Science.gov

Sample records for thermoplastic polyurethane tpu

  1. Thermal Stability and Fire Properties of Salen and Metallosalens as Fire Retardants in Thermoplastic Polyurethane (TPU)

    PubMed Central

    Ramgobin, Aditya; Fontaine, Gaëlle; Penverne, Christophe; Bourbigot, Serge

    2017-01-01

    This study deals with the synthesis and evaluation of salen based derivatives as fire retardants in thermoplastic polyurethane. Salens, hydroxysalens and their first row transition metal complexes (salen-M) were synthesized (Copper, Manganese, Nickel and Zinc). They were then incorporated in thermoplastic polyurethane (TPU) with a loading as low as 10:1 weight ratio. The thermal stability as well as the fire properties of the formulations were evaluated. Thermogravimetric analysis (TGA) showed that different coordination metals on the salen could induce different decomposition pathways when mixed with TPU. The Pyrolysis Combustion Flow Calorimetry (PCFC) results showed that some M-salen have the ability to significantly decrease the peak heat release rate (−61% compared to neat TPU) and total heat released (−63% compared to neat TPU) when formulated at 10:1 wt % ratio in TPU. Mass Loss Cone Calorimetry (MLC) results have shown that some additives (salen-Cu and salen-Mn) exhibit very promising performance and they are good candidates as flame-retardants for TPU. PMID:28773025

  2. Microstructure and thermomechanical properties relationship of segmented thermoplastic polyurethane (TPU)

    NASA Astrophysics Data System (ADS)

    Frick, Achim; Borm, Michael; Kaoud, Nouran; Kolodziej, Jan; Neudeck, Jens

    2014-05-01

    Thermoplastic polyurethanes (TPU) are important polymeric materials for seals. In competition with Acrylonitrile butadiene rubbers (NBR), TPU exhibits higher strength and a considerable better abrasion resistance. The advantage of NBR over TPU is a smaller compression set but however TPU excels in its much shorter processing cycle times. Generally a TPU is a block copolymer composed of hard and soft segments, which plays an important role in determining the material properties. TPU can be processed either to ready moulded parts or can be incorporated by multi component moulding, in both cases it shows decent mechanical properties. In the present work, the relationship between melt-process induced TPU morphology and resultant thermo mechanical properties were examined and determined by means of quasi-static tensile test, creep experiment, tension test and dynamical mechanical analysis (DMA). Scanning electron beam microscope (SEM) and differential scanning calorimeter (DSC) were used to study the morphology of the samples. A significant mathematical description of the stress-strain behaviour of TPU was found using a 3 term approach. Moreover it became evident that processing conditions such as processing temperature have crucial influence on morphology as well as short and long-term performance. To be more precise, samples processed at higher temperatures showed a lack of large hard segment agglomerates, a smaller strength for strains up to 250% and higher creep compliance.

  3. Toughness Enhancement of Commercial Poly (Hydroxybutyrate-co-Valerate) (PHBV) by Blending with a Thermoplastic Polyurethane (TPU)

    NASA Astrophysics Data System (ADS)

    González-Ausejo, Jennifer; Sánchez-Safont, Estefania; Cabedo, Luis; Gamez-Perez, Jose

    2016-11-01

    Poly(hydroxyl butyrate-co-valerate) (PHBV) is a biopolymer synthesized by microorganisms that is fully biodegradable with improved thermal and tensile properties with respect to some commodity plastics. However, it presents an intrinsic brittleness that limits its potential application in replacing plastics in packaging applications. Films made of blends of PHBV with different contents of thermoplastic polyurethane (TPU) were prepared by single screw extruder and their fracture toughness behavior was assessed by means of the essential work of fracture (EWF) Method. As the crack propagation was not always stable, a partition method has been used to compare all formulations and to relate results with the morphology of the blends. Indeed, fully characterization of the different PHBV/TPU blends showed that PHBV was incompatible with TPU. The blends showed an improvement of the toughness fracture, finding a maximum with intermediate TPU contents.

  4. Effect of thermoplastic polyurethane (TPU) on the thermal and mechanical properties of polylactic acid (PLA)/curcumin blends

    NASA Astrophysics Data System (ADS)

    Sharifah, I. S. S.; Adnan, M. D. A.; Nor Khairusshima, M. K.; Shaffiar, N. M.; Buys, Y. F.

    2018-01-01

    Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young’s modulus was observed.

  5. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.

  6. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  7. Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications.

    PubMed

    Cruz, Karina Ferreira Noronha; Formaggio, Daniela Maria Ducatti; Tada, Dayane Batista; Cristovan, Fernando Henrique; Guerrini, Lilia Müller

    2017-02-01

    Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process. To overcome this limitation, a conductive polymer can be incorporated to the process, allowing generates mats without defects. In this study, poly(o-ethoxyaniline) POEA doped with dodecylbenzene sulfonic acid (DBSA) was blended with thermoplastic polyurethane (TPU) by solution method. Films were produced by casting and nanofibers were prepared by electrospinning. The effect of the POEA on morphology, distribution of diameter and cell viability of the nanofibers was evaluated. The results demonstrated that the incorporation of POEA in TPU provided to the mats a suitable morphology for cellular growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 601-607, 2017. © 2016 Wiley Periodicals, Inc.

  8. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets.

    PubMed

    Strankowski, Michał; Korzeniewski, Piotr; Strankowska, Justyna; A S, Anu; Thomas, Sabu

    2018-01-06

    Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler-polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO), the Payne effect was observed.

  9. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets

    PubMed Central

    Korzeniewski, Piotr; Strankowska, Justyna; A. S., Anu; Thomas, Sabu

    2018-01-01

    Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55), and two types of graphene derivatives: graphene nanoplatelets (GNP) and reduced graphene oxide (RGO). Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR) spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG)) to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP) and synthesized (RGO) on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler–polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO), the Payne effect was observed. PMID:29316638

  10. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites.

    PubMed

    Jiao, Chuanmei; Wang, Hongzhi; Li, Shaoxiang; Chen, Xilei

    2017-06-15

    Nowadays, reducing the fire hazard of thermoplastic polyurethane (TPU) is an important research direction in the fields of fire safety materials. In this article, hollow glass microsphere (HGM) was used to reduce the fire hazard of TPU in combustion process. The fire characteristics including smoke and heat production of TPU composites were evaluated using smoke density test (SDT) and cone calorimeter test (CCT). And the thermal decomposition and flammable properties were further studied using thermogravimetric analysis/infrared spectrometry (TG-IR) and limiting oxygen index (LOI), etc. The SDT results showed that the luminous flux (LF) of TPU4 containing 2.00wt% HGM was up to 24% at the end of test without flame, which is much higher than that of TPU0 (5%). And, the CCT results indicated that 2.00wt% HGM could make the total smoke release (TSR) decrease from 1019m 2 /m 2 (TPU0) to 757m 2 /m 2 (TPU4), reduced by 26%. The TG-IR results confirmed that HGM could improve the thermal stability of composites and reduce the production of some toxic gases. The above results illustrated HGM had a good prospect in reducing the fire hazard for TPU. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mechanical Properties of Nonwoven Reinforced Thermoplastic Polyurethane Composites

    PubMed Central

    Tausif, Muhammad; Pliakas, Achilles; O’Haire, Tom; Goswami, Parikshit; Russell, Stephen J.

    2017-01-01

    Reinforcement of flexible fibre reinforced plastic (FRP) composites with standard textile fibres is a potential low cost solution to less critical loading applications. The mechanical behaviour of FRPs based on mechanically bonded nonwoven preforms composed of either low or high modulus fibres in a thermoplastic polyurethane (TPU) matrix were compared following compression moulding. Nonwoven preform fibre compositions were selected from lyocell, polyethylene terephthalate (PET), polyamide (PA) as well as para-aramid fibres (polyphenylene terephthalamide; PPTA). Reinforcement with standard fibres manifold improved the tensile modulus and strength of the reinforced composites and the relationship between fibre, fabric and composite’s mechanical properties was studied. The linear density of fibres and the punch density, a key process variable used to consolidate the nonwoven preform, were varied to study the influence on resulting FRP mechanical properties. In summary, increasing the strength and degree of consolidation of nonwoven preforms did not translate to an increase in the strength of resulting fibre reinforced TPU-composites. The TPU composite strength was mainly dependent upon constituent fibre stress-strain behaviour and fibre segment orientation distribution. PMID:28772977

  12. Laser-Marking Mechanism of Thermoplastic Polyurethane/Bi2O3 Composites.

    PubMed

    Zhong, Wei; Cao, Zheng; Qiu, Pengfei; Wu, Dun; Liu, Chunlin; Li, Huili; Zhu, He

    2015-11-04

    Using bismuth oxide (Bi2O3) as a laser-marking additive and thermoplastic polyurethane (TPU) as the matrix, TPU/Bi2O3 composite materials were prepared by melt blending in a torque rheometer. The sheet samples prepared from the TPU/Bi2O3 composites were treated in air by scanning with a neodymium-doped yttrium aluminum garnet (Nd: YAG) pulsed laser beam at a wavelength of 1064 nm. Compared with the pure TPU sample, the laser-marked composite samples exhibited differences in marking contrast as the Bi2O3 content increased from 0.1% to 1.0% based on stereomicroscope analysis. Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetry analysis, and X-ray diffraction were used to characterize the laser-marked surface material of the composite samples. Furthermore, a mechanism for the laser-effected darkening of the TPU/Bi2O3 composites was proposed. The results herein indicated that the addition of the Bi2O3 laser-sensitive additive to TPU resulted in laser darkening of the TPU/Bi2O3 composites. The marking contrast and visual appearance of the surface of the TPU/Bi2O3 composites after laser irradiation was due to a synergistic effect consisting of carbonization via TPU pyrolysis and reduction of Bi2O3 to black bismuth metal.

  13. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Salick, Max R; Cordie, Travis M; Turng, Lih-Sheng

    2016-09-01

    Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Process property studies of melt blown thermoplastic polyurethane polymers

    NASA Astrophysics Data System (ADS)

    Lee, Youn Eung

    The primary goal of this research was to determine optimum processing conditions to produce commercially acceptable melt blown (MB) thermoplastic polyurethane (TPU) webs. The 6-inch MB line and the 20-inch wide Accurate Products MB pilot line at the Textiles and Nonwovens Development Center (TANDEC), The University of Tennessee, Knoxville, were utilized for this study. The MB TPU trials were performed in four different phases: Phase 1 focused on the envelope of the MB operating conditions for different TPU polymers; Phase 2 focused on the production of commercially acceptable MB TPU webs; Phase 3 focused on the optimization of the processing conditions of MB TPU webs, and the determination of the significant relationships between processing parameters and web properties utilizing statistical analyses; Based on the first three phases, a more extensive study of fiber and web formation in the MB TPU process was made and a multi liner regression model for the MB TPU process versus properties was also developed in Phase 4. In conclusion, the basic MB process was fundamentally valid for the MB TPU process; however, the MB process was more complicated for TPU than PP, because web structures and properties of MB TPUs are very sensitive to MB process conditions: Furthermore, different TPU grades responded very differently to MB processing and exhibited different web structure and properties. In Phase 3 and Phase 4, small fiber diameters of less than 5mum were produced from TPU237, TPU245 and TPU280 pellets, and the mechanical strengths of MB TPU webs including the tensile strength, tear strength, abrasion resistance and tensile elongation were notably good. In addition, the statistical model showed useful interaction regarding trends for processing parameters versus properties of MB TPU webs. Die and air temperature showed multicollinearity problems and fiber diameter was notably affected by air flow rate, throughput and die/air temperature. It was also shown that most of

  15. Hypophosphite/Graphitic Carbon Nitride Hybrids: Preparation and Flame-Retardant Application in Thermoplastic Polyurethane

    PubMed Central

    Shi, Yongqian; Fu, Libi; Chen, Xilei; Guo, Jin; Yang, Fuqiang; Wang, Jingui; Zheng, Yuying; Hu, Yuan

    2017-01-01

    A series of aluminum hypophosphite (AHPi)/graphite-like carbon nitride (g-C3N4) (designated as CAHPi) hybrids were prepared, followed by incorporation into thermoplastic polyurethane (TPU). The introduction of CAHPi hybrids into TPU led to a marked reduction in the peak of the heat release rate (pHRR), total heat release, weight loss rate, smoke production rate and total smoke production (TSP). For instance, pHRR and TSP decreased by 40% and 50% for TPU/CAHPi20. Furthermore, the increasing fire growth index and decreasing fire performance index were obtained for TPU/CAHPi systems, suggesting reduced fire hazards. It was found that improved fire safety of TPU nanocomposites was contributed by condensed phase and gas phase mechanisms. On one hand, g-C3N4 accelerated the thermal decomposition of AHPi for the formation of more char layers. On the other hand, g-C3N4 induced AHPi to generate more free radical capture agents when exposed to flame, besides protecting AHPi against thermal oxidation. PMID:28872606

  16. Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane.

    PubMed

    Knight, Pamela T; Lee, Kyung Min; Qin, Haihu; Mather, Patrick T

    2008-09-01

    A new hybrid thermoplastic polyurethane (TPU) system that incorporates an organic, biodegradable poly(D, L-lactide) soft block with a hard block bearing the inorganic polyhedral oligosilsesquioxane (POSS) moiety is introduced and studied. Changes in the polyol composition made through variation of the hydrophilic initiator molecular weight show direct control of the final transition temperatures. Incorporating POSS into the hard segments allows for excellent elasticity above T(g), as evidenced with dynamic mechanical analysis, not seen in most other biodegradable materials. This elasticity is attributed to physical cross-links formed in the hard block through POSS crystallization, as revealed with wide-angle X-ray diffraction. Increasing the POSS incorporation level in the TPU hard block was observed to increase crystallinity and also the rigidity of the material. The highest incorporation, using a statistical average of three POSS units per hard block, demonstrated one-way shape memory with excellent shape fixing capabilities. In vitro degradation of this sample was also investigated during a two month period. Moderate water uptake and dramatic molecular weight decrease were immediately observed although large mass loss (approximately 20 wt %) was not observed until the two month time point.

  17. Thermoplastic Polyurethanes with Isosorbide Chain Extender

    SciTech Connect

    Javni, Ivan; Bilic, Olivera; Bilic, Nikola

    2015-12-15

    Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50%more » SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co-continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non-existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series.« less

  18. A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Zhang, Yizhen; Liu, Yuan; Wang, Xinling; Yang, Bin

    2016-09-01

    Properties of carbon fiber (CF) reinforced composites depend largely on the interfacial bonding strength between fiber and the matrix. In the present work, CF was grafted by 4,4‧-diphenylmethane diisocyanate (MDI) molecules after electrochemical oxidation treatment. The existence of functional groups introduced to the fiber surface and the changes of surface roughness were confirmed by FTIR, AFM, XPS, SEM and Raman spectroscopy. To evaluate the possible applications of this surface modification of carbon fiber, we examined the mechanical properties as well as the friction and wear performance of pristine CF and MDI-CF reinforced thermoplastic polyurethane (TPU) composites with 5-30 wt.% fiber contents, and found that the mechanical properties of TPU composites were all significantly improved. It is remarkable that when fiber content was 30 wt.%, the tensile strength of TPU/MDI-CF was increased by 99.3%, which was greater than TPU/CF (53.2%), and the friction loss of TPU/MDI-CF was decreased by 49.09%. The results of DMA and SEM analysis indicated the positive effects of MDI modification on the interfacial bonding between fibers and matrix. We believed that this simple and effective method could be used to the development of surface modified carbon fiber for high-performance TPU.

  19. Thermoplastic polyurethane/graphene nanocomposites: The effect of graphene oxide on physical properties

    NASA Astrophysics Data System (ADS)

    Russo, P.; Acierno, D.; Capezzuto, F.; Buonocore, G. G.; Di Maio, L.; Lavorgna, M.

    2015-12-01

    Thermoplastic polyurethanes (TPUs) have been widely used for a variety of applications such as fibers, coating, adhesives, and biomedical items because of their melt processability and versatile properties essentially related to their intrinsic two-phase segmented structure. However, their low stiffness and tensile strength as well as their weak barrier properties still limit their use. Currently, improvements of functional properties of plastics are usually obtained by the inclusion of nanofillers which, in this case, should be able to modify the segregated hard/soft domains of TPU matrix. In this frame, noteworthy results have been already achieved by using carbon based fillers as carbon nanotubes, graphene, graphene oxide, carbon nanofibers and so on. In this frame, this research was focused on blown films based on TPU composites including 0.2%, 0.5% and 1% of a commercial graphene oxide (GO). These latter were obtained according to a two-step procedure: a co-solvent methodology to obtain a concentrated TPU/graphene master followed by a dilution with the neat TPU matrix by extrusion melt compounding. Film samples were analyzed in terms of thermal, structural and barrier properties. Preliminary results indicated structural modifications of the TPU matrix as a result of the GO included with consequent influences on the water vapor barrier properties.

  20. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes.

    PubMed

    Verstraete, G; Samaro, A; Grymonpré, W; Vanhoorne, V; Van Snick, B; Boone, M N; Hellemans, T; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2018-01-30

    It was the aim of this study to develop high drug loaded (>30%, w/w), thermoplastic polyurethane (TPU)-based dosage forms via fused deposition modelling (FDM). Model drugs with different particle size and aqueous solubility were pre-processed in combination with diverse TPU grades via hot melt extrusion (HME) into filaments with a diameter of 1.75 ± 0.05 mm. Subsequently, TPU-based filaments which featured acceptable quality attributes (i.e. consistent filament diameter, smooth surface morphology and good mechanical properties) were printed into tablets. The sustained release potential of the 3D printed dosage forms was tested in vitro. Moreover, the impact of printing parameters on the in vitro drug release was investigated. TPU-based filaments could be loaded with 60% (w/w) fine drug powder without observing severe shark skinning or inconsistent filament diameter. During 3D printing experiments, HME filaments based on hard TPU grades were successfully converted into personalized dosage forms containing a high concentration of crystalline drug (up to 60%, w/w). In vitro release kinetics were mainly affected by the matrix composition and tablet infill degree. Therefore, this study clearly demonstrated that TPU-based FDM feedstock material offers a lot of formulation freedom for the development of personalized dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    NASA Astrophysics Data System (ADS)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  2. Development of a new surgical sheet containing both silk fibroin and thermoplastic polyurethane for cardiovascular surgery.

    PubMed

    Shimada, Ryo; Konishi, Hayato; Ozawa, Hideki; Katsumata, Takahiro; Tanaka, Ryou; Nakazawa, Yasumoto; Nemoto, Shintaro

    2018-05-01

    The surgical sheets that are currently used for congenital cardiovascular surgery have several drawbacks, including material deterioration, calcification, and pseudo-intimal proliferation resulting in hemodynamic disturbance. The aim of this study was to evaluate a newly developed sheet made from a combination of silk fibroin (SF) and a synthetic polymer, thermoplastic polyurethane (TPU), for surgical use. The hybrid SF/TPU sheet was a non-woven fabric with nanofibers that was made using the electrospinning method. The mechanical properties of the SF/TPU sheet were characterized. To determine its biocompatibility, part of the wall of the canine descending aorta was replaced with a SF/TPU sheet as a patch. The patches were removed after 3 months and a histological examination was performed. The flexibility, water permeability, and suture retention strength of the SF/TPU sheet were excellent and equivalent to those of existing sheets. The SF/TPU sheet had excellent handling properties and fit well into the vascular wall without needle hole bleeding. The histological examination revealed that the intimal tissue was restored well over the intraluminal surface of the explanted SF/TPU sheet, the absence of calcium deposition, and minimal inflammatory reaction, without signs of degradation. The SF/TPU sheet had excellent mechanical properties and tissue biocompatibility. These favorable features and possible biodegradability of the SF portion warrant a long-term follow-up study.

  3. Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane

    NASA Astrophysics Data System (ADS)

    Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.

    2018-06-01

    A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.

  4. The novel application of chitosan: Effects of cross-linked chitosan on the fire performance of thermoplastic polyurethane.

    PubMed

    Zhang, Sheng; Liu, Xiaodong; Jin, Xiaodong; Li, Hongfei; Sun, Jun; Gu, Xiaoyu

    2018-06-01

    In this paper, a novel flame retardant (ACS) was prepared by crosslinking chitosan with bis-(4-formylphenyl)-phenyl-phosphonate (ABPO). ACS in association with ammonium polyphosphate (APP) and organic modified montmorillonite (OMMT) were used to prepare flame retardant thermoplastic polyurethane (TPU) composite through melt blending. For the TPU sample containing 10% flame retardants, the limiting oxygen index was increased from 20.8 to 29.0%, the vertical burning (UL-94) rating was upgraded from no rating to V-0, and the peak heat release rate was decreased from 1090 to 284 kW/m 2 . The thermal gravity analysis (TGA) indicated that ACS had excellent char formation ability and could greatly enhance the thermal stability of TPU. The tensile strength and elongation at break for flame retardant sample could reach 16.5 MPa and 1443% respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber

    SciTech Connect

    Huang, Jintao; Liu, Huanyu; Lu, Xiang

    2016-03-09

    In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength andmore » modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.« less

  6. Post-fabrication QAC-functionalized thermoplastic polyurethane for contact-killing catheter applications.

    PubMed

    Zander, Zachary K; Chen, Peiru; Hsu, Yen-Hao; Dreger, Nathan Z; Savariau, Laura; McRoy, Willie C; Cerchiari, Alec E; Chambers, Sean D; Barton, Hazel A; Becker, Matthew L

    2018-05-11

    The use of catheters is ubiquitous in medicine and the incidence of infection remains unacceptably high despite numerous advances in functional surfaces and drug elution. Herein we report the use of a thermoplastic polyurethane containing an allyl ether side-chain functionality (allyl-TPU) that allows for rapid and convenient surface modification with antimicrobial reagents, post-processing. This post-processing functionalization affords the ability to target appropriate TPU properties and maintain the functional groups on the surface of the device where they do not affect bulk properties. A series of quaternary ammonium thiol compounds (Qx-SH) possessing various hydrocarbon tail lengths (8-14 carbons) were synthesized and attached to the surface using thiol-ene "click" chemistry. A quantitative assessment of the amount of Qx-SH available on the surface was determined using fluorescence spectroscopy and X-ray photoelectron spectroscopy (XPS). Contact-killing assays note the Q8-SH composition has the highest antimicrobial activity, and a live/dead fluorescence assay reveals rapid contact-killing of Staphylococcus aureus (>75% in 5 min) and Escherichia coli (90% in 10 min) inocula. Scale-up and extrusion of allyl-TPU provides catheter prototypes for biofilm formation testing with Pseudomonas aeruginosa, and surface-functionalized catheters modified with Q8-SH demonstrate their ability to reduce biofilm formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

    NASA Astrophysics Data System (ADS)

    Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

    2017-12-01

    This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

  8. Fabrication of CA/TPU Helical Nanofibers and its Mechanism Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Huihui; Zhao, Shihang; Han, Lei

    2018-04-01

    To explore the mechanism of cellulose acetate (CA)/thermoplastic polyurethane (TPU) on the fabrication of helical nanofibers, a series of experiments were conducted to find the optimum spinning conditions. The experimental results show that the CA (14 wt%, DMAc/acetone, 1/2 volume ratio)/TPU2 (18 wt%, DMAc/acetone, 3/1 volume ratio) system can fabricate helical nanofibers effectively via co-electrospinning. We focus on the interfacial interaction between the polymer components induced by the polymer structure and intrinsic properties, including solution properties, hydrogen bonding, and miscibility behavior of the two solutions. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) are employed to investigate the interfacial interaction between the two phases of the polymer system. The analysis results provide the explanation of the experimental results that the CA/TPU system has the potential for producing helical nanofibers effectively. This study based on the interfacial interaction between polymer components provides an insight into the mechanism of CA/TPU helical fiber formation and introduces a richer choice of materials for the application of helical fibers.

  9. Thermoplastic polyurethane-based intravaginal rings for prophylaxis and treatment of (recurrent) bacterial vaginosis.

    PubMed

    Verstraete, G; Vandenbussche, L; Kasmi, S; Nuhn, L; Brouckaert, D; Van Renterghem, J; Grymonpré, W; Vanhoorne, V; Coenye, T; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C

    2017-08-30

    The aim of the present study was to develop thermoplastic polyurethane (TPU)-based intravaginal rings (IVRs) for prophylaxis and treatment of bacterial vaginosis via hot melt extrusion/injection molding. Therefore, different TPU grades were processed in combination with lactic acid or metronidazole, targeting a sustained lactic acid release over a 28day-period and sustained metronidazole release over 4-7days. Hot melt extrusion of lactic acid/TPU combinations required a lower extrusion temperature due to the plasticizing properties of lactic acid, evidenced by the lower glass transition temperature (T g ) and cross-over point (T tanδ = 1 ) values. NIR-chemical imaging data showed a homogenous distribution of lactic acid in TPU matrices at drug loads up to 30% (w/w). The addition of metronidazole did not lower processing temperatures, as the active pharmaceutical ingredient remained crystalline in the TPU matrix. Hydrophobic TPUs with a low ratio between the soft and hard segments (SS/HS ratio) in the polymer structure were suitable carriers for the lactic acid-eluting device over a 28-day period, while hydrophilic TPUs were needed to achieve the required release rate of metronidazole-eluting IVRs. IVRs manufactured with a TPU grade having a higher SS/HS ratio and lactic acid/TPU ratio exhibited a more elastic behavior. The addition of 25% (w/w) metronidazole did not affect the mechanical properties of the IVRs. Hydrophilic TPUs were most prone to biofilm formation by Candida albicans and Staphylococcus aureus, but the incorporation of metronidazole in the device prevented biofilm formation. Based on the drug eluting performance and mechanical tests, a mixture of lactic acid and Tecoflex™ EG-93A (20/80, w/w) and a combination of metronidazole and Tecophilic™ SP-93A-100 (25/75, w/w) were selected to design IVRs for the prophylaxis and treatment of bacterial vaginosis, respectively. Slug mucosal irritation tests predicted low irritation potency for both devices

  10. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Process depending morphology and resulting physical properties of TPU

    SciTech Connect

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less

  12. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances.

    PubMed

    Xiang, Changsheng; Cox, Paris J; Kukovecz, Akos; Genorio, Bostjan; Hashim, Daniel P; Yan, Zheng; Peng, Zhiwei; Hwang, Chih-Chau; Ruan, Gedeng; Samuel, Errol L G; Sudeep, Parambath M; Konya, Zoltan; Vajtai, Robert; Ajayan, Pulickel M; Tour, James M

    2013-11-26

    A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.5 wt % HD-GNRs. The incorporation of HD-GNRs also improved the mechanical properties of the composite films, as predicted by the phase separation and indicated by tensile tests and dynamic mechanical analyses. The improved properties of the composite film could lead to potential applications in food packaging and lightweight mobile gas storage containers.

  13. Soft and Flexible Bilayer Thermoplastic Polyurethane Foam for Development of Bioinspired Artificial Skin.

    PubMed

    Li, Huan; Sinha, Tridib K; Oh, Jeong Seok; Kim, Jin Kuk

    2018-04-25

    Inspired by the epidermis-dermis composition of human skin, here we have simply developed a lightweight, robust, flexible, and biocompatible single-electrode triboelectric nanogenerator (S-TENG)-based prototype of bilayer artificial skin, by attaching one induction electrode with unfoamed skin layer of microcellular thermoplastic polyurethane (TPU) foam, which shows high-performance object manipulation [by responding differently toward different objects, viz., aluminum foil, balloon, cotton glove, human finger, glass, rubber glove, artificial leather, polyimide, poly(tetrafluoroethylene) (PTFE), paper, and wood], due to electrification and electrostatic induction during contact with the objects having different chemical functionalities. Comparative foaming behavior of ecofriendly supercritical fluids, viz., CO 2 over N 2 under variable temperatures (e.g., 130 and 150 °C) and constant pressure (15 MPa), have been examined here to pursue the soft and flexible triboelectric TPU foam. The foam derived by CO 2 foaming at 150 °C has been prioritized for development of S-TENG. Foam derived by CO 2 foaming at 130 °C did not respond as well due to the smaller cell size, higher hardness, and thicker skin. Inflexible N 2 -derived foam was not considered for S-TENG fabrication. Object manipulation performance has been visualized by principal component analysis (PCA), which shows good discrimination among responses to different objects.

  14. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Hohimer, Cameron J.; Petrossian, Gayaneh; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2018-03-01

    Additive manufacturing (AM) is an emerging field experiencing rapid growth. This paper presents a feasibility study of using fused-deposition modeling (FDM) techniques with smart materials to fabricate objects with sensing and actuating capabilities. The fabrication of objects with sensing typically requires the integration and assembly of multiple components. Incorporating sensing elements into a single FDM process has the potential to significantly simplify manufacturing. The integration of multiple materials, especially smart materials and those with multi-functional properties, into the FDM process is challenging and still requires further development. Previous works by the authors have demonstrated a good printability of thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) while maintaining conductivity and piezoresistive response. This research explores the effects of layer height, nozzle temperature, and bed temperature on the electrical conductivity and piezoresistive response of printed TPU/MWCNT nanocomposites. An impedance analyzer was used to determine the conductivity of printed samples under different printing conditions from 5Hz-13MHz. The samples were then tested under compression loads to measure the piezoresistive response. Results show the conductivity and piezoresistive response are only slightly affected by the print parameters and they can be largely considered independent of the print conditions within the examined ranges of print parameters. This behavior simplifies the printing process design for TPU/MWCNT complex structures. This work demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics, flexible electronics, and health monitoring.

  15. Characterization of Thermoplastic Polyurethane (TPU) and Ag Carbon Black TPU Nanocomposite for Potential Application in Additive Manufacturing (Postprint)

    DTIC Science & Technology

    2016-12-29

    APPLICATION IN ADDITIVE MANUFACTURING (POSTPRINT) Steven T. Patton, Chenggang Chen, Jianjun Hu, and Lawrence Grazulis University of Dayton Research...CARBON BLACK TPU NANOCOMPOSITE FOR POTENTIAL APPLICATION IN ADDITIVE MANUFACTURING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5401-0008 5b...and polymer nanocomposites (PNCs) are of interest for additive manufacturing (AM) and flexible electronics. Development/optimization of inks for AM

  16. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Yu, Emily; Wang, Xiaofeng; Li, Qian; Turng, Lih-Sheng

    2018-02-01

    The success of blood vessel transplants with vascular scaffolds (VSs) highly depends on their structure and mechanical properties. The fabrication of small diameter vascular scaffolds (SDVSs) mimicking the properties of native blood vessels has been a challenge. Herein, we propose a facile method to fabricate thermoplastic polyurethane (TPU)/polycaprolactone (PCL) hybrid SDVSs via electrospinning using a modified rotating collector. By varying the ratio between the TPU and the PCL, and changing the electrospinning volume, SDVSs with a wavy configuration and different properties could be obtained. Detailed investigation revealed that certain TPU/PCL hybrid SDVSs closely resembled the mechanical behaviors of blood vessels due to the presence of a wavy region and the combination of flexible TPU and rigid PCL, which mimicked the properties of elastin and collagen in blood vessels. The fabricated TPU/PCL SDVSs achieved lumen diameters of 1-3mm, wall thicknesses of 100-570µm, circumferential moduli of 1-6MPa, ultimate strengths of 2-8MPa, over 250% elongation-at-break values, toe regions of 5.3-9.4%, high recoverability, and compliances close to those of human veins. Moreover, these TPU/PCL SDVSs possessed sufficient suture retention strength and burst pressure to fulfill transplantation requirements and maintain normal blood flow. Human endothelial cell culture revealed good biocompatibility of the scaffolds, and cells were able to grow on the inner surface of the tubular scaffolds, indicating promising prospects for use as tissue-engineered vascular grafts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices.

    PubMed

    Verstraete, G; Mertens, P; Grymonpré, W; Van Bockstal, P J; De Beer, T; Boone, M N; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2016-11-20

    During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Preparation of ordered mesoporous and macroporous thermoplastic polyurethane surfaces for potential medical applications.

    PubMed

    Chennell, Philip; Feschet-Chassot, Emmanuelle; Sautou, Valérie; Mailhot-Jensen, Bénédicte

    2018-05-01

    Thermoplastic polyurethanes are widely used in medical devices. In order to limit some of their shortfalls, like microbial attachment, surfaces modifications can be required. In this work, a two-step replication method was used to create ordered macroporous and mesoporous thermoplastic polyurethane surfaces using anodic aluminum oxide as master template. The intermediate mould materials that were tested were polystyrene and a polyacrylate resin with inorganic filler. All obtained surfaces were characterized by scanning electron microscopy. The initial anodic aluminum oxide surfaces possessed macro or mesopores, function of anodization conditions. The intermediate mould structure correctly replicated the pattern, but the polystyrene surface structures (pillars) were less resistant than the polyacrylate resin ones. The thermoplastic polyurethane pattern possessed macropores or mesopores of about 130 nm or 46 nm diameter and of about 300 nm or 99 nm interpore distances, respectively, in accordance with the initial pattern. Thermoplastic polyurethanes pore depth was however less than initial anodic aluminum oxide pore depth, linked to an incomplete replication during intermediate mould preparation (60 to 90% depth replication). The correct replication of the original pattern confirms that this novel fabrication method is a promising route for surface patterning of thermoplastic polyurethanes that could be used for medical applications.

  19. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  20. Biodegradation Of thermoplastic polyurethanes from vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Thermoplastic urethanes based on polyricinoleic acid soft segments and MDI/BD hard segments with varied soft segment concentration were prepared. Soft segment concentration was varied fro, 40 to 70 wt %. Biodegradation was studied by respirometry. Segmented polyurethanes with soft segments based ...

  1. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.

    PubMed

    Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu

    2017-12-06

    Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

  2. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.

    PubMed

    Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-01

    Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effects of KMnO4 Treatment on the Flexural, Impact, and Thermal Properties of Sugar Palm Fiber-Reinforced Thermoplastic Polyurethane Composites

    NASA Astrophysics Data System (ADS)

    Mohammed, A. A.; Bachtiar, D.; Rejab, M. R. M.; Jiang, X. X.; Abas, Falak O.; Abass, Raghad U.; Hasany, S. F.; Siregar, Januar P.

    2018-05-01

    Global warming has had a great impact on environmental changes since the last decade. Eco-friendly industrial products are of great importance to sustain life on earth, including using natural composites. Natural fibers used as fillers are also environmentally valuable because of their biodegradable nature. However, compatibility issues between the fiber and its respective matrix is a major concern. The present work focused on the study of the flexural, impact, and thermal behaviors of environmentally friendly sugar palm fibers (SPF) incorporated into a composite with thermoplastic polyurethane (TPU). Two techniques (extrusion and compression molding) were used to prepare these composites. The fiber size and dosage were kept constant at 250 µm and 30 wt.% SPF, respectively. The effects of potassium permanganate (KMnO4) treatment on the flexural, impact, and thermal behaviors of the treated SPF with 6% NaOH-reinforced TPU composites were investigated. Three different concentrations of KMnO4 (0.033%, 0.066%, and 0.125%) were studied for this purpose. The characterization of the flexural and impact properties of the new TPU/SPF composites was studied as per American Society for Testing Materials ASTM standards. Thermogravimetric analysis was employed for thermal behavior analysis of the TPU/SPF composites. The best flexural strength, impact strength, and modulus properties (8.118 MPa, 55.185 kJ/m2, and 262.102 MPa, respectively) were obtained with a 0.033% KMnO4-treated sample. However, all flexural strength, impact strength, and modulus properties for the KMnO4-treated samples were lower than the sample treated only with 6% NaOH. The highest thermal stability was also shown by the sample treated with 0.033% KMnO4. Therefore, this method enhanced the thermal properties of the TPU/SPF composites with clear deterioration of the flexural and impact properties.

  4. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane.

    PubMed

    Cai, Wei; Wang, Junling; Pan, Ying; Guo, Wenwen; Mu, Xiaowei; Feng, Xiaming; Yuan, Bihe; Wang, Xin; Hu, Yuan

    2018-06-15

    The suppression effect of graphene in the fire hazards and smoke toxicity of polymer composites has been seriously limited by both mass production and weak interfacial interaction. Though the electrochemical preparation provides an available approach for mass production, exfoliated graphene could not strongly bond with polar polymer chains. Herein, mussel-inspired functionalization of electrochemically exfoliated graphene was successfully processed and added into polar thermoplastic polyurethane matrix (TPU). As confirmed by SEM patterns of fracture surface, functionalized graphene possessing abundant hydroxyl could constitute a forceful chains interaction with TPU. By the incorporation of 2.0 wt % f-GNS, peak heat release rate (pHRR), total heat release (THR), specific extinction area (SEA), as well as smoke produce rate (SPR) of TPU composites were approximately decreased by 59.4%, 27.1%, 31.9%, and 26.7%, respectively. A probable mechanism of fire retardant was hypothesized: well-dispersed f-GNS constituted tortuous path and hindered the exchange process of degradation product with barrier function. Large quantities of degradation product gathered round f-GNS and reacted with flame retardant to produce the cross-linked and high-degree graphited residual char. The simple functionalization for electrochemically exfoliated graphene impels the application of graphene in the fields of flame retardant composites. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Chemically Active, Porous 3D-Printed Thermoplastic Composites

    SciTech Connect

    Evans, Kent A.; Kennedy, Zachary C.; Arey, Bruce W.

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms. To address this, we report the production of MOF-thermoplastic polymer composites accessed via a standard 3D printer. MOFs (Zeolitic imidazolate framework; ZIF-8) were successfully incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices, extruded into filaments, and utilized for on-demand access to 3D structures by fused-deposition modeling. Printed rigid PLA-MOF composites displayed good structural integrity, high surface area ((SA)avg =more » 531 m2 g-1) and hierarchical pore features. Flexible TPU-MOF composites (SAavg = 706 m2 g-1) were achieved by employing a sacrificial fluoropolymer readily removed post-printing. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent MOF. The fabrication strategies can be extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically-active structures.« less

  6. Fluorinated polyurethane scaffolds for 19F magnetic resonance imaging

    PubMed Central

    Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J. C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Polymers are increasingly employed in implant materials. To reduce the incidence of complications, which in the case of vascular grafts include incorrect placement and restenosis, materials are needed which allow for image-guided implantation, as well as for accurate and efficient postoperative implant imaging. We here describe amorphous fluorinated polymers based on thermoplastic polyurethane (19F-TPU), and show that are useful starting materials for developing tissue-engineered vascular grafts which can be detected using 19F MRI. PMID:28413258

  7. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  8. Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments: Thermoplastic polyurethanes with controlled morphology

    SciTech Connect

    Javni, Ivan; Bilić, Olivera; Bilić, Nikola

    2015-06-30

    Isosorbide, a cyclic, rigid and renewable diol was used as a chain extender in two series of thermoplastic polyurethanes. Isosorbide was used in combination with butane diol or alone to examine the effects on polyurethane morphology. Two series of materials were prepared -one with dispersed hard domains in the matrix of polytetramethylene ether glycol soft segments of molecular weight 1400 (at 70% soft segment concentration-SSC) and the other with co-continuous soft and hard phases at 50% SSC. Morphology of materials was studied by optical and atomic force microscopy, as well as with ultra small angle x-ray scattering (USAXS). The radiusmore » of spherical hard domains, correlation lengths, mean separation distances and boundary layer thickness were measured as a function of isosorbide content.« less

  9. Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition.

    PubMed

    Zhang, Jing; Woodruff, Trent M; Clark, Richard J; Martin, Darren J; Minchin, Rodney F

    2016-09-01

    Thermoplastic polyurethanes (TPUs) are widely used in biomedical applications due to their excellent biocompatibility. Their role as matrices for the delivery of small molecule therapeutics has been widely reported. However, very little is known about the release of bioactive peptides from this class of polymers. Here, we report the release of linear and cyclic peptides from TPUs with different hard and soft segments. Solvent casting of the TPU at room temperature mixed with the different peptides resulted in reproducible efflux profiles with no evidence of drug degradation. Peptide release was dependent on the size as well as the composition of the TPU. Tecoflex 80A (T80A) showed more extensive release than ElastEon 5-325, which correlated with a degree of hydration. It was also shown that the composition of the medium influenced the rate and extent of peptide efflux. Blending the different TPUs allowed for better control of peptide efflux, especially the initial burst effect. Peptide-loaded TPU prolonged the plasma levels of the anti-inflammatory cyclic peptide PMX53, which normally has a plasma half-life of less than 30min. Using a blend of T80A and E5-325, therapeutic plasma levels of PMX53 were observed up to 9days following a single intraperitoneal implantation of the drug-loaded film. PMX53 released from the blended TPUs significantly inhibited B16-F10 melanoma tumor growth in mice demonstrating its bioactivity in vivo. This study provides important findings for TPU-based therapeutic peptide delivery that could improve the pharmacological utility of peptides as therapeutics. Therapeutic peptides can be highly specific and potent pharmacological agents, but are poorly absorbed and rapidly degraded in the body. This can be overcome by using a matrix that protects the peptide in vivo and promotes its slow release so that a therapeutic effect can be achieved over days or weeks. Thermoplastic polyurethanes are a versatile family of polymers that are biocompatible

  10. Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA

    PubMed Central

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    2016-01-01

    Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs (uHNTs), sulfuric acid treated (aHNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment (mHNTs)). It was found that mHNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young’s modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and mHNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). The analyses are carried out by

  11. Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A

    2016-11-22

    Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs ( u HNTs), sulfuric acid treated ( a HNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment ( m HNTs)). It was found that m HNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young's modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and m HNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and m HNT (HNTs type). The analyses are carried

  12. Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer

    NASA Astrophysics Data System (ADS)

    Dadbakhsh, Sasan; Verbelen, Leander; Vandeputte, Tom; Strobbe, Dieter; Van Puyvelde, Peter; Kruth, Jean-Pierre

    This work investigates the influence of powder size/shape on selective laser sintering (SLS) of a thermoplastic polyurethane (TPU) elastomer. It examines a TPU powder which had been cryogenically milled in two different sizes; coarse powder (D50∼200μm) with rough surfaces in comparison with a fine powder (D50∼63μm) with extremely fine flow additives. It is found that the coarse powder coalesces at lower temperatures and excessively smokes during the SLS processing. In comparison, the fine powder with flow additives is better processable at significantly higher powder bed temperatures, allowing a lower optimum laser energy input which minimizes smoking and degradation of the polymer. In terms of mechanical properties, good coalescence of both powders lead to parts with acceptable shear-punch strengths compared to injection molded parts. However, porosity and degradation from the optimum SLS parameters of the coarse powder drastically reduce the tensile properties to about one-third of the parts made from the fine powders as well as those made by injection molding (IM).

  13. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grademore » uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.« less

  14. Novel AgNWs-PAN/TPU membrane for point-of-use drinking water electrochemical disinfection.

    PubMed

    Tan, Xiaojun; Chen, Chao; Hu, Yongyou; Wen, Junjie; Qin, Yanzhe; Cheng, Jianhua; Chen, Yuancai

    2018-10-01

    The safety of drinking water remains a major challenge in developing countries and point-of-use (POU) drinking water treatment device plays an important role in decentralised drinking water safety. In this study, a novel material, i.e. a silver nanowires-polyacrylonitrile/thermoplastic polyurethane (AgNWs-PAN/TPU) composite membrane, was fabricated via electrospinning and vacuum filtration deposition. Morphological and structural characterisation showed that the PAN/TPU fibres had uniform diameters and enhanced mechanical properties. When added to these fibres, the AgNWs formed a highly conductive network with good physical stability and low silver ion leaching (<100 ppb). A POU device equipped with a AgNWs-PAN/TPU membrane displayed complete removal of 10 5  CFU/mL bacteria, which were inactivated by silver ions released from the AgNWs within 6 h. Furthermore, under a voltage of 1.5 V, the bacteria were completely inactivated within 20-25 min. Inactivation efficiency in 5 mM NaCl solution was higher than those in Na 2 SO 4 and NaNO 3 solutions. We concluded that a strong electric field was formed at the AgNW tips. Additionally, silver ions and chlorine compounds worked synergistically in the disinfection process. This study provides a scientific basis for research and development of silver nanocomposite membranes, with high mechanical strength and high conductivity, for POU drinking water disinfection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effect of phosphoric acid on the morphology and tensile properties of halloysite-polyurethane composites

    NASA Astrophysics Data System (ADS)

    Gaaz, Tayser Sumer; Luaibi, Hasan Mohammed; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.

    2018-06-01

    The high aspect ratio of nanoscale reinforcements enhances the tensile properties of pure polymer matrix. The composites were first made by adding halloysite nanotubes (HNTs) at low weight percentages of 1, 2, and 3 wt% to thermoplastic polyurethane (TPU). Then, HNTs were phosphoric acid-treated before adding to TPU at same weight percentage to create phosphoric acid HNTs-TPU composites. The samples were fabricated using injection moulding. The HNTs-TPU composites were characterized according to the tensile properties including tensile strength, tensile strain and Young's modulus. The loading has shown its highest tensile values at 2 wt% HNTs loading and same findings are shown with the samples that treated with phosphoric acid. The tensile strength increased to reach 24.65 MPa compare with the 17.7 MPa of the neat TPU showing about 26% improvement. For the phosphoric acid-treated composites, the improvement has reached 35% compared to the neat sample. Regarding the tensile stain, the improvement was about 83% at 2 wt% HNTs loading. For Young's modulus, the results obtained in this study have shown that Young's modulus is linearly improved with either the loading content or the phosphoric acid treated achieving its highest values at 3 wt% HNTs of 14.53 MPa and 16.27 MPa for untreated and treated, respectively. FESEM results showed that HNTs were well dispersed in TPU matrix. Thus, HNTs-TPU has improved tensile properties compared with pure TPU due to the addition of nanofiller.

  16. Chemically Active, Porous 3D-Printed Thermoplastic Composites.

    PubMed

    Evans, Kent A; Kennedy, Zachary C; Arey, Bruce W; Christ, Josef F; Schaef, Herbert T; Nune, Satish K; Erikson, Rebecca L

    2018-05-02

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms which make integration into devices challenging. Here, we report the production of MOF-thermoplastic polymer composites in well-defined and customizable forms and with complex internal structural features accessed via a standard three-dimensional (3D) printer. MOFs (zeolitic imidazolate framework; ZIF-8) were incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices at high loadings (up to 50% by mass), extruded into filaments, and utilized for on-demand access to 3D structures by fused deposition modeling. Printed, rigid PLA/MOF composites display a large surface area (SA avg = 531 m 2 g -1 ) and hierarchical pore features, whereas flexible TPU/MOF composites achieve a high surface area (SA avg = 706 m 2 g -1 ) by employing a simple method developed to expose obstructed micropores postprinting. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent framework. The fabrication strategies were extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically active structures.

  17. MRI Evaluation of an Elastic TPU Mesh under Pneumoperitoneum in IPOM Position in a Porcine Model.

    PubMed

    Lambertz, A; van den Hil, L C L; Ciritsis, A; Eickhoff, R; Kraemer, N A; Bouvy, N D; Müllen, A; Klinge, U; Neumann, U P; Klink, C D

    2018-06-01

    The frequency of laparoscopic approaches increased in hernia surgery over the past years. After mesh placement in IPOM position, the real extent of the meshes configurational changes after termination of pneumoperitoneum is still largely unknown. To prevent a later mesh folding it might be useful to place the mesh while it is kept under tension. Conventionally used meshes may lose their Effective Porosity under these conditions due to poor elastic properties. The aim of this study was to evaluate a newly developed elastic thermoplastic polyurethane (TPU) containing mesh that retains its Effective Porosity under mechanical strain in IPOM position in a porcine model. It was visualized under pneumoperitoneum using MRI in comparison to polyvinylidenefluoride (PVDF) meshes with similar structure. In each of ten minipigs, a mesh (TPU containing or native PVDF, 10 × 20 cm) was randomly placed in IPOM position at the center of the abdominal wall. After 8 weeks, six pigs underwent MRI evaluation with and without pneumoperitoneum to assess the visibility and elasticity of the mesh. Finally, pigs were euthanized and abdominal walls were explanted for histological and immunohistochemical assessment. The degree of adhesion formation was documented. Laparoscopic implantation of elastic TPU meshes in IPOM position was feasible and safe in a minipig model. Mesh position could be precisely visualized and assessed with and without pneumoperitoneum using MRI after 8 weeks. Elastic TPU meshes showed a significantly higher surface increase under pneumoperitoneum in comparison to PVDF. Immunohistochemically, the amount of CD45-positive cells was significantly lower and the Collagen I/III ratio was significantly higher in TPU meshes after 8 weeks. There were no differences regarding adhesion formation between study groups. The TPU mesh preserves its elastic properties in IPOM position in a porcine model after 8 weeks. Immunohistochemistry indicates superior biocompatibility

  18. Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2016-01-08

    As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less

  19. Processing Optimization of Deformed Plain Woven Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Vaidya, Uday K.

    2013-12-01

    This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.

  20. nu/TPU -- A DEC TPU compatible editor for UNIX

    NASA Astrophysics Data System (ADS)

    Rehan, S. C.

    nu/TPU is a fully programmable text processing utility compatible with the TPU system found on VMS systems. People used to using TPU or EDT on the former Starlink VAX/VMS service will find that nu/TPU is very similar to these editors.

  1. Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals

    Treesearch

    Jen-Chieh Liu; Darren J. Martin; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Freeze-dried cellulose nanocrystals (CNCs) were dispersed in the thermoplastic polyurethane [Pellethane 2363-55D (P55D)] by a solvent casting method to fabricate CNC-reinforced nanocomposites. This study demonstrated that the addition of small amounts (1–5 wt %) of CNCs to P55D increased the thermal degradation temperature while maintaining a similar stiffness,...

  2. Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols.

    PubMed

    Mohammed, Issam Ahmed; Al-Mulla, Emad Abbas Jaffar; Kadar, Nurul Khizien Abdul; Ibrahim, Mazlan

    2013-01-01

    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.

  3. Stiff, strong, yet tough free-standing dielectric films of graphene nanosheets-polyurethane nanocomposites with very high dielectric constant and loss

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Gul, Iftikhar Hussain

    2016-01-01

    In this study, graphene nanosheets (GNS) prepared through a liquid exfoliation technique are dispersed in thermoplastic polyurethane (TPU) at a volume fraction (Vf) of up to 0.19. Then, the electrical and mechanical properties of the obtained composites are characterized. The dielectric spectroscopy shows an excessive variation in dielectric constant (1.1 to 3.53 × 107) and dielectric tangent loss (0.03 to 2515) with varying Vf over the frequency range of 25 kHz to 5 MHz. A considerable enhancement in electrical conductivity (DC) is found, from 3.87 × 10-10 S/m (base polymer) to 53.5 S/m for the 0.19 Vf GNS-TPU nanocomposite. The GNS-TPU composites are mechanically robust, with a considerable increase in stiffness (˜4-fold) and strength (almost twice), maintaining its ductility up to 0.09 Vf GNS. The high dielectric constant at lower frequencies is attributed to the well-established Maxwell-Wagner polarization effect, whereas the high dielectric tangent loss is due to leakage currents as a physical conducting network is formed at high filler loadings. The layered structure, high aspect ratio, and improved dispersion of GNS are the main reasons for the improvement in both the dielectric characteristics and the mechanical properties of the host polymer. [Figure not available: see fulltext.

  4. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    PubMed

    Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C

    2016-06-15

    Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  6. Multiple-length-scale deformation analysis in a thermoplastic polyurethane

    PubMed Central

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.

    2015-01-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945

  7. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    NASA Astrophysics Data System (ADS)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  8. Multiblock thermoplastic polyurethanes for biomedical and shape memory applications

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhu

    Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase

  9. Electrospun nanofiber membranes for adsorption of dye molecules from textile wastewater

    NASA Astrophysics Data System (ADS)

    Akduman, C.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    The nanofiber membranes prepared by the electrospinning method have unique properties such as high specific surface area and high porosity with fine pores. These properties led electrospun nanofiber membranes to use for the removal of dye molecules from textile wastewater. In this study, a hydrophobic Thermoplastic Polyurethane (TPU) and a hydrophilic Poly (vinyl alcohol) (PVA) were selected for producing electrospun nanofibers and their sorption capacities were investigated. The largest sorption capacity reached to maximum 88.31 mg/g, belong to BTCA cross-linked PVA membranes due to hydrophilic character of PVA. Contrary to expectation, hydrophobic character of TPU was dominant and incorporation of CD to the TPU nanofibers did not affect the sorption of the TPU membranes, and showed very low adsorption capacity (14.48 mg/g).

  10. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-04-17

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  11. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers

    PubMed Central

    Lackner, Juergen M.; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-01-01

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials. PMID:24955532

  12. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    PubMed Central

    Kojio, Ken; Furukawa, Mutsuhisa; Nonaka, Yoshiteru; Nakamura, Sadaharu

    2010-01-01

    Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC)-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene)), 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs), poly(oxytetramethylene) glycol (PTMG), and PTMG incorporating dimethyl groups (PTG-X) and methyl side groups (PTG-L) were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6) and tetramethylene (C4) units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10) were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components. PMID:28883371

  13. Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and silicon rubber materials.

    PubMed

    Braun, Ulrike; Lorenz, Edelgard; Weimann, Christiane; Sturm, Heinz; Karimov, Ilham; Ettl, Johannes; Meier, Reinhard; Wohlgemuth, Walter A; Berger, Hermann; Wildgruber, Moritz

    2016-12-01

    Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU) and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, whereas the samples after removal were compared according to the implanted time in patient. The macroscopic, mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was analysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure, especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Melt dispersion and electrospinning of non-functionalized multiwalled carbon nanotubes in thermoplastic polyurethane.

    PubMed

    Hunley, Matthew T; Pötschke, Petra; Long, Timothy E

    2009-12-16

    Nanoscale fibers with embedded, aligned, and percolated non-functionalized multiwalled carbon nanotubes (MWCNTs) were fabricated through electrospinning dispersions based on melt-compounded thermoplastic polyurethane/MWCNT nanocomposite, with up to 10 wt.-% MWCNTs. Transmission electron microscopy indicated that the nanotubes were highly oriented and percolated throughout the fibers, even at high MWCNT concentrations. The coupling of efficient melt compounding with electrospinning eliminated the need for intensive surface functionalization or sonication of the MWCNTs, and the high aspect ratio as well as the electrical and mechanical properties of the nanotubes were retained. This method provides a more efficient technique to generate one-dimensional nanofibers with aligned MWCNTs. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Microwave-assisted synthesis of isosorbide-derived diols for the preparation of thermally stable thermoplastic polyurethane

    PubMed Central

    Kasmi, Nejib; Roso, Martina; Hammami, Nadia; Majdoub, Mustapha; Boaretti, Carlo; Sgarbossa, Paolo; Vianello, Chiara; Maschio, Giuseppe; Modesti, Michele; Lorenzetti, Alessandra

    2017-01-01

    Abstract In order to prepare thermally stable isosorbide-derived thermoplastic polyurethane, the synthesis of two new chiral exo–exo configured diols, prepared from isosorbide, and two types of diphenols (bisphenol A and thiodiphenol) was described. The synthesis conditions were optimized under conventional heating and microwave irradiations. To prove their suitability in polymerization, these monomers were successfully polymerized using 4,4′-diphenylmethane diisocyanate (MDI) and hexamethylene diisocyanate (HDI). Both monomers and polymers have been studied by NMR, FT-IR, TGA, DSC; intrinsic viscosity of polymers has also been determined. The results showed the effectiveness of the synthetic strategy proposed; moreover, a dramatic reduction of the reaction time and an important improvement of the monomers yield using microwave irradiation have been demonstrated. The monomers, as well as the polymers, showed excellent thermal stability both in air and nitrogen. It was also shown that the introduction of sulphur in the polyurethane backbone was effective in delaying the onset of degradation as well as the degradation rate. PMID:29491826

  16. Rheological behaviour, mechanical properties and morphological aspects of thermoplastic polyurethane reinforced with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Acierno, Domenico; Spena, Paola

    2010-06-01

    Melt blended compounds based on a film grade thermoplastic polyurethane resin filled with relatively low contents of multiwalled carbon nanotubes have been investigated. Materials, prepared through the production of a masterbatch containing 3 wt% of nanotubes and subsequent dilution of the same by addition of matrix pellets, were analyzed in the form of tapes and films always taking the neat matrix, processed in the same conditions, as the reference. Improvements of the matrix extrudability and mechanical benefits showed for all investigated composite samples have been satisfactorily interpreted by morphological observations carried out in both transmission and scanning electron microscopy.

  17. Dispersion and characterization of Thermoplastic Polyurethane/Multiwalled Carbon Nanotubes in co-rotative twin screw extruder

    NASA Astrophysics Data System (ADS)

    Benedito, Adolfo; Buezas, Ignacio; Giménez, Enrique; Galindo, Begoña

    2010-06-01

    The dispersion of multi-walled carbon nanotubes in thermoplastic polyurethanes has been done in co-rotative twin screw extruder through a melt blending process. A specific experimental design was prepared taking into account different compounding parameters such as feeding, temperature profile, screw speed, screw design, and carbon nanotube loading. The obtained samples were characterized by thermogravimetric analysis (TGA), light transmission microscopy, dynamic rheometry, and dynamic mechanical analysis. The objective of this work has been to study the dispersion quality of the carbon nanotubes and the effect of different compounding parameters to optimize them for industrial scale-up to final applications.

  18. [Modern polyurethanes in cardiovascular surgery].

    PubMed

    Gostev, A A; Laktionov, P P; Karpenko, A A

    Currently, there is great clinical demand for synthetic tissue-engineered cardiovascular prostheses with good long-term patency. Polyurethanes belong to the class of polymers with excellent bio- and hemocompatibility. They are known to possess good mechanical properties, but are prone to processes of degradation in conditions of functioning in living organisms. Attempts at solving this problem have resulted in the development of various new subclasses of polyurethanes such as thermoplastic polyether polyurethanes, polyurethanes with a silicone segment, polycarbonate polyurethanes and nanocomposite polyurethanes. This was accompanied and followed by offering a series of new technologies of production of implantable medical devices such as vascular grafts, heart valves and others. In the presented review, we discuss biological and mechanical properties of modern subclasses of polyurethanes, as well as modern methods of manufacturing implantable medical devices made of polyurethanes, especially small-diameter vascular prostheses.

  19. Thermoplastic composites for veneering posterior teeth-a feasibility study.

    PubMed

    Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R

    2002-09-01

    This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.

  20. Absolute variation of the mechanical characteristics of halloysite reinforced polyurethane nanocomposites complemented by Taguchi and ANOVA approaches

    NASA Astrophysics Data System (ADS)

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    The variation of the results of the mechanical properties of halloysite nanotubes (HNTs) reinforced thermoplastic polyurethane (TPU) at different HNTs loadings was implemented as a tool for analysis. The preparation of HNTs-TPU nanocomposites was performed under four controlled parameters of mixing temperature, mixing speed, mixing time, and HNTs loading at three levels each to satisfy Taguchi method orthogonal array L9 aiming to optimize these parameters for the best measurements of tensile strength, Young's modulus, and tensile strain (known as responses). The maximum variation of the experimental results for each response was determined and analysed based on the optimized results predicted by Taguchi method and ANOVA. It was found that the maximum absolute variations of the three mentioned responses are 69%, 352%, and 126%, respectively. The analysis has shown that the preparation of the optimized tensile strength requires 1 wt.% HNTs loading (excluding 2 wt.% and 3 wt.%), mixing temperature of 190 °C (excluding 200 °C and 210 °C), and mixing speed of 30 rpm (excluding 40 rpm and 50 rpm). In addition, the analysis has determined that the mixing time at 20 min has no effect on the preparation. The mentioned analysis was fortified by ANOVA, images of FESEM, and DSC results. Seemingly, the agglomeration and distribution of HNTs in the nanocomposite play an important role in the process. The outcome of the analysis could be considered as a very important step towards the reliability of Taguchi method.

  1. Effects of glycerol monosterate on TPUs crystallization and its foaming behavior

    NASA Astrophysics Data System (ADS)

    Hossieny, N.; Nofar, M.; Shaayegan, V.; Park, C. B.

    2014-05-01

    Thermoplastic polyurethane (TPU) containing 0-2 wt% glycerol monosterate (GMS) were compounded by a twin screw compounder and then foamed using a batch process and n-butane. Differential scanning calorimetry (DSC) and high-pressure DSC were performed to evaluate the effects of GMS and pressurized butane on the crystallization kinetics of TPU. The results showed that the synergistic effect of GMS and high pressure butane significantly promoted hard segment (HS) crystallization in the TPU-GMS samples. The TPU-GMS samples showed significant increase in crystallinity over a wide range of saturation temperatures in the presence of butane compared to neat melt-compounded TPU (PR-TPU). Comparing the foam characteristics of PR-TPU and TPU-GMS samples, it was observed that both samples exhibited microcellular morphology with high cell density over a wide range of processing temperatures of 150°C - 170°C. However at a high foaming temperature (170°C), PR-TPU foams showed high cell coalescence compared to TPU-GMS. Furthermore, TPU-GMS samples showed a much higher expansion ratio compared to PR-TPU over a wide range of processing temperatures. The lubricating effect of GMS assisted the HS to stack together and form crystalline domains. These HS crystalline domains are present at high temperature acting both as a heterogeneous nucleating sites as well as reinforcement leading to the observed microcellular morphology with a high expansion ratio in TPU-GMS samples.

  2. Fast-responding bio-based shape memory thermoplastic polyurethanes

    SciTech Connect

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  3. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE PAGES

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...

    2017-05-31

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  4. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    PubMed

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  5. The influence of electron-beam irradiation on the chemical and the structural properties of medical-grade polyurethane

    NASA Astrophysics Data System (ADS)

    Shin, Sukyoung; Lee, Soonhyouk

    2015-07-01

    Thermo plastic polyurethane (TPU) provides excellent bio-compatibility, flexibility and good irradiation resistance; however, extremely high irradiation doses can alter the structure and the function of macromolecules, resulting in oxidation, chain scission and cross-linking. In this study, the effects of e-beam irradiation on the medical-grade thermo plastic polyurethane were studied. Changes in the chain length and their distribution, as well as changes in the molecular structure were studied. The GPC (gel permeation chromatography) results show that the oxidative decomposition is followed by a decrease in the molecular mass and an increase in polydispersity. This indicates a very inhomogeneous degradation, which is a consequence of the specific course and of the intensity of oxidative degradation. This was confirmed by means of mechanical property measurements. Overall, this study demonstrated that medical-grade TPU was affected by radiation exposure, particularly at high irradiation doses.

  6. Water as foaming agent for open cell polyurethane structures.

    PubMed

    Haugen, H; Ried, V; Brunner, M; Will, J; Wintermantel, E

    2004-04-01

    The problem of moisture in polymer processing is known to any polymer engineer, as air bubbles may be formed. Hence granulates are generally dried prior to manufacturing. This study tried to develop a novel processing methods for scaffolds with controlled moisture content in thermoplastic polyurethane. The common foaming agents for polyurethane are organic solvents, whose residues remaining in the scaffold may be harmful to adherent cells, protein growth factors or nearby tissues. Water was used as a foaming agent and NaCl was used as porogens to achieve an open-cell structure. The polyether-polyurethane samples were processed in a heated press, and achieved a porosity of 64%. The pore size ranged between 50 and 500 microm. Human fibroblasts adhered and proliferate in the scaffold. A non-toxic production process was developed to manufacture a porous structure with a thermoplastic polyether-polyurethane. The process enables a mass-production of samples with adjustable pore size and porosity. In contrast to an existing method (solvent casting), the processing of the samples was not limited by its thickness. The process parameters, which attribute mostly to the pore building, were filling volume, temperature, NaCl-concentration and water-uptake rate.

  7. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  8. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  9. Fabrication of High Content Carbon Nanotube-Polyurethane Sheets with Tailorable Properties.

    PubMed

    Martinez-Rubi, Yadienka; Ashrafi, Behnam; Jakubinek, Michael B; Zou, Shan; Laqua, Kurtis; Barnes, Michael; Simard, Benoit

    2017-09-13

    We have fabricated carbon nanotube (CNT)-polyurethane (TPU) sheets via a one-step filtration method that uses a TPU solvent/nonsolvent combination. This solution method allows for control of the composition and processing conditions, significantly reducing both the filtration time and the need for large volumes of solvent to debundle the CNTs. Through an appropriate selection of the solvents and tuning the solvent/nonsolvent ratio, it is possible to enhance the interaction between the CNTs and the polymer chains in solution and improve the CNT exfoliation in the nanocomposites. The composition of the nanocomposites, which defines the characteristics of the material and its mechanical properties, can be precisely controlled. The highest improvements in tensile properties were achieved at a CNT:TPU weight ratio around 35:65 with a Young's modulus of 1270 MPa, stress at 50% strain of 35 MPa, and strength of 41 MPa, corresponding to ∼10-fold improvement in modulus and ∼7-fold improvement in stress at 50% strain, while maintaining a high failure strain. At the same composition, CNTs with higher aspect ratio produce nanocomposites with greater improvements (e.g., strength of 99 MPa). Electrical conductivity also shows a maximum near the same composition, where it can exceed the values achieved for the pristine nanotube buckypaper. The trend in mechanical and electrical properties was understood in terms of the CNT-TPU interfacial interactions and morphological changes occurring in the nanocomposite sheets as a function of increasing the TPU content. The availability of such a simple method and the understanding of the structure-property relationships are expected to be broadly applicable in the nanocomposites field.

  10. Study on preparation and mechanical performance of TPU/nonwoven composites

    NASA Astrophysics Data System (ADS)

    Sun, X. C.; Xi, B. J.

    2016-07-01

    In order to study the influence of resin content and layer sequence parameters on the mechanical properties of TPU/non-woven composite materials synthesized by moulding pressing technology. The effects of the resin content and layer sequence on composites were discussed. Through experiments and theoretical analysis, it was revealed how resin content, layer sequence impact on mechanical properties of composite. The mechanics properties of TPU/non-woven composite materials are improved. The process is pressure 0.5 MPa, temperature 110 °C and time 120s min. The melting of the TPU infiltrated into the fabric and filled the space between the fibers.

  11. Open-pore polyurethane product

    DOEpatents

    Jefferson, R.T.; Salyer, I.O.

    1974-02-17

    The method is described of producing an open-pore polyurethane foam having a porosity of at least 50% and a density of 0.1 to 0.5 g per cu cm, and which consists of coherent spherical particles of less than 10 mu diam separated by interconnected interstices. It is useful as a filter and oil absorbent. The product is admirably adapted to scavenging of crude oil from the surface of seawater by preferential wicking. The oil-soaked product may then be compressed to recover the oil or burned for disposal. The crosslinked polyurethane structures are remarkably solvent and heat-resistance as compared with known thermoplastic structures. Because of their relative inertness, they are useful filters for gasoline and other hydrocarbon compounds. (7 claims)

  12. Interfacial contributions in lignocellulosic firber-reinforced polyurethane composites

    Treesearch

    Timothy G. Rials; Michael P. Wolcott; John M. Nassar

    2001-01-01

    Whereas lignocellulosic fibers have received considerable attention as a reinforcing agent in thermoplastic composites, their applicability to reactive polymer systems remains of considerable interest. The hydroxyl-rich nature of natural lignocellulosic fibers suggests that they are particularly useful in thermsetting systems such as polyurethanes. To further this...

  13. Interfacial contributions in lignocellulosic fiber-reinforced polyurethane composites

    Treesearch

    Timothy G. Rials; Michael P. Wolcott; John M. Nassar

    2001-01-01

    Whereas lignocellulosic fibers have received considerable attention as a rein- forcing agent in thermoplastic composites, their applicability to reactive polymer systems remains of considerable interest. The hydroxyl-rich nature of natural lignocellulosic fibers suggests that they are particularly useful in thermosetting systems such as polyurethanes. To further this...

  14. Conductive plastics: comparing alternative nanotechnologies by performance and life cycle release probability

    NASA Astrophysics Data System (ADS)

    Neubauer, Nicole; Wohlleben, Wendel; Tomović, Željko

    2017-03-01

    Nanocomposites can be considered safe during their life cycle as long as the nanofillers remain embedded in the matrix. Therefore, a possible release of nanofillers has to be assessed before commercialization. This report addresses possible life cycle release scenarios for carbon nanotubes (CNT), graphene, and carbon black (CB) from a thermoplastic polyurethane (TPU) matrix. The content of each nanofiller was adjusted to achieve the same conductivity level. The nanofillers reduced the rate of nanoscale releases during mechanical processing with decreasing release in the order neat TPU, TPU-CNT, TPU-graphene, and TPU-CB. Released fragments were dominated by the polymer matrix with embedded or surface-protruding nanofillers. During electron microscopy analysis, free CB was observed, however, there was no free CNT or graphene. Quantitatively, the presence of free nanofillers remained below the detection limit of <0.01% of generated dust. Further, both the production process and type of mechanical processing showed a significant impact with higher release rates for injection-molded compared to extruded and sanded compared to drilled materials. Due to its optimal performance for further development, extruded TPU-CNT was investigated in a combined, stepwise worst case scenario (mechanical processing after weathering). After weathering by simulated sunlight and rain, CNT were visible at the surface of the nanocomposite; after additional sanding, fragments showed protruding CNT, but free CNT were not detected. In summary, this preliminary exposure assessment showed no indication that recommended occupational exposure limits for carbonaceous nanomaterials can be exceeded during the life cycle of the specific TPU nanocomposites and conditions investigated in this study.

  15. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties

    PubMed Central

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C

    2014-01-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and 1H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was −47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress–strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4–9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. PMID:24812276

  16. Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    PubMed

    Kim, Hyo-Jin; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2014-09-01

    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Water-free synthesis of polyurethane foams using highly reactive diisocyanates derived from 5-hydroxymethylfurfural.

    PubMed

    Neumann, Christopher N D; Bulach, Winfried D; Rehahn, Matthias; Klein, Roland

    2011-09-01

    This paper reports on the synthesis of a new highly reactive diisocyanate monomer based on hydroxymethylfurfural. It further describes its catalyst-free conversion to linear-chain thermoplastic polyurethanes as well as to cross-linked polyurethane foams. In addition, a novel strategy for the synthesis of polyurethane foams without the necessity of using water is developed. Nitrogen is utilized herein as blowing agent which is formed during Curtius rearrangement of a new furan based carboxylic azide into its corresponding diisocyanate. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transparent Large Strain Thermoplastic Polyurethane Magneto-Active Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Carpen, Ileana; Peck, John; Sola, Francisco; Bail, Justin; Lerch, Bradley; Meador, Michael

    2010-01-01

    Smart adaptive materials are an important class of materials which can be used in space deployable structures, morphing wings, and structural air vehicle components where remote actuation can improve fuel efficiency. Adaptive materials can undergo deformation when exposed to external stimuli such as electric fields, thermal gradients, radiation (IR, UV, etc.), chemical and electrochemical actuation, and magnetic field. Large strain, controlled and repetitive actuation are important characteristics of smart adaptive materials. Polymer nanocomposites can be tailored as shape memory polymers and actuators. Magnetic actuation of polymer nanocomposites using a range of iron, iron cobalt, and iron manganese nanoparticles is presented. The iron-based nanoparticles were synthesized using the soft template (1) and Sun's (2) methods. The nanoparticles shape and size were examined using TEM. The crystalline structure and domain size were evaluated using WAXS. Surface modifications of the nanoparticles were performed to improve dispersion, and were characterized with IR and TGA. TPU nanocomposites exhibited actuation for approximately 2wt% nanoparticle loading in an applied magnetic field. Large deformation and fast recovery were observed. These nanocomposites represent a promising potential for new generation of smart materials.

  19. Highly stretchable nanoalginate based polyurethane elastomers.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-06-20

    Highly stretchable elastomeric samples based on cationic polyurethane dispersions-sodium alginate nanoparticles (CPUD/SA) were prepared by the solution blending of sodium alginate and aqueous polyurethane dispersions. CPUDs were synthesized by step growth polymerization technique using N-methyldiethanolamine (MDEA) as a source of cationic emulsifier. The chemical structure and thermal-mechanical properties of these systems were characterized using FTIR and DMTA, respectively. The presence of nanoalginate particles including nanobead and nanorod particles were proved by SEM and EDX. It was observed that thermal properties of composites increased with increasing SA content. All prepared samples were known as thermoplastic-elastomers with high percentages of elongation. Excellent compatibility of prepared nanocomposites was proved by the DMTA data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    PubMed

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  1. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    NASA Astrophysics Data System (ADS)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  2. Macroergonomic intervention for work design improvement and raw materials waste reduction in a small footwear components company in Rio Grande do Sul-Brazil.

    PubMed

    Cornelli, Renata; Guimarães, Lia Buarque de Macedo

    2012-01-01

    This article presents a macroergonomic intervention carried out in a small footwear components company located in the state of Rio Grande do Sul, Brazil. The company's demand was related to the waste of the expensive raw-material (thermoplastic polyurethane or TPU) used to manufacture the components (high heels pegs). According to the managerial staff, the waste was workers responsibility due to the craft characteristic of the process. A participative method was used to evaluate the problems, propose and implement solutions, as well as evaluate their impact on the workers and the Company. Improvements in the work conditions resulted in increase of workers' satisfaction with the work and in 31.5% waste reduction.

  3. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding.

    PubMed

    Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2015-02-01

    This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Developing lignin-based bio-nanofibers by centrifugal spinning technique.

    PubMed

    Stojanovska, Elena; Kurtulus, Mustafa; Abdelgawad, Abdelrahman; Candan, Zeki; Kilic, Ali

    2018-07-01

    Lignin-based nanofibers were produced via centrifugal spinning from lignin-thermoplastic polyurethane polymer blends. The most suitable process parameters were chosen by optimization of the rotational speed, nozzle diameter and spinneret-to-collector distance using different blend ratios of the two polymers at different total polymer concentrations. The basic characteristics of polymer solutions were enlightened by their viscosity and surface tension. The morphology of the fibers produced was characterized by SEM, while their thermal properties by DSC and TG analysis. Multiply regression was used to determine the parameters that have higher impact on the fiber diameter. It was possible to obtain thermally stable lignin/polyurethane nanofibers with diameters below 500nm. From the aspect of spinnability, 1:1 lignin/TPU contents were shown to be more feasible. On the other side, the most suitable processing parameters were found to be angular velocity of 8500rpm for nozzles of 0.5mm diameter and working distance of 30cm. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.

    PubMed

    Iijima, Masahiro; Kohda, Naohisa; Kawaguchi, Kyotaro; Muguruma, Takeshi; Ohta, Mitsuru; Naganishi, Atsuko; Murakami, Takashi; Mizoguchi, Itaru

    2015-12-01

    To investigate the effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures. Five thermoplastic materials, polyethylene terephthalate glycol (Duran®, Scheu Dental), polypropylene (Hardcast®, Scheu Dental), and polyurethane (SMP MM®, SMP Technologies) with three different glass transition temperatures (T g) were selected. The T g and crystal structure were assessed using differential scanning calorimetry and X-ray diffraction. The deterioration of mechanical properties by thermal cycling and the orthodontic forces during stepwise temperature changes were investigated using nanoindentation testing and custom-made force-measuring system. The mechanical properties were also evaluated by three-point bending tests; shape recovery with heating was then investigated. The mechanical properties for each material were decreased significantly by 2500 cycles and great decrease was observed for Hardcast (crystal plastic) with higher T g (155.5°C) and PU 1 (crystalline or semi-crystalline plastic) with lower T g (29.6°C). The Duran, PU 2, and PU 3 with intermediate T g (75.3°C for Duran, 56.5°C for PU 2, and 80.7°C for PU 3) showed relatively stable mechanical properties with thermal cycling. The polyurethane polymers showed perfect shape memory effect within the range of intraoral temperature changes. The orthodontic force produced by thermoplastic appliances decreased with the stepwise temperature change for all materials. Orthodontic forces delivered by thermoplastic appliances may influence by the T g of the materials, but not the crystal structure. Polyurethane is attractive thermoplastic materials due to their unique shape memory phenomenon, but stress relaxation with temperature changes is expected. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For

  6. Response of Polyurethane to Shock Waves: An Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Rao, Keshava Subba; Thanganayaki, N.; Kumara, H. K. T.; Reddy, K. P. J.

    Formation of polyurethane (PU) in vacuum environment and controlling density of polyurethane foams are the present day challenges. Polyurethane exists in numerous forms ranging from flexible to rigid and lightweight foams to tough, stiff elastomers [1]. PU can be used to produce lightweight foams for insulation or hard rubber used as wheels to transport heavy loads and it can be used in high pressure applications. The largest volumes of commercial PU elastomers are made from toluene diisocyanate (TDI) or diphenylmethane-4, 4'-diisocyanate (MDI) [2]. Linear polyurethanes can be processed into final products by any of the standard thermoplastic processes (injection molding, extrusion, thermoforming) as well as by low pressure cast processes in presence of catalysts. Tin, tetrabutyl titanate and zirconium chelates are few effective catalysts used to produce polyurethane for particular application [3]. Thermoset elastomers are formed due to irreversible cross-links, when polymers are chemically cured. Highly porous biodegradable PU was synthesized by thermally induced phase separation technique used in tissue engineering and also in bio-degradable based fluids [4]. Properties of PU like hardness, stress/strain modulus, tear strength etc, was determine using ASTM (American Society for Testing and Materials) standard methods. PU possesses extremely high mechanical properties, excellent abrasion, tear and extrusion resistance. It has outstanding low-temperature limit (-600C) and high temperature limit up to (1500C).

  7. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of

  8. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers.

    PubMed

    Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization

  9. Composite Polymeric Membranes with Directionally Embedded Fibers for Controlled Dual Actuation.

    PubMed

    Liu, Li; Bakhshi, Hadi; Jiang, Shaohua; Schmalz, Holger; Agarwal, Seema

    2018-04-20

    In this paper, preparation method and actuation properties of an innovative composite membrane composed of thermo- and pH-responsive poly(N-isopropylacrylamide-co-acrylic acid) fibers (average diameter ≈ 905 nm) embedded within a passive thermoplastic polyurethane (TPU) matrix at different angles with degree of alignment as high as 98% are presented. The composite membrane has a gradient of TPU along the thickness. It has the capability of temperature- and pH-dependent direction-, and size-controlled actuation in few minutes. The stresses generated at the responsive fiber and nonresponsive matrix provide actuation, whereas the angle at which fibers are embedded in the matrix controls the actuation direction and size. The temperature has no effect on actuation and actuated forms at pH 7 and above, whereas the size of the actuated forms can be controlled by the temperature at lower pH. The membranes are strong enough to reversibly lift and release ≈426 times weight of their own mass (2.47 g metal ring is lifted by a 5.8 mg membrane). Soft actuators are of interest as smart scaffolds, robotics, catalysis, drug release, energy storage, electrodes, and metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.

    PubMed

    Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang

    2017-12-01

    The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.

  11. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers.

    PubMed

    Wisse, Eva; Spiering, A J H; van Leeuwen, Ellen N M; Renken, Raymond A E; Dankers, Patricia Y W; Brouwer, Linda A; van Luyn, Marja J A; Harmsen, Martin C; Sommerdijk, Nico A J M; Meijer, E W

    2006-12-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in terms of mechanical properties, processibility and histocompatibility. Comparison of the data with those obtained from the structurally related poly(urethane urea) 1 revealed that the difference in hard segment structure does not significantly affect the potency for application as a biomaterial. Nevertheless, the small differences in hard block composition had a strong effect on the molecular recognition properties of the hydrogen bonding segments. High selectivity was found for poly(urea) 2 in which bisureidobutylene-functionalized azobenzene dye 3 was selectively incorporated while bisureidopentylene-functionalized azobenzene dye 4 was completely released. In contrast, the incorporation of both dyes in poly(urethane urea) 1 led in both cases to their gradual release in time. Thermal analysis of the polymers in combination with variable temperature infrared experiments indicated that the hard blocks in 1 showed a sharp melting point, whereas those in 2 showed a very broad melting trajectory. This suggests a more precise organization of the hydrogen bonding segments in the hard blocks of poly(urea) 2 compared to poly(urethane urea) 1 and explains the results from the molecular recognition experiments. Preliminary results revealed that a bisureidobutylene-functionalized GRGDS peptide showed more supramolecular interaction with the PCL-based poly(urea), containing the bisureidobutylene recognition unit, as compared to HMW PCL, lacking this recognition unit.

  12. Nanofiller Presence Enhances Polycyclic Aromatic Hydrocarbon (PAH) Profile on Nanoparticles Released during Thermal Decomposition of Nano-enabled Thermoplastics: Potential Environmental Health Implications.

    PubMed

    Singh, Dilpreet; Schifman, Laura Arabella; Watson-Wright, Christa; Sotiriou, Georgios A; Oyanedel-Craver, Vinka; Wohlleben, Wendel; Demokritou, Philip

    2017-05-02

    Nano-enabled products are ultimately destined to reach end-of-life with an important fraction undergoing thermal degradation through waste incineration or accidental fires. Although previous studies have investigated the physicochemical properties of released lifecycle particulate matter (called LCPM) from thermal decomposition of nano-enabled thermoplastics, critical questions about the effect of nanofiller on the chemical composition of LCPM still persist. Here, we investigate the potential nanofiller effects on the profiles of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAHs) adsorbed on LCPM from thermal decomposition of nano-enabled thermoplastics. We found that nanofiller presence in thermoplastics significantly enhances not only the total PAH concentration in LCPM but most importantly also the high molecular weight (HMW, 4-6 ring) PAHs that are considerably more toxic than the low molecular weight (LMW, 2-3 ring) PAHs. This nano-specific effect was also confirmed during in vitro cellular toxicological evaluation of LCPM for the case of polyurethane thermoplastic enabled with carbon nanotubes (PU-CNT). LCPM from PU-CNT shows significantly higher cytotoxicity compared to PU which could be attributed to its higher HMW PAH concentration. These findings are crucial and make the case that nanofiller presence in thermoplastics can significantly affect the physicochemical and toxicological properties of LCPM released during thermal decomposition.

  13. Cardiovascular Computed Tomography Phantom Fabrication and Characterization through the Tailored Properties of Polymeric Composites and Cellular Foams

    NASA Astrophysics Data System (ADS)

    Hoy, Carlton F. O.

    The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.

  14. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    NASA Astrophysics Data System (ADS)

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  15. A facile and low-cost route for sensitive stretchable sensors by controlling kinetic and thermodynamic conductive network regulating strategies.

    PubMed

    Duan, Lingyan; D'hooge, Dagmar R; Spoerk, Martin; Cornillie, Pieter; Cardon, Ludwig

    2018-05-29

    Highly sensitive conductive polymer composites (CPCs) are designed, employing a facile and low-cost extrusion manufacturing process for both low and high strain sensing in the field of e.g. structural health/damage monitoring and human body movement tracking. Focus is on the morphology control for extrusion processed carbon black (CB)-filled CPCs, utilizing binary and ternary composites based on thermoplastic polyurethane (TPU) and olefin block copolymer (OBC). The relevance of the correct CB amount, kinetic control through a variation of the compounding sequence, and thermodynamic control induced by annealing is highlighted, considering a wide range of experimental (e.g. static and dynamic resistance/SEM/rheological measurements) and theoretical analyses. High CB mass fractions (20 m%) are needed for OBC (or TPU)-CB binary composites but only lead to an intermediate sensitivity as their conductive network is fully-packed and therefore difficult to be truly destructed. Annealing is needed to enable a monotonic increase of the relative resistance with respect to strain. With ternary composites a much higher sensitivity with a clearer monotonic increase results provided that a low CB mass fraction (10-16 m%) is used and annealing is applied. In particular, with CB first dispersed in OBC and annealing a less compact, hence, brittle conductive network (10-12 m% CB) is obtained, allowing high performance sensing.

  16. Healing efficiency of shape memory polyurethane fiber reinforced syntactic foam under applied load

    NASA Astrophysics Data System (ADS)

    Ogunmekan, Babatunde

    Shape memory composite materials have received a great deal of interest in recent structural developments, both in sandwich and in lightweight structures. Experimental procedures involving the free body healing of these materials have been carried out; however, it is important to investigate the healing behaviors of these SMP materials while under load. In this study, syntactic foams reinforced with strain-hardened short-shape memory polyurethane fibers (SMPUFs) were prepared to evaluate their ability to heal wide-opened cracks using the two-step biomimetic close-then-heal (CTH) self-healing scheme while under varying loads. The syntactic foam samples manufactured consisted of an epoxy matrix with dispersed thermoplastic particles, glass microballoons and short SMPUFs. The SMPUF strands were cold-drawn (stretched-then-released) for up to four cycles and then cut to 10 mm short fibers before casting the polymer matrix. Three types of syntactic foam specimens, consisting of 5%, 10%, and 15% thermoplastic particle volume fraction compositions, respectively, were manufactured, and notched beam samples were then prepared. Fracture-healing by uniaxial tension was conducted for five cycles on each sample. Material characterization techniques, such as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), were utilized to highlight the crack healing characteristics and thermal properties. In addition, a high-resolution charge-coupled device (CCD) camera with a resolution of 3.7 x 3.7 μm/pixel was used to capture the crack tip opening displacement (CTOD). It is seen that the healing ability of the composite varies with changes in both the load carried and the volume fraction of thermoplastic particles. As the thermoplastic volume fraction increased from 5% to 10% to 15%, the tensile strength values recorded decreased, but there was also an increase in the healing efficiency. Moreover, SEM images revealed partial healing in samples with lower

  17. Thermoplastic welding apparatus and method

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  18. Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor

    NASA Astrophysics Data System (ADS)

    Aliheidari, Nahal; Ameli, Amir; Pötschke, Petra

    2018-03-01

    Fused deposition modeling (FDM) is one of the 3D printing methods that has attracted significant attention. In this method, small and complex samples with nearly no limitation in geometry can be fabricated layer by layer to form end-use parts. This work investigates the liquid sensing behavior of FDM printed flexible thermoplastic polyurethane, TPU filled with multiwalled carbon nanotubes, MWCNTs. The sensing capability of printed TPU-MWCNT was studied as a function of MWCNT content and infill density in response to different solvents, i.e., ethanol, acetone and toluene. The solvents were selected based on their widespread use and importance in medical and industrial applications. U-shaped liquid sensors with 2, 3 and 4wt.% MWCNT content were printed at three different infill densities of 50, 75 and 100%. Solvent sensitivity was then characterized by immersing the sensors in the solvents and measuring the resistance evolution over 25s. The results indicated a sensitivity order of acetone > toluene > ethanol, which was in agreement with the predictions of FloryHiggins solubility equation. For all the solvents, the sensitivity was enhanced as the infill density of the printed samples was decreased. This was attributed to the increased surface area to volume ratio and shortened diffusion paths. The MWCNT content was also observed to have a profound effect on the sensitivity; in samples with partial infill, the sensitivity was found to be inversely proportional to the MWCNT content, such that the highest resistance change was obtained for nanocomposites with the lowest MWCNT content of 2wt.%. For instance, a resistance increase of more than 10 times was obtained in 25 s once TPU-2wt.%MWCNT with 50% infill was tested against acetone. The results of this work reveals that highly sensitive liquid sensors can be fabricated with the aid of 3D printing without the need for complex processing methods.

  19. Development and modeling of multi-phase polymeric origami inspired architecture by using pre-molded geometrical features

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2017-02-01

    Using Origami folded cores in sandwich structures for lightweight applications has attracted attention in different engineering applications, especially in the applications where the stiffness to weight ratio is a critical design parameter. Recently, common sandwich cores such as honey-comb and foamed cores have been replaced with origami core panels due to their way of force redistribution and energy absorption; these unique characteristics give origami cores high stiffness to weight ratio and high bending and twisting resistance. This paper presents the results of experimental investigations of the effect of base material on the mechanical properties and the impact resistance of Miura-Origami sandwich cores; then, the experimental results are compared with FEA simulation results. The materials used in the study for the origami cores were polymer blends composed of polylactic acid (PLA) and thermoplastic polyurethane (TPU). PLA/TPU blend compositions are (100/0, 80/20, 65/35, 50/50, 20/80, and 0/100) as a weight percentage. The geometrical parameters of the unit cell, base material thickness, and the panel thickness were considered to be constants in this study. The study shows the behavior of the origami cores under impact test and the energy absorbed by the origami folded cores. It was found that 20/80 PLA/TPU blend demonstrated the highest specific energy absorption efficiency both in quasi-static compression and impact tests. Fractured Origami structures were observed to fail at folded edges (creases lines), while the facets exhibit rigid body rotations. The FEM simulation showed a consistency in the impact behavior of the origami cores, and the directional deformational of origami core units which explain the ability of the structure to redistribute the applied force and absorb energy. In this work the origami folded core features were molded directly from the blended material.

  20. Highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Stump, E. C., Jr.; Rochow, S. E. (Inventor)

    1972-01-01

    New polyurethanes containing a high degree of fluorine atoms are reported. The presence of the fluorine atoms in the polyurethane resins provides material having good thermal stability and chemical resistance. These polyurethanes are derived from a new hydroxy-terminated perfluoro polyether. The hydroxy terminated material is reacted with a diisocyanate to produce the polyurethanes. The polyurethanes can be used to form seals, coatings, potting material, hoses and the like.

  1. Welds in thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Taylor, N. S.

    Welding methods are reviewed that can be effectively used for joining of thermoplastic composites and continuous-fiber thermoplastics. Attention is given to the use of ultrasonic, vibration, hot-plate, resistance, and induction welding techniques. The welding techniques are shown to provide complementary weld qualities for the range of thermoplastic materials that are of interest to industrial and technological applications.

  2. Joining of thermoplastic substrates by microwaves

    DOEpatents

    Paulauskas, Felix L.; Meek, Thomas T.

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  3. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  4. Magnetic thermal dissipations of FeCo hollow fibers filled in composite sheets under alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, Jinu; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the heat elevation of FeCo hollow fibers filled in magnetic composite sheet, we synthesized the FeCo hollow fiber by using electroless plating method. The synthesized FeCo hollow fibers (50 wt.%) were mixed with thermoplastic polyurethane (TPU). FeCo hollow fiber in composite sheet exhibited the representative α-FeCo peak by XRD. The magnetization and coercivity of FeCo hollow fibers were 176.5 Am2/kg and 6.2 kA/m, respectively. In order to measure the heat elevation, the alternating magnetic field (AMF) was applied to magnetic composites sheets from 7.1 kA/m to 11.1 kA/m at 190 kHz and the frequency was applied from 190 kHz to 355 kHz at 8.3 kA/m, respectively. The elevated temperatures and the specific loss power (SLP) values exhibited about 76 °C from the initial temperature of 26 °C and about 25.3 W/g for the AMF of 8.3 kA/m and frequency of 355 kHz.

  5. How to Make Reliable, Washable, and Wearable Textronic Devices

    PubMed Central

    Tao, Xuyuan; Koncar, Vladan; Huang, Tzu-Hao; Shen, Chien-Lung; Ko, Ya-Chi; Jou, Gwo-Tsuen

    2017-01-01

    In this paper, the washability of wearable textronic (textile-electronic) devices has been studied. Two different approaches aiming at designing, producing, and testing robust washable and reliable smart textile systems are presented. The common point of the two approaches is the use of flexible conductive PCB in order to interface the miniaturized rigid (traditional) electronic devices to conductive threads and tracks within the textile flexible fabric and to connect them to antenna, textile electrodes, sensors, actuators, etc. The first approach consists in the use of TPU films (thermoplastic polyurethane) that are deposited by the press under controlled temperature and pressure parameters in order to protect the conductive thread and electrical contacts. The washability of conductive threads and contact resistances between flexible PCB and conductive threads are tested. The second approach is focused on the protection of the whole system—composed of a rigid electronic device, flexible PCB, and textile substrate—by a barrier made of latex. Three types of prototypes were realized and washed. Their reliabilities are studied. PMID:28338607

  6. Annealing Reduces Free Volumes In Thermoplastics

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; St. Clair, Terry L.

    1988-01-01

    Investigation conducted to determine free volumes and water-absorption characteristics of two types of thermoplastic polymide as functions of annealing histories. Reductions reach asymptotic values after several annealing cycles. High-temperature thermoplastics excellent candidates for use in aerospace applications. Graphite-fiber composites containing thermoplastic matrices have wide applicability.

  7. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics

    PubMed Central

    Watson-Wright, Christa; Singh, Dilpreet; Demokritou, Philip

    2017-01-01

    Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM

  8. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics.

    PubMed

    Watson-Wright, Christa; Singh, Dilpreet; Demokritou, Philip

    2017-01-01

    Nano-enabled thermoplastics are part of the growing market of nano-enabled products (NEPs) that have vast utility in several industries and consumer goods. The use and disposal of NEPs at their end of life has raised concerns about the potential release of constituent engineered nanomaterials (ENMs) during thermal decomposition and their impact on environmental health and safety. To investigate this issue, industrially relevant nano-enabled thermoplastics including polyurethane, polycarbonate, and polypropylene containing carbon nanotubes (0.1 and 3% w/v, respectively), polyethylene containing nanoscale iron oxide (5% w/v), and ethylene vinyl acetate containing nanoscale titania (2 and 5% w/v) along with their pure thermoplastic matrices were thermally decomposed using the recently developed lab based Integrated Exposure Generation System (INEXS). The life cycle released particulate matter (called LCPM) was monitored using real time instrumentation, size fractionated, sampled, extracted and prepared for toxicological analysis using primary small airway epithelial cells to assess potential toxicological effects. Various cellular assays were used to assess reactive oxygen species and total glutathione as measurements of oxidative stress along with mitochondrial function, cellular viability, and DNA damage. By comparing toxicological profiles of LCPM released from polymer only (control) with nano-enabled LCPM, potential nanofiller effects due to the use of ENMs were determined. We observed associations between NEP properties such as the percent nanofiller loading, host matrix, and nanofiller chemical composition and the physico-chemical properties of released LCPM, which were linked to biological outcomes. More specifically, an increase in percent nanofiller loading promoted a toxicological response independent of increasing LCPM dose. Importantly, differences in host matrix and nanofiller composition were shown to enhance biological activity and toxicity of LCPM

  9. Radiation-induced changes affecting polyester based polyurethane binder

    NASA Astrophysics Data System (ADS)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion

  10. Survey of United States Army Reserve (USAR) Troop Program Unit (TPU) soldiers 1989. Tabulation of Questionnaire Responses: Longitudinal Sample: Junior Enlisted Stayers from 1988 to 1989. 1989 Questionnaire Responses

    DTIC Science & Technology

    1989-09-30

    AD-A237 531 1989 SURVEY OF UNITED STATES ARMY RESERVE (USAR) TROOP PROGRAM UNIT (TPU) SOLDIERS Tabulation of Questionnaire Responses: Longitudinal...Program Unit (TPU) Soldiers . The Tabulation Volumes list questionnaire items and the percent of respondents (weighted to population estimates) who have...Reserve population eligible for selection was defined by the number of personnel rec,,rds on a Dpeber 1988 SIDPERS data base; this totalled 280,265

  11. Recovery behaviour of shape memory polyurethane based laminates after thermoforming

    NASA Astrophysics Data System (ADS)

    Wu, Shuiliang; Xu, Wensen; Prasath Balamurugan, G.; Thompson, Michael R.; Nielsen, Kent E.; Brandys, Frank A.

    2017-11-01

    Shape memory polymers (SMPs) can be used to produce a new class of decorative films capable of improved formability and shape recovery in polymer laminates, which are increasingly being used for automotive, aerospace, construction and commercial applications. As a relatively new field there is little knowledge on the shape recovery behaviour of laminates with a SMP film and few methods of quantify that behaviour. The influences of different variables that affect the recovery behaviour of thermoplastic shape memory polyurethanes based laminates including ambient temperature (45 °C and 65 °C), material modulus, and adhesive strength were investigated after thermoforming, through both experimental and modelling methods. The empirical model assisted in identifying the contributions of the adhesive to transfer stresses, which dampened the recovery of the laminate with lower shear strength adhesives. Increasing ambient temperature and the film modulus increased both the final angle recovery ratios and recovery rates.

  12. Thermoplastic-carbon fiber hybrid yarn

    NASA Technical Reports Server (NTRS)

    Ketterer, M. E.

    1984-01-01

    Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.

  13. Study of Polyurethane Foaming Dynamics Using a Heat Flow Meter

    NASA Astrophysics Data System (ADS)

    Koniorczyk, P.; Trzyna, M.; Zmywaczyk, J.; Zygmunt, B.; Preiskorn, M.

    2017-05-01

    This work presents the results of the study concerning the effects of fillers addition on the heat flux density \\dot{q}( t ) of foaming of polyurethane-polystyrene porous composite (PSUR) and describes the dynamics of this process during the first 600 s. This foaming process resulted in obtaining porous materials that were based on HFC 365/225 blown rigid polyurethane foam (PUR) matrix, which contained thermoplastic expandable polystyrene (EPS) beads as the filler. In PSUR composites, the EPS beads were expanded after being heated to a temperature above the glass transition temperature of EPS and vaporing gas incorporated inside, by using the heat of exothermic reaction of polyol with isocyanate. From the start (t=0) to the end of the PSUR composite foaming process (t=tk), \\dot{q}( t ) was measured with the use of the heat flow meter. For the purpose of the study two PUR systems were selected: one with high and one with low heat density of foaming process q. EPS beads were selected from the same manufacturer with large and small diameter. The mass fraction of EPS in PSUR foam varied during the measurements. Additionally, a study of volume fractions of expanded EPS phase in PSUR foams as a function of mass fractions of EPS was conducted. In order to verify effects of the EPS addition on the heat flux density during PSUR foaming process, the thermal conductivity measurements were taken.

  14. Properties of Graphene/Shape Memory Thermoplastic Polyurethane Composites Actuating by Various Methods

    PubMed Central

    Park, Jin Ho; Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu

    2014-01-01

    Shape memory behavior of crystalline shape memory polyurethane (SPU) reinforced with graphene, which utilizes melting temperature as a shape recovery temperature, was examined with various external actuating stimuli such as direct heating, resistive heating, and infrared (IR) heating. Compatibility of graphene with crystalline SPU was adjusted by altering the structure of the hard segment of the SPU, by changing the structure of the graphene, and by changing the preparation method of the graphene/SPU composite. The SPU made of aromatic 4,4′-diphenylmethane diisocyanate (MSPU) exhibited better compatibility with graphene, having an aromatic structure, compared to that made of the aliphatic hexamethylene diisocyanate. The finely dispersed graphene effectively reinforced MSPU, improved shape recovery of MSPU, and served effectively as a filler, triggering shape recovery by resistive or IR heating. Compatibility was enhanced when the graphene was modified with methanol. This improved shape recovery by direct heating, but worsened the conductivity of the composite, and consequently the efficiency of resistive heating for shape recovery also declined. Graphene modified with methanol was more effective than pristine graphene in terms of shape recovery by IR heating. PMID:28788529

  15. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  16. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

    PubMed

    Kohda, Naohisa; Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Ahluwalia, Karamdeep S; Mizoguchi, Itaru

    2013-05-01

    To measure the forces delivered by thermoplastic appliances made from three materials and investigate effects of mechanical properties, material thickness, and amount of activation on orthodontic forces. Three thermoplastic materials, Duran (Scheu Dental), Erkodur (Erkodent Erich Kopp GmbH), and Hardcast (Scheu Dental), with two different thicknesses were selected. Values of elastic modulus and hardness were obtained from nanoindentation measurements at 28°C. A custom-fabricated system with a force sensor was employed to obtain measurements of in vitro force delivered by the thermoplastic appliances for 0.5-mm and 1.0-mm activation for bodily tooth movement. Experimental results were subjected to several statistical analyses. Hardcast had significantly lower elastic modulus and hardness than Duran and Erkodur, whose properties were not significantly different. Appliances fabricated from thicker material (0.75 mm or 0.8 mm) always produced significantly greater force than those fabricated from thinner material (0.4 mm or 0.5 mm). Appliances with 1.0-mm activation produced significantly lower force than those with 0.5-mm activation, except for 0.4-mm thick Hardcast appliances. A strong correlation was found between mechanical properties of the thermoplastic materials and force produced by the appliances. Orthodontic forces delivered by thermoplastic appliances depend on the material, thickness, and amount of activation. Mechanical properties of the polymers obtained by nanoindentation testing are predictive of force delivery by these appliances.

  17. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  18. Process Makes Thermoplastic Prepreg Ribbon

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Johnson, Gary S.

    1995-01-01

    Manufacturing process produces ribbon of composite material (prepreg) consisting of continuous lengthwise fibers impregnated with thermoplastic resin. Ribbon can later be cut into sheets of required sizes and shapes, stacked, then heated under pressure to form composite-material structural components. Process accommodates variety of thermoplastic resins and variety of fibers.

  19. Cryomilling of Thermoplastic Powder for Prepreg Applications

    DTIC Science & Technology

    2013-09-01

    Cryomilling of Thermoplastic Powder for Prepreg Applications by Brian Parquette, Anit Giri, Daniel J. O’Brien, Sarah Brennan, Kyu Cho, and...MD 21005-5066 ARL-TR-6591 September 2013 Cryomilling of Thermoplastic Powder for Prepreg Applications Brian Parquette and Sarah Brennan...COVERED (From - To) 1 March 2012–30 May 2013 4. TITLE AND SUBTITLE Cryomilling of Thermoplastic Powder for Prepreg Applications 5a. CONTRACT

  20. Environmentally Compliant Thermoplastic Powder Coating, Phase 1

    DTIC Science & Technology

    1992-10-07

    TPC flame sprayed application equipment and ethylene acrylic acid (EAA) and ethylene methacrylic acid (EMAA) copolymers thermoplastic powder...have worked closely with Dow Chemical to develop and optimize their systems using Dow "Envelon" ethylene acrylic acid (EAA) thermoplastic copolymers...provide on/off control. CFS recommends the use of Dow "Envelon" ethylene acrylic acid (EAA) copolymer thermoplastic powder with this unit. The CFS system

  1. Solid particle erosion of polymers and composites

    NASA Astrophysics Data System (ADS)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  2. Stable Polyurethane Coatings for Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Alkane-based polyurethanes resist deterioration while maintaining good dielectric properties. Weight loss after prolonged immersion in hot water far less for alkane-based polyurethanes than for more common ether based polyurethanes, at any given oxygen content. Major uses of polyurethanes are as connector potting materials and conformal coatings for printed circuit boards.

  3. Interlaminar fracture toughness of thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Johnston, N. J.; Obrien, T. K.

    1988-01-01

    Edge delamination tension and double cantilever beam tests were used to characterize the interlaminar fracture toughness of continuous graphite-fiber composites made from experimental thermoplastic polyimides and a model thermoplastic. Residual thermal stresses, known to be significant in materials processed at high temperatures, were included in the edge delamination calculations. In the model thermoplastic system (polycarbonate matrix), surface properties of the graphite fiber were shown to be significant. Critical strain energy release rates for two different fibers having similar nominal tensile properties differed by 30 to 60 percent. The reason for the difference is not clear. Interlaminar toughness values for the thermoplastic polyimide composites (LARC-TPI and polyimidesulfone) were 3 to 4 in-lb/sq in. Scanning electron micrographs of the EDT fracture surfaces suggest poor fiber/matrix bonding. Residual thermal stresses account for up to 32 percent of the strain energy release in composites made from these high-temperature resins.

  4. Thermoplastic/Nanotube Composite Fibers

    NASA Astrophysics Data System (ADS)

    Haggenmueller, Reto; Fischer, John; Winey, Karen

    2000-03-01

    A combination of solvent casting and melt mixing methods are used to compound selected thermoplastics with single-wall carbon nanotubes. Subsequently, melt extrusion is used to form thermoplastic-nanotube composite fibers. The structural characteristics are investigated by electron microscopy and x-ray scattering methods. In addition the electrical, thermal and mechanical properties were measured. Correlations are sought between the viscoelastic properties of the compounded materials, the nanotube loading and elongation ratio after spinning, and the properties of the resultant fibers.

  5. Processable Aromatic Polyimide Thermoplastic Blends

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M; Johnston, Norman J.; St. Clair, Terry L.; Nelson, James B.; Gleason, John R.; Proctor, K. Mason

    1988-01-01

    Method developed for preparing readily-processable thermoplastic polyimides by blending linear, high-molecular-weight, polyimic acid solutions in ether solvents with ultrafine, semicrystalline, thermoplastic polyimide powders. Slurries formed used to make prepregs. Consolidation of prepregs into finsihed composites characterized by excellent melt flow during processing. Applied to film, fiber, fabric, metal, polymer, or composite surfaces. Used to make various stable slurries from which prepregs prepared.

  6. Polyurethane membranes for surgical gown applications

    NASA Astrophysics Data System (ADS)

    Ukpabi, Pauline Ozoemena

    The Occupational Safety and Health Administration (OSHA) recently issued a directive requiring all employers to supply personnel protective equipment to employees who are at risk of exposure to blood or other potentially infectious body fluids. For the healthcare worker, a wide variety of surgical gowns is available commercially but there are concerns over their barrier effectiveness and/or wearer comfort. To successfully create a barrier fabric which combines resistance to fluid penetration with comfort, a complete understanding of the relationship between membrane structure and functional properties is required. In this study, we investigated the surface properties of hydrophilicity and hydrophobicity in polyurethane membranes intended for use in surgical gowns. The polyurethane membranes were grafted with side chains of varying lengths, polyethylene glycol (PEG) being used for the hydrophilic modifications and perfluoroalkyl compounds (a monofunctional acid and a difunctional amino alcohol) for the hydrophobic modifications. The hydrophilic treatment was intended to improve the comfort properties of monolithic membranes without adversely affecting their barrier properties. The hydrophobic treatment, on the other hand, was intended to improve the fluid repellency and hence barrier properties of microporous membranes without adversely affecting their comfort properties. Reflection infrared spectroscopy showed that fluorine was successfully grafted onto the polyurethane backbone during the hydrophobic modification, but was not sensitive enough to detect PEG grafting in leached polyethylene glycol-treated polyurethanes. X-ray photoelectron spectroscopy showed that the perfluoroalkylated polyurethanes contained up to 40% fluorine on their surfaces and the PEG-treated polyurethanes showed an increase in their C-O content over the unmodified polyurethane. Scanning electron microscopy not only showed that perfluoroalkylation yielded polyurethane membranes with very

  7. Development of polyurethanes for bone repair.

    PubMed

    Marzec, M; Kucińska-Lipka, J; Kalaszczyńska, I; Janik, H

    2017-11-01

    The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Tough poly(arylene ether) thermoplastics as modifiers for bismaleimides

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.; Roemer, W.; Hergenrother, P. M.; Jensen, B. J.

    1989-01-01

    Several aspects of research on thermoplastics as toughness modifiers are discussed, including the contribution of the backbone chemistry and the concentration of the poly(arylene ether) thermoplastic to fracture toughness, influence of the molecular weight of the poly(arylene ether) thermoplastic on neat resin fracture toughness, and the morphology of the thermoplastic modified networks. The results show that fracture toughness of brittle bismaleimide resins can be improved significantly with poly(arylene ether) thermoplastic levels of 20 percent by weight, and that high molecular weight poly(arylene ether) based on bisphenol A provides the highest degree of toughening. Preliminary composite evaluation shows that improvements in neat resin toughness translate into carbon fabric composite.

  9. 100% Solids Polyurethane Sequestration Coating

    DTIC Science & Technology

    2014-04-11

    Distribution Unlimited 100% Solids Polyurethane Sequestration Coating The views, opinions and/or findings contained in this report are those of the...Papers published in non peer-reviewed journals: 100% Solids Polyurethane Sequestration Coating Report Title Report developed under Topic #CBD13-101...Final Technical Report Contract #: W911NF-13-P-0010 Proposal #: 63958CHSB1 Project: 100% Solids Polyurethane Sequestration Coating

  10. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  11. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  12. 40 CFR 721.8095 - Silylated polyurethane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silylated polyurethane. 721.8095... Substances § 721.8095 Silylated polyurethane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a silylated polyurethane (PMN P-95-1356) is...

  13. Consolidation modelling for thermoplastic composites forming simulation

    NASA Astrophysics Data System (ADS)

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  14. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  15. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  16. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  17. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  18. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  19. A Study on New Composite Thermoplastic Propellant

    NASA Astrophysics Data System (ADS)

    Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro

    Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.

  20. A thermoplastic polyimidesulfone

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A.

    1982-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composities). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  1. Polyurethane Filler for Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  2. Sustained Release Drug Delivery Applications of Polyurethanes.

    PubMed

    Lowinger, Michael B; Barrett, Stephanie E; Zhang, Feng; Williams, Robert O

    2018-05-09

    Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  3. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.

    PubMed

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L

    2012-09-04

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.

  4. Microscale Patterning of Thermoplastic Polymer Surfaces by Selective Solvent Swelling

    PubMed Central

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L.

    2012-01-01

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of microns, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539

  5. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry.

    PubMed

    Chung, Michael; Radacsi, Norbert; Robert, Colin; McCarthy, Edward D; Callanan, Anthony; Conlisk, Noel; Hoskins, Peter R; Koutsos, Vasileios

    2018-01-01

    There is a potential for direct model manufacturing of abdominal aortic aneurysm (AAA) using 3D printing technique for generating flexible semi-transparent prototypes. A patient-specific AAA model was manufactured using fused deposition modelling (FDM) 3D printing technology. A flexible, semi-transparent thermoplastic polyurethane (TPU), called Cheetah Water (produced by Ninjatek, USA), was used as the flexible, transparent material for model manufacture with a hydrophilic support structure 3D printed with polyvinyl alcohol (PVA). Printing parameters were investigated to evaluate their effect on 3D-printing precision and transparency of the final model. ISO standard tear resistance tests were carried out on Ninjatek Cheetah specimens for a comparison of tear strength with silicone rubbers. It was found that an increase in printing speed decreased printing accuracy, whilst using an infill percentage of 100% and printing nozzle temperature of 255 °C produced the most transparent results. The model had fair transparency, allowing external inspection of model inserts such as stent grafts, and good flexibility with an overall discrepancy between CAD and physical model average wall thicknesses of 0.05 mm (2.5% thicker than the CAD model). The tear resistance test found Ninjatek Cheetah TPU to have an average tear resistance of 83 kN/m, higher than any of the silicone rubbers used in previous AAA model manufacture. The model had lower cost (4.50 GBP per model), shorter manufacturing time (25 h 3 min) and an acceptable level of accuracy (2.61% error) compared to other methods. It was concluded that the model would be of use in endovascular aneurysm repair planning and education, particularly for practicing placement of hooked or barbed stents, due to the model's balance of flexibility, transparency, robustness and cost-effectiveness.

  6. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  7. Non-invasive primate head restraint using thermoplastic masks.

    PubMed

    Drucker, Caroline B; Carlson, Monica L; Toda, Koji; DeWind, Nicholas K; Platt, Michael L

    2015-09-30

    The success of many neuroscientific studies depends upon adequate head fixation of awake, behaving animals. Typically, this is achieved by surgically affixing a head-restraint prosthesis to the skull. Here we report the use of thermoplastic masks to non-invasively restrain monkeys' heads. Mesh thermoplastic sheets become pliable when heated and can then be molded to an individual monkey's head. After cooling, the custom mask retains this shape indefinitely for day-to-day use. We successfully trained rhesus macaques (Macaca mulatta) to perform cognitive tasks while wearing thermoplastic masks. Using these masks, we achieved a level of head stability sufficient for high-resolution eye-tracking and intracranial electrophysiology. Compared with traditional head-posts, we find that thermoplastic masks perform at least as well during infrared eye-tracking and single-neuron recordings, allow for clearer magnetic resonance image acquisition, enable freer placement of a transcranial magnetic stimulation coil, and impose lower financial and time costs on the lab. We conclude that thermoplastic masks are a viable non-invasive form of primate head restraint that enable a wide range of neuroscientific experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Non-invasive primate head restraint using thermoplastic masks

    PubMed Central

    Drucker, Caroline B.; Carlson, Monica L.; Toda, Koji; DeWind, Nicholas K.; Platt, Michael L.

    2015-01-01

    Background The success of many neuroscientific studies depends upon adequate head fixation of awake, behaving animals. Typically, this is achieved by surgically affixing a head-restraint prosthesis to the skull. New Method Here we report the use of thermoplastic masks to non-invasively restrain monkeys’ heads. Mesh thermoplastic sheets become pliable when heated and can then be molded to an individual monkey’s head. After cooling, the custom mask retains this shape indefinitely for day-to-day use. Results We successfully trained rhesus macaques (Macaca mulatta) to perform cognitive tasks while wearing thermoplastic masks. Using these masks, we achieved a level of head stability sufficient for high-resolution eye-tracking and intracranial electrophysiology. Comparison with Existing Method Compared with traditional head-posts, we find that thermoplastic masks perform at least as well during infrared eye-tracking and single-neuron recordings, allow for clearer magnetic resonance image acquisition, enable freer placement of a transcranial magnetic stimulation coil, and impose lower financial and time costs on the lab. Conclusions We conclude that thermoplastic masks are a viable non-invasive form of primate head restraint that enable a wide range of neuroscientific experiments. PMID:26112334

  9. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  10. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  11. Functionalised polyurethane for efficient laser micromachining

    NASA Astrophysics Data System (ADS)

    Brodie, G. W. J.; Kang, H.; MacMillan, F. J.; Jin, J.; Simpson, M. C.

    2017-02-01

    Pulsed laser ablation is a valuable tool that offers a much cleaner and more flexible etching process than conventional lithographic techniques. Although much research has been undertaken on commercially available polymers, many challenges still remain, including contamination by debris on the surface, a rough etched appearance and high ablation thresholds. Functionalizing polymers with a photosensitive group is a novel way and effective way to improve the efficiency of laser micromachining. In this study, several polyurethane films grafted with different concentrations of the chromophore anthracene have been synthesized which are specifically designed for 248 nm KrF excimer laser ablation. A series of lines etched with a changing number of pulses and fluences by the nanosecond laser were applied to each polyurethane film. The resultant ablation behaviours were studied through optical interference tomography and Scanning Electron Microscopy. The anthracene grafted polyurethanes showed a vast improvement in both edge quality and the presence of debris compared with the unmodified polyurethane. Under the same laser fluence and number of pulses the spots etched in the anthracene contained polyurethane show sharp depth profiles and smooth surfaces, whereas the spots etched in polyurethane without anthracene group grafted present rough cavities with debris according to the SEM images. The addition of a small amount of anthracene (1.47%) shows a reduction in ablation threshold from unmodified polyurethane showing that the desired effect can be achieved with very little modification to the polymer.

  12. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  13. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  14. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  15. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  16. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  17. The bactericidal activity of glutaraldehyde-impregnated polyurethane.

    PubMed

    Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan

    2016-10-01

    Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple "swell-encapsulation-shrink" method (hereafter referred to as "glutaraldehyde-impregnated polyurethane"), or simply applied to the polymer surface (hereafter referred to as "glutaraldehyde-coated polyurethane"). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Polyurethane Masks Large Areas in Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1985-01-01

    Polyurethane foam provides effective mask in electroplating of copper or nickel. Thin layer of Turco maskant painted on area to be masked: Layer ensures polyurethane foam removed easily after served its purpose. Component A, isocyanate, and component B, polyol, mixed together and brushed or sprayed on mask area. Mixture reacts, yielding polyurethane foam. Foam prevents deposition of nickel or copper on covered area. New method saves time, increases productivity and uses less material than older procedures.

  19. Materials for Heated Head Automated Thermoplastic Tape Placement

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Kinney, Megan C.; Cano, Roberto J.; Grimsley, Brian W.

    2012-01-01

    NASA Langley Research Center (LaRC) is currently pursuing multiple paths to develop out of autoclave (OOA) polymeric composite materials and processes. Polymeric composite materials development includes the synthesis of new and/or modified thermosetting and thermoplastic matrix resins designed for specific OOA processes. OOA processes currently under investigation include vacuum bag only (VBO) prepreg/composite fabrication, resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM) and heated head automated thermoplastic tape placement (HHATP). This paper will discuss the NASA Langley HHATP facility and capabilities and recent work on characterizing thermoplastic tape quality and requirements for quality part production. Samples of three distinct versions of APC-2 (AS4/PEEK) thermoplastic dry tape were obtained from two materials vendors, TENCATE, Inc. and CYTEC Engineered Materials** (standard grade and an experimental batch). Random specimens were taken from each of these samples and subjected to photo-microscopy and surface profilometry. The CYTEC standard grade of APC-2 tape had the most voids and splits and the highest surface roughness and/or waviness. Since the APC-2 tape is composed of a thermoplastic matrix, it offers the flexibility of reprocessing to improve quality, and thereby improve final quality of HHATP laminates. Discussions will also include potential research areas and future work that is required to advance the state of the art in the HHATP process for composite fabrication.

  20. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades |

    Science.gov Websites

    Turbine Blades Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites Arkema's Elium liquid thermoplastic resin. Photo of men working on turbine blades in a dome-shaped building composite structures of wind turbine blades. Capabilities Learn more about NREL's IACMI projects and its

  1. Identifying thermal breakdown products of thermoplastics.

    PubMed

    Guillemot, Marianne; Oury, Benoît; Melin, Sandrine

    2017-07-01

    Polymers processed to produce plastic articles are subjected to temperatures between 150°C and 450°C or more during overheated processing and breakdowns. Heat-based processing of this nature can lead to emission of volatile organic compounds (VOCs) into the thermoplastic processing shop. In this study, laboratory experiments, qualitative and quantitative emissions measurement in thermoplastic factories were carried out. The first step was to identify the compounds released depending on the thermoplastic nature, the temperature and the type of process. Then a thermal degradation protocol that can extrapolate the laboratory results to industry scenarios was developed. The influence of three parameters on released thermal breakdown products was studied: the sample preparation methods-manual cutting, ambient, or cold grinding-the heating rate during thermal degradation-5, 10 20, and 50°C/min-and the decomposition method-thermogravimetric analysis and pyrolysis. Laboratory results were compared to atmospheric measurements taken at 13 companies to validate the protocol and thereby ensure its representativeness of industrial thermal processing. This protocol was applied to most commonly used thermoplastics to determine their thermal breakdown products and their thermal behaviour. Emissions data collected by personal exposure monitoring and sampling at the process emission area show airborne concentrations of detected compounds to be in the range of 0-3 mg/m 3 under normal operating conditions. Laser cutting or purging operations generate higher pollution levels in particular formaldehyde which was found in some cases at a concentration above the workplace exposure limit.

  2. Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 8 ACSIM Technology Standards Group Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges Co ns tr...default. ACSIM Technology Standards Group ERDC/CERL TR-17-18 June 2017 Full-Scale Testing of Thermoplastic Composite I-Beams for Bridges Ghassan... tests were con- ducted on commercially available, thermoplastic polymer composite I- beams at U.S. Army Corps of Engineers, Engineer Research and

  3. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    SciTech Connect

    Murray, Robynne; Snowberg, David R; Berry, Derek S

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-lifemore » blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.« less

  4. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  5. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  6. Method of making thermally removable polyurethanes

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.; Durbin-Voss, Marvie Lou

    2002-01-01

    A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  7. Wood thermoplastic composites

    Treesearch

    Daniel F. Caulfield; Craig Clemons; Roger M. Rowell

    2010-01-01

    The wood industry can expand into new sustainable markets with the formation of a new class of composites with the marriage of the wood industry and the plastics industry. The wood component, usually a flour or fiber, is combined with a thermoplastic to form an extrudable, injectable or thermoformable composite that can be used in many non-structural applications....

  8. Dielectric Characterization of PCL-Based Thermoplastic Materials for Microwave Diagnostic and Therapeutic Applications

    PubMed Central

    Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.

    2011-01-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 – 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068

  9. Multi-scale thermal stability of a hard thermoplastic protein-based material

    NASA Astrophysics Data System (ADS)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-09-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.

  10. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Gruber, Mark B. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  11. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    NASA Astrophysics Data System (ADS)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  12. Microwave-assisted synthesis of cyclodextrin polyurethanes

    USDA-ARS?s Scientific Manuscript database

    Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of alpha-, ß-, and gamma-CD and thr...

  13. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  14. The relative fire resistance of select thermoplastic materials. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.

  15. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2011-01-01

    Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883

  16. Imprinting of confining sites for cell cultures on thermoplastic substrates

    NASA Technical Reports Server (NTRS)

    Cone, C. D.; Fleenor, E. N.

    1969-01-01

    Prevention of test cell migration beyond the field of observation involves confining cells or cultures in microlagoons made in either a layer of grease or a thermoplastic substrate. Thermoplastic films or dishes are easily imprinted with specifically designed patterns of microlagoons.

  17. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, Bassam; Daniels, Edward; Libera, Joseph A.

    1999-01-01

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  18. Wood thermoplastic composites

    Treesearch

    Daniel F. Caulfield; Craig Clemons; Rodney E. Jacobson; Roger M. Rowell

    2005-01-01

    The term “wood-plastic composites” refers to any number of composites that contain wood (of any form) and either thermoset or thermoplastic polymers. Thermosets or thermoset polymers are plastics that, once cured, cannot be remelted by heating. These include cured resins, such as epoxies and phenolics, plastics with which the forest products industry is most familiar (...

  19. The evaluation of epoxy thermoplastic pavement marking material in Virginia : the application : interim report.

    DOT National Transportation Integrated Search

    1983-01-01

    Epoxy Thermoplastic (ETP) is a recently developed epoxy-resin-based thermoplastic pavement marking material being promoted by the Federal Highway Administration as a possible substitute for conventional traffic paints and thermoplastics. Its reported...

  20. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  1. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams

    PubMed Central

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo

    2016-01-01

    ABSTRACT Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum. The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm−1) and N—H bonds (1,540 and 1,261 cm−1), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. IMPORTANCE Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of

  2. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    PubMed

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  3. Highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Stump, E. C., Jr.; Rochow, S. E. (Inventor)

    1973-01-01

    The reaction perfluorinated hydroxyl terminated polyether with diisocyanate to form polyurethane is discussed. Data are given on the resin's oxidation stability, chemical resistance, and low temperature flexibility.

  4. LARC-TPI: A multi-purpose thermoplastic polyimide

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1982-01-01

    A linear thermoplastic polyimide, LARC-TPI, was characterized and developed for a variety of high temperature applications. In its fully imidized form, this material can be used as an adhesive for bonding metals such as titanium, aluminum, copper, brass, and stainless steel. LARC-TPI was evaluated as a thermoplastic for bonding large pieces of polyimide film to produce flexible, 100 void-free laminates for flexible circuit applications. The development of LARC-TPI as a potential molding powder, composite matrix resin, high temperature film and fiber is also discussed.

  5. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    PubMed Central

    Mengeloglu, Fatih; Karakus, Kadir

    2008-01-01

    Thermal behaviors of wheat straw flour (WF) filled thermoplastic composites were measured applying the thermogravimetric analysis and differential scanning calorimetry. Morphology and mechanical properties were also studied using scanning electron microscope and universal testing machine, respectively. Presence of WF in thermoplastic matrix reduced the degradation temperature of the composites. One for WF and one for thermoplastics, two main decomposition peaks were observed. Morphological study showed that addition of coupling agent improved the compatibility between WFs and thermoplastic. WFs were embedded into the thermoplastic matrix indicating improved adhesion. However, the bonding was not perfect because some debonding can also be seen on the interface of WFs and thermoplastic matrix. In the case of mechanical properties of WF filled recycled thermoplastic, HDPE and PP based composites provided similar tensile and flexural properties. The addition of coupling agents improved the properties of thermoplastic composites. MAPE coupling agents performed better in HDPE while MAPP coupling agents were superior in PP based composites. The composites produced with the combination of 50-percent mixture of recycled HDPE and PP performed similar with the use of both coupling agents. All produced composites provided flexural properties required by the ASTM standard for polyolefin-based plastic lumber decking boards. PMID:27879719

  6. Organically Modified Nanoclay-Reinforced Rigid Polyurethane Films

    NASA Astrophysics Data System (ADS)

    Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris; Stein, Andreas; Macosko, Christopher

    2012-02-01

    The nanodispersion of vermiculite in polyurethanes was investigated to produce organoclay-reinforced rigid gas barrier films. Reducing gas transport can improve the insulation performance of closed cell polyurethane foam. In a previous study, the dispersion of vermiculite in polyurethanes without organic modification was not sufficient due to the non-uniform dispersion morphology. When vermiculite was modified by cation exchange with long-chain quaternary ammonium cations, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion was improved by combining high intensity dispersive mixing with efficient distributive mixing. Polymerization conditions were also optimized in order to provide a high state of nanodispersion in the polyurethane nanocomposite. The dispersions were characterized using rheological, microscopic and scattering/diffraction techniques. The final nanocomposites showed enhancement of mechanical properties and reduction in permeability to carbon dioxide at low clay concentration (around 2 wt percent).

  7. A review of recent developments in joining high-performance thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cole, K. C.

    1991-06-01

    There is currently a great deal of interest in the use of thermoplastic polymers as matrices in fiber reinforced composites for high performance applications, such as those encountered in the aerospace industry. These materials include polyether ether ketone (PEEK), polyphenylene sulphide (PPS), polyetherimide (PEI), polyamideimide (PAI), polyamides, polyimides, and polysulphones. A literature review is provided on the different ways of joining high performance thermoplastic composites by adhesive and fusion bonding. The discussion on adhesive bonding includes examination of the performance of specific adhesive/thermoplastic combinations and of techniques for the preparation of composite surfaces: abrasion, etching, flame, and plasma treatments. Thermoplastic composite welding techniques discussed in depth include the following: heated press welding, resistance welding, induction welding, and ultrasonic welding. Works which examine or compare applications for these bonding techniques are also reviewed.

  8. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  9. Time-dependent crashworthiness of polyurethane foam

    NASA Astrophysics Data System (ADS)

    Basit, Munshi Mahbubul; Cheon, Seong Sik

    2018-05-01

    Time-dependent stress-strain relationship as well as crashworthiness of polyurethane foam was investigated under constant impact energy with different velocities, considering inertia and strain-rate effects simultaneously during the impact testing. Even though the impact energies were same, the percentage in increase in densification strain due to higher impact velocities was found, which yielded the wider plateau region, i.e. growth in crashworthiness. This phenomenon is analyzed by the microstructure of polyurethane foam obtained from scanning electron microscopy. The equations, coupled with the Sherwood-Frost model and the impulse-momentum theory, were employed to build the constitutive equation of the polyurethane foam and calculate energy absorption capacity of the foam. The nominal stress-strain curves obtained from the constitutive equation were compared with results from impact tests and were found to be in good agreement. This study is dedicated to guiding designer use polyurethane foam in crashworthiness structures such as an automotive bumper system by providing crashworthiness data, determining the crush mode, and addressing a mathematical model of the crashworthiness.

  10. Polyurethane-Foam Maskant

    NASA Technical Reports Server (NTRS)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  11. Process for preparing solvent resistant, thermoplastic aromatic poly(imidesulfone)

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (Inventor)

    1984-01-01

    A process for preparing a thermoplastic poly(midesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistant which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  12. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  13. The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives

    PubMed Central

    2014-01-01

    The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721

  14. Polyurethane-Coated Breast Implants Revisited: A 30-Year Follow-Up

    PubMed Central

    Castel, Nikki; Soon-Sutton, Taylor; Deptula, Peter; Flaherty, Anna

    2015-01-01

    Background Polyurethane coating of breast implants has been shown to reduce capsular contracture in short-term follow-up studies. This 30-year study is the longest examination of the use of polyurethane-coated implants and their correlation with capsular contracture. Methods This study evaluates the senior surgeon's (F.D.P.) experience with the use of polyurethane-coated implants in aesthetic breast augmentation in 382 patients over 30 years. Follow-up evaluations were conducted for six months after surgery. After the six-month follow-up period, 76 patients returned for reoperation. The gross findings, histology, and associated capsular contracture were noted at the time of explantation. Results No patient during the six-month follow-up period demonstrated capsular contracture. For those who underwent reoperation for capsular contracture, Baker II/III contractures were noted nine to 10 years after surgery and Baker IV contractures were noted 12 to 21 years after surgery. None of the explanted implants had macroscopic evidence of polyurethane, which was only found during the first five years after surgery. The microscopic presence of polyurethane was noted in all capsules up to 30 years after the original operation. Conclusions An inverse correlation was found between the amount of polyurethane coating on the implant and the occurrence of capsular contracture. Increasingly severe capsular contracture was associated with a decreased amount of polyurethane coating on the surface of the implants. No contracture occurred in patients whose implants showed incomplete biodegradation of polyurethane, as indicated by the visible presence of polyurethane coating. We recommend research to find a non-toxic, non-biodegradable synthetic material as an alternative to polyurethane. PMID:25798390

  15. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    PubMed Central

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  16. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    PubMed

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams.

    PubMed

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo; Loza-Tavera, Herminia

    2016-09-01

    Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and

  18. High performance thermoplastics: A review of neat resin and composite properties

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.

  19. Synthesis of a Novel Biodegradable Polyurethane with Phosphatidylcholines

    PubMed Central

    Cao, Jun; Chen, Niancao; Chen, Yuanwei; Luo, Xianglin

    2010-01-01

    A novel polyurethane was successfully synthesized by chain-extension of biodegradable poly (l-lactide) functionalized phosphatidylcholine (PC) with hexamethylene diisocyanate (HDI) as chain extender (PUR-PC). The molecular weights, glass transition temperature (Tg) increased significantly after the chain-extension. The hydrophilicity of PUR-PC was better than the one without PC, according to a water absorption test. Moreover, the number of adhesive platelets and anamorphic platelets on PUR-PC film were both less than those on PUR film. These preliminary results suggest that this novel polyurethane might be a better scaffold than traditional biodegradable polyurethanes for tissue engineering due to its better blood compatibility. Besides, this study also provides a new method to prepare PC-modified biodegradable polyurethanes. PMID:20480047

  20. Nanocellular thermoplastic foam and process for making the same

    SciTech Connect

    Zhu, Lingbo; Costeux, Stephane; Patankar, Kshitish A.

    Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1.times.1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by lessmore » than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.« less

  1. Formulation, Preparation, and Characterization of Polyurethane Foams

    ERIC Educational Resources Information Center

    Pinto, Moises L.

    2010-01-01

    Preparation of laboratory-scale polyurethane foams is described with formulations that are easy to implement in experiments for undergraduate students. Particular attention is given to formulation aspects that are based on the main chemical reactions occurring in polyurethane production. This allows students to develop alternative formulations to…

  2. Polyurethane foam-covered breast implants: a justified choice?

    PubMed

    Scarpa, C; Borso, G F; Vindigni, V; Bassetto, F

    2015-01-01

    Even if the safety of the polyurethane prosthesis has been the subject of many studies and professional and public controversies. Nowadays, polyurethane covered implants are very popular in plastic surgery for the treatment of capsular contracture. We have identified 41 papers (1 is a communication of the FDA) by using search browsers such as Pubmed, Medline, and eMedicine. Eleven manuscripts have been used for an introduction, and the remaining thirty have been subdivided into three tables whose results have been summarized in three main chapters: (1) capsular formation and contracture, (2) complications, (3) biodegradation and cancer risk. (1) The polyurethanic capsule is a well defined foreign body reaction characterized by synovial metaplasia, a thin layer of disarranged collagen fibers and a high vascularization. These features make possible a "young" capsule and a low occurrence of capsular contracture even over a long period (10 years); (2) the polyurethane implants may be difficult to remove but there is no evidence that they cause an increase in the other complications; (3) there is no evidence of polyurethane related cancer in long-term studies (after 5 years). Polyurethane foam covered breast implants remain a valid choice for the treatment of capsular contracture even if it would be very useful to verify the ease of removal of the prosthesis and to continue investigations on biodegradation products.

  3. Carbon nano fibers reinforced composites origami inspired mechanical metamaterials with passive and active properties

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; D'Hondt, Clement; Naguib, Hani E.

    2017-10-01

    Core panels used for compression or impact damping are designed to dissipate energy and to reduce the transferred force and energy. They are designed to have high strain and deformation with low density. The geometrical configuration of such cores plays a significant role in redistributing the applied forces to dampen the compression and impact energy. Origami structures are renowned for affording large macroscopic deformation which can be employed for force redistribution and energy damping. The material selection for the fabrication of origami structures affects the core capacity to withstand compression and impact loads. Polymers are characterized by their high compression and impact resistance; the drawback of polymers is the low stiffness and elastic moduli compared with metallic materials. This work is focused on the study of the effect of Carbon Nano Fibers (CNF) on the global mechanical properties of the origami panel cores made of polymeric blends. The base matrix materials used were Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) blends, and the percentages of the PLA/TPU were 100/0, 20/80, 65/35, 50/50, 20/80, and 0/100 as a percentage of weight. The weight percentages of CNF added to the polymeric blends were 1%, 3%, and 5%. This paper deals with the fabrication process of the polymeric reinforced blends and the origami cores, in order to predict the best fabrication conditions. The dynamic scanning calorimetry and the dynamic mechanical analyzer were used to test the reinforced blended base material for thermomechanical and viscoelastic properties. The origami core samples were fabricated using per-molded geometrical features and then tested for compression and impact properties. The results of the study were compared with previous published results which showed that there is considerable enhancement in the mechanical properties of the origami cores compared with the pure blended polymeric origami cores. The active properties of the origami

  4. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  5. Interlaminar fracture in carbon fiber/thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Bascom, W. D.; Allred, R. E.

    1990-01-01

    The surfaces of commercial carbon fibers are generally chemically cleaned or oxidized and then coated with an oligomeric sizing to optimize their adhesion to epoxy matrix resins. Evidence from fractography, from embedded fiber testing and from fracture energies suggests that these standard treatments are relatively ineffective for thermoplastic matrices. This evidence is reviewed and model thermoplastic composites (polyphenylene oxide/high strain carbon fibers) are used to demonstrate how differences in adhesion can lead to a twofold change in interlaminar fracture toughness. The potential for improved adhesion via plasma modification of fiber surfaces is discussed. Finally, a surprising case of fiber-catalyzed resin degradation is described.

  6. Patients’ satisfaction with anatomic polyurethane implants

    PubMed Central

    2017-01-01

    This paper presents patients satisfaction using anatomical polyurethane breast implants. We performed surgery on 525 patients, 370 of which were primary and 155 were secondary to various causes such as capsular contracture, ruptured implants, volume changes, and incorrect positioning of the implant. The advantages of silicone polyurethane covers shown high level of patient satisfaction, low incidence of capsular contracture, and absence of implant rotation, and late seroma. PMID:28497022

  7. Polyurethane-covered mammary implants: a 12-year experience.

    PubMed

    Gasperoni, C; Salgarello, M; Gargani, G

    1992-10-01

    Polyurethane-covered mammary implants are the implants of choice in aesthetic and reconstructive mammary surgery. These implants give very good results in regard to breast contour and consistency, and have a very low complication rate. We present our 12-year experience using polyurethane-covered prostheses. We place the implant mostly in the subglandular or subcutaneous site, and their capsular contracture rate is extremely low (3.3%). Based on our experience, we also review the other complications and side effects occurring with polyurethane prostheses and discuss them in detail.

  8. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility.

    PubMed

    Dawlee, S; Jayabalan, Muthu

    2011-10-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  9. Microwave-assisted synthesis of cyclodextrin polyurethanes.

    PubMed

    Biswas, Atanu; Appell, Michael; Liu, Zengshe; Cheng, H N

    2015-11-20

    Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of α-, β-, and γ-CD and three common diisocyanates. As compared to conventional heating, this new synthetic method saves energy, significantly reduces reaction time, and gets similar or improved yield. The reaction products have been fully characterized with (13)C, (1)H, and two-dimensional NMR spectroscopy. With suitable stoichiometry of starting CD and diisocyanate, the resulting CD polyurethane is organic-soluble and water-insoluble and is shown to remove Nile red dye and phenol from water. Possible applications include the removal of undesirable materials from process streams, toxic compounds from the environment, and encapsulation of color or fragrance molecules. Published by Elsevier Ltd.

  10. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  11. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating

    PubMed Central

    Ma, Jiang; Liang, Xiong; Wu, Xiaoyu; Liu, Zhiyuan; Gong, Feng

    2015-01-01

    The work proposed a novel thermoplastic forming approach–the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices. PMID:26644149

  12. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or...

  13. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or...

  14. Effects of weathering on color loss of natural fiber thermoplastic composites

    Treesearch

    R.H. Falk; C. Felton; T. Lundin

    2001-01-01

    The technology currently exists to manufacture natural fiber thermoplastic composites from recycled materials. Development of commodity-building products from these composites would open up huge markets for waste-based materials in the US. To date, the construction industry has only accepted wood thermoplastic composite lumber (and only for limited applications). In...

  15. Effects of weathering on color loss of natural fiber : thermoplastic composites

    Treesearch

    Robert H. Falk; Colin Felton; Thomas Lundin

    2000-01-01

    The technology currently exists to manufacture natural fiber-thermoplastic composites from recycled materials. Development of commodity building products from these composites would open huge markets for waste-based materials in the United States. To date, the construction industry has only accepted wood-thermoplastic composite lumber and only for limited applications...

  16. Molecular simulation of fibronectin adsorption onto polyurethane surfaces

    USDA-ARS?s Scientific Manuscript database

    Polyethylene glycol-based polyurethanes have been widely used in biomedical applications, however are prone to swelling. A natural polyol, castor oil can be incorporated into these polyurethanes to control the degree of the swelling, which alters mechanical properties and protein adsorption characte...

  17. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  18. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  19. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  20. Creep and creep-recovery of a thermoplastic resin and composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  1. Evaluation of thermoplastic materials : final report.

    DOT National Transportation Integrated Search

    1975-04-01

    In order to find a striping material which would last longer and have greater reflectance than the presently used traffic paint, research was performed on three relatively new thermoplastic marking compounds. The manufacturers of these products claim...

  2. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  3. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or... polyurethane foam process, with the following exception. Diisocyanates may be used to flush the mixhead and...

  4. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  5. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  6. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or... polyurethane foam process, with the following exception. Diisocyanates may be used to flush the mixhead and...

  7. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new uses...

  8. Cryogenic line insulation made from prefabricated polyurethane shells

    NASA Technical Reports Server (NTRS)

    Lerma, G.

    1975-01-01

    Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.

  9. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  10. Thermoplastic Explosive Compositions on the Base of Hexanitrohexaazaisowurtzitane

    NASA Astrophysics Data System (ADS)

    Ilyin, V. P.; Smirnov, S. P.; Kolganov, E. V.; Pechenev, Yu. G.

    2006-08-01

    Hexanitrohexaazaisowurtzitane is an azostructural compound known as CL-20. We performed a series of experiments with CL-20 synthesized in Russia to evaluate the possibility to use it in pressed high explosive compositions. We used it in thermoplastic compositions both with an inert binder and energetic binder. The compositions were conventionally named CL-20И and CL-20A. It was determined that the thermoplastic compositions had the most high detonation parameters and a level of sensitivity to mechanical effects acceptable to allow their processing. Their detonation characteristics were compared with that of some known foreign compositions based on CL-20.

  11. Fine modeling of reinforced thermoplastic filament winding container

    NASA Astrophysics Data System (ADS)

    Duan, Chenghong; Huang, Jinhao; Wu, Liang; Luo, Xiangpeng

    2018-05-01

    Reinforced thermoplastic containers has been widely used because of its corrosion-resistant, fatigue-resistant features. The characteristics of the liner and wound layer material and the different winding methods lead to the fact that the model obtained according to the ordinary pressure vessel modeling method does not reflect the actual situation of the reinforced thermoplastic container. In this paper, the thickness of stratified winding was calculated based on the principle of constant fiber total volume and equal cross-sectional area. ANSYS ACP module was used to refine the full winding container and provide a reference for engineering simulation solution.

  12. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  13. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    PubMed

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  14. Polymer compositions and methods

    SciTech Connect

    Allen, Scott D.; Willkomm, Wayne R.

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  15. Polymer compositions and methods

    DOEpatents

    Allen, Scott D.; Willkomm, Wayne R.

    2016-09-27

    The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.

  16. Multifunctional cationic polyurethanes designed for non-viral cancer gene therapy.

    PubMed

    Cheng, Jian; Tang, Xin; Zhao, Jie; Shi, Ting; Zhao, Peng; Lin, Chao

    2016-01-01

    Nano-polyplexes from bioreducible cationic polymers have a massive promise for cancer gene therapy. However, the feasibility of cationic polyurethanes for non-viral gene therapy is so far not well studied. In this work, a linear cationic polyurethane containing disulfide bonds, urethane linkages and protonable tertiary amino groups was successfully generated by stepwise polycondensation reaction between 2,2'-dithiodiethanol bis(p-nitrophenyl carbonate) and 1,4-bis(3-aminopropyl)piperazine (BAP). We confirmed that the cationic polyurethane (denoted as PUBAP) displayed superior gene delivery properties to its cationic polyamide analogue, thus causing higher in vitro transfection efficiency in MCF-7 and SKOV-3 cells. Besides, further folate-PEGylation and hydrophobic deoxycholic acid (DCA) conjugation to amino-containing PUBAP can be conducted to afford multifunctional polyurethane gene delivery system. After optimization, folate-decorated nano-polyplexes from the PUBAP conjugated with 8 folate-PEG chains and 12 DCA residues exhibited superb colloidal stability under physiological conditions, and performed rapid uptake via folate receptor-mediated endocytosis, efficient intracellular gene release and nucleus translocation into SKOV-3 cells in vitro and in vivo. Importantly, PUBAP based polyplexes possess low cytotoxicity as a result of PUBAP biodegradability. Therefore, marked growth inhibition of SKOV-3 tumor xenografted in Balb/c nude mice was achieved with negligible side effects on the mouse health after intravenous administration of PUBAP based polyplexes with a therapeutic plasmid encoding for TNF-related apoptosis-inducing ligand. This work provides a new insight into biomedical application of bio-responsive polyurethanes for cancer therapy. In this study, we have confirmed that disulfide-based cationic polyurethane presents a new non-viral vector for gene transfer and cancer gene therapy. The significance of this work includes: (1) design and synthesis of a

  17. The influence of chemical structure on thermal properties and surface morphology of polyurethane materials.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria

    2018-01-01

    The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.

  18. Storage-stable foamable polyurethane is activated by heat

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Polyurethane foamable mixture remains inert in storage unit activated to produce a rapid foaming reaction. The storage-stable foamable composition is spread as a paste on the surface of an expandable structure and, when heated, yields a rigid open-cell polyurethane foam that is self-bondable to the substrate.

  19. Tests Of Polyurethane And Dichromate Coats On Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report describes experiments to determine relative effectiveness of new polyurethane and more-conventional dichromate coat in helping to retard corrosion of anodized 6061-T6 aluminum. Concludes by suggesting greater protection against corrosion achieved by combining polyurethane-sealing method with hard-anodizing method and by increasing thickness of coat.

  20. The In Vivo Pericapsular Tissue Response to Modern Polyurethane Breast Implants.

    PubMed

    Frame, James; Kamel, Dia; Olivan, Marcelo; Cintra, Henrique

    2015-10-01

    Polyurethane breast implants were first introduced by Ashley (Plast Reconstr Surg 45:421-424, 1970), with the intention of trying to reduce the high incidence of capsular contracture associated with smooth shelled, high gel bleed, silicone breast implants. The sterilization of the polyurethane foam in the early days was questionable. More recently, ethylene oxide (ETO)-sterilized polyurethane has been used in the manufacturing process and this has been shown to reduce the incidence of biofilm. The improved method of attachment of polyurethane onto the underlying high cohesive gel, barrier shell layered, silicone breast implants also encourages bio-integration. Polyurethane covered, cohesive gel, silicone implants have also been shown to reduce the incidence of other problems commonly associated with smooth or textured silicone implants, especially with reference to displacement, capsular contracture, seroma, reoperation, biofilm and implant rupture. Since the introduction of the conical polyurethane implant (Silimed, Brazil) into the United Kingdom in 2009 (Eurosurgical, UK), we have had the opportunity to review histology taken from the capsules of polyurethane implants in three women ranging from a few months to over 3 years after implantation. All implants had been inserted into virgin subfascial, extra-pectoral planes. The results add to the important previously described histological findings of Bassetto et al. (Aesthet Plast Surg 34:481-485, 2010). Five distinct layers are identified and reasons for the development of each layer are discussed. Breast capsule around polyurethane implants, in situ for fifteen and 20 years, has recently been obtained and analysed in Brazil, and the histology has been incorporated into this study. After 20 years, the polyurethane is almost undetectable and capsular contracture may appear. These findings contribute to our understanding of polyurethane implant safety, and give reasoning for a significant reduction in clinical

  1. Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties.

    PubMed

    Jumaidin, R; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Solvent resistant thermoplastic aromatic poly(imidesulfone) and process for preparing same

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (Inventor)

    1983-01-01

    A process for preparing a thermoplastic poly(imidesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistance which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  3. Presence of Biofilms on Polyurethane-Coated Breast Implants: Preliminary Results.

    PubMed

    Rieger, Ulrich M; Djedovic, Gabriel; Pattiss, Alexander; Raschke, Gregor F; Frei, Reno; Pierer, Gerhard; Trampuz, Andrej

    2016-01-01

    Polyurethane-coated breast implants seem to be associated with lower medium- and long-term capsular contracture rates in comparison to textured or smooth implant surfaces. Although the etiology of capsular contracture is uncertain, bacterial biofilms have been suggested to trigger chronic peri-implant inflammation, eventually leading to capsular contracture. It is unknown whether polyurethane-coated implants are less prone to biofilm colonization than other implant surfaces. We extracted data from patient records included in a prospective cohort between 2008 and 2011. All patients who underwent removal of polyurethane-coated implants were included in this current study and screened for presence of biofilms by sonication. In addition, implant- and patient-related data were analyzed. Of the ten included polyurethane-coated breast implants, six had been inserted for reconstructive purposes and four for aesthetic reasons. The median implant indwelling time was 28.3 mo. Overall, sonication cultures were positive in 50% of implants. Propionibacterium acnes and coagulase-negative staphylococci were the predominant pathogens isolated from biofilm cultures. Like other implant surfaces, polyurethane-coated implants are prone to biofilm colonization. Further investigations are needed to determine why capsular contracture rates seem to be lower in polyurethane implants than in other implant surfaces. Notably, in this study, 40% of the implants were explanted from breasts with severe capsular contracture.

  4. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells.

    PubMed Central

    O'Reilly, K T; Crawford, R L

    1989-01-01

    Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam. PMID:2508552

  5. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  6. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.

  7. Construction of multifunctional MoSe2 hybrid towards the simultaneous improvements in fire safety and mechanical property of polymer.

    PubMed

    Wang, Junling; Ma, Chao; Mu, Xiaowei; Cai, Wei; Liu, Longxiang; Zhou, Xia; Hu, Weizhao; Hu, Yuan

    2018-06-15

    Organic modification of MoSe 2 sheets is firstly achieved by Atherton-Todd reaction, aiming at the acquisition of multifunctional MoSe 2 hybrid. Simultaneous enhancements in fire safety and mechanical property of thermalplastic polyurethane (TPU) are obtained with the presence of this hybrid. Strong interfacial interactions between the functionalized MoSe 2 sheets and TPU can be obtained, making more efficient load transfer from the weak polymer chains to the robust sheets. Besides, more coherent barrier network may be formed in polymer matrix, restraining the diffusion of decomposed fragments and reducing the supply for combustion fuel. Consequently, the decreases in heat release are observed for polymer composites. Notably, the releases of toxic gases, such as HCN and CO, are also suppressed by this barrier network, resulting in the reductions in fire toxicity. This work may open a new door for the functionalization of MoSe 2 sheets and evoke significant developments in its promising applications. Copyright © 2018. Published by Elsevier B.V.

  8. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    PubMed

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  9. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelasticmore » imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.« less

  10. SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T.

    We examined the durability of polymeric encapsulation materials using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36-month cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Our measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging,more » and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. Furthermore, our results, including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.« less

  11. Durability of polymeric encapsulation materials in a PMMA/glass concentrator photovoltaic system

    DOE PAGES

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T.; ...

    2016-07-13

    We examined the durability of polymeric encapsulation materials using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36-month cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Our measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging,more » and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. Furthermore, our results, including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.« less

  12. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    NASA Astrophysics Data System (ADS)

    Lionetto, Francesca; Dell'Anna, Riccardo; Montagna, Francesco; Maffezzoli, Alfonso

    2015-04-01

    Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE) analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation. The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP) filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  13. Tough, soluble, aromatic, thermoplastic copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1994-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as acetamide, Nmethylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  14. Lignin-derived thermoplastic co-polymers and methods of preparation

    DOEpatents

    Naskar, Amit K.; Saito, Tomonori; Pickel, Joseph M.; Baker, Frederick S.; Eberle, Claude Clifford; Norris, Robert E.; Mielenz, Jonathan Richard

    2014-06-10

    The present invention relates to a crosslinked lignin comprising a lignin structure having methylene or ethylene linking groups therein crosslinking between phenyl ring carbon atoms, wherein said crosslinked lignin is crosslinked to an extent that it has a number-average molecular weight of at least 10,000 g/mol, is melt-processible, and has either a glass transition temperature of at least 100.degree. C., or is substantially soluble in a polar organic solvent or aqueous alkaline solution. Thermoplastic copolymers containing the crosslinked lignin are also described. Methods for producing the crosslinked lignin and thermoplastic copolymers are also described.

  15. Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings

    DTIC Science & Technology

    2015-04-01

    ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  16. Process for preparing tapes from thermoplastic polymers and carbon fibers

    NASA Technical Reports Server (NTRS)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  17. Thermoplastic rubberlike material produced at low cost

    NASA Technical Reports Server (NTRS)

    Hendel, F. J.

    1966-01-01

    Thermoplastic rubberlike material is prepared by blending a copolymer of ethylene and vinyl acetate with asphalt and a petroleum distillate. This low cost material is easily molded or extruded and is compatible with a variety of fillers.

  18. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  19. Thermoplastic film prevents proppant flowback

    SciTech Connect

    Nguyen, P.D.; Weaver, J.D.; Parker, M.A.

    1996-02-05

    Thermoplastic film added to proppants is effective and economical for preventing proppant flowback after an hydraulic fracturing treatment. Most other methods, such as resin-coated proppant and fiber, for controlling proppant flowback have drawbacks that added to treatment costs by requiring long downtime, costly additives, or frequent equipment replacement. Thermoplastic film does not react chemically with fracturing fluids. After the proppant is placed in the fracture, the film strips intertwine with the proppant grains or at higher temperatures, the strips become adhesive and shrink forming consolidated clusters that hold open the newly created fractures and prevent proppant from flowing back. Themore » low cost of the film means that the strips can be used throughout the fracturing job or in selected stages. The strips are compatible with fracturing fluid chemistry, including breakers and crosslinkers, and can be used in wells with a wide range of bottom hole temperatures. The end result is a well that can be brought back on-line in a short time with little proppant flowback. This paper reviews the cost benefits and performance of these proppants.« less

  20. Melt Electrowriting of Thermoplastic Elastomers.

    PubMed

    Hochleitner, Gernot; Fürsattel, Eva; Giesa, Reiner; Groll, Jürgen; Schmidt, Hans-Werner; Dalton, Paul D

    2018-04-14

    Melt electrowriting (MEW), an additive manufacturing process, is established using polycaprolactone as the benchmark material. In this study, a thermoplastic elastomer, namely, poly(urea-siloxane), is synthesized and characterized to identify how different classes of polymers are compatible with MEW. This polyaddition polymer has reversible hydrogen bonding from the melt upon heating/cooling and highly resolved structures are achieved by MEW. The influence of applied voltage, temperature, and feeding pressure on printing outcomes behavior is optimized. Balancing these parameters, highly uniform and smooth-surfaced fibers with diameters ranging from 10 to 20 µm result. The quality of the 3D MEW scaffolds is excellent, with very accurate fiber stacking capacity-up to 50 layers with minimal defects and good fiber fusion between the layers. There is also minimal fiber sagging between the crossover points, which is a characteristic of thicker MEW scaffolds previously reported with other polymers. In summary, poly(urea-siloxane) demonstrates outstanding compatibility with the MEW process and represents a class of polymer-thermoplastic elastomers-that are, until now, untested with this approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    USDA-ARS?s Scientific Manuscript database

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  2. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam production—diisocyanate emissions. Each new and existing slabstock affected source shall comply...

  3. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam production—diisocyanate emissions. Each new and existing slabstock affected source shall comply...

  4. Analytical and experimental evaluation of techniques for the fabrication of thermoplastic hologram storage devices

    NASA Technical Reports Server (NTRS)

    Rogers, J. W.

    1975-01-01

    The results of an experimental investigation on recording information on thermoplastic are given. A description was given of a typical fabrication configuration, the recording sequence, and the samples which were examined. There are basically three configurations which can be used for the recording of information on thermoplastic. The most popular technique uses corona which furnishes free charge. The necessary energy for deformation is derived from a charge layer atop the thermoplastic. The other two techniques simply use a dc potential in place of the corona for deformation energy.

  5. High performance thermoplastics - A review of neat resin and composite properties

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness.

  6. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    NASA Astrophysics Data System (ADS)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  7. Polycyanurates and Polycarbonates Based on Eugenol: Alternatives to Thermosetting and Thermoplastic Polymers Based on Bisphenol A

    DTIC Science & Technology

    2014-08-14

    to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2

  8. Tough, Soluble, Aromatic, Thermoplastic Copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1998-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  9. Open-celled polyurethane foam

    NASA Technical Reports Server (NTRS)

    Russell, L. W.

    1970-01-01

    Open-celled polyurethane foam has a density of 8.3 pounds per cubic foot and a compressive strength of 295 to 325 psi. It is useful as a porous spacer in layered insulation and as an insulation material in vacuum tight systems.

  10. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for slabstock flexible polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam...

  11. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Standards for slabstock flexible polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam...

  12. 40 CFR 63.1294 - Standards for slabstock flexible polyurethane foam production-diisocyanate emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Standards for slabstock flexible polyurethane foam production-diisocyanate emissions. 63.1294 Section 63.1294 Protection of Environment... Flexible Polyurethane Foam Production § 63.1294 Standards for slabstock flexible polyurethane foam...

  13. Thermal Stability of Aqueous Polyurethanes Depending on the Applied Catalysts

    PubMed Central

    Cakic, Suzana; Nikolic, Goran; Lacnjevac, Caslav; Gligoric, Miladin; Stamenkovic, Jakov; Rajkovic, Milos B.; Barac, Miroljub

    2006-01-01

    The thermal stability of aqueous polyurethanes has been measured applying the thermogravimetric analysis. The aqueous polyurethanes (aqPUR) with catalysts of different selectivity have been studied by use of the dynamic method. To obtain degradations of 0.025, 0.05, and 0.10, employing the dynamic method, the heating rates of 0.5, 1, 2, 5, and 10 °C min-1 have been used in the range of 30-500 °C. Using the more selective catalysts in the aqueous polyurethanes, the total resulting time of the decompositon has been on the increase at all degrees of the degradation and at the particular starting temperature. This paper shows that the dynamic method based on the thermogravimetric analysis can be used to assess the thermal stability of the aqueous polyurethanes using the catalysts of different selectivity.

  14. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  15. Diamine curing agents for polyurethanes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; St. Clair, T. L.

    1975-01-01

    Three aromatic diamines have properties that make them promising candidates as curing agents for converting isocyanates to polyurethanes with higher adhesive strengths, higher softening temperatures, better toughness, and improved abrasion resistance.

  16. Viscous and thermal modelling of thermoplastic composites forming process

    NASA Astrophysics Data System (ADS)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  17. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Jayaraman

    This thesis work deals with (a) Curing of reactive, hot-melt polyurethane adhesives and (b) Adsorption studies using different interactions. Research on polyurethanes involves characterization of polyurethane prepolymers and a novel mechanism to cure isocyanate-terminated polyurethane prepolymer by a "trigger" mechanism. Curing of isocyanate-terminated polyurethane prepolymers has been shown to be influenced by morphology and environmental conditions such as temperature and relative humidity. Although the initial composition, final morphology and curing kinetics are known, information regarding the intermediate prepolymer mixture is yet to be established. Polyurethane prepolymers prepared by the reaction of diisocyanates with the primary hydroxyls of polyester diol (PHMA) and secondary hydroxyls of polyether diol (PPG) were characterized. The morphology and crystallization kinetics of a polyurethane prepolymer was compared with a blend of PPG prepolymer (the product obtained by the reaction of PPG with diisocyanate) and a PHMA prepolymer (the product obtained by the reaction of PHMA with diisocyanate) to study the effect of copolymer formed in the polyurethane prepolymer on the above-mentioned properties. Although the morphology of the polyurethane prepolymer is determined in the first few minutes of application, the chemical curing of isocyanate-terminated prepolymer occurs over hours to days. In the literature, different techniques are described to follow the curing kinetics. But there is no established technique to control the curing of polyurethane prepolymer. To make the curing process independent of environmental factors, a novel approach using a trigger mechanism was designed and implemented by using ammonium salts as curing agents. Ammonium salts that are stable at room temperature but decompose on heating to yield active hydrogen-containing compounds, NH3 and H2O, were used as 'Trojan horses' to cure the prepolymer chemically. Research on adsorption

  18. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  19. Tracking composition of microbial communities for simultaneous nitrification and denitrification in polyurethane foam.

    PubMed

    Chen, Yuan; Wang, Li; Ma, Fang; Yang, Ji-xian; Qiu, Shan

    2014-01-01

    The process of simultaneous nitrification and denitrification (SND) of immobilized microorganisms in polyurethane form is discussed. The effect of different positions within the polyurethane carrier on microbial community response for the SND process is investigated by a combination of denaturing gradient gel electrophoresis profiles of the 16S rRNA gene V3 region and scanning electron microscopy. Results show that polyurethane, which consists of a unique porous structure, is an ideal platform for biofilm stratification of aerobe, anaerobe and facultative microorganisms in regard to the SND process. The community structure diversity response to different positions was distinct. The distributions of various functional microbes, detected from the surface aerobic stratification to the interior anaerobic stratification of polyurethane, were mainly nitrifying and denitrifying bacteria. Meanwhile aerobic denitrifying bacteria such as Paracoccus sp., Agrobacterium rubi and Ochrobactrum sp. were also adhered to the interior and surface of polyurethane. The SND process occurring on polyurethane foam was carried out by two independent processes: nitrogen removal and aerobic denitrification.

  20. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...

  1. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...

  2. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...

  3. Screw-actuated displacement micropumps for thermoplastic microfluidics.

    PubMed

    Han, J Y; Rahmanian, O D; Kendall, E L; Fleming, N; DeVoe, D L

    2016-10-05

    The fabrication of on-chip displacement pumps integrated into thermoplastic chips is explored as a simple and low cost method for achieving precise and programmable flow control for disposable microfluidic systems. The displacement pumps consist of stainless steel screws inserted into threaded ports machined into a thermoplastic substrate which also serve as on-chip reagent storage reservoirs. Three different methods for pump sealing are investigated to enable high pressure flows without leakage, and software-defined control of multiple pumps is demonstrated in a self-contained platform using a compact and self-contained microcontroller for operation. Using this system, flow rates ranging from 0.5-40 μl min -1 are demonstrated. The pumps are combined with on-chip burst valves to fully seal multiple reagents into fabricated chips while providing on-demand fluid distribution in a downstream microfluidic network, and demonstrated for the generation of size-tunable water-in-oil emulsions.

  4. [Cost-effectiveness of a TLC-NOSF polyurethane foam dressing].

    PubMed

    Arroyo Ana, Abejón; Alvarez Vázquez, Juan Carlos; Blasco García, Carmen; Bermejo Martínez, Mariano; López Casanova, Pablo; Cuesta Cuesta, Juan José; De Haro Fernández, Francisco; Mateo Marín, Emilia; Segovia Gómez, Teresa; Villar Rojas, Antonio Erasto

    2012-11-01

    Chronic wounds represent a drain on the Spanish health system, nowdays is necessary an optimization of the resources used and that is for this that is necessary justify the use of the products over others through cost-effective studies for to show the economic benefit to professionals and the life quality of patient. This article compares the use of a new technology for format polyurethane foam, TLC-NOSF, with the most commonly used products for treating wounds. This comparison is made using a cost-effectiveness model (Markov Model). The results demonstrate that treatment with polyurethane foam dressing with TLC-NOSF are cost-effective versus treatments with polyurethane foams most commonly used in Spain.

  5. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy.

    PubMed

    ONeil, Colleen E; Jackson, Joshua M; Shim, Sang-Hee; Soper, Steven A

    2016-04-05

    We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.

  6. Comparison of polyurethane with cyanoacrylate in hemostasis of vascular injury in guinea pigs.

    PubMed

    Kubrusly, Luiz Fernando; Formighieri, Marina Simões; Lago, José Vitor Martins; Graça, Yorgos Luiz Santos de Salles; Sobral, Ana Cristina Lira; Lago, Marianna Martins

    2015-01-01

    To evaluate the behavior of castor oil-derived polyurethane as a hemostatic agent and tissue response after abdominal aortic injury and to compare it with 2-octyl-cyanoacrylate. Twenty-four Guinea Pigs were randomly divided into three groups of eight animals (I, II, and III). The infrarenal abdominal aorta was dissected, clamped proximally and distally to the vascular puncture site. In group I (control), hemostasis was achieved with digital pressure; in group II (polyurethane) castor oil-derived polyurethane was applied, and in group III (cyanoacrylate), 2-octyl-cyanoacrylate was used. Group II was subdivided into IIA and IIB according to the time of preparation of the hemostatic agent. Mean blood loss in groups IIA, IIB and III was 0.002 grams (g), 0.008 g, and 0.170 g, with standard deviation of 0.005 g, 0.005 g, and 0.424 g, respectively (P=0.069). The drying time for cyanoacrylate averaged 81.5 seconds (s) (standard deviation: 51.5 seconds) and 126.1 s (standard deviation: 23.0 s) for polyurethane B (P=0.046). However, there was a trend (P=0.069) for cyanoacrylate to dry more slowly than polyurethane A (mean: 40.5 s; SD: 8.6 s). Furthermore, polyurethane A had a shorter drying time than polyurethane B (P=0.003), mean IIA of 40.5 s (standard deviation: 8.6 s). In group III, 100% of the animals had mild/severe fibrosis, while in group II only 12.5% showed this degree of fibrosis (P=0.001). Polyurethane derived from castor oil showed similar hemostatic behavior to octyl-2-cyanoacrylate. There was less perivascular tissue response with polyurethane when compared with cyanoacrylate.

  7. A novel approach for synthesis of zwitterionic polyurethane coating with protein resistance.

    PubMed

    Wang, Chunhua; Ma, Chunfeng; Mu, Changdao; Lin, Wei

    2014-11-04

    We have developed a novel approach to introduce zwitterions into polyurethane for the preparation of antibiofouling coating. First, the thiol-ene click reaction between 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 3-mercapto-1,2-propanediol (TPG) is used to synthesize dihydroxy-terminated DMAEMA (DMA(OH)2) under UV catalysis. The product has been proved by gel permeation chromatography (GPC), Fourier transform infrared spectrum (FT-IR), proton nuclear magnetic resonance ((1)H NMR), and high resolution mass spectrometry (HRMS). DMA(OH)2 is then incorporated into polyurethane as side groups by polyaddition with diisocyanate and further reacts with 1,3-propane sultone to obtain the zwitterionic polyurethanes. The presence of sulfobetaine zwitterions side groups has been demonstrated by FT-IR and X-ray photoelectron spectroscopy (XPS). Thermal analysis indicates that the thermal stability is decreased with the increasing content of zwitterionions. The antibiofouling property of polyurethanes has been investigated by the measurement of adsorption of fibrinogen, bovine serum albumin (BSA), and lysozyme on the polyurethanes surface using quartz crystal microbalance with dissipation (QCM-D). The results show that the polyurethane coatings exhibit effective nonspecific protein resistance at higher content of zwitterionic side groups.

  8. 3D modeling of squeeze flow of unidirectionally thermoplastic composite inserts

    NASA Astrophysics Data System (ADS)

    Ghnatios, Chady; Abisset-Chavanne, Emmanuelle; Binetruy, Christophe; Chinesta, Francisco; Advani, Suresh

    2016-10-01

    Thermoplastic composites are attractive because they can be recycled and exhibit superior mechanical properties. The ability of thermoplastic resin to melt and solidify allows for fast and cost-effective manufacturing processes, which is a crucial property for high volume production. Thermoplastic composite parts are usually obtained by stacking several prepreg plies to create a laminate with a particular orientation sequence to meet design requirements. During the consolidation and forming process, the thermoplastic laminate is subjected to complex deformation which can include intraply and/or interply shear, ply reorientation and squeeze flow. In the case of unidirectional prepregs, the ply constitutive equation, when elastic effects are neglected, can be modeled as a transversally isotropic fluid, that must satisfy the fiber inextensibility as well as the fluid incompressibility. The high-fidelity solution of the squeeze flow in laminates composed of unidirectional prepregs was addressed in our former works by making use of an in-plane-out-of-plane separated representation allowing a very detailed resolution of the involved fields throughout the laminate thickness. In the present work prepregs plies are supposed of limited dimensions compared to the in-plane dimension of the part and will be named inserts. Again within the Proper Generalized Decomposition framework high-resolution simulation of the squeeze flow occurring during consolidation is addressed within a fully 3D in-plane-out-of-plane separated representation.

  9. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  10. Surface hydrophobic modification of polyurethanes by diaryl carbene chemistry: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Wang, Yongqing; Lu, Ling; Yu, Xi; Liu, Lian

    2018-03-01

    Dodecyl diaryl diazomethane was firstly synthesized from 4,4-dihydroxybenzophenone and 1-bromododecane by a series of reaction steps. Then water-borne polyurethane films with different amount of DMPA were prepared, as well as a type of solvent-borne polyurethane film for comparison. Finally, all these polyurethane films were modified by dodecyl diaryl diazomethane. The dodecyl diaryl carbene was generated from dodecyl diaryl diazomethane by strong solar light, which was very convenient to insert into the Xsbnd H bonds (X = C, N) on the surface of polyurethane films. The contact angle test was used to characterize these films and depict the surface property. DSC analysis and tensile test were used to investigate the physical properties of polyurethane films before and after modification. It was suggested that the hydrophobic modification protocol with carbene insertion was very useful and convenient to prepare water-proof coatings outdoors under direct solar-light exposure.

  11. Temperature- and pH-responsive nanoparticles of biocompatible polyurethanes for doxorubicin delivery.

    PubMed

    Wang, Anning; Gao, Hui; Sun, Yanfang; Sun, Yu-long; Yang, Ying-Wei; Wu, Guolin; Wang, Yinong; Fan, Yunge; Ma, Jianbiao

    2013-01-30

    A series of temperature- and pH-responsive polyurethanes based on hexamethylene diisocyanate (HDI) and 4,4'-diphenylmethane diisocyanate (MDI) were synthesized by a coupling reaction with bis-1,4-(hydroxyethyl) piperazine (HEP), N-methyldiethanolamine (MDEA) and N-butyldiethanolamine (BDEA), respectively. The chemical structure, molecular weight, thermal property and crystallization properties were characterized by Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) spectroscopy. The resulting polyurethanes were then used to prepare nanoparticles either by direct dispersion method or dialysis method. Their pH and temperature responsibilities were evaluated by optical transmittance and size measurement in aqueous media. Interestingly, HDI-based and MDI-based polyurethanes exhibited different pH and temperature responsive properties. Nanoparticles based on HDI-HEP and HDI-MDEA were temperature-responsive, while MDI-based biomaterials were not. All of them showed pH-sensitive behavior. The possible responsive mechanism was investigated by (1)H NMR spectroscopy. The cytotoxicity of the polyurethanes was evaluated using methylthiazoletetrazolium (MTT) assay in vitro. It was shown that the HDI-based polyurethanes were non-toxic, and could be applied to doxorubicin (DOX) encapsulation. The experimental results indicated that DOX could be efficiently encapsulated into polyurethane nanoparticles and uptaken by Huh-7 cells. The loaded DOX molecules could be released from the drug-loaded polyurethane nanoparticles upon pH and temperature changes, responsively. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparison of polyurethane with cyanoacrylate in hemostasis of vascular injury in guinea pigs

    PubMed Central

    Kubrusly, Luiz Fernando; Formighieri, Marina Simões; Lago, José Vitor Martins; Graça, Yorgos Luiz Santos de Salles; Sobral, Ana Cristina Lira; Lago, Marianna Martins

    2015-01-01

    Objective To evaluate the behavior of castor oil-derived polyurethane as a hemostatic agent and tissue response after abdominal aortic injury and to compare it with 2-octyl-cyanoacrylate. Methods Twenty-four Guinea Pigs were randomly divided into three groups of eight animals (I, II, and III). The infrarenal abdominal aorta was dissected, clamped proximally and distally to the vascular puncture site. In group I (control), hemostasis was achieved with digital pressure; in group II (polyurethane) castor oil-derived polyurethane was applied, and in group III (cyanoacrylate), 2-octyl-cyanoacrylate was used. Group II was subdivided into IIA and IIB according to the time of preparation of the hemostatic agent. Results Mean blood loss in groups IIA, IIB and III was 0.002 grams (g), 0.008 g, and 0.170 g, with standard deviation of 0.005 g, 0.005 g, and 0.424 g, respectively (P=0.069). The drying time for cyanoacrylate averaged 81.5 seconds (s) (standard deviation: 51.5 seconds) and 126.1 s (standard deviation: 23.0 s) for polyurethane B (P=0.046). However, there was a trend (P=0.069) for cyanoacrylate to dry more slowly than polyurethane A (mean: 40.5 s; SD: 8.6 s). Furthermore, polyurethane A had a shorter drying time than polyurethane B (P=0.003), mean IIA of 40.5 s (standard deviation: 8.6 s). In group III, 100% of the animals had mild/severe fibrosis, while in group II only 12.5% showed this degree of fibrosis (P=0.001). Conclusion Polyurethane derived from castor oil showed similar hemostatic behavior to octyl-2-cyanoacrylate. There was less perivascular tissue response with polyurethane when compared with cyanoacrylate. PMID:25859876

  13. Portable Device Slices Thermoplastic Prepregs

    NASA Technical Reports Server (NTRS)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  14. Supportability evaluation of thermoplastic and thermoset composites

    NASA Technical Reports Server (NTRS)

    Chanani, G. R.; Boldi, D.; Cramer, S. G.; Heimerdinger, M. W.

    1990-01-01

    Nearly 300 advanced composite components manufactured by Northrop Corporation are flying on U.S. Air Force and U.S. Navy supersonic aircraft as part of a three-year Air Force/Navy/Northrop supportability evaluation. Both thermoplastic and high-temperature thermoset composites were evaluated for their in-service performance on 48 USAF and Navy F-5E fighter and USAFT-38 trainer aircraft in the first large-scale, long-term maintenance evaluation of these advanced materials. Northrop manufactured four types of doors for the project-avionics bay access, oil fill, inlet duct inspection, and a main landing gear door. The doors are made of PEEK (polyetheretherketone) thermoplastic, which is tougher and potentially less expensive to manufacture than conventional composites; and 5250-3 BMI (bismaleimide) thermoset, which is manufactured like a conventional epoxy composite but can withstand higher service temperatures. Results obtained so far indicate that both the BMI and PEEK are durable with PEEK being somewhat better than BMI.

  15. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  16. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    PubMed

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  18. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  19. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  20. Durability of one-part polyurethane bonds to wood improved by HMR coupling agent

    Treesearch

    Charles B. Vick; E. Arnold Okkonen

    2000-01-01

    In a previous study on the strength and durability of a new class of wood adhesives called one-part polyurethanes, four commercial one-part polyurethanes, along with a resorcinol-formaldehyde adhesive representing a standard of performance, were compared in bonds to yellow birch and Douglas-fir in a series of industry-accepted tests (7). The polyurethanes all performed...

  1. Thermal behaviour properties and corrosion resistance of organoclay/polyurethane film

    NASA Astrophysics Data System (ADS)

    Kurniawan, O.; Soegijono, B.

    2018-03-01

    Organoclay/polyurethane film composite was prepared by adding organoclay with different content (1, 3, and 5 wt.%) in polyurethane as a matrix. TGA and DSC showed decomposition temperature shifted to a lower point as organoclay content change. FT-IR spectra showed chemical bonding of organoclay and polyurethane as a matrix, which means that the bonding between filler and matrix occured and the composite was stronger but less bonding occur in composite with 5 wt.% organoclay. The corrosion resistance overall increased with the increasing organoclay content. Composite with 5 wt.% organoclay had more thermal stability and corrosion resistance may probably due to exfoliation of organoclay.

  2. Damage healing ability of a shape-memory-polymer-based particulate composite with small thermoplastic contents

    NASA Astrophysics Data System (ADS)

    Nji, Jones; Li, Guoqiang

    2012-02-01

    The purpose of this study is to investigate the potential of a shape-memory-polymer (SMP)-based particulate composite to heal structural-length scale damage with small thermoplastic additive contents through a close-then-heal (CTH) self-healing scheme that was introduced in a previous study (Li and Uppu 2010 Comput. Sci. Technol. 70 1419-27). The idea is to achieve reasonable healing efficiencies with minimal sacrifice in structural load capacity. By first closing cracks, the gap between two crack surfaces is narrowed and a lesser amount of thermoplastic particles is required to achieve healing. The particulate composite was fabricated by dispersing copolyester thermoplastic particles in a shape memory polymer matrix. It is found that, for small thermoplastic contents of less than 10%, the CTH scheme followed in this study heals structural-length scale damage in the SMP particulate composite to a meaningful extent and with less sacrifice of structural capacity.

  3. Building Block Approach' for Structural Analysis of Thermoplastic Composite Components for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Carello, M.; Amirth, N.; Airale, A. G.; Monti, M.; Romeo, A.

    2017-12-01

    Advanced thermoplastic prepreg composite materials stand out with regard to their ability to allow complex designs with high specific strength and stiffness. This makes them an excellent choice for lightweight automotive components to reduce mass and increase fuel efficiency, while maintaining the functionality of traditional thermosetting prepreg (and mechanical characteristics) and with a production cycle time and recyclability suited to mass production manufacturing. Currently, the aerospace and automotive sectors struggle to carry out accurate Finite Elements (FE) component analyses and in some cases are unable to validate the obtained results. In this study, structural Finite Elements Analysis (FEA) has been done on a thermoplastic fiber reinforced component designed and manufactured through an integrated injection molding process, which consists in thermoforming the prepreg laminate and overmolding the other parts. This process is usually referred to as hybrid molding, and has the provision to reinforce the zones subjected to additional stresses with thermoformed themoplastic prepreg as required and overmolded with a shortfiber thermoplastic resin in single process. This paper aims to establish an accurate predictive model on a rational basis and an innovative methodology for the structural analysis of thermoplastic composite components by comparison with the experimental tests results.

  4. Fiber glass prevents cracking of polyurethane foam insulation on cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Forge, D. A.

    1968-01-01

    Fiber glass material, placed between polyurethane foam insulation and the outer surfaces of cryogenic vessels, retains its resilience at cryogenic temperatures and provides an expansion layer between the metal surfaces and the polyurethane foam, preventing cracking of the latter.

  5. Collagenase-labile polyurethane urea synthesis and processing into hollow fiber membranes.

    PubMed

    Fu, Hui-Li; Hong, Yi; Little, Steven R; Wagner, William R

    2014-08-11

    As a means to stimulate wound healing, a hollow fiber membrane system might be placed within a wound bed to provide local and externally regulated controlled delivery of regenerative factors. After sufficient healing, it would be desirable to triggerably degrade these fibers as opposed to pulling them out. Accordingly, a series of enzymatically degradable thermoplastic elastomers was developed as potential hollow fiber base material. Polyurethane ureas (PUUs) were synthesized based on 1, 4-diisocyanatobutane, polycaprolactone (PCL) diol and polyethylene glycol (PEG) at different molar fractions as soft segments, and collagenase-sensitive peptide GGGLGPAGGK-NH2 as a chain extender (defined as PUU-CLxEGy-peptide, where x and y are the respective molar percents). In these polymers, PEG in the polymer backbone decreased tensile strengths and initial moduli of solvent-cast films in the wet state, while increasing water absorption. Collagenase degradation was observed at 75% relative PEG content in the soft segment. Control PUUs with putrescine or nonsense peptide chain extenders did not degrade acutely in collagenase. Conduits electrospun from PUU-CL25EG75-peptide and PUU-CL50EG50-peptide exhibited appropriate mechanical strength and sustained release of a model protein from the tube lumen for 7 days. Collapse of PUU-CL25EG75-peptide tubes occurred after collagenase degradation for 3 days. In conclusion, through molecular design, synthesis and characterization, a collagenase-labile PUU-CL25EG75-peptide polymer was identified that exhibited the desired traits of triggerable lability, processability, and the capacity to act as a membrane to facilitate controlled protein release.

  6. Modeling of skeletal members using polyurethane foam

    SciTech Connect

    Sena, J.M.F.; Weaver, R.W.

    1983-11-01

    At the request of the University of New Mexico's Maxwell Museum of Anthropology, members of the Plastic Section in the Process Development Division at SNLA undertook the special project of the Chaco Lady. The project consisted of polyurethane foam casting of a disinterred female skull considered to be approximately 1000 years old. Rubber latex molds, supplied by the UNM Anthropology Department, were used to produce the polymeric skull requested. The authors developed for the project a modified foaming process which will be used in future polyurethane castings of archaeological artifacts and contemporary skeletal members at the University.

  7. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    PubMed

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  8. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

    PubMed

    Cregut, Mickael; Bedas, M; Durand, M-J; Thouand, G

    2013-12-01

    Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive. © 2013.

  9. Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates

    DTIC Science & Technology

    2011-08-01

    Kevlar KM2® Style 705 PVB phenolic woven aramid composite was included. A developmental unidirectional thermoplastic aramid fiber, Honeywell...Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates by...Unidirectional Composite Laminates Lionel R. Vargas-Gonzalez, Shawn M. Walsh, and James C. Gurganus Weapons and Materials Research Directorate, ARL

  10. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  11. Processing parameters for thermoplastic filament winding

    NASA Astrophysics Data System (ADS)

    Colton, J.; Leach, D.

    The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semiconsolidated towpreg; and commingled fiber towpeg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8 mmID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8 mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but only a significant effect on the percentage of voids at a 95 percent confidence level.

  12. Thermoplastic nanofluidic devices for biomedical applications.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; O'Neil, Colleen E; Uba, Franklin I; Soper, Steven A

    2017-01-31

    Microfluidics is now moving into a developmental stage where basic discoveries are being transitioned into the commercial sector so that these discoveries can affect, for example, healthcare. Thus, high production rate microfabrication technologies, such as thermal embossing and/or injection molding, are being used to produce low-cost consumables appropriate for commercial applications. Based on recent reports, it is clear that nanofluidics offers some attractive process capabilities that may provide unique venues for biomolecular analyses that cannot be realized at the microscale. Thus, it would be attractive to consider early in the developmental cycle of nanofluidics production pipelines that can generate devices possessing sub-150 nm dimensions in a high production mode and at low-cost to accommodate the commercialization of this exciting technology. Recently, functional sub-150 nm thermoplastic nanofluidic devices have been reported that can provide high process yield rates, which can enable commercial translation of nanofluidics. This review presents an overview of recent advancements in the fabrication, assembly, surface modification and the characterization of thermoplastic nanofluidic devices. Also, several examples in which nanoscale phenomena have been exploited for the analysis of biomolecules are highlighted. Lastly, some general conclusions and future outlooks are presented.

  13. Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Sikorska, Wanda; Tercjak, Agnieszka; Kowalczuk, Marek; Rutkowska, Maria

    2017-01-01

    In many areas of application of conventional non-degradable cross-linked polyurethanes (PUR), there is a need for their degradation under the influence of specific environmental factors. It is practiced by incorporation of sensitive to degradation compounds (usually of natural origin) into the polyurethane structure, or by mixing them with polyurethanes. Cross-linked polyurethanes (with 10 and 30%wt amount of synthetic poly([ R,S ]-3-hydroxybutyrate) (R,S-PHB) in soft segments) and their physical blends with poly([d,l]-lactide) (PDLLA) were investigated and then degraded under hydrolytic (phosphate buffer solution) and oxidative (CoCl 2 /H 2 O 2 ) conditions. The rate of degradation was monitored by changes of samples mass, morphology of surface and their thermal properties. Despite the small weight losses of samples, the changes of thermal properties of polymers and topography of their surface indicated that they were susceptible to gradual degradation under oxidative and hydrolytic conditions. Blends of PDLLA and polyurethane with 30 wt% of R,S -PHB in soft segments and PUR/PDLLA blends absorbed more water and degraded faster than polyurethane with low amount of R,S -PHB.

  14. The Effect of Adhesion Interaction on the Mechanical Properties of Thermoplastic Basalt Plastics

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Kabak, A. I.; Yakovchuk, Yu. Yu.

    2003-01-01

    The effect of temperature, adhesion time, and surface treatment of a reinforcing filler on the mechanical properties of thermoplastic basalt plastics based on a high-density polyethylene and a copolymer of 1,3,5-trioxane with 1,3-dioxolan is investigated. An extreme dependence for the adhesive strength in a thermoplastic-basalt fiber system is established and its effect on the mechanical properties of basalt plastics and the influence of the adhesion contact time on the adhesive strength in the system are clarified. The surface modification of basalt fibers in acidic and alkaline media intensifies the adhesion of thermoplastics to them owing to a more developed surface of the reinforcing fibers after etching. It is found that the treatment in the acidic medium is more efficient and considerably improves the mechanical properties of basalt plastics.

  15. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water

    PubMed Central

    Zhou, Xing; Fang, Changqing; Lei, Wanqing; Du, Jie; Huang, Tingyi; Li, Yan; Cheng, Youliang

    2016-01-01

    Water plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes. Based on the results on FTIR, GPC, AFM and XRD experiments, we suggest that the shape of the nanoparticles may be decided by the crimp degree (i.e., the degree of polyurethane chains intertangling in the water environment) and order degree, which are determined by the molecular weight (Mn) and hydrogen bonds. Meanwhile, solid water and high-temperature water can both reduce hard segments that gather on the polyurethane film surface to reduce hydrophilic groups and produce a soft surface. Our findings show that water may play key roles in aqueous polymer formation and bring order to molecular chains. PMID:27687001

  16. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior.

    PubMed

    Sun, Peiyu; Wang, Jing; Yao, Xiong; Peng, Ying; Tu, Xiaoxiong; Du, Pengfei; Zheng, Zhen; Wang, Xinling

    2014-08-13

    A facile method was found to incorporate a mussel-inspired adhesive moiety into synthetic polymers, and mussel mimetic polyurethanes were developed as adhesive hydrogels. In these polymers, a urethane backbone was substituted for the polyamide chain of mussel adhesive proteins, and dopamine was appended to mimic the adhesive moiety of adhesive proteins. A series of mussel mimetic polyurethanes were created through a step-growth polymerization based on hexamethylene diisocyanate as a hard segment, PEG having different molecular weights as a soft segment, and lysine-dopamine as a chain extender. Upon a treatment with Fe(3+), the aqueous mussel mimetic polyurethane solutions can be triggered by pH adjustment to form adhesive hydrogels instantaneously; these materials can be used as injectable adhesive hydrogels. Upon a treatment with NaIO4, the mussel mimetic polyurethane solutions can be cured in a controllable period of time. The successful combination of the unique mussel-inspired adhesive moiety with a tunable polyurethane structure can result in a new kind of mussel-inspired adhesive polymers.

  17. Re-rounding of deflected thermoplastic conduit, phase I.

    DOT National Transportation Integrated Search

    2017-03-01

    Shad Sargand (ORCID 0000-0002-1633-1045), Andrew Russ (ORCID 0000-0001-7743-2109), and Kevin White (0000-0002-2902-2524) This study investigated the potential benefits of re-rounding of thermoplastic pipe, a process for reducing the deflection of ins...

  18. In vitro analysis of polyurethane foam as a topical hemostatic agent.

    PubMed

    Broekema, Ferdinand I; van Oeveren, Wim; Zuidema, Johan; Visscher, Susan H; Bos, Rudolf R M

    2011-04-01

    Topical hemostatic agents can be used to treat problematic bleedings in patients who undergo surgery. Widely used are the collagen- and gelatin-based hemostats. This study aimed to develop a fully synthetic, biodegradable hemostatic agent to avoid exposure to animal antigens. In this in vitro study the suitability of different newly developed polyurethane-based foams as a hemostatic agent has been evaluated and compared to commonly used agents. An experimental in vitro test model was used in which human blood flowed through the test material. Different modified polyurethane foams were compared to collagen and gelatin. The best coagulation was achieved with collagen. The results of the polyurethane foam improved significantly by increasing the amount of polyethylene glycol. Therefore, the increase of the PEG concentration seems a promising approach. Additional in vivo studies will have to be implemented to assess the application of polyurethane foam as a topical hemostatic agent.

  19. Influence of reaction condition on viscosity of polyurethane modified epoxy based on glycerol monooleate

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-01-01

    Polyurethane modified epoxy based on glycerol monooleate (PME-GMO) was synthesized. GMO as polyol for synthesis of PME-GMO was synthesized via Fisher Esterification between oleic acid from palm oil and glycerol by using sulfuric acid as catalyst with time variation i.e. 3, 4, 5 and 6 hours at 160°C. Characterizations of GMO were carried out by analysis of acid number, hydroxyl value and FTIR. The data show that the conversion of oleic acid to ester compound is directly proportional with the increasing of reaction time but the enhancement is not significant after 3 hours. Furthermore, GMO product was used as polyol for modification of epoxy with polyurethane. Modification of epoxy with polyurethane was performed by reacted epoxy, tolonate and GMO simultaneously in one step. In this research, the reaction condition was varied i.e. time reaction (0.5; 1; 1.5; 2; 2.5 hours), composition of polyurethane used (10%, 20% toward epoxy) and rasio of tolonate and GMO (NCO/OH ratio) as component of polyurethane (1.5 and 2.5). Characterization of polyurethane modified epoxy based on glycerol (PME-GMO) was conducted by viscosity and FTIR analysis. The viscosity of PME-GMO increased with increasing of reaction time, polyurethane composition and NCO/OH ratio.

  20. Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models.

    PubMed

    Ferreira, A E R; Castro, B F M; Vieira, L C; Cassali, G D; Souza, C M; Fulgêncio, G O; Ayres, E; Oréfice, R L; Jorge, R; Silva-Cunha, A; Fialho, S L

    2017-03-01

    To evaluate the antiangiogenic activity of bevacizumab-loaded polyurethane using two animal models of neovascularization. The percentage of blood vessels was evaluated in a chicken chorioallantoic membrane model (n=42) and in the rabbit cornea (n=24) with neovascularization induced by alkali injury. In each model, the animals were randomly divided into the groups treated with the bevacizumab-loaded polyurethane device, phosphate-buffered-saline (negative control) and bevacizumab commercial solution (positive control). Clinical examination, as well as histopathological and immunohistochemical evaluation, were performed in the rabbit eyes. Microvascular density in hot spot areas was determined in semi-thin sections of corneal tissue by hematoxylin-eosin staining and factor VIII immunohistochemistry. Immunohistochemical analysis was also performed to evaluate VEGF expression. In the evaluated models, the use of bevacizumab (Avastin ® ) and the bevacizumab-loaded polyurethane device led to similar results with regard to inhibition of neovascularization. In the chorioallantoic membrane model, the bevacizumab-loaded polyurethane device reduced angiogenesis by 50.27% when compared to the negative control group. In the rabbit model of corneal neovascularization, the mean density of vessels/field was reduced by 46.87% on analysis of factor VIII immunohistochemistry photos in the bevacizumab-loaded polyurethane device group as compared to the negative control (PBS) sections. In both models, no significant difference could be identified between the bevacizumab-loaded polyurethane device and the positive control group, leading to similar results with regard to inhibition of neovascularization. The present study shows that the bevacizumab-loaded polyurethane device may release bevacizumab and inhibit neovascularization similarly to commercial bevacizumab solution in the short-term. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Investigation into reversion of polyurethane encapsulants

    NASA Technical Reports Server (NTRS)

    Lynch, C. R.

    1973-01-01

    The effect of high humidity (95% RH) at 60 C, 70 C, 85 C and 100 C on the solid-to-liquid reversion of polyurethane elastomers (used for potting electrical connectors and conformal coating printed circuit boards) was investigated. Hardness measurements were conducted on eleven elastomers to track reversion for a 101-day period. The primary purpose of the tests was to provide data to predict service life for the polyurethane elastomers. This was not accomplished as the hardness did not deteriorate rapidly enough at the lower test temperatures. The tests did determine that the potting and coating materials most widely used on the S-1C Program are susceptible to reversion but appear adequate for service in the S-1C environment.

  2. Histopathological reaction over prosthesis surface covered with silicone and polyurethane foam implanted in rats.

    PubMed

    Wagenführ-Júnior, Jorge; Ribas Filho, Jurandir Marcondes; Nascimento, Marcelo Mazza do; Ribas, Fernanda Marcondes; Wanka, Marcus Vinícius; Godoi, Andressa de Lima

    2012-12-01

    To evaluate whether polyurethane foam leads more intense foreign-body reaction than silicone foam. To compare the vascularization of the capsules surrounding the foam implants. To investigate if the capsule of polyurethane foam implanted has greater amount of collagen than that of silicone foam. Sixty-four young male Wistar rats were allocated into two groups: polyurethane foam and silicone foam. Subcutaneous discs were implanted into the dorsum of the animals in both groups. The capsules were assessed 28 days, two months, three months and six months postoperatively. Microscopic analysis with H&E stain was performed to evaluate the acute and chronic inflammatory process, foreign-body reaction and neovascularization. The analysis with picrosirius red was performed using the ImageProPlus software, to measure the number of vessels and collagen types I and III. There were no statistical differences between the two groups regarding the acute and chronic inflammatory processes. All rats from the polyurethane group, in all times, exhibited moderate or intense foreign-body reaction, with statistic significant difference (p=0.046) when compared with the silicone group, in which the reaction was either mild or nonexistent at two months. Vascular proliferation was significantly different between the groups at 28 days (p=0.0002), with the polyurethane group displaying greater neovascularization with H&E stain. Similar results were obtained with picrosirius red, which revealed in the polyurethane group a much greater number of vessels than in the silicone group (p=0.001). The collagen area was larger in the polyurethane group, significantly at 28 days (p=0.001) and at two months (p=0.030). Polyurethane foam elicited more intense foreign-body reaction when compared with silicone foam. The number of vessels was higher in the capsules of the polyurethane foam implants 28 days after the operation. The capsule of the polyurethane foam implants showed a greater amount of collagen

  3. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  4. Sulfur Mustard Penetration of Thermoplastic Elastomers

    DTIC Science & Technology

    2008-10-01

    blend of polypropylene and finely dispersed, highly vulcanised EPDM rubber [4]. However its exact composition is a trade secret. The Santoprene grade... rubber or silicone rubber . Compared to thermoplastic elastomers, these thermosetting elastomers are expensive and difficult to process. Therefore a...the last few decades, CBR respirators have generally been manufactured from either butyl rubber (as in the British and Australian S10), or silicone

  5. LARC-TPI and new thermoplastic polyimides

    SciTech Connect

    Yamaguchi, A.; Ohta, M.

    1987-02-01

    The LARC-TPI linear thermoplastic polyimide has been developed by NASA for high temperature adhesive applications in aerospace structures in the forms of varnish, films, powders, and prepregs. LARC-TPI improves adhesive processability and lowers glass transition temperature, while retaining mechanical, thermal and electrical properties inherent in the polyimides. It may be used as a structural adhesive for metals, composites, ceramics, and films. 8 references.

  6. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    PubMed Central

    Coiai, Serena; Passaglia, Elisa; Pucci, Andrea; Ruggeri, Giacomo

    2015-01-01

    Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  7. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    SciTech Connect

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies.more » Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy

  8. The crystallization of tough thermoplastic resins in the presence of carbon fibers

    NASA Technical Reports Server (NTRS)

    Theil, M. H.

    1986-01-01

    The crystallization kinetics of the thermoplastic resins poly(phenylene sulfide) (PPS) and poly(aryl-ether-ether-ketone) (PEEK) in the presence and in the abscence of carbon fibers was studied. How carbon fiber surfaces in composites affect the crystallization of tough thermoplastic polymers that may serve as matrix resins were determined. The crystallization kinetics of such substances can provide useful information about the crystallization mechanisms and, thus, indicate if the presence of carbon fibers cause any changes in such mechanisms.

  9. Mechanical properties of injection-molded thermoplastic denture base resins.

    PubMed

    Hamanaka, Ippei; Takahashi, Yutaka; Shimizu, Hiroshi

    2011-03-01

    To investigate the mechanical properties of injection-molded thermoplastic denture base resins. Four injection-molded thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were used in this study. The flexural strength at the proportional limit (FS-PL), the elastic modulus, and the Charpy impact strength of the denture base resins were measured according to International Organization for Standardization (ISO) 1567 and ISO 1567:1999/Amd 1:2003. The descending order of the FS-PL was: conventional PMMA > polyethylene terephthalate, polycarbonate > two polyamides. The descending order of the elastic moduli was: conventional PMMA > polycarbonate > polyethylene terephthalate > two polyamides. The descending order of the Charpy impact strength was: polyamide (Nylon PACM12) > polycarbonate > polyamide (Nylon 12), polyethylene terephthalate > conventional PMMA. All of the injection-molded thermoplastic resins had significantly lower FS-PL, lower elastic moduli, and higher or similar impact strength compared to the conventional PMMA. The polyamide denture base resins had low FS-PL and low elastic moduli; one of them possessed very high impact strength, and the other had low impact strength. The polyethylene terephthalate denture base resin showed a moderately high FS-PL, moderate elastic modulus, and low impact strength. The polycarbonate denture base resin had a moderately high FS-PL, moderately high elastic modulus, and moderate impact strength.

  10. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  11. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  12. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  13. The Place for Thermoplastic Composites in Structural Components

    DTIC Science & Technology

    1987-12-01

    The molten tube is then squashed flat and consolidated into ribbon form by continuous opposed-belt laminating. Existing graphite-epoxy pultrusion...the solid form it must have a molecular weight that exceeds the critical entanglement value. Thus thermoplastic materials of commercial worth almost

  14. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    PubMed Central

    Jeong, Jin-Oh; Park, Jong-Seok; Lim, Youn-Mook

    2016-01-01

    Polyurethane (PU) is the fifth most common polymer in the general consumer market, following Polypropylene (PP), Polyethylene (PE), Polyvinyl chloride (PVC), and Polystyrene (PS), and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR). Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA) and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques. PMID:28773561

  15. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation

    NASA Astrophysics Data System (ADS)

    Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.

    2016-04-01

    Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.

  16. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    EPA Science Inventory

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  17. Diamond turning of thermoplastic polymers

    SciTech Connect

    Smith, E.; Scattergood, R.O.

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  18. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    PubMed

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  19. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  20. Method for shaping sheet thermoplastic and the like

    NASA Technical Reports Server (NTRS)

    Akilian, Mireille K. (Inventor); Schattenburg, Mark L. (Inventor)

    2011-01-01

    Processes and apparati for shaping sheet glass or thermoplastic materials use force from a layer of a flowing fluid, such as air, between the sheet and a mandrel at close to the softening temperature of the thermoplastic. The shape is preserved by cooling. The shape of the air bearing mandrel and the pressure distribution of the fluid contribute to the final shape. A process can be conducted on one or two surfaces such that the force from the air layer is on one or two surfaces of the sheet. The gap size between the sheet and mandrel determines the pressure profile in the gap, which also determines the final sheet shape. In general, smaller gaps lead to larger viscous forces. The pressure profile depends on the shape of the mandrel, the size of the fluid gap and the sheet and the fluid supply pressure.

  1. Multiaxial Cyclic Thermoplasticity Analysis with Besseling's Subvolume Method

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1983-01-01

    A modification was formulated to Besseling's Subvolume Method to allow it to use multilinear stress-strain curves which are temperature dependent to perform cyclic thermoplasticity analyses. This method automotically reproduces certain aspects of real material behavior important in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These include the Bauschinger effect, cross-hardening, and memory. This constitutive equation was implemented in a finite element computer program called CYANIDE. Subsequently, classical time dependent plasticity (creep) was added to the program. Since its inception, this program was assessed against laboratory and component testing and engine experience. The ability of this program to simulate AGTE material response characteristics was verified by this experience and its utility in providing data for life analyses was demonstrated. In this area of life analysis, the multiaxial thermoplasticity capabilities of the method have proved a match for the actual AGTE life experience.

  2. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...

  3. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  4. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...

  5. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...

  6. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam production—source-wide emission limitation. Each owner or operator of a new or existing slabstock...

  7. Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics

    NASA Astrophysics Data System (ADS)

    Olson, Meghan

    Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.

  8. Process for Preparing a Tough, Soluble, Aromatic, Thermoplastic Copolyimide

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1997-01-01

    A process for preparing a tough, soluble, aromatic, thermoplastic copolyimide is provided. The process comprises the steps of (a) providing 4.4'-oxydiphthalic anhydride to 3,4,3',4'-biphenyltetracarboxylic dianhydride at a mole ratio ranging from about 25 mole percent to 75 mole percent to 75 mole percent to about 25 mole percent; (b) adding 3,4'-oxydianiline to form a mixture; (c) adding a polar aprotic or polar protic solvent to the mixture to form a solution having a percentage of solids capable of maintaining polymer solubility; (d) stirring the solution to allow it to react; (e) adding an azeotropic solvent to the solution and heating to remove water; (f) cooling the solution of step (e) to room temperature and recovering the tough, soluble, aromatic, thermoplastic copolyimide.

  9. Development and evaluation of thermoplastic street maintenance material

    NASA Technical Reports Server (NTRS)

    Siemens, W. D.

    1973-01-01

    An all-weather permanent street patching material was investigated for flexible and rigid pavements. The economic, operational, and material requirements are discussed along with the results of field tests with various mixtures of EVA resins and asphalt. Cost analyses for thermoplastic patching methods are included.

  10. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected...

  11. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected...

  12. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected...

  13. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  14. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  15. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected...

  16. 40 CFR 63.1299 - Standards for slabstock flexible polyurethane foam production-source-wide emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-source-wide emission limitation. 63.1299 Section 63.1299 Protection of Environment... Flexible Polyurethane Foam Production § 63.1299 Standards for slabstock flexible polyurethane foam... procedures in paragraphs (c)(1) through (4) of this section, unless a recovery device is used. Slabstock foam...

  17. Synthesis and Characterization of High-Dielectric-Constant Nanographite-Polyurethane Composite

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen; Bhat, Badekai Ramachandra; Bhattacharya, B.; Mehra, R. M.

    2018-05-01

    In the face of ever-growing demand for capacitors and energy storage devices, development of high-dielectric-constant materials is of paramount importance. Among various dielectric materials available, polymer dielectrics are preferred for their good processability. We report herein synthesis and characterization of nanographite-polyurethane composite with high dielectric constant. Nanographite showed good dispersibility in the polyurethane matrix. The thermosetting nature of polyurethane gives the composite the ability to withstand higher temperature without melting. The resultant composite was studied for its dielectric constant (ɛ) as a function of frequency. The composite exhibited logarithmic variation of ɛ from 3000 at 100 Hz to 225 at 60 kHz. The material also exhibited stable dissipation factor (tan δ) across the applied frequencies, suggesting its ability to resist current leakage.

  18. Numerical modeling and experimental validation of thermoplastic composites induction welding

    NASA Astrophysics Data System (ADS)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  19. New high-frequency weldable polyolefin films.

    PubMed

    Kelch, R

    2000-05-01

    There is an increasing desire for plastic films that can be sealed using high-frequency energy. Tests on new high-frequency polyolefin film structures are reported, which compare them with the characteristics and performance of poly(vinyl chloride), ethylene-vinyl acetate and thermoplastic polyurethane films.

  20. Reinforcing of thermoplastic polycarbonate and polysulfone with carbon fibers: Production and characteristics of UD-compound objects

    NASA Technical Reports Server (NTRS)

    Fitzer, E.; Jaeger, H.

    1988-01-01

    The production and characteristics of the carbon fiber reinforced thermoplastics polycarbonate and polysulfone are described. The production of prepregs from defined polymer solutions is emphasized along with methods of optimizing the production of compounds. The characteristics of unidirectionally reinforced thermoplastics, such as shear strength, bending strength, and impact resistance are compared with regard to fracture behavior, the influence of intermediate layers, and the behavior under cryogenic conditions and under slightly elevated temperatures. The problem of adhesion between high strength carbon fibers and thermoplastics is examined, taking into account the effect of moisture on the shear strength and the impact resistance.

  1. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  2. Preparation of highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Rochow, S. E.; Stump, E. C., Jr.

    1971-01-01

    New polyurethanes, formed from a reaction of a prepolymer diol and a perfluorinated diisocyanate, are nonflammable and possess high corrosion resistance and good low temperature flexibility. Polymer hardness increases rapidly with increasing ratio of diisocaynate to diol, but its glass transition temperature is not adversely affected.

  3. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    SciTech Connect

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  4. Application of High-Impact Polystyrene (HIPS) as a Graphene Nanoparticle Reinforced Composite Thermoplastic Adhesive

    NASA Astrophysics Data System (ADS)

    Stitt, Erik

    Adhesive bonding is a more efficient joining method for composites than traditional mechanical fasteners and provides advantages in weight reduction, simplicity, and cost. In addition, the utilization of mechanical fasteners introduces stress concentrations and damage to the fiber-matrix interface. Adhesive bonding with thermoset polymers distributes mechanical loads but also makes disassembly for repair and recycling difficult. The ability to utilize thermoplastic polymers as adhesives offers an approach to address these limitations and can even produce a reversible adhesive joining technology through combining conductive nanoparticles with a thermoplastic polymer. The incorporation of the conductive nanoparticles allows for selective heating of the adhesive via exposure to electromagnetic (EM) radiation and simultaneously can augment the mechanical properties of the adhesive and the adhesive joint. This approach provides a versatile mechanism for efficiently creating and reversing structural adhesive joints across a wide range of materials. In this work, a high-impact polystyrene (HIPS) co-polymer containing butadiene as a toughness modifier is compounded with graphene nano-platelets (GnP) for investigation as a thermoplastic adhesive. The properties of the bulk composite adhesive are tailored by altering the morphology, dispersion, and concentration of GnP. The thermal response of the material to EM radiation in the microwave frequency spectrum was investigated and optimized. Surface treatments of the adhesive films were explored to enhance the viability of this nanoparticle thermoplastic polymer to function as a reversible adhesive. As a result, it has been shown that lap-shear strengths of multi-material joints produced from aforementioned thermoplastic adhesives were comparable to similar thermoset bonded joints.

  5. Fabrication of polysiloxane-modified polyurethane sponge as low-cost organics/water separation and selective absorption material.

    PubMed

    Cui, Zhengshan; He, Wanxia; Liu, Jun; Wei, Wei; Jiang, Liang; Huang, Jun; Lv, Xiaomeng

    2016-10-01

    Through sol-gel and dip-coating processes, commercial polyurethane sponge modified by polysiloxane was fabricated under low temperature (60 °C) and atmosphere. The contact angle of the obtained polysiloxane/polyurethane sponge is 145 ± 5°. Hence, the polysiloxane/polyurethane sponge could float on water and selectively absorb organics from the surface of the water, indicating simultaneous properties of hydrophobicity and oleophilicity. The absorbent maximum value is 50-150 times of its own weight. The polysiloxane/polyurethane sponge exhibited excellent recyclability, which could be reused by squeezing the sponge due to its high mechanical stability and flexibility. Thermogravimetry-differential thermal analysis test indicated that the polysiloxane/polyurethane sponge exhibited good thermal stability and the stable contact angle of samples tested under increasing temperature indicated its good weather resistance. Due to the commercial property of polyurethane sponge and easy-handling of polysiloxane, the polysiloxane/polyurethane sponge can be easily scaled up to recover a large-area oil spill in water and further work based on the designed equipment has been under consideration.

  6. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  7. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    PubMed

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  8. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    NASA Astrophysics Data System (ADS)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  9. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites.

    PubMed

    Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi

    2018-03-01

    Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.

  10. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  11. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  12. Synthesis of Nitric Oxide-Releasing Polyurethanes with S-Nitrosothiol-Containing Hard and Soft Segments

    PubMed Central

    Coneski, Peter N.

    2013-01-01

    Nitric oxide (NO)-releasing polyurethanes capable of releasing up to 0.20 μmol NO cm−2 were synthesized by incorporating active S-nitrosothiol functionalities into hard and soft segment domains using thiol group protection and post-polymerization modifications, respectively. The nitrosothiol position within the hard and soft segment domains of the polyurethanes impacted both the total NO release and NO release kinetics. The NO storage and release properties were correlated to both chain extender modification and ensuing phase miscibility of the polyurethanes. Thorough material characterization is provided to examine the effects of hard and soft segment modifications on the resultant polyurethane properties. PMID:23418409

  13. Evaluation of impact-affected areas of glass fibre thermoplastic composites from thermographic images

    NASA Astrophysics Data System (ADS)

    Boccardi, S.; Carlomagno, G. M.; Simeoli, G.; Russo, P.; Meola, C.

    2016-07-01

    The usefulness of an infrared imaging device, in terms of both acting as a mechanism for surface thermal monitoring when a specimen is being impacted and as a non-destructive evaluation technique, has already been proved. Nevertheless, past investigation has focused on mainly thermoset-matrix composites with little attention towards thermoplastic ones. Conversely, these thermoplastic composites are becoming ever more attractive to the aeronautical sector. Their main advantage lies in the possibility of modifying their interface strength by adjusting the composition of the matrix. However, for a proper exploitation of new materials it is necessary to detail their characterization. The purpose of the present paper is to focus on the use of infrared thermography (IRT) to gain information on the behaviour of thermoplastic composites under impact. In addition, attention is given to image processing algorithms with the aim of more effectively measuring the extension of the impact-affected area.4

  14. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    SciTech Connect

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  15. Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint

    DTIC Science & Technology

    2011-02-01

    biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson

  16. Added value of lignin as lignin-based hybrid polyurethane for a compatibilizing agent

    NASA Astrophysics Data System (ADS)

    Ilmiati, S.; Haris Mustafa, J.; Yaumal, A.; Hanum, F.; Chalid, M.

    2017-07-01

    As biomass-based material, lignin contains abundant hydroxyl groups promising to be used as chain extender in building hybrid polyurethanes. Consisting of polyehtylene glycol (PEG) content as hydrophobic part and lignin as hydrophilic part, the hybrid PU is expected to be as a novel compatibilizing agent in new materials production such as polyblends and composites. The hybrid PU was synthesized via two reaction stages, viz. pre-polyurethanization through reacting 4,4'-Methylenebis (Cyclohexyl Isocyanate) (HMDI) and PEG as polyol, and chain extention through adding lignin in the pre-polyurethanization system. The composition effect of lignin in hybrid PU syntehsis, to chemical structure corelated to hydrophobic to hydrophilic ratio, thermal and morphological properties, was evaluated by measuring NMR, FTIR, DSC, TGA and FE-SEM. The experiments showed that addition of lignin was able to extend the pre-polyurethane into hybrid polyurethane and to increase the lignin/polyol ratio in the hybrid polyurethanes, which were indicated by NMR and FTIR Analysis. And change of the ratio lead to increase the glass transition from 60.9 until 62.1°C and degradation temperature from 413.9 until 416.0°C. Observation of the morphology implied that addition of lignin gave more agglomerations. A Further investigation for this characterization study should be focused on a feasibility for this modified lignin as a novel compatibilizing agent.

  17. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.

    PubMed

    Mei, Tingzhen; Zhu, Yonghe; Ma, Tongcui; He, Tao; Li, Linjing; Wei, Chiju; Xu, Kaitian

    2014-09-01

    A series of alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on poly(L-lactic acid) (PLA) and poly(ethylene glycol) (PEG) were synthesized. The differences of PULA-alt/ran-PEG chemical structure, molecular weight, distribution, thermal properties, mechanical properties and static contact angle were systematically investigated. The PULA-alt/ran-PEG polyurethanes exhibited low T(g) (-47.3 ∼ -34.4°C), wide mechanical properties (stress σ(t): 4.6-32.6 MPa, modulus E: 11.4-323.9 MPa and strain ε: 468-1530%) and low water contact angle (35.4-51.4°). Scanning electron microscope (SEM) observation showed that PULA-alt-PEG film displays rougher and more patterned surface morphology than PULA-ran-PEG does, due to more regular structures of PULA-alt-PEG. Hydrolytic degradation shows that degradation rate of random block polyurethane series PULA-ran-PEG is higher than the alternating counterpart PULA-alt-PEG. PLA segment degradation is faster than urethane linkage and PEG segment almost does not degrade in the buffer solution. Platelet adhesion study showed that all the polyurethanes possess excellent hemocompatibility. The cell culture assay revealed that PULA-alt/ran-PEG polyurethanes were cell inert and unfavorable for the attachment of rat glial cell due to the hydrophilic characters of the materials. © 2013 Wiley Periodicals, Inc.

  18. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    PubMed Central

    Lando, Gabriela Albara; Marconatto, Letícia; Schrank, Augusto; Vainstein, Marilene Henning

    2017-01-01

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management. PMID:28718785

  19. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    PubMed

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  20. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  1. Nano-engineered polyurethane resin-modified concrete.

    DOT National Transportation Integrated Search

    2014-04-01

    The goal of the proposed work is to investigate the application of nano-engineered polyurethane (NEPU) emulsions for latex modified : concrete (LMC). NEPU emulsions are non-toxic, environment friendly, durable over a wide temperature range, provide b...

  2. The Adhesive Bonding of Thermoplastic Composites

    DTIC Science & Technology

    1989-09-19

    o f Science, (wf aplicable ) Technology and Medicine USARDSG-UK 1’ DDRESS (City, S ap ar~ 7I.oe b ADDRESS (City, State, and ZIP Code) 01’r me f...I I II This thesis first discusses the problems that occur when thermoplastic-based fibre-composite materials are bonded using structural engineering...failure have been understood tnd predicted. Finally, having identified techniques for obtaining good interfacial adhesion,the thesis concludes by

  3. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.

    PubMed

    Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng

    2016-10-01

    Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients.

    PubMed

    Philippart, François; Gaudry, Stéphane; Quinquis, Laurent; Lau, Nicolas; Ouanes, Islem; Touati, Samia; Nguyen, Jean Claude; Branger, Catherine; Faibis, Frédéric; Mastouri, Maha; Forceville, Xavier; Abroug, Fekri; Ricard, Jean Damien; Grabar, Sophie; Misset, Benoît

    2015-03-15

    The occurrence of ventilator-associated pneumonia (VAP) is linked to the aspiration of contaminated pharyngeal secretions around the endotracheal tube. Tubes with cuffs made of polyurethane rather than polyvinyl chloride or with a conical rather than a cylindrical shape increase tracheal sealing. To test whether using polyurethane and/or conical cuffs reduces tracheal colonization and VAP in patients with acute respiratory failure. We conducted a multicenter, prospective, open-label, randomized study in four parallel groups in four intensive care units between 2010 and 2012. A cohort of 621 patients with expected ventilation longer than 2 days was included at intubation with a cuff composed of cylindrical polyvinyl chloride (n = 148), cylindrical polyurethane (n = 143), conical polyvinyl chloride (n = 150), or conical polyurethane (n = 162). We used Kaplan-Meier estimates and log-rank tests to compare times to events. After excluding 17 patients who secondarily refused participation or had met an exclusion criterion, 604 were included in the intention-to-treat analysis. Cumulative tracheal colonization greater than 10(3) cfu/ml at Day 2 was as follows (median [interquartile range]): cylindrical polyvinyl chloride, 0.66 (0.58-0.74); cylindrical polyurethane, 0.61 (0.53-0.70); conical polyvinyl chloride, 0.67 (0.60-0.76); and conical polyurethane, 0.62 (0.55-0.70) (P = 0.55). VAP developed in 77 patients (14.4%), and postextubational stridor developed in 28 patients (6.4%) (P = 0.20 and 0.28 between groups, respectively). Among patients requiring mechanical ventilation, polyurethane and/or conically shaped cuffs were not superior to conventional cuffs in preventing tracheal colonization and VAP. Clinical trial registered with clinicaltrials.gov (NCT01114022).

  5. Microwave facilities for welding thermoplastic composites and preliminary results.

    PubMed

    Ku, H S; Siores, E; Ball, J A

    1999-01-01

    The wide range of applications of microwave technology in manufacturing industries has been well documented (NRC, 1994; Thuery, 1992). In this paper, a new way of joining fibre reinforced thermoplastic composites with or without primers is presented. The microwave facility used is also discussed. The effect of power input and cycle time on the heat affected zone (HAZ) is detailed together with the underlying principles of test piece material interactions with the electromagnetic field. The process of autogenous joining of 33% by weight of random glass fibre reinforced Nylon 66, polystyrene (PS) and low density polyethylene (LDPE) as well as 23.3% by weight of carbon fibre reinforced PS thermoplastic composites is discussed together with developments using filler materials, or primers in the heterogenous joining mode. The weldability dependence on the dielectric loss tangent of these materials at elevated temperatures is also described.

  6. Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Yan, Mengguo; Cochran, Eric

    2014-03-01

    In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.

  7. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-07

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than <1.5% RSD variation (n = 50). In contrast, plasticized poly(vinyl chloride), polystyrene, and poly(acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.

  8. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.

    1988-01-01

    Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.

  9. Thermoplastic polymides and composites therefrom

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1994-01-01

    A new class polyimide and polyimide precursors based on diaryl oxyalkylene diamines, such as 1,3-bis[4-aminophenoxy]-2,2-dimethyl propane, a process for their preparation and their use as the continuous phase for the manufacture of composites and composite laminates reinforced by reinforcing agents such as carbon fibers, Kevlar.TM., and other similar high strength reinforcing agents. The polyimides and molecular composites obtained from the diamines according to the invention show thermoplastic properties, excellent flex fatigue and fracture resistance, and excellent thermal and oxidative stability.

  10. Washing Off Polyurethane Foam Insulation

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Fogel, Irving

    1990-01-01

    Jet of hot water removes material quickly and safely. Simple, environmentally sound technique found to remove polyurethane foam insulation from metal parts. Developed for (but not limited to) use during rebuilding of fuel system of Space Shuttle main engine, during which insulation must be removed for penetrant inspection of metal parts.

  11. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications

    PubMed Central

    Pantone, Vincenzo; Laurenza, Amelita Grazia; Annese, Cosimo; Fracassi, Francesco; Fini, Paola; Nacci, Angelo; Russo, Antonella; Fusco, Caterina

    2017-01-01

    Polyurethane-resin doming is currently one of the fastest growing markets in the field of industrial graphics and product identification. Semi-rigid bio-based polyurethanes were prepared deriving from soybean oil as a valuable alternative to fossil materials for digital doming and applied to digital mosaic technology. Bio-resins produced can favorably compete with the analogous fossil polymers, giving high-quality surface coatings (ascertained by SEM analyses). In addition, polyurethane synthesis was accomplished by using a mercury- and tin-free catalyst (the commercially available zinc derivative K22) bringing significant benefits in terms of cost efficiency and eco-sustainability. PMID:28773208

  12. The Effect of Plant Source on the Structural Properties of Lignin-based Polyurethane Blends

    NASA Astrophysics Data System (ADS)

    Lang, Jason; Dadmun, Mark

    The development of polyurethane materials based on incorporating lignin from a variety of plant sources (softwood, hardwood, and non-wood) were synthesized. Further experiments study the physical properties of the resulting lignin-based polyurethane as a function of the lignin structure, which varies with plant source. Here, we report the effect that internal crosslinking of the lignin structure has on the modulus, hardness, glass transition temperature, and thermal decomposition of the synthesized lignin-based polyurethane composites. The lignins used in this work were a softwood kraft lignin, hardwood lignosulfonate, and a wheat straw soda lignin. The lignin, acting as a polyol and the hardblock segment, reacts with TDI-endcapped PPG (2,300 MN) as the rubbery softblock component to produce lignin-based polyurethanes with varying lignin content (10, 20, 30, 40, 50, and 60 wt%). Results show that the wheat straw lignin provides the superior mechanical properties and thermal resistance. These properties are correlated to the two-phase morphology of the resultant polyurethane.

  13. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a...

  14. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...

  15. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a...

  16. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...

  17. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1298 Standards for slabstock flexible polyurethane foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...

  18. Starch based polyurethanes: A critical review updating recent literature.

    PubMed

    Zia, Fatima; Zia, Khalid Mahmood; Zuber, Mohammad; Kamal, Shagufta; Aslam, Nosheen

    2015-12-10

    Recent advancements in material science and technology made it obvious that use of renewable feed stock is the need of hour. Polymer industry steadily moved to get rid of its dependence on non-renewable resources. Starch, the second largest occurring biomass (renewable) on this planet provides a cheap and eco-friendly way to form huge variety of materials on blending with other biodegradable polymers. Specific structural versatility design for individual application and tailor-made properties have established the polyurethane (PU) as an important and popular class of synthetic biodegradable polymers. Blending of starch with polyurethane is relatively a developing area in PU chemistry but with lot of attraction for researchers. Herein, various starch based polyurethane materials including blends, grafts, copolymers, composites and nano-composites, as well as the prospects and latest developments are discussed. Additionally, an overview of starch based polymeric materials, including their potential applications are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery.

    PubMed

    Kim, Seungil; Chen, Yufei; Ho, Emmanuel A; Liu, Song

    2017-01-01

    To provide better protection for women against sexually transmitted infections, on-demand intravaginal drug delivery was attempted by synthesizing reversibly pH-sensitive polyether-polyurethane copolymers using poly(ethylene glycol) (PEG) and 1,4-bis(2-hydroxyethyl)piperazine (HEP). Chemical structure and thermo-characteristics of the synthesized polyurethanes were confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 1 H-nuclear magnetic resonance ( 1 H-NMR), and melting point testing. Membranes were cast by solvent evaporation method using the prepared pH-sensitive polyurethanes. The impact of varying pH on membrane swelling and surface morphology was evaluated via swelling ratio change and scanning electron microscopy (SEM). The prepared pH-responsive membranes showed two times higher swelling ratio at pH 4 than pH 7 and pH-triggered switchable surface morphology change. The anionic anti-inflammatory drug diclofenac sodium (NaDF) was used as a model compound for release studies. The prepared pH-responsive polyurethane membranes allowed continuous NaDF release for 24h and around 20% release of total NaDF within 3h at pH 7 but little-to-no drug release at pH 4.5. NaDF permeation across the prepared membranes demonstrated a reversible pH-responsiveness. The pH-responsive polyurethane membranes did not show any noticeable negative impact on vaginal epithelial cell viability or induction of pro-inflammatory cytokine production compared to controls. Overall, the non-cytotoxic HEP-based pH-responsive polyurethane demonstrated its potential to be used in membrane-based implants such as intravaginal rings to achieve on-demand "on-and-off" intravaginal drug delivery. A reversible and sharp switch between "off" and "on" drug release is achieved for the first time through new pH-sensitive polyurethane membranes, which can serve as window membranes in reservoir-type intravaginal rings for on-demand drug delivery to prevent sexually

  20. Finite element analysis as a design tool for thermoplastic vulcanizate glazing seals

    SciTech Connect

    Gase, K.M.; Hudacek, L.L.; Pesevski, G.T.

    1998-12-31

    There are three materials that are commonly used in commercial glazing seals: EPDM, silicone and thermoplastic vulcanizates (TPVs). TPVs are a high performance class of thermoplastic elastomers (TPEs), where TPEs have elastomeric properties with thermoplastic processability. TPVs have emerged as materials well suited for use in glazing seals due to ease of processing, economics and part design flexibility. The part design and development process is critical to ensure that the chosen TPV provides economics, quality and function in demanding environments. In the design and development process, there is great value in utilizing dual durometer systems to capitalize on the benefitsmore » of soft and rigid materials. Computer-aided design tools, such as Finite Element Analysis (FEA), are effective in minimizing development time and predicting system performance. Examples of TPV glazing seals will illustrate the benefits of utilizing FEA to take full advantage of the material characteristics, which results in functional performance and quality while reducing development iterations. FEA will be performed on two glazing seal profiles to confirm optimum geometry.« less

  1. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane foam production—HAP ABA emissions from the production line. (a) Each owner or...

  2. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane foam production—HAP ABA emissions from the production line. (a) Each owner or...

  3. Engineering a degradable polyurethane intravaginal ring for sustained delivery of dapivirine.

    PubMed

    Kaur, Manpreet; Gupta, Kavita M; Poursaid, Azadeh E; Karra, Prasoona; Mahalingam, Alamelu; Aliyar, Hyder A; Kiser, Patrick F

    2011-06-01

    We describe the engineering of a degradable intravaginal ring (IVR) for the delivery of the potent HIV-1 reverse transcriptase inhibitor dapivirine. The degradable polymer used in fabricating the device incorporated poly(caprolactone) ester blocks in a poly(tetramethylene ether) glycol ABA type polyurethane backbone. The polymer was designed to maintain its structure for 1 month during usage and then degrade in the environment post-disposal. In vitro release of dapivirine showed zero-order kinetics for up to 1 month and significant levels of drug release into engineered vaginal tissue. The mechanical properties of the degradable IVR were comparable to those of a widely used contraceptive intravaginal ring upon exposure to simulated vaginal conditions. Incubation under simulated vaginal conditions for a month caused minimal degradation with minimal effect on the mechanical properties of the ring and polymer. The cytotoxicity evaluation of the drug-loaded IVRs against Vk2/E6E7 human vaginal epithelial cells, Lactobacillus jensenii, and engineered vaginal tissue constructs showed the degradable polyurethane to be non-toxic. In vitro evaluation of inflammatory potential monitored through the levels of inflammatory cytokines IL-8, IL-1α, IL-6, IL-1β, and MIP-3α when engineered EpiVaginal™ tissue was incubated with the polyurethanes suggested that the degradable polyurethane was comparable to commercial medical grade polyurethane. These results are encouraging for further development of this degradable IVR for topical vaginal delivery of microbicides.

  4. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    SciTech Connect

    Yang, Yong; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Ge, Jianhua

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm)more » were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.« less

  5. Preparation of eugenol-based polyurethane

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Luo, Fang; Cheng, Chuanjie

    2018-03-01

    The regenerative eugenol was used as the starting material to prepare diol species by two steps, with a total yield of 28%. Furthermore, the prepared diol reacts with 1,6-hexadiisocyanate(HDI) to afford the corresponding polyurethane (PU). The structure of intermediates and PU are characterized by 1H-NMR or IR.

  6. Tough and Sustainable Graft Block Copolymer Thermoplastics

    SciTech Connect

    Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.

    Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers.more » Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.« less

  7. Low Cost Processing of Commingled Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  8. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  9. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing

    PubMed Central

    Villegas, Irene F.; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  10. Computational modelling of a thermoforming process for thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its

  11. Effect of aluminum phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria.

    PubMed

    Ramalingam, N; Prasanna, B Gowtham

    2006-09-01

    The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h(-1) mg(-1) protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.

  12. Thermoplastic microfluidic devices and their applications in protein and DNA analysis

    PubMed Central

    Liu, Ke; Fan, Z. Hugh

    2013-01-01

    Microfluidics is a platform technology that has been used for genomics, proteomics, chemical synthesis, environment monitoring, cellular studies, and other applications. The fabrication materials of microfluidic devices have traditionally included silicon and glass, but plastics have gained increasing attention in the past few years. We focus this review on thermoplastic microfluidic devices and their applications in protein and DNA analysis. We outline the device design and fabrication methods, followed by discussion on the strategies of surface treatment. We then concentrate on several significant advancements in applying thermoplastic microfluidic devices to protein separation, immunoassays, and DNA analysis. Comparison among numerous efforts, as well as the discussion on the challenges and innovation associated with detection, is presented. PMID:21274478

  13. A thermoplastic polyimidesulfone. [synthesis of processable and solvent resistant system

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Yamaki, D. A.

    1984-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composites). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  14. MORPHOLOGICAL CHANGES IN POLYURETHANE COATINGS ON EXPOSURE TO WATER. (R828081E01)

    EPA Science Inventory

    When a polyurethane self-priming coating on a sol-gel treated aluminum panel was immersed in dilute Harrison's solution, subsequent change of the polyurethane coating surface was inspected with atomic force microscopy (AFM) and scanning electron microscopy (SEM). After immersi...

  15. Thermoplastic pultrusion development and characterization of residual in pultruded composites with modeling and experiments

    NASA Astrophysics Data System (ADS)

    Jamiyanaa, Khongor

    Pultrusion processing is a technique to make highly aligned fiber reinforced polymer composites. Thermoset pultrusion is a mature process and well established, while thermoplastic pultrusion in still in its infancy. Thermoplastic pultrusion has not been well established because thermoplastic resins are difficult to process due to their high viscosity. However, thermoplastic resins offer distinct advantages that make thermoplastic pultrusion worth exploring. The present work centers on developing a method to design and validate a die for a thermoplastic pultrusion system. Analytical models and various software tools were used to design a pultrusion die. Experimental measurements have been made to validate the models. One-dimensional transient heat transfer analysis was used to calculate the time required for pre-impregnated E-Glass/Polypropylene tapes to melt and consolidate into profiled shapes. Creo Element/Pro 1.0 was used to design the die, while ANSYS Work Bench 14.0 was used to conduct heat transfer analysis to understand the temperature profile of the pultrusion apparatus. Additionally Star-CCM+ was used to create a three-dimensional fluid flow model to capture the molten polymer flow inside the pultrusion die. The fluid model was used to understand the temperature of the flow and the force required to pull the material at any given temperature and line speed. A complete pultrusion apparatus including the die, heating unit, cooling unit, and the frame has been designed and manufactured as guided by the models, and pultruded profiles have been successfully produced. The results show that the analytical model and the fluid model show excellent correlation. The predicted and measured pulling forces are in agreement and show that the pull force increases as the pull speed increases. Furthermore, process induced residual stress and its influence on dimensional instability, such as bending or bowing, on pultruded composites was analyzed. The study indicated that

  16. Flame Retardants Used in Flexible Polyurethane Foam

    EPA Pesticide Factsheets

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  17. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  18. Investigation of wear resistance of polyurethanes in abrasive soil mass

    NASA Astrophysics Data System (ADS)

    Napiórkowski, Jerzy; Ligier, Krzysztof

    2018-04-01

    This paper presents a comparative study of polyurethane wear in different abrasive soil masses. Two types of polyurethanes of various chemical compositions and untreated 38GSA steel were tested, the latter being used as a reference standard. The study was conducted in natural soil mass at a "rotating bowl" stand. Relative wear resistance was determined from measurements of mass wear for the materials under study. The condition of the surface of the materials under wear test was analysed.

  19. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane

    PubMed Central

    Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong

    2016-01-01

    This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m2 and 16.39 kW/m2 for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m2. The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation. PMID:28773295

  20. Experimental Study of Fire Hazards of Thermal-Insulation Material in Diesel Locomotive: Aluminum-Polyurethane.

    PubMed

    Zhang, Taolin; Zhou, Xiaodong; Yang, Lizhong

    2016-03-05

    This work investigated experimentally and theoretically the fire hazards of thermal-insulation materials used in diesel locomotives under different radiation heat fluxes. Based on the experimental results, the critical heat flux for ignition was determined to be 6.15 kW/m² and 16.39 kW/m² for pure polyurethane and aluminum-polyurethane respectively. A theoretical model was established for both to predict the fire behaviors under different circumstances. The fire behavior of the materials was evaluated based on the flashover and the total heat release rate (HRR). The fire hazards levels were classified based on different experimental results. It was found that the fire resistance performance of aluminum-polyurethane is much better than that of pure-polyurethane under various external heat fluxes. The concentration of toxic pyrolysis volatiles generated from aluminum-polyurethane materials is much higher than that of pure polyurethane materials, especially when the heat flux is below 50 kW/m². The hazard index HI during peak width time was proposed based on the comprehensive impact of time and concentrations. The predicted HI in this model coincides with the existed N-gas and FED models which are generally used to evaluate the fire gas hazard in previous researches. The integrated model named HNF was proposed as well to estimate the fire hazards of materials by interpolation and weighted average calculation.

  1. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    PubMed

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Degradability in vitro of polyurethanes based on synthetic atactic poly[(R,S)-3-hydroxybutyrate].

    PubMed

    Brzeska, J; Janeczek, H; Janik, H; Kowalczuk, M; Rutkowska, M

    2015-01-01

    The aim of the present study was to determine the degradability of aliphatic polyurethanes, based on a different amount of synthetic, atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB), in hydrolytic (phosphate buffer) and oxidative (H2O2/CoCl2) solutions. The soft segments were built with atactic poly[(R,S)-3-hydroxybutyrate] and polycaprolactone or polyoxytetramethylenediols, whereas hard segments were the reaction product of 4,4'-methylenedicyclohexyl diisocyanate and 1,4-butanediol.The selected properties - density and morphology of polymer surfaces - which could influence the sensitivity of polymers to degradation processes - were analyzed.The analysis of molecular mass (GPC), thermal properties (DSC) and the sample weight changes were undertaken to estimate the degree of degradability of polymer samples after incubation in environments studied.Investigated polyurethanes were amorphous with the very low amount of crystalline phases of hard segments.The polyurethane synthesized with a poly[(R,S)-3-hydroxybutyrate] and polyoxytetramethylenediol at a molar ratio of NCO:OH=3.7:1 (prepolymer step) appeared as the most sensitive for both degradative solutions. Its weight and molecular mass losses were the highest in comparison to other investigated polyurethanes.It could be expected that playing with the amount of poly[(R,S)-3-hydroxybutyrate] in polyurethane synthesis the rate of polyurethane degradation after immersion in living body would be modeled.

  3. Chemical speciation of polyurethane polymers by soft-x-ray spectromicroscopy

    SciTech Connect

    Rightor, E.G.; Hitchcock, A.P.; Urquhart, S.G.

    1997-04-01

    Polyurethane polymers are a versatile class of materials which have numerous applications in modern life, from automotive body panels, to insulation, to household furnishings. Phase segregation helps to determine the physical properties of several types of polyurethanes. Polymer scientists believe that understanding the connections between formulation chemistry, the chemical nature of the segregated phases, and the physical properties of the resulting polymer, would greatly advance development of improved polyurethane materials. However, the sub-micron size of segregated features precludes their chemical analysis by existing methods, leaving only indirect means of characterizing these features. For the past several years the authors havemore » been developing near edge X-ray absorption spectromicroscopy to study the chemical nature of individual segregated phases. Part of this work has involved studies of molecular analogues and model polymers, in conjunction with quantum calculations, in order to identify the characteristic near edge spectral transitions of important chemical groups. This spectroscopic base is allowing the authors to study phase segregation in polyurethanes by taking advantage of several unique capabilities of scanning transmission x-ray microscopy (STXM) - high spatial resolution ({approximately} 0.1 {mu}m), high spectral resolution ({approximately}0.1 eV at the C 1s edge), and the ability to record images and spectra with relatively low radiation damage. The beamline 7.0 STXM at ALS is being used to study microtomed sections or cast films of polyurethanes. Based on the pioneering work of Ade, Kirz and collaborators at the NSLS X-1A STXM, it is clear that scanning X-ray transmission microscopy using soft X-rays can provide information about the chemical origin of phase segregation in radiation-sensitive materials on a sub-micron scale. This information is difficult or impossible to obtain by other means.« less

  4. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    PubMed

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Preparation and properties of adjacency crosslinked polyurethane-urea elastomers

    NASA Astrophysics Data System (ADS)

    Wu, Yuan; Cao, Yu-Yang; Wu, Shou-Peng; Li, Zai-Feng

    2012-12-01

    Adjacency crosslinked polyurethane-urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan δ decreases. FT-IR spectral studies of PUU elastomer at various temperatures were performed. From this study, heat-resistance polyurethane could be prepared, and the properties of PUU at high temperature could be improved obviously.

  6. A multilayered polyurethane foam technique for skin graft immobilization.

    PubMed

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (<30 mmHg) to the center region of the skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  7. Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker

    NASA Astrophysics Data System (ADS)

    Ahn, S. Y.; Lee, N. Y.

    2015-07-01

    Here, we introduce a solvent-free strategy for bonding various thermoplastic substrates with poly(dimethylsiloxane) (PDMS) using ultraviolet (UV) irradiation followed by the gas-phase chemical deposition of aminosilane on the UV-irradiated thermoplastic substrates. The thermoplastic substrates were first irradiated with UV for surface hydrophilic treatment and were then grafted with vacuum-evaporated aminosilane, where the alkoxysilane side reacted with the oxidized surface of the thermoplastic substrate. Next, the amine-terminated thermoplastic substrates were treated with corona discharge to oxidize the surface and were bonded with PDMS, which was also oxidized via corona discharge. The two substrates were then hermetically sealed and pressed under atmospheric pressure for 30 min at 60 °C. This process enabled the formation of a robust siloxane bond (Si-O-Si) between the thermoplastic substrate and PDMS under relatively mild conditions using an inexpensive and commercially available UV lamp and Tesla coil. Various thermoplastic substrates were examined for bonding with PDMS, including poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(ethyleneterephthalate) (PET) and polystyrene (PS). Surface characterizations were performed by measuring the contact angle and performing x-ray photoelectron spectroscopy analysis, and the bond strength was analyzed by conducting various mechanical force measurements such as pull, delamination, leak and burst tests. The average bond strengths for the PMMA-PDMS, PC-PDMS, PET-PDMS and PS-PDMS assemblies were measured at 823.6, 379.3, 291.2 and 229.0 kPa, respectively, confirming the highly reliable performance of the introduced bonding strategy.

  8. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough.

    PubMed

    Xie, Qiyuan; Zhang, Heping; Ye, Ruibo

    2009-07-30

    The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.

  9. Intrinsically radiopaque polyurethanes with chain extender 4,4'-isopropylidenebis [2-(2,6-diiodophenoxy)ethanol] for biomedical applications.

    PubMed

    Dawlee, S; Jayabalan, M

    2015-05-01

    Radiopaque polyurethanes are used for medical applications as it allows post-operative assessment of the biomaterial devices using X-ray. Inherently, radiopaque polyurethanes based on polytetramethylene glycol (PTMG), polypropylene glycol, 4,4'-methylenebis(phenyl isocyanate), and a new iodinated chain extender 4,4'-isopropylidenebis[2-(2,6-diiodophenoxy)ethanol] with flexible spacers were synthesized and characterized. The iodinated polyurethanes were clear, optically transparent, and had high molecular weights. The polyurethanes also possessed excellent radiopacity and high thermal stability. The biocompatibility of the most promising iodinated polyurethane was evaluated both in vitro (cytotoxicity evaluation by direct contact and MTT assay, using L929 mouse fibroblast cells) and in vivo (toxicology studies in rabbits and subcutaneous implantation in rats). The material was nontoxic and well tolerated by the animals. Thus, these radiopaque and transparent polyurethanes are expected to have potential for various biomedical applications. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2011-11-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  11. Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters

    NASA Astrophysics Data System (ADS)

    Hu, Yougen; Zhao, Tao; Wu, Xiaolin; Lai, Maobai; Jiang, Chengming; Sun, Rong

    2012-04-01

    Thermal energy storage plays an important role in heat management because of the demand for developed energy conservation, and has applications in diverse areas, from buildings to textiles and clothings. In this study, we aimed to improve thermal characteristics of polyurethane rigid foams that have been widely used for thermal insulation in electrical water heaters. Through this work, paraffin waxes with melting point of 55~65°C act as phase change materials. Then the phase change materials were incorporated into the polyurethane foams at certain ratio. The polyurethane/phase change composite materials used as insulation layers in electrical water heaters performed the enthalpy value of 5~15 J/g. Energy efficiency of the electrical water heaters was tested according to the National Standard of China GB 21519-2008. Results show that 24 h energy consumption of the electrical water heaters manufactured by traditional polyurethane rigid foams and polyurethane/phase change material composites was 1.0612 kWh and 0.9833 kWh, respectively. The results further show that the energy-saving rate is 7.36%. These proved that polyurethane/phase change composite materials can be designed as thermal insulators equipped with electrical water heaters and have a significant effect on energy conservation.

  12. A micrographic study of bending failure in five thermoplastic/carbon fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Yurgartis, S. W.; Sternstein, S. S.

    1987-01-01

    The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The themoplastics are polycarbonate, polysulfone, polyphenylsulfide, polyethersulfone, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than visa-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.

  13. Tests of two new polyurethane foam wheelchair tires.

    PubMed

    Gordon, J; Kauzlarich, J J; Thacker, J G

    1989-01-01

    The performance characteristics of four 24-inch wheelchair tires are considered; one pneumatic and three airless. Specifically, two new airless polyurethane foam tires (circular and tapered cross-section) were compared to both a molded polyisoprene tire and a rubber pneumatic tire. Rolling resistance, coefficient of static friction, spring rate, tire roll-off, impact absorption, wear resistance, and resistance to compression set were the characteristics considered for the basis of comparison. Although the pneumatic tire is preferred by many wheelchair users, the two new polyurethane foam tires were found to offer a performance similar to the high-pressure pneumatic tire. In addition, the foam tires are less expensive and lighter in weight than the other tires tested.

  14. Application of Low Melting Point Thermoplastics to Hybrid Rocket Fuel

    NASA Astrophysics Data System (ADS)

    Wada, Yutaka; Jikei, Mitsutoshi; Kato, Ryuichi; Kato, Nobuji; Hori, Keiichi

    This paper introduces the application of low melting point thermoplastics (LT) to hybrid rocket fuel. LT made by Katazen Corporation has an excellent mechanical property comparing with other thermoplastics and prospect of high surface regression rate because it has a similar physical property with low melting point of paraffin fuel which has high regression rate probably due to the entrainment mass transfer mechanism that droplets continuously depart out of the surface melt layer. Several different types of LT developed by Katazen Corporation for this use have been evaluated in the measurements of regression rate, mechanical properties These results show the LTs have the higher regression rate and better mechanical properties comparing with conventional hybrid rocket fuels. Observation was also made using a small 2D combustor, and the entrainment mass transfer mechanism is confirmed with the LT fuels.

  15. Soy-based UV resistant polyurethane pultruded composites.

    DOT National Transportation Integrated Search

    2012-02-01

    Aliphatic polyurethane (PU) nanocomposites were synthesized using organically modified nanoclays. X-Ray diffraction results : confirmed good exfoliation of nanoclay particles in the PU resin system. With the addition of just 1% of nanoclay in the bas...

  16. Alginate based polyurethanes: A review of recent advances and perspective.

    PubMed

    Zia, Khalid Mahmood; Zia, Fatima; Zuber, Mohammad; Rehman, Saima; Ahmad, Mirza Nadeem

    2015-08-01

    The trend of using biopolymers in combination with synthetic polymers was increasing rapidly from last two or three decades. Polysaccharide based biopolymers especially starch, cellulose, chitin, chitosan, alginate, etc. found extensive applications for different industrial uses, as they are biocompatible, biodegradable, bio-renewable resources and chiefly environment friendly. Segment block copolymer character of polyurethanes that endows them a broad range of versatility in terms of tailoring their properties was employed in conjunction with various natural polymers resulted in modified biomaterials. Alginate is biodegradable, biocompatible, bioactive, less toxic and low cost anionic polysaccharide, as a part of structural component of bacteria and brown algae (sea weed) is quite abundant in nature. It is used in combination with polyurethanes to form elastomers, nano-composites, hydrogels, etc. that especially revolutionized the food and biomedical industries. The review summarized the development in alginate based polyurethanes with their potential applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Green waste cooking oil-based rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  18. Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties.

    PubMed

    Hong, Suk-Min; Kim, Jong-Wan; Knowles, Jonathan C; Gong, Myoung-Seon

    2017-02-01

    In this study, polycarbonate diol/isosorbide-based antibacterial polyurethane nanofiber fabrics containing Ag nanoparticles were prepared by electrospinning process. Bio-based highly elastic polyurethane was prepared from hexamethylene diisocyanate and isosorbide/polycarbonate diol (8/2) by a simple one-shot bulk polymerization. Ag nanoparticles were formed using simple thermal reduction of silver 2-ethylhexylcarbamate at 120℃. The structural and morphological properties of polyurethane/Ag nanofibers were characterized by X-ray diffraction and scanning electron microscopy. The polyurethane nanofiber fabrics were flexible, with breaking strains from 355% to 950% under 7.28 to 23.1 MPa tensile stress. The antibacterial effects of the treated polyurethane/Ag fabrics against Staphylococcus aureus and methicillin resistant Staphylococcus aureus were examined and found to be excellent. Cell proliferation using the immortalized human keratinocyte HaCaT cell line was performed in order to determine cell viability in the presence of polyurethane and polyurethane/Ag fabrics, showing cytocompatiblility and a lack of toxicity.

  19. A polyurethane cuffed endotracheal tube is associated with decreased rates of ventilator-associated pneumonia.

    PubMed

    Miller, Melissa A; Arndt, Jennifer L; Konkle, Mark A; Chenoweth, Carol E; Iwashyna, Theodore J; Flaherty, Kevin R; Hyzy, Robert C

    2011-06-01

    The aim of this study was to determine whether the use of a polyurethane-cuffed endotracheal tube would result in a decrease in ventilator-associated pneumonia rate. We replaced conventional endotracheal tube with a polyurethane-cuff endotracheal tube (Microcuff, Kimberly-Clark Corporation, Rosewell, Ga) in all adult mechanically ventilated patients throughout our large academic hospital from July 2007 to June 2008. We retrospectively compared the rates of ventilator-associated pneumonia before, during, and after the intervention year by interrupted time-series analysis. Ventilator-associated pneumonia rates decreased from 5.3 per 1000 ventilator days before the use of the polyurethane-cuffed endotracheal tube to 2.8 per 1000 ventilator days during the intervention year (P = .0138). During the first 3 months after return to conventional tubes, the rate of ventilator-associated pneumonia was 3.5/1000 ventilator days. Use of the polyurethane-cuffed endotracheal tube was associated with an incidence risk ratio of ventilator-associated pneumonia of 0.572 (95% confidence interval, 0.340-0.963). In statistical regression analysis controlling for other possible alterations in the hospital environment, as measured by rate of tracheostomy-ventilator-associated pneumonia, the incidence risk ratio of ventilator-associated pneumonia in patients intubated with polyurethane-cuffed endotracheal tube was 0.565 (P = .032; 95% confidence interval, 0.335-0.953). Use of a polyurethane-cuffed endotracheal tube was associated with a significant decrease in the rate of ventilator-associated pneumonia in our study. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Post-processing flame-retardant for polyurethane

    NASA Technical Reports Server (NTRS)

    Monaghan, P.; Sidman, K. R.

    1980-01-01

    Treatment of polyurethane form with elastomer formulation after processing makes foam fire resistant without compromising physical properties. In testing, once ignition source is removed, combustion stops. Treatment also prevents molten particle formation, generates no smoke or toxic gases in fire, and does not deteriorate under prolonged exposure to Sun.

  1. Follow up of injected polyurethane slab jacking.

    DOT National Transportation Integrated Search

    2003-08-01

    GLENN JACKSON BRIDGE FOLLOW-UP REPORT The elevation monitoring in the report entitled Injected Polyurethane Slab Jacking (Soltesz 2000) is continued in this current report. The elevations of the concrete slabs are being monitored to see if polyuretha...

  2. Chemicals having estrogenic activity can be released from some bisphenol A-free, hard and clear, thermoplastic resins.

    PubMed

    Bittner, George D; Denison, Michael S; Yang, Chun Z; Stoner, Matthew A; He, Guochun

    2014-12-04

    Chemicals that have estrogenic activity (EA) can potentially cause adverse health effects in mammals including humans, sometimes at low doses in fetal through juvenile stages with effects detected in adults. Polycarbonate (PC) thermoplastic resins made from bisphenol A (BPA), a chemical that has EA, are now often avoided in products used by babies. Other BPA-free thermoplastic resins, some hypothesized or advertised to be EA-free, are replacing PC resins used to make reusable hard and clear thermoplastic products such as baby bottles. We used two very sensitive and accurate in vitro assays (MCF-7 and BG1Luc human cell lines) to quantify the EA of chemicals leached into ethanol or water/saline extracts of fourteen unstressed or stressed (autoclaving, microwaving, UV radiation) thermoplastic resins. Estrogen receptor (ER)-dependent agonist responses were confirmed by their inhibition with the ER antagonist ICI 182,780. Our data showed that some (4/14) unstressed and stressed BPA-free thermoplastic resins leached chemicals having significant levels of EA, including one polystyrene (PS), and three Tritan™ resins, the latter reportedly EA-free. Exposure to UV radiation in natural sunlight resulted in an increased release of EA from Tritan™ resins. Triphenyl-phosphate (TPP), an additive used to manufacture some thermoplastic resins such as Tritan™, exhibited EA in both MCF-7 and BG1Luc assays. Ten unstressed or stressed glycol-modified polyethylene terephthalate (PETG), cyclic olefin polymer (COP) or copolymer (COC) thermoplastic resins did not release chemicals with detectable EA under any test condition. This hazard survey study assessed the release of chemicals exhibiting EA as detected by two sensitive, widely used and accepted, human cell line in vitro assays. Four PC replacement resins (Tritan™ and PS) released chemicals having EA. However, ten other PC-replacement resins did not leach chemicals having EA (EA-free-resins). These results indicate that PC

  3. Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang

    2018-05-01

    The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.

  4. Improving the Performance of Heat Insulation Polyurethane Foams by Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikje, M. M. Alavi; Garmarudi, A. Bagheri; Haghshenas, M.; Mazaheri, Z.

    Heat insulation polyurethane foam materials were doped by silica nano particles, to investigate the probable improving effects. In order to achieve the best dispersion condition and compatibility of silica nanoparticles in the polymer matrix a modification step was performed by 3-aminopropyltriethoxysilane (APTS) as coupling agent. Then, thermal and mechanical properties of polyurethane rigid foam were investigated. Thermal and mechanical properties were studied by tensile machine, thermogravimetric analysis and dynamic mechanical analysis.

  5. Isocyanate-Free Elastomers as Replacements for Isocyanate-Cured Polyurethanes (Briefing Charts)

    DTIC Science & Technology

    2015-08-20

    Polyurethanes (Briefing Charts) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Josiah T. Reams, Andrew J...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Isocyanate-Free Elastomers as Replacements for Isocyanate-cured Polyurethanes ...paints, foams , sealants, and adhesives that also represent a significant source of occupational health risk for DoD and DOE. DISTRIBUTION A:  Approved

  6. Ultrasonic Attenuation Results of Thermoplastic Resin Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1998-01-01

    As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post

  7. A simple approach for morphology tailoring of alginate particles by manipulation ionic nature of polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2014-05-01

    A number of different ionic aqueous polyurethane dispersions (PUDs) were synthesized based on NCO-terminated prepolymers. Two different anionic and cationic polyurethane samples were synthesized using dimethylol propionic acid and N-methyldiethanolamine emulsifiers, respectively. Then, proper amounts of PUDs and sodium alginate were mixed to obtain a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) elastomers. The chemical structure, thermal, morphological, thermo-mechanical and mechanical properties, and hydrophilicity content of the prepared samples were studied by FTIR, EDX, DSC, TGA, SEM, DMTA, tensile testing and contact angle techniques. The cationic polyurethanes and their blends with sodium alginate showed excellent miscibility and highly stretchable properties, while the samples containing anionic polyurethanes and alginate illustrated a poor compatibility and no significant miscibility. The morphology of alginate particles shifted from nanoparticles to microparticles by changing the nature of PUDs from cationic to anionic types. The final cationic elastomers not only showed better mechanical properties but also were formulated easier than anionic samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study.

    PubMed

    Iyer, Kartik; Dearman, Bronwyn L; Wagstaff, Marcus J D; Greenwood, John E

    2016-01-01

    Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction.

  9. A Study of Failure Characteristics in Thermoplastic Composite Laminates Due to an Eccentric Circular Discontinuity

    DTIC Science & Technology

    1989-12-01

    Bose, Ohio Appni’-sd for puauc t&cw 189 12 29 023 I [ AFIT /GAE /ENY/ 89D-06 A STUDY OF FAILURE CHARACTERISTICS IN THERMOPLASTIC COMPOSITE LAMINATES DUE...distribution unlimited I ,I AFIT / GAE / ENY /89D-06 A STUDY OF FAILURE CHARACTERISTICS IN THERMOPLASTIC COMPOSITE LAMINATES DUE TO AN ECCENTRIC CIRCULAR...the Flight Dynamics Laboratory. Dr. Sandhu provided me with an insight into composite materials, and testing techniques, that will benefit me for a

  10. Synthesis of Polyurethanes Membranes from Rubber Seed Oil and Methylene Diphenyl Diisocyanates (MDI)

    NASA Astrophysics Data System (ADS)

    Marlina; Nurman, S.; Saleha, S.; Fitriani; Thanthawi, I.

    2017-03-01

    Rubber seed oil and methylene diphenyl diisocyanates (MDI) based polyurethane membrane has been prepared in this study. The main objective of this research is manufacture of polyurethane membranes from avocado seed oil, as a filter of this membrane use as a filter of metals from water such as mercury (Hg). In this study, the polyurethane membrane had been synthesized by varying compositions of rubber seed oil and MDI, with ratios of 10:0.2; 10:0.4; 10:0.6; 10:0.8; 10:1.0; 10:1.2; 10:1.4; 10:1.6; 10:1.8 and 10:2.0 (v/w) at 80°C and 170°C as polymerization and curing temperatures, respectively. Optimum polyurethane membrane was obtained at rubber seed oil: MDI 10: 0.8 v/w, it was dry, non-sticky, smooth and blackish brown. The membrane flux was 5,8307 L / m2.h.bar and rejection factor was 35,3015 %. The results of characterization indicated the formation of urethane bonds (NH at 3480 cm-1, C=O at 1620 cm-1, CN at 1374 cm-1, -OC-NH- at 1096 cm-1 and no -NCO at 2270 cm-1), the value of Tg was 55°C. The polyurethane membrane which treated at the optimum treatment conditions were used to the filter of metals from water such as mercury (Hg).

  11. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.

    PubMed

    Li, Guangyao; Li, Dandan; Niu, Yuqing; He, Tao; Chen, Kevin C; Xu, Kaitian

    2014-03-01

    Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  12. Structural Evaluation of Radially Expandable Cardiovascular Stents Encased in a Polyurethane Film

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; De, Samiran; Sharma, Rajesh; Mazumder, Malay K.; Mehta, Jawahar L.

    2004-01-01

    A method of encasing cardiovascular stents with an expandable polyurethane coating has been developed to provide a smooth homogeneous inner wall allowing for a confluent growth of endothelial cells. In this design, the metal wire stent structure is completely covered by the polyurethane film minimizing biocorrosion of the metal (stainless steel or nitinol), and providing a homogeneous surface for surface treatment and incorporation of various eluting drugs to prevent platelet aggregation while supporting endothelialization. The polyurethane surface was treated with a helium plasma for sterilization and promotes growth of cells. The paper details the performance of the coated film to expand with the metal stent up to 225 % during deployment. We present stress/strain behavior of polyurethane films, and subsequent plasma treatment of the surface and the adhesion of the coating to the stent structure upon expansion. A film of less than 25 tm was found to be sufficient for corrosion resistance and flexibility without producing any excess stress on the stent structure. Straining the film to 225 % and plasma modification did not affect the mechanical and surface properties while allowing for improved biocompatibility as determined by the critical surface tension, surface chemistry, and roughness.

  13. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    PubMed Central

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  14. Some physical and mechanical properties of recycled polyurethane foam blends

    NASA Astrophysics Data System (ADS)

    Bledzki, A. K.; Zicans, J.; Merijs Meri, R.; Kardasz, D.

    2008-09-01

    Blends of secondary rigid polyurethane foams (RPUFs) with soft polyurethane foams (SPUFs) were investigated. The effect of SPUF content and its chemical nature on some physical and mechanical properties of the blends was evaluated. Owing to the stronger intermolecular interaction and higher values of cohesion energy, the blends of RPUFs with polyester SPUFs showed higher mechanical properties than those with polyether SPUFs. The density, hardness, ultimate strength, and the tensile, shear, and flexural moduli increased, while the impact toughness, ultimate elongation, and damping characteristics decreased with increasing RPUF content in the blends.

  15. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    NASA Astrophysics Data System (ADS)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  16. Influence of polyurethane resin dies on the fit and adaptation of full veneer crowns.

    PubMed

    Lillywhite, Graeme R R; Vohra, Fahim

    2015-01-01

    Polyurethane resin is a possible alternative to type IV dental stone for fabrication of indirect restorations however its dimensional accuracy is questionable. The aim was to investigate the dimensional accuracy of silica filled polyurethane resin die material by evaluating the marginal fit and adaptation of indirect gold castings. Experimental, in vitro study. Totally 40 copper plated replicas of a nickel chrome master die analogous to a veneer gold crown preparation were made and impressions recorded using polyvinylsiloxane material. Twenty impressions were poured in type IV dental stone (control group (Vel-mix, Kerr, UK) and the remaining (n = 20) in silica filled polyurethane die material (test group) (Alpha Die MF, CA, USA). Gold castings were fabricated for each die using standardized techniques. The castings were seated on their respective copper plated dies, embedded in resin and sectioned. The specimens were analyzed by measuring marginal opening and the area beneath the casting at a ×63 magnification and using image analysis software. Data were analyzed using a Student's t-test. No significant difference was observed between the experimental groups (P > 0.05). The mean marginal opening for type IV, dental stone and polyurethane resin, was 57 ± 22.6 μm and 63.47 ± 27.1 μm, respectively. Stone displayed a smaller area beneath the casting (31581 ± 16297 μm 2 ) as compared to polyurethane resin (35003 ± 23039 μm 2 ). The fit and adaptation of indirect gold castings made on polyurethane and type IV dental stone dies were comparable.

  17. Coating processes for increasing the moisture resistance of polyurethane baffle material

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Sawko, P.

    1974-01-01

    An investigation was conducted with the objective to improve the hydrolytic stability of reticulated polyurethane baffle material. This material is used in fuel tanks of aircraft and ground vehicles. The most commonly used foam of this type is hydrolytically unstable. Potential moisture barrier coatings which were evaluated include Parylene, epoxy-polysulfide, polyether based polyurethanes, polysulfides, polyolefin rubbers, and several other materials. Parylene coatings of at least 0.2 mil were found to provide the greatest improvement in hydrolytic stability.

  18. Managing burn wounds with SMARTPORE Technology polyurethane foam: two case reports.

    PubMed

    Imran, Farrah-Hani; Karim, Rahamah; Maat, Noor Hidayah

    2016-05-12

    Successful wound healing depends on various factors, including exudate control, prevention of microbial contaminants, and moisture balance. We report two cases of managing burn wounds with SMARTPORE Technology polyurethane foam dressing. In Case 1, a 2-year-old Asian girl presented with a delayed (11 days) wound on her right leg. She sustained a thermal injury from a hot iron that was left idle on the floor. Clinical inspection revealed an infected wound with overlying eschar that traversed her knee joint. As her parents refused surgical debridement under general anesthesia, hydrotherapy and wound dressing using SMARTPORE Technology Polyurethane foam were used. Despite the delay in presentation of this linear thermal pediatric burn injury that crossed the knee joint, the patient's response to treatment and its outcome were highly encouraging. She was cooperative and tolerated each dressing change without the need of supplemental analgesia. Her wound was healed by 24 days post-admission. In Case 2, a 25-year-old Asian man presented with a mixed thickness thermal flame burn on his left leg. On examination, the injury was a mix of deep and superficial partial thickness burn, comprising approximately 3% of his total body surface area. SMARTPORE Technology polyurethane foam was used on his wound; his response to the treatment was very encouraging as the dressing facilitated physiotherapy and mobility. The patient rated the pain during dressing change as 2 on a scale of 10 and his pain score remained the same in every subsequent change. His wound showed evidence of epithelialization by day 7 post-burn. There were no adverse events reported. Managing burn wounds with SMARTPORE Technology polyurethane foam resulted in reduced pain during dressing changes and the successful healing of partial and mixed thickness wounds. The use of SMARTPORE Technology polyurethane foam dressings showed encouraging results and requires further research as a desirable management option in

  19. Damage Caused to Polyurethane Foams by Aging, Simulated Sunlight Exposure, Heat and Fire

    DTIC Science & Technology

    1984-07-01

    vented configuration ............ .................. 11 4 Sample of the tan-colored solid formed upon pyrolysis of blue foam ..... .............. .. 21...54 26 Infrared absorption spectrum of the solid, tan-colored pyrolysis product formed from blue polyurethane foam ..... .............. .. 55 27...Infrared absorption spectrum of the liquid, brown-colored pyrolysis product formed from blue polyurethane foam ..... .............. .. 56 28 Fuel vent

  20. Fiber-modified polyurethane foam for ballistic protection

    NASA Technical Reports Server (NTRS)

    Fish, R. H.; Parker, J. A.; Rosser, R. W.

    1975-01-01

    Closed-cell, semirigid, fiber-loaded, self-extinguishing polyurethane foam material fills voids around fuel cells in aircraft. Material prevents leakage of fuel and spreading of fire in case of ballistic incendiary impact. It also protects fuel cell in case of exterior fire.

  1. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  2. The compression of wood/thermoplastic fiber mats during consolidation

    Treesearch

    Karl R. Englund; Michael P. Wolcott; John C. Hermanson

    2004-01-01

    Secondary processing of non-woven wood and wood/thermoplastic fiber mats is generally performed using compression molding, where heated platens or dies form the final product. Although the study and use of wood-fiber composites is widespread, few research efforts have explicitly described the fundamentals of mat consolidation. In contrast, the wood composite literature...

  3. The Effect of Postmastectomy Radiation Therapy on Breast Implants: Material Analysis on Silicone and Polyurethane Prosthesis.

    PubMed

    Lo Torto, Federico; Relucenti, Michela; Familiari, Giuseppe; Vaia, Nicola; Casella, Donato; Matassa, Roberto; Miglietta, Selenia; Marinozzi, Franco; Bini, Fabiano; Fratoddi, Ilaria; Sciubba, Fabio; Cassese, Raffaele; Tombolini, Vincenzo; Ribuffo, Diego

    2018-05-17

    The pathogenic mechanism underlying capsular contracture is still unknown. It is certainly a multifactorial process, resulting from human body reaction, biofilm activation, bacteremic seeding, or silicone exposure. The scope of the present article is to investigate the effect of hypofractionated radiotherapy protocol (2.66 Gy × 16 sessions) both on silicone and polyurethane breast implants. Silicone implants and polyurethane underwent irradiation according to a hypofractionated radiotherapy protocol for the treatment of breast cancer. After irradiation implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, infrared spectra in attenuated total reflectance mode, nuclear magnetic resonance, and field emission scanning electron microscopy. At superficial analysis, irradiated silicone samples show several visible secondary and tertiary blebs. Polyurethane implants showed an open cell structure, which closely resembles a sponge. Morphological observation of struts from treated polyurethane sample shows a more compact structure, with significantly shorter and thicker struts compared with untreated sample. The infrared spectra in attenuated total reflectance mode spectra of irradiated and control samples were compared either for silicon and polyurethane samples. In the case of silicone-based membranes, treated and control specimens showed similar bands, with little differences in the treated one. Nuclear magnetic resonance spectra on the fraction soluble in CDCl3 support these observations. Tensile tests on silicone samples showed a softer behavior of the treated ones. Tensile tests on Polyurethane samples showed no significant differences. Polyurethane implants seem to be more resistant to radiotherapy damage, whereas silicone prosthesis showed more structural, mechanical, and chemical modifications.

  4. Evaluation of the Efficacy of Highly Hydrophilic Polyurethane Foam Dressing in Treating a Diabetic Foot Ulcer.

    PubMed

    Jung, Jae-A; Yoo, Ki-Hyun; Han, Seung-Kyu; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-12-01

    To demonstrate the efficacy of a highly hydrophilic polyurethane foam dressing in the treatment of diabetic ulcers. Diabetic foot ulcers often pose a difficult treatment problem. Polyurethane foam dressings have been used worldwide to accelerate wound healing, but only a few clinical studies demonstrate the effect of foam dressing on the healing of diabetic ulcers. Medical records of 1342 patients with diabetic ulcers who were admitted and treated at the authors' institution were reviewed. A total of 208 patients met the study's inclusion criteria. Of these 208 patients, 137 were treated with a highly hydrophilic polyurethane foam dressing, and 71 were treated with saline gauze (control group). Except for the application of polyurethane foam dressing, the treatment method was identical for patients in both groups. The wound healing outcomes of the 2 groups were compared. Complete wound healing occurred in 87 patients (63.5%) in the polyurethane foam dressing group and in 28 patients (39.4%) in the control group within 12 weeks (P < .05, X test). The mean percentage of wound area reduction in both groups was statistically significant (P < .05, Mann-Whitney U test). The mean time required for complete closure in patients who achieved complete healing within 12 weeks was 6.2 (SD, 3.4) weeks and 7.3 (SD, 2.6) weeks in the polyurethane foam dressing and control groups, respectively (P < .05, Mann-Whitney U test). These results indicate that the highly hydrophilic polyurethane foam dressing may provide an effective treatment strategy for diabetic foot ulcers.

  5. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.

    PubMed

    Xu, Cancan; Huang, Yihui; Wu, Jinglei; Tang, Liping; Hong, Yi

    2015-09-16

    Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration.

  6. Effect of thermal shock on mechanical properties of injection-molded thermoplastic denture base resins.

    PubMed

    Takahashi, Yutaka; Hamanaka, Ippei; Shimizu, Hiroshi

    2012-07-01

    This study investigated the effect of thermal shock on the mechanical properties of injection-molded thermoplastic denture base resins. Four thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were tested. Specimens of each denture base material were fabricated according to ISO 1567 and were either thermocycled or not thermocycled (n = 10). The flexural strength at the proportional limit (FS-PL), the elastic modulus and the Charpy impact strength of the denture base materials were estimated. Thermocycling significantly decreased the FS-PL of one of the polyamides and the PMMA and it significantly increased the FS-PL of one of the polyamides. In addition, thermocycling significantly decreased the elastic modulus of one of the polyamides and significantly increased the elastic moduli of one of the polyamides, the polyethylene terephthalate, polycarbonate and PMMA. Thermocycling significantly decreased the impact strength of one of the polyamides and the polycarbonate. The mechanical properties of injection-molded thermoplastic denture base resins changed after themocycling.

  7. Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Howes, Jeremy C.; Loos, Alfred C.

    1987-01-01

    An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.

  8. Polyurethane Foam Impact Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Kipp, M. E.; Chhabildas, L. C.; Reinhart, W. D.; Wong, M. K.

    1999-06-01

    Uniaxial strain impact experiments with a rigid polyurethane foam of nominal density 0.22g/cc are reported. A 6 mm thick foam impactor is mounted on the face of a projectile and impacts a thin (1 mm) target plate of aluminum or copper, on which the rear free surface velocity history is acquired with a VISAR. Impact velocities ranged from 300 to 1500 m/s. The velocity record monitors the initial shock from the foam transmitted through the target, followed by a reverberation within the target plate as the wave interacts with the compressed foam at the impact interface and the free recording surface. These one-dimensional uniaxial strain impact experiments were modeled using a traditional p-alpha porous material model for the distended polyurethane, which generally captured the motion imparted to the target by the foam. Some of the high frequency aspects of the data, reflecting the heterogeneous nature of the foam, can be recovered with computations of fully 3-dimensional explicit representations of this porous material.

  9. Thermoresponsive Polyurethane Bearing Oligo(Ethylene Glycol) as Side Chain Without Polyol at Polymer Backbone Achieved Excellent Hydrophilic and Hydrophobic Switching.

    PubMed

    Aoki, Daisuke; Ajiro, Hiroharu

    2018-06-13

    In order to prepare thermoresponsive polyurethane gels, a novel polyurethane bearing oligo(ethylene glycol) (OEG) as the side chain is successfully synthesized with hexamethylene diisocyanate and OEG tartrate ester. The aqueous solution of the polyurethane shows sharp and clear lower critical solution temperature behavior at 34 °C. Furthermore, a hydrogel based on the same polyurethane is also successfully prepared using glycerol as the crosslinker. This polyurethane hydrogel including 10 mol% of glycerol presents a large swelling ratio change between 4 °C and 37 °C from 250% to 40%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Efficacy of a polyurethane dressing versus a soft silicone sheet on hypertrophic scars.

    PubMed

    Wigger-Albert, W; Kuhlmann, M; Wilhelm, D; Mrowietz, U; Eichhorn, K; Ortega, J; Bredehorst, A; Wilhelm, K-P

    2009-05-01

    To compare the efficacy and safety of a polyurethane dressing with a silicone sheet in the treatment of hypertrophic scars. Sixty patients participated in this intra-individual 12-week clinical trial. Each scar was divided into two areas, to which the polyurethane dressing and the silicone sheet were randomly allocated. The primary outcome measure was the percentage change in the overall scar index (SI) between baseline and week 12. Secondary outcome measures included changes in skin redness, objectively measured by chromametry, and patients views on the aesthetic outcome of treatment. Both therapies achieved favourable results for all of the above outcome measures. Results were comparable for the primary outcome measure: 29.4% versus 33.7% for the silicone sheet and polyurethane product respectively. The decrease in the overall SI was significantly more pronounced for the polyurethane product after week 4 (5.6% versus 15.8% for the silicone sheet; p<0.0001) and week 8 (20.2% versus 27.1%; p=0.012). Both regimens were associated with a significant reduction in the clinical signs of hypertrophic scars over 12 weeks of treatment. The polyurethane dressing demonstrated a significantly more pronounced reduction in severity of these clinical signs after four and eight weeks of treatment and was better tolerated than the silicone sheet. l This study was funded by Beiersdorf AG. proDERM is an independent research company, and none of the authors have an interest in the sponsors commercial activities.

  11. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    PubMed

    Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A

    2018-03-01

    Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Encapsulation of β-Sitosterol in Polyurethane by Sol-Gel Electrospinning.

    PubMed

    Amina, Musarat; Amna, Touseef; Al-Musayeib, Nawal; Zabin, Sami A; Hassan, M Shamshi; Khil, Myung-Seob

    2017-06-01

    Pristine β-sitosterol or in combination with other phytosterols is utilized in an array of enriched commercial foods. Considering the presence of β-sitosterol in different functional foods and its potential role in prevention and cure of neurodegenerative diseases, the aims of our investigation were to encapsulate β-sitosterol in nanofibers and to estimate influence of β-sitosterol on proliferation of fibroblasts. Electrospun nanofibers have widely been used as scaffolds to mimic natural extracellular matrix. Herein, our group for the first time establishes an innovative scaffold based on β-sitosterol and polyurethane using electrospinning. β-Sitosterol promotes epithelialization and possesses anti-oxidant and anti-inflammatory activities, whereas polyurethane, besides possessing biomedical uses, also enhances epithelial growth. We optimized the concentration (5%) of β-sitosterol in polyurethane to obtain homogenous solution, which can be spun without difficulty for the synthesis of β-sitosterol amalgamated scaffold. The resulted twisted nanofibers have been characterized via scanning electron microscopy and Fourier transform infrared spectroscopy. The viability of cells on twisted scaffold was examined using NIH 3T3 fibroblasts as model cell line. Incorporation of β-sitosterol in polyurethane changed the structure and size of nanofibers, and the twisted scaffolds were non-cytotoxic. Thus, the twisted nanoribbons, which contain anti-inflammatory β-sitosterol, can be utilized as a promising future material, which will help to ease inflammation and also aid in wound healing. In conclusion, the outcome of the preliminary research evidently points out the potential of twisted scaffold in biomedical applications.

  13. Surface Charge, Electroosmotic Flow and DNA Extension in Chemically Modified Thermoplastic Nanoslits and Nanochannels

    PubMed Central

    Uba, Franklin I.; Pullagurla, Swathi R.; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoonkyoung; Shin, Heungjoo; Soper, Steven A.

    2014-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  14. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

    PubMed

    Uba, Franklin I; Pullagurla, Swathi R; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoon-Kyoung; Shin, Heungjoo; Soper, Steven A

    2015-01-07

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels.

  15. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  16. Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering.

    PubMed

    Sharifi-Aghdam, Maryam; Faridi-Majidi, Reza; Derakhshan, Mohammad Ali; Chegeni, Arash; Azami, Mahmoud

    2017-07-01

    The main objective of this study was to prepare a hybrid three-dimensional scaffold that mimics natural tendon tissues. It has been found that a knitted silk shows good mechanical strength; however, cell growth on the bare silk is not desirable. Hence, electrospun collagen/polyurethane combination was used to cover knitted silk. A series of collagen and polyurethane solutions (4%-7% w/v) in aqueous acetic acid were prepared and electrospun. According to obtained scanning electron microscopy images from pure collagen and polyurethane nanofibers, concentration was set constant at 5% (w/v) for blend solutions of collagen/polyurethane. Afterward, blend solutions with the weight ratios of 75/25, 50/50 and 25/75 were electrospun. Scanning electron microscopy images demonstrated the smooth and uniform morphology for the optimized nanofibers. The least fibers diameter among three weight ratios was found for collagen/polyurethane (25/75) which was 100.86 ± 40 nm and therefore was selected to be electrospun on the knitted silk. Attenuated total reflectance-Fourier transform infrared spectra confirmed the chemical composition of obtained electrospun nanofibers on the knitted silk. Tensile test of the specimens including blend nanofiber, knitted silk and commercial tendon substitute examined and indicated that collagen/polyurethane-coated knitted silk has appropriate mechanical properties as a scaffold for tendon tissue engineering. Then, Alamar Blue assay of the L929 fibroblast cell line seeded on the prepared scaffolds demonstrated appropriate viability of the cells with a significant proliferation on the scaffold containing more collagen content. The results illustrate that the designed structure would be promising for being used as a temporary substitute for tendon repair.

  17. Tough soluble aromatic thermoplastic copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    2000-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  18. Thermoplastic Ribbon-Ply Bonding Model

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.

    1996-01-01

    The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.

  19. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage

    PubMed Central

    Rahmanian, Omid D.

    2014-01-01

    A simple and reliable method for fabricating single-use normally closed burst valves in thermoplastic microfluidic devices is presented, using a process flow that is readily integrated into established workflows for the fabrication of thermoplastic microfluidics. An experimental study of valve performance reveals the relationships between valve geometry and burst pressure. The technology is demonstrated in a device employing multiple valves engineered to actuate at different inlet pressures that can be generated using integrated screw pumps. On-chip storage and reconstitution of fluorescein salt sealed within defined reagent chambers are demonstrated. By taking advantage of the low gas and water permeability of cyclic olefin copolymer, the robust burst valves allow on-chip hermetic storage of reagents, making the technology well suited for the development of integrated and disposable assays for use at the point of care. PMID:25972774

  20. Localized gene delivery using antibody tethered adenovirus from polyurethane heart valve cusps and intra-aortic implants.

    PubMed

    Stachelek, S J; Song, C; Alferiev, I; Defelice, S; Cui, X; Connolly, J M; Bianco, R W; Levy, R J

    2004-01-01

    The present study investigated a novel approach for gene therapy of heart valve disease and vascular disorders. We formulated and characterized implantable polyurethane films that could also function as gene delivery systems through the surface attachment of replication defective adenoviruses using an anti-adenovirus antibody tethering mechanism. Our hypothesis was that we could achieve site-specific gene delivery to cells interacting with these polyurethane implants, and thereby demonstrate the potential for intravascular devices that could also function as gene delivery platforms for therapeutic vectors. Previous research by our group has demonstrated that polyurethane elastomers can be derivatized post-polymerization through a series of chemical reactions activating the hard segment amide groups with alkyl bromine residues, which can enable a wide variety of subsequent chemical modifications. Furthermore, prior research by our group investigating gene delivery intravascular stents has shown that collagen-coated balloon expandable stents can be configured with anti-adenovirus antibodies via thiol-based chemistry, and can then tether adenoviral vectors at doses that lead to high levels of localized arterial neointima expression, but with virtually no distal spread of vector. Thus, we sought to create two-device configurations for our investigations building on this previous research. (1) Polyurethane films coated with Type I collagen were thiol activated to permit covalent attachment of anti-adenovirus antibodies to enable gene delivery via vector tethering. (2) We also formulated polyurethane films with direct covalent attachment of anti-adenovirus antibodies to polyurethane hard segments derivatized with alkyl-thiol groups, thereby also enabling tethering of replication-defective adenoviruses. Both formulations demonstrated highly localized and efficient transduction in cell culture studies with rat arterial smooth muscle cells. In vivo experiments with collagen