System (ADS)

    Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu

    2011-09-01

    Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.

  17. Thermoelasticity of Fe2+-bearing bridgmanite

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Wu, Zhongqing; Hsu, Han; Floris, Andrea; Cococcioni, Matteo; Wentzcovitch, Renata M.

    2015-03-01

    We present local density approximation augmented by the Hubbard-type correction calculations of high-temperature elastic properties of bridgmanite with composition (Mg(1-x)Fex2+)SiO3 for 0≤×≤0.125. Results of elastic moduli and acoustic velocities for the Mg end-member (x=0) agree very well with the latest high-pressure and high-temperature experimental measurements. In the iron-bearing system, we focus particularly on the change in thermoelastic parameters across the state change that occurs in ferrous iron above ˜30 GPa, often attributed to a high-spin (HS) to intermediate-spin (IS) crossover but explained by first-principles calculations as a lateral displacement of substitutional iron in the perovskite cage. We show that the measured effect of this change on the equation of state of this system can be explained by the lateral displacement of substitutional iron and not by the HS to IS crossover. The calculated elastic properties of (Mg0.875Fe0.1252+)SiO3 along an adiabatic mantle geotherm somewhat overestimate longitudinal velocities but produce densities and shear velocities quite consistent with the Preliminary Reference Earth Model data throughout most of the lower mantle.

  18. Thermoelasticity of (Mg,Fe)SiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Wu, Zhongqing; Hsu, Han; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present LDA+U calculations of high temperature elastic properties of (Mg(1 - x)Fex2+)SiO3 bridgemanite (0 <= x <= 0 . 125), the most abundant constituent of Earth's lower mantle. Calculations of aggregate elastic moduli and acoustic velocities for the Mg-end member (x=0) are in excellent agreement with the latest high pressure and high temperature experimental measurements. In the iron bearing system, we particularly focus on the change in thermoelastic parameters across the state change that occurs in ferrous iron above ~30 GPa, often attributed to a high-spin (HS) to intermediate spin (IS) crossover but explained by calculations as a lateral displacement of substitutional iron in the perovskite cage. We show that the measured effect on the equation of state of this change in the state of iron can be explained by the lateral displacement of substitutional iron, not by the HS to IS crossover. Calculated elastic properties of (Mg0.875 Fe0.125 2 +)SiO3 along an adiabatic mantle geotherm, somewhat overestimate longitudinal velocities but produce densities and shear velocities consistent with Preliminary Reference Earth Model data throughout most of the lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  19. Shape Memory Actuator System

    DTIC Science & Technology

    1998-07-31

    The advantage in utilizing 15 shape-memory cables made of Nitinol for size reduction of the remote control actuator system is 1 Fi well suited for...a submarine environment because of its non-magnetic and corrosion resistance 17 properties. Use of thermoelastic Nitinol introduces other...problems because of the cooling and 18 resetting properties of Nitinol cables. It is therefore an important object of the present invention 19 on to

  20. Use of Shape Memory Alloys in the Robust Control of Smart Structures

    DTIC Science & Technology

    1993-08-01

    OHP (anions) @ Cation II I I JU Anion O0HP(cations) 0 Ano Cation electrf statically h eld in double layer 0 ’ Double Diff sion Bulk Layer L., Layer I...Effect in Thermoelastic In-Tl Martensite, Mem . Fac. Eng. Kyoto Univ., 43(2): 287-303 (1981) 43. A. Nagasawa, Memory Effect in In-Tl Alloy, J. Phys. Soc

  1. Characterization of a penny-shaped reservoir in a hot dry rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine, H.; Mura, T.

    1980-07-10

    The mechanical stability of a penny-shaped revervoir is characterized by fracture mechanics including thermoelastic effects in connection with research into the extraction of geothermal energy from hot dry rocks. The condition for stability of a reservoir, which is not changing radius by propagating or closing, requires 0m/sub 0/>m/sub asterisk/; and case 3; m/sub 0/=m/sub asterisk/.

  2. Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions

    NASA Astrophysics Data System (ADS)

    Hayati, Yazdan; Eskandari-Ghadi, Morteza

    2018-02-01

    An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.

  3. Thermoelastic properties of chromium oxide Cr2O3 (eskolaite) at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Dymshits, Anna M.; Dorogokupets, Peter I.; Sharygin, Igor S.; Litasov, Konstantin D.; Shatskiy, Anton; Rashchenko, Sergey V.; Ohtani, Eiji; Suzuki, Akio; Higo, Yuji

    2016-06-01

    A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch-Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus ( K 0, T0), 206 ± 4 GPa; its pressure derivative K'0 ,T , 4.4 ± 0.8; (∂ K 0 ,T /∂ T) = ‒0.037 ± 0.006 GPa K‒1; a = 2.98 ± 0.14 × 10-5 K-1 and b = 0.47 ± 0.28 × 10‒8 K‒2, where α 0, T = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0, T0 was determined to be 2.95 × 10-5 K-1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137-148, 1946) widely used in many physical and geological databases. Fitting the Mie-Grüneisen-Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0, T0 = 205 ± 3 GPa, K'0, T = 4.0, Grüneisen parameter ( γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with {{d}}P/{{d}}T = - 0.014 GPa/K) was found to be consistent with experimental data.

  4. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.

  5. Dissipation in graphene and nanotube resonators

    NASA Astrophysics Data System (ADS)

    Seoánez, C.; Guinea, F.; Castro Neto, A. H.

    2007-09-01

    Different damping mechanisms in graphene nanoresonators are studied: charges in the substrate, ohmic losses in the substrate and the graphene sheet, breaking and healing of surface bonds (Velcro effect), two level systems, attachment losses, and thermoelastic losses. We find that, for realistic structures and contrary to semiconductor resonators, dissipation is dominated by ohmic losses in the graphene layer and metallic gate. An extension of this study to carbon nanotube-based resonators is presented.

  6. Nonlinear Thermoelastic Effects in Surface Mechanics.

    DTIC Science & Technology

    1980-01-01

    remaining quartic polynomial generated by det(A) .0 is presumed to not yield real roots (real characteristics) associated with elastic waves because...0253 UNCLASSIFIED NL NONINEAR THEMLOEIASTIC EFF’ECTS IN SUFC MECHANICS D T ICX2 ) J.1. PFirin General Electric Company. JUN 1 8 8 Schenectady, New York...f - Generalized analytic functions Ei Lagrangian strain components lk - Generalized Cauchy kernels, Eq. (1I) E - Young’s modulus, Pa ulk

  7. Analysis of Shock Compression of Strong Single Crystals With Logarithmic Thermoelastic-Plastic Theory

    DTIC Science & Technology

    2014-05-01

    Royal Society of London Series A, 465, 307–334. Clayton, J. (2010a). Modeling nonlinear electromechanical behavior of shocked silicon carbide . Journal...and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. Journal of the Acoustical...Vogler, T., & Clayton, J. (2008). Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity

  8. Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

    PubMed Central

    Pitarresi, Giuseppe; Tumino, Davide; Mancuso, Antonio

    2015-01-01

    The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously “yielded” samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material. PMID:28793643

  9. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    NASA Astrophysics Data System (ADS)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  10. Adhesion Upon Solidification and Detachment in the Melt Spinning of Metals

    NASA Astrophysics Data System (ADS)

    Altieri, Anthony L.; Steen, Paul H.

    2014-12-01

    In planar-flow melt spinning, liquid metal is rapidly solidified, against a heat-sink wheel, into thin ribbons which adhere to the substrate wheel. In the absence of a blade to mechanically scrape the ribbon off the wheel, it may wrap fully around and re-enter the solidification region, called `catastrophic' adhesion. Otherwise, detachment occurs part way around the wheel, called `natural' detachment. Natural detachment occurs through a release of thermo-elastic stress after sufficient cooling of the ribbon, according to prior studies. This note extends prior work by invoking a crack propagation view of natural detachment which, when combined with a simple model of the thermo-elastic stress build-up and ribbon cooling, yields an adhesion/detachment criterion characterized by an interfacial adhesion/fracture energy . For aluminum-silicon alloys frozen against a copper substrate, we report 60 N/m. The criterion can be used to predict detachment once a heat-transfer coefficient is known. We obtain this parameter from natural detachment experiments and then use it to predict catastrophic adhesion in a semi-empirical way. Our note puts a quantitative foundation underneath prior qualitative discussions in the literature. Alternatively, it demonstrates how the interfacial strength of adhesion, a property only of the pair of adhering materials, might be measured based on sticking distance experiments.

  11. Thermoelastic Theory for the Response of Materials Functionally Graded in Two Directions with Applications to the Free-Edge Problem

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1995-01-01

    A recently developed micromechanical theory for the thermoelastic response of functionally graded composites with nonuniform fiber spacing in the through-thickness direction is further extended to enable analysis of material architectures characterized by arbitrarily nonuniform fiber spacing in two directions. In contrast to currently employed micromechanical approaches applied to functionally graded materials, which decouple the local and global effects by assuming the existence of a representative volume element at every point within the composite, the new theory explicitly couples the local and global effects. The analytical development is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense. Results are presented that illustrate the capability of the derived theory to capture local stress gradients at the free edge of a laminated composite plate due to the application of a uniform temperature change. It is further shown that it is possible to reduce the magnitude of these stress concentrations by a proper management of the microstructure of the composite plies near the free edge. Thus by an appropriate tailoring of the microstructure it is possible to reduce or prevent the likelihood of delamination at free edges of standard composite laminates.

  12. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  13. Revisit of pressure-induced phase transition in PbSe: Crystal structure, and thermoelastic and electrical properties

    DOE PAGES

    Wang, Shanmin; Zang, Chengpeng; Wang, Yongkun; ...

    2015-05-04

    Lead selenide, PbSe, an important lead chalcogenide semiconductor, has been investigated using in–situ high–pressure/high–temperature synchrotron x–ray diffraction and electrical resistivity measurements. For the first time, high–quality x-ray diffraction data were collected for the intermediate orthorhombic PbSe. Combined with ab initio calculations, we find a Cmcm, InI–type symmetry for the intermediate phase, which is structurally more favorable than the anti–GeS–type Pnma. At room temperature, the onset of the cubic–orthorhombic transition was observed at ~3.5 GPa with a ~3.4% volume reduction. At an elevated temperature of 1000 K, the reversed orthorhombic–to–cubic transition was observed at 6.12 GPa, indicating a positive Clapeyron slopemore » for the phase boundary. Interestingly, phase–transition induced elastic softening in PbSe was also observed, which can be mainly attributed to the loosely bonded trigonal prisms along the b–axis in the Cmcm structure. Compared with the cubic phase, orthorhombic PbSe exhibits a large negative pressure dependence of electrical resistivity. Additionally, thermoelastic properties of orthorhombic PbSe have been derived from isothermal compression data, such as temperature derivative of bulk modulus and thermally induced pressure.« less

  14. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  15. Ultrafast dynamic response of single-crystal β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Austin, Ryan A.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Goldman, Nir; Ferranti, Louis; Saw, Cheng K.; Swan, Raymond A.; Gross, Richard; Fried, Laurence E.

    2018-05-01

    We report experimental and computational studies of shock wave dynamics in single-crystal β-HMX on an ultrafast time scale. Here, a laser-based compression drive (˜1 ns in duration; stresses of up to ˜40 GPa) is used to propagate shock waves normal to the (110) and (010) lattice planes. Ultrafast time-domain interferometry measurements reveal distinct, time-dependent relationships between the shock wave velocity and particle velocity for each crystal orientation, which suggest evolving physical processes on a sub-nanosecond time scale. To help interpret the experimental data, elastic shock wave response was simulated using a finite-strain model of crystal thermoelasticity. At early propagation times (<500 ps), the model is in agreement with the data, which indicates that the mechanical response is dominated by thermoelastic deformation. The model agreement depends on the inclusion of nonlinear elastic effects in both the spherical and deviatoric stress-strain responses. This is achieved by employing an equation-of-state and a pressure-dependent stiffness tensor, which was computed via atomistic simulation. At later times (>500 ps), the crystal samples exhibit signatures of inelastic deformation, structural phase transformation, or chemical reaction, depending on the direction of wave propagation.

  16. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  17. Existence and energy decay of a nonuniform Timoshenko system with second sound

    NASA Astrophysics Data System (ADS)

    Hamadouche, Taklit; Messaoudi, Salim A.

    2018-02-01

    In this paper, we consider a linear thermoelastic Timoshenko system with variable physical parameters, where the heat conduction is given by Cattaneo's law and the coupling is via the displacement equation. We discuss the well-posedness and the regularity of solution using the semigroup theory. Moreover, we establish the exponential decay result provided that the stability function χ r(x)=0. Otherwise, we show that the solution decays polynomially.

  18. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  19. Bioelectromagnetic Effects of EMP: Preliminary Findings

    DTIC Science & Technology

    1988-06-01

    microwave hearing effect in which low- level microwave pulses are absorbed in the head and transduced into thermoelastic stress waves which are audible to...cycles can be used to hold SARs down to reasonable levels . 2.4 INTERNAL FIELD STRENGTHS PRODUCED IN HUMANS AND LABORATORY ANIMALS DURING EMP...rcplicate tests just like this one would be expected to detect that change? Answer: 69.85% of them could detect that change. dGenerally, a 90% level of

  20. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  1. Constitutive Equations: Plastic and Viscoelastic Properties. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels. (Contains 50-250 citations and includes a subject term index and title list.)

  2. Thermoelasticity and high- T behaviour of anthophyllite

    NASA Astrophysics Data System (ADS)

    Welch, Mark D.; Cámara, Fernando; Oberti, Roberta

    2011-04-01

    The thermoelastic behaviour of anthophyllite has been determined for a natural crystal with crystal-chemical formula ANa0.01 B(Mg1.30Mn0.57Ca0.09Na0.04) C(Mg4.95Fe0.02Al0.03) T(Si8.00)O22 W(OH)2 using single-crystal X-ray diffraction to 973 K. The best model for fitting the thermal expansion data is that of Berman (J Petrol 29:445-522, 1988) in which the coefficient of volume thermal expansion varies linearly with T as α V,T = a 1 + 2 a 2 ( T - T 0): α298 = a 1 = 3.40(6) × 10-5 K-1, a 2 = 5.1(1.0) × 10-9 K-2. The corresponding axial thermal expansion coefficients for this linear model are: α a ,298 = 1.21(2) × 10-5 K-1, a 2, a = 5.2(4) × 10-9 K-2; α b ,298 = 9.2(1) × 10-6 K-1, a 2, b = 7(2) × 10-10 K-2. α c ,298 = 1.26(3) × 10-5 K-1, a 2, c = 1.3(6) × 10-9 K-2. The thermoelastic behaviour of anthophyllite differs from that of most monoclinic ( C2/ m) amphiboles: (a) the ɛ 1 - ɛ 2 plane of the unit-strain ellipsoid, which is normal to b in anthophyllite but usually at a high angle to c in monoclinic amphiboles; (b) the strain components are ɛ 1 ≫ ɛ 2 > ɛ 3 in anthophyllite, but ɛ 1 ~ ɛ 2 ≫ ɛ 3 in monoclinic amphiboles. The strain behaviour of anthophyllite is similar to that of synthetic C2/ m ANa B(LiMg) CMg5 TSi8 O22 W(OH)2, suggesting that high contents of small cations at the B-site may be primarily responsible for the much higher thermal expansion ⊥(100). Refined values for site-scattering at M4 decrease from 31.64 epfu at 298 K to 30.81 epfu at 973 K, which couples with similar increases of those of M1 and M2 sites. These changes in site scattering are interpreted in terms of Mn ↔ Mg exchange involving M1,2 ↔ M4, which was first detected at 673 K.

  3. Low temperature and high pressure thermoelastic and crystallographic properties of SrZrO3 perovskite in the Pbnm phase

    NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Bull, Craig L.

    2016-12-01

    The thermoelastic and structural properties of SrZrO3 perovskite in the Pnma (Pbnm) phase have been studied using neutron powder diffraction at 82 temperatures between 11 K and 406 K at ambient pressure, and at sixteen pressures between 0.07 and 6.7 GPa at ambient temperature. The bulk modulus, derived by fitting the equation of state to a second order Birch-Murnaghan equation-of-state, 157(5) GPa, is in excellent agreement with that deduced in a recent resonant ultrasound investigation. Experimental axial compressional moduli are in agreement with those calculated from the elastic stiffness coefficients derived by ab-initio calculation, although the experimental bulk modulus is significantly softer than that calculated. Following low temperature saturation for temperatures less than 40 K, the unit cell monotonically increases with a predicted high temperature limit in the volume expansivity of ∼2.65 × 10-5 K-1. Axial linear thermal expansion coefficients are found to be in the order αb < αc < αa for all temperatures greater than 20 K with the b axis indicating a weak, low temperature negative expansion coefficient at low temperatures. The thermoelastic properties of SrZrO3 can be approximated by a two-term Debye model for the phonon density of states with Debye temperatures of 238(4) K and 713(6) K derived in a self-consistent manner by simultaneously fitting the isochoric heat capacity and the unit cell volume. Atomic displacement parameters have been fitted to a modified Debye model in which the zero-point term is an additional refinable variable and shows the cations and anions have well separated Debye temperatures, mirroring the need for two Debye-like distributions in the vibrational density of states. The temperature dependence of the crystal structure is presented in terms of the amplitudes of the seven symmetry-adapted basis vectors of the aristotype phase that are consistent with space group Pbnm, thus permitting a direct measure of the order parameter evolution in SrZrO3. The temperature variation of the in-phase tilt, which is lost at the phase transition at 973 K, is consistent with tricritical behaviour, in agreement with published results based on high temperature crystallographic data.

  4. WHO Meeting on EMF Biological Effects and Standards Harmonization in Asia and Oceania, 22-24 October, 2001, Shilla Hotel, Seoul, Korea

    DTIC Science & Technology

    2001-10-24

    thermoelastic waves in the have been developed in several laboratories. head to stimulate auditory system. This hypothesis has been examined theoretically...country, thus stimulating the study on the EMF influence on human body. In closing, I extend my sincere appreciation to all presenters and...various systems of direct stimulation of nerves and other excitable cells the body, particularly the nervous, endocrine and using electrodes. immune

  5. Dependence of laser radiation intensity on the elastic deformation of a revolving optical disk with a reflective coating

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Portnov, D. I.

    2016-12-01

    The physical mechanism of alteration of intensity of linearly polarized monochromatic electromagnetic radiation with λ = 630 nm in a revolving dielectric disk with a mirror coating is examined. The effect is induced by elastic deformation due to the revolution and by thermoelastic deformation of the optically transparent disk. These deformations result in birefringence, the polarization plane rotation, and a 30-40% change in the intensity of reflected radiation.

  6. Shape memory effect in nanosized Ti2NiCu alloy-based composites

    NASA Astrophysics Data System (ADS)

    Irzhak, A. V.; Lega, P. V.; Zhikharev, A. M.; Koledov, V. V.; Orlov, A. P.; Kuchin, D. S.; Tabachkova, N. Yu.; Dikan, V. A.; Shelyakov, A. V.; Beresin, M. Yu.; Pushin, V. G.; von Gratowski, S. V.; Pokrovskiy, V. Ya.; Zybtsev, S. G.; Shavrov, V. G.

    2017-01-01

    The shape memory effect (SME) in alloys with a thermoelastic martensite transition opens unique opportunities for the creation of miniature mechanical devices. The SME has been studied in layered composite microstructures consisting of a Ti2NiCu alloy and platinum. It occurs upon a decrease in the active layer thickness at least to 80 nm. Some physical and technological restrictions on the minimum size of a material with SME are discussed.

  7. Approximations of Thermoelastic and Viscoelastic Control Systems

    DTIC Science & Technology

    1990-06-01

    parabolic partial differential equations. The development of computational algorithms for designing controllers for such systems is an Immenselv complex...hereditary differential system on Rr , then approximate the "’historv" or -’memory- term (i.e.. the integral term in i.S)). In this paper we will use a... variation introduced by Fabiano and Ito ([FI]) of the averaging scheme considered by Banks and Burns ([BB]) for the second stage. The idea of the "’AVE

  8. New Ni-free superelastic alloy for orthodontic applications.

    PubMed

    Arciniegas, M; Manero, J M; Espinar, E; Llamas, J M; Barrera, J M; Gil, F J

    2013-08-01

    A potential new Ni-free Ti alloy for biomedical applications was assessed in order to investigate the superelastic behavior, corrosion resistance and the biocompatibility. The alloy studied was Ti19.1Nb8.8Zr. The chemical composition was determined by X-ray microanalysis, the thermoelastic martensitic transformation was characterized by high sensitivity calorimeter. The critical stresses were determined by electromechanical testing machine and the corrosion behavior was analyzed by potentiostatic equipment in artificial saliva immersion at 37°C. The results were compared with six different NiTi orthodontic archwire brands. The biocompatibility was studied by means of cultures of MG63 cells. Ni-free Ti alloy exhibits thermoelastic martensitic transformation with Ms=45°C. The phase present at 37°C was austenite which under stress can induce martensite. The stress-strain curves show a superelastic effect with physiological critical stress (low and continuous) and a minimal lost of the recovery around 150 mechanical cycles. The corrosion resistance improves the values obtained by different NiTi alloys avoiding the problem of the Ni adverse reactions caused by Ni ion release. Cell culture results showed that adhered cell number in new substrate was comparable to that obtained in a commercially pure Ti grade II or beta-titanium alloy evaluated in the same conditions. Consequently, the new alloy presents an excellent in-vitro response. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  10. Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress

    USGS Publications Warehouse

    Stuart, W.D.; Foulger, G.R.; Barall, M.

    2007-01-01

    The lithosphere crack model, the main alternative to the mantle plume model for age-progressive magma emplacement along the Hawaiian-Emperor volcano chain, requires the maximum horizontal tensile stress to be normal to the volcano chain. However, published stress fields calculated from Pacific lithosphere tractions and body forces (e.g., subduction pull, basal drag, lithosphere density) are not optimal for southeast propagation of a stress-free, vertical tensile crack coincident with the Hawaiian segment of the Hawaiian-Emperor chain. Here we calculate the thermoelastic stress rate for present-day cooling of the Pacific plate using a spherical shell finite element representation of the plate geometry. We use observed seafloor isochrons and a standard model for lithosphere cooling to specify the time dependence of vertical temperature profiles. The calculated stress rate multiplied by a time increment (e.g., 1 m.y.) then gives a thermoelastic stress increment for the evolving Pacific plate. Near the Hawaiian chain position, the calculated stress increment in the lower part of the shell is tensional, with maximum tension normal to the chain direction. Near the projection of the chain trend to the southeast beyond Hawaii, the stress increment is compressive. This incremental stress field has the form necessary to maintain and propagate a tensile crack or similar lithosphere flaw and is thus consistent with the crack model for the Hawaiian volcano chain.?? 2007 The Geological Society of America.

  11. Nonlinear thermal dynamic analysis of graphit/aluminum composite plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenneti, R.; Chandrashekhara, K.

    1994-09-01

    Because of the increased application of composite materials in high-temperature environments, the thermoelastic analysis of laminated composite structures is important. Many researchers have applied the classical lamination theory to analyze laminated plates under thermomechanical loading, which neglects shear deformation effects. The transverse shear deformation effects are not negligible as the ratios of inplane elastic modulus to transverse shear modulus are relatively large for fiber-reinforced composite laminates. The application of first-order shear deformation theory for the thermoelastic analysis of laminated plates has been reported by only a few investigators. Reddy and Hsu have considered the thermal bending of laminated plates. Themore » analytical and finite element solutions for the thermal bucking of laminated plates have been reported by Tauchert and Chandrashekara, respectively. However, the first-order shear deformation theory, based on the assumption of constant distribution of transverse shear through the thickness, requires a shear correction factor to account for the parabolic shear strain distribution. Higher order theories have been proposed which eliminate the need for a shear correction factor. In the present work, nonlinear dynamic analysis of laminated plates subjected to rapid heating is investigated using a higher order shear deformation theory. A C(sup 0) finite element model with seven degrees of freedom per node is implmented and numerical results are presented for laminated graphite/aluminum plates.« less

  12. A {1,2}-Order Plate Theory Accounting for Three-Dimensional Thermoelastic Deformations in Thick Composite and Sandwich Laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Annett, M. S.; Gendron, G.

    2001-01-01

    A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.

  13. Macroscopic constitutive equations of thermo-poroelasticity derived using eigenstrain-eigenstress approaches

    NASA Astrophysics Data System (ADS)

    Suvorov, Alexander P.; Selvadurai, A. P. S.

    2011-06-01

    Macroscopic constitutive equations for thermoelastic processes in a fluid-saturated porous medium are re-derived using the notion of eigenstrain or, equivalently, eigenstress. The eigenstrain-stress approach is frequently used in micromechanics of solid multi-phase materials, such as composites. Simple derivations of the stress-strain constitutive relations and the void occupancy relationship are presented for both fully saturated and partially saturated porous media. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  14. Micro-mechanics of fiber reinforced bounded and unbounded solids: effective local and non-local thermo-elastic properties, stress concentration factors, and edge effect

    DTIC Science & Technology

    2005-07-01

    second order tensors of local eigenstresses and eigenstrains (transformation fields) which may arise by thermal expansion, plastic deformation, phase...with properties different from those of the homogeneous matrix) can be related to specified eigenstrain *( )e x by replacing the inhomogeneities...homogeneous matrix material only. rλ and mλ could be isotropic or anisotropic if the eigenstrain field *( )e x is uniform in Iv . So the strain at

  15. Developments in signal processing and interpretation in laser tapping

    NASA Astrophysics Data System (ADS)

    Perton, M.; Neron, C.; Blouin, A.; Monchalin, J.-P.

    2013-01-01

    A novel technique, called laser-tapping, based on the thermoelastic excitation by laser like laser-ultrasonics has been previously introduced for inspecting honeycomb and foam core structures. If the top skin is delaminated or detached from the substrate, the detached layer is driven into vibration. The interpretation of the vibrations in terms of Lamb wave resonances is first discussed for a flat bottom hole configuration and then used to determine appropriate signal processing for samples such as honeycomb structures.

  16. Electromagnetic deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.

    2017-09-01

    To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].

  17. The influence of thermal and conductive temperatures in a nanoscale resonator

    NASA Astrophysics Data System (ADS)

    Hobiny, Aatef; Abbas, Ibrahim A.

    2018-06-01

    In this work, the thermoelastic interaction in a nano-scale resonator based on two-temperature Green-Naghdi model is established. The nanoscale resonator ends were simply supported. In the Laplace's domain, the analytical solution of conductivity temperature and thermodynamic temperature, the displacement and the stress components are obtained. The eigenvalue approach resorted to for solutions. In the vector-matrix differential equations form, the essential equations were written. The numerical results for all variables are presented and are illustrated graphically.

  18. Relative Influence of Intrinsic and Extrinsic Factors on the Metal-Insulator Transition of VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Kim, In Soo

    The influence of stoichiometry on the metal-insulator transition of vanadium dioxide (VO2) nanowires was investigated using Raman spectroscopy. Controlled reduction of nominally strain-free suspended VO2 nanowires was conducted by rapid thermal annealing (RTA). The deficiency in oxygen assisted in the unprecedented suppression of the metallic (R) phase to temperatures as low as 103 K through generation of free electrons. In a complementary manner, oxygen-rich conditions stabilized the metastable monoclinic (M2) and triclinic (T) phases. A pseudo-phase diagram with dimensions of temperature and stoichiometry was established, highlighting the accessibility of new phases in the nanowire geometry. Detection of the dynamic elastic response across the metal-insulator transition in suspended VO2 nanowires was enabled by fiber-coupled polarization dependent interferometry. Dual-beam Raman spectroscopy was developed to determine the local domain/phase structure of VO2 nanowires, which allowed for accurate modeling using COMSOL finite element analysis (FEA). The Young's moduli of the single crystal insulating (M1) and metallic (R) phases without artifacts were determined for the first time. The sources of dissipation were identified as clamping losses, structural losses, thermoelastic damping, and domain wall motion. While contribution of thermoelastic damping was found to be dominant in the terminal phases, extraordinary dissipation was observed upon formation and movement of domain walls. Finally, it was shown that creation of local defects could lead to new classes of tunable sensors with a discrete and programmable frequency response with temperature.

  19. Modeling of nanostructured porous thermoelastic composites with surface effects

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.

    2017-01-01

    The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.

  20. Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids

    NASA Astrophysics Data System (ADS)

    Toher, Cormac; Oses, Corey; Plata, Jose J.; Hicks, David; Rose, Frisco; Levy, Ohad; de Jong, Maarten; Asta, Mark; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano

    2017-06-01

    Thorough characterization of the thermomechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential materials requires highly integrated, sophisticated, and robust computational approaches. We tackled the challenge by developing an automated, integrated workflow with robust error-correction within the AFLOW framework which combines the newly developed "Automatic Elasticity Library" with the previously implemented GIBBS method. The first extracts the mechanical properties from automatic self-consistent stress-strain calculations, while the latter employs those mechanical properties to evaluate the thermodynamics within the Debye model. This new thermoelastic workflow is benchmarked against a set of 74 experimentally characterized systems to pinpoint a robust computational methodology for the evaluation of bulk and shear moduli, Poisson ratios, Debye temperatures, Grüneisen parameters, and thermal conductivities of a wide variety of materials. The effect of different choices of equations of state and exchange-correlation functionals is examined and the optimum combination of properties for the Leibfried-Schlömann prediction of thermal conductivity is identified, leading to improved agreement with experimental results than the GIBBS-only approach. The framework has been applied to the AFLOW.org data repositories to compute the thermoelastic properties of over 3500 unique materials. The results are now available online by using an expanded version of the REST-API described in the Appendix.

  1. Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium

    NASA Astrophysics Data System (ADS)

    Zou, Yongtao; Li, Ying; Chen, Haiyan; Welch, David; Zhao, Yusheng; Li, Baosheng

    2018-01-01

    Compressional and shear wave velocities of polycrystalline niobium have been measured at simultaneously high pressures and temperatures up to 5.8 GPa and 1073 K, respectively, using ultrasonic interferometry in conjunction with synchrotron x-ray techniques. An anomalous pressure-induced softening behavior in the phonon velocities, probably owing to the topological change in the Fermi surface, has been observed at ˜4.8 GPa during cold compression, which is supported by the elasticity data from our first-principles calculations. In contrast, both the bulk (BS) and shear (G) moduli increase with pressures but decrease with temperatures upon compression at extreme P-T up to 5.8 GPa and 1073 K. Using finite strain equation-of-state approaches, the elasticity of bulk and shear moduli and their pressure and temperature dependences are derived from the directly measured velocities and densities, yielding BS0 = 174.9(3.2) GPa, G0 = 37.1(3) GPa, ∂BS/∂P = 3.97(9), ∂G/∂P = 0.83(5), ∂BS/∂T = -0.064(7) GPa/K, and ∂G/∂T = -0.012(3) GPa/K. On the basis of the current thermoelasticity data, Debye temperature and the high-pressure melting curve of Nb are derived. The origin of the anomalies in shear behavior at high pressure might be attributed to the progressive s-d electron-transfer-induced topological changes of the Fermi surface upon compression.

  2. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  3. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.

    PubMed

    Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E

    2004-01-07

    We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.

  4. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  5. Mathematical and computational modelling of skin biophysics: a review

    PubMed Central

    2017-01-01

    The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas. PMID:28804267

  6. Mathematical and computational modelling of skin biophysics: a review

    NASA Astrophysics Data System (ADS)

    Limbert, Georges

    2017-07-01

    The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.

  7. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  8. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483

  9. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  10. Cancrinite-group minerals behavior at non-ambient conditions

    NASA Astrophysics Data System (ADS)

    Lotti, Paolo; Gatta, G. Diego; Kahlenberg, Volker; Merlini, Marco; Alvaro, Matteo; Cámara, Fernando

    2014-05-01

    Cancrinite-group minerals occur in the late stages of alkaline (SiO2)-undersaturated magmatism and in related effusive or contact rocks. So far only few studies have been devoted to the description of the thermo-elastic behavior, phase-stability and P /T -structure evolution (at the atomic scale) of this mineral group. Cancrinite-group minerals have an open-framework structure characterized by the [CAN]-topology. The [CAN]-framework shows large 12-ring channels, parallel to the c crystallographic axis, bound by columns of cages, the so-called can units. While very limited chemical variation is observed in the framework composition (the composition is almost always [Si6Al6O24]) a remarkable chemical variability is reported for the extraframework components in the cancrinite-group minerals. Two subgroups can be identified according to the extraframework content of the can units: the cancrinite- and the davyne-subgroups, showing Na-H2O and Ca-Cl chains, respectively. The channels are stuffed by cations, anions and molecules. We aimed to model the thermo-elastic behavior and the mechanisms of the (P ,T)-induced structure evolution of cancrinite-group minerals, with special interest on the role played by the extraframework population. The study was restricted to the following (CO3)-rich and (SO4)-rich end-members: cancrinite sensu stricto {[(Na,Ca)6(CO3)1.2-1.7][Na2(H2O)2][Al6Si6O24]}, vishnevite {[(Na,Ca,K)6(SO4)][Na2(H2O)2][Al6Si6O24]}, balliranoite {[(Na,Ca)6(CO3)1.2-1.7][Ca2Cl2][Al6Si6O24]} and davyne {[(Na,Ca,K)6((SO4),Cl)][Ca2Cl2][Al6Si6O24]}. Their high-P and low-T (T < 293 K) behavior was investigated by means of in-situ single-crystal X-ray diffraction, using diamond-anvil cells and (N2)-cryosystems, respectively. The high-T behavior of cancrinite has also been studied by means of in-situ single-crystal X-ray diffraction with a resistive heater. Cancrinite minerals share a similar volume compressibility and thermal expansivity at ambient conditions (cancrinite has KV 0 = 45(2) GPa and αV,293K = 4.88(8)·10-5 K-1; vishnevite has KV 0 = 49(2) GPa; balliranoite has KV 0 = 48(3) GPa and αV,293K = 4.6(4)·10-5 K-1; davyne has KV 0 = 46.5(11) GPa and αV,293K = 4.2(4)·10-5 K-1). However, these minerals show different thermo-elastic anisotropy schemes, more pronounced in the cancrinite-subgroup minerals. This behavior is governed by different deformation mechanisms of the crystal structure, which likely reflect the different coordination environments of the cage-cations between the minerals of the cancrinite- and davyne-subgroups (i.e. Na+ and Ca2+, respectively). In addition, a P -induced re-organization of the extraframework population is observed, in vishnevite, at P ≥ 3.5 GPa, suggesting that the channel-constituents can also affect the elastic and structural behavior and the phase stability of these minerals at non-ambient conditions. Besides common features likely ascribable to the [CAN]-topology, the nature of the extraframework population appears to control significantly the (P ,T)-induced structure evolution and thermo-elastic behavior of the cancrinite-group compounds. PL, GDG and MM acknowledge the Italian Ministry of Education, MIUR-Project: 'Futuro in Ricerca 2012 - ImPACT- RBFR12CLQD'. MA acknowledges the ERC starting grant N. 307322 to FN.

  11. Notch sensitivity and stress redistribution in three ceramic-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, T.J.; He, M.Y.; Evans, A.G.

    Fiber-reinforced ceramic-matrix composites (CMCs) depend upon inelastic mechanisms to diffuse stress concentrations associated with holes, notches, and cracks. These mechanisms consist of fiber debonding and pullout, multiple matrix cracking, and shear band formation. In order to understand these effects, experiments have bee conducted on several double-edge-notched CMCs that exhibit different stress redistribution mechanisms. Stresses have been measured an d mechanisms identified by using a combination of methods including X0-ray imaging, edge replication, and thermoelastic analysis. Multiple matrix cracking was found to be the most effective stress redistribution mechanism.

  12. Theory of fiber reinforced materials

    NASA Technical Reports Server (NTRS)

    Hashin, Z.

    1972-01-01

    A unified and rational treatment of the theory of fiber reinforced composite materials is presented. Fundamental geometric and elasticity considerations are throughly covered, and detailed derivations of the effective elastic moduli for these materials are presented. Biaxially reinforced materials which take the form of laminates are then discussed. Based on the fundamentals presented in the first portion of this volume, the theory of fiber-reinforced composite materials is extended to include viscoelastic and thermoelastic properties. Thermal and electrical conduction, electrostatics and magnetostatics behavior of these materials are discussed. Finally, a brief statement of the very difficult subject of physical strength is included.

  13. Acoustic fingerprints of photoacoustic contrast agents for molecular imaging

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Jankovic, Ladislav; Shahzad, Khalid; Burcher, Michael; Li, King C. P.

    2007-02-01

    Protein nanospheres capable of frequency controlled oscillation in response to laser stimulation are presented as contrast agents for photoacoustic imaging. Incident laser energy absorbed by dye-labeled protein nanospheres causes thermoelastically generated sound production. Plotted A-line graphs reveal a distinctive morphology and greater than 2 orders of magnitude increase in signal amplitude subsequent to converting labeled proteins into nanospheres. Evidence of nonlinearity and enhancement of ultrasound backscatter indicate a potential use in contrast-enhanced harmonic imaging. Photoacoustic and ultrasound imaging of protein nanospheres in phantom vessels show enhanced contrast at low concentration and clear delineation of the phantom vessel wall.

  14. Shape Memory Alloys and Their Applications in Power Generation and Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jun

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  15. Shape Memory Alloys and their Applications in Power Generation and Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jun

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  16. Constitutive restrictions for deformable simple media that are heat conducting and electrically polarizable

    NASA Astrophysics Data System (ADS)

    Montanaro, Adriano

    2017-07-01

    We present the constitutive restrictions for a deformable simple medium that is heat conducting, electrically polarizable and interacting with the electric field, either of elastic type or with a fading memory. The used theory is an extension of the well known Green-Naghdi thermo-mechanical theories of continua, mainly devoted to thermoelastic bodies or rigid conductors. Hence the theory that is used here is based on an entropy balance law rather than an entropy imbalance, uses the notion of thermal displacement, and predicts heat propagation by thermal waves at finite speed.

  17. Damping mechanisms in chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Goldsby, Jon C.

    1993-01-01

    Evaluating the damping of reinforcement fibers is important for understanding their microstructures and the vibrational response of their structural composites. In this study the damping capacities of two types of chemically vapor deposited silicon carbide fibers were measured from -200 C to as high as 800 C. Measurements were made at frequencies in the range 50 to 15000 Hz on single cantilevered fibers. At least four sources were identified which contribute to fiber damping, the most significant being thermoelastic damping and grain boundary sliding. The mechanisms controlling all sources and their potential influence on fiber and composite performance are discussed.

  18. The initiation, propagation, and effect of matrix microcracks in cross-ply and related laminates

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Hu, Shoufeng; Liu, Siulie; Bark, Jong

    1991-01-01

    Recently, a variational mechanics approach was used to determine the thermoelastic stress state in cracked laminates. Described here is a generalization of the variational mechanics techniques to handle other cross-ply laminates, related laminates, and to account for delaminations emanating from microcrack tips. Microcracking experiments on Hercules 3501-6/AS4 carbon fiber/epoxy laminates show a staggered cracking pattern. These results can be explained by the variational mechanics analysis. The analysis of delaminations emanating from microcrack tips has resulted in predictions about the structural and material variables controlling competition between microcracking and delamination failure modes.

  19. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Matrix laser IR-visible image converter

    NASA Astrophysics Data System (ADS)

    Lipatov, N. I.; Biryukov, A. S.

    2006-04-01

    A new type of a focal matrix IR-visible image converter is proposed. The pixel IR detectors of the matrix are tunable microcavities of VCSEL (vertical-cavity surface emitting laser) semiconductor microstructures. The image conversion is performed due to the displacements of highly reflecting cavity mirrors caused by thermoelastic stresses in their microsuspensions appearing upon absorption of IR radiation. Analysis of the possibilities of the converter shows that its sensitivity is 10-3-10-2 K and the time response is 10-4-10-3 s. These characteristics determine the practical application of the converter.

  20. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  1. Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob

    2001-01-01

    This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.

  2. Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-01-01

    This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.

  3. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  4. Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO2 under pressure

    NASA Astrophysics Data System (ADS)

    Casali, R. A.; Lasave, J.; Caravaca, M. A.; Koval, S.; Ponce, C. A.; Migoni, R. L.

    2013-04-01

    The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure Pc. A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11-C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.

  5. The thermoelastic Aldo contact model with frictional heating

    NASA Astrophysics Data System (ADS)

    Afferrante, L.; Ciavarella, M.

    2004-03-01

    In the study of the essential features of thermoelastic contact, Comninou and Dundurs (J. Therm. Stresses 3 (1980) 427) devised a simplified model, the so-called "Aldo model", where the full 3 D body is replaced by a large number of thin rods normal to the interface and insulated between each other, and the system was further reduced to 2 rods by Barber's Conjecture (ASME J. Appl. Mech. 48 (1981) 555). They studied in particular the case of heat flux at the interface driven by temperature differences of the bodies, and opposed by a contact resistance, finding possible multiple and history dependent solutions, depending on the imposed temperature differences. The Aldo model is here extended to include the presence of frictional heating. It is found that the number of solutions of the problem is still always odd, and Barber's graphical construction and the stability analysis of the previous case with no frictional heating can be extended. For any given imposed temperature difference, a critical speed is found for which the uniform pressure solution becomes non-unique and/or unstable. For one direction of the temperature difference, the uniform pressure solution is non-unique before it becomes unstable. When multiple solutions occur, outermost solutions (those involving only one rod in contact) are always stable. A full numerical analysis has been performed to explore the transient behaviour of the system, in the case of two rods of different size. In the general case of N rods, Barber's conjecture is shown to hold since there can only be two stable states for all the rods, and the reduction to two rods is always possible, a posteriori.

  6. Thermodynamic and Thermoelastic properties of the NAL Phase

    NASA Astrophysics Data System (ADS)

    Marcondes, M. L.; Yao, C.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Subduction of Mid Ocean Ridge Basalt (MORB) transports crust elements to the deep Earth. Therefore, it is important to study MORB in order to understand geophysical processes in the mantle. The high Al2O3 content of the MORB gives rise to a new aluminous phase (NAL) that constitutes up to 25% of its composition [1]. Phase equilibrium study of MgAl2O4-CaAl2O4 generated the mineral CaMg2Al6O12 with hexagonal symmetry, which was proposed for the NAL phase [2,3]. The NAL chemical composition, however, shows significantly less calcium [1,4] and several compositions have been considered in previous studies of this phase [5,6]. Here we present an ab initio study of NAL phases at high temperatures with several possible compositions. We used the quasiharmonic approximation to address thermodynamic and thermoelastic properties and seismic velocities of this phase as function of composition. References[1] T. Irifune and A. E. Ringwood, Earth Planet. Sci. Lett. 117, 101 (1993). [2] H. Miura, Y. Hamada, T. Suzuki, M. Akaogi, N. Miyajima, and K. Fujino, Am. Mineral. 85, 1799 (2000). [3] M. Akaogi, Y. Hamada, T. Suzuki, M. Kobayashi, and M. Okada, Phys. Earth Planet. Inter. 115, 67 (1999). [4] A. Ricolleau, J. P. Perrillat, G. Fiquet, I. Daniel, J. Matas, A. Addad, N. Menguy, H. Cardon, M. Mezouar, and N. Guignot, J. Geophys. Res. Solid Earth 115, B08202 (2010). [5] M. Mookherjee, B. B. Karki, L. Stixrude, and C. Lithgow-Bertelloni, Geophys. Res. Lett. 39, L19306 (2012). [6] K. Kawai and T. Tsuchiya, Geophys. Res. Lett. 37, L17302 (2010).

  7. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  8. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  9. Prediction of microcracking in composite laminates under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.; Mcmanus, Hugh L.

    1995-01-01

    Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.

  10. The PILOT optical alignment for its first flight

    NASA Astrophysics Data System (ADS)

    Mot, B.; Longval, Y.; Bernard, J.-Ph.; Ade, P.; André, Y.; Aumont, J.; Bautista, L.; Bray, N.; deBernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Coudournac, C.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Mangilli, A.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Stever, S.; Simonella, O.; Tapie, P.; Tauber, J.; Tibbs, C.; Torre, J.-P.; Tucker, C.

    2017-12-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015

  11. High strength W/TiNi micro-laminated composite with transformation-mediated ductility

    DOE PAGES

    Shao, Yang; Yu, Kaiyuan; Jiang, Daqiang; ...

    2016-06-06

    A laminated W/TiNi composite is fabricated by hot pressing under vacuum and subsequent forging. The W and TiNi constituents are about 250 μm and 80 μm respectively in thicknesses and their interfaces are chemically sharp with negligible intermixing. The material exhibits two yielding plateaus and excellent strength-ductility combination during compression tests. In situ X-ray technique is employed to demonstrate that the unusual yielding phenomenon is related to the reversible thermoelastic phase transformation of TiNi layers. Furthermore, such mechanisms also contribute to the damage tolerance of the materials by inhibiting crack propagation in W.

  12. Stepwise and Pulse Transient Methods of Thermophysical Parameters Measurement

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-12-01

    Stepwise transient and pulse transient methods are experimental techniques for measuring the thermal diffusivity and conductivity of solid materials. Theoretical models and experimental apparatus are presented, and the influence of the heat source capacity and the heat transfer coefficient is investigated using the experiment simulation. The specimens from low-density polyethylene (LDPE) and polymethylmethacrylate (PMMA) were measured by both methods. Coefficients of variation were better than 0.9 % for LDPE and 2.8 % for PMMA measurements. The time dependence of the temperature response to the input heat flux showed a small drop, which was caused by thermoelastic wave generated by thermal expansions of the heat source.

  13. Thermo-Elastic Triangular Sandwich Element for the Complete Stress Field Based on a Single-Layer Theory

    NASA Technical Reports Server (NTRS)

    Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.

    2004-01-01

    This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.

  14. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  15. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation

    NASA Astrophysics Data System (ADS)

    Hwan Lee, Seok; Park, Mi-ae; Yoh, Jack J.; Song, Hyelynn; Yun Jang, Eui; Hyup Kim, Yong; Kang, Sungchan; Seop Yoon, Yong

    2012-12-01

    We demonstrate that reduced graphene oxide (rGO) coated thin aluminum film is an effective optoacoustic transmitter for generating high pressure and high frequency ultrasound previously unattainable by other techniques. The rGO layer of different thickness is deposited between a 100 nm-thick aluminum film and a glass substrate. Under a pulsed laser excitation, the transmitter generates enhanced optoacoustic pressure of 64 times the aluminum-alone transmitter. A promising optoacoustic wave generation is possible by optimizing thermoelasticity of metal film and thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound applications.

  16. Ni-Mn-Ga shape memory nanoactuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.

    2014-01-27

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  17. Ni-Mn-Ga shape memory nanoactuation

    NASA Astrophysics Data System (ADS)

    Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.

    2014-01-01

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  18. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA)

    NASA Astrophysics Data System (ADS)

    Qin, Huan; Yang, Sihua; Xing, Da

    2012-01-01

    NMG2[Gd(DTPA)], a clinical contrast agent, was investigated for microwave-induced thermoacoustic computed tomography (CT). Due to ionic conduction and magnetic dipole rotation in the presence of microwave field, microwave energy absorbed by NMG2[Gd(DTPA)] would be transformed to thermoacoustic signals based on the thermoelastic effect. The experimental results demonstrated that NMG2[Gd(DTPA)] at a concentration of 10 mM provided effective enhancement compared with water. The enhancement of NMG2[Gd(DTPA)] for thermoacoustic CT was further demonstrated in invivo tumor-bearing mouse. The theory and experimental results indicate that the clinically available NMG2[Gd(DTPA)] will promote the medical applications of thermoacoustic CT.

  19. High stress shallow moonquakes - Evidence for an initially totally molten moon

    NASA Technical Reports Server (NTRS)

    Binder, A. B.; Oberst, J.

    1985-01-01

    Thermoelastic stress calculations show that if the moon was initially molten only in the outer few hundred kilometers, as in the magma ocean model of the moon, the highlands crust should be aseismic. In contrast, if the moon was initially totally molten, high stress (1 to more than about 3 kbar), shallow (0 to about 6 km deep), compressional moonquakes should be occurring in the highlands crust. Calculations of the minimum stress drops made for the 28 observed shallow moonquakes suggest that 3 of them probably have stress drops in the kbar range. Thus, these very limited seismic data are consistent with the model that the moon was initially totally molten.

  20. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  1. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading

    NASA Astrophysics Data System (ADS)

    Jin, Zhi-He; Noda, Naotake

    1993-05-01

    This paper considers the crack problem for a semi-infinite nonhomogeneous thermoelastic solid subjected to steady heat flux over the boundary. The crack faces are assumed to be insulated. The research is aimed at understanding the effect of nonhomogeneities of materials on stress intensity factors. By using the Fourier transform, the problem is reduced to a system of singular integral equations which are solved numerically. Results are presented illustrating the influence of the nonhomogeneity of the material on the stress intensity factors. Zero Mode I stress intensity factors are found for some groups of the material constants, which may be interesting for the understanding of compositions of advanced Functionally Gradient Materials.

  2. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1983-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  3. Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.

  4. Industrial Code Development

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1991-01-01

    The industrial codes will consist of modules of 2-D and simplified 2-D or 1-D codes, intended for expeditious parametric studies, analysis, and design of a wide variety of seals. Integration into a unified system is accomplished by the industrial Knowledge Based System (KBS), which will also provide user friendly interaction, contact sensitive and hypertext help, design guidance, and an expandable database. The types of analysis to be included with the industrial codes are interfacial performance (leakage, load, stiffness, friction losses, etc.), thermoelastic distortions, and dynamic response to rotor excursions. The first three codes to be completed and which are presently being incorporated into the KBS are the incompressible cylindrical code, ICYL, and the compressible cylindrical code, GCYL.

  5. Laser-Generated Ultrasonic Source for a Real-Time Dry-Contact Imaging System

    NASA Astrophysics Data System (ADS)

    Petculescu, G.; Zhou, Y.; Komsky, I.; Krishnaswamy, S.

    2006-03-01

    A laser-generated ultrasonic source, to be used with a real-time imaging device, was developed. The ultrasound is generated in the thermoelastic regime, in a composite layer composed of absorbing particles (carbon) and silicone rubber. The composite layer plays three roles: of absorption, constriction and dry-coupling. The central frequency of the generated pulse was controlled by varying the absorption depth of the generation layer. The maximum peak frequency obtained was 4MHz. When additional constriction was provided to the composite layer, the amplitude of the generated signal increased further, due to the large thermal expansion coefficient of the silicone. Images using the laser-generated ultrasonic source were taken.

  6. A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole

    NASA Astrophysics Data System (ADS)

    Hobiny, Aatef D.; Abbas, Ibrahim A.

    2018-01-01

    The dual phase lag (DPL) heat transfer model is applied to study the photo-thermal interaction in an infinite semiconductor medium containing a spherical hole. The inner surface of the cavity was traction free and loaded thermally by pulse heat flux. By using the eigenvalue approach methodology and Laplace's transform, the physical variable solutions are obtained analytically. The numerical computations for the silicon-like semiconductor material are obtained. The comparison among the theories, i.e., dual phase lag (DPL), Lord and Shulman's (LS) and the classically coupled thermoelastic (CT) theory is presented graphically. The results further show that the analytical scheme can overcome mathematical problems by analyzing these problems.

  7. Modelling of Piezothermoelastic Beam with Fractional Order Derivative

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Sharma, Poonam

    2016-04-01

    This paper deals with the study of transverse vibrations in piezothermoelastic beam resonators with fractional order derivative. The fractional order theory of thermoelasticity developed by Sherief et al. [1] has been used to study the problem. The expressions for frequency shift and damping factor are derived for a thermo micro-electromechanical (MEM) and thermo nano-electromechanical (NEM) beam resonators clamped on one side and free on another. The effect of fractional order derivative on the derived expressions is observed analytically and shown graphically in the case of Lead Zirconate Titanate (PZT)-5A material. For α = 1, our results agree with those that are obtained by Grover and Sharma [20] and other particular cases of interest are also discussed.

  8. Craters and nanostructures on BaF2 sample induced by a focused 46.9nm laser

    NASA Astrophysics Data System (ADS)

    Cui, Huaiyu; Zhang, Shuqing; Li, Jingjun; Lu, Haiqiang; Zhao, Yongpeng

    2017-08-01

    We successfully damaged BaF2 samples by a 46.9nm capillary discharge laser of 100μJ focused by a toroidal mirror at a grazing incidence. Ablation craters with clear boundaries were detected by optical microscope and atomic force microscope (AFM). Laser-induced nanostructures with a period of ˜1μm were observed in the ablation area under single pulse irradiation and multiple pulses irradiation. The surface behavior was compared and analyzed with that induced by the laser of 50μJ. The nanostructures were supposed to be attributed to the thermoelastic effect and the period of the structures was effected by the energy of the laser.

  9. Experimental results of temperature response to stress change: An indication of the physics of earthquake rupture propagation

    NASA Astrophysics Data System (ADS)

    Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.

    2016-12-01

    As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.

  10. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    NASA Astrophysics Data System (ADS)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.

  11. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less

  12. A photoacoustic technique to measure the properties of single cells

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  13. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the work carried out in the effort reported here has been to prepare reports introducing the newly commercially available thermoelastic measurements to the appropriate user communities.

  14. EMTA-NLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-10-14

    EMTA-NLA is a computer program for analyzing the nonlinear stiffness, strength, and thermo-elastic properties of discontinuous fiber composite materials. Discontinuous fiber composites are chopped-fiber reinforced polymer materials that are formed by injection molding or compression molding techniques. The fibers tend to align during forming as the composite flows and fills the mold. EMTA-NLA can read the fiber orientation data from the molding software, Autodesk Moldflow Plastics Insight, and calculate the local material properties for accurately analyzing the warpage, stiffness, and strength of the as-formed composite part using the commercial NLA software. Therefore, EMTA-NLA is a unique assembly of mathematical algorithmsmore » that provide a one-of-a-kind composites constitutive model that links these two powerful commercial software packages.« less

  15. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  16. Advanced NDE research in electromagnetic, thermal, and coherent optics

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1992-01-01

    A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).

  17. Why does near ridge extensional seismicity occur primarily in the Indian Ocean?

    NASA Technical Reports Server (NTRS)

    Stein, Seth; Cloetingh, Sierd; Wortel, Rinus; Wiens, Douglas A.

    1987-01-01

    It is argued that though thermoelastic stresses provide a low level background in all plates, the data favoring their contributing significantly to the stress field and seismicity in the young oceanic lithosphere may be interpreted in terms of stresses resulting from individual plate geometry and local boundary effects. The dramatic concentration of extensional seismicity in the Central Indian Ocean region is shown to be consistent with finite element results for the intraplate stress incorporating the effects of the Himalayan collision and the various subduction zones. Most of the data for both ridge-parallel extension and depth stratification are provided by earthquakes in this area, and it is suggested that these effects may be due more to the regional stress.

  18. Dynamic Nonreciprocity in Loss-Compensated Piezophononic Media

    NASA Astrophysics Data System (ADS)

    Merkel, Aurélien; Willatzen, Morten; Christensen, Johan

    2018-03-01

    Violating time-reversal symmetry enables one to engineer nonreciprocal structures for isolating and rectifying sound and mechanical vibrations. Rectifying sound is commonly achieved in nonlinear media, but the operation is inherently linked to weak and distorted signals. Here, we show how a pronounced electron-phonon coupling in linear piezophononic media under electrical bias can generate full mechanical rectification of broad spectral width, which permits the isolation of pulsed vibrations while keeping the wave-front shape fully intact. In this context, we deliberately show how the acoustoelectric effect can provide active loss compensation against lattice anharmonicity and thermoelastic damping. Further, our predictions confirm tunable nonreciprocity at an ultralarge contrast ratio, which should open the doors for future mechanical diodes and compact ultrasonic transducers for sensing and imaging.

  19. Method of forming a multiple layer dielectric and a hot film sensor therewith

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr. (Inventor); Tran, Sang Q. (Inventor)

    1990-01-01

    The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected.

  20. Elastic Moduli and Damping of Vibrational Modes of Aluminum/Silicon Carbide Composite Beams

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning

    1996-01-01

    Elastic and shear moduli were determined for two aluminum matrix composites containing 20 and 40 volume percent discontinuous silicon carbide, respectively, using transverse, longitudinal, and torsional vibrational modes of specimens prepared as thin beams. These moduli are consistent with those determined from stress-strain measurements. The damping factors for these modes were also determined. Thermal properties are used to show that part of the damping of transverse modes is caused by the transverse thermal currents discussed by C. Zener (thermo-elastic damping); this damping is frequency-dependent with a maximum damping factor of approximately 0.002. The remaining damping is frequency-independent, and has roughly similar values in transverse, longitudinal, and torsional modes: approximately 0.0001.

  1. Active correction of thermal lensing through external radiative thermal actuation.

    PubMed

    Lawrence, Ryan; Ottaway, David; Zucker, Michael; Fritschel, Peter

    2004-11-15

    Absorption of laser beam power in optical elements induces thermal gradients that may cause unwanted phase aberrations. In precision measurement applications, such as laser interferometric gravitational-wave detection, corrective measures that require mechanical contact with or attachments to the optics are precluded by noise considerations. We describe a radiative thermal corrector that can counteract thermal lensing and (or) thermoelastic deformation induced by coating and substrate absorption of collimated Gaussian beams. This radiative system can correct anticipated distortions to a high accuracy, at the cost of an increase in the average temperature of the optic. A quantitative analysis and parameter optimization is supported by results from a simplified proof-of-principle experiment, demonstrating the method's feasibility for our intended application.

  2. Photoacoustic imaging in both soft and hard biological tissue

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-03-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  3. A microstructural model of motion of macro-twin interfaces in Ni-Mn-Ga 10 M martensite

    NASA Astrophysics Data System (ADS)

    Seiner, Hanuš; Straka, Ladislav; Heczko, Oleg

    2014-03-01

    We present a continuum-based model of microstructures forming at the macro-twin interfaces in thermoelastic martensites and apply this model to highly mobile interfaces in 10 M modulated Ni-Mn-Ga martensite. The model is applied at three distinct spatial scales observed in the experiment: meso-scale (modulation twinning), micro-scale (compound a-b lamination), and nano-scale (nanotwining in the concept of adaptive martensite). We show that two mobile interfaces (Type I and Type II macro-twins) have different micromorphologies at all considered spatial scales, which can directly explain their different twinning stress observed in experiments. The results of the model are discussed with respect to various experimental observations at all three considered spatial scales.

  4. Effect of heat wave at the initial stage in spark plasma sintering.

    PubMed

    Zhang, Long; Zhang, Xiaomin; Chu, Zhongxiang; Peng, Song; Yan, Zimin; Liang, Yuan

    2016-01-01

    Thermal effects are important considerations at the initial stage in spark plasma sintering of non-conductive Al2O3 powders. The generalized thermo-elastic theory is introduced to describe the influence of the heat transport and thermal focusing caused by thermal wave propagation within a constrained space and transient time. Simulations show that low sintering temperature can realize high local temperature because of the superposition effect of heat waves. Thus, vacancy concentration differences between the sink and the cross section of the particles increase relative to that observed during pressure-less and hot-pressure sintering. Results show that vacancy concentration differences are significantly improved during spark plasma sintering, thereby decreasing the time required for sintering.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakach, G. P.; Dudarev, E. F., E-mail: dudarev@spti.tsu.ru; Skosyrskii, A. B.

    The results are presented of an experimental investigation into the regularities and mechanisms of the development of thermoelastic martensitic transformation in submicrocrystalline alloy Ti{sub 49.4}Ni{sub 50.6} with different ways of thermo-power actions using the methods of optical microscopy in situ and X-ray diffraction. The peculiarities of localization of martensite transformation at the meso- and macroscale levels in this alloy with submicrocrystalline structure are considered. Experimental data on the relay mechanism of propagation of the martensitic transformation are presented. The interrelation between the localization of the martensitic transformation on the meso-and macroscale levels and deformation behavior under isothermal loading alloy Ti{submore » 49.4}Ni5{sub 0.6} in submicrocrystalline condition are shown and discussed.« less

  6. A probabilistic method to establish the reliability of carbon-carbon rocket motor nozzles. Volume 3: Stress and reliability analysis of layered composite cylinders under thermal shock

    NASA Astrophysics Data System (ADS)

    Heller, R. A.; Thangjitham, S.; Wang, X.

    1992-04-01

    The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.

  7. Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The production of geothermal energy from dry and low permeability reservoirs is achieved by water circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or pre-existing fracture planes and possibly their propagations.more » The microseismic signals contain information about the sources of energy that can be used for understanding the hydraulic fracturing process and the created reservoir properties. Detection and interpretation of microseismic events is useful for estimating the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir characterization (SBRC). Although, progress has been made by scientific & geothermal communities for quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties and in-situ stress in the data inversion process. The objective of this research and technology developments was to develop a 3D SBRC model that addresses these shortcomings by taking into account hydro-thermo-poro-mechanical mechanisms associated with injection and utilizing a state-of-the-art stochastic inversion procedure. The approach proposed herein is innovative and significantly improves the existing SBCR technology (e.g., Shapiro et al. 2003) for geothermal reservoirs in several ways. First, the current scope of the SBRC is limited with respect to the physical processes considered and the rock properties used. Usually, the geomechanics analyses within SBRC is limited to the pore pressure diffusion in the rock mass, which is modeled using a time-dependent parabolic equation and solved using a finite element algorithm with either a line or a point source. However, water injection induces both poroelastic and thermoelastic stresses in the rock mass which affect the stress state. In fact, it has been suggested that thermoelastic stresses can play a dominant role in reservoir seismicity (Ghassemi et al., 2007). We include these important effects by using a fully-coupled poro-thermoelastic constitutive equations for the rock mass which will be solved using a 3D finite element model with more realistic injection geometries such as multiple injection/extraction sources (and in fractures), uncertainty in the material parameters and the in-situ stress distribution to better reflect the pore pressure and stress distributions. In addition, we developed a 3D stochastic fracture network model to study MEQ generation in fracture rocks. The model was verified using laboratory experiments, and calibrated and applied to Newberry EGS stimulation. In previous SBRC approaches, the triggering of micro-seismicity is modeled base on the assumption that the prior stochastic criticality model of the rock mass is a valid and adequate description. However, this assumption often does not hold in the field. Thus, we improved upon the current SBRC approach by using the micro-seismic responses to estimate the hydraulic diffusivity as well as the criticality distribution itself within the field. In this way, instead of relying on our a priori knowledge of criticality distribution, we combine an initial probabilistic description of criticality with the information contained in microseismic measurements to arrive at criticality solutions that are conditioned on both field data and our prior knowledge. Previous SBRC have relied upon a deterministic inversion approach to estimate the permeability, and the extent of the stimulated zone, whereas a stochastic inversion algorithm that recognizes and quantifies the uncertainties in the prior model, the time evolution of pore pressure distributions (modeling errors), and the observed seismic events is developed and used herein to realistically assess the quality of the solution. Finally, we developed a technique for processing discrete MEQ data to estimate fracture network properties such as dip and dip directions. The approach was successfully applied to the Fenton Hill HRD experiment and the Newberry EGS with results in good agreement with field observations.« less

  8. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  9. Light activated microbubbles for imaging and microsurgery

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Micheletti, Filippo; Tortoli, Paolo; Centi, Sonia; Lai, Sarah; Borri, Claudia; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2017-03-01

    Imaging and microsurgery procedures based on the photoacoustic effect have recently attracted much attention for cancer treatment. Light absorption in the nanosecond regime triggers thermoelastic processes that induce ultrasound emission and even cavitation. The ultrasound waves may be detected to reconstruct images, while cavitation may be exploited to kill malignant cells. The potential of gold nanorods as contrast agents for photoacoustic imaging has been extensively investigated, but still little is known about their use to trigger cavitation. Here, we investigated the influence of environment thermal properties on the ability of gold nanorods to trigger cavitation by probing the photoacoustic emission as a function of the excitation fluence. We are confident that these results will provide useful directions to the development of new strategies for therapies based on the photoacoustic effect.

  10. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernenko, V.A.; Kokorin, V.V.; Vitenko, I.N.

    1995-10-15

    The Ferromagnetic Heusler alloy Ni{sub 2}MnGa is known to undergo a structural phase transformation of martensitic type. Thermoelastic nature, shape memory effect (SME) and superelasticity were sound to be intrinsic to this transformation. In this work the authors present the results of the investigation of the following problems: how M{sub s}, the thermal hysteresis, Curie temperature, transformation heat are affected by the composition variation in the Ni-Mn-Ga alloy system in a concentration interval for each component of about 10 at. %. This work was performed to make sure that the new family of Ni-Mn-Ga based shape memory alloys (SMA) withmore » a wide variety of structural and magnetic properties is actually elaborated.« less

  11. Thermoelastic effects across the post-perovskite transition in (Al,Fe)-bearing bridgmanite

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, J. J.; Shukla, G.; Sarkar, K.; Wentzcovitch, R. M. M.

    2017-12-01

    The post-perovskite (PPv) transition in (Al,Fe)-bearing bridgmanite has been intensively investigated by experiments and ab initio calculations. However, there are still important aspects of this transformation to be clarified from the atomistic point of view, especially because of the extreme conditions of pressure and temperature in which it takes place, P=125 GPa and T = 2500 K. Here we systematically address this question in (Al,Fe3+)-, (Fe2+)- and (Fe3+)-bearing bridgmanite using ab initio calculations. We particularly address the effect of velocity changes across this transformation in these systems. Our results are important to further understand and constrain the composition of the D" region, believed to be a thermal and/or compositional boundary layer between the solid mantle and molten outer core.

  12. Distribution of recent volcanism and the morphology of seamounts and ridges in the GLIMPSE study area: Implications for the lithospheric cracking hypothesis for the origin of intraplate, non-hot spot volcanic chains

    USGS Publications Warehouse

    Forsyth, D.W.; Harmon, N.; Scheirer, D.S.; Duncan, R.A.

    2006-01-01

    Lithospheric cracking by remotely applied stresses or thermoelastic stresses has been suggested to be the mechanism responsible for the formation of intraplate volcanic ridges in the Pacific that clearly do not form above fixed hot spots. As part of the Gravity Lineations Intraplate Melting Petrology and Seismic Expedition (GLIMPSE) project designed to investigate the origin of these features, we have mapped two volcanic chains that are actively forming to the west of the East Pacific Rise using multibeam echo sounding and side-scan sonar. Side-scan sonar reveals the distribution of rough seafloor corresponding to recent, unsedimented lava flows. In the Hotu Matua volcanic complex, recent flows and volcanic edifices are distributed over a region 450 km long and up to 65 km wide, with an apparent, irregular age progression from older flows in the west to younger in the east. The 550-km-long Southern Cross Seamount/Sojourn Ridge/Brown Ridge chain appears to have been recently active only at its eastern end near the East Pacific Rise. A third region of recent flows is found 120 km north of Southern Cross Seamount in seafloor approximately 9 Myr old. No indication of lithospheric extension in the form of faulting or graben formation paralleling the trend of the volcanic chains is found in the vicinity of recent flows or anywhere else in the study area. Thermoelastic cracking could be a factor in the formation of a few small, very narrow volcanic ridges, but most of the volcanic activity is broadly distributed in wide swaths with no indication of formation along narrow cracks. The Sojourn and Brown chains appear to begin as distributed zones of small seamounts that later develop into segmented ridges, perhaps under the influence of membrane stresses from self-loading. We suggest that the linear volcanic chains are created by moving melting anomalies in the asthenosphere and that lithospheric cracking plays at most a secondary role. Copyright 2006 by the American Geophysical Union.

  13. Fracture analysis near the mid-ocean plate boundary, Reykjavik-Hvalfjördur area, Iceland

    NASA Astrophysics Data System (ADS)

    Jefferis, Robert G.; Voight, Barry

    1981-07-01

    The geometry and thermal history of fractures have been determined at 59 stations from Reykjavik to Hvalfjördur in southwestern Iceland. The data provide information on crustal stress regimes in the vicinity of mid-ocean ridges. Two major, generalized fracture orientations are present (1) a northeast system, trend 010°-030°, except on Akranes where the orientation is 040°-060° (2) a broad east—west system containing one or more sets with strike between 070°-130°. Thermal history of the host rock and fractures was determined from secondary minerals in vugs and fractures. The thermal history indicates that the northeast fracture set opened while the area was within the relatively hot axial zone of active volcanism and rifting. Some of the east—west trending fractures also opened at this time but many formed later, after the area had begun to cool and drift from the active zone. The northeast fracture set is essentially parallel to the trend of dikes and normal faults in southwestern Iceland. They have been interpreted as extension fractures (resulting in about 0.4% maximum extension) forming generally from the same stress field associated with normal faulting and dike injection in the active zone. Fracturing in an east-west direction (estimated 0.1% maximum extension), mainly near the edge and outside the active zone, indicates a reorientation of this stress field. The dominant mechanism related to the origin of the east—west fractures may be thermoelastic stresses arising from axial and basal accretion and cooling of lithospheric plates. Both fracture systems are inferred to have formed, in the Griffiths idealization, under nearly biaxial effective compressive loading on the order of 200 bar. The discrepancy between this value and the kilobar-order strengths of short-time laboratory tests reflects such factors as high temperature stress corrosion and fatigue. Fracture propagation is assumed to have been stable, but governed primarily by lateral load-diminishing mechanisms rather than by progressive loading. These relaxation mechanisms may have been episodic (northeast-system fissure swarm activity) or steady-state (thermoelastic contraction) in time.

  14. Investigation of residual stresses in shape memory alloy (SMA) composites

    NASA Astrophysics Data System (ADS)

    Berman, Justin Bradley

    Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol/glass/epoxy beams showed a large increase in the effective austenitic start temperature (As) of 9.3°C. The elevation of the effective As together with other observations of warpage development indicates that plastic flow may have occurred in nitinol wires when embedded in glass/epoxy. These observations reinforce the need to train nitinol wires at modest recovery levels when embedding in relatively stiff materials.

  15. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  16. Optimism Experiment and Development of Space-qualified Seismometers in France

    NASA Technical Reports Server (NTRS)

    Lognonne, P.; Karczewski, J. F.

    1993-01-01

    The OPTIMISM experiment will put two magnetometers and two seismometers on the Martian floor in 1995, within the framework of the Mars '94 mission. The seismometers are put within the two small surface stations. The seismometer sensitivity will be better than 10 exp -9 g at 1 Hz, 2 orders of magnitude higher than the Viking seismometer sensitivity. A priori waveform modeling for seismic signals on Mars shows that it will be sufficient to detect quakes with a seismic moment greater than 10 exp 15 Nm everywhere on Mars. Such events, according to the hypothesis of a thermoelastic cooling of the Martian lithosphere, are expected to occur at a rate close to one per week and may therefore be observed within the l-year lifetime of the experiment. Other aspects of the experiment are discussed.

  17. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  18. A novel model of photothermal diffusion (PTD) for polymer nano-composite semiconducting of thin circular plate

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2018-05-01

    In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.

  19. Pilot, a balloon borne experiment underground tests

    NASA Astrophysics Data System (ADS)

    Engel, C.; Marty, C.; Mot, B.; Bernard, J.-Ph.; Ristorcelli, I.; Otrio, G.; Leriche, B.; Longval, Y.; Pajot, F.; Roudil, G.; Caillat, A.; Dubois, J. P.; Bouzit, M.; Buttice, V.; Camus, T.

    2017-11-01

    PILOT is a balloon borne experiment, which will measure the polarized emission of dust grains, in the interstellar medium, in the sub millimeter range (with two photometric channels centered at 240 and 550 μm). The primary and secondary mirror must be positioned with accuracies better than 0.6 mm and 0.06°. These tolerances include environmental conditions (mainly gravity and thermo-elastic effects), uncertainties on alignments, and uncertainties on the dilatation coefficient. In order to respect these tolerances, we need precise characterization of each optical component. The characterization of the primary mirror and the integrated instrument is performed using a dedicated submillimeter test bench. A brief description of the scientific objectives and instrumental concept is given in the first part. We present, in the second and in the third part, the status of these ground tests, first results and planned tests.

  20. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  1. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.

    1988-01-01

    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.

  2. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    NASA Astrophysics Data System (ADS)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  3. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  4. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  5. Opto-acoustic thrombolysis

    DOEpatents

    Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  6. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  7. Photothermoelastic contrast in nanoscale infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Eliseev, Eugene A.; Borodinov, Nikolay; Ovchinnikova, Olga S.; Morozovsky, Nicholas V.; Kalinin, Sergei V.

    2018-01-01

    The contrast formation mechanism in nanoscale Infrared (IR) Spectroscopy is analyzed. The temperature distribution and elastic displacement across the illuminated T-shape boundary between two materials with different IR-radiation absorption coefficients and thermo-physical and elastic properties located on a rigid substrate are calculated self-consistently for different frequencies f ˜ (1 kHz-1 MHz) of IR-radiation modulation (fully coupled problem). Analytical expressions for the temperature and displacement profiles across the "thermo-elastic step" are derived in the decoupling approximation for f = 0 ("static limit"), and conditions for approximation validity at low frequencies of IR-modulation are established. The step height was found to be thickness-independent for thick layers and proportional to the square of the thickness for very thin films. The theoretical results will be of potential interest for applications in the scanning thermo-ionic and thermal infrared microscopies for relatively long sample thermalization times and possibly for photothermal induced resonance microscopy using optomechanical probes.

  8. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  9. Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films

    NASA Astrophysics Data System (ADS)

    Thurn, Jeremy; Cook, Robert F.; Kamarajugadda, Mallika; Bozeman, Steven P.; Stearns, Laura C.

    2004-02-01

    A comprehensive survey is described of the responses of three plasma-enhanced chemical vapor deposited dielectric film systems to thermal cycling and indentation contact. All three films—silicon oxide, silicon nitride, and silicon oxy-nitride—exhibited significant nonequilibrium permanent changes in film stress on thermal cycling or annealing. The linear relationship between stress and temperature changed after the films were annealed at 300 °C, representing a structural alteration in the film reflecting a change in coefficient of thermal expansion or biaxial modulus. A double-substrate method was used to deduce both thermoelastic properties before and after the anneal of selected films and the results were compared with the modulus deconvoluted from small-scale depth-sensing indentation experiments (nanoindentation). Rutherford backscattering spectrometry and hydrogen forward scattering were used to deduce the composition of the films and it was found that all the films contained significant amounts of hydrogen.

  10. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  11. Mechanics of composite materials: Recent advances; Proceedings of the Symposium, Virginia Polytechnic Institute and State University, Blacksburg, VA, August 16-19, 1982

    NASA Technical Reports Server (NTRS)

    Hashin, Z. (Editor); Herakovich, C. T. (Editor)

    1983-01-01

    The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.

  12. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  13. Optically generated ultrasound for enhanced drug delivery

    DOEpatents

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  14. BurnMan: Towards a multidisciplinary toolkit for reproducible deep Earth science

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Cottaar, S.; Heister, T.; Rose, I.; Unterborn, C. T.; Dannberg, J.; Martin-Short, R.

    2016-12-01

    BurnMan (www.burnman.org) is an open-source toolbox to compute thermodynamic and thermoelastic properties as a function of pressure and temperature using published mineral physical parameters and equations-of-state. The framework is user-friendly, written in Python, and modular, allowing the user to implement their own equations of state, endmember and solution model libraries, geotherms, and averaging schemes. Here we introduce various new modules, which can be used to: Fit thermodynamic variables to data from high pressure static and shock wave experiments, Calculate equilibrium assemblages given a bulk composition, pressure and temperature, Calculate chemical potentials and oxygen fugacities for given assemblages Compute 3D synthetic seismic models using output from geodynamic models and compare these results with global seismic tomographic models, Create input files for synthetic seismogram codes. Users can contribute scripts that reproduce the results from peer-reviewed articles and practical demonstrations (e.g. Cottaar et al., 2014).

  15. Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study

    PubMed Central

    Orlova, Anna; Shirmanova, Marina; Postnikova, Anna; Turchin, Ilya

    2015-01-01

    We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (−6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor. PMID:25780752

  16. Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Shi, Yujiao; Yang, Fen; Yang, Sihua

    2018-05-01

    Elasticity and viscosity assessments are essential for understanding and characterizing the physiological and pathological states of tissue. In this work, by establishing a photoacoustic (PA) shear wave model, an approach for quantitative PA elasticity imaging based on measurement of the rise time of the thermoelastic displacement was developed. Thus, using an existing PA viscoelasticity imaging method that features a phase delay measurement, quantitative PA elasticity imaging and viscosity imaging can be obtained in a simultaneous manner. The method was tested and validated by imaging viscoelastic agar phantoms prepared at different agar concentrations, and the imaging data were in good agreement with rheometry results. Ex vivo experiments on liver pathological models demonstrated the capability for cirrhosis detection, and the results were consistent with the corresponding histological results. This method expands the scope of conventional PA imaging and has potential to become an important alternative imaging modality.

  17. Thermoelastic martensitic transformations in ternary Ni50Mn50- z Ga z alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.

    2016-01-01

    We have studied the effect of gallium alloying on the structure, phase composition, and physical properties of ternary alloys of the Ni50Mn50- z Ga z (0 ≤ z ≤ 25 at %) quasi-binary section in a broad temperature range. Dependences of the type of crystalline structure of the high-temperature austenite phase and martensite, as well as the critical temperatures of martensitic transformations on the alloy composition, are determined. A phase diagram of the structural and magnetic transformations is constructed. Concentration boundaries of the existence of tetragonal L10 (2 M) martensite and martensitic phases (10 M and 14 M) with complex multilayer crystalline lattices are found. It is established that the predominant martensite morphology is determined by the hierarchy of packets of thin coherent nano- and submicrocrystalline plates with habit planes close to {011} B2, pairwise twinned along one of 24 equivalent {011}<011> B2 twinning shear systems.

  18. Harmonic and Anharmonic Properties of Diamond Structure Crystals with Application to the Calculation of the Thermal Expansion of Silicon. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Wanser, K. H.

    1981-01-01

    Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.

  19. Assessment of current state of the art in modeling techniques and analysis methods for large space structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1983-01-01

    Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.

  20. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  1. Experimental study of microwave-induced thermoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  2. Human pelvis loading rig for static and dynamic stress analysis.

    PubMed

    Zanetti, Elisabetta M; Bignardi, Cristina; Audenino, Alberto L

    2012-01-01

    This work is aimed at designing and constructing a loading rig for the synthetic hemi-pelvis; this system has been conceived with the goal of applying differently oriented articular forces in order to experimentally test the stress distribution and the stability of surgical reconstructions like, for example, hip arthroplasty or pelvic fixation. This device can be interfaced with a usual loading machine; it preserves the anatomy of the hemi-pelvis; it is simply constrained and it allows the simulation of all physiologic activities. Moreover, the visual accessibility of the peri-acetabular area has been guaranteed and this is imperative in order to be able to perform full-field analyses like a thermoelastic or photoelastic stress analysis. First experimental trials have shown a good repeatability of loading-unloading cycles (<1.2%), a low hysteresis (<2.4%) and a good dynamic behaviour (up to 10 Hz loading frequencies).

  3. Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    Photoacoustic tomography (PAT) refers to imaging that is based on the photoacoustic effect. Although the photoacoustic effect as a physical phenomenon was first reported on by Alexander Graham Bell in 1880 [1], PAT as an imaging technology was developed only after the advent of ultrasonic transducers, computers, and lasers [2-31]. A review on biomedical photoacoustics is available [32]. The motivation for PAT is to combine optical-absorption contrast with ultrasonic spatial resolution for deep imaging in the optical quasi-diffusive or diffusive regime. In PAT, the tissue is irradiated by usually a short-pulsed laser beam to achieve a thermal and acoustic impulse response (Fig. 19.1). Locally absorbed light is converted into heat, which is further converted to a pressure rise via thermo-elastic expansion. The initial pressure rise - determined by the local optical absorption coefficient (μ â ), fluence (ψ) and other thermal and mechanical properties - propagates as an ultrasonic wave, which is referred to as a photoacoustic wave.

  4. Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian A.

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.

  5. Mechanical Mounting and Adhesive Junction for Large Quartz Optics Operatng at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Mosciarello, P.

    2012-07-01

    Gaia is a global space astrometry mission, with the goal to make the largest, most precise three-dimensional map of our Galaxy. Gaia contains two optical telescopes: in front of their Focal Plane Assembly -FPA- two narrow quartz prisms are mounted for spectrophotometer science: the Blue and Red Photometer Prisms -BPP and RPP-. They are framed in a SiC structure by means of brackets and adhesive junctions between metal parts and quartz optical elements. SELEX GALILEO developed this project as subcontractor of Astrium France. The assembly has to withstand thermoelastic loads due to CTE mismatch at an operative temperature of 120 K. The mechanical mountings design to reduce the stresses due to thermal loads on the adhesive joint is described and the results of the bonding qualification process as well as the flight hardware bonding results are reported.

  6. Influence of the iron spin crossover in ferropericlase on the lower mantle geotherm

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan J.; Shukla, Gaurav; Wu, Zhongqing; Houser, Christine; Yuen, David A.; Wentzcovitch, Renata M.

    2017-05-01

    The iron spin crossover in ferropericlase introduces anomalies in its thermodynamics and thermoelastic properties. Here we investigate how these anomalies can affect the lower mantle geotherm using thermodynamics properties from ab initio calculations. The anomalous effect is examined in mantle aggregates consisting of mixtures of bridgmanite, ferropericlase, and CaSiO3 perovskite, with different Mg/Si ratios varying from harzburgitic to perovskitic (Mg/Si ˜ 1.5 to 0.8). We find that the anomalies introduced by the spin crossover increase the isentropic gradient and thus the geotherm proportionally to the amount of ferropericlase. The geotherms can be as much as ˜200 K hotter than the conventional adiabatic geotherm at deep lower mantle conditions. Aggregate elastic moduli and seismic velocities are also sensitive to the spin crossover and the geotherm, which impacts analyses of lower mantle velocities and composition.

  7. Coupled thermo-elastic and optical performance analyses of a reflective baffle for the BepiColombo laser altimeter (BELA) receiver

    NASA Astrophysics Data System (ADS)

    Heesel, E.; Weigel, T.; Lochmatter, P.; Rugi Grond, E.

    2017-11-01

    For the BepiColombo mission, the extreme thermal environment around Mercury requires good heat shields for the instruments. The BepiColombo Laser altimeter (BELA) Receiver will be equipped with a specular reflective baffle in order to limit the solar power impact. The design uses a Stavroudis geometry with alternating elliptical and hyperbolic vanes to reflect radiation at angles >38° back into space. The thermal loads on the baffle lead to deformations, and the resulting changes in the optical performance can be modeled by ray-tracing. Conventional interfaces, such as Zernike surface fitting, fail to provide a proper import of the mechanical distortions into optical models. We have studied alternative models such as free form surface representations and compared them to a simple modeling approach with straight segments. The performance merit is presented in terms of the power rejection ratio and the absence of specular stray-light.

  8. Electrode performance parameters for a radioisotope-powered AMTEC for space power applications

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.

    1992-01-01

    The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate of sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion.

  9. Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam

    NASA Astrophysics Data System (ADS)

    Lee, Jinsoo; Kim, Seongsu; Lee, Myeongkyu

    2012-09-01

    Here we demonstrate that indium tin oxide (ITO) films deposited on glass can be directly patterned by a spatially -modulated pulsed Nd-YAG laser beam (wavelength = 1064 nm, pulse width = 6 ns) incident onto the film. This method utilizes a pulsed laser-induced thermo-elastic force exerting on the film which plays a role to detach it from the substrate. Sharp-edged clean patterns with feature size as small as 4 μm could be obtained. The threshold pulse energy density for patterning was estimated to be ˜0.8 J/cm2 for 150 nm-thick ITO film, making it possible to pattern over one square centimeter by a single pulse with energy of 850 mJ. Not only being free from photoresist and chemical etching steps, the presented method can also provide much higher throughput than the tradition photoablation process utilizing a tightly focused beam.

  10. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  11. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetsumoto, Tomohiro; Tanabe, Takasumi, E-mail: takasumi@elec.keio.ac.jp

    2014-07-15

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allowsmore » us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.« less

  12. Human auditory system response to pulsed radiofrequency energy in RF coils for magnetic resonance at 2.4 to 170 MHz.

    PubMed

    Röschmann, P

    1991-10-01

    The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.

  13. Etude de la Generation des Ultrasons Par Laser dans un Materiau Composite

    NASA Astrophysics Data System (ADS)

    Dubois, Marc

    Laser generation of ultrasound is not a new subject. Many authors have proposed mathematical models of the thermoelastic process of generation of acoustic waves. However, none of those models, up to now, could take simultaneously the effects of the thermal conduction, the optical penetration, the anisotropy of the material and any time and surface profiles of the laser excitation into account. The model presented in this work takes all these parameters into consideration in the case of an infinite orthotropic plate. The mathematical approach used allows to obtain an analytical solution of the mechanical displacement field in the Laplace and two-dimensional (2-D) Fourier spaces. Numerical inverse Laplace and 2-D Fourier transformations bring the mechanical displacement field back into the normal spaces. The use of direct numerical transformations enables to consider almost any time and spatial distributions of the generation laser beam. The acoustic displacements calculated by this model have been compared to experimental displacements measured with a wide band optical detection system. The features of this system allow the quantitative measurement of the parallel and normal displacements to the surface of the sample. Hence, the calculated normal and parallel displacements have been compared to those experimentally measured at various locations on aluminum, glass and polymer samples. In all cases, the agreement between the calculated and experimentally measured displacements was good. The semi-analytical model having proved its validity, it has been used, in addition to a completely analytical one-dimensional model, to study the effects of the optical penetration and the laser pulse duration on the longitudinal acoustic wave generated. This study has established that a short enough laser pulse and a large irradiation with regard to the sample thickness allows to determine quantitatively, from the full width at half maximum of the acoustic pulse, the optical penetration depth at the wavelength of the generation laser inside the material. This semi-analytical model has also permitted to analyze the effects of the optical penetration on the directivity patterns of the longitudinal and shear waves generated by a thermoelastic source. This study has clearly shown that the optical penetration modifies significantly the longitudinal wave directivity pattern, but has only weak effects on the shear wave one. (Abstract shortened by UMI.).

  14. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1.02 "Development of High Performance Large Single Shaped Reflectors" Paul Archer, C. Abegg, T. Le Goff, EADS/LV, Les Mureaux, France.

  15. On the thermoelastic analysis of solar cell arrays and related material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Bouquet, F. L.

    1976-01-01

    Accurate prediction of failure of solar cell arrays requires accuracy in the computation of thermally induced stresses. This was accomplished by using the finite element technique. Improved procedures for stress calculation were introduced together with failure criteria capable of describing a wide range of ductile and brittle material behavior. The stress distribution and associated failure mechanisms in the N-interconnect junction of two solar cell designs were then studied. In such stress and failure analysis, it is essential to know the thermomechanical properties of the materials involved. Measurements were made of properties of materials suitable for the design of lightweight arrays: microsheet-0211 glass material for the solar cell filter, and Kapton-H, Kapton F, Teflon, Tedlar, and Mica Ply PG-402 for lightweight substrates. The temperature-dependence of the thermal coefficient of expansion for these materials was determined together with other properties such as the elastic moduli, Poisson's ratio, and the stress-strain behavior up to failure.

  16. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  17. Active membrane masks for improved overlay performance in proximity lithography

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Plumpton, James; Esser, Brian; Sullivan, Gerald A.

    2004-07-01

    Membrane masks are thin (2 micron x 35 mm x 35 mm) structures that carry the master exposure patterns in proximity (X-ray) lithography. With the continuous drive to the printing of ever-finer features in microelectronics, the reduction of mask-wafer overlay positioning errors by passive rigid body positioning and passive stress control in the mask becomes impractical due to nano and sub-micron scale elastic deformations in the membrane mask. This paper describes the design, mechanics and performance of a system for actively stretching a membrane mask in-plane to control overlay distortion. The method uses thermoelectric heating/cooling elements placed on the mask perimeter. The thermoelectric elements cause controlled thermoelastic deformations in the supporting wafer, which in turn corrects distortions in the membrane mask. Silicon carbide masks are the focus of this study, but the method is believed to be applicable to other mask materials, such as diamond. Experimental and numerical results will be presented, as well as a discussion of the design issues and related design decisions.

  18. Electrode performance parameters for a radioisotope-powered AMTEC for space power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, M.L.; O'Connor, D.; Williams, R.M.

    1992-08-01

    The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate ofmore » sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion. 21 refs.« less

  19. Implicit continuum mechanics approach to heat conduction in granular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massoudi, M.; Mehrabadi, M.

    In this paper, we derive a properly frame-invariant implicit constitutive relationship for the heat flux vector for a granular medium (or a density-gradient-type fluid). The heat flux vector is commonly modeled by Fourier’s law of heat conduction, and for complex materials such as nonlinear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematic parameters such as temperature, shear rate, porosity, concentration, etc. In this paper, we extend the approach of Massoudi [Massoudi, M. Math. Methods Appl. Sci. 2006, 29, 1585; Massoudi, M. Math.more » Methods Appl. Sci. 2006, 29, 1599], who provided explicit constitutive relations for the heat flux vector for flowing granular materials; in order to do so, we use the implicit scheme suggested by Fox [Fox, N. Int. J. Eng. Sci. 1969, 7, 437], who obtained implicit relations in thermoelasticity.« less

  20. Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.; Gabr, M. E.

    2017-12-01

    A novel model of two-dimensional deformations for two-temperature theory at the free surface under the excitation of thermoelastic wave by pulsed laser for a semi-infinite semiconducting medium is studied. The effect of mechanical force during a photothermal process is investigated. The mathematical methods of the Lord-Shulman (LS includes one relaxation time) and Green-Lindsay (GL with two relaxation times) theories as well as the classical dynamical coupled theory (CD) are used. An exact expression for displacement components, force stresses, carrier density and distribution of temperature are obtained using the harmonic wave analysis. Combinations of two-temperature and photothermal theories are obtained analytically. Comparisons of the results are made between the three theories also. The effects of thermoelectric coupling parameter, two-temperature parameter on the displacement component, force stress, carrier density, and distribution of temperature for silicon (Si) medium have been illustrated graphically. The variations of the considered variables with the horizontal distance have been discussed.

  1. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million

    NASA Astrophysics Data System (ADS)

    Saito, Daisuke; Yang, Chen; Heidari, Amir; Najar, Hadi; Lin, Liwei; Horsley, David A.

    2016-02-01

    We demonstrate high quality-factor 1.5 mm diameter batch-fabricated microcrystalline diamond cylindrical resonators (CR) with quality-factors limited by thermoelastic damping (TED) and surface loss. Resonators were fabricated 2.6 and 5.3 μm thick in-situ boron-doped microcrystalline diamond films deposited using hot filament chemical vapor deposition. The quality-factor (Q) of as-fabricated CR's was found to increase with the resonator diameter and diamond thickness. Annealing the CRs at 700 °C in a nitrogen atmosphere led to a three-fold increase in Q, a result we attribute to thinning of the diamond layer via reaction with residual O2 in the annealing furnace. Post-anneal Q exceeding 0.5 million (528 000) was measured at the 19 kHz elliptical wineglass modes, producing a ring-down time of 8.9 s. A model for Q versus diamond thickness and resonance frequency is developed including the effects of TED and surface loss. Measured quality factors are shown to agree with the predictions of this model.

  2. Cryo-optical testing of large aspheric reflectors operating in the sub mm range

    NASA Astrophysics Data System (ADS)

    Roose, S.; Houbrechts, Y.; Mazzoli, A.; Ninane, N.; Stockman, Y.; Daddato, R.; Kirschner, V.; Venacio, L.; de Chambure, D.

    2006-02-01

    The cryo-optical testing of the PLANCK primary reflector (elliptical off-axis CFRP reflector of 1550 mm x 1890 mm) is one of the major issue in the payload development program. It is requested to measure the changes of the Surface Figure Error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with a 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been used and a dedicated thermo mechanical set-up has been constructed. This paper summarises the test activities, the test methods and results on the PLANCK Primary Reflector - Flight Model (PRFM) achieved in FOCAL 6.5 at Centre Spatial de Liege (CSL). Here, the Wave Front Error (WFE) will be considered, the SFE can be derived from the WFE measurement. After a brief introduction, the first part deals with the general test description. The thermo-elastic deformations will be addressed: the surface deformation in the medium frequency range (spatial wavelength down to 60 mm) and core-cell dimpling.

  3. Photoelastic stress investigation in underground large hole in permafrost soil (statics, thermoelasticity, dynamics, photoelastic strain-gauges)

    NASA Astrophysics Data System (ADS)

    Savostjanov, V. N.; Dvalishvili, V. V.; Sakharov, V. N.; Isajkin, A. S.; Frishter, L.; Starchevsky, A. V.

    1991-12-01

    The development of many-year-frost rock (MYFR) region hydrotechnic construction, the MYFR being quite a reliable construction based provided it is situated outside the seasonal temperature fluctuation layer, requires the rock stress-deformed state evaluating criteria working out with maximal possible account of static, dynamic, blast-hole drilling, and temperature effect on their properties. In estimating the hydroelectrical power station (HPS) underground building stress-deformed state the present work refers to experimental data and calculations, received by solving a linear task with further account of the building profile changing effect in the process of construction and the concrete and rock mechanic properties heterogeneity. The proposed order is justified, provided the rock mass defrosting depth value is small as compared to the rock separate block dimensions and it corresponds to the building construction period. The results are given for the Kolymskaya Hydroelectrical Power Station building cross-section, considered under flat deformation conditions.

  4. Residual Stress Assessment in Thin Angle Ply Tubes

    NASA Astrophysics Data System (ADS)

    Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.

    2003-05-01

    This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.

  5. Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators.

    PubMed

    Diallo, Souleymane; Lin, Guoping; Chembo, Yanne K

    2015-08-15

    In this Letter, we show that giant thermo-optical oscillations can be triggered in millimeter (mm)-size whispering gallery mode (WGM) disk resonators when they are pumped by a resonant continuous-wave laser. Our resonator is an ultrahigh-Q barium fluoride cavity that features a positive thermo-optic coefficient and a negative thermo-elastic coefficient. We demonstrate for the first time, to our knowledge, that the complex interplay between these two thermic coefficients and the intrinsic Kerr nonlinearity yields very sharp slow-fast relaxation oscillations with a slow timescale that can be exceptionally large, typically of the order of 1 s. We use a time-domain model to gain understanding into this instability, and we find that both the experimental and theoretical results are in excellent agreement. The understanding of these thermal effects is an essential requirement for every WGM-related application and our study demonstrates that even in the case of mm-size resonators, such effects can still be accurately analyzed using nonlinear time-domain models.

  6. Phase behaviour, thermal expansion and compressibility of SnMo2O8

    NASA Astrophysics Data System (ADS)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S. O.

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298-513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ‧. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ∼36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  7. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less

  8. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family.more » Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.« less

  9. A review of path-independent integrals in elastic-plastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kim, Kwang S.; Orange, Thomas W.

    1988-01-01

    The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  10. Theoretical prediction of welding distortion in large and complex structures

    NASA Astrophysics Data System (ADS)

    Deng, De-An

    2010-06-01

    Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.

  11. Remarks on the Particular Behavior in Martensitic Phase Transition in Cu-Based and Ni-Ti Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos

    2018-05-01

    Many macroscopic behaviors of the martensitic transformations are difficult to explain in the frame of the classical first-order phase transformations, without including the role of point and crystallographic defects (dislocations, stacking faults, interfaces, precipitates). A few major examples are outlined in the present study. First, the elementary reason for thermoelasticity and pseudoelasticity in single crystals of Cu-Zn-Al (β-18R transformation) arises from the interaction of a growing martensite plate with the existing dislocations in the material. Secondly, in Cu-Al-Ni, the twinned hexagonal (γ') martensite produces dislocations inhibiting this transformation and favoring the appearance of 18R in subsequent transformation cycles. Thirdly, single crystals of Cu-Al-Be visualize, via enhanced stress, a transformation primarily to 18R, a structural distortion of the 18R structure, and an additional transformation to another martensitic phase (i.e., 6R) with an increased strain. A dynamic behavior in Ni-Ti is also analyzed, where defects alter the pseudoelastic behavior after cycling.

  12. Optical performances of the FM JEM-X masks

    NASA Astrophysics Data System (ADS)

    Reglero, V.; Rodrigo, J.; Velasco, T.; Gasent, J. L.; Chato, R.; Alamo, J.; Suso, J.; Blay, P.; Martínez, S.; Doñate, M.; Reina, M.; Sabau, D.; Ruiz-Urien, I.; Santos, I.; Zarauz, J.; Vázquez, J.

    2001-09-01

    The JEM-X Signal Multiplexing Systems are large HURA codes "written" in a pure tungsten plate 0.5 mm thick. 24.247 hexagonal pixels (25% open) are spread over a total area of 535 mm diameter. The tungsten plate is embedded in a mechanical structure formed by a Ti ring, a pretensioning system (Cu-Be) and an exoskeleton structure that provides the required stiffness. The JEM-X masks differ from the SPI and IBIS masks on the absence of a code support structure covering the mask assembly. Open pixels are fully transparent to X-rays. The scope of this paper is to report the optical performances of the FM JEM-X masks defined by uncertainties on the pixel location (centroid) and size coming from the manufacturing and assembly processes. Stability of the code elements under thermoelastic deformations is also discussed. As a general statement, JEM-X Mask optical properties are nearly one order of magnitude better than specified in 1994 during the ESA instrument selection.

  13. Photoacoustic microscopic imaging of surface and subsurface damages in CFRP

    NASA Astrophysics Data System (ADS)

    Nakahata, Kazuyuki; Ogi, Keiji; Namita, Takeshi; Ohira, Katsumi; Maruyama, Masayuki; Shiina, Tsuyoshi

    2018-04-01

    Photoacoustic imaging comprises an optical excitation within a target zone and the detection of the ultrasonic wave so created. A pulsed laser illuminates the target zone, and this illumination causes rapid thermoelastic expansion that generates a broadband high-frequency ultrasonic wave (photoacoustic wave, PA). In this paper, we report proof-of-concept experiments for nondestructive testing of laminar materials using a PA microscope. A specimen containing carbon-fiber-reinforced plastic (CFRP) was used in this experiment and involved an artificial delamination. A 532-nm-wavelength laser irradiates the top surface of the specimen, and the resulting ultrasonic waves are received by a point-focusing immersion transducer on the same side. Our system estimated the depth and dimension of the subsurface delamination accurately. By coating a light-absorbing material on the surface, the amplitude of the PA wave increased. This finding shows that the signal-noise (S/N) ratio of the scattered wave from delaminations can be improved with the surface coatings.

  14. Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.

    PubMed

    Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E

    2015-03-01

    Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.

  15. Temperature dependence of thermal pressure for NaCl

    NASA Astrophysics Data System (ADS)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  16. Photoacoustic Non-Destructive Evaluation and Imaging of Caries in Dental Samples

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-02-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 °C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  17. Characterization of the Acoustic Radiation Properties of Laminated and Sandwich Composite Panels in Thermal Environment

    NASA Astrophysics Data System (ADS)

    Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj

    2018-03-01

    In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.

  18. Demonstration of a Segment Alignment Maintenance System on a Seven-Segment Sub-Array of the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo-elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors supplemented by inclinometers for global radius of curvature sensing. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the sub-array SAMS.

  19. A review of path-independent integrals in elastic-plastic fracture mechanics, task 4

    NASA Technical Reports Server (NTRS)

    Kim, K. S.

    1985-01-01

    The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  20. On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.

    1991-01-01

    A complete potential based framework using internal state variables is put forth for the derivation of reversible and irreversible constitutive equations. In this framework, the existence of the total (integrated) form of either the (Helmholtz) free energy or the (Gibbs) complementary free energy are assumed a priori. Two options for describing the flow and evolutionary equations are described, wherein option one (the fully coupled form) is shown to be over restrictive while the second option (the decoupled form) provides significant flexibility. As a consequence of the decoupled form, a new operator, i.e., the Compliance operator, is defined which provides a link between the assumed Gibb's and complementary dissipation potential and ensures a number of desirable numerical features, for example the symmetry of the resulting consistent tangent stiffness matrix. An important conclusion reached, is that although many theories in the literature do not conform to the general potential framework outlined, it is still possible in some cases, by slight modifications of the used forms, to restore the complete potential structure.

  1. Pocketing mechanics of SRM nozzle liner

    NASA Technical Reports Server (NTRS)

    Verderaime, V. S.

    1986-01-01

    A systems approach was adopted to study the pocketing phenomena on a solid rocket nozzle liner. The classical thermoelastic analysis was used to identify marginally strained regions on the composite liner erosion surface and at a depth coincident with the peak value of the across ply coefficient of thermal expansion. A failure criterion was introduced which included a thermal term and permitted failure assessment over the charred liner. The method was verified by satisfactory application to a reported related experiment. Liner pocketing mechanism was attributed to very localized material degradation caused during manufacturing process either by reduction of fiber strength and/or by concentration of resin volume fraction. Pocketing scenario over the degraged material was constructed with supporting formulation to predict size of fissures with respect to degraded material size and location in the liner and with burn time. Sensitivities of liner material parameters were determined to influence test programs designed to update mechanical data base of carbon cloth phenolic over the char temperature range.

  2. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiationmore » temperatures: 800oC, 500oC, and 400oC.« less

  3. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  4. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Daisuke; Yang, Chen; Lin, Liwei

    2016-02-01

    We demonstrate high quality-factor 1.5 mm diameter batch-fabricated microcrystalline diamond cylindrical resonators (CR) with quality-factors limited by thermoelastic damping (TED) and surface loss. Resonators were fabricated 2.6 and 5.3 μm thick in-situ boron-doped microcrystalline diamond films deposited using hot filament chemical vapor deposition. The quality-factor (Q) of as-fabricated CR's was found to increase with the resonator diameter and diamond thickness. Annealing the CRs at 700 °C in a nitrogen atmosphere led to a three-fold increase in Q, a result we attribute to thinning of the diamond layer via reaction with residual O{sub 2} in the annealing furnace. Post-anneal Q exceeding 0.5 million (528 000)more » was measured at the 19 kHz elliptical wineglass modes, producing a ring-down time of 8.9 s. A model for Q versus diamond thickness and resonance frequency is developed including the effects of TED and surface loss. Measured quality factors are shown to agree with the predictions of this model.« less

  5. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  6. A review on recent contribution of meshfree methods to structure and fracture mechanics applications.

    PubMed

    Daxini, S D; Prajapati, J M

    2014-01-01

    Meshfree methods are viewed as next generation computational techniques. With evident limitations of conventional grid based methods, like FEM, in dealing with problems of fracture mechanics, large deformation, and simulation of manufacturing processes, meshfree methods have gained much attention by researchers. A number of meshfree methods have been proposed till now for analyzing complex problems in various fields of engineering. Present work attempts to review recent developments and some earlier applications of well-known meshfree methods like EFG and MLPG to various types of structure mechanics and fracture mechanics applications like bending, buckling, free vibration analysis, sensitivity analysis and topology optimization, single and mixed mode crack problems, fatigue crack growth, and dynamic crack analysis and some typical applications like vibration of cracked structures, thermoelastic crack problems, and failure transition in impact problems. Due to complex nature of meshfree shape functions and evaluation of integrals in domain, meshless methods are computationally expensive as compared to conventional mesh based methods. Some improved versions of original meshfree methods and other techniques suggested by researchers to improve computational efficiency of meshfree methods are also reviewed here.

  7. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  8. Direct conversion technology: Annual summary report CY 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massier, P.F.; Bankston, C.P.; Fabris, G.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussionsmore » on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.« less

  9. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    PubMed

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  10. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  11. Noncontact holographic detection for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Buj, Christian; Münter, Michael; Schmarbeck, Benedikt; Horstmann, Jens; Hüttmann, Gereon; Brinkmann, Ralf

    2017-10-01

    A holographic method for high-speed, noncontact photoacoustic tomography is introduced and evaluated. Relative changes of the object's topography, induced by the impact of thermoelastic pressure waves, were determined at nanometer sensitivity without physical contact. The object's surface was illuminated with nanosecond laser pulses and imaged with a high-speed CMOS camera. From two interferograms measured before and after excitation of the acoustic wave, surface displacement was calculated and then used as the basis for a tomographic reconstruction of the initial pressure caused by optical absorption. The holographic detection scheme enables variable sampling rates of the photoacoustic signal of up to 50 MHz. The total acquisition times for complete volumes with 230 MVoxel is far below 1 s. Measurements of silicone and porcine skin tissue phantoms with embedded artificial absorbers, which served as a model for human subcutaneous vascular networks, were possible. Three-dimensional reconstructions of the absorbing structures show details with a diameter of 310 μm up to a depth of 2.5 mm. Theoretical limitations and the experimental sensitivity, as well as the potential for in vivo imaging depending on the detection repetition rate, are analyzed and discussed.

  12. Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions

    NASA Astrophysics Data System (ADS)

    Komori, Kentaro; Enomoto, Yutaro; Takeda, Hiroki; Michimura, Yuta; Somiya, Kentaro; Ando, Masaki; Ballmer, Stefan W.

    2018-05-01

    The test mass suspensions of cryogenic gravitational-wave detectors such as the KAGRA project are tasked with extracting the heat deposited on the optics. These suspensions have a nonuniform temperature, requiring the calculation of thermal noise in nonequilibrium conditions. While it is not possible to describe the whole suspension system with one temperature, the local temperature at every point in the system is still well defined. We therefore generalize the application of the fluctuation-dissipation theorem to mechanical systems, pioneered by Saulson and Levin, to nonequilibrium conditions in which a temperature can only be defined locally. The result is intuitive in the sense that the thermal noise in the observed degree of freedom is given by averaging the temperature field, weighted by the dissipation density associated with that particular degree of freedom. After proving this theorem, we apply the result to examples of increasing complexity: a simple spring, the bending of a pendulum suspension fiber, and a model of the KAGRA cryogenic suspension. We conclude by outlining the application to nonequilibrium thermoelastic noise.

  13. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.; Dewhurst, R. J.

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will causemore » pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.« less

  14. Density of jadeite melts under high pressure and high temperature conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAKAMAKI, Tatsuya

    2017-01-01

    The density of the jadeite (NaAlSi2O6) melt has been measured up to 6.5 GPa and 2273 K using the X–ray absorption technique at beamline 13–BM–D of the Advanced Photon Source. A fit of the pressure–density–temperature data to the high temperature Birch–Murnaghan equation of state yielded the following thermoelastic parameters: density, ρ0 = 2.36 g/cm3, isothermal bulk modulus, KT0 = 21.5 ± 0.8 GPa, its pressure derivative, K0' = 8.9 ± 1.2, and the temperature derivative (∂KT/∂T)P = -0.0021 ± 0.0011 GPa/K at a reference temperature T0 = 1473 K. The densification of jadeite melt at low pressures is primarily dominatedmore » by topological changes in the structure, including a decrease in T–O–T angle and breaking and reforming of the T–O bond (T = Si4+, Al3+). Compressibilities of jadeite, albite, diopside, phonolite and peridotite melts display a systematic trend: the K0–K0' plot of these silicate melts exhibits an inverse linear relation.« less

  15. A Direct Approach to In-Plane Stress Separation using Photoelastic Ptychography

    NASA Astrophysics Data System (ADS)

    Anthony, Nicholas; Cadenazzi, Guido; Kirkwood, Henry; Huwald, Eric; Nugent, Keith; Abbey, Brian

    2016-08-01

    The elastic properties of materials, either under external load or in a relaxed state, influence their mechanical behaviour. Conventional optical approaches based on techniques such as photoelasticity or thermoelasticity can be used for full-field analysis of the stress distribution within a specimen. The circular polariscope in combination with holographic photoelasticity allows the sum and difference of principal stress components to be determined by exploiting the temporary birefringent properties of materials under load. Phase stepping and interferometric techniques have been proposed as a method for separating the in-plane stress components in two-dimensional photoelasticity experiments. In this paper we describe and demonstrate an alternative approach based on photoelastic ptychography which is able to obtain quantitative stress information from far fewer measurements than is required for interferometric based approaches. The complex light intensity equations based on Jones calculus for this setup are derived. We then apply this approach to the problem of a disc under diametrical compression. The experimental results are validated against the analytical solution derived by Hertz for the theoretical displacement fields for an elastic disc subject to point loading.

  16. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  17. Acoustic-pseudoelastic effect and internal friction during stress-induced martensitic transformation in Cu-Al-Ni single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapozhnikov, K.V.; Vetrov, V.V.; Pulnev, S.A.

    1996-05-15

    Internal friction (IF) during temperature-induced thermoelastic martensitic transformation (TMT) has been studied extensively, whereas IF behavior during stress-induced TMT has not attracted much attention so far. It is known that quasistatic flow stress may decrease under superimposition of an oscillatory stress in the case of dislocation plasticity (acoustoplastic or Blaha effect). Strain originating from the reversible TMT (so-called transformation pseudoelasticity), in contrast to the dislocation plastic strain, may be completely reversible, however, accompanied by macroscopic hysteresis. The existence of the pseudoelastic hysteresis is usually attributed to the presence of obstacles impeding the mobility of interfaces during stress-induced transformation. A numbermore » of theories also consider the mobility of interfaces as the main source of IF during TMT. As a consequence, one should expect certain interconnection between the ADIF during stress-induced TMT and the macroscopically observed hysteresis. Thus the purpose of present paper is to study in a wide oscillatory strain amplitude range the ADIF during stress-induced TMT and the effect of ultrasound on this mode of deformation.« less

  18. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  19. Photoacoustic and ultrasound imaging of cancellous bone tissue.

    PubMed

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  20. Kinetics of pulse photothermal surface deformation as a method of studying the phase interface movement in a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Vintzentz, S. V.; Kiselev, V. F.; Levshin, N. L.; Sandomirskii, V. B.

    1991-01-01

    The photothermal surface deformation (PTSD) method is used for characterization of the first-order phase transition (PT) for the first time. The advantages of the method are demonstrated experimentally for the well known metal-to-semiconductor PT in VO 2. It is found that near the PT temperature the PTSD pulse in a VO 2 film has a sign opposite to that of the thermoelastic response. The conclusion is drawn that this phenomenon is determined primarily by the contribution of the decrease in the specific volume (Δ V/ V) of the substance involved in the semiconductor-to-metal PT. The sign of Δ V/ V for a submicron polycrystalline VO 2 film is determined. Besides, analysis shows that in the PTSD kinetics measured as a whole we can "separate" a law for the metal-semicon- ductor interface movement (i.e. the interface moves towards the interior of the film when the latter is heated and back towards the surface when it is cooling down). The relative density change due to the PT is estimated based on this law.

  1. A Direct Approach to In-Plane Stress Separation using Photoelastic Ptychography

    PubMed Central

    Anthony, Nicholas; Cadenazzi, Guido; Kirkwood, Henry; Huwald, Eric; Nugent, Keith; Abbey, Brian

    2016-01-01

    The elastic properties of materials, either under external load or in a relaxed state, influence their mechanical behaviour. Conventional optical approaches based on techniques such as photoelasticity or thermoelasticity can be used for full-field analysis of the stress distribution within a specimen. The circular polariscope in combination with holographic photoelasticity allows the sum and difference of principal stress components to be determined by exploiting the temporary birefringent properties of materials under load. Phase stepping and interferometric techniques have been proposed as a method for separating the in-plane stress components in two-dimensional photoelasticity experiments. In this paper we describe and demonstrate an alternative approach based on photoelastic ptychography which is able to obtain quantitative stress information from far fewer measurements than is required for interferometric based approaches. The complex light intensity equations based on Jones calculus for this setup are derived. We then apply this approach to the problem of a disc under diametrical compression. The experimental results are validated against the analytical solution derived by Hertz for the theoretical displacement fields for an elastic disc subject to point loading. PMID:27488605

  2. Quantitative non-destructive testing

    NASA Technical Reports Server (NTRS)

    Welch, C. S.

    1985-01-01

    The work undertaken during this period included two primary efforts. The first is a continuation of theoretical development from the previous year of models and data analyses for NDE using the Optical Thermal Infra-Red Measurement System (OPTITHIRMS) system, which involves heat injection with a laser and observation of the resulting thermal pattern with an infrared imaging system. The second is an investigation into the use of the thermoelastic effect as an effective tool for NDE. As in the past, the effort is aimed towards NDE techniques applicable to composite materials in structural applications. The theoretical development described produced several models of temperature patterns over several geometries and material types. Agreement between model data and temperature observations was obtained. A model study with one of these models investigated some fundamental difficulties with the proposed method (the primitive equation method) for obtaining diffusivity values in plates of thickness and supplied guidelines for avoiding these difficulties. A wide range of computing speeds was found among the various models, with a one-dimensional model based on Laplace's integral solution being both very fast and very accurate.

  3. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  4. Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy.

    PubMed

    Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed

    2018-01-01

    Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A high-quality factor of 267 000 micromechanical silicon resonator utilizing TED-free torsional vibration mode

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Naito, Y.; Onishi, K.; Kawakatsu, H.

    2012-12-01

    In industrial applications of a micromechanical silicon resonator as a physical sensor, a high-quality factor Q and a low-temperature coefficient of Q (TCQ) are required for high sensitivity in a wide temperature range. Although the newly developed thin film encapsulation technique enables a beam to operate with low viscous damping in a vacuum cavity, the Q of a flexural vibration mode is limited by thermo-elastic damping (TED). We proposed a torsional beam resonator which features both a high Q and a low TCQ because theoretically the torsional vibration mode does not suffer from TED. From experiments, Q of 267 000 and TCQ of 1.4 for the 20 MHz torsional vibration mode were observed which were superior to those of the flexural mode. The pressure of the residual gas in the cavity of only 20 pl volume, which is one of the energy loss factors limiting the Q, was successfully estimated to be 1-14 Pa. Finally, the possibilities of improving the Q and the difference of the measured TCQ from a theoretical value were discussed.

  6. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves

    PubMed Central

    Dodson, Jacob C.; Inman, Daniel J.

    2014-01-01

    Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂vP/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂vP/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures. PMID:25373955

  7. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009) Structural parameters of chromite included in diamond and kimberlites from Siberia: a new tool for discriminating source. American Mineralogist, 94, 1067-1070. Nestola F., Nimis P., Ziberna L., Longo M., Marzoli A., Harris J.W., Manghnani M.H., Fedortchouk Y. (2011) First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle. Earth and Planetary Science Letters, 305, 249-255. Stachel, T., and Harris, J.W. (2008) The origin of cratonic diamonds - constraints from mineral inclusions. Ore Geology Reviews, 34, 5-32.

  8. Effects of water on P-V-T equation of state of pyrope

    NASA Astrophysics Data System (ADS)

    Fan, Dawei; Lu, Chang; Xu, Jingui; Yan, Bingmin; Yang, Bin; Chen, Jiuhua

    2017-06-01

    High-pressure single-crystal/powder synchrotron X-ray diffraction was carried out on a hydrous pure magnesium pyrope (Mg3Al2Si3O12) containing 900 ppmw H2O, synthesized at 4.0 GPa and 1300 K. The pressure-volume (P-V) single-crystal data from room pressure to 9.81 GPa at ambient temperature were fitted by a third-order Birch-Murnaghan equation of state (BM-EoS) yielding a unit-cell volume of V0 = 1505.14 ± 0.38 Å3, an isothermal bulk modulus of K0 = 160 ± 3 GPa and its pressure derivative K‧0 = 5.2 ± 0.4. When fixing K'0 = 4.0, the data yielded V0 = 1504.58 ± 0.32 Å3 and K0 = 166 ± 2 GPa. The pressure-volume-temperature (P-V-T) EoS of the synthetic hydrous pyrope was also measured at temperatures up to 900 K and pressures up to 16.75 GPa, using a diamond anvil cell in conjunction with in situ synchrotron angle-dispersive powder X-ray diffraction. The P-V data at room temperature and in a pressure range of 0.0001-14.81 GPa were then analyzed by a third-order BM-EoS and yielded V0 = 1505.35 ± 0.25 Å3, K0 = 161 ± 2 GPa, K‧0 = 5.0 ± 0.3. With K'0 fixed to 4.0, we also obtained V0 = 1505.04 ± 0.29 Å3 and K0 = 167 ± 1 GPa. Consequently, we fitted the P-V-T data with the high-temperature third-order BM-EoS approach and obtained the thermoelastic parameters of V0 = 1505.4 ± 0.3 Å3, K0 = 162 ± 1 GPa, K‧0 = 4.9 ± 0.2, the temperature derivative of the bulk modulus (∂K0/∂T)P = -0.018 ± 0.004 GPa K-1, and the thermal expansion coefficient at ambient conditions α0 = (3.2 ± 0.1) × 10-5 K-1. These properties were consistent with the thermal pressure EoS analysis. These new results on hydrous pyrope were also compared with previous studies of anhydrous pyrope. The main effect of hydration on pyrope is to decrease K0 and increase K'0 by increasing the vacancies or unoccupied volume in the structure. The entire dataset enabled us to examine the thermoelastic properties of important mantle garnets and this data has further applications for modeling the P-T conditions in the upper mantle of the Earth's interior using deep mineral assemblages.

  9. Shock induced phase transitions and current generation in ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    2017-06-01

    Ferroelectric materials are used as ferroelectric generators to obtain pulsed power by subjecting them to a shock loading. The impact induces a phase transition and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. We explore the phenomenon of large deformation dynamic behavior and the associated electro-thermo-mechanical coupling of ferroelectric materials in adiabatic environments. Using conservation laws, Maxwell's equations and second law of thermodynamics, we obtain a set of governing equations for the material and the driving force acting on the propagating phase boundary. We also account for the possibility of surface charges on the phase boundary in case of dielectric breakdown which introduces contribution of curvature of the phase boundary in the equations. Next, the governing equations are used to solve a plate impact problem. The Helmholtz energy of the material is chosen be a combination of piecewise quadratic potential in polarization and thermo-elastic material capable of undergoing phase transformation. We obtain current profiles for short circuit boundary conditions along with strain, particle velocity and temperature maps. US AFOSR through Center of Excellence in High Rate Deformation of Heterogeneous Materials FA 9550-12-1-0091.

  10. Simulation of finite-strain inelastic phenomena governed by creep and plasticity

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bloomfield, Max O.; Oberai, Assad A.

    2017-11-01

    Inelastic mechanical behavior plays an important role in many applications in science and engineering. Phenomenologically, this behavior is often modeled as plasticity or creep. Plasticity is used to represent the rate-independent component of inelastic deformation and creep is used to represent the rate-dependent component. In several applications, especially those at elevated temperatures and stresses, these processes occur simultaneously. In order to model these process, we develop a rate-objective, finite-deformation constitutive model for plasticity and creep. The plastic component of this model is based on rate-independent J_2 plasticity, and the creep component is based on a thermally activated Norton model. We describe the implementation of this model within a finite element formulation, and present a radial return mapping algorithm for it. This approach reduces the additional complexity of modeling plasticity and creep, over thermoelasticity, to just solving one nonlinear scalar equation at each quadrature point. We implement this algorithm within a multiphysics finite element code and evaluate the consistent tangent through automatic differentiation. We verify and validate the implementation, apply it to modeling the evolution of stresses in the flip chip manufacturing process, and test its parallel strong-scaling performance.

  11. Theoretical prediction of Grüneisen parameter for SiO{sub 2}.TiO{sub 2} bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Chandra K.; Pandey, Brijesh K., E-mail: bkpmmmec11@gmail.com; Pandey, Anjani K.

    2016-05-23

    The Grüneisen parameter (γ) is very important to decide the limitations for the prediction of thermoelastic properties of bulk metallic glasses. It can be defined in terms of microscopic and macroscopic parameters of the material in which former is based on vibrational frequencies of atoms in the material while later is closely related to its thermodynamic properties. Different formulation and equation of states are used by the pioneer researchers of this field to predict the true sense of Gruneisen parameter for BMG but for SiO{sub 2}.TiO{sub 2} very few and insufficient information is available till now. In the present workmore » we have tested the validity of two different isothermal EOS viz. Poirrior-Tarantola EOS and Usual-Tait EOS to predict the true value of Gruneisen parameter for SiO{sub 2}.TiO{sub 2} as a function of compression. Using different thermodynamic limitations related to the material constraints and analyzing obtained result it is concluded that the Poirrior-Tarantola EOS gives better numeric values of Grüneisen parameter (γ) for SiO{sub 2}.TiO{sub 2} BMG.« less

  12. Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Aizawa, Naoto; Iwasaki, Tomohiko

    2014-06-01

    Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.

  13. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  14. Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane

    NASA Astrophysics Data System (ADS)

    Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana

    2014-07-01

    Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.

  15. Direct solution for thermal stresses in a nose cap under an arbitrary axisymmetric temperature distribution

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.

    1988-01-01

    The design of a nose cap for a hypersonic vehicle is an iterative process requiring a rapid, easy to use and accurate stress analysis. The objective of this paper is to develop such a stress analysis technique from a direct solution of the thermal stress equations for a spherical shell. The nose cap structure is treated as a thin spherical shell with an axisymmetric temperature distribution. The governing differential equations are solved by expressing the stress solution to the thermoelastic equations in terms of a series of derivatives of the Legendre polynomials. The process of finding the coefficients for the series solution in terms of the temperature distribution is generalized by expressing the temperature along the shell and through the thickness as a polynomial in the spherical angle coordinate. Under this generalization the orthogonality property of the Legendre polynomials leads to a sequence of integrals involving powers of the spherical shell coordinate times the derivative of the Legendre polynomials. The coefficients of the temperature polynomial appear outside of these integrals. Thus, the integrals are evaluated only once and their values tabulated for use with any arbitrary polynomial temperature distribution.

  16. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    PubMed

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  17. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  18. On the propagation of elasto-thermodiffusive surface waves in heat-conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Sharma, Y. D.; Sharma, P. K.

    2008-09-01

    The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic, thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free, thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The secular equations have been solved by using irreducible Cardano's method with the help of DeMoivre's theorem in order to obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of optical and electronic devices in addition to construction and design of materials such as semiconductors and composite structures. Therefore, this work finds applications in the geophysics and electronics industry.

  19. Evaluation of an improved finite-element thermal stress calculation technique

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1982-01-01

    A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.

  20. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    NASA Astrophysics Data System (ADS)

    Karlsen, Jonas T.; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a , but it assumes the particle to be small in comparison to the acoustic wavelength λ . This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  1. Modeling and estimation of process-induced stress in the nanowire field-effect-transistors (NW-FETs) on Insulator-on-Silicon substrates with high-k gate-dielectrics

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sulagna; Chattopadhyay, Sanatan

    2016-10-01

    An analytical model including the simultaneous impact of lattice and thermo-elastic constant mismatch-induced stress in nanowires on Insulator-on-Silicon substrate is developed. It is used to calibrate the finite-element based software, ANSYS, which is subsequently employed to estimate process-induced stress in the sequential steps of NW-FET fabrication. The model considers crystal structures and orientations for both the nanowires and substrates. In-plane stress components along nanowire-axis are estimated for different radii and fractions of insertion. Nature of longitudinal stress is observed to change when inserted fraction of nanowires is changed. Effect of various high-k gate-dielectrics is also investigated. A longitudinal tensile stress of 2.4 GPa and compressive stress of 1.89 GPa have been obtained for NW-FETs with 1/4th and 3/4th insertions with La2O3 and TiO2 as the gate-dielectrics, respectively. Therefore, it is possible to achieve comparable values of electron and hole mobility in NW-FETs by judiciously choosing gate-dielectrics and fractional insertion of the nanowires.

  2. Solid-propellant rocket motor ballistic performance variation analyses

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1975-01-01

    Results are presented of research aimed at improving the assessment of off-nominal internal ballistic performance including tailoff and thrust imbalance of two large solid-rocket motors (SRMs) firing in parallel. Previous analyses using the Monte Carlo technique were refined to permit evaluation of the effects of radial and circumferential propellant temperature gradients. Sample evaluations of the effect of the temperature gradients are presented. A separate theoretical investigation of the effect of strain rate on the burning rate of propellant indicates that the thermoelastic coupling may cause substantial variations in burning rate during highly transient operating conditions. The Monte Carlo approach was also modified to permit the effects on performance of variation in the characteristics between lots of propellants and other materials to be evaluated. This permits the variabilities for the total SRM population to be determined. A sample case shows, however, that the effect of these between-lot variations on thrust imbalances within pairs of SRMs is minor in compariosn to the effect of the within-lot variations. The revised Monte Carlo and design analysis computer programs along with instructions including format requirements for preparation of input data and illustrative examples are presented.

  3. Effect of gallium alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.

    2016-04-01

    The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50- z Ga z (0 ⩽ z ⩽ 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature-concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2 M) martensite, and the 10 M and 14 M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011} B2. Martensite crystals are twinned along one of the 24 24{ {011} }{< {01bar 1} rangle _{B2}} "soft" twinning shear systems, which provides coherent accommodation of the martensitic transformation-induced elastic stresses.

  4. Solid propellant rocket motor internal ballistics performance variation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.; Murph, J. E.; Adams, G. W., Jr.

    1977-01-01

    Results of research aimed at improving the predictability of off nominal internal ballistics performance of solid propellant rocket motors (SRMs) including thrust imbalance between two SRMs firing in parallel are reported. The potential effects of nozzle throat erosion on internal ballistic performance were studied and a propellant burning rate low postulated. The propellant burning rate model when coupled with the grain deformation model permits an excellent match between theoretical results and test data for the Titan IIIC, TU455.02, and the first Space Shuttle SRM (DM-1). Analysis of star grain deformation using an experimental model and a finite element model shows the star grain deformation effects for the Space Shuttle to be small in comparison to those of the circular perforated grain. An alternative technique was developed for predicting thrust imbalance without recourse to the Monte Carlo computer program. A scaling relationship used to relate theoretical results to test results may be applied to the alternative technique of predicting thrust imbalance or to the Monte Carlo evaluation. Extended investigation into the effect of strain rate on propellant burning rate leads to the conclusion that the thermoelastic effect is generally negligible for both steadily increasing pressure loads and oscillatory loads.

  5. Pretest fracture evaluation of the NESC-1 spinning-cylinder experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeney, J.A.; Bass, B.R.; Williams, P.T.

    This paper describes a pretest fracture analysis of the cylinder specimen being used in the Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). Organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards, the NESC is currently focusing on a research project funded by United Kingdom Health and Safety Executive (HSE) to study the total process of structural integrity assessments of aged reactor pressure vessels (RPVs) containing subclad cracks. The intent is to have the problem studied by a wide rangemore » of organizations involved in RPV safety assessment. In this project, important safety assessment issues are being investigated by inspection and analysis of a spinning cylinder test which was performed at the AEA Technology facility at Risley, UK. Thermoelastic-plastic analyses were carried out for a clad cylinder model with a 74-mm-deep through-clad inner-surface crack. For this loading, the analytical results indicate that cleavage initiation may be achieved. The intervention of warm prestressing and loss of constraint may make cleavage initiation difficult to achieve in the heat-affected zone (HAZ) and near-HAZ regions.« less

  6. Nondestructive inspection of aerospace composites by a fiber-coupled laser ultrasonics system

    NASA Astrophysics Data System (ADS)

    Vandenrijt, J.-F.; Languy, F.; Thizy, C.; Georges, M. P.

    2017-06-01

    Laser ultrasonics is a technique currently studied for nondestructive inspection of aerospace composite structures based on carbon fibers. It combines a pulsed laser impacting the surface generates an ultrasound inside the material, through the nondestructive thermoelastic effect. Second a detection interferometer probes the impacted point in order to measure the displacement of the surface resulting from the emitted ultrasound wave and the echo coming back from the different interfaces of the structure. Laser ultrasonics is of interest for inspecting complex shaped composites. We have studied the possibility of using frequency doubled YAG laser for the generation and which is fiber-coupled, together with a fibercoupled interferometric probe using a YAG laser in the NIR. Our final system is a lightweight probe attached to a robot arm and which is able to scan complex shapes. The performances of the system are compared for different wavelengths of generations. Also we have studied some experimental parameters of interest such as tolerance to angle and focus distance, and different geometries of generation beams. We show some examples of inspection of reference parts with known defects. In particular C-scans of curved composites structures are presented.

  7. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  8. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    NASA Technical Reports Server (NTRS)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  9. Human heart conjugate cooling simulation: Unsteady thermo-fluid-stress analysis

    PubMed Central

    Abdoli, Abas; Dulikravich, George S.; Bajaj, Chandrajit; Stowe, David F.; Jahania, M. Salik

    2015-01-01

    The main objective of this work was to demonstrate computationally that realistic human hearts can be cooled much faster by performing conjugate heat transfer consisting of pumping a cold liquid through the cardiac chambers and major veins while keeping the heart submerged in cold gelatin filling a cooling container. The human heart geometry used for simulations was obtained from three-dimensional, high resolution MRI scans. Two fluid flow domains for the right (pulmonic) and left (systemic) heart circulations, and two solid domains for the heart tissue and gelatin solution were defined for multi-domain numerical simulation. Detailed unsteady temperature fields within the heart tissue were calculated during the conjugate cooling process. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart due to the coolant fluid shear and normal forces and to examine the thermal stress caused by temperature variation inside the heart. It was demonstrated that a conjugate cooling effort with coolant temperature at +4°C is capable of reducing the average heart temperature from +37°C to +8°C in 25 minutes for cases in which the coolant was steadily pumped only through major heart inlet veins and cavities. PMID:25045006

  10. Thermo-mechanical design and testing of a microbalance for space applications

    NASA Astrophysics Data System (ADS)

    Scaccabarozzi, Diego; Saggin, Bortolino; Tarabini, Marco; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2014-12-01

    This work focuses on the thermo-mechanical design of the microbalance used for the VISTA (Volatile In Situ Thermogravimetry Analyzer) sensor. VISTA has been designed to operate in situ in different space environments (asteroids, Mars, icy satellites). In this paper we focus on its application on Mars, where the expected environmental conditions are the most challenging for the thermo-mechanical design. The microbalance holding system has been designed to ensure piezoelectric crystal integrity against the high vibration levels during launch and landing and to cope with the unavoidable thermo-elastic differential displacements due to CTE and temperature differences between the microbalance elements. The crystal holding system, based on three symmetrical titanium supports, provides also the electrical connections needed for crystal actuation, microbalance heating and temperature measurement on the electrode area. On the microbalance crystal surfaces the electrodes, a micro film heater (optimized to perform thermo-gravimetric analysis up to 400 °C) and a resistive thermometer are deposited through a vacuum sputtering process. A mockup of the system has been manufactured and tested at the expected vibration levels and the thermal control effectiveness has been verified in thermo-vacuum environment.

  11. Electronic and mechanical response of graphene on BaTiO3 at martensitic phase transitions

    NASA Astrophysics Data System (ADS)

    Verhagen, Tim; Vales, Vaclav; Kalbac, Martin; Vejpravova, Jana

    2018-02-01

    Graphene is extremely sensitive to optical, electrical and mechanical stimuli, which cause a significant variation of the band structure, thus the physiochemical properties. In our work, we report on changes of strain and doping in graphene grown by chemical vapor deposition on copper and transferred onto a BaTiO3(1 0 0) (BTO) single-crystal. The BTO is known as a ferroelectric material, which undergoes several thermoelastic martensitic phase transitions when it is cooled from 300 K to 10 K. In order to enhance the very weak Raman signal of the graphene monolayer (ML) on the BTO, a 15 nm thin gold layer was deposited on top of the graphene ML to benefit from the surface enhanced Raman scattering. Using temperature dependent Raman spectral mapping, the principal Raman modes (D, G and 2D) of the graphene ML were followed in situ. From a careful analysis of these Raman modes, we conclude that the induced strain and doping of the graphene ML follows the martensitic phase transitions of the BTO crystal. Our study suggests potential exploitation of the graphene as a highly sensitive opto-mechanical sensor or transducer.

  12. IR-camera methods for automotive brake system studies

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  13. Transition temperature range of thermally activated nickel-titanium archwires

    PubMed Central

    SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim

    2014-01-01

    Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581

  14. Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures.

    PubMed

    Li, Baosheng; Liebermann, Robert C

    2007-05-29

    The adiabatic bulk (K(S)) and shear (G) moduli of mantle materials at high pressure and temperature can be obtained directly by measuring compressional and shear wave velocities in the laboratory with experimental techniques based on physical acoustics. We present the application of the current state-of-the-art experimental techniques by using ultrasonic interferometry in conjunction with synchrotron x radiation to study the elasticity of olivine and pyroxenes and their high-pressure phases. By using these updated thermoelasticity data for these phases, velocity and density profiles for a pyrolite model are constructed and compared with radial seismic models. We conclude that pyrolite provides an adequate explanation of the major seismic discontinuities at 410- and 660-km depths, the gradient in the transition zone, as well as the velocities in the lower mantle, if the uncertainties in the modeling and the variations in different seismic models are considered. The characteristics of the seismic scaling factors in response to thermal anomalies suggest that anticorrelations between bulk sound and shear wave velocities, as well as the large positive density anomalies observed in the lower mantle, cannot be explained fully without invoking chemical variations.

  15. NiMnGa/Si Shape Memory Bimorph Nanoactuation

    NASA Astrophysics Data System (ADS)

    Lambrecht, Franziska; Lay, Christian; Aseguinolaza, Iván R.; Chernenko, Volodymyr; Kohl, Manfred

    2016-12-01

    The size dependences of thermal bimorph and shape memory effect of nanoscale shape memory alloy (SMA)/Si bimorph actuators are investigated in situ in a scanning electron microscope and by finite element simulations. By combining silicon nanomachining and magnetron sputtering, freestanding NiMnGa/Si bimorph cantilever structures with film/substrate thickness of 200/250 nm and decreasing lateral dimensions are fabricated. Electrical resistance and mechanical beam bending tests upon direct Joule heating demonstrate martensitic phase transformation and reversible thermal bimorph effect, respectively. Corresponding characteristics are strongly affected by the large temperature gradient in the order of 50 K/µm forming along the nano bimorph cantilever upon electro-thermal actuation, which, in addition, depends on the size-dependent heat conductivity in the Si nano layer. Furthermore, the martensitic transformation temperatures show a size-dependent decrease by about 40 K for decreasing lateral dimensions down to 200 nm. The effects of heating temperature and stress distribution on the nanoactuation performance are analyzed by finite element simulations revealing thickness ratio of SMA/Si of 90/250 nm to achieve an optimum SME. Differential thermal expansion and thermo-elastic effects are discriminated by comparative measurements and simulations on Ni/Si bimorph reference actuators.

  16. Thermal equation of state of (Mg 0.9Fe 0.1) 2SiO 4 olivine

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Baosheng

    2006-08-01

    In situ synchrotron X-ray diffraction measurements have been carried out on San Carlos olivine (Mg 0.9Fe 0.1) 2SiO 4 up to 8 GPa and 1073 K. Data analysis using the high-temperature Birch-Murnaghan (HTBM) equation of state (EoS) yields the temperature derivative of the bulk modulus (∂ KT/∂ T) P = -0.019 ± 0.002 GPa K -1. The thermal pressure (TH) approach gives αKT = 4.08 ± 0.10 × 10 -3 GPa K -1, from which (∂ KT/∂ T) P = -0.019 ± 0.001 GPa K -1 is derived. Fitting the present data to the Mie-Grüneisen-Debye (MGD) formalism, the Grüneisen parameter at ambient conditions γ0 is constrained to be 1.14 ± 0.02 with fixed volume dependence q = 1. Combining the present data with previous results on iron-bearing olivine and fitting to MGD EoS, we obtain γ0 = 1.11 ± 0.01 and q = 0.54 ± 0.36. In this study the thermoelastic parameters obtained from various approaches are in good agreement with one another and previous results.

  17. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  18. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE PAGES

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-08-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  19. Rapid analytical assessment of the mechanical perturbations induced by non-isothermal injection into a subsurface formation.

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta

    2016-04-01

    Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.

  20. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  1. Dynamic Relaxation: A Technique for Detailed Thermo-Elastic Structural Analysis of Transportation Structures

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Riad, Mourad Y.; McBride, Kevyn C.

    2006-08-01

    Dynamic relaxation is a technique developed to solve static problems through an explicit integration in finite element. The main advantage of such a technique is the ability to solve a large problem in a relatively short time compared with the traditional implicit techniques, especially when using nonlinear material models. This paper describes the use of such a technique in analyzing large transportation structures as dowel jointed concrete pavements and 306-m-long, reinforced concrete bridge superstructure under the effect of temperature variations. The main feature of the pavement model is the detailed modeling of dowel bars and their interfaces with the surrounding concrete using extremely fine mesh of solid elements, while in the bridge structure it is the detailed modeling of the girder-deck interface as well as the bracing members between the girders. The 3DFE results were found to be in a good agreement with experimentally measured data obtained from an instrumented pavements sections and a highway bridge constructed in West Virginia. Thus, such a technique provides a good tool for analyzing the response of large structures to static loads in a fraction of the time required by traditional, implicit finite element methods.

  2. Comment on twinning in YNbO sub 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunekawa, S.

    1992-04-01

    The paper contains statements about an analogue of ZrO{sub 2} and the twins. The analogue is suggestive in connection with yttria-partially-stabilized zirconia, but an error is found in the description of the twins in YNbO{sub 4}. Because YNbO{sub 4} performs a pure, uncoupled ferroelastic transition (thermoelastic martensitic transformation), the composition plane is determined by the following formulas 4/mF2/m: x = pz and x = {minus}z/p, p = (b + (a{sup 2} + b{sup 2}){sup 1/2})/a a = (x{sub 33} {minus} x{sub 11})/2, b = {minus} tan ({beta} {minus} 90{degrees})/2) x{sub 11} = (a{sup I} {minus} a{sub 0})/a{sub 0}, x{sub 33}more » = (c{sup 1} {minus} a{sub 0})/a{sub 0} where a{sub 0} is the lattice parameter of a in the tetragonal phase, and a{sup I} and c{sup I} are the parameters of a and c, respectively, in the monoclinic phase represented by the I-lattice. The value of p at room temperature can be estimated by using the parameters included in this paper.« less

  3. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  4. LOLA: a 40.000 km optical link between an aircraft and a geostationary satellite

    NASA Astrophysics Data System (ADS)

    Cazaubiel, Vincent; Planche, Gilles; Chorvalli, Vincent; Le Hors, Lénaïc.; Roy, Bernard; Giraud, Emmanuel; Vaillon, Ludovic; Carre, Francois; Decourbey, Eric

    2017-11-01

    The LOLA program aims at characterising a 40.000 km optical link through the atmosphere between a high altitude aircraft and a geostationary platform. It opens a new area in the field of optical communications with moving platforms. A complete new optical terminal has been designed and manufactured for this program. The optical terminal architecture includes a specific pointing subsystem to acquire and stabilize the line of sight despite the induced vibrations from the aircraft and the moving pattern from the received laser signal. The optical configuration features a silicon carbide telescope and optical bench to ensure a high thermoelastic angular stability between receive and transmit beams. The communications subsystem includes fibered laser diodes developed in Europe and high performance avalanche photo detectors. Specific encoding patterns are used to maintain the performance of the link despite potential strong fading of the signal. A specific optical link model through the atmosphere has been developed and has been validated thanks to the optical link measurements performed between ARTEMIS and the Optical Ground Station located in the Canarian islands. This model will be used during the flight tests campaign that is to start this summer.

  5. Analysis of the effects of simulated synergistic LEO environment on solar panels

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  6. Ultrasonic Investigations on Polonides of Ba, Ca, and Pb

    NASA Astrophysics Data System (ADS)

    Singh, Devraj; Bhalla, Vyoma; Bala, Jyoti; Wadhwa, Shikha

    2017-10-01

    The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along <100>, <110>, and <111> orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10-11 s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.

  7. Comparison of Thermo-Elastic and Poro-Elastic Effects during Shear Stimulation of Desert Peak EGS Well 27-15 Using a Coupled Thermal-Hydrological-Mechanical Simulator

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Dempsey, D.; Hickman, S. H.; Davatzes, N. C.; Moos, D.; Zemach, E.

    2013-12-01

    High-temperature rock formations at moderate depths with low permeability are candidates for Enhanced Geothermal Systems (EGS) projects. Hydraulic stimulation can be employed in such systems to create flow paths with low hydraulic impedance while maintaining significant heat transfer area to avoid premature cooling of the formation and the creation of short-circuit flow paths. Here we present results from a coupled thermal-hydrological-mechanical numerical model of a successful EGS stimulation in well 27-15 at the Desert Peak Geothermal Field, Nevada. This stimulation was carried out over two different depth intervals and multiple injection pressures, beginning in September 2010. The subject of this study is the initial shear stimulation phase, which was carried out at depths of 0.9 to 1.1 km over a period of about 100 days. The reservoir temperature at these depths is ~182 to 195° C. This treatment consisted of injection of 20 to 30° C water at wellhead pressures (WHP) of 1.5, 2.2, 3.1 and 3.7 MPa followed by periods of shut-in. To avoid hydraulic fracturing, these pressure steps were intentionally selected to stay below the minimum principal stress measured in the well. The injectivity did not change at WHP steps of 1.5 and 2.2 MPa, but improved significantly during injection at 3.1 MPa, from about 0.1 to 1.5 kg s-1 MPa-1. This improvement was attributed to self-propping shear failure of pre-existing natural fractures. The model incorporates physical processes thought to be important during this low-pressure shear stimulation phase. The relatively long periods of injection of water that was significantly cooler than the ambient formation temperature required incorporating in the model both thermo-mechanical and poroelastic effects, which were coupled to fluid flow via Mohr-Coulomb failure and shear-induced increases in fracture permeability. This model resulted in a good match to the wellhead injection data recorded during the stimulation. This numerical model was also used to separate the thermo-mechanical and poroelastic effects, compare their spatial and temporal evolution and carry out sensitivity analyses. To varying degrees, model results depended on variations in permeability anisotropy, elastic and thermal rock properties, Mohr-Coulomb parameters of static and dynamic friction and cohesion, shear-dilatation parameters, injection pressure and length of the injection zone. The thermoelastic and poroelastic effects are realized over different time scales, and their magnitudes are governed by different material properties; in general, model results show greater sensitivity to variations in the coefficient of thermal expansion than in the Biot poroelastic factor. Both thermal and poroelastic contributions to stressing of fractures significantly impact the onset as well as the magnitude of shear-induced permeability gains realized during this low-pressure stimulation.

  8. Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.

    2013-12-01

    The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We will present the details of our DAC preparations and results of our in-situ structural refinements of dhcp-FeHx up to ~50 GPa. Together with previous investigations of the thermoelastic and electronic properties of FeHx [2; 6], we will discuss implications for the composition of Earth's iron-rich core. References: 1. N. Hirao et al. (2004), Geophys. Res. Lett., 31, L06616, doi:10.1029/2003GL019380. 2. W.L. Mao et al. (2004), Geophys. Res. Lett., 31, L15618, doi:10.1029/2004GL020541. 3. V.E. Antonov et al. (2002), J. Phys.: Condens. Matter, 14, 6427-6445, doi:10.1088/0953-8984/14/25/311. 4. M. Guthrie et al. (2013), ACA Transactions, 44, in press. 5. R. Boehler et al. (2013), High Press. Res., in press, doi:10.1080/08957959.2013.823197. 6. Y. Shibazaki et al. (2012), Earth Planet. Sci. Lett., 313-314, 79-85, doi:10.1016/j.epsl.2011.11.002.

  9. The SiC hardware of the Sentinel-2 multi spectral instrument

    NASA Astrophysics Data System (ADS)

    Bougoin, Michel; Lavenac, Jérôme

    2017-11-01

    The Sentinel-2 mission is a major part of the GMES (Global Monitoring for Environment and Security) program which has been set up by the European Union, on a joint initiative with the European Space Agency. A pair of identical satellites will observe the earth from a sun-synchronous orbit at 786 km altitude. Astrium is the prime contractor of the satellites and their payload. The MultiSpectral Instrument features a "all-SiC" TMA (Three Mirror Anastygmat) telescope. MSI will provide optical images in 13 spectral bands, in the visible and also the near infra-red range, with a 10 to 60 m resolution and a 290 km wide swath. The Boostec® SiC material is used mainly for its high specific stiffness (Youngs modulus / density) and its high thermal stability (thermal conductivity / coefficient of thermal expansion) which allow to reduce the distortions induced by thermo-elastic stresses. Its high mechanical properties as well as the relevant technology enable to make not only the mirrors but also the structure which holds them and the elements of the focal plane (including some detectors packaging). Due to the required large size, accuracy and shape complexity, developing and manufacturing some of these SiC parts required innovative manufacturing approach. It is reviewed in the present paper.

  10. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  11. Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload

    NASA Astrophysics Data System (ADS)

    Lee, Minwoo; Kim, Jongun; Chang, Jin-Soo; Kang, Myung-Seok

    2016-09-01

    SpaceEye-1 earth observation satellite, developed by Satrec Initiative Co. Ltd., is a 300 kg scale spacecraft with high resolution electro-optical payload (EOS-D) which performs 1 m GSD, 12 km swath in low earth orbit. Metering structure of EOS-D is manufactured with Carbon Fiber Reinforced Plastic (CFRP). Due to the moisture emission from CFRP metering structure, this spaceborne electro-optical payload undergoes shrinkage after orbit insertion. The shrinkage of metering structure causes change of the distance between primary and secondary mirror. In order to compensate the moisture shrinkage effect, two types of thermal refocusing mechanism were developed, analyzed and applied to EOS-D. Thermal analysis simulating in-orbit thermal condition and thermo-elastic displacement analysis was conducted to calculate the performance of refocusing mechanism. For each EOS-D telescope, analytical refocusing range (displacement change between primary and secondary mirror) was 2.5 um and 3.6 um. Thus, the refocusing mechanism can compensate the dimensional instability of metering structure caused by moisture emission. Furthermore, modal, static and wavefront error analysis was conducted in order to evaluate natural frequency, structural stability and optical performance. As a result, it can be concluded that the refocusing system of EOS-D payload can perform its function in orbit.

  12. Abnormal Elasticity of Single-Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Fu, Suyu; Yang, Jing; Lin, Jung-Fu

    2017-01-01

    Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg0.35Fe0.65)CO3 ] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C11 , C33 , C12 , and C13 elastic moduli associated with the compressive stress component and stiffening in C44 and C14 moduli associated with the shear stress component are observed to occur within the spin transition between ˜42.4 and ˜46.5 GPa . Negative values of C12 and C13 are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced VP by 10%, in Earth's midlower mantle.

  13. Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach

    NASA Astrophysics Data System (ADS)

    Karami, Farzad; Tadesse, Yonas

    2017-12-01

    Twisted and coiled polymers (TCP) muscles are linear actuators that respond to change in temperature. Exploiting high negative coefficient of thermal expansion (CTE) and helical geometry give them a significant ability to change length in a limited temperature range. Several applications and experimental data of these materials have been demonstrated in the last few years. To use these actuators in robotics and control system applications, a mathematical model for predicting their behavior is essential. In this work, a practical and accurate phenomenological model for estimating the displacement of TCP muscles, as a function of the load as well as input electrical current, is proposed. The problem is broken down into two parts, i.e. modeling of the electro-thermal and then the thermo-elastic behavior of the muscles. For the first part, a differential equation, with changing electrical resistance term, is derived. Next, by using a temperature-dependent modulus of elasticity and CTE as well as taking the geometry of the muscles into account, an expression for displacement is derived. Experimental data for different loads and actuation current levels are used for verifying the model and investigating its accuracy. The result shows a good agreement between the simulation and experimental results for all loads.

  14. Thermal equation of state of silicon carbide

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  15. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses

    NASA Astrophysics Data System (ADS)

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-12-01

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.

  16. Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.

    2018-01-01

    Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.

  17. From coherent to incoherent mismatched interfaces. A generalized continuum formulation of surface stresses

    DOE PAGES

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-08-19

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu 2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less

  18. Differential temperature stress measurement employing array sensor with local offset

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    1993-01-01

    The instrument has a focal plane array of infrared sensors of the integrating type such as a multiplexed device in which a charge is built up on a capacitor which is proportional to the total number of photons which that sensor is exposed to between read-out cycles. The infrared sensors of the array are manufactured as part of an overall array which is part of a micro-electronic device. The sensor achieves greater sensitivity by applying a local offset to the output of each sensor before it is converted into a digital word. The offset which is applied to each sensor will typically be the sensor's average value so that the digital signal which is periodically read from each sensor of the array corresponds to the portion of the signal which is varying in time. With proper synchronization between the cyclical loading of the test object and the frame rate of the infrared array the output of the A/D converted signal will correspond to the stress field induced temperature variations. A digital lock-in operation may be performed on the output of each sensor in the array. This results in a test instrument which can rapidly form a precise image of the thermoelastic stresses in an object.

  19. Evaluation of phase transformation in ferromagnetic shape memory Fe-Pd alloy by magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark

    2002-07-01

    The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.

  20. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  1. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  2. Mountain building on Io driven by deep faulting

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B

    2016-01-01

    Jupiter’s volcanic moon Io possesses some of the highest relief in the Solar System: massive, isolated mountain blocks that tower up to 17 km above the surrounding plains. These mountains are likely to result from pervasive compressive stresses induced by subsidence of the surface beneath the near-continual emplacement of volcanic material. The stress state that results from subsidence and warming of Io’s lithosphere has been investigated in detail1, 2, 3, 4; however, the mechanism of orogenesis itself and its effect on regional tectonism and volcanism has not been firmly established. Here we present viscoelastic–plastic finite element simulations demonstrating that Io’s mountains form along deep-seated thrust faults that initiate at the base of the lithosphere and propagate upward. We show that faulting fundamentally alters the stress state of Io’s lithosphere by relieving the large volcanism-induced subsidence stresses. Notably, in the upper portion of the lithosphere, stresses become tensile (near-zero differential stress). A number of processes are therefore altered post-faulting, including magma transport through the lithosphere, interactions with tidal stresses and potentially the localization of mountain formation by thermoelastic stresses. We conclude that Io’s mountains form by a unique orogenic mechanism, compared with tectonic processes operating elsewhere in the Solar System.

  3. Investigation of the formation mechanism and morphology of the features created in the interior of cornea by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Vukelic, Sinisa

    2015-03-01

    Laser assisted corneal surgeries often rely on the nonlinear absorption effect of ultrafast lasers to induce features in the interior of the cornea without affecting the surface. In particular, corneal flap formation in femtosecond assisted Laser- Assisted in situ Keratomileusis (LASIK) is based on the bubble creation. This study focuses on the interaction between the tissue and the femtosecond laser. Interior of cornea is treated with tightly focused femtosecond laser pulses. Due to the nature of the process, heating of the tissue within and around the focal volume is practically instantaneous. The affected region is subject to thermoelastic stress that arises with the steep temperature elevation. To predict the size of the region subject to the morphological changes due to the laser treatment, the temperature field is calculated. Cavitation bubble initiation and expansion process, which acts as precursor to the stress induced tissue trauma, is studied as well. Theoretical findings are compared against experimental results. High-speed camera is utilized to assess the laser treatment process, showing the temporal development of the cavitation bubbles. The results obtained in this study facilitate a better understanding of the effects of femtosecond laser assisted corneal surgeries and help in choosing optimal laser parameters.

  4. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hu, Haoyue; Eberhard, Peter

    2017-10-01

    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  5. Elastin: a representative ideal protein elastomer.

    PubMed Central

    Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T

    2002-01-01

    During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774

  6. Thermal equation of state of silicon carbide

    DOE PAGES

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; ...

    2016-02-11

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure–volume–temperature (P-V-T) data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as, the ambient bulk modulus K To = 237(2) GPa, temperature derivative of bulk modulus at constant pressure (∂K/∂T)P = -0.037(4) GPa K -1, volumetric thermal expansivity α(0, T)=a+bT with a = 5.77(1)×10 -6 K -1 and b = 1.36(2)×10 -8 K -2,more » and pressure derivative of thermal expansion at constant temperature (∂α/∂P) T =6.53±0.64×10 -7 K -1GPa -1. Furthermore, we found the temperature derivative of bulk modulus at constant volume, (∂K T/∂T) V, equal to -0.028(4) GPa K -1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. Lastly, the computed results generally agree well with the experimental values.« less

  7. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  8. Thermoelastic response of metal matrix composites with large-diameter fibers subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1993-01-01

    A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.

  9. The volume dependence of thermal pressure in perovskite and other minerals

    NASA Astrophysics Data System (ADS)

    Anderson, Orson L.

    1999-04-01

    This is a review paper concerning the thermal pressure, PTH, of solids and the conditions under which it is independent of volume. When PTH is independent of V, the general equation of state (EoS) reduces from P(V,T)=P 1(V,0)+P TH(V,T) to P(V,T)=P 1(V,0)+P THV 0,T , and thus is separated into two independent mathematical functions. P1( V,0) is the isothermal EoS. Four tests of thermoelastic data are shown to determine the T and V range in which PTH is independent of volume. Eighteen solids are examined. Most of these are minerals, but two metals, three alkali metals and three noble gases are also included. The focus is on three lower mantle minerals, MgSiO 3, MgO, and CaSiO 3. For these three minerals (∂ PTH/∂ V) T vanishes at conditions of the lower mantle, but PTH is a function of V at ambient conditions. However, for most solids, (∂ PTH/∂ V) T becomes zero at high temperature. The behavior of (∂ PTH/∂ V) T is apparently not correlated with such properties as crystal class, chemical composition, bonding type, and anharmonicity. The vanishing of (∂ PTH/∂ V) T is strictly a high temperature property of solids.

  10. Effect of mesh distortion on the accuracy of transverse shear stresses and their sensitivity coefficients in multilayered composites

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.

  11. Optoacoustic Monitoring of Physiologic Variables

    PubMed Central

    Esenaliev, Rinat O.

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964

  12. Optoacoustic Monitoring of Physiologic Variables.

    PubMed

    Esenaliev, Rinat O

    2017-01-01

    Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.

  13. Design, implementation, and application of a microresonator platform for measuring energy dissipation by internal friction in nanowires.

    PubMed

    Das, Kaushik; Sosale, Guruprasad; Vengallatore, Srikar

    2012-12-21

    Accurate measurements of internal friction in nanowires are required for the rational design of high-Q resonators used in nanoelectromechanical systems and for fundamental studies of nanomechanical behavior. However, measuring internal friction is challenging because of the difficulties associated with identifying the contributions of material dissipation to structural damping. Here, we present an approach for overcoming these difficulties by using a composite microresonator platform that is calibrated against the ultimate limits of thermoelastic damping. The platform consists of an array of nanowires patterned at the root of a low-loss single-crystal silicon microcantilever. The structure is processed using a lift-off technique, implemented using electron-beam lithography, to achieve excellent control over the size, alignment, dispersion and location of the nanowire array. As the first application of this platform, we measured internal friction at room temperature in aluminum nanowires that ranged from 50 to 100 nm in thickness and 100 to 400 nm in width. Internal friction is ~0.03 at frequencies of 6.5-21 kHz. Transmission electron microscopy of the nanocrystalline grain structure, and comparison with previously measured values of internal friction in continuous thin films of aluminum, suggest that grain-boundary sliding is a major source of internal friction in these nanowires.

  14. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. © 2012 IOP Publishing Ltd

  15. Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Khare, Preeti; Gaur, N. K.

    2017-05-01

    The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.

  16. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  17. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    NASA Astrophysics Data System (ADS)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  18. Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.

    2018-03-01

    Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.

  19. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  20. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.

  1. Space charge deposition in tubular channel ferroelectrets: A combined fluorescence imaging/LIMM study with finite element analysis

    NASA Astrophysics Data System (ADS)

    Nepal, Neerajan; Altafim, Ruy Alberto Pisani; Mellinger, Axel

    2017-06-01

    Ferroelectrets, i.e., soft materials with electric charges deposited on the surfaces of internal voids, are well known for their potential in transducer applications and energy harvesting. Due to their regular geometry and optical transparency, tubular channel ferroelectrets (manufactured by laminating polymer films around a polytetrafluoroethylene template which is later removed) are well-suited for studying the process of charge deposition. Understanding how space charges are formed on the internal surfaces will lead to improvements in the charge density and in the piezoelectric performance of these films. In this work, the inception voltage for dielectric barrier discharges (and hence the onset of charge deposition) was measured using two independent techniques, fluorescence imaging and the laser intensity modulation method (LIMM). The results (around 1.4-1.7 kV, depending on the void height) are in agreement within ±50 V. The internal electric field distribution was calculated using finite element analysis (FEA). Combined with Paschen's law, these calculations explained the experimentally observed discharge patterns, starting from the channel edges in thick samples, but glowing more uniformly in films with void heights of 50 μm or less. A time-dependent FEA simulation of the LIMM measurement reproduced the observed thermoelastic resonances and their effect on the LIMM signal, and explained its seemingly erratic behavior. This approach has great potential for analyzing LIMM and thermal pulse data obtained in inhomogeneous materials.

  2. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  3. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramicmore » exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.« less

  4. Thermal equation of state of TiC: A synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Xiaohui; National Lab for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080; Department of Physics, University of Science and Technology of China, Hefei 230026

    2010-06-15

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{sub 0}{sup '}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0}=268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P}=-0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1})=a+bT with a=1.62(12)x10{sup -5} K{supmore » -1} and b=1.07(17)x10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{alpha}/{partial_derivative}P){sub T}=(-3.62{+-}1.14)x10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V}=-0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  5. Thermal equation-of-state of TiC: a synchrotron x-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaohui; Lin, Zhijun; Zhang, Jianzhong

    2009-01-01

    The pressure (P)-volume (V)-temperature (T) measurements were carried out for titanium carbide at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus, K'{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub p} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity a{sub T}(K{sup -1}) = a + bT with a =more » 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8} K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}a/{partial_derivative}P){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub v} = -0.015 (8) GPa K{sup -1}. These results provide fundamental thermo physical properties for TiC and are important to theoretical and computational modeling of transition metal carbides.« less

  6. Computing Gravitational Fields of Finite-Sized Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2005-01-01

    A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, A.; Scammon, R.J.; Godwin, R.P.

    Biological tissue is more susceptible to damage from tensile stress than to compressive stress. Tensile stress may arise through the thermoelastic response of laser-irradiated media. Optical breakdown, however, has to date been exclusively associated with compressive stress. The authors show that this is appropriate for water, but not for tissues for which the elastic-plastic material response needs to be considered. The acoustic transients following optical breakdown in water and cornea were measured with a fast hydrophone and the cavitation bubble dynamics, which is closely linked to the stress wave generation, was documented by flash photography. Breakdown in water produced amore » monopolar acoustic signal and a bubble oscillation in which the expansion and collapse phases were symmetric. Breakdown in cornea produced a bipolar acoustic signal coupled with a pronounced shortening of the bubble expansion phase and a considerable prolongation of its collapse phase. The tensile stress wave is related to the abrupt end of the bubble expansion. Numerical simulations using the MESA-2D code were performed assuming elastic-plastic material behavior in a wide range of values for the shear modulus and yield strength. The calculations revealed that consideration of the elastic-plastic material response is essential to reproduce the experimentally observed bipolar stress waves. The tensile stress evolves during the outward propagation of the acoustic transient and reaches an amplitude of 30--40% of the compressive pulse.« less

  8. Integrated photoacoustic/ultrasound/HFU system based on a clinical ultrasound imaging platform

    NASA Astrophysics Data System (ADS)

    Kim, Jeesu; Choi, Wonseok; Park, Eun-Yeong; Kim, Chulhong

    2018-02-01

    Non-invasive treatment of tumor is beneficial for the favorable prognosis of the patients. High Intensity Focused Ultrasound (HIFU) is an emerging non-invasive treatment tool that ablates tumor lesions by increasing local temperature without damaging surrounding tissues. In HIFU therapy, accurate focusing of the HIFU energy into the target lesion and real-time assessment of thermal distribution are critical for successful and safe treatment. Photoacoustic (PA) imaging is a novel biomedical imaging technique that can visualize functional information of biological tissues based on optical absorption and thermoelastic expansion. One unique feature of PA imaging is that the amplitude of the PA signal reflects the local temperature. Here, we demonstrate a real-time temperature monitoring system that can evaluate thermal distribution during HIFU therapy. We have integrated a HIFU treatment system, a clinical ultrasound (US) machine, and a tunable laser system and have acquired real-time PA/US images of in vitro phantoms and in vivo animals during HIFU therapy without interference from the therapeutic US waves. We have also evaluated the temperature monitoring capability of the system by comparing the amplitude of PA signals with the measured temperature in melanoma tumor bearing mice. Although much more updates are required for clinical applications, the results show the promising potential of the system to ensure accurate and safe HIFU therapy by monitoring the thermal distribution of the treatment area.

  9. Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices

    NASA Astrophysics Data System (ADS)

    Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg

    2015-05-01

    In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.

  10. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    NASA Astrophysics Data System (ADS)

    Košnik, N.; Guštin, A. Z.; Mavrič, B.; Šarler, B.

    2016-03-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.

  11. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2017-08-01

    Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Monte Carlo Models to Constrain Temperature Variation in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Walker, A.; Davies, C. J.

    2017-12-01

    The three dimensional temperature variation in the lowermost mantle is diagnostic of the pattern of mantle convection and controls the extraction of heat from the outer core. Direct measurement of mantle temperature is impossible and the temperature in the lowermost mantle is poorly constrained. However, since temperature variations indirectly impact many geophysical observables, it is possible to isolate the thermal signal if mantle composition and the physical properties of mantle minerals are known. Here we describe a scheme that allows seismic, geodynamic, and thermal properties of the core and mantle to be calculated given an assumed temperature (T) and mineralogical (X) distribution in the mantle while making use of a self consistent parameterisation of the thermoelastic properties of mantle minerals. For a given T and X, this scheme allows us to determine the misfit between our model and observations for the long-wavelength surface geoid, core-mantle boundary topography, inner-core radius, total surface heat-flux and p- and s-wave tomography. The comparison is quick, taking much less than a second, and can accommodate uncertainty in the mineralogical parameterisation. This makes the scheme well-suited to use in a Monte Carlo approach to the determination of the long-wavelength temperature and composition of the lowermost mantle. We present some initial results from our model, which include the robust generation of a thermal boundary layer in the one-dimensional thermal structure.

  13. Full-field speckle interferometry for non-contact photoacoustic tomography.

    PubMed

    Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf

    2015-05-21

    A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.

  14. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    NASA Astrophysics Data System (ADS)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-06-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  15. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    DOE PAGES

    Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...

    2017-01-01

    Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less

  16. Thermoelastic analysis of matrix crack growth in particulate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhar, N.; Rickman, J.M.; Srolovitz, D.J.

    1995-04-01

    The authors examine the conditions under which differences in thermal expansion between a particle and the matrix lead to crack growth within the matrix. Using linear elasticity fracture mechanics, they obtain closed-form, analytical results for the case of a penny shaped crack present in the matrix interacting with a spherical inclusion which is misfitting with respect to the matrix. A simple and direct relationship is established between the strain energy release rate, the crack size, the crack orientation with respect to the inclusion, the crack/inclusion separation, the degree of thermal expansion mismatch and the elastic properties of the medium. Themore » authors also analyze the size to which these cracks can grow and find that for a given misfit strain and material properties, crack growth is inhibited beyond a certain critical crack size. They find that beyond this critical size, the elastic strain energy released upon crack growth is no longer sufficient to compensate for the energy expended in extending the crack, since the crack is growing into the rapidly decreasing stress field. The modification of the above conditions for crack growth due to the superposition of an external stress field has also been analyzed. The preferred orientation of these cracks as a function of misfit strain is predicted. The implication of these results for thermal cycling are analyzed.« less

  17. Highly light-weighted ZERODUR mirrors

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stéphanie; Lasic, Thierry; Viale, Roger; Mathieu, Jean-Claude; Ruch, Eric; Tarreau, Michel; Etcheto, Pierre

    2017-11-01

    Due to more and more stringent requirements for observation missions, diameter of primary mirrors for space telescopes is increasing. Difficulty is then to have a design stiff enough to be able to withstand launch loads and keep a reasonable mass while providing high opto-mechanical performance. Among the possible solutions, Thales Alenia Space France has investigated optimization of ZERODUR mirrors. Indeed this material, although fragile, is very well mastered and its characteristics well known. Moreover, its thermo-elastic properties (almost null CTE) is unequalled yet, in particular at ambient temperature. Finally, this material can be polished down to very low roughness without any coating. Light-weighting can be achieved by two different means : either optimizing manufacturing parameters or optimizing design (or both). Manufacturing parameters such as walls and optical face thickness have been improved and tested on representative breadboards defined on the basis of SAGEM-REOSC and Thales Alenia Space France expertise and realized by SAGEM-REOSC. In the frame of CNES Research and Technology activities, specific mass has been decreased down to 36 kg/m2. Moreover SNAP study dealt with a 2 m diameter primary mirror. Design has been optimized by Thales Alenia Space France while using classical manufacturing parameters - thus ensuring feasibility and costs. Mass was decreased down to 60 kg/m2 for a gravity effect of 52 nm. It is thus demonstrated that high opto-mechanical performance can be guaranteed with large highly lightweighted ZERODUR mirrors.

  18. High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    2002-01-01

    An extension of a recently-developed linear thermoelastic theory for multiphase periodic materials is presented which admits inelastic behavior of the constituent phases. The extended theory is capable of accurately estimating both the effective inelastic response of a periodic multiphase composite and the local stress and strain fields in the individual phases. The model is presently limited to materials characterized by constituent phases that are continuous in one direction, but arbitrarily distributed within the repeating unit cell which characterizes the material's periodic microstructure. The model's analytical framework is based on the homogenization technique for periodic media, but the method of solution for the local displacement and stress fields borrows concepts previously employed by the authors in constructing the higher-order theory for functionally graded materials, in contrast with the standard finite-element solution method typically used in conjunction with the homogenization technique. The present approach produces a closed-form macroscopic constitutive equation for a periodic multiphase material valid for both uniaxial and multiaxial loading. The model's predictive accuracy in generating both the effective inelastic stress-strain response and the local stress said inelastic strain fields is demonstrated by comparison with the results of an analytical inelastic solution for the axisymmetric and axial shear response of a unidirectional composite based on the concentric cylinder model, and with finite-element results for transverse loading.

  19. No reliable evidence to guide initial arch wire choice for fixed appliance therapy.

    PubMed

    Flores-Mir, Carlos

    2013-12-01

    The Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline and Embase databases were searched. Conference proceedings and abstracts from the British Orthodontic Conference European Orthodontic Conference and the International Association for Dental Research were also searched together with the reference lists of identified studies. Study authors were contacted for additional information. Randomised controlled trials of initial arch wire involving participants with upper and/or lower full arch fixed orthodontic appliances were included. Study selection, data extraction and risk of bias assessment were carried out independently by at least two reviewers. Nine RCTs with 571 participants were included in this review. All trials were at high risk of bias. All trials had at least one potentially confounding factor (such as bracket type, slot size, ligation method, extraction of teeth) which is likely to have influenced the outcome and was not controlled in the trial. None of the trials reported the important adverse outcome of root resorption. The comparisons were made between:Multistrand stainless steel initial arch wires compared to superelastic nickel titanium (NiTi) initial arch wires. There were four trials in this group, with different comparisons and outcomes reported at different times. No meta-analysis was possible. There is insufficient evidence from these trials to determine whether or not there is a difference in either rate of alignment or pain between stainless steel and NiTi initial arch wires.Conventional (stabilised) NiTi initial arch wires compared to superelastic NiTi initial arch wires. There were two trials in this group, one reporting the outcome of alignment over six months and the other reporting pain over one week. There is insufficient evidence from these trials to determine whether or not there is any difference between conventional (stabilised) and superelastic NiTi initial arch wires with regard to either alignment or pain.Single-strand superelastic NiTi initial arch wires compared to other NiTi (coaxial, copper NiTi (CuNiTi) or thermoelastic) initial arch wires. The three trials in this comparison each compared a different product against single-strand superelastic NiTi. There is very weak unreliable evidence, based on one very small study (n = 24) at high risk of bias, that coaxial superelastic NiTi may produce greater tooth movement over 12 weeks, but no information on associated pain or root resorption. This result should be interpreted with caution until further research evidence is available. There is insufficient evidence to determine whether or not there is a difference between either thermoelastic or CuNiTi and superelastic NiTi initial arch wires. There is no reliable evidence from the trials included in this review that any specific initial arch wire material is better or worse than another with regard to speed of alignment or pain. There is no evidence at all about the effect of initial arch wire materials on the important adverse effect of root resorption. Further well-designed and conducted, adequately-powered RCTs are required to determine whether the performance of initial arch wire materials as demonstrated in the laboratory, makes a clinically important difference to the alignment of teeth in the initial stage of orthodontic treatment in patients.

  20. Mechanical Characterization of Thermomechanical Matrix Residual Stresses Incurred During MMC Processing

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1998-01-01

    In recent years, much effort has been spent examining the residual stress-strain states of advanced composites. Such examinations are motivated by a number of significant concerns that affect composite development, processing, and analysis. The room-temperature residual stress states incurred in many advanced composite systems are often quite large and can introduce damage even prior to the first external mechanical loading of the material. These stresses, which are induced during the cooldown following high-temperature consolidation, result from the coefficient of thermal expansion mismatch between the fiber and matrix. Experimental techniques commonly used to evaluate composite internal residual stress states are non-mechanical in nature and generally include forms of x-ray and neutron diffraction. Such approaches are usually complex, involving a number of assumptions and limitations associated with a wide range of issues, including the depth of penetration, the volume of material being assessed, and erroneous effects associated with oriented grains. Furthermore, and more important to the present research, these techniques can assess only "single time" stress in the composite. That is, little, if any, information is obtained that addresses the time-dependent point at which internal stresses begin to accumulate, the manner in which the accumulation occurs, and the presiding relationships between thermoelastic, thermoplastic, and thermoviscous behaviors. To address these critical issues, researchers at the NASA Lewis Research Center developed and implemented an innovative mechanical test technique to examine in real time, the time-dependent thermomechanical stress behavior of a matrix alloy as it went through a consolidation cycle.

  1. Optical detectors based on thermoelastic effect in crystalline quartz

    NASA Astrophysics Data System (ADS)

    Chelibanov, V. P.; Ishanin, G. G.

    2015-06-01

    Optical detectors developed on base of thermo elastic effect In quartz crystalline (PTEK) attributed to the thermal detectors group. Such detectors occurred very effective for the registration of pulsed light energy or power of harmonically modulated laser radiation flux in a wide spectral (from UV to far IR) and dynamic ranges (from 10-6 to 300 W / cm2 with cooling) with a time constant up to10-6 seconds. When exposed to electromagnetic radiation occurs at the receiver thermal field which causes mechanical stress in the transient crystalline quartz, which in turn leads to a change in the polarization of crystalline quartz and, as a consequence, to an electric potential difference at the electrodes (the front surface with a conductive coating and damper). The capacitive characteristic of the detector, based on a thermo elastic effect in crystalline quartz, eliminates the possibility of working with constant flow of radiation, which also affects at the frequency response of the detector, since the potential difference appearance in the piezoelectric plate depends on the direction of the forces relative to the axes X, Y, Z of the crystal. Therefore, a certain choice of orientation of the receiving element is necessary in accordance with the physical properties of crystalline quartz. In this paper, a calculation of the sensitivity and frequency characteristics of optical detectors based on the thermo elastic effect in crystalline quartz at the harmonic effects of electromagnetic radiation flux are reported.

  2. Thermal Equation of State of TiC: A Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, X.; Lin, Z; Zhang, J

    2010-01-01

    The pressure-volume-temperature measurements were carried out for titanium carbide (TiC) at pressures and temperatures up to 8.1 GPa and 1273 K using energy-dispersive synchrotron x-ray diffraction. Thermoelastic parameters were derived for TiC based on a modified high-temperature Birch-Murnaghan equation of state and a thermal pressure approach. With the pressure derivative of the bulk modulus, K{prime}{sub 0}, fixed at 4.0, we obtain: the ambient bulk modulus K{sub 0} = 268(6) GPa, which is comparable to previously reported value; temperature derivative of bulk modulus at constant pressure ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -0.026(9) GPa K{sup -1}, volumetric thermal expansivity {alpha}{sub T}(K{sup -1}) =more » a+b T with a = 1.62(12) x 10{sup -5} K{sup -1} and b = 1.07(17) x 10{sup -8}K{sup -2}, pressure derivative of thermal expansion ({partial_derivative}{sub {alpha}}/{partial_derivative}{sub P}){sub T} = (-3.62 {+-} 1.14) x 10{sup -7} GPa{sup -1} K{sup -1}, and temperature derivative of bulk modulus at constant volume ({partial_derivative}K{sub T}/{partial_derivative}T){sub V} = -0.015(8) GPa K{sup -1}. These results provide fundamental thermophysical properties for TiC for the first time and are important to theoretical and computational modeling of transition metal carbides.« less

  3. Optoacoustic online temperature determination during retinal laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Stalljohann, Jens; Weber, Benjamin; Kandulla, Jochen; Herrmann, Katharina; Birngruber, Reginald; Brinkmann, Ralf

    2007-07-01

    Retinal photocoagulation is an established treatment of different retinal diseases. The treatment relies on a short, local heating of the tissue which induces a denaturation. The resulting scar formation may for example prevent the further detachment of the retina. The extent of the coagulation is besides other parameters mostly dependent on the induced temperature increase. However, until today a temperature based dosimetry for photocoagulation does not exist. The dosage is rather based on the experience of the treating physicians to achieve visible whitish lesions on the retina. In this work a technique is presented, which allows an online temperature monitoring during photocoagulation. If an absorbing material is irradiated with short laser pulses, a thermoelastic expansion of the absorber induces an acoustic wave. Its amplitude is dependent on the temperature of the absorber. For analyzing the applicability of the optoacoustic temperature determination for dosimetry, measurements were performed on enucleated porcine eye globes. The pressure transients are detected by an ultrasonic transducer, which is embedded in an ophthalmologic contact lens. As long as no strong lesions occur, the determined temperatures are almost proportional to the power of the treatment laser. Using a spot diameter of 200 μm and different laser powers, the temperature rise at the end of the 400 ms irradiation was found to be approximately 0.16 °C/mW. The onset of the denaturation was observed around 50°C. The far aim of this project is an automatic regulation of the treatment laser onto a desired temperature course.

  4. Are Observed Variations of Topography of The '660' Influenced By Lateral Variations of An Underlying Interface ?

    NASA Astrophysics Data System (ADS)

    Castillo, J.; Mocquet, A.; Vacher, P.; Sotin, C.

    Most global studies of lateral variations of topography of the '660' have been per- formed so far with long-period data. This presentation assess the seismic signature of this region when studied with broadband data in the frequency range 0.1-1 Hz. When sampled with P-to-s converted phases, this region shows a complex pattern, associat- ing 3 interfaces at the average depths of 600, 650 and 715 km. First results indicate that lateral topography variations of the '650' fit previous observations by long-period data (Gu et al., 1998), except in some subduction zones, especially in East Asia, where vari- ation trends appear to behave in an opposite way. In such regions, better correlations are found with the behaviour of the '715'. We propose that the seismic signature of long-period waves generated at the bottom of the transition zone may be influenced by both interfaces. Because of the lateral variations of their thickness and velocity jump as a function of thermal context, the signature of one interface could prevail against the other. The transformation of garnet into perovskite, and dissociation of ringwood- ite are tested as possible candidates for the '715' and '650', respectively (Vacher et al., 1998), using available thermoelastic data. Synthetic modelling of converted phases on the velocity profiles computed in different thermal contexts can explain our broadband observations. References : Gu et al., EPSL, 157, 57-67, 1998 ; Vacher et al., PEPI, 106, 275-298, 1998.

  5. NASA Tech Briefs, February 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics include: Simulation Testing of Embedded Flight Software; Improved Indentation Test for Measuring Nonlinear Elasticity; Ultraviolet-Absorption Spectroscopic Biofilm Monitor; Electronic Tongue for Quantitation of Contaminants in Water; Radar for Measuring Soil Moisture Under Vegetation; Modular Wireless Data-Acquisition and Control System; Microwave System for Detecting Ice on Aircraft; Routing Algorithm Exploits Spatial Relations; Two-Finger EKG Method of Detecting Evasive Responses; Updated System-Availability and Resource-Allocation Program; Routines for Computing Pressure Drops in Venturis; Software for Fault-Tolerant Matrix Multiplication; Reproducible Growth of High-Quality Cubic-SiC Layers; Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites; Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers; Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes; Simulation of Hazards and Poses for a Rocker-Bogie Rover; Autonomous Formation Flight; Expandable Purge Chambers Would Protect Cryogenic Fittings; Wavy-Planform Helicopter Blades Make Less Noise; Miniature Robotic Spacecraft for Inspecting Other Spacecraft; Miniature Ring-Shaped Peristaltic Pump; Compact Plasma Accelerator; Improved Electrohydraulic Linear Actuators; A Software Architecture for Semiautonomous Robot Control; Fabrication of Channels for Nanobiotechnological Devices; Improved Thin, Flexible Heat Pipes; Miniature Radioisotope Thermoelectric Power Cubes; Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates; Electrochemical, H2O2-Boosted Catalytic Oxidation System; Electrokinetic In Situ Treatment of Metal-Contaminated Soil; Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields; Magnetocaloric Pumping of Liquid Oxygen; Tailoring Ion-Thruster Grid Apertures for Greater Efficiency; and Lidar for Guidance of a Spacecraft or Exploratory Robot.

  6. Thermo-elastic nondestructive evaluation of fatigue damage in PMR-15 resin

    NASA Astrophysics Data System (ADS)

    Welter, J. T.; Sathish, S.; Tandon, G. P.; Schehl, N.; Cherry, M.; Nalladega, V.; Lindgren, E. A.; Hall, R.

    2012-05-01

    Thermoset polyimide resins are used as the polymer matrix in high temperature composites for aerospace applications such as engine shrouds. At these locations the components have to withstand high temperatures and significant vibration. A number of studies have investigated the effects of thermal exposure on mechanical properties of polyimide resins, and the effects of fatigue on thermoplastics have been discussed at length. However, the effects of fatigue on thermosets, in particular polyimides, have largely been overlooked. In this paper we present studies of nondestructive evaluation of fatigue damage in a thermoset polyimide resin, PMR-15, performed by measuring the changes in the evolution of heat in the samples during cyclic loading. The temperature changes are measured using a high sensitivity IR camera as a function of number of fatigue cycles. Interrupted fatigue tests were performed on four samples. The temperature rise during an increment of fatigue cycling shows two linear regions each with a different slope (region 1 and region 2). Region 1 remains constant for every increment of fatigue, while region 2 increases. The onset of region 2 occurs at the same increase in temperature due to hysteretic heating for all samples. Experimental observations are explained using a phenomenological two phase model based on crosslinking density variations in observed in other thermoset resins at microscopic scales. The results of these experiments are discussed in reference to utilizing this technique for detection and evaluation of fatigue in PMR-15 resin and composites.

  7. Incompressible inelasticity as an essential ingredient for the validity of the kinematic decomposition F =FeFi

    NASA Astrophysics Data System (ADS)

    Reina, Celia; Conti, Sergio

    2017-10-01

    The multiplicative decomposition of the total deformation F =FeFi between an elastic (Fe) and an inelastic component (Fi) is standard in the modeling of many irreversible processes such as plasticity, growth, thermoelasticity, viscoelasticty or phase transformations. The heuristic argument for such kinematic assumption is based on the chain rule for the compatible scenario (CurlFi = 0) where the individual deformation tensors are gradients of deformation mappings, i.e. F = D φ = D (φe ∘φi) = (Dφe) ∘φi (Dφi) =FeFi . Yet, the conditions for its validity in the general incompatible case (CurlFi ≠ 0) has so far remained uncertain. We show in this paper that detFi = 1 and CurlFi bounded are necessary and sufficient conditions for the validity of F =FeFi for a wide range of inelastic processes. In particular, in the context of crystal plasticity, we demonstrate via rigorous homogenization from discrete dislocations to the continuum level in two dimensions, that the volume preserving property of the mechanistics of dislocation glide, combined with a finite dislocation density, is sufficient to deliver F =FeFp at the continuum scale. We then generalize this result to general two-dimensional inelastic processes that may be described at a lower dimensional scale via a multiplicative decomposition while exhibiting a finite density of incompatibilities. The necessity of the conditions detFi = 1 and CurlFi bounded for such systems is demonstrated via suitable counterexamples.

  8. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  9. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  10. Multiple single-element transducer photoacoustic computed tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Hui, Zhe Zhi; Pramanik, Manojit

    2018-02-01

    Light absorption by the chromophores (hemoglobin, melanin, water etc.) present in any biological tissue results in local temperature rise. This rise in temperature results in generation of pressure waves due to the thermoelastic expansion of the tissue. In a circular scanning photoacoustic computed tomography (PACT) system, these pressure waves can be detected using a single-element ultrasound transducer (SUST) (while rotating in full 360° around the sample) or using a circular array transducer. SUST takes several minutes to acquire the PA data around the sample whereas the circular array transducer takes only a fraction of seconds. Hence, for real time imaging circular array transducers are preferred. However, these circular array transducers are custom made, expensive and not easily available in the market whereas SUSTs are cheap and readily available in the market. Using SUST for PACT systems is still cost effective. In order to reduce the scanning time to few seconds instead of using single SUST (rotating 360° ), multiple SUSTs can be used at the same time to acquire the PA data. This will reduce the scanning time by two-fold in case of two SUSTs (rotating 180° ) or by four-fold and eight-fold in case of four SUSTs (rotating 90° ) and eight SUSTs (rotating 45° ) respectively. Here we show that with multiple SUSTs, similar PA images (numerical and experimental phantom data) can be obtained as that of PA images obtained using single SUST.

  11. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  12. Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils

    DOE PAGES

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; ...

    2017-01-01

    Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less

  13. Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.

    Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less

  14. The HSOB GAIA: a cryogenic high stability cesic optical bench for missions requiring sub-nanometric optical stability

    NASA Astrophysics Data System (ADS)

    Courteau, Pascal; Poupinet, Anne; Kroedel, Mathias; Sarri, Giuseppe

    2017-11-01

    Global astrometry, very demanding in term of stability, requires extremely stable material for optical bench. CeSiC developed by ECM and Alcatel Alenia Space for mirrors and high stability structures, offers the best compromise in term of structural strength, stability and very high lightweight capability, with characteristics leading to be insensitive to thermo-elastic at cryogenic T°. The HSOB GAIA study realised by Alcatel Alenia Space under ESA contract aimed to design, develop and test a full scale representative High Stability Optical Bench in CeSiC. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, Michelson interferometer composed of integrated optics with a nm resolution. The HSOB bench has been submitted to an homogeneous T° step under vacuum to characterise the homothetic behaviour of its two arms. The quite negligible inter-arms differential measured with a nm range reproducibility, demonstrates that a complete 3D structure in CeSiC has the same CTE homogeneity as characterisation samples, fully in line with the GAIA need (1pm at 120K). This participates to the demonstration that CeSiC properties at cryogenic T° is fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM and Alcatel Alenia Space ability to define and manufacture monolithic lightweight highly stable optical structures, based on inner cells triangular design made only possible by the unique CeSiC manufacturing process.

  15. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  16. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  17. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  18. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators

    NASA Astrophysics Data System (ADS)

    Kim, Hoe Joon; Jung, Soon In; Segovia-Fernandez, Jeronimo; Piazza, Gianluca

    2018-05-01

    This paper presents a detailed analysis on the impact of electrode materials and dimensions on flicker frequency (1/f) noise in piezoelectric aluminum nitride (AlN) contour mode resonators (CMRs). Flicker frequency noise is a fundamental noise mechanism present in any vibrating mechanical structure, whose sources are not generally well understood. 1 GHz AlN CMRs with three different top electrode materials (Al, Au, and Pt) along with various electrode lengths and widths are fabricated to control the overall damping acting on the device. Specifically, the use of different electrode materials allows control of thermoelastic damping (TED), which is the dominant damping mechanism for high frequency AlN CMRs and largely depends on the thermal properties (i.e. thermal diffusivities and expansion coefficients) of the metal electrode rather than the piezoelectric film. We have measured Q and 1/f noise of 68 resonators and the results show that 1/f noise decreases with increasing Q, with a power law dependence that is about 1/Q4. Interestingly, the noise level also depends on the type of electrode materials. Devices with Pt top electrode demonstrate the best noise performance. Our results help unveiling some of the sources of 1/f noise in these resonators, and indicate that a careful selection of the electrode material and dimensions could reduce 1/f noise not only in AlN-CMRs, but also in various classes of resonators, and thus enable ultra-low noise mechanical resonators for sensing and radio frequency applications.

  19. Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-05-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  20. Microcracking of cross-ply composites under static and fatigue loads. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S.

    1994-12-31

    Recently, a variational mechanics analysis approach has been used to determine the thermoelastic stress state in cracked, cross-ply laminates. The analysis included a calculation of the energy release rate due to the formation of a microcrack in the 90 deg plies. A wide variety of composite material systems and cross-ply layups of generic type (0{sub m}/90{sub n}) sub s were tested during static loading. The variational mechanics energy release rate analysis can be used to predict all features of the experimental results and to draw some new conclusions about the progression of damage in cross-ply laminates. The recommended experiments aremore » to measure the density of microcracks as a function of applied stress. Such results can be fit with the energy release rate expression and used to measure the microcracking or intralaminar fracture toughness. Experiments that measure only the stress to initiate microcracking are specifically not recommended because they do not give an accurate measure of the microcracking fracture toughness. Static fatigue, thermal cycling, and combined thermal and mechanical fatigue experiments were run on several material systems and many cross-ply layups. A modified Paris-law was used and the data from all layups of a single material system were found to fall on a single master Paris-law plot. The authors claim that the master Paris-law plot gives a good characterization of a given material system`s resistance to microcrack formation during fatigue loading.« less

  1. Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle

    DOE PAGES

    Yang, Jing; Tong, Xinyue; Lin, Jung-Fu; ...

    2015-12-01

    Knowing the elasticity of ferropericlase across the spin transition can help explain seismic and mineralogical models of the lower-mantle including the origin of seismic heterogeneities in the middle to lowermost parts of the lower mantle1–4. However, the effects of spin transition on full elastic constants of ferropericlase remain experimentally controversial due to technical challenges in directly measuring sound velocities under lower-mantle conditions1–5. Here we have reliably measured both V P and V S of a single-crystal ferropericlase ((Mg 0.92,Fe 0.08)O) using complementary Brillouin Light Scattering and Impulsive Stimulated Light Scattering coupled with a diamond anvil cell up to 96 GPa.more » The derived elastic constants show drastically softened C 11 and C 12 within the spin transition at 40–60 GPa while C 44 is not affected. The spin transition is associated with a significant reduction of the aggregate V P/V S via the aggregate V P softening because V S softening does not visibly occur within the transition. Based on thermoelastic modelling along an expected geotherm, the spin crossover in ferropericlase can contribute to 2% reduction in V P/V S in a pyrolite mineralogical model in mid lower-mantle. Our results indicate that the middle to lowermost parts of the lower-mantle would exhibit enhanced seismic heterogeneities due to the occurrence of the mixed-spin and low-spin ferropericlase.« less

  2. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  3. Efficient rolling texture predictions and texture-sensitive thermomechanical properties of α-uranium foils

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.

    2017-11-01

    Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.

  4. Effective Medium Theories for Multicomponent Poroelastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J G

    2005-02-08

    In Biot's theory of poroelasticity, elastic materials contain connected voids or pores and these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical effects of stress or strain applied externally to the solid matrix. Eshelby's formula for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at a distant boundary is a very well-known and important result in elasticity. Having a rigorous generalization of Eshelby's results valid for poroelasticity means that the hard part of Eshelby's work (in computing the elliptic integrals needed to evaluatemore » the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks) can be carried over from elasticity to poroelasticity--and also thermoelasticity--with only relatively minor modifications. Effective medium theories for poroelastic composites such as rocks can then be formulated easily by analogy to well-established methods used for elastic composites. An identity analogous to Eshelby's classic result has been derived [Physical Review Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock mechanics analysis. Descriptions of the application of this result as the starting point for new methods of estimation are presented, including generalizations of the coherent potential approximation (CPA), differential effective medium (DEM) theory, and two explicit schemes. Results are presented for estimating drained shear and bulk modulus, the Biot-Willis parameter, and Skempton's coefficient. Three of the methods considered appear to be quite reliable estimators, while one of the explicit schemes is found to have some undesirable characteristics.« less

  5. TEXCAD: Textile Composite Analysis for Design. Version 1.0: User's manual

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    The Textile Composite Analysis for Design (TEXCAD) code provides the materials/design engineer with a user-friendly desktop computer (IBM PC compatible or Apple Macintosh) tool for the analysis of a wide variety of fabric reinforced woven and braided composites. It can be used to calculate overall thermal and mechanical properties along with engineering estimates of damage progression and strength. TEXCAD also calculates laminate properties for stacked, oriented fabric constructions. It discretely models the yarn centerline paths within the textile repeating unit cell (RUC) by assuming sinusoidal undulations at yarn cross-over points and uses a yarn discretization scheme (which subdivides each yarn not smaller, piecewise straight yarn slices) together with a 3-D stress averaging procedure to compute overall stiffness properties. In the calculations for strength, it uses a curved beam-on-elastic foundation model for yarn undulating regions together with an incremental approach in which stiffness properties for the failed yarn slices are reduced based on the predicted yarn slice failure mode. Nonlinear shear effects and nonlinear geometric effects can be simulated. Input to TEXCAD consists of: (1) materials parameters like impregnated yarn and resin properties such moduli, Poisson's ratios, coefficients of thermal expansion, nonlinear parameters, axial failure strains and in-plane failure stresses; and (2) fabric parameters like yarn sizes, braid angle, yarn packing density, filament diameter and overall fiber volume fraction. Output consists of overall thermoelastic constants, yarn slice strains/stresses, yarn slice failure history, in-plane stress-strain response and ultimate failure strength. Strength can be computed under the combined action of thermal and mechanical loading (tension, compression and shear).

  6. Pressure effects on the dissipative behavior of nanocrystalline diamond microelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Santos, J. T.; Holz, T.; Fernandes, A. J. S.; Costa, F. M.; Chu, V.; Conde, J. P.

    2015-02-01

    Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50-300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(~10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840-920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1-10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region.

  7. Characterization and compensation of thermo-elastic instability of SWARM optical bench on micro Advanced Stellar Compass attitude observations

    NASA Astrophysics Data System (ADS)

    Herceg, M.; Jørgensen, P. S.; Jørgensen, J. L.

    2017-08-01

    Launched into orbit on November 22, 2013, the Swarm constellation of three satellites precisely measures magnetic signal of the Earth. To ensure the high accuracy of magnetic observation by vector magnetometer (VFM), its inertial attitude is precisely determined by μASC (micro Advanced Stellar Compass). Each of the three Swarm satellites is equipped with three μASC Camera Head Units (CHU) mounted on a common optical bench (OB), which has a purpose of transference of the attitude from the star trackers to the magnetometer measurements. Although substantial pre-launch analyses were made to maximize thermal and mechanical stability of the OB, significant signal with thermal signature is discovered when comparing relative attitude between the three CHU's (Inter Boresight Angle, IBA). These misalignments between CHU's, and consequently geomagnetic reference frame, are found to be correlated with the period of angle between Swarm orbital plane and the Sun (ca. 267 days), which suggests sensitivity of optical bench system on temperature variation. In this paper, we investigate the propagation of thermal effects into the μASC attitude observations and demonstrate how thermally induced attitude variation can be predicted and corrected in the Swarm data processing. The results after applying thermal corrections show decrease in IBA RMS from 6.41 to 2.58″. The model significantly improves attitude determination which, after correction, meets the requirements of Swarm satellite mission. This study demonstrates the importance of the OB pre-launch analysis to ensure minimum thermal gradient on satellite optical system and therefore maximum attitude accuracy.

  8. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    NASA Astrophysics Data System (ADS)

    Crump, D. A.; Dulieu-Barton, J. M.; Savage, J.

    2010-01-01

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model.

  9. Receiver function and gravity constraints on crustal structure and vertical movements of the Upper Mississippi Embayment and Ozark Uplift

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Stephen S.; Liu, Kelly H.; Mickus, Kevin

    2017-06-01

    The Upper Mississippi Embayment (UME), where the seismically active New Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the Late Precambrian and Cretaceous, respectively. To provide new constraints on models proposed for the mechanisms responsible for the subsidence, we computed and stacked P-to-S receiver functions recorded by 49 USArray and other seismic stations located in the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a mafic and high-density upper crustal layer of ˜30 km thickness, which is underlain by a higher-density lower crustal layer of up to ˜15 km. Those measurements, in the background of previously published geological observations on the subsidence and uplift history of the UME, are in agreement with the model that the Cretaceous subsidence, which was suggested to be preceded by an approximately 2 km uplift, was the consequence of the passage of a previously proposed thermal plume. The thermoelastic effects of the plume would have induced wide-spread intrusion of mafic mantle material into the weak UME crust fractured by Precambrian rifting and increased its density, resulting in renewed subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal density, thickness, and Vp/Vs measurements that are comparable to those observed on cratonic areas, suggesting an overall normal crust without significant modification by the proposed plume, probably owing to the relatively strong and thick lithosphere.

  10. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  11. Interface circuit for a multiple-beam tuning-fork gyroscope with high quality factors

    NASA Astrophysics Data System (ADS)

    Wang, Ren

    This research work presents the design, theoretical analysis, fabrication, interface electronics, and experimental results of a Silicon-On-Insulator (SOI) based Multiple-Beam Tuning-Fork Gyroscope (MB-TFG). Based on a numerical model of Thermo-Elastic Damping (TED), a Multiple-Beam Tuning-Fork Structure (MB-TFS) is designed with high Quality factors (Qs) in its two operation modes. A comprehensive theoretical analysis of the MB-TFG design is conducted to relate the design parameters to its operation parameters and further performance parameters. In conjunction with a mask that defines the device through trenches to alleviate severe fabrication effect on anchor loss, a simple one-mask fabrication process is employed to implement this MB-TFG design on SOI wafers. The fabricated MB-TFGs are tested with PCB-level interface electronics and a thorough comparison between the experimental results and a theoretical analysis is conducted to verify the MB-TFG design and accurately interpret the measured performance. The highest measured Qs of the fabricated MB-TFGs in vacuum are 255,000 in the drive-mode and 103,000 in the sense-mode, at a frequency of 15.7kHz. Under a frequency difference of 4Hz between the two modes (operation frequency is 16.8kHz) and a drive-mode vibration amplitude of 3.0um, the measured rate sensitivity is 80mVpp/°/s with an equivalent impedance of 6MQ. The calculated overall rate resolution of this device is 0.37/hrhiElz, while the measured Angle Random Walk (ARW) and bias instability are 6.67°/'vhr and 95°/hr, respectively.

  12. Photoacoustic spectral characterization of perfluorocarbon droplets

    NASA Astrophysics Data System (ADS)

    Strohm, Eric; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2012-02-01

    Perfluorocarbon droplets containing optical absorbing nanoparticles have been developed for use as theranostic agents (for both imaging and therapy) and as dual-mode contrast agents. Droplets can be used as photoacoustic contrast agents, vaporized via optical irradiation, then the resulting bubbles can be used as ultrasound imaging and therapeutic agents. The photoacoustic signals from micron-sized droplets containing silica coated gold nanospheres were measured using ultra-high frequencies (100-1000 MHz). The spectra of droplets embedded in a gelatin phantom were compared to a theoretical model which calculates the pressure wave from a spherical homogenous liquid undergoing thermoelastic expansion resulting from laser absorption. The location of the spectral features of the theoretical model and experimental spectra were in agreement after accounting for increases in the droplet sound speed with frequency. The agreement between experiment and model indicate that droplets (which have negligible optical absorption in the visible and infrared spectra by themselves) emitted pressure waves related to the droplet composition and size, and was independent of the physical characteristics of the optical absorbing nanoparticles. The diameter of individual droplets was calculated using three independent methods: the time domain photoacoustic signal, the time domain pulse echo ultrasound signal, and a fit to the photoacoustic model, then compared to the diameter as measured by optical microscopy. It was found the photoacoustic and ultrasound methods calculated diameters an average of 2.6% of each other, and 8.8% lower than that measured using optical microscopy. The discrepancy between the calculated diameters and the optical measurements may be due to the difficulty in resolving the droplet edges after being embedded in the translucent gelatin medium.

  13. Micromechanical combined stress analysis: MICSTRAN, a user manual

    NASA Technical Reports Server (NTRS)

    Naik, R. A.

    1992-01-01

    Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.

  14. New thermoelastic parameters of natural C2/ c omphacite

    NASA Astrophysics Data System (ADS)

    Pandolfo, Francesco; Nestola, Fabrizio; Cámara, Fernando; Domeneghetti, M. Chiara

    2012-04-01

    The compressibility at room temperature and the thermal expansion at room pressure of two disordered crystals (space group C2/ c) obtained by annealing a natural omphacite sample (space group P2/ n) of composition close to Jd56Di44 and Jd55Di45, respectively, have been studied by single-crystal X-ray diffraction. Using a Birch-Murnaghan equation of state truncated at the third order [BM3-EoS], we have obtained the following coefficients: V 0 = 421.04(7) Å3, K T0 = 119(2) GPa, K' = 5.7(6). A parameterized form of the BM3 EoS was used to determine the axial moduli of a, b and c. The anisotropy scheme is β c ≤ β a ≤ β b , with an anisotropy ratio 1.05:1.00:1.07. A fitting of the lattice variation as a function of temperature, allowing for linear dependency of the thermal expansion coefficient on the temperature, yielded αV(1bar,303K) = 2.64(2) × 10-5 K-1 and an axial thermal expansion anisotropy of α b ≫ α a > α c . Comparison of our results with available data on compressibility and thermal expansion shows that while a reasonable ideal behaviour can be proposed for the compressibility of clinopyroxenes in the jadeite-diopside binary join [ K T0 as a function of Jd molar %: K T0 = 106(1) GPa + 0.28(2) × Jd(mol%)], the available data have not sufficient quality to extract the behaviour of thermal expansion for the same binary join in terms of composition.

  15. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

    PubMed

    Lenarda, P; Paggi, M

    A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

  16. A Study of Permeability Changes Due to Cold Fluid Circulation in Fractured Geothermal Reservoirs.

    PubMed

    Gholizadeh Doonechaly, Nima; Abdel Azim, Reda R; Rahman, Sheik S

    2016-05-01

    Reservoir behavior due to injection and circulation of cold fluid is studied with a shear displacement model based on the distributed dislocation technique, in a poro-thermoelastic environment. The approach is applied to a selected volume of Soultz geothermal reservoir at a depth range of 3600 to 3700 m. Permeability enhancement and geothermal potential of Soultz geothermal reservoir are assessed over a stimulation period of 3 months and a fluid circulation period of 14 years. This study-by shedding light onto another source of uncertainty-points toward a special role for the fracture surface asperities in predicting the shear dilation of fractures. It was also observed that thermal stress has a significant impact on changing the reservoir stress field. The effect of thermal stresses on reservoir behavior is more evident over longer circulation term as the rock matrix temperature is significantly lowered. Change in the fracture permeability due to the thermal stresses can also lead to the short circuiting between the injection and production wells which in turn decreases the produced fluid temperature significantly. The effect of thermal stress persists during the whole circulation period as it has significant impact on the continuous increase in the flow rate due to improved permeability over the circulation period. In the current study, taking into account the thermal stress resulted in a decrease of about 7 °C in predicted produced fluid temperature after 14 years of cold fluid circulation; a difference which notably influences the potential prediction of an enhanced geothermal system. © 2015, National Ground Water Association.

  17. Innovative materials: the NiTi alloys in orthodontics.

    PubMed

    Airoldi, G; Riva, G

    1996-01-01

    Since ten years the NiTi alloys have gained an ever increasing place in orthodontic practice: that is due to their peculiar mechanical properties ascribed to a martensitic thermoelastic transformation which can be thermally or, in a proper temperature range, stress-induced. In the last case, when martensite is stress-induced at body temperature, the stress-strain behaviour is pseudoelastic with large deformations gained or recovered at constant stress, respectively in direct/reverse transformation: this behaviour exploited in orthodontics allowed to overcome the drawbacks intrinsic to the use of conventional alloys as stainless steel or Co-Mo alloys, where small displacements can be achieved at decreasing loads. From the phase state diagram of NiTi alloys it appears that at body temperature they are stable, but out of equilibrium: thermal treatments at intermediate temperatures can therefore modify the equilibrium state and as a consequence the transformation temperatures respect to body temperature. That allows to modify the recovery stress level according to the requirements of practice and thus disclosing new roads: the capability to foresee NiTi archwires pre-programmed in different sections, with a personalized scheme. Attention has not currently been paid to the modifications in the recovery stress induced by a temperature change inside the oral cavity. Recent results have shown that the thermal changes in the oral cavity induced by cold/hot liquid intake can considerably modify the stress level to which the dentition is exposed: though confined to the time extent connected with drinking, similar effects can be expected also for meals intake and should be taken into account for a correct procedure.

  18. Ultraflexible nanostructures and implications for future nanorobots

    NASA Astrophysics Data System (ADS)

    Cohn, Robert W.; Panchapakesan, Balaji

    2016-05-01

    Several high aspect ratio nanostructures have been made by capillary force directed self-assembly including polymeric nanofiber air-bridges, trampoline-like membranes, microsphere-beaded nanofibers, and intermetallic nanoneedles. Arrays of polymer air-bridges form in seconds by simply hand brushing a bead of polymeric liquid over an array of micropillars. The domination of capillary force that is thinning unstable capillary bridges leads to uniform arrays of nanofiber air-bridges. Similarly, arrays of vertically oriented Ag2Ga nanoneedles have been formed by dipping silvercoated arrays of pyramidal silicon into melted gallium. Force-displacement measurements of these structures are presented. These nanostructures, especially when compressively or torsionally buckled, have extremely low stiffnesses, motion due to thermal fluctuations that is relatively easily detected, and the ability to move great distances for very small changes in applied force. Nanofibers with bead-on-a-string structure, where the beads are micron diameter and loaded with magnetic iron oxide (maghemite), are shown to be simply viewable under optical microscopes, have micronewton/ m stiffness, and have ultralow torsional stiffnesses enabling the bead to be rotated numerous revolutions without breaking. Combination of these high aspect ratio structures with stretched elastomers offer interesting possibilities for robotic actuation and locomotion. Polydimethylsiloxane loaded with nanomaterials, e.g. nanotubes, graphene or MoS2, can be efficiently heated with directed light. Heating produces considerable force through the thermoelastic effect, and this force can be used for continuous translation or to trigger reversible elastic buckling of the nanostructures. The remote stimulation of motion with light provides a possible mechanism for producing cooperative behavior between swarms of semiautonomous nanorobots.

  19. ATHENA: system studies and optics accommodation

    NASA Astrophysics Data System (ADS)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Fransen, S.; Stefanescu, A.; Linder, M.

    2016-07-01

    ATHENA is currently in Phase A, with a view to adoption upon a successful Mission Adoption Review in 2019/2020. After a brief presentation of the reference spacecraft (SC) design, this paper will focus on the functional and environmental requirements, the thermo-mechanical design and the Assembly, Integration, Verification & Test (AIVT) considerations related to housing the Silicon Pore Optics (SPO) Mirror Modules (MM) in the very large Mirror Assembly Module (MAM). Initially functional requirements on the MM accommodation are presented, with the Effective Area and Half Energy Width (HEW) requirements leading to a MAM comprising (depending on final mirror size selected) between 700-1000 MMs, co-aligned with exquisite accuracy to provide a common focus. A preliminary HEW budget allocated across the main error-contributors is presented, and this is then used as a reference to derive subsequent requirements and engineering considerations, including: The procedures and technologies for MM-integration into the Mirror Structure (MS) to achieve the required alignment accuracies in a timely manner; stiffness requirements and handling scheme required to constrain deformation under gravity during x-ray testing; temperature control to constrain thermo-elastic deformation during flight; and the role of the Instrument Switching Mechanism (ISM) in constraining HEW and Effective Area errors. Next, we present the key environmental requirements of the MMs, and the need to minimise shock-loading of the MMs is stressed. Methods to achieve this Ø are presented, including: Selection of a large clamp-band launch vehicle interface (LV I/F); lengthening of the shock-path from the LV I/F to the MAM I/F; modal-tuning of the MAM to act as a low-pass filter during launch shock events; use of low-shock HDRMs for the MAM; and the possibility to deploy a passive vibration solution at the LV I/F to reduce loads.

  20. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  1. Quantification of tissue texture with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Meng, Zhuo-Xian; Lin, Jiandie; Carson, Paul

    2014-05-01

    Photoacoustic (PA) imaging is an emerging technology that could map the functional contrasts in deep biological tissues in high resolution by "listening" to the laser induced thermoelastic waves. Almost all of the current studies in PA imaging are focused on the intensity of the PA signals as an indication of the optical absorbance of the biological tissues. Our group has for the first time demonstrated that the frequency domain power distribution of the broadband PA signals encode the texture information within the regions-of-interest (ROI). Following the similar method of ultrasound spectral analysis (USSA), photoacoustic spectrum analysis (PASA) could evaluate the relative concentrations and, more importantly, the dimensions of microstructures of the optically absorbing materials in biological tissues, including lipid, collagen, water and hemoglobin. By providing valuable insights into tissue pathology, PASA should benefit basic research and clinical management of many diseases, and may help achieve eventual "noninvasive biopsy". In this work, taking advantage of the optical absorption contrasts contributed by lipid and hemoglobin at 1200-nm and 532-nm wavelengths respectively, we investigated the capability of PASA in identifying histological changes corresponding to fat accumulation livers through the study on ex vivo and in situ mouse models. The PA signals from the mouse livers were acquired using our PA and US dual-modality imaging system, and analyzed in the frequency domain. After quantifying the power spectrum by fitting it to a first order model, three spectral parameters, including the intercept, the midband fit and the slope, were extracted and used to differentiate fatty livers from normal livers. The comparison between the PASA parameters from the normal and the fatty livers supports our hypotheses that PASA can quantitatively identify the microstructure changes in liver tissues for differentiating normal and fatty livers.

  2. Elasticity of ferropericlase and seismic heterogeneity in the Earth's lower mantle: Ferropericlase High Pressure-Temperature Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jing; Lin, Jung-Fu; Jacobsen, Steven D.

    2016-12-16

    Deciphering the origin of seismic heterogeneity has been one of the major challenges in understanding the geochemistry and geodynamics of the deep mantle. Fully anisotropic elastic properties of constituent minerals at relevant pressure-temperature conditions of the lower mantle can be used to calculate seismic heterogeneity parameters in order to better understand chemically and thermally induced seismic heterogeneities. In this study, the single-crystal elastic properties of ferropericlase (Mg0.94Fe0.06)O were measured using Brillouin spectroscopy and X-ray diffraction at conditions up to 50 GPa and 900 K. The velocity-density results were modeled using third-order finite-strain theory and thermoelastic equations along a representative geothermmore » to investigate high pressure-temperature and compositional effects on the seismic heterogeneity parameters. Our results demonstrate that from 660 to 2000 km, compressional wave anisotropy of ferropericlase increased from 4% to 9.7%, while shear wave anisotropy increased from 9% to as high as 22.5%. The thermally induced lateral heterogeneity ratio (RS/P = ∂lnVS/∂lnVP) of ferropericlase was calculated to be 1.48 at ambient pressure but decreased to 1.43 at 40 GPa along a representative geotherm. The RS/P of a simplified pyrolite model consisting of 80% bridgmanite and 20% ferropericlase was approximately 1.5, consistent with seismic models at depths from 670 to 1500 km, but showed an increased mismatch at lower mantle depths below ~1500 km. This discrepancy below mid-lower mantle could be due to either a contribution from chemically induced heterogeneity or the effects of the Fe spin transition in the deeper parts of the Earth's lower mantle.« less

  3. Thermal elastic properties of liquid Fe-C at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Takubo, Y.; Watanuki, T.; Katayama, Y.; Kondo, T.

    2015-12-01

    Planetary outer core contains some light elements and these elements affect thermo-elastic parameters of pure iron. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. We have measured sound velocity and density of liquid Fe-C simultaneously at high pressure. High pressure experiments were performed using a DIA-type cubic anvil press (SMAP-180) at BL22XU beamline, SPring-8 synchrotron in Japan. Sound velocity (VP) was measured using pulse-echo overlapping method (Higo et al., 2009). Density (ρ) was measured using X-ray absorption method (Katayama et al., 1993). We measured velocity and density of liquid Fe-C between 1.1-5.8 GPa and 1480-1700 K. Obtained density and velocity of Fe-C was found to increase with pressure. This study shows the VP of liquid Fe-C decreased with increasing temperature. Previous study of liquid Fe-S shows little change with increasing temperature at all pressure conditions (Nishida et al., 2013, Jing et al., 2014). We fit the relationship between VP and pressure using Murnaghan's equation of state. We obtained KS0 = 102.5(1.2) GPa, K'S = 5.2(0.4) at 1700 K. Comparison of the present data with previous study, KS is similar to liquid Fe but liquid Fe-S is small. We compared the relation between density and sound velocity of liquid Fe-C. We have found that the behavior of liquid Fe-C is similar to that of liquid Fe in the Birch's plot. The effect of carbon on liquid Fe is small on Birch's plot.

  4. Orthodontic uprighting of severely impacted mandibular second molars.

    PubMed

    Lau, Catherine K; Whang, Claudia Z Y; Bister, Dirk

    2013-01-01

    The prevalence of impacted second molars is low, varying from 0% to 2.3%. The etiology of an impaction can involve systemic, local, and periodontal factors, as well as a developmental disruption of the tooth germ. A number of surgical and orthodontic treatment options have been suggested in the literature, including leaving the tooth in situ, removing the impacted second molar, orthodontic uprighting, and autotransplantation. Removal of third molars has been suggested as an adjunct for space creation. This article presents the treatment of a girl with bilateral severely impacted mandibular second molars as well as an ectopic maxillary left canine and severe crowding affecting both the maxillary and mandibular arches. Her treatment was successfully completed with fixed preadjusted edgewise appliances (0.022 × 0.028-in slot size) and MBT prescription (APC precoated Gemini Brackets; 3M Unitek, St. Paul, Minn), along with the removal of 4 first premolars. The maxillary left canine and the mandibular second molars were surgically exposed. The treatment mechanics show that even severely impacted second molars can be uprighted by routine straight-wire techniques, which are easy to apply. The center of rotation of the second molar lies in the bifurcation of the roots of this tooth, and this biomechanical property was used to its full advantage. The techniques applied comprised bracket repositioning, bypass of brackets, conversion of molar tubes to brackets, thermoelastic copper-nickel-titanium archwires, and a push-coil spring. Other orthodontic treatment mechanics, which require complex sectional or segmental techniques, auxiliaries, or artistic wire bending, that have been suggested in the literature were not used here. The third molars were not removed. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  6. Simulation of one-sided heating of boiler unit membrane-type water walls

    NASA Astrophysics Data System (ADS)

    Kurepin, M. P.; Serbinovskiy, M. Yu.

    2017-03-01

    This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.

  7. The relation of bifurations in a biaxially loaded rubber sheet and the constitutive modeling of rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslach, H.W. Jr.

    1995-12-31

    Treloar`s experiments on a thin rubber sheet under in-plane biaxial tensile loads produced asymmetric as well as equal in-plane stretches. At two loads, the two stretches differed by 7.5% and 12.4% respectively. At an intermediate load, there was a stable equal stretches state. Treloar later said that relaxation was negligible since the results were reproducible and independent of the order of force application. Specimen anisotropy and lack of strain uniformity were also eliminated as a cause. Kearsely first pointed out the significance of these experiments to studies of elastic stability of rubber models. The predictability of this result is amore » test for the validity of the various constitutive models for rubber. First, Ogden`s plane stress stability and bifurcation criteria are reviewed. A coordinate transformation of a generalized energy function for the biaxially loaded sheet makes it possible to describe the Mooney-Rivlin bifurcation as a cusp catastrophe and to verify that the neo-Hookean and other classical models have no bifurcations. The Mooney-Rivlin model predicts unstable equal stretch states above the bifurcation value, but Treloar`s experiments contradict this. These models cannot, then, be the correct constitutive models for rubber. Preliminary ideas on the conditions that an isothermal constitutive model must satisfy to reproduce Treloar`s experiments are proposed. A thermoelastic generalization of the Mooney-Rivlin model, developed with N. N. Zeng, predicts that raising the temperature slightly lowers the value of the bifurcation load. Nonequilibrium processes such as relaxation or sinusoidal loading are modeled using a generalized energy function in place of classical viscoelastic constitutive relations.« less

  8. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE PAGES

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon; ...

    2017-05-14

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  9. Thermoelastic properties of liquid Fe-C revealed by sound velocity and density measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Yuta; Terasaki, Hidenori; Urakawa, Satoru; Takubo, Yusaku; Kuwabara, Soma; Kishimoto, Shunpachi; Watanuki, Tetsu; Machida, Akihiko; Katayama, Yoshinori; Kondo, Tadashi

    2016-11-01

    Carbon is one of the possible light elements in the cores of the terrestrial planets. The P wave velocity (VP) and density (ρ) are important factors for estimating the chemical composition and physical properties of the core. We simultaneously measured the VP and ρ of Fe-3.5 wt % C up to 3.4 GPa and 1850 K by using ultrasonic pulse-echo method and X-ray absorption methods. The VP of liquid Fe-3.5 wt % C decreased linearly with increasing temperature at constant pressure. The addition of carbon decreased the VP of liquid Fe by about 2% at 3 GPa and 1700 K and decreased the Fe density by about 2% at 2 GPa and 1700 K. The bulk modulus of liquid Fe-C and its pressure (P) and temperature (T) effects were precisely determined from directly measured ρ and VP data to be K0,1700 K = 83.9 GPa, dKT/dP = 5.9(2), and dKT/dT = -0.063 GPa/K. The addition of carbon did not affect the isothermal bulk modulus (KT) of liquid Fe, but it decreased the dK/dT of liquid Fe. In the ρ-VP relationship, VP increases linearly with ρ and can be approximated as VP (m/s) = -6786(506) + 1537(71) × ρ (g/cm3), suggesting that Birch's law is valid for liquid Fe-C at the present P-T conditions. Our results imply that at the conditions of the lunar core, the elastic properties of an Fe-C core are more affected by temperature than those of Fe-S core.

  10. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  11. A High-Rate, Single-Crystal Model for Cyclotrimethylene Trinitramine including Phase Transformations and Plastic Slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addessio, Francis L.; Luscher, Darby Jon; Cawkwell, Marc Jon

    A continuum model for the high-rate, thermo-mechanical deformation of single-crystal cyclotrimethylene trinitramine (RDX) is developed. The model includes the effects of anisotropy, large deformations, nonlinear thermo-elasticity, phase transformations, and plastic slip. A multiplicative decomposition of the deformation gradient is used. The volumetric elastic component of the deformation is accounted for through a free-energy based equation of state for the low- (α) and high-pressure (γ) polymorphs of RDX. Crystal plasticity is addressed using a phenomenological thermal activation model. The deformation gradient for the phase transformation is based on an approach that has been applied to martensitic transformations. Simulations were conducted andmore » compared to high-rate, impact loading of oriented RDX single crystals. The simulations considered multiple orientations of the crystal relative to the direction of shock loading and multiple sample thicknesses. Thirteen slip systems, which were inferred from indentation and x-ray topography, were used to model the α-polymorph. It is shown that by increasing the number of slip systems from the previously considered number of six (6) to thirteen (13) in the α-polymorph, better comparisons with data may be obtained. Simulations of impact conditions in the vicinity of the α- to γ-polymorph transformation (3.8 GPa) are considered. Eleven of the simulations, which were at pressures below the transformation value (3.0 GPa), were compared to experimental data. Comparison of the model was also made with available data for one experiment above the transformation pressure (4.4 GPa). Also, simulations are provided for a nominal pressure of 7.5 GPa to demonstrate the effect of the transformation kinetics on the deformation of a high-rate plate impact problem.« less

  12. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    PubMed

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Investigation of thermoelastic stresses induced at high altitudes on aircraft external fuel tanks

    NASA Astrophysics Data System (ADS)

    Mousseau, Stephanie Lynn Steber

    As composite technology has grown over the past several decades, the use of composite materials in military applications has become more feasible and widely accepted. Although composite materials provide many benefits, including strength optimization and reduced weight, damage and repair of these materials creates an additional challenge, especially when operating in a marine environment, such as on a carrier deck. This is evident within the Navy, as excessive damage often leads to the scrapping of F/A-18 External Fuel Tanks. This damage comes in many forms, the most elusive of which is delamination. Often the delamination found on the tanks is beyond repairable limits and the cause unknown, making it difficult to predict and prevent. The purpose of this investigation was to study the structure of the Navy's 330 gallon External Fuel Tanks and investigate one potential cause of delamination, stresses induced at high altitudes by cold temperatures. A stress analysis was completed using finite element software, and validation of the model was accomplished through testing of a scale model specimen. Due to the difficulties in modeling and predicting delamination, such as unknown presence of voids and understanding failure criteria, delamination was not modeled in Abaqus, rather stresses were observed and characteristics were studied to understand the potential for delamination within the layup. In addition, studies were performed to understand the effect of material properties and layup sequence on the stress distribution within the tank. Alternative design solutions are presented which could reduce the radial stresses within the tank, and recommendations are made for further study to understand the trade-offs between stress, cost, and manufacturability.

  14. Abnormal Elasticity of Single-Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Fu, S.; Yang, J.; Lin, J. F.

    2016-12-01

    Carbon can be transported into deep Earth's interior via subduction of carbonated oceanic crust, hosted as Mg-Fe bearing carbonates. The existence of stable carbonate can significantly affect our understanding on geochemical and geophysical properties of the planet. Early studies have shown that iron spin-pairing transition could occur in the iron-enriched carbonates, generally called magnesiosiderite, under lower mantle conditions. The pressure-induced spin state change is accompanied by a sudden volume collaps. However, the effects of the spin-pairing transition on single-crystal elasticity of magnesiosiderite under high pressure conditions are still unclear. Understanding the elasticity of single-crystal magnesiosiderite at relevant lower mantle conditions plays an important role in better understanding the seismic signatures in the carbon-enriched region, and to constrain carbon storage and recycling in the mantle. In order to solve all individual elastic constants (C11, C22, C33, C44, C55, C66, C12, C23, and C13) of magnesiosiderite at high pressures via Christoffel's equations, we employed Brillouin Light Scattering (BLS) to measure shear wave (Vs) and compressional wave velocities (Vp) as a function of the azimuthal angle under lower mantle pressures, accompanied by Impulsive Stimulate Light Scattering (ISS) to measure the Vp when pressures are too high to measure it by BLS. A general thermoelastic modelling was developed to fit the elastic softening within the spin transition. We will further discuss the effects of pressures, as well as iron spin states, on the single-crystal elasticity and seismic parameters (Vp and Vs anisotropy AVp, AVs, etc) at lower mantle conditions. These results could provide clues in explaining regional seismic heterogeneities in deep mantle.

  15. Orientation Dependence of Functional Properties in Heterophase Single Crystals of the Ti36.5Ni51.0Hf12.5 and Ti48.5Ni51.5 Alloys

    NASA Astrophysics Data System (ADS)

    Panchenko, E. Yu.; Chumlyakov, Yu. I.; Surikov, N. Yu.; Tagiltsev, A. I.; Vetoshkina, N. G.; Osipovich, K. S.; Maier, H.; Sehitoglu, H.

    2016-03-01

    The features of orientation dependence of stress-induced thermoelastic B2-( R)- B19'-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ɛ SME | and SE |ɛ SE | decrease by over a factor of two compared to the theoretical lattice strain value |ɛ tr0 | for a B2- B19'-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ɛ tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ɛ SME | and |ɛ SE | due to suppression of detwinning of the B19'-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.

  16. Thermal Volume Changes and Creep in the Callovo-Oxfordian Claystone

    NASA Astrophysics Data System (ADS)

    Belmokhtar, Malik; Delage, Pierre; Ghabezloo, Siavash; Conil, Nathalie

    2017-09-01

    The Callovo-Oxfordian (COx) claystone is considered as a potential host rock for high-level radioactive waste disposal at great depth in France. Given the exothermic nature of radioactive wastes, a temperature elevation planned to be smaller than 100 °C will affect the host rock around the disposal cells. To gain better understanding of the thermal volumetric response of the COx claystone, a new thermal isotropic compression cell was developed with particular attention devoted to monitoring axial and radial strains. To do so, a high-precision LVDTs system ensuring direct contact between the LVDT stem and the claystone sample through the membrane was developed. A short drainage length (10 mm) was also ensured so as to allow full saturation of the sample under stress conditions close to in situ, and fully drained conditions during compression. High-precision strain monitoring allowed to observe a volumetric creep under stress conditions close to in situ. A drained heating test under constant stress carried out afterwards up to 80 °C exhibited a thermoelastic expansion up to a temperature of 48 °C, followed by thermoplastic contraction at higher temperature. Creep volume changes, that appeared to be enhanced by temperature, were modelled by using a simple Kelvin-Voigt model, so as to estimate the instantaneous response of the COx claystone and to determine its thermal expansion coefficient. The temperature at which the transition between thermal expansion and contraction appeared is close to the maximum burial temperature of the Callovo-Oxfordian claystone, estimated at 50 °C. This is in agreement with what has been already observed on the Opalinus Clay by Monfared et al. (2012) that was interpreted as a thermal hardening phenomenon, showing that the material kept the memory of the highest temperature supported during its geological history.

  17. P- V- T equation of state of CaAl4Si2O11 CAS phase

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishiyama, Norimasa; Kono, Yoshio; Irifune, Tetsuo; Gautron, Laurent

    2011-09-01

    The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. P- V data at room temperature fitted to a third-order Birch-Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K' 0,300 = 6.2 ± 0.8. With K' 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our P- V- T data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K' 0,300 = 5.1 ± 0.6 (∂ K 0 ,T /∂ T) P = -0.023 ± 0.006 GPa K-1, and α0 ,T = 3.09 ± 0.25 × 10-5 K-1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.

  18. 4D imaging of the source of ground deformation at Campi Flegrei caldera (Italy) during recent unrest episodes

    NASA Astrophysics Data System (ADS)

    D'Auria, L.; Giudicepietro, F.; Martini, M.; Lanari, R.

    2011-12-01

    Campi Flegrei caldera, has been affected in recent decades by three episodes of significant ground uplift. After the last crisis (1982-84), which was accompanied by strong seismicity, the ground has shown a general descending trend, occasionally interrupted by minor uplift episodes, together with low-magnitude volcano-tectonic and long-period seismicity. We assume that the source of minor ground deformations consists in a diffuse volumetric source, related to both thermoelastic and poroelastic strain. This is a reasonable assumption considering that Campi Flegrei are known to host a geothermal reservoir. We have inverted a DInSAR dataset spanning the interval 1995-2008. Results show that the geometry of the source is much more complex than previously recognized and, most important, it shows significant temporal variations, within few months. The deformation source, of the analyzed uplift episodes, starts with a volumetric expansion centered at a depth of about 5 km. The position of this volume is close to the caldera rims. Later the expansion migrates upward, reaching the surface along preferred paths, leading to the Solfatara area, located almost at the center of the caldera. This area is well known for its powerful geothermal emissions. During the upward migration, seismic long-period sources are activated. Their location is consistent with the path identified by the inversion of the DInSAR dataset. We infer, that this dynamics is linked to the injection of hot fluid batches, along the caldera rims and their upward migration, following preferential high permeability paths. Furthermore we have identified an injection episode which has not been previously recognized. The deformation source remains at depth slowly waning in few years. We show how this conceptual framework fits well with the observed geodetic, seismic and geochemical data.

  19. Efficient Reformulation of the Thermoelastic Higher-order Theory for Fgms

    NASA Technical Reports Server (NTRS)

    Bansal, Yogesh; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)

    2002-01-01

    Functionally graded materials (FGMs) are characterized by spatially variable microstructures which are introduced to satisfy given performance requirements. The microstructural gradation gives rise to continuously or discretely changing material properties which complicate FGM analysis. Various techniques have been developed during the past several decades for analyzing traditional composites and many of these have been adapted for the analysis of FGMs. Most of the available techniques use the so-called uncoupled approach in order to analyze graded structures. These techniques ignore the effect of microstructural gradation by employing specific spatial material property variations that are either assumed or obtained by local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural gradation into consideration and does not ignore the local-global interaction of the spatially variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the original higher-order theory for two-dimensional elastic problems is developed and validated. The use of the local-global conductivity and local-global stiffness matrix approach is made in order to reduce the number of equations involved. In this approach, surface-averaged quantities are the primary variables which replace volume-averaged quantities employed in the original formulation. The reformulation decreases the size of the global conductivity and stiffness matrices by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical problems are analyzed in order to validate the accuracy of the reformulated theory through comparison with analytical and finite-element solutions. The presented results illustrate the efficiency of the reformulation and its advantages in analyzing functionally graded materials.

  20. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.

Top