NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.
2017-09-01
The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.
SAPS simulation with GITM/UCLA-RCM coupled model
NASA Astrophysics Data System (ADS)
Lu, Y.; Deng, Y.; Guo, J.; Zhang, D.; Wang, C. P.; Sheng, C.
2017-12-01
Abstract: SAPS simulation with GITM/UCLA-RCM coupled model Author: Yang Lu, Yue Deng, Jiapeng Guo, Donghe Zhang, Chih-Ping Wang, Cheng Sheng Ion velocity in the Sub Aurora region observed by Satellites in storm time often shows a significant westward component. The high speed westward stream is distinguished with convection pattern. These kind of events are called Sub Aurora Polarization Stream (SAPS). In March 17th 2013 storm, DMSP F18 satellite observed several SAPS cases when crossing Sub Aurora region. In this study, Global Ionosphere Thermosphere Model (GITM) has been coupled to UCLA-RCM model to simulate the impact of SAPS during March 2013 event on the ionosphere/thermosphere. The particle precipitation and electric field from RCM has been used to drive GITM. The conductance calculated from GITM has feedback to RCM to make the coupling to be self-consistent. The comparison of GITM simulations with different SAPS specifications will be conducted. The neutral wind from simulation will be compared with GOCE satellite. The comparison between runs with SAPS and without SAPS will separate the effect of SAPS from others and illustrate the impact on the TIDS/TADS propagating to both poleward and equatorward directions.
A Year-Long Comparison of GPS TEC and Global Ionosphere-Thermosphere Models
NASA Astrophysics Data System (ADS)
Perlongo, N. J.; Ridley, A. J.; Cnossen, I.; Wu, C.
2018-02-01
The prevalence of GPS total electron content (TEC) observations has provided an opportunity for extensive global ionosphere-thermosphere model validation efforts. This study presents a year-long data-model comparison using the Global Ionosphere-Thermosphere Model (GITM) and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). For the entire year of 2010, each model was run and compared to GPS TEC observations. The results were binned according to season, latitude, local time, and magnetic local time. GITM was found to overestimate the TEC everywhere, except on the midlatitude nightside, due to high O/N2 ratios. TIE-GCM produced much less TEC and had lower O/N2 ratios and neutral wind speeds. Seasonal and regional biases in the models are discussed along with ideas for model improvements and further validation efforts.
NASA Astrophysics Data System (ADS)
Bougher, Stephen; Ridley, Aaron; Majeed, Tariq; Waite, J. Hunter; Gladstone, Randy; Bell, Jared
2016-07-01
The primary objectives for development and validation of a new 3-D non-hydrostatic model of Jupiter's upper atmosphere is to improve our understanding of Jupiter's thermosphere-ionosphere-magnetosphere system and to provide a global context within which to analyze the data retrieved from the new JUNO mission. The new J-GITM model presently incorporates the progress made on the previous Jupiter-TGCM code (i.e. key parameterizations, ion-neutral chemistry, IR cooling) while also employing the non-hydrostatic numerical core of the Earth Global Ionosphere-Thermosphere Model (GITM). The GITM numerical framework has been successfully applied to Earth, Mars, and Titan (see Ridley et al. [2006], Bougher et al. [2015], Bell [2008, 2010]). Moreover, it has been shown to simulate the effects of strong, localized heat sources (such as joule heating and auroral heating) more accurately than strictly hydrostatic GCMs (Deng et al. [2007, 2008]). Thus far, in the J-GITM model development and testing, model capability has been progressively augmented to capture the neutral composition (e.g. H, H2, He major species), 3-component neutral winds, and thermal structure, as well as the ion composition (H3+, H2+, and H+ among others) above 250 km. Presently, J-GITM: (a) provides an interactive calculation for auroral particle precipitation (i.e. heating, ionization), an improvement over the static formulation used previously in the J-TGCM (Bougher et al., 2005; Majeed et al., 2005, 2009, 2015); (b) self-consistently calculates an ionosphere using updated ion-neutral chemistry, ion dynamics, and electron transport; (c) simulates the chemistry that forms key hydrocarbons at the base of the thermosphere, focusing on CH4, C2H2, and C2H6; (d) allows the production of H3+, CH4, C2H2, and C2H6 to modify the global thermal balance of Jupiter through their non-LTE radiative cooling; (e) provides a calculation of H2 vibrational chemistry to regulate H+ densities; and (f) uses the improved ionosphere to provide more realistic Pederson and Hall conductivities (i.e. which will eventually be combined with updated representations of the convection electric field to drive the high-latitude ion dynamics). Thus far, Joule heating has not yet been implemented and turned on in the J-GITM framework. However, a small set of J-GITM simulations has been conducted in order to perform J-GITM versus J-TGCM benchmark comparisons making use of auroral forcing only. A summary of these simulation results will be presented.
Examing the Effects of Different IMF, F10.7, and Auroral Inputs on the Thermospheric Neutral Winds
NASA Astrophysics Data System (ADS)
Deng, Y.; Ridley, A. J.
2003-12-01
To obtain a better understanding of how the magnetosphere effects the global thermospheric and ionospheric structure, we conduct some numerical experiments using the University of Michigan's Global Ionosphere-Thermosphere Model (GITM). We have run GITM to roughly steady-state using different strengths of the high-latitude electric potential pattern, F10.7, and auroral inputs to determine how these effect the temporal history and stead-state of the thermospheric neutral winds. Our model reproduces the well known fact that the neutral winds are strongly driven by the ion convection above approximately 300 km, and that the ramp-up time is very dependent upon the altitude. We show quantitative results of the ramp-up times and maximum neutral wind speeds for the different driving conditions.
Improving the Nightside Mid-latitude Ionospheric Density in the Global Ionosphere-Thermosphere Model
NASA Astrophysics Data System (ADS)
Wu, C.; Ridley, A. J.
2017-12-01
The ionosphere and plasmasphere interact with each other through upwelling of plasma into the plasmasphere during the day and downwelling of the plasma into the ionosphere during the night. The storage of ion density in the plasmasphere and subsequent downwelling maintains the ion density in the nighttime mid-latitude ionosphere. Global models of the upper atmosphere that do not contain a plasmasphere, but are limited in altitude, such as the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM) and the Global Ionosphere-Thermosphere Model(GITM) need a boundary condition that allows for some sort of downwelling to occur. In the TIEGCM, this has been set to a constant downward flux, while GITM has had no downwelling specification at all, which has caused the nighttime mid-latitude densities to be much too low. We present a new boundary condition in GITM, where there is downward ion flux from the upper boundary, allowing the ionosphere to be maintained during the night. This new boundary condition is dependent on the the Disturbance Storm Time (Dst), since, as the activity level increases (i.e., Dst decreases), the plasmasphere is eroded and will not serve to supply the ionosphere at night. Various quiet time and active time comparisons to ionosonde electron density and total electron content data will be presented that show that the ionospheric density in GITM is improved due to this new boundary condition.
NASA Astrophysics Data System (ADS)
Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.
2017-12-01
The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations and direct observations of errors between the model and data such as GUVI O/N2 ratios and TEC data. In each case, the model results will be compared to data to determine the improvement.
A new physics-based modeling approach for tsunami-ionosphere coupling
NASA Astrophysics Data System (ADS)
Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.
2015-06-01
Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.
A gridded global description of the ionosphere and thermosphere for 1996 - 2000
NASA Astrophysics Data System (ADS)
Ridley, A.; Kihn, E.; Kroehl, H.
The modeling and simulation community has asked for a realistic representation of the near-Earth space environment covering a significant number of years to be used in scientific and engineering applications. The data, data management systems, assimilation techniques, physical models, and computer resources are now available to construct a realistic description of the ionosphere and thermosphere over a 5 year period. DMSP and NOAA POES satellite data and solar emissions were used to compute Hall and Pederson conductances in the ionosphere. Interplanetary magnetic field measurements on the ACE satellite define average electrostatic potential patterns over the northern and southern Polar Regions. These conductances, electric field patterns, and ground-based magnetometer data were input to the Assimilative Mapping of Ionospheric Electrodynamics model to compute the distribution of electric fields and currents in the ionosphere. The Global Thermosphere Ionosphere Model (GITM) used the ionospheric electrodynamic parameters to compute the distribution of particles and fields in the ionosphere and thermosphere. GITM uses a general circulation approach to solve the fundamental equations. Model results offer a unique opportunity to assess the relative importance of different forcing terms under a variety of conditions as well as the accuracies of different estimates of ionospheric electrodynamic parameters.
Hemispheric Asymmetries of Magnetosphere-Ionosphere-Thermosphere Dynamics
NASA Astrophysics Data System (ADS)
Perlongo, Nicholas James
The geospace environment, comprised of the magnetosphere-ionosphere-thermosphere system, is a highly variable and non-linearly coupled region. The dynamics of the system are driven primarily by electromagnetic and particle radiation emanating from the Sun that occasionally intensify into what are known as solar storms. Understanding the interaction of these storms with the near Earth space environment is essential for predicting and mitigating the risks associated with space weather that can irreparably damage spacecraft, harm astronauts, disrupt radio and GPS communications, and even cause widespread power outages. The geo-effectiveness of solar storms has hemispheric, seasonal, local time, universal time, and latitudinal dependencies. This dissertation investigates those dependencies through a series of four concentrated modeling efforts. The first study focuses on how variations in the solar wind electric field impact the thermosphere at different times of the day. Idealized simulations using the Global Ionosphere Thermosphere Model (GITM) revealed that perturbations in thermospheric temperature and density were greater when the universal time of storm onset was such that the geomagnetic pole was pointed more towards the sun. This universal time effect was greater in the southern hemisphere where the offset of the geomagnetic pole is larger. The second study presents a model validation effort using GITM and the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) compared to GPS Total Electron Content (TEC) observations. The results were divided into seasonal, regional, and local time bins finding that the models performed best near the poles and on the dayside. Diffuse aurora created by electron loss in the inner magnetosphere is an important input to GITM that has primarily been modeled using empirical relationships. In the third study, this was addressed by developing the Hot Election Ion Drift Integrator (HEIDI) ring current model to include a self-consistent description of the aurora and electric field. The model was then coupled to GITM, allowing for a more physical aurora. Using this new configuration in the fourth study, the ill-constrained electron scattering rate was shown to have a large impact on auroral results. This model was applied to simulate a geomagnetic storm during each solstice. The hemispheric asymmetry and seasonal dependence of the storm-time TEC was investigated, finding that northern hemisphere winter storms are most geo-effective when the North American sector is on the dayside. Overall, the research presented in this thesis strives to accomplish two major goals. First, it describes an advancement of a numerical model of the ring current that can be further developed and used to improve our understanding of the interactions between the ionosphere and magnetosphere. Second, the time and spatial dependencies of the geospace response to solar forcing were discovered through a series of modeling efforts. Despite these advancements, there are still numerous open questions, which are also discussed.
NASA Astrophysics Data System (ADS)
Bougher, Stephen W.; Sharrar, Ryan; Bell, Jared M.; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Evans, J. Scott
2017-10-01
The Mars upper atmosphere, encompassing the thermosphere, ionosphere, and the lower exosphere (~100 to 500 km), constitutes the reservoir that regulates present day and historical escape processes from the planet. The characterization of this reservoir is therefore one of the major science objectives of the MAVEN mission. Current dayside thermospheric composition and temperatures are the focus of this study. The primary MAVEN instrument for in situ sampling of neutral thermospheric structure is the Neutral Gas and Ion Mass Spectrometer (NGIMS, Mahaffy et al. 2015) instrument. It measures the neutral composition of at least 11 key gas species and their major isotopes, with a vertical resolution of ~5 km for targeted species. Thermospheric temperatures are derived from neutral density vertical structure (Bougher et al., 2017). Four NGIMS dayside sampling periods are chosen, spanning mid-April 2015 to late-November 2016, for which the solar zenith angle is less than 60°. The Martian season advances from Ls ~ 335 to 256, while solar EUV fluxes are declining from solar moderate to minimum conditions. Each sampling period is composed of ~150 to 200 orbits (NGIMS Level 2 V07_R02 files). We focus our study on 5 dayside species: CO2, O, N2, CO, and He. Inbound density profiles (and derived temperatures) are extracted and averaged over various orbital intervals, in order to compute longitude averaged profiles, and to minimize the impact of small scale wave structure. Corresponding Mars Global Ionosphere Thermosphere Model (M-GITM, Bougher et al., 2015) predictions for the same seasonal/solar cycle conditions are compared to NGIMS density measurements along the inbound orbit tracks below ~225 km. This M-GITM model is primarily driven by solar EUV-UV forcing at these altitudes; its simulations are used to provide a first comparison with the climatic trends (and variability) gleaned from these NGIMS datasets. M-GITM underlying dayside thermal balances required to reproduce these measured density and temperature profiles are also presented, with the goal of constraining dayside CO2 cooling rates.
NASA Astrophysics Data System (ADS)
Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.
2017-12-01
Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.
A Statistical Comparison of Coupled Thermosphere-Ionosphere Models
NASA Astrophysics Data System (ADS)
Liuzzo, L. R.
2014-12-01
The thermosphere-ionosphere system is a highly dynamic, non-linearly coupled interaction that fluctuates on a daily basis. Many models exist to attempt to quantify the relationship between the two atmospheric layers, and each approaches the problem differently. Because these models differ in the implementation of the equations that govern the dynamics of the thermosphere-ionosphere system, it is important to understand under which conditions each model performs best, and under which conditions each model may have limitations in accuracy. With this in consideration, this study examines the ability of two of the leading coupled thermosphere-ionosphere models in the community, TIE-GCM and GITM, to reproduce thermospheric and ionospheric quantities observed by the CHAMP satellite during times of differing geomagnetic activity. Neutral and electron densities are studied for three geomagnetic activity levels, ranging form high to minimal activity. Metrics used to quantify differences between the two models include root-mean-square error and prediction efficiency, and qualitative differences between a model and observed data is also considered. The metrics are separated into the high- mid- and low-latitude region to depict any latitudinal dependencies of the models during the various events. Despite solving for the same parameters, the models are shown to be highly dependent on the amount of activity level that occurs and can be significantly different from each other. In addition, in comparing previous statistical studies that use the models, a clear improvement is observed in the evolution of each model as thermospheric and ionosphericconstituents during the differing levels of activity are solved.
Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions
NASA Astrophysics Data System (ADS)
Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.
2014-12-01
The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the total ion loss to space over Mars history, and thus enhance the science returned from the MAVEN mission.
Case Studies of Forecasting Ionospheric Total Electron Content
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Meng, X.; Verkhoglyadova, O. P.; Tsurutani, B.; McGranaghan, R. M.
2017-12-01
We report on medium-range forecast-mode runs of ionosphere-thermosphere coupled models that calculate ionospheric total electron content (TEC), focusing on low-latitude daytime conditions. A medium-range forecast-mode run refers to simulations that are driven by inputs that can be predicted 2-3 days in advance, for example based on simulations of the solar wind. We will present results from a weak geomagnetic storm caused by a high-speed solar wind stream on June 29, 2012. Simulations based on the Global Ionosphere Thermosphere Model (GITM) and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) significantly over-estimate TEC in certain low latitude daytime regions, compared to TEC maps based on observations. We will present the results from a more intense coronal mass ejection (CME) driven storm where the simulations are closer to observations. We compare high latitude data sets to model inputs, such as auroral boundary and convection patterns, to assess the degree to which poorly estimated high latitude drivers may be the largest cause of discrepancy between simulations and observations. Our results reveal many factors that can affect the accuracy of forecasts, including the fidelity of empirical models used to estimate high latitude precipitation patterns, or observation proxies for solar EUV spectra, such as the F10.7 index. Implications for forecasts with few-day lead times are discussed
NASA Astrophysics Data System (ADS)
Dong, Chuanfei
This dissertation presents numerical simulation results of the solar wind interaction with the Martian upper atmosphere by using three comprehensive 3-D models: the Mars Global Ionosphere Thermosphere Model (M-GITM), the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS), and the BATS-R-US Mars multi-fluid MHD (MF-MHD) model. The coupled framework has the potential to provide improved predictions for ion escape rates for comparison with future data to be returned by the MAVEN mission (2014-2016) and thereby improve our understanding of present day escape processes. Estimates of ion escape rates over Mars history must start from properly validated models that can be extrapolated into the past. This thesis aims to build a model library for the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which will thus enhance the science return from the MAVEN mission. In this thesis, we aim to address the following four main scientific questions by adopting the one-way coupled framework developed here: (1) What are the Martian ion escape rates at the current epoch and ancient times? (2) What controls the ion escape processes at the current epoch? How are the ion escape variations connected to the solar cycle, crustal field orientation and seasonal variations? (3) How do the variable 3-D cold neutral thermosphere and hot oxygen corona affect the solar wind-Mars interaction? (4) How does the Martian atmosphere respond to extreme variations (e.g., ICMEs) in the solar wind and its interplanetary environment? These questions are closely related to the primary scientific goals of NASA's MAVEN mission and European Space Agency's Mars Express (MEX) mission. We reasonably answer all these four questions at the end of this thesis by employing the one-way coupled framework and comparing the simulation results with both MEX and MAVEN observational data.
Thermospheric Response to Solar Wind Electric Field Fluctuations
NASA Astrophysics Data System (ADS)
Perlongo, N. J.; Ridley, A. J.
2013-12-01
The electron density of the thermosphere is of paramount importance for radio communications and drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements of ion velocities and subsequent density and temperature increases frequently occur as a result of storm-driven solar wind electric field fluctuations. Since the Earth's dipole magnetic field is tilted and offset from the center of the planet, significant asymmetries arise that alter the thermospheric response to energy input based upon the time of day of the disturbance. This study utilizes the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon by enhancing the convective electric field for one hour of the day in 22 different simulations. An additional baseline run was conducted with no IMF perturbation. Furthermore, four configurations of Earth's magnetic field were considered, Internal Geomagnetic Reference Field (IGRF), a perfect dipole, a dipole tilted by 10 degrees, and a tilted and offset dipole. These runs were conducted at equinox when the amount of sunlight falling on the different hemispheres is the same. Two additional runs were conducted at the solstices for comparison. It was found that the most geo-effective times are when the poles are pointed towards the sun. The electron density, neutral density and temperature as well as the winds are explored.
Estimating the mass density in the thermosphere with the CYGNSS mission.
NASA Astrophysics Data System (ADS)
Bussy-Virat, C.; Ridley, A. J.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is a constellation of eight satellites orbiting the Earth at 510 km. Its goal is to improve our understanding of rapid hurricane wind intensification. Each CYGNSS satellite uses GPS signals that are reflected off of the ocean's surface to measure the wind. The GPS can also be used to specify the orbit of the satellites quite precisely. The motion of satellites in low Earth orbit are greatly influenced by the neutral density of the surrounding atmosphere through drag. Modeling the neutral density in the upper atmosphere is a major challenge as it involves a comprehensive understanding of the complex coupling between the thermosphere and the ionosphere, the magnetosphere, and the Sun. This is why thermospheric models (such as NRLMSIS, Jacchia-Bowman, HASDM, GITM, or TIEGCM) can only approximate it with a limited accuracy, which decreases during strong geomagnetic events. Because atmospheric drag directly depends on the thermospheric density, it can be estimated applying filtering methods to the trajectories of the CYGNSS observatories. The CYGNSS mission can provide unique results since the constellation of eight satellites enables multiple measurements of the same region at close intervals ( 10 minutes), which can be used to detect short time scale features. Moreover, the CYGNSS spacecraft can be pitched from a low to high drag attitude configuration, which can be used in the filtering methods to improve the accuracy of the atmospheric density estimation. The methodology and the results of this approach applied to the CYGNSS mission will be presented.
NASA Astrophysics Data System (ADS)
Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.
2017-12-01
NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.
Ionization rate from the electron precipitation during August 2011 storm
NASA Astrophysics Data System (ADS)
Huang, Y.; Huang, C. Y.; Su, Y.
2013-12-01
We apply a parameterization by Fang et al. [2010] (Fang2010) to the complex energy spectra measured by DMSP F16 satellites to calculate the ionization rate from electron precipitation during a moderate storm on August 6th, 2011. The DMSP electron flux measurements show that there is clear enhancement of electron fluxes in the polar cap. The mean energy in the polar cap is mostly above 100 eV, while the mean energy of auroral zone is above 1 keV. F16 also captures a strong Poynting flux enhancement in the polar cap. The electron impact ionization rates using thermospheric densities and temperatures from NRLMSISE-00, TIE-GCM and GITM show clear enhancement at F-region altitudes in the polar cap region due to the low-energy electrons precipitated. Using the default empirical formulations of electron impact ionization in GCMs, TIE-GCM and GITM do not capture the F-region ionization shown in the results of Fang2010 parameterization. Fang, X, C. E. Randall, D. Lummerzheim, W. Wang, G. Lu, S. C. Solomon, and R. A. Frahm (2010), Geophys. Res. Lett., 37, L22106, doi:10.1029/2010GL045406.
Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow
NASA Astrophysics Data System (ADS)
Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.
2017-12-01
We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude north. These questions are now addressed with an extensive dataset of disk images, complemented with improved simulations from the LMD-MGCM and new M-GITM (Mars Global Ionosphere-Thermosphere Model) simulations of emissions for selected sampling periods.
NASA Astrophysics Data System (ADS)
Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.; Johnson, R. E.; Tully, C.
2016-12-01
The recent observations of the Martian geomorphology suggest that water has played a critical role in forming the present status of the Martian atmosphere and environment. The inventory of water has been depleted throughout the planet's geologic time via various mechanisms from the surface to the uppermost atmosphere where the Sun-Mars interaction occurs. During the current epoch, dissociative recombination of O2+ is suggested as the main nonthermal mechanism that regulates the escape of atomic O, forming the hot O corona. A nascent hot O atom produced deep in the thermosphere undergoes collisions with the background thermal species, where the particle can lose energy and become thermalized before it reaches the collisionless regime and escape. The major hot O collisions with the background species that contribute to the thermalization of hot O are Ohot-Ocold, Ohot-CO2,cold, Ohot-COcold, and Ohot-N2,cold. In order to describe these collisions, there have been different collisions schemes used by the previous models. One of the most realistic descriptions involves using angular differential cross sections, and the simplest approach is using isotropic collision cross sections. Here, we present a comparison between the 3D model results using two different collision schemes to find equivalent hard sphere collision cross sections that satisfy the effects from using forward scattering cross sections. We adapted the newly calculated angular differential cross sections to the major hot O collisions. The hot O corona is simulated by coupling our Mars application of the 3D Adaptive Mesh Particle Simulator (M-AMPS) [Tenishev et al., 2008, 2013] and the Mars Global Ionosphere-Thermosphere Model (M-GITM) [Bougher et al., 2015].
1987-03-01
Gitman in [Gitm75]. The system considered consisted of a set of clusters (each with an infinite popula- tion of users) that communicate with a central...30, no. 5, pp. 985-995, May 1982. [Gitm75] I. Gitman , "On the Capacity of Slotted ALOHA Networks and Some Design Problems," IEEE Trans. Comm., vol
NASA Astrophysics Data System (ADS)
Ozturk, D. S.; Zou, S.; Slavin, J. A.; Ridley, A. J.
2016-12-01
A sudden impulse (SI) event is a rapid increase in solar wind dynamic pressure, which compresses the Earth's magnetosphere from the dayside and travels towards the Earth's tail. During the SI events, compression front reconfigures the Magnetosphere-Ionosphere (MI) current systems. This compression launches fast magnetosonic waves that carry the SI through magnetosphere and Alfven waves that enhance the field-aligned currents (FACs) at high-latitudes. FAC systems can be measured by Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE). The propagation front also creates travelling convection vortices (TCVs) in the ionosphere that map to the equatorial flank regions of the Earth's magnetosphere. The TCVs then move from dayside to the nightside ionosphere. To understand these SI-driven disturbances globally, we use the University of Michigan Space Weather Modeling Framework (SWMF) with Global Magnetosphere (GM), Inner Magnetosphere (IM) and Ionosphere (IE) modules. We study the changes in the FAC systems, which link ionospheric and magnetospheric propagating disturbances under different IMF By conditions and trace the ionospheric disturbances to magnetospheric system to better understand the connection between two systems. As shown by previous studies, IMF By can cause asymmetries in the magnetic perturbations measured by the ground magnetometers. By using model results we determine the global latitudinal and longitudinal dependencies of the SI signatures on the ground. We also use the SWMF results to drive the Global Ionosphere Thermosphere Model (GITM) to reveal how the Ionosphere-Thermosphere system is affected by the SI propagation. Comparisons are carried out between the IE model output and high latitude convection patterns from Super Dual Auroral Radar Network (SuperDARN) measurements and SuperMAG ground magnetic field perturbations. In closing we have modeled the field-aligned currents, ionospheric convection patterns, temperature and density profiles to explore the global coupling of the ionosphere to magnetosphere during SI events with different By orientation.
NASA Astrophysics Data System (ADS)
Ozturk, D. S.; Zou, S.; Slavin, J. A.; Ridley, A. J.
2017-12-01
When the solar wind dynamic pressure is enhanced, it could perturb the global magnetosphere-ionosphere-thermosphere (M-I-T) system. The most notable indicators of such disruptions are changes in Field-Aligned Currents (FACs), ionospheric convection patterns and magnetic perturbations observed by ground magnetometers. The link between dynamic pressure enhancements and FACs has been well established, but studies on how these FACs affect the ionosphere-thermosphere system are very limited. In order to understand the large-scale dynamic processes in the M-I-T system due to the solar wind dynamic pressure enhancement, we study the 17 March 2015 event in detail. This is one of the most geoeffective events of the solar cycle 24 with Dst minimum of -222 nT. The Wind spacecraft recorded a two-step increment in the solar wind dynamic pressure, from 2 nPa to 12 nPa within 3 minutes, while the IMF Bz stayed northward. We used the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme (BATS'R'US), global MHD code to study the generation and propagation of perturbations associated with the compression of the magnetosphere. To effectively represent the coupled magnetosphere-ionosphere system, we included the Global Magnetosphere (GM), Inner Magnetosphere (IM) and Ionospheric electrodynamic (IE) modules. 600 uniformly distributed virtual magnetometers are included in the simulation to identify the magnetic perturbations associated with the FAC pairs as well as their temporal and spatial variations. In addition, we used the IE module output to drive the University of Michigan Global Ionosphere Thermosphere Model (GITM) to study how the I-T system responds to dynamic pressure enhancement. We show that as a result of the solar wind dynamic pressure enhancement, two pair of perturbation FACs develop in addition to the NBZ current system. These FACs significantly alter the ionospheric convection profile and create elongated vortices that propagate from dayside to nightside. The ion temperature at the location of these vortices is significantly and immediately enhanced. We analyzed the altitude profiles of plasma temperature, electron density and joule heating to quantitatively understand energy deposition during this process, and compare them with observations from ground-based incoherent scatter radar.
Contribution of ionospheric monitoring to tsunami warning: results from a benchmark exercise
NASA Astrophysics Data System (ADS)
Rolland, L.; Makela, J. J.; Drob, D. P.; Occhipinti, G.; Lognonne, P. H.; Kherani, E. A.; Sladen, A.; Rakoto, V.; Grawe, M.; Meng, X.; Komjathy, A.; Liu, T. J. Y.; Astafyeva, E.; Coisson, P.; Budzien, S. A.
2016-12-01
Deep ocean pressure sensors have proven very effective to quantify tsunami waves in real-time. Yet, the cost of these sensors and maintenance strongly limit the extensive deployment of dense networks. Thus a complete observation of the tsunami wave-field is not possible so far. In the last decade, imprints of moderate to large transpacific tsunami wave-fields have been registered in the ionosphere through the atmospheric internal gravity wave coupled with the tsunami during its propagation. Those ionospheric observations could provide a an additional description of the phenomenon with a high spatial coverage. Ionospheric observations have been supported by numerical modeling of the ocean-atmosphere-ionosphere coupling, developed by different groups. We present here the first results of a cross-validation exercise aimed at testing various forward simulation techniques. In particular, we compare different approaches for modeling tsunami-induced gravity waves including a pseudo-spectral method, finite difference schemes, a fully coupled normal modes modeling approach, a Fourier-Laplace compressible ray-tracing solution, and a self-consistent, three-dimensional physics-based wave perturbation (WP) model based on the augmented Global Thermosphere-Ionosphere Model (WP-GITM). These models and other existing models use either a realistic sea-surface motion input model or a simple analytic model. We discuss the advantages and drawbacks of the different methods and setup common inputs to the models so that meaningful comparisons of model outputs can be made to higlight physical conclusions and understanding. Nominally, we highlight how the different models reproduce or disagree for two study cases: the ionospheric observations related to the 2012 Mw7.7 Haida Gwaii, Canada, and 2015 Mw8.3 Illapel, Chile, events. Ultimately, we explore the possibility of computing a transfer function in order to convert ionospheric perturbations directly into tsunami height estimates.
NASA Astrophysics Data System (ADS)
Elrod, M. K.; Bougher, S.; Bell, J.; Mahaffy, P. R.; Benna, M.; Stone, S.; Yelle, R.; Jakosky, B.
2017-02-01
Analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere Volatiles and EvolutioN (MAVEN) spacecraft closed source data from all orbits with good pointing revealed an enhanced Helium [He] density on the nightside orbits and a depressed He density on the dayside by about a factor of 10-20. He was also found to be larger in the polar regions than in the equatorial regions. The northern polar winter nightside He bulge was approximately twice that of the northern polar summer nightside bulge. The first 6 weeks of the MAVEN prime mission had periapsis at high latitudes on the nightside during northern winter, followed by the midlatitudes on the dayside moving to low latitudes on the nightside returning to the high latitudes during northern summer. In this study we examined the NGIMS data not only in the different latitudes but sorted by solar longitude (Ls) in order to separate the diurnal or local solar time (LST) effects from the seasonal effects. The Mars Global Ionosphere-Thermosphere Model (M-GITM) has predicted the formation of a He bulge in the upper atmosphere of Mars on the nightside early morning hours (Ls = 2-5 h) with more He collecting around the poles. Taking a slice at constant altitude across all orbits indicates corresponding variations in He and CO2 with respect to LST and Ls and a diurnal and seasonal dependence.
A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Johnson, D. L.; James, B. F.
1996-01-01
This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the lifetime of satellites, but also it will increase the amount of space junk.
Studies on the ionospheric-thermospheric coupling mechanisms using SLR
NASA Astrophysics Data System (ADS)
Panzetta, Francesca; Erdogan, Eren; Bloßfeld, Mathis; Schmidt, Michael
2016-04-01
Several Low Earth Orbiters (LEOs) have been used by different research groups to model the thermospheric neutral density distribution at various altitudes performing Precise Orbit Determination (POD) in combination with satellite accelerometry. This approach is, in principle, based on satellite drag analysis, driven by the fact that the drag force is one of the major perturbing forces acting on LEOs. The satellite drag itself is physically related to the thermospheric density. The present contribution investigates the possibility to compute the thermospheric density from Satellite Laser Ranging (SLR) observations. SLR is commonly used to compute very accurate satellite orbits. As a prerequisite, a very high precise modelling of gravitational and non-gravitational accelerations is necessary. For this investigation, a sensitivity study of SLR observations to thermospheric density variations is performed using the DGFI Orbit and Geodetic parameter estimation Software (DOGS). SLR data from satellites at altitudes lower than 500 km are processed adopting different thermospheric models. The drag coefficients which describe the interaction of the satellite surfaces with the atmosphere are analytically computed in order to obtain scaling factors purely related to the thermospheric density. The results are reported and discussed in terms of estimates of scaling coefficients of the thermospheric density. Besides, further extensions and improvements in thermospheric density modelling obtained by combining a physics-based approach with ionospheric observations are investigated. For this purpose, the coupling mechanisms between the thermosphere and ionosphere are studied.
An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations
NASA Astrophysics Data System (ADS)
Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha
2018-02-01
In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.
Thermosphere Dynamics Workshop, volume 2
NASA Technical Reports Server (NTRS)
Mayr, H. G. (Editor); Miller, N. J. (Editor)
1986-01-01
Atmospheric observations reported on include recent measurements of thermospherical composition, gas temperatures, auroral emissions, ion-neutral collisional coupling, electric fields, and plasma convection. Theoretical studies reported on include model calculations of thermospherical general circulation, thermospheric tides, thermospheric tidal coupling to the lower atmosphere, interactions between thermospheic chemistry and dynamics and thermosphere-ionosphere coupling processes. The abstracts provide details given in each talk but the figures represent the fundamental information exchanged within the workshop
Continuing Development of a Hybrid Model (VSH) of the Neutral Thermosphere
NASA Technical Reports Server (NTRS)
Burns, Alan
1996-01-01
We propose to continue the development of a new operational model of neutral thermospheric density, composition, temperatures and winds to improve current engineering environment definitions of the neutral thermosphere. This model will be based on simulations made with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere- Electrodynamic General Circulation Model (TIEGCM) and on empirical data. It will be capable of using real-time geophysical indices or data from ground-based and satellite inputs and provides neutral variables at specified locations and times. This "hybrid" model will be based on a Vector Spherical Harmonic (VSH) analysis technique developed (over the last 8 years) at the University of Michigan that permits the incorporation of the TIGCM outputs and data into the model. The VSH model will be a more accurate version of existing models of the neutral thermospheric, and will thus improve density specification for satellites flying in low Earth orbit (LEO).
Theoretical and Empirical Descriptions of Thermospheric Density
NASA Astrophysics Data System (ADS)
Solomon, S. C.; Qian, L.
2004-12-01
The longest-term and most accurate overall description the density of the upper thermosphere is provided by analysis of change in the ephemeris of Earth-orbiting satellites. Empirical models of the thermosphere developed in part from these measurements can do a reasonable job of describing thermospheric properties on a climatological basis, but the promise of first-principles global general circulation models of the coupled thermosphere/ionosphere system is that a true high-resolution, predictive capability may ultimately be developed for thermospheric density. However, several issues are encountered when attempting to tune such models so that they accurately represent absolute densities as a function of altitude, and their changes on solar-rotational and solar-cycle time scales. Among these are the crucial ones of getting the heating rates (from both solar and auroral sources) right, getting the cooling rates right, and establishing the appropriate boundary conditions. However, there are several ancillary issues as well, such as the problem of registering a pressure-coordinate model onto an altitude scale, and dealing with possible departures from hydrostatic equilibrium in empirical models. Thus, tuning a theoretical model to match empirical climatology may be difficult, even in the absence of high temporal or spatial variation of the energy sources. We will discuss some of the challenges involved, and show comparisons of simulations using the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to empirical model estimates of neutral thermosphere density and temperature. We will also show some recent simulations using measured solar irradiance from the TIMED/SEE instrument as input to the TIE-GCM.
NASA Astrophysics Data System (ADS)
Fesen, C. G.; Roble, R. G.
1991-02-01
The NCAR thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. The model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic Kp index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period.
NASA Astrophysics Data System (ADS)
McInerney, J. M.; Qian, L.; Liu, H.
2013-12-01
It has been over two decades since the projection that, not only will the human induced increase in atmospheric CO2 produce a warming in the troposphere, it will also produce a cooling in the middle to upper atmosphere into the 21st century with significant consequences. The thermospheric density decrease associated with this projected upper atmosphere cooling due to greenhouse gases has been confirmed by observations, in particular satellite drag measurements, and by various modeling studies. Recent studies also suggest potential impacts from the lower atmosphere on thermosphere dynamics such as atmospheric thermal tides and gravity waves. With the current advance of whole atmosphere climate models which extend from the ground through the thermosphere, it is now possible to include effects of these and other lower atmosphere processes in modeling studies of long term thermospheric changes. One such whole atmosphere model under development at the National Center for Atmospheric Research (NCAR) is the Whole Atmosphere Community Climate Model - eXtended (WACCM-X). WACCM-X is a self consistent climate model extending from the ground to approximately 500 kilometers and is based on the Whole Atmosphere Community Climate Model (WACCM) / Community Atmosphere Model (CAM) component of the Community Earth System Model (CESM). Although an interactive ionosphere module is not complete, the globally averaged structure of thermosphere temperature and neutral species from WACCM-X are reasonable compared with the NCAR global mean model. In this study, we will examine a transient WACCM-X simulation from 1955 to 2005 with realistic tropospheric CO2 input and solar and geomagnetic forcing. The preliminary study will focus on the long term changes in the thermosphere from this simulation, in particular the secular changes of thermosphere neutral density and temperature due to anthropogenic forcing.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.
1984-01-01
A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.
NASA Astrophysics Data System (ADS)
Jones, M., Jr.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.
2016-12-01
The thermosphere exhibits intra-annual variations (IAV) in globally averaged mass density that noticeably impact the drag environment of satellites in low Earth orbit. Particularly, the annual and semiannual oscillations (AO and SAO) are collectively the second largest component, after solar variability, of thermospheric global mass density variations. Several mechanisms have been proposed to explain the oscillations, but they have yet to be reproduced by first-principles modeling simulations. Recent studies have focused on estimating the SAO in eddy diffusion required to explain the thermospheric SAO in mass density. Less attention has been paid to the effect of lower and middle atmospheric drivers on the lower boundary of the thermosphere. In this study, we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to elucidate how the different lower atmospheric drivers influence IAV, and in particular the SAO of globally-averaged thermospheric mass density. We performed numerical simulations of a continuous calendar year assuming constant solar forcing, manipulating the lower atmospheric tidal forcing and gravity wave parameterization in order to quantify the SAO in thermospheric mass density attributable to different lower atmospheric drivers. The prominent initial results are as follows: (1) The "standard" TIME-GCM is capable of simulating the SAO in globally-averaged mass density at 400 km from first-principles, and its amplitude and phase compare well with empirical models; (2) The simulations suggest that seasonally varying Kzz driven by breaking GWs is not the primary driver of the SAO in upper thermospheric globally averaged mass density; (3) Preliminary analysis suggests that the SAO in the upper thermospheric mass density could be a by-product of dynamical wave transport in the mesopause region.
NASA Astrophysics Data System (ADS)
Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.
2017-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program
NASA Astrophysics Data System (ADS)
Vadas, Sharon; Liu, Hanli
In this paper, we discuss the methods and results of a global modeling study for the effect of deep convection on the thermosphere and ionosphere through the dissipation of atmospheric gravity waves (GWs). The selected time periods are 15-27 June 2009, during the recent extreme solar minimum, and 15-27 June 2000, during the recent solar maximum. The convective plumes which overshot the tropopause are identified from IR images obtained by 5 satellites covering the Earth during each period. We model the excitation of GWs from these plumes, and ray trace them into the thermosphere using our ray trace model which has been upgraded to span the Earth. We then calculate the forcings/heatings/coolings which result when and where these GWs dissipate in the thermosphere. We input these forcings/heatings/coolings into the global TIME-GCM, and re-run the model. In this paper, we discuss these methods and models in detail. We then discuss how the thermosphere and ionosphere responded to the dissipation of these convectively-generated GWs worldwide. We show that the responses propagate westward due to wind filtering by tides in the lower thermosphere. We also show that the neutral temperature and wind perturbations are larger during extreme solar minimum than during solar maximum.
Dynamic interactions in the IT system via LCS analysis
NASA Astrophysics Data System (ADS)
Wang, N.; Ramirez, U.; Datta-Barua, S.
2017-12-01
In the ionosphere-thermosphere (IT) system, charged and neutral particles interact to re-distribute energy and momentum by collisions, diffusion and advection. The ion-neutral interactions have been analyzed through modeling, measurements, and data assimilation. Recently, Lagrangian coherent structure (LCS) analysis is showing promise as a novel way to predict transport and interaction processes in time-varying flow fields. LCSs describing the maximum divergence or convergence in the flow are invisible manifolds independent of the observer [Haller 2005]. LCSs are most commonly defined with the locally maximum finite time Lyapunov exponent (FTLE), a scalar field measuring the ratio of stretching after a given interval of time among neighboring particles, relative to their initial separation. Previous work showed that LCSs were found and illustrated in both thermospheric neutral wind flows [Wang et al. 2017] and ionospheric plasma drifts . In this work, we apply the LCS technique to analyze the material and energy transport processes in the coupled thermosphere and ionosphere. Ionosphere-Thermosphere Algorithm for Lagrangian Coherent Structures (ITALCS) is used for computing the forward-time FTLE scalar fields in the two-dimension thermospheric and ionospheric flows. For the initial study, the thermospheric flows are generated by the Horizontal Wind Model 2014 (HWM14) [Drob et al. 2015] and ionospheric plasma drifts are computed with the electric potential simulated with Weimer 2005 [Weimer 2005] and magnetic field generated by 12th generation International Geomagnetic Reference Field (IGRF12) [Thébault et al. 2015]. A preliminary comparison between the thermospheric LCSs and ionospheric LCSs based on independent empirical models of the thermosphere and the plasma drifts shows that both thermospheric LCSs and ionospheric LCSs appear at higher latitudes and extend to lower latitudes during a geomagnetic storm. By comparing the LCS patterns and their tendencies to spread fluid elements for both the thermosphere and ionosphere, the material and energy transport processes can be analyzed in the coupled thermosphere and ionosphere.
Thermosphere Global Time Response to Geomagnetic Storms Caused by Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Oliveira, D. M.; Zesta, E.; Schuck, P. W.; Sutton, E. K.
2017-10-01
We investigate, for the first time with a spatial superposed epoch analysis study, the thermosphere global time response to 159 geomagnetic storms caused by coronal mass ejections (CMEs) observed in the solar wind at Earth's orbit during the period of September 2001 to September 2011. The thermosphere neutral mass density is obtained from the CHAMP (CHAllenge Mini-Satellite Payload) and GRACE (Gravity Recovery Climate Experiment) spacecraft. All density measurements are intercalibrated against densities computed by the Jacchia-Bowman 2008 empirical model under the regime of very low geomagnetic activity. We explore both the effects of the pre-CME shock impact on the thermosphere and of the storm main phase onset by taking their times of occurrence as zero epoch times (CME impact and interplanetary magnetic field Bz southward turning) for each storm. We find that the shock impact produces quick and transient responses at the two high-latitude regions with minimal propagation toward lower latitudes. In both cases, thermosphere is heated in very high latitude regions within several minutes. The Bz southward turning of the storm onset has a fast heating manifestation at the two high-latitude regions, and it takes approximately 3 h for that heating to propagate down to equatorial latitudes and to globalize in the thermosphere. This heating propagation is presumably accomplished, at least in part, with traveling atmospheric disturbances and complex meridional wind structures. Current models use longer lag times in computing thermosphere density dynamics during storms. Our results suggest that the thermosphere response time scales are shorter and should be accordingly adjusted in thermospheric empirical models.
NASA Astrophysics Data System (ADS)
Vadas, S.; Liu, H.
2013-12-01
In this paper, we discuss the methods and results of a global modeling study for the effect of deep convection on the thermosphere and ionosphere through the dissipation of atmospheric gravity waves (GWs). The selected time period is 15-27 June 2009, during the recent extreme solar minimum. The convective plumes which overshot the tropopause are identified from IR images obtained by the instruments on 5 satellites covering Earth (from west to east: GOES11, GOES12, M9, M7, and MTS). We model the excitation of GWs from these plumes, and ray trace them into the thermosphere using our ray trace model which has been upgraded to span the Earth. We then calculate the forcings/heatings/coolings which result when and where these GWs dissipate in the thermosphere. We input these forcings/heatings/coolings into the global TIME-GCM, and re-run the model. In this paper, we discuss these methods and models in detail. We then discuss how the thermosphere and ionosphere responded to the dissipation of these convectively-generated GWs worldwide.
NASA Astrophysics Data System (ADS)
Zhang, B.; Wang, W.; Wu, Q.; Knipp, D.; Kilcommons, L.; Brambles, O. J.; Liu, J.; Wiltberger, M.; Lyon, J. G.; Häggström, I.
2016-08-01
This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND observation (HIWIND) balloon. Models that lack adequate coupling produce poleward winds. The modeling study suggests that ion drag driven by magnetospheric lobe cell convection is another possible mechanism for turning the climatologically expected dayside poleward winds to the observed equatorward direction. The simulation results are validated by HIWIND, European Incoherent Scatter, and Defense Meteorological Satellite Program. The results suggest a strong momentum coupling between high-latitude ionospheric plasma circulation and thermospheric neutral winds in the summer hemisphere during positive IMF Bz periods, through the formation of magnetospheric lobe cell convection driven by persistent positive IMF By. The CMIT simulation adds important insight into the role of dayside coupling during intervals of otherwise quiet geomagnetic activity
Farley-Buneman Instability Effects on the Ionosphere and Thermosphere
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Oppenheim, M. M.; Dimant, Y. S.; Wiltberger, M. J.; Merkin, V. G.
2016-12-01
We have recently implemented a newmodule that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. Thermosphere wind and composition changes associated with FBI will also be investigated. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.
NASA Technical Reports Server (NTRS)
Rees, D.; Fuller-Rowell, T.; Quegan, S.; Moffett, R.
1986-01-01
It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap.
Remote Sensing the Thermosphere's State Using Emissions From Carbon Dioxide and Nitric Oxide
NASA Astrophysics Data System (ADS)
Weimer, D. R.; Mlynczak, M. G.; Doornbos, E.
2017-12-01
Measurements of emissions from nitric oxide and carbon dioxide in the thermosphere have strong correlations with properties that are very useful to the determination of thermospheric densities. We have compared emissions measured with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite with neutral density measurements from the Challenging Mini-satellite Payload (CHAMP), the Gravity Recovery and Climate Experiment (GRACE), the Ocean Circulation Explorer (GOCE), and the three Swarm satellites, spanning a time period of over 15 years. It has been found that nitric oxide emissions match changes in the exospheric temperatures that have been derived from the densities through use of the Naval Reasearch Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRLMSISE-00) thermosphere model. Similarly, our results indicate that the carbon dioxide emissions have annual and semiannual oscillations that correlate with changes in the amount of oxygen in the thermosphere, also determined by use of the NRLMSISE-00 model. These annual and semi-annual variations are found to have irregular amplitudes and phases, which make them very difficult to accurately predict. Prediction of exospheric temperatures through the use of geomagnetic indices also tends to be inexact. Therefore, it would be possible and very useful to use measurements of the thermosphere's infrared emissions for real-time tracking of the thermosphere's state, so that more accurate calculations of the density may be obtained.
Solar Cycle Variation of Upper Thermospheric Temperature Over King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Chung, Jong-Kyun; Won, Young-In; Kim, Yong-Ha; Lee, Bang-Yong; Kim, Jhoon
2000-12-01
A ground Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0 nm) from the thermosphere (about 250 km) at King Sejong station (KSS, geographic: 62.22oS, 301.25oE; geomagnetic: 50.65oS, 7.51oE), Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400 K in 1989 and 800 K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.
A comparison of quiet time thermospheric winds between FPIs and models
NASA Astrophysics Data System (ADS)
Jiang, G.; Xu, J.; Wang, W.; Yuan, W.; Zhang, S.; Yu, T.; Zhang, X.; Huang, C.; Liu, W.; Li, Q.
2017-12-01
Abstract:The Fabry-Perot Interferometer (FPI) instruments installed at Xinglong, (geog.: 40.2oN, 117.4oE; geom.: 35oN), Kelan (geog.: 38.7oN, 111.6oE; geom.: 34oN) and Millstone Hill (geog.: 42.6oN, 71.5oW; geom.: 52oN) started to measure the thermosphere neutral winds near 250 km since April 2010, March 2010 and November 2011, respectively. In this work, the joined comparison of FPI observed winds and two models during geomagnetic quiet time are processed for the study of mid-latitudinal thermosphere. The years of FPI wind data we use are from 2010 to 2014. The two models we use are NCAR TIE-GCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model of National Center for Atmospheric Research) and HWM07 (Horizontal Wind Model, version 2007). The real solar and geomagnetic conditions were applied to the models.
NASA Astrophysics Data System (ADS)
Mendaza, T.; Blanco-Ávalos, J. J.; Martín-Torres, J.
2017-11-01
The solar activity induces long term and short term periodical variations in the dynamics and composition of Earth's atmosphere. The Sun also shows non periodical (i.e., impulsive) activity that reaches the planets orbiting around it. In particular, Interplanetary Coronal Mass Ejections (ICMEs) reach Earth and interact with its magnetosphere and upper neutral atmosphere. Nevertheless, the interaction with the upper atmosphere is not well characterized because of the absence of regular and dedicated in situ measurements at high altitudes; thus, current descriptions of the thermosphere are based on semi empirical models. In this paper, we present the total neutral mass densities of the thermosphere retrieved from the orbital data of the International Space Station (ISS) using the General Perturbation Method, and we applied these densities to routinely compiled trajectories of the ISS in low Earth orbit (LEO). These data are explicitly independent of any atmospheric model. Our density values are consistent with atmospheric models, which demonstrates that our method is reliable for the inference of thermospheric density. We have inferred the thermospheric total neutral density response to impulsive solar activity forcing from 2001 to the end of 2006 and determined how solar events affect this response. Our results reveal that the ISS orbital parameters can be used to infer the thermospheric density and analyze solar effects on the thermosphere.
The polar thermosphere of Venus
NASA Astrophysics Data System (ADS)
Mueller-Wodarg, Ingo; Rosenblatt, Pascal; Bruinsma, Sean; Yelle, Roger; Svedhem, Håkan; Forbes, Jeffrey M.; Withers, Paul; Keating Sci. Gerald, Sr.; Lopez-Valverde, Miguel Angel
The thermosphere of Venus has been extensively observed in-situ primarily by the Pioneer Venus Orbiter, but those measurements concentrated on the low latitude regions. Until recently, no in-situ observations were made of the polar thermosphere of Venus, and reference atmospheres such as the VTS3 and VIRA models relied on solar zenith angle trends inferred at low latitudes in order to extrapolate to polar latitudes. The Venus Express Atmospheric Drag Experiment (VExADE) carries out accurate orbital tracking in order to infer for the first time ever the densities in Venus' polar thermosphere near 180 km altitude at solar minimum. During 3 recent tracking campaigns we obtained density measurements that allow us to compare actual densities in those regions with those predicted by the reference atmosphere models. We constructed a hydrostatic diffusive equilibrium at-mosphere model that interpolates between the Venus Express remote sensing measurements in the upper mesosphere and lower thermosphere region and the in-situ drag measurements by VExADE. This paper will present and discuss our latest findings.
NASA Astrophysics Data System (ADS)
Chu, Xinzhao; Yu, Zhibin
2017-06-01
With a thermosphere-ionosphere Fe/Fe+ (TIFe) model developed from first principles at the University of Colorado, we present the first quantitative investigation of formation mechanisms of thermospheric Fe layers observed by lidar in Antarctica. These recently discovered neutral metal layers in the thermosphere between 100 and 200 km provide unique tracers for studies of fundamental processes in the space-atmosphere interaction region. The TIFe model formulates and expands the TIFe theory originally proposed by Chu et al. that the thermospheric Fe layers are produced through the neutralization of converged Fe+ layers. Through testing mechanisms and reproducing the 28 May 2011 event at McMurdo, we conceive the lifecycle of meteoric metals via deposition, transport, chemistry, and wave dynamics for thermospheric Fe layers with gravity wave signatures. While the meteor injection of iron species is negligible above 120 km, the polar electric field transports metallic ions Fe+ upward from their main deposition region into the E-F regions, providing the major source of Fe+ (and accordingly Fe) in the thermosphere. Atmospheric wave-induced vertical shears of vertical and horizontal winds converge Fe+ to form dense Fe+ layers. Direct electron-Fe+ recombination is the major channel to neutralize Fe+ layers to form Fe above 120 km. Fe layer shapes are determined by multiple factors of neutral winds, electric field, and aurora activity. Gravity-wave-induced vertical wind plays a key role in forming gravity-wave-shaped Fe layers. Aurora particle precipitation enhances Fe+ neutralization by increasing electron density while accelerating Fe loss via charge transfer with enhanced NO+ and O2+ densities.
Non-thermal hydrogen atoms in the terrestrial upper thermosphere.
Qin, Jianqi; Waldrop, Lara
2016-12-06
Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.
Non-thermal hydrogen atoms in the terrestrial upper thermosphere
Qin, Jianqi; Waldrop, Lara
2016-01-01
Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere. PMID:27922018
Theoretical aspects of tidal and planetary wave propagation at thermospheric heights
NASA Technical Reports Server (NTRS)
Volland, H.; Mayr, H. G.
1977-01-01
A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Spencer, N. W.; Varosi, F.; Pesnell, W. D.
1990-01-01
This paper presents some numerical experiments performed with the TFM to study the various wave components excited in the auroral regions that propagate through the thermosphere and lower atmosphere, and to demonstrate the properties of realistic source geometries. The model is applied to the interpretation of satellite measurements, and gravity waves seen in the thermosphere of Venus are discussed. Gravity waves are prominent in the terrestrial thermosphere polar region and can be excited by perturbations in Joule heating and Lorentz force due to magnetospheric processes. Observations from the Dynamics Explorer-2 satellite are used to illustrate the complexity of the phenomenon and to review the TFM that is utilized.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Ridley, E. C.
1994-01-01
A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.
A new data assimilation engine for physics-based thermospheric density models
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Henney, C. J.; Hock-Mysliwiec, R.
2017-12-01
The successful assimilation of data into physics-based coupled Ionosphere-Thermosphere models requires rethinking the filtering techniques currently employed in fields such as tropospheric weather modeling. In the realm of Ionospheric-Thermospheric modeling, the estimation of system drivers is a critical component of any reliable data assimilation technique. How to best estimate and apply these drivers, however, remains an open question and active area of research. The recently developed method of Iterative Re-Initialization, Driver Estimation and Assimilation (IRIDEA) accounts for the driver/response time-delay characteristics of the Ionosphere-Thermosphere system relative to satellite accelerometer observations. Results from two near year-long simulations are shown: (1) from a period of elevated solar and geomagnetic activity during 2003, and (2) from a solar minimum period during 2007. This talk will highlight the challenges and successes of implementing a technique suited for both solar min and max, as well as expectations for improving neutral density forecasts.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.
2014-08-01
We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.
Mars global reference atmosphere model (Mars-GRAM)
NASA Technical Reports Server (NTRS)
Justus, C. G.; James, Bonnie F.
1992-01-01
Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.
Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.; Mumma, Michael J.; Kostiuk, Theodor; Deming, Drake; Espenak, Fred; Zipoy, David
1991-01-01
NASA's IR Telescope Facility and the McMath Solar Telescope have yielded absolute wind velocities in the Venus thermosphere for December 1985 to March 1987 with sufficient spatial resolution for circulation model discrimination. A qualitative analysis of beam-integrated winds indicates subsolar-to-antisolar circulation in the lower thermosphere; horizontal wind velocity was derived from a two-parameter model wind field of subsolar-antisolar and zonal components. A unique model fit common to all observing periods possessed 120 m/sec subsolar-antisolar and 25 m/sec zonal retrograde components, consistent with the Bougher et al. (1986, 1988) hydrodynamical models for 110 km.
NASA Astrophysics Data System (ADS)
England, S.; Lillis, R. J.
2011-12-01
Knowledge of Mars' thermospheric mass density (~120--200 km altitude) is important for understanding the current state and evolution of the Martian atmosphere and for spacecraft such as the upcoming MAVEN mission that will fly through this region every orbit. Global-scale atmospheric models have been shown thus far to do an inconsistent job of matching mass density observations at these altitudes, especially on the nightside. Thus there is a clear need for a data-driven estimate of the mass density in this region. Given the wide range of conditions and locations over which these must be defined, the dataset of thermospheric mass densities derived from energy and angular distributions of super-thermal electrons measured by the MAG/ER experiment on Mars Global Surveyor, spanning 4 full Martian years, is an extremely valuable resource that can be used to enhance our prediction of these densities beyond what is given by such global-scale models. Here we present an empirical model of the thermospheric density structure based on the MAG/ER dataset. Using this new model, we assess the global-scale response of the thermosphere to dust storms in the lower atmosphere and show that this varies with latitude. Further, we examine the short- and longer-term variability of the thermospheric density and show that it exhibits a complex behavior with latitude and season that is indicative of both atmospheric conditions at lower altitudes and possible lower atmosphere wave sources.
Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group
NASA Technical Reports Server (NTRS)
Spann, J. F.; Bhattacharyya, A.
2006-01-01
The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented.
Variability of the Martian thermospheric temperatures during the last 7 Martian Years
NASA Astrophysics Data System (ADS)
Gonzalez-Galindo, Francisco; Lopez-Valverde, Miguel Angel; Millour, Ehouarn; Forget, François
2014-05-01
The temperatures and densities in the Martian upper atmosphere have a significant influence over the different processes producing atmospheric escape. A good knowledge of the thermosphere and its variability is thus necessary in order to better understand and quantify the atmospheric loss to space and the evolution of the planet. Different global models have been used to study the seasonal and interannual variability of the Martian thermosphere, usually considering three solar scenarios (solar minimum, solar medium and solar maximum conditions) to take into account the solar cycle variability. However, the variability of the solar activity within the simulated period of time is not usually considered in these models. We have improved the description of the UV solar flux included on the General Circulation Model for Mars developed at the Laboratoire de Météorologie Dynamique (LMD-MGCM) in order to include its observed day-to-day variability. We have used the model to simulate the thermospheric variability during Martian Years 24 to 30, using realistic UV solar fluxes and dust opacities. The model predicts and interannual variability of the temperatures in the upper thermosphere that ranges from about 50 K during the aphelion to up to 150 K during perihelion. The seasonal variability of temperatures due to the eccentricity of the Martian orbit is modified by the variability of the solar flux within a given Martian year. The solar rotation cycle produces temperature oscillations of up to 30 K. We have also studied the response of the modeled thermosphere to the global dust storms in Martian Year 25 and Martian Year 28. The atmospheric dynamics are significantly modified by the global dust storms, which induces significant changes in the thermospheric temperatures. The response of the model to the presence of both global dust storms is in good agreement with previous modeling results (Medvedev et al., Journal of Geophysical Research, 2013). As expected, the simulated ionosphere is also sensitive to the variability of the solar activity. Acknowledgemnt: Francisco González-Galindo is funded by a CSIC JAE-Doc contract financed by the European Social Fund
NASA Astrophysics Data System (ADS)
Venkataramani, K.; Yonker, J. D.; Bailey, S. M.
2014-12-01
The 5.3μm emission from the vibrational levels of nitric oxide (NO) and the 15μm emission from CO2 are known to be the dominant sources of cooling in the thermosphere above 100 km. The 5.3μm emission is primarily produced by the radiative de-excitation of NO from its first vibrational level, which in turn is mainly populated by the collisions of NO with atomic oxygen. However, the reaction of atomic nitrogen (N(4S) and N(2D)) with O2 yields vibrationally excited NO with v>1, resulting in a radiative cascade which produces more than one 5.3μm photon per vibrationally excited NO molecule. This chemiluminescence is approximately 20% in magnitude of the emission produced by thermal collisions. These additional sources of the 5.3μm emission are introduced into a one dimensional photochemical model and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to assess their variability with latitude and solar activity, and to also understand their effect on the thermospheric energy budget. The results from the models are compared with data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on-board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, which has been making measurements of the infrared radiative response of the mesosphere and thermosphere to solar inputs since 2002.
Advanced Teleprocessing Systems
1980-03-31
75 Gitman , I., "On the Capacity of Slotted ALOHA Networks and Some Design Problems," IEEE Transactions on Communications, Vol. COM-23, March 1975, pp...305-317. GITM 76 Gitman , I., R. Van Slyke and H. Frank, "Routing in Packet-Switching Broadcast Radio Networks," IEEE Transactions on Communications
Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter
NASA Astrophysics Data System (ADS)
Yates, J. N.; Ray, L. C.; Achilleos, N.
2017-12-01
Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.
NASA Technical Reports Server (NTRS)
Connor, Hyunju K.; Zesta, Eftyhia; Fedrizzi, Mariangel; Shi, Yong; Raeder, Joachim; Codrescu, Mihail V.; Fuller-Rowell, Tim J.
2016-01-01
The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCMCTIM reproduces localized neutral density peaks at approx. 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn effectively heats the thermosphere and causes the neutral density increase at 400 km altitude.
NASA Technical Reports Server (NTRS)
Revelle, D. O.
1987-01-01
A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.
Six reasons why thermospheric measurements and models disagree
NASA Technical Reports Server (NTRS)
Moe, Kenneth
1987-01-01
The differences between thermospheric measurements and models are discussed. Sometimes the model is in error and at other times the measurements are, but it also is possible for both to be correct, yet have the comparison result in an apparent disagreement. These reasons are collected for disagreement, and, whenever possible, methods of reducing or eliminating them are suggested. The six causes of disagreement discussed are: actual errors caused by the limited knowledge of gas-surface interactions and by in-track winds; limitations of the thermospheric general circulation models due to incomplete knowledge of the energy sources and sinks as well as incompleteness of the parameterization which must be employed; and limitations imposed on the empirical models by the conceptual framework and the transient waves.
A search for thermospheric composition perturbations due to vertical winds
NASA Astrophysics Data System (ADS)
Krynicki, Matthew P.
The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.
NASA Astrophysics Data System (ADS)
Liu, Han-Li; Bardeen, Charles G.; Foster, Benjamin T.; Lauritzen, Peter; Liu, Jing; Lu, Gang; Marsh, Daniel R.; Maute, Astrid; McInerney, Joseph M.; Pedatella, Nicholas M.; Qian, Liying; Richmond, Arthur D.; Roble, Raymond G.; Solomon, Stanley C.; Vitt, Francis M.; Wang, Wenbin
2018-02-01
Key developments have been made to the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X). Among them, the most important are the self-consistent solution of global electrodynamics, and transport of O+ in the F-region. Other ionosphere developments include time-dependent solution of electron/ion temperatures, metastable O+ chemistry, and high-cadence solar EUV capability. Additional developments of the thermospheric components are improvements to the momentum and energy equation solvers to account for variable mean molecular mass and specific heat, a new divergence damping scheme, and cooling by O(3P) fine structure. Simulations using this new version of WACCM-X (2.0) have been carried out for solar maximum and minimum conditions. Thermospheric composition, density, and temperatures are in general agreement with measurements and empirical models, including the equatorial mass density anomaly and the midnight density maximum. The amplitudes and seasonal variations of atmospheric tides in the mesosphere and lower thermosphere are in good agreement with observations. Although global mean thermospheric densities are comparable with observations of the annual variation, they lack a clear semiannual variation. In the ionosphere, the low-latitude E × B drifts agree well with observations in their magnitudes, local time dependence, seasonal, and solar activity variations. The prereversal enhancement in the equatorial region, which is associated with ionospheric irregularities, displays patterns of longitudinal and seasonal variation that are similar to observations. Ionospheric density from the model simulations reproduces the equatorial ionosphere anomaly structures and is in general agreement with observations. The model simulations also capture important ionospheric features during storms.
Southern Hemisphere Upper Thermospheric Wind Climatology
NASA Astrophysics Data System (ADS)
Dhadly, M. S.; Emmert, J. T.; Drob, D. P.
2017-12-01
This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.
The Marshall Engineering Thermosphere (MET) Model. Volume 1; Technical Description
NASA Technical Reports Server (NTRS)
Smith, R. E.
1998-01-01
Volume 1 presents a technical description of the Marshall Engineering Thermosphere (MET) model atmosphere and a summary of its historical development. Various programs developed to augment the original capability of the model are discussed in detail. The report also describes each of the individual subroutines developed to enhance the model. Computer codes for these subroutines are contained in four appendices.
NASA Astrophysics Data System (ADS)
Blossfeld, M.; Schmidt, M.; Erdogan, E.
2016-12-01
The thermospheric neutral density plays a crucial role within the equation of motion of Earth orbiting objects since drag, lift or side forces are one of the largest non-gravitational perturbations acting on the satellite. Precise Orbit Determination (POD) methods can be used to estimate thermospheric density variations from measured orbit determinations. One method which provides highly accurate measurements of the satellite position is Satellite Laser Ranging (SLR). Within the POD process, scaling factors are estimated frequently. These scaling factors can be either used for the scaling of the so called satellite-specific drag (ballistic) coefficients or the integrated thermospheric neutral density. We present a method for analytically model the drag coefficient based on a couple of physical assumptions and key parameters. In this paper, we investigate the possibility to use SLR observations to the very low Earth orbiting satellite ANDE-Pollux (approximately at 350km altitude) to determine scaling factors for different a priori thermospheric density models. We perform a POD for ANDE-Pollux covering 49 days between August 2009 and September 2009 which means the time span containing the largest number of observations during the short lifetime of the satellite. Finally, we compare the obtained scaled thermospheric densities w.r.t. each other
Molecular Oxygen in the Thermosphere: Issues and Measurement Strategies
NASA Astrophysics Data System (ADS)
Picone, J. M.; Hedin, A. E.; Drob, D. P.; Meier, R. R.; Bishop, J.; Budzien, S. A.
2002-05-01
We review the state of empirical knowledge regarding the distribution of molecular oxygen in the lower thermosphere (100-200 km), as embodied by the new NRLMSISE-00 empirical atmospheric model, its predecessors, and the underlying databases. For altitudes above 120 km, the two major classes of data (mass spectrometer and solar ultraviolet [UV] absorption) disagree significantly regarding the magnitude of the O2 density and the dependence on solar activity. As a result, the addition of the Solar Maximum Mission (SMM) data set (based on solar UV absorption) to the NRLMSIS database has directly impacted the new model, increasing the complexity of the model's formulation and generally reducing the thermospheric O2 density relative to MSISE-90. Beyond interest in the thermosphere itself, this issue materially affects detailed models of ionospheric chemistry and dynamics as well as modeling of the upper atmospheric airglow. Because these are key elements of both experimental and operational systems which measure and forecast the near-Earth space environment, we present strategies for augmenting the database through analysis of existing data and through future measurements in order to resolve this issue.
Dynamical influences on thermospheric composition: implications for semi-empirical models
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Solomon, S. C.
2014-12-01
The TIE-GCM was recently augmented to include helium and argon, two approximately inert species that can be used as tracers of dynamics in the thermosphere. The former species is treated as a major species due to its large abundance near the upper boundary. The effects of exospheric transport are also included in order to simulate realistic seasonal and latitudinal helium distributions. The latter species is treated as a classical minor species, imparting absolutely no forces on the background atmosphere. In this study, we examine the interplay of the various dynamical terms - i.e. background circulation, molecular and Eddy diffusion - as they drive departures from the distributions that would be expected under the assumption of diffusive equilibrium. As this has implications on the formulation of all empirical thermospheric models, we use this understanding to address the following questions: (1) how do errors caused by the assumption of diffusive equilibrium manifest within empirical models of the thermosphere? and (2) where and when does an empirical model's output disagree with its underlying datasets due to the inherent limitations of said model's formulation?
NASA Astrophysics Data System (ADS)
Klimenko, M. V.; Klimenko, V. V.; Bessarab, F. S.; Korenkov, Yu N.; Liu, Hanli; Goncharenko, L. P.; Tolstikov, M. V.
2015-09-01
This paper presents a study of mesosphere and low thermosphere influence on ionospheric disturbances during 2009 major sudden stratospheric warming (SSW) event. This period was characterized by extremely low solar and geomagnetic activity. The study was performed using two first principal models: thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) and global self-consistent model of thermosphere, ionosphere, and protonosphere (GSM TIP). The stratospheric anomalies during SSW event were modeled by specifying the temperature and density perturbations at the lower boundary of the TIME-GCM (30 km altitude) according to data from European Centre for Medium-Range Weather Forecasts. Then TIME-GCM output at 80 km was used as lower boundary conditions for driving GSM TIP model runs. We compare models' results with ground-based ionospheric data at low latitudes obtained by GPS receivers in the American longitudinal sector. GSM TIP simulation predicts the occurrence of the quasi-wave vertical structure in neutral temperature disturbances at 80-200 km altitude, and the positive and negative disturbances in total electron content at low latitude during the 2009 SSW event. According to our model results the formation mechanisms of the low-latitude ionospheric response are the disturbances in the n(O)/n(N2) ratio and thermospheric wind. The change in zonal electric field is key mechanism driving the ionospheric response at low latitudes, but our model results do not completely reproduce the variability in zonal electric fields (vertical plasma drift) at low latitudes.
NASA Astrophysics Data System (ADS)
Castilho, V. M.; Sobral, J. H. A.; Abdu, M. A.; Takahashi, H.; Arruda, D. C. S.
At this point, 74 nights have been observed during the period of May 2002 to March 2003, high to low solar activity period, by Fabry-Perot Interferometer operating at Cachoeira Paulista - CP (22.5S; 45W). This study focuses the monthly and seasonal analysis of the horizontal and meridional components of the thermospheric winds at CP. For the studied region, the zonal component of the thermospheric winds is predominantly eastward during the nocturnal hours and the meridional component is southward in the initial nocturnal hours and northward in the end of the night. Undesturbed F-region e-filds at low latitudes are primarily generated by the thermospheric winds. Ionosphere plasma drifts and thermospheric winds are important transport mechanisms that affect the electron density distribution. The results observed are compared with HWM93 model. KEY WORDS: Fabry Perot Interferometer, Thermospheric Winds, OI 630nm.
A case study of the thermospheric neutral wind response to geomagnetic storm
NASA Astrophysics Data System (ADS)
Jiang, Guoying; Zhang, Shunrong; Wang, Wenbin; Yuan, Wei; Wu, Qian; Xu, Jiyao
A minor geomagnetic storm (Kp=5) occurred on March 27-28, 2012. The response of the thermospheric neutral wind at ~ 250 km to this storm was investigated by the 630.0 nm nightglow measurements of Fabry-Perot interferometers (FPIs) over Xinglong (geographic location: 40.2N, 117.4E; geomagnetic location: 29.8N, 193.2E) and Millstone Hill (geographic location: 42.6N, 71.5W; geomagnetic location: 53.1N, 65.1W). Our results show that the minor storm on March 27-28, 2012 obviously effected on the thermospheric neutral winds over Xinglong and Millstone Hill, especially Millstone Hill had larger response because of its higher geomagnetic latitude. Another interesting result is that a small variation in geomagnetic activity (Kp=2.7) could enough introduce a clear disturbance in the nighttime thermospheric neutral wind over Millstone hill. NCAR-TIME-GCM (National Center for Atmospheric Research-Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model) was employed to study the evolution and mechanism of the thermospheric neutral wind response.
Coupling Between the Thermosphere and the Stratosphere: the Role of Nitric Oxide
NASA Technical Reports Server (NTRS)
Brasseur, G.
1984-01-01
In order to understand the lower ionosphere and its probable control by dynamical processes, the behavior of nitric oxide below 100 km was investigated. A two dimensional model with coupled chemical and dynamical processes was constructed. Calculations based on the model reveal that the chemical conditions at the stratopause are related to the state of the thermosphere. This coupling mechanism can be partly explained by the downward transport of nitric oxide during the winter season, and consequently depends on the dynamical conditions in the mesosphere and in the lower thermosphere (mean circulation and waves). In summer, the photodissociation of nitric oxide plays an important role and the thermospheric NO abundance modulates the radiation field reaching the upper stratosphere. Perturbations in the nitric oxide concentration above the mesopause could therefore have an impact in the vicinity of the stratopause.
Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Oberheide, J.; Sutton, E. K.; Liu, H.-L.; Anderson, J. L.; Raeder, K.
2016-04-01
The intraseasonal variability of the eastward propagating nonmigrating diurnal tide with zonal wave number 3 (DE3) during 2007 in the mesosphere, ionosphere, and thermosphere is investigated using a whole atmosphere model reanalysis and satellite observations. The atmospheric reanalysis is based on implementation of data assimilation in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The tidal variability in the WACCM+DART reanalysis is compared to the observed variability in the mesosphere and lower thermosphere (MLT) based on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations, in the ionosphere based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations, and in the upper thermosphere (˜475 km) based on Gravity Recovery and Climate Experiment (GRACE) neutral density observations. To obtain the short-term DE3 variability in the MLT and upper thermosphere, we apply the method of tidal deconvolution to the TIMED/SABER observations and consider the difference in the ascending and descending longitudinal wave number 4 structure in the GRACE observations. The results reveal that tidal amplitude changes of 5-10 K regularly occur on short timescales (˜10-20 days) in the MLT. Similar variability occurs in the WACCM+DART reanalysis and TIMED/SABER observations, demonstrating that the short-term variability can be captured in whole atmosphere models that employ data assimilation and in observations by the technique of tidal deconvolution. The impact of the short-term DE3 variability in the MLT on the ionosphere and thermosphere is also clearly evident in the COSMIC and GRACE observations. Analysis of the troposphere forcing in WACCM+DART and simulations of the Global Scale Wave Model (GSWM) show that the short-term DE3 variability in the MLT is not related to a single source; rather, it is due to a combination of changes in troposphere forcing, zonal mean atmosphere, and wave-wave interactions.
NASA Technical Reports Server (NTRS)
Shim, J. S.; Kuznetsova, M.; Rastatter, L.; Hesse, M.; Bilitza, D.; Butala, M.; Codrescu, M.; Emery, B.; Foster, B.; Fuller-Rowell, T.;
2011-01-01
Objective quantification of model performance based on metrics helps us evaluate the current state of space physics modeling capability, address differences among various modeling approaches, and track model improvements over time. The Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Electrodynamics Thermosphere Ionosphere (ETI) Challenge was initiated in 2009 to assess accuracy of various ionosphere/thermosphere models in reproducing ionosphere and thermosphere parameters. A total of nine events and five physical parameters were selected to compare between model outputs and observations. The nine events included two strong and one moderate geomagnetic storm events from GEM Challenge events and three moderate storms and three quiet periods from the first half of the International Polar Year (IPY) campaign, which lasted for 2 years, from March 2007 to March 2009. The five physical parameters selected were NmF2 and hmF2 from ISRs and LEO satellites such as CHAMP and COSMIC, vertical drifts at Jicamarca, and electron and neutral densities along the track of the CHAMP satellite. For this study, four different metrics and up to 10 models were used. In this paper, we focus on preliminary results of the study using ground-based measurements, which include NmF2 and hmF2 from Incoherent Scatter Radars (ISRs), and vertical drifts at Jicamarca. The results show that the model performance strongly depends on the type of metrics used, and thus no model is ranked top for all used metrics. The analysis further indicates that performance of the model also varies with latitude and geomagnetic activity level.
Thermosphere-Ionosphere-Mesosphere Modeling Using the TIME-GCM
2014-09-30
respectively. The CCM3 is the NCAR Community Climate Model, Version 3.6, a GCM of the troposphere and stratosphere. All models include self-consistent...middle atmosphere version of the NCAR Community Climate Model, (2) the NCAR TIME-GCM, and (3) the Model for Ozone and Related Chemical Tracers (MOZART... troposphere , but the impacts of such events extend well into the mesosphere. The coupled NCAR thermosphere-ionosphere-mesosphere- electrodynamics general
A Saturnian cam current system driven by asymmetric thermospheric heating
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2011-02-01
We show that asymmetric heating of Saturn's thermosphere can drive a current system consistent with the magnetospheric ‘cam’ proposed by Espinosa, Southwood & Dougherty. A geometrically simple heating distribution is imposed on the Northern hemisphere of a simplified three-dimensional global circulation model of Saturn's thermosphere. Currents driven by the resulting winds are calculated using a globally averaged ionosphere model. Using a simple assumption about how divergences in these currents close by flowing along dipolar field lines between the Northern and Southern hemispheres, we estimate the magnetic field perturbations in the equatorial plane and show that they are broadly consistent with the proposed cam fields, showing a roughly uniform field implying radial and azimuthal components in quadrature. We also identify a small longitudinal phase drift in the cam current with radial distance as a characteristic of a thermosphere-driven current system. However, at present our model does not produce magnetic field perturbations of the required magnitude, falling short by a factor of ˜100, a discrepancy that may be a consequence of an incomplete model of the ionospheric conductance.
NASA Astrophysics Data System (ADS)
Lu, G.; Hagan, M. E.; Häusler, K.; Doornbos, E.; Bruinsma, S.; Anderson, B. J.; Korth, H.
2014-12-01
We present a case study of the 5 April 2010 geomagnetic storm using observations and numerical simulations. The event was driven by a fast-moving coronal mass ejection and despite being a moderate storm with a minimum Dst near -50 nT, the event exhibited elevated thermospheric density and surges of traveling atmospheric disturbances (TADs) more typically seen during major storms. The Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) was used to assess how these features were generated and developed during the storm. The model simulations gave rise to TADs that were highly nonuniform with strong latitude and longitude/local time dependence. The TAD phase speeds ranged from 640 m/s to 780 m/s at 400 km and were ~5% lower at 300 km and approximately 10-15% lower at 200 km. In the lower thermosphere around 100 km, the TAD signatures were nearly unrecognizable due to much stronger influence of upward propagating atmospheric tides. The thermosphere simulation results were compared to observations available from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites. Comparison with GOCE data shows that the TIMEGCM reproduced the cross-track winds over the polar region very well. The model-data comparison also revealed some differences, specifically, the simulations underestimated neutral mass density in the upper thermosphere above ~300 km and overestimated the storm recovery tome by 6 h. These discrepancies indicate that some heating or circulation dynamics and potentially cooling processes are not fully represented in the simulations, and also that updates to some parameterization schemes in the TIMEGCM are warranted.
NASA Astrophysics Data System (ADS)
Calabia, Andres; Jin, Shuanggen
2017-02-01
The thermospheric mass density variations and the thermosphere-ionosphere coupling during geomagnetic storms are not clear due to lack of observables and large uncertainty in the models. Although accelerometers on-board Low-Orbit-Earth (LEO) satellites can measure non-gravitational accelerations and derive thermospheric mass density variations with unprecedented details, their measurements are not always available (e.g., for the March 2013 geomagnetic storm). In order to cover accelerometer data gaps of Gravity Recovery and Climate Experiment (GRACE), we estimate thermospheric mass densities from numerical derivation of GRACE determined precise orbit ephemeris (POE) for the period 2011-2016. Our results show good correlation with accelerometer-based mass densities, and a better estimation than the NRLMSISE00 empirical model. Furthermore, we statistically analyze the differences to accelerometer-based densities, and study the March 2013 geomagnetic storm response. The thermospheric density enhancements at the polar regions on 17 March 2013 are clearly represented by POE-based measurements. Although our results show density variations better correlate with Dst and k-derived geomagnetic indices, the auroral electroject activity index AE as well as the merging electric field Em picture better agreement at high latitude for the March 2013 geomagnetic storm. On the other side, low-latitude variations are better represented with the Dst index. With the increasing resolution and accuracy of Precise Orbit Determination (POD) products and LEO satellites, the straightforward technique of determining non-gravitational accelerations and thermospheric mass densities through numerical differentiation of POE promises potentially good applications for the upper atmosphere research community.
Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere
NASA Astrophysics Data System (ADS)
Qian, Liying; Burns, Alan G.; Solomon, Stan S.; Smith, Anne K.; McInerney, Joseph M.; Hunt, Linda A.; Marsh, Daniel R.; Liu, Hanli; Mlynczak, Martin G.; Vitt, Francis M.
2018-01-01
We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite, and simulations by the National Center for Atmospheric Research Whole Atmosphere Community Climate Model-eXtended (WACCM-X). In the mesopause region (85 to 95 km), the seasonal and solar cycle variations of H simulated by WACCM-X are consistent with those from SABER observations: H density is higher in summer than in winter, and slightly higher at solar minimum than at solar maximum. However, mesopause region H density from the Mass-Spectrometer-Incoherent-Scatter (National Research Laboratory Mass-Spectrometer-Incoherent-Scatter 00 (NRLMSISE-00)) empirical model has reversed seasonal variation compared to WACCM-X and SABER. From the mesopause to the upper thermosphere, H density simulated by WACCM-X switches its solar cycle variation twice, and seasonal dependence once, and these changes of solar cycle and seasonal variability occur in the lower thermosphere ( 95 to 130 km), whereas H from NRLMSISE-00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150 km), H density simulated by WACCM-X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of 10, 2, and 2, respectively. This is consistent with NRLMSISE-00.
NASA Astrophysics Data System (ADS)
Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M., III
2015-04-01
Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere IonosphereMesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere temperature, and the contribution from solar EUV variations is minor. Furthermore, we also found that consecutive coronal mass ejection events could cause long-duration enhancements in the lower thermospheric temperature that strengthen the 9 day and 13.5 day signals, and this kind of phenomenon mostly occurred between 2002 and 2005 during the declining phase of solar cycle 23.
NASA Astrophysics Data System (ADS)
Jiang, Guoying; Wang, Wenbin; Xu, Jiyao; Yue, Jia; Burns, Alan G.; Lei, Jiuhou; Mlynczak, Martin G.; Rusell, James M.
2014-06-01
Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research-thermosphere-ionosphere-mesosphere electrodynamics-general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100-120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to 105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere temperature, and the contribution from solar EUV variations is minor. Furthermore, we also found that consecutive coronal mass ejection events could cause long-duration enhancements in the lower thermospheric temperature that strengthen the 9 day and 13.5 day signals, and this kind of phenomenon mostly occurred between 2002 and 2005 during the declining phase of solar cycle 23.
NASA Technical Reports Server (NTRS)
Roble, R. G.
1986-01-01
The NCAR thermospheric general circulation model (TGCM) has been used for a variety of thermospheric dynamic studies. It has also been used to compare model predictions with measurements made from various ground-based Fabry-Perot interferometer stations, incoherent scatter radar stations and the Dynamics Explorer satellites. The various input and output features of the model are described. These include the specification of solar EUV fluxes, and descriptions of empirical models to specify auroral particle precipitation, ion drag, and magnetospheric convection. Results are presented for solstice conditions giving the model perturbation temperature and circulation response to solar heating forcing alone and also with the inclusion of magnetospheric convections for two different dawn-dusk potential drops, 20 and 60 kV respectively. Results at two constant pressure levels Z =+1 at 300 km and Z= -4 at 120 km are presented for both the winter and summer polar cap regions. The circulation over the Northern Hemisphere polar cap in both the upper and lower thermosphere are presented along with a figure showing that the circulation is mainly a non-divergent irrotational flow responding to ion drag. The results of a study made on the Southern Hemisphere polar cap during October 1981 where Dynamics Explorer satellite measurements of winds, temperature and composition are compared to TGCM predictions are also presented. A diagnostic package that has been developed to analyze the balance of forces operating in the TGCM is presented next illustrating that in the F-region ion drag and pressure provide the main force balance and in the E-region ion drag, pressure and the coriolis forces provide the main balance. The TGCM prediction for the June 10, 1983 total solar eclipse are next presented showing a thermospheric disturbance following the path of totality. Finally, results are presented giving the global circulation, temperature and composition structure of the thermosphere for solar minimum conditions at equinox with 60 kV magnetospheric convection forcing at high latitudes.
NASA Technical Reports Server (NTRS)
Bogan, Denis (Technical Monitor); Waite, J. Hunter
2005-01-01
The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter s thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approx.2 km/s and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy t o equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (< 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (>0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.
The NASA Marshall engineering thermosphere model
NASA Technical Reports Server (NTRS)
Hickey, Michael Philip
1988-01-01
Described is the NASA Marshall Engineering Thermosphere (MET) Model, which is a modified version of the MFSC/J70 Orbital Atmospheric Density Model as currently used in the J70MM program at MSFC. The modifications to the MFSC/J70 model required for the MET model are described, graphical and numerical examples of the models are included, as is a listing of the MET model computer program. Major differences between the numerical output from the MET model and the MFSC/J70 model are discussed.
Evidence of the Lower Thermospheric Winter-to-Summer Circulation From SABER CO2 Observations
NASA Astrophysics Data System (ADS)
Qian, Liying; Burns, Alan; Yue, Jia
2017-10-01
Numerical studies have shown that there is a lower thermospheric winter-to-summer circulation that is driven by wave dissipation and that it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere, and in the composition of the thermosphere. However, the characteristics of this circulation are poorly known. Direct observations of it are difficult, but it leaves clear signatures in tracer distributions. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has obtained CO2 concentration from 2002 to present. This data set, combined with simulations by the Whole Atmosphere Community Climate Model, provides an unprecedented opportunity to infer the morphology of this circulation in both the summer and winter hemispheres. Our study show that there exists a maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; in the winter hemisphere, the maximum vertical gradient of CO2 is located at a higher altitude, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation; the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km.
Evidence of the Lower Thermospheric Winter-to-Summer Circulation
NASA Astrophysics Data System (ADS)
Qian, L.; Burns, A. G.; Yue, J.
2017-12-01
Numerical studies showed that the lower thermospheric winter-to-summer circulation is driven by wave dissipation, and it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere (MLT), and in the composition of the thermosphere. Direct observations of this circulation are difficult. However, it leaves clear signatures in tracer distributions. Recent analysis of CO2 observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite showed dynamically driven dense isolines of CO2 at summer high latitudes. We conduct modeling and observational studies to understand the CO2 distribution and circulation patterns in the MLT. We found that there exists maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; this maximum vertical gradient of CO2 is located at a higher altitude in the winter hemisphere, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation. Based on SABER CO2 distribution, the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km; and its location does not change much between solar maximum and solar minimum.
NASA Technical Reports Server (NTRS)
Richmond, Arthur D.
2005-01-01
A data assimilation system for specifying the thermospheric density has been developed over the last several years. This system ingests GRACE/CHAMP-type in situ as well as SSULI/SSUSI remote sensing observations while making use of a physical model, the Coupled Thermosphere-Ionosphere Model (CTIM) (Fuller-Rowel1 et al., 1996). The Kalman filter was implemented as the backbone to the data assimilation system, which provides a statistically 'best' estimate as well as an estimate of the error in its state. The system was tested using a simulated thermosphere and observations. CHAMP data were then used to provide the system with a real data source. The results of this study are herein.
Thermospheric density and wind retrieval from Swarm observations
NASA Astrophysics Data System (ADS)
Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João
2013-11-01
The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.
Helium as a Dynamical Tracer in the Thermosphere
NASA Astrophysics Data System (ADS)
Thayer, J. P.; Liu, X.; Wang, W.; Burns, A. G.
2014-12-01
Helium has been a missing constituent in current thermosphere general circulation models. Although typically a minor gas relative to the more abundant major gasses, its unique properties of being chemically inert and light make it an excellent tracer of thermosphere dynamics. Studying helium can help simplify understanding of transport effects. This understanding can then be projected to other gasses whose overall structure and behavior are complex but, by contrasting with helium, can be evaluated for its transport dependencies. The dynamical influences on composition impact estimates of thermosphere mass density, where helium during solar minima can have a direct contribution, as well as ionosphere electron density. Furthermore, helium estimates in the upper thermosphere during solar minima have not been observed since the 1976 minimum. Indirect estimates of helium in the upper thermosphere during the recent extreme solar minimum indicates winter-time helium concentrations exceeded NRL-MSISE00 estimates by 30%-70% during periods of quiet geomagnetic activity. For times of active geomagnetic conditions, helium concentrations near ~450 km altitude are estimated to decrease while oxygen concentrations increase. An investigation of the altitude structure in thermosphere mass density storm-time perturbations reveal the important effects of composition change with maximum perturbation occurring near the He/O transition region and a much weaker maximum occurring near the O/N2 transition region. However, evaluating helium behavior and its role as a dynamical tracer is not straightforward and model development is necessary to adequately establish the connection to specific dynamical processes. Fortunately recent efforts have led to the implementation of helium modules in the NCAR TIEGCM and TIME-GCM. In this invited talk, the simulated helium behavior and structure will be shown to reproduce observations (such as the wintertime helium bulge and storm-time response) and its utility as a dynamical tracer of thermosphere dynamics will be elucidated.
The effects on the ionosphere of inertia in the high latitude neutral thermosphere
NASA Technical Reports Server (NTRS)
Burns, Alan; Killeen, Timothy
1993-01-01
High-latitude ionospheric currents, plasma temperatures, densities, and composition are all affected by the time-dependent response of the neutral thermosphere to ion drag and Joule heating through a variety of complex feedback processes. These processes can best be studied numerically using the appropriate nonlinear numerical modeling techniques in conjunction with experimental case studies. In particular, the basic physics of these processes can be understood using a model, and these concepts can then be applied to more complex realistic situations by developing the appropriate simulations of real events. Finally, these model results can be compared with satellite-derived data from the thermosphere. We used numerical simulations from the National Center of Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) and data from the Dynamic Explorer 2 (DE 2) satellite to study the time-dependent effects of the inertia of the neutral thermosphere on ionospheric currents, plasma temperatures, densities, and composition. One particular case of these inertial effects is the so-called 'fly-wheel effect'. This effect occurs when the neutral gas, that has been spun-up by the large ionospheric winds associated with a geomagnetic storm, moves faster than the ions in the period after the end of the main phase of the storm. In these circumstances, the neutral gas can drag the ions along with them. It is this last effect, which is described in the next section, that we have studied under this grant.
Atomic oxygen in the Martian thermosphere
NASA Technical Reports Server (NTRS)
Stewart, A. I. F.; Alexander, M. J.; Meier, R. R.; Paxton, L. J.; Bougher, S. W.; Fesen, C. G.
1992-01-01
The Mariner 9 Ultraviolet Spectrometer (UVS) made extensive observations of air-glow emissions from the thermosphere of Mars throughout the nominal mission (November 1971 - February 1972), during late summer in the southern hemisphere. Limb and disc measurements of the 130 nm triplet emission from thermospheric atomic oxygen were modelled by Strickland et al. Recently, the thermospheric general circulation models (TGCMs) developed for the Earth and Venus have been applied to Mars; we refer to it as the MTGCM. Our analysis shows that the oxygen mixing ratio is the fundamental unknown controlling the 130 nm brightness. Our radiative transport calculation shows that the emergent intensity at 130 nm is not very sensitive to variations in thermospheric temperature. The pattern of diurnal variation derived from our analysis is roughly the same as Strickland et al. although with somewhat lower values for the O mixing ratio. The main reasons for this difference are the more important role played by the photoelectron source in our model, and the somewhat larger 130 nm solar flux; thus, we require less oxygen to match the observed brightnesses. Strickland et al. also found that the OI 130 nm emission on Mars is correlated with solar activity. We find that the correlation is virtually non-existent during the early orbits when the planet was covered with a thick global dust storm, but later orbits, during the clearing of the storm, show a persistent correlation.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.
2015-01-01
In this paper, we provide insights into limitations imposed by current satellite-based strategies to delineate tidal variability in the thermosphere, as well as the ability of a state-of-the-art model to replicate thermospheric tidal determinations. Toward this end, we conducted a year-long thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulation for 2009, which is characterized by low solar and geomagnetic activity. In order to account for tropospheric waves and tides propagating upward into the ˜30-400 km model domain, we used 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data. We focus on exospheric tidal temperatures, which are also compared with 72 day mean determinations from combined Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellite observations to assess the model's capability to capture the observed tidal signatures and to quantify the uncertainties associated with the satellite exospheric temperature determination technique. We found strong day-to-day tidal variability in TIME-GCM that is smoothed out when averaged over as few as ten days. TIME-GCM notably overestimates the 72 day mean eastward propagating tides observed by CHAMP/GRACE, while capturing many of the salient features of other tidal components. However, the CHAMP/GRACE tidal determination technique only provides a gross climatological representation, underestimates the majority of the tidal components in the climatological spectrum, and moreover fails to characterize the extreme variability that drives the dynamics and electrodynamics of the ionosphere-thermosphere system. A multisatellite mission that samples at least six local times simultaneously is needed to provide this quantification.
The effects of thermospheric winds and chemistry in the diurnal variations of thermospheric species
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1977-01-01
The reported investigation considers on the basis of a theoretical model, the diurnal variations of the thermospheric composition (H, He, O, O2, and Ar) in terms of thermal expansion with diffusive equilibrium and transport effects associated with thermospheric winds, chemistry, and exospheric flow. The theoretical results are compared with satellite composition data which indicate that the fundamental diurnal tide can be reasonably well understood. It is found that winds are only important for molecular oxygen below 180 km, while thermal expansion due to the larger mass is relatively more important for O2 than for O. Distinct from O, photodissociation and in particular photoionization of O2 are very significant for molecular oxygen.
Nonmigrating tidal modulation of the equatorial thermosphere and ionosphere anomaly
NASA Astrophysics Data System (ADS)
Lei, Jiuhou; Thayer, Jeffrey P.; Wang, Wenbin; Yue, Jia; Dou, Xiankang
2014-04-01
The modulation of nonmigrating tides on both the ionospheric equatorial ionization anomaly (EIA) and the equatorial thermosphere anomaly (ETA) is investigated on the basis of simulations from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). Our simulations demonstrate the distinct features of the EIA and ETA seen in observations after the inclusion of field-aligned ion drag in the model. Both the EIA and the ETA in the constant local time frame display an obvious zonal wave-4 structure associated with the modulation of nonmigrating tides. However, the modeled EIA and ETA show a primary zonal wave-1 structure when only the migrating tides are specified at the model lower boundary. Our simulations reveal that the zonal wave-4 structure of the ETA under both low and high solar activity conditions is mainly caused by the direct response of the upper thermosphere to the diurnal eastward wave number 3 and semidiurnal eastward wave number 2 nonmigrating tides from the lower atmosphere. There is a minor contribution from the ion-neutral coupling. The zonal wave-4 structure of the EIA is also caused by these nonmigrating tides but through the modulation of the neutral wind dynamo.
Initial results of the Global Thermospheric Mapping Study (GTMS)
NASA Technical Reports Server (NTRS)
Oliver, W. L.; Salah, J. E.; Musgrove, R. G.; Holt, J. M.; Wickwar, V. B.; Hernandez, G. J.; Roble, R. G.
1986-01-01
The Global Thermospheric Mapping Study (GTMS) is a multi-technique experimental study of the thermosphere designed to map simultaneously its spatial and temporal morphology with a thoroughness and diversity of measurement techniques heretofore unachieved. The GTMS is designed around the Incoherent Scatter Radar Chain in the western hemisphere. The European incoherent scatter radars and the worldwide communities of Fabry-Perot interferometers, meteor wind radars, partial reflection drifts radars, MST radars, and satellite probes are included to extend the spatial coverage and types of measurements available. Theoretical and modeling support in the areas of thermospheric and ionospheric structure, tides, and electric fields are included to aid in program planning and data interpretation. Solar activity was low on the three observation days (F10.7 = 97, 98, 96) and magnetic conditions were unsettled to active (A = 10, 12, 20). All six incoherent scatter radar facilities collected data. Each collected F region data day and night while Saint Santin and Millstone Hill additionally collected E region data during daylight hours. Initial results from Sondrestrom and Millstone Hill are presented. Good quality Fabry Perot data were collected at Fritz Peak and San Jose dos Campos. Weather conditions produced poor results at Arequipa and Arecibo. Initial results from Fritz Peak are presented. Mesosphere/lower-thermosphere observations were conducted under the ATMAP organization. The magnetometer chains also were operational during this campaign. Initial thermospheric general circulation model predictions were made for assumed solar-geophysical conditions, and selected results are presented.
Thermospheric dynamics - A system theory approach
NASA Technical Reports Server (NTRS)
Codrescu, M.; Forbes, J. M.; Roble, R. G.
1990-01-01
A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.
Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 μm
NASA Astrophysics Data System (ADS)
Bermejo-Pantaleón, D.; Funke, B.; López-Puertas, M.; GarcíA-Comas, M.; Stiller, G. P.; von Clarmann, T.; Linden, A.; Grabowski, U.; HöPfner, M.; Kiefer, M.; Glatthor, N.; Kellmann, S.; Lu, G.
2011-10-01
We present vertically resolved thermospheric temperatures and NO abundances in terms of volume mixing ratio retrieved simultaneously from spectrally resolved 5.3 μm emissions recorded by the Michelson Interferometer for Passive Atmospheric Spectroscopy (MIPAS) in its upper atmospheric observation mode during 2005-2009. These measurements are unique since they represent the first global observations of temperature and NO for both day and night conditions taken from space. A retrieval scheme has been developed which accounts for vibrational, rotational and spin-orbit non-LTE distributions of NO. Retrieved polar temperature and NO profiles have a vertical resolution of 5-10 km for high Ap values, and degrade to 10-20 km for low Ap conditions. Though retrieved NO abundances depend strongly on the atomic oxygen profile used in the non-LTE modeling, observations can be compared to model results in a consistent manner by applying a simple correction. Apart from this, total retrieval errors are dominated by instrumental noise. The typical single measurement precision of temperature and NO abundances are 5-40 K and 10-30%, respectively, for high Ap values, increasing to 30-70 K for Tk and 20-50% for NO VMR for low Ap conditions. Temperature and NO profiles observed under auroral conditions are rather insensitive to smoothing errors related to the mapping of a priori profile shapes. However, for extra-polar and low Ap conditions, a potential systematic bias in the retrieved nighttime temperature and NO profiles related to smoothing errors has been identified from a comparison to Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulations. We have constructed a solar minimum monthly climatology of thermospheric temperature and NO from MIPAS observations taken during 2008-2009. MIPAS temperature distributions agree well, on average, with the Mass Spectrometer and Incoherent Scatter radar model (NRLMSISE-00), but some systematic differences exist. MIPAS temperatures are generally colder than NRLMSISE-00 in the polar middle thermosphere (mainly in the summer polar region) by up to 40 K; and are warmer than NRLMSISE-00 in the lower thermosphere around 120-125 km by 10-40 K. Thermospheric NO daytime distributions agree well with the Nitric Oxide Empirical Model (NOEM), based on Student Nitric Oxide Explorer (SNOE) observations. A comparison of MIPAS NO number density with the previous climatology for the declining phases of the solar cycle based on HALOE and SME data shows that MIPAS is generally larger with values ranging from 10 to 40%, except in the auroral region and at the equatorial latitudes above 130 km where the MIPAS/HALOE+SME ratio varies from 1.6 to 2. Day-night differences in MIPAS NO show daytime enhancements of up to 140% in the tropical and midlatitudes middle thermosphere. In the lower thermosphere, the diurnal amplitude is smaller and NO concentrations are generally higher during night by about 10-30%, particularly in the auroral regions.
Day-to-day ionospheric variability due to lower atmosphere perturbations
NASA Astrophysics Data System (ADS)
Liu, H.; Yudin, V. A.; Roble, R. G.
2013-12-01
Ionospheric day-to-day variability is a ubiquitous feature, even in the absence of appreciable geomagnetic activities. Although meteorological perturbations have been recognized as an important source of the variability, it is not well represented in previous modeling studies, and the mechanism is not well understood. This study demonstrates that TIME-GCM (Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model) constrained in the stratosphere and mesosphere by the hourly Whole Atmosphere Community Climate Model (WACCM) simulations is capable of reproducing observed features of day-to-day variability in the thermosphere-ionosphere. Realistic weather patterns in the lower atmosphere in WACCM was specified by Modern Era Retrospective reanalysis for Research and Application (MERRA). The day-to-day variations in mean zonal wind, migrating and non-migrating tides in the thermosphere, vertical and zonal ExB drifts, and ionosphere F2 layer peak electron density (NmF2) are examined. The standard deviations of the drifts and NmF2 display local time and longitudinal dependence that compare favorably with observations. Their magnitudes are 50% or more of those from observations. The day-to-day thermosphere and ionosphere variability in the model is primarily caused by the perturbations originated in lower atmosphere, since the model simulation is under constant solar minimum and low geomagnetic conditions.
Evidence of Tropospheric 90 Day Oscillations in the Thermosphere
NASA Astrophysics Data System (ADS)
Gasperini, F.; Hagan, M. E.; Zhao, Y.
2017-10-01
In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.
Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere
NASA Astrophysics Data System (ADS)
Jones, M.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.
2017-01-01
The strong global semiannual oscillation (SAO) in thermospheric density has been observed for five decades, but definitive knowledge of its source has been elusive. We use the National Center of Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) to study how middle atmospheric dynamics generate the SAO in the thermosphere-ionosphere (T-I). The "standard" TIME-GCM simulates, from first principles, SAOs in thermospheric mass density and ionospheric total electron content that agree well with observed climatological variations. Diagnosis of the globally averaged continuity equation for atomic oxygen ([O]) shows that the T-I SAO originates in the upper mesosphere, where an SAO in [O] is forced by nonlinear, resolved-scale variations in the advective, net tidal, and diffusive transport of O. Contrary to earlier hypotheses, TIME-GCM simulations demonstrate that intra-annually varying eddy diffusion by breaking gravity waves may not be the primary driver of the T-I SAO: A pronounced SAO is produced without parameterized gravity waves.
Substorm-related thermospheric density and wind disturbances
NASA Astrophysics Data System (ADS)
Ritter, P.; Luhr, H.; Doornbos, E. N.
2009-12-01
The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermosphere response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at sonic speed to lower latitudes, and 3-4 hours later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed by substorms.
A numerical study of three-dimensional diurnal variations within the thermosphere.
NASA Technical Reports Server (NTRS)
Volland, H.; Mayr, H. G.
1973-01-01
A thermosphere model with a realistic temperature profile is assumed. Heat conduction waves are introduced in addition to gravity waves. The temporal and spatial distribution of ion-neutral collisions is taken into account. However, the influence of viscosity waves is neglected. Viscosity-wave effects are simulated by an effective height-dependent collision number. Numerical calculations are conducted of the generation and propagation of two of the most important symmetric tidal waves at thermospheric heights. The influence of the solar EUV-heat upon the generation of the two tidal modes is investigated.
Marshall Engineering Thermosphere Model, Version MET-2007
NASA Technical Reports Server (NTRS)
Suggs, R. J.; Suggs, R. M.
2017-01-01
The region of the Earth's atmosphere between about 90 and 500 km altitude is known as the thermosphere, while the region above about 500 km is known as the exosphere. For space vehicle operations, the neutral atmosphere in these regions is significant. Even at its low density, it produces torques and drags on vehicles and affects orbital lifetimes. The thermosphere density above 100 km altitude also modulates the flux of trapped radiation and orbital debris. Atomic oxygen at orbital altitudes is important because it can erode and chemically change exposed vehicle surfaces.
Solar and chemical reaction-induced heating in the terrestrial mesosphere and lower thermosphere
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.
1992-01-01
Airglow and chemical processes in the terrestrial mesosphere and lower thermosphere are reviewed, and initial parameterizations of the processes applicable to multidimensional models are presented. The basic processes by which absorbed solar energy participates in middle atmosphere energetics for absorption events in which photolysis occurs are illustrated. An approach that permits the heating processes to be incorporated in numerical models is presented.
TIMED/GUVI Observations of Aurora, Ionosphere, Thermosphere and Solar EUV Variations
NASA Astrophysics Data System (ADS)
Zhang, Y.; Paxton, L. J.; Schaefer, R. K.
2017-12-01
The FUV (100-200 nm) emissions from the ionosphere and thermosphere carry rich information of the density and composition of the IT system, aurora and solar EUV flux. The key emissions include atomic hydrogen line (121.6nm), atomic oxygen lines (e.g. 130.4, 135.6, 164.1 nm), atomic nitrogen lines (e.g. 120.0, 149.3, 174.3 nm), molecular nitrogen bands (LBH and VK bands) and nitric oxide ɛ bands. TIMED/GUVI data cover the nearly full FUV range and generate many space weather products (ionosphere, thermosphere, aurora and solar EUV) that extend the products from other missions (such as NASA GOLD and ICON) and help to solve some of MIT (Magnetosphere-Ionosphere-Thermosphere) science problems and serve as validation data sources for models.
Anomalous electron heating effects on the E region ionosphere in TIEGCM
NASA Astrophysics Data System (ADS)
Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava
2016-03-01
We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Killeen, T. L.; Spencer, N. W.; Heelis, R. A.; Reiff, P. H.
1988-01-01
Time-dependent aurora and magnetospheric convection parameterizations have been derived from solar wind and aurora particle data for November 21-22, 1981, and are used to drive the auroral and magnetospheric convection models that are embedded in the National Center for Atmospheric Research thermospheric general circulation model (TGCM). Neutral wind speeds and transition boundaries between the midlatitude solar-driven circulation and the high-latitude magnetospheric convection-driven circulation are examined on an orbit-by-orbit basis. The results show that TGCM-calculated winds and reversal boundary locations are in generally good agreement with Dynamics Explorer 2 measurements for the orbits studied. This suggests that, at least for this particular period of relatively moderate geomagnetic activity, the TGCM parameterizations on the eveningside of the auroral oval and polar cap are adequate.
NASA Technical Reports Server (NTRS)
Stevens-Rayburn, D. R.; Mengel, J. G.; Harris, I.; Mayr, H. G.
1989-01-01
A three-dimensional spectral model for the Venusion thermosphere is presented which uses spherical harmonics to represent the horizontal variations in longitude and latitude and which uses Fourier harmonics to represent the LT variations due to atmospheric rotation. A differencing scheme with tridiagonal block elimination is used to perform the height integration. Quadratic nonlinearities are taken into account. In the second part, numerical results obtained with the model are shown to reproduce the observed broad daytime maxima in CO2 and CO and the significantly larger values at dawn than at dusk. It is found that the diurnal variations in He are most sensitive to thermospheric superrotation, and that, given a globally uniform atmosphere as input, larger heating rates yield a larger temperature contrast between day and night.
Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform
NASA Astrophysics Data System (ADS)
Sullivan, Stephanie Whalen
The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.
NASA Technical Reports Server (NTRS)
Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Chamberlin, Phillip C.; Qian, Liying; Solomon, Stanley C.; Roble, Raymond G.; Xiao, Zuo
2013-01-01
The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61 X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-14 nm irradiance increases much more (approx. 680% on average) than that in the 14-25 nm waveband (approx. 65% on average), except at 24 nm (approx. 220%). The average percentage increases for the 25-105 nm and 122-190 nm wavebands are approx. 120% and approx. 35%, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105- 120 nm, 121.56 nm, and 122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the 0-14 nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approx. 7.4% of the total approx. 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.
NASA Technical Reports Server (NTRS)
Huang, Yanshi; Richmond, A. D.
2013-01-01
The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (TI) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-4 nm irradiance increases much more ((is) approximately 680 on average) than that in the 14-25 nm waveband ((is) approximately 65 on average), except at 24 nm ( (is) approximately 220). The average percentage increases for the 25-105 nm and 122-190 nm wave bands are approximately 120 and approximately 35, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105-120 nm, 121.56 nm,and122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model(TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the0-14nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approximately 7.4% of the total approximately 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.
A combined solar and geomagnetic index for thermospheric climate
Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L
2015-01-01
Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. Key Points F10.7, Ap, and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years PMID:26709319
A combined solar and geomagnetic index for thermospheric climate.
Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L
2015-05-28
Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F 10.7 , Ap , and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. F 10.7 , Ap , and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years.
Annual asymmetry in thermospheric density: Observations and simulations
NASA Astrophysics Data System (ADS)
Lei, Jiuhou; Dou, Xiankang; Burns, Alan; Wang, Wenbin; Luan, Xiaoli; Zeng, Zhen; Xu, Jiyao
2013-05-01
In this paper, the Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) observations during 2002-2010 are utilized to study the variation of the annual asymmetry in thermospheric density at 400 km under low solar activity condition (F10.7 = 80) based on the method of empirical orthogonal functions (EOFs). The derived asymmetry index (AI) in thermospheric density from the EOF analysis shows a strong latitudinal variation at night but varies a little with latitudes in daytime. Moreover, it exhibits a terdiurnal tidal signature at low to middle latitudes. The global mean value of the AI is 0.191, indicating that a 47% difference in thermosphere between the December and June solstices in the global average. In addition, the NCAR Thermosphere-Ionosphere Electrodynamics Global Circulation Model (TIEGCM) is used to explore the possible mechanisms responsible for the observed annual asymmetry in thermospheric density. It is found that the standard simulations give a lower AI and also a weaker day-to-night difference. The simulated AI shows a semidiurnal pattern in the equatorial and low-latitude regions in contrast with the terdiurnal tide signature seen in the observed AI. The daily mean AI obtained from the simulation is 0.125, corresponding to a 29% December-to-June difference in thermospheric density at 400 km. Further sensitivity simulations demonstrated that the effect of the varying Sun-Earth distance between the December and June solstices is the main process responsible for the annual asymmetry in thermospheric density, while the magnetic field configuration and tides from the lower atmosphere contribute to the temporal and spatial variations of the AI. Specifically, the simulations show that the Sun-Earth distance effect explains 93% of the difference in thermospheric density between December and June, which is mainly associated with the corresponding changes in neutral temperature. However, our calculation from the density observations reveals that the varying Sun-Earth distance effect only accounts for ~67% of the December-to-June difference in thermosphere density, indicating that the TIEGCM might significantly underestimate the forcing originating from the lower atmosphere.
Properties of the mesosphere and thermosphere and comparison with CIRA 72
NASA Astrophysics Data System (ADS)
Champion, K. S. W.
Exospheric temperatures of several reference atmosphere are reviewed and a recommendation is made for the exospheric temperature of a proposed mean CIRA. One of the deficiencies of CIRA 72 and other present thermospheric models is the representation of density changes with geomagnetic activity. This deficiency is illustrated with samples of data. The data show the effects of geomagnetic activity, particle precipitation, a solar proton event, and gravity waves. An empirical model developed from the unique AFGL satellite density data bank using multiple linear regression is reviewed. The present model is for low to moderate solar flux and quiet geomagnetic conditions, but it is planned to extend the model to active conditions. Good progress has been made since CIRA 72 was specified in our knowledge and understanding of the properties of the lower thermosphere, although there are still some unresolved problems. The biggest progress has been made in the theory of tidal effects and of particulate energy deposition and of electrojet heating. On the other hand, it is still not possible to define adequately the systematic variations of the lower boundary conditions of thermospheric models. This is due to lack of knowledge of the systematic variations of the structure properties in the 100 to 120 km altitude region and inadequate information on the mesospheric turbulence profile and variations in the turbopause altitude.
Transport of aurorally produced N/2D/ by winds in the high latitude thermosphere
NASA Technical Reports Server (NTRS)
Gerard, J.-C.; Roble, R. G.
1982-01-01
A time-dependent, two-dimensional model is developed for describing the meridional circulation of thermospheric odd nitrogen species produced in the auroral zone. The model is based on a previous model by Roble and Gary (1979) extended to upper altitude transport of the nitrogen species. Assumptions made include the existence of a steady neutral wind flowing from low to high latitudes, and an initial background due to scattered Lyman-beta and nightglow emissions. The aurora is also assumed as steady, along with a constant ion production. Predictions made using the model are compared with observations with the Atmosphere Explorer C spacecraft and rocket sounding measurements of the 5200 A distribution near the day-side polar cusp. The model requires thermospheric winds of 100-200 m/sec, flowing from day to nightside. Convective velocities near 1000 m/sec were detected by the Explorer spacecraft, as well as a day-to-nightside flow at the cusp.
NASA Technical Reports Server (NTRS)
Hedin, A. E.
1979-01-01
A mass spectrometer and incoherent scatter empirical thermosphere model is used to measure the neutral temperature and neutral densities for N2, O2, O, Ar, He and H, the mean molecular weight, and the total mass density. The data is presented in tabular form.
NASA Astrophysics Data System (ADS)
Chung, Jong-Kyun; Won, Young-In; Lee, Bang Yong; Kim, Jhoon
1998-06-01
We measured the terrestrial nightglow of OI 6300A in the thermosphere(~250km) using a ground-based Fabry-Perot interferometer at the King Sejong Station, Antarctic from March through September, 1997. The King Sejong Station is located at high latitude geographically (62.22 deg S, 301.25 deg E) but at mid-latitude geomagnetically (50.65 deg S, 7.51 deg E). It is therefore the strategic location to measure the temperatures of the thermosphere in the Southern Hemisphere associated with both solar and geomagnetic activities. In this study, we analyzed the observed temperatures in relation to F10.7 and Kp indices to examine the effect of the solar and the geomagnetic activities on high-latitude neutral thermosphere. During the observing period, the solar activity was at its minimum. The measured temperatures are usually in the range between about 600~1000 K with some seasonal variation and are higher than those predicted by semi-empirical model, VSH (Vector Spherical Harmonics) and empirical model, MSIS (Mass-Spectrometer-Incoherent-Scatter)-86.
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Roble, R. G.
1984-01-01
A diagnostic processor (DP) was developed for analysis of hydrodynamic and thermodynamic processes predicted by the NCAR thermospheric general circulation model (TGCM). The TGCM contains a history file on the projected wind, temperature and composition fields at each grid point for each hour of universal time. The DP assimilates the history file plus ion drag tensors and drift velocities, specific heats, coefficients of viscosity, and thermal conductivity and calculates the individual forcing terms for the momentum and energy equations for a given altitude. Sample momentum forcings were calculated for high latitudes in the presence of forcing by solar radiation and magnetospheric convection with a 60 kV cross-tail potential, i.e., conditions on Oct. 21, 1981. It was found that ion drag and pressure forces balance out at F region heights where ion drift velocities are small. The magnetic polar cap/auroral zone boundary featured the largest residual force or net acceleration. Diurnal oscillations were detected in the thermospheric convection, and geostrophic balance was dominant in the E layer.
Substorm-related thermospheric density and wind disturbances derived from CHAMP observations
NASA Astrophysics Data System (ADS)
Ritter, P.; Lühr, H.; Doornbos, E.
2010-06-01
The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3-4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy<20 m/s) by substorms.
Realtime Space Weather Forecasts Via Android Phone App
NASA Astrophysics Data System (ADS)
Crowley, G.; Haacke, B.; Reynolds, A.
2010-12-01
For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.
First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008
NASA Astrophysics Data System (ADS)
Liu, Jing; Liu, Hanli; Wang, Wenbin; Burns, Alan G.; Wu, Qian; Gan, Quan; Solomon, Stanley C.; Marsh, Daniel R.; Qian, Liying; Lu, Gang; Pedatella, Nicholas M.; McInerney, Joe M.; Russell, James M.; Schreiner, William S.
2018-02-01
New ionosphere and electrodynamics modules have been incorporated in the thermosphere and ionosphere eXtension of the Whole Atmosphere Community Climate Model (WACCM-X), in order to self-consistently simulate the coupled atmosphere-ionosphere system. The first specified dynamics WACCM-X v.2.0 results are compared with several data sets, and with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM), during the deep solar minimum year. Comparisons with Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite of temperature and zonal wind in the lower thermosphere show that WACCM-X reproduces the seasonal variability of tides remarkably well, including the migrating diurnal and semidiurnal components and the nonmigrating diurnal eastward propagating zonal wavenumber 3 component. There is overall agreement between WACCM-X, TIE-GCM, and vertical drifts observed by the Communication/Navigation Outage Forecast System (C/NOFS) satellite over the magnetic equator, but apparent discrepancies also exist. Both model results are dominated by diurnal variations, while C/NOFS observed vertical plasma drifts exhibit strong temporal variations. The climatological features of ionospheric peak densities and heights (NmF2 and hmF2) from WACCM-X are in general agreement with the results derived from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data, although the WACCM-X predicted NmF2 values are smaller, and the equatorial ionization anomaly crests are closer to the magnetic equator compared to COSMIC and ionosonde observations. This may result from the excessive mixing in the lower thermosphere due to the gravity wave parameterization. These data-model comparisons demonstrate that WACCM-X can capture the dynamic behavior of the coupled atmosphere and ionosphere in a climatological sense.
Improving CTIPe neutral density response and recovery during geomagnetic storms
NASA Astrophysics Data System (ADS)
Fedrizzi, M.; Fuller-Rowell, T. J.; Codrescu, M.; Mlynczak, M. G.; Marsh, D. R.
2013-12-01
The temperature of the Earth's thermosphere can be substantially increased during geomagnetic storms mainly due to high-latitude Joule heating induced by magnetospheric convection and auroral particle precipitation. Thermospheric heating increases atmospheric density and the drag on low-Earth orbiting satellites. The main cooling mechanism controlling the recovery of neutral temperature and density following geomagnetic activity is infrared emission from nitric oxide (NO) at 5.3 micrometers. NO is produced by both solar and auroral activity, the first due to solar EUV and X-rays the second due to dissociation of N2 by particle precipitation, and has a typical lifetime of 12 to 24 hours in the mid and lower thermosphere. NO cooling in the thermosphere peaks between 150 and 200 km altitude. In this study, a global, three-dimensional, time-dependent, non-linear coupled model of the thermosphere, ionosphere, plasmasphere, and electrodynamics (CTIPe) is used to simulate the response and recovery timescales of the upper atmosphere following geomagnetic activity. CTIPe uses time-dependent estimates of NO obtained from Marsh et al. [2004] empirical model based on Student Nitric Oxide Explorer (SNOE) satellite data rather than solving for minor species photochemistry self-consistently. This empirical model is based solely on SNOE observations, when Kp rarely exceeded 5. During conditions between Kp 5 and 9, a linear extrapolation has been used. In order to improve the accuracy of the extrapolation algorithm, CTIPe model estimates of global NO cooling have been compared with the NASA TIMED/SABER satellite measurements of radiative power at 5.3 micrometers. The comparisons have enabled improvement in the timescale for neutral density response and recovery during geomagnetic storms. CTIPe neutral density response and recovery rates are verified by comparison CHAMP satellite observations.
Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements
NASA Astrophysics Data System (ADS)
Gasperini, F.; Forbes, J. M.; Doornbos, E. N.; Bruinsma, S. L.
2016-04-01
Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite at solar low and geomagnetically quiet conditions are converted to pressure gradient and ion drag forces, which are then used to solve the horizontal momentum equation to estimate low latitude to midlatitude zonal and meridional "synthetic" winds. We validate the method by showing that neutral and electron densities output from National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) can be used to derive solutions to the momentum equations that replicate reasonably well (over 85% of the variance) the winds self-consistently calculated within the TIME-GCM. CHAMP cross-track winds are found to share over 65% of the variance with the synthetic zonal winds, providing further reassurance that this wind product should provide credible results. Comparisons with the Horizontal Wind Model 14 (HWM14) show that the empirical model largely underestimates wind speeds and does not reproduce much of the observed variability. Additionally, in this work we reveal the longitude, latitude, local time, and seasonal variability in the winds; show evidence of ionosphere-thermosphere (IT) coupling, with enhanced postsunset eastward winds due to depleted ion drag; demonstrate superrotation speeds of ˜27 m/s at the equator; discuss vertical wave coupling due the diurnal eastward propagating tide with zonal wave number 3 and the semidiurnal eastward propagating tide with zonal wave number 2.
Ionosphere variability at mid latitudes during sudden stratosphere warmings
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Maute, A. I.; Maruyama, N.
2015-12-01
Variability of the mid latitude ionosphere and thermosphere during the 2009 and 2013 sudden stratosphere warmings (SSWs) is investigated in the present study using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and model simulations. The simulations are performed using the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and Ionosphere Plasmasphere Electrodynamics (IPE) model. Both the COSMIC observations and TIME-GCM simulations reveal perturbations in the F-region peak height (hmF2) at Southern Hemisphere mid latitudes during SSW time periods. The perturbations are ~20-30 km, which corresponds to 10-20% variability in hmF2. The TIME-GCM simulations and COSMIC observations of the hmF2 variability are in overall good agreement, and the simulations can thus be used to understand the physical processes responsible for the hmF2 variability. The simulation results demonstrate that the mid lattiude hmF2 variability is primarily driven by the propagation of the migrating semidiurnal lunar tide (M2) into the thermosphere where it modulates the field aligned neutrals winds, which in-turn raise and lower the F-region peak height. The importance of the thermosphere neutral winds on generating the ionosphere variability at mid latitudes during SSWs is supported by IPE simulations performed both with and without the neutral wind variability. Though there are subtle differences, the consistency of the behavior between the 2009 and 2013 SSWs suggests that variability in the Southern Hemisphere mid latitude ionosphere and thermosphere is a consistent feature of the SSW impact on the upper atmosphere.
NASA Astrophysics Data System (ADS)
Vadas, Sharon; Crowley, Geoff
2017-04-01
In this paper, we review measurements of 1) gravity waves (GWs) observed as traveling ionospheric disturbances (TIDs) at z 283 km by the TIDDBIT sounder on 30 October 2007, and 2) simultaneous rockets measurements of in-situ neutral winds at z 320-385 km. The neutral wind contains a 100 m/s peak at z 325 km in the same direction as the GWs, but oppositely-directed to the diurnal tides. We hypothesize that several of the TIDDBIT GWs propagated upwards and created this neutral wind peak. Using an anelastic GW ray trace model which includes thermospheric dissipation from molecular viscosity and thermal conductivity with mu proportional to the temperature to the power of 0.7, we forward ray trace the GWs from z_i=220 km. Surprisingly, the GWs dissipate below z 260 km, well below the altitude they were observed. Furthermore, none of the GWs could have propagated high-enough to create the neutral wind peak. In our opinion, this constitutes a significant discrepancy between observations and GW dissipative theory. We perform sensitivity experiments to rule out background temperature and wind effects as being the cause. We propose a modification to the formula for mu, and show that this yields ray trace results that agree reasonably well with the observations. We examine papers and reports for laboratory experiments which measured mu at low pressures, and find similar results. We conclude that the standard formulas for mu routinely used in thermospheric models must be modified in the thermosphere to account for this important effect. We also show preliminary GW ray trace results using this modified formula for mu, and compare with previous theoretical results.
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.
1995-01-01
Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The central polar cap (greater than approx. 80 magnetic latitude) antisunward wind speed is found to be a strong function of both solar and geomagnetic activity. The polar cap temperatures show variations in both solar and geomagnetic activity, with temperatures near 800 K for low K(sub p) and F(sub 10.7) and greater than about 2000 K for high K(sub p) and F(sub 10.7). The observed temperatures are significantly greater than those predicted by the mass spectrometer/incoherent scatter model for high activity conditions. Theoretical analysis based on the NCAR TIGCM indicates that the antisunward upper thermospheric winds, driven by upstream ion drag, basically 'coast' across the polar cap. The relatively small changes in wind velocity and direction within the polar cap are induced by a combination of forcing terms of commensurate magnitude, including the nonlinear advection term, the Coriolis term, and the pressure gradient force term. The polar cap thennospheric thermal balance is dominated by horizontal advection, and adiabatic and thermal conduction terms.
NASA Astrophysics Data System (ADS)
Maute, A. I.; Lu, G.; Richmond, A. D.
2017-12-01
Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with available satellite data, e.g. Swarm and COSMIC, and discuss the changes in the TI response due to the predicted main field changes to identify regions of potential increase and decrease in the storm time response. Aubert, J., Geophys. J. Int. 203, 1738-1751, 2015, doi: 10.1093/gji/ggv394 .
NASA Technical Reports Server (NTRS)
Burrage, M. D.; Abreu, V. J.; Fesen, C. G.
1990-01-01
Atmosphere Explorer E (AE-E) measurements of the O(1D) 6300-A emission in the nighttime equatorial thermosphere are used to infer the height of the F2 layer peak as a function of latitude and local time. The investigation is conducted both for northern hemisphere winter solstice and for spring equinox, under solar maximum conditions. The layer heights are used to derive magnetic meridional components of the transequatorial neutral wind, in conjunction with the MSIS-86 model and previous Jicamarca incoherent scatter measurements of the zonal electric field. The AE-E wind estimates indicate a predominant summer to winter flow for the winter solstice case. Comparisons are made with the empirical horizontal wind model HWM87 and with winds generated by the thermospheric general circulation model. The model predictions and experimental results are generally in good agreement, confirming the applicability of visible airglow data to studies of the global neutral wind pattern.
1989-12-01
seems unlikely, however, that the assumptions could ac- pulse [ Testud , 1973; Richmond, 19781. However, the TGCM count entirely for the discrepancy...ircla- Testud , J., Ondes atmosph~riques de grande chelle et sous-orages tion in m agnetic storm characteristics w ith application to A E-C m nt u es .t
Global effect of auroral particle and Joule heating in the undisturbed thermosphere
NASA Technical Reports Server (NTRS)
Hinton, B. B.
1978-01-01
From the compositional variations observed with the neutral atmosphere composition experiment on OGO 6 and a simplified model of thermospheric dynamics, global average values of non-EUV heating are deduced. These are 0.19-0.25 mW/sq m for quiet days and 0.44-0.58 mW/sq m for ordinary days.
NASA Astrophysics Data System (ADS)
Jones, M.; Emmert, J. T.; Drob, D. P.; Picone, J. M.; Meier, R. R.
2018-01-01
We demonstrate how Earth's obliquity generates the global thermosphere-ionosphere (T-I) semiannual oscillation (SAO) in mass density and electron density primarily through seasonally varying large-scale advection of neutral thermospheric constituents, sometimes referred to as the "thermospheric spoon" mechanism (TSM). The National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) is used to isolate the TSM forcing of this prominent intraannual variation (IAV) and to elucidate the contributions of other processes to the T-I SAO. An ˜30% SAO in globally averaged mass density (relative to its global annual average) at 400 km is reproduced in the TIME-GCM in the absence of seasonally varying eddy diffusion, tropospheric tidal forcing, and gravity wave breaking. Artificially, decreasing the tilt of Earth's rotation axis with respect to the ecliptic plane to 11.75° reduces seasonal variations in insolation and weakens interhemispheric pressure differences at the solstices, thereby damping the global-scale, interhemispheric transport of atomic oxygen (O) and molecular nitrogen in the thermosphere and reducing the simulated global mass density SAO amplitude to ˜10%. Simulated T-I IAVs in mass density and electron density have equinoctial maxima at all latitudes near the F2 region peak; this phasing and its latitude dependence agree well with empirically inferred climatologies. When tropospheric tides and gravity waves are included, simulated IAV amplitudes and their latitudinal dependence also agree well with empirically inferred climatologies. Simulated meridional and vertical transport of O due to the TSM couples to the upper mesospheric circulation, which also contributes to the T-I SAO through O chemistry.
Influence of upstream solar wind on thermospheric flows at Jupiter
NASA Astrophysics Data System (ADS)
Yates, J. N.; Achilleos, N.; Guio, P.
2012-02-01
The coupling of Jupiter's magnetosphere and ionosphere plays a vital role in creating its auroral emissions. The strength of these emissions is dependent on the difference in speed of the rotational flows within Jupiter's high-latitude thermosphere and the planet's magnetodisc. Using an azimuthally symmetric global circulation model, we have simulated how upstream solar wind conditions affect the energy and direction of atmospheric flows. In order to simulate the effect of a varying dynamic pressure in the upstream solar wind, we calculated three magnetic field profiles representing compressed, averaged and expanded ‘middle’ magnetospheres. These profiles were then used to solve for the angular velocity of plasma in the magnetosphere. This angular velocity determines the strength of currents flowing between the ionosphere and magnetosphere. We examine the influence of variability in this current system upon the global winds and energy inputs within the Jovian thermosphere. We find that the power dissipated by Joule heating and ion drag increases by ∼190% and ∼185% from our compressed to expanded model respectively. We investigated the effect of exterior boundary conditions on our models and found that by reducing the radial current at the outer edge of the magnetodisc, we also limit the thermosphere's ability to transmit angular momentum to this region.
NASA Astrophysics Data System (ADS)
Pineyro, B.; Snively, J. B.
2017-12-01
Recent 1D and 2D nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere [e.g., Chum et al., JGR, 121, 2016; Zettergren et al., JGR, 122, 2017]. Although they have yield results that agree with with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere [e.g., Snively and Pasko, JGR, 113, 2008] often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the lower thermosphere. Models with time-dependent composition and properties have been shown to outperform commonly used models with fixed properties; these time-dependent effects have been included in a one-gas model by adding an advection equation for the molecular weight, finding closer agreement to a true binary-gas model [Walterscheid and Hickey, JGR, 106, 2001 and JGR, 117, 2012]. Here, a one-dimensional nonlinear mass fraction approach to multi-constituent gas modeling, motivated by the results of Walterscheid and Hickey [2001, 2012], is presented. The finite volume method of Bale et al. [SIAM JSC, 24, 2002] is implemented in Clawpack [http://www.clawpack.org; LeVeque, 2002] with a Riemann Solver to solve the Euler Equations including multiple species, defined by their mass fractions, as they undergo advection. Viscous dissipation and thermal conduction are applied via a fractional step method. The model is validated with shock tube problems for two species, and then applied to investigate propagating nonlinear acoustic waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake [e.g., Zettergren et al., 2017] and rocket launches [Mabie et al., GRL, 43, 2016]. The limits of applicability are investigated for vertically propagating acoustic waves near the cut-off frequency, and for simulations of steepening waves at finite spatial resolution [Sabatini et al., JASA, 140, 2016].
SAPS effects on thermospheric winds during the 17 March 2013 storm
NASA Astrophysics Data System (ADS)
Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.
2017-12-01
Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.
The dynamo of the diurnal tide and its effect on the thermospheric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.
1990-01-01
A theoretical multiconstituent model (including O, N2, and O2) which describes the interactions between neutral winds, dynamo electric fields, and ion drifts is used to interpret observations that revealed a dominance of the fundamental diurnal tide in the upper thermosphere and at equatorial latitudes, and its effect on the thermospheric circulation. The model is shown to reproduce reasonably well the magnitudes of the neutral winds, ion drift velocities, and the ratio between the two. A solution for the neutral winds in which the dynamo electric field is forced to zero shows that the dynamo-induced ion drift is very important in accelerating the neutral atmosphere at higher altitudes. The dynamo interaction primarily affects the curl component of the field; its effect on the temperature and density perturbations is small.
Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures
NASA Astrophysics Data System (ADS)
Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.
2015-12-01
Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.
Processes of Equatorial Thermal Structure: An Analysis of Galileo Temperature Profile with 3-D Model
NASA Technical Reports Server (NTRS)
Majeed, T.; Waite, J. H., Jr.; Bougher, S. W.; Gladstone, G. R.
2005-01-01
The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter's thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approximately 2 kilometers per second and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy to equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (less than 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (greater than 0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.
Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere
NASA Technical Reports Server (NTRS)
Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.
2012-01-01
The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.
Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere
NASA Astrophysics Data System (ADS)
Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.
2017-12-01
Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.
Neural networks to predict exosphere temperature corrections
NASA Astrophysics Data System (ADS)
Choury, Anna; Bruinsma, Sean; Schaeffer, Philippe
2013-10-01
Precise orbit prediction requires a forecast of the atmospheric drag force with a high degree of accuracy. Artificial neural networks are universal approximators derived from artificial intelligence and are widely used for prediction. This paper presents a method of artificial neural networking for prediction of the thermosphere density by forecasting exospheric temperature, which will be used by the semiempirical thermosphere Drag Temperature Model (DTM) currently developed. Artificial neural network has shown to be an effective and robust forecasting model for temperature prediction. The proposed model can be used for any mission from which temperature can be deduced accurately, i.e., it does not require specific training. Although the primary goal of the study was to create a model for 1 day ahead forecast, the proposed architecture has been generalized to 2 and 3 days prediction as well. The impact of artificial neural network predictions has been quantified for the low-orbiting satellite Gravity Field and Steady-State Ocean Circulation Explorer in 2011, and an order of magnitude smaller orbit errors were found when compared with orbits propagated using the thermosphere model DTM2009.
A global model of the neutral thermosphere in magnetic coordinates based on AE-C data
NASA Technical Reports Server (NTRS)
Stehle, C. G.
1980-01-01
An empirical model of the global atomic oxygen and helium distributions in the thermosphere is developed in a magnetic coordinate system and compared to similar models which are expanded in geographic coordinates. The advantage of using magnetic coordinates is that fewer terms are needed to make predictions which are nearly identical to those which would be obtained from a geographic model with longitudinal and universal time corrections. Magnetic coordinates are more directly related to the major energy inputs in the polar regions than geographic coordinates and are more convenient to use in studies of high latitude energy deposition processes. This is important for comparison with theoretical models where the number of coordinates is limited. The effect of magnetic activity on the atomic oxygen distribution in the morning sector of the high latitude thermosphere in the auroral zone is also considered. A magnetic activity indicator (ML) based on an auroral electrojet index (AL) and the 3 hour ap index are used to relate the atomic oxygen density variations to magnetic activity in this region.
Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R
2014-01-01
Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)—a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5–10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N2, as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Key Points Dissipating planetary waves (PWs) in the MLT can drive background wind changes Mixing from dissipating PWs drive thermosphere/ionosphere composition changes First observations of QTDW-driven variability from this mechanism PMID:26312201
Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R
2014-06-01
Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)-a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N 2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5-10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N 2 , as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Dissipating planetary waves (PWs) in the MLT can drive background wind changesMixing from dissipating PWs drive thermosphere/ionosphere composition changesFirst observations of QTDW-driven variability from this mechanism.
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal; Medvedev, Alexander S.
2017-04-01
Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.
Thermospheric temperature, density, and composition: New models
NASA Technical Reports Server (NTRS)
Jacchia, L. G.
1977-01-01
The models essentially consist of two parts: the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2,500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites.
The aeronomy of odd nitrogen in the thermosphere. II - Twilight emissions
NASA Technical Reports Server (NTRS)
Strobel, D. F.; Oran, E. S.; Feldman, P. D.
1976-01-01
A model developed for the aeronomy of odd nitrogen in the thermosphere is used to analyze rocket measurements of N(4S) and NO densities. Data from Atmosphere Explorer were used to develop a consistent reaction kinetics model for odd nitrogen chemistry. It is concluded that most NO(+) dissociative recombination events must produce N(2D), that N(2D) is quenched by O at a rate of 1 trillionth cu cm per sec, and that the atmospheric O2 quenching rate of N(2D) is consistent with the laboratory rate. The major quenching agent of N(2D) between 140 and 220 km is atomic oxygen, and this reaction is the major source of N(4S). Peak N(4S) densities of about (20-60) million per cu cm at 140-150 km are predicted, with the variability being indicative of the model sensitivity to a factor of 2 change in the O/O2 ratio in the thermosphere.
Global modeling of thermospheric airglow in the far ultraviolet
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.
2017-07-01
The Global Airglow (GLOW) model has been updated and extended to calculate thermospheric emissions in the far ultraviolet, including sources from daytime photoelectron-driven processes, nighttime recombination radiation, and auroral excitation. It can be run using inputs from empirical models of the neutral atmosphere and ionosphere or from numerical general circulation models of the coupled ionosphere-thermosphere system. It uses a solar flux module, photoelectron generation routine, and the Nagy-Banks two-stream electron transport algorithm to simultaneously handle energetic electron distributions from photon and auroral electron sources. It contains an ion-neutral chemistry module that calculates excited and ionized species densities and the resulting airglow volume emission rates. This paper describes the inputs, algorithms, and code structure of the model and demonstrates example outputs for daytime and auroral cases. Simulations of far ultraviolet emissions by the atomic oxygen doublet at 135.6 nm and the molecular nitrogen Lyman-Birge-Hopfield bands, as viewed from geostationary orbit, are shown, and model calculations are compared to limb-scan observations by the Global Ultraviolet Imager on the TIMED satellite. The GLOW model code is provided to the community through an open-source academic research license.
Zonally Symmetric Oscillations of the Thermosphere at Planetary Wave Periods
NASA Astrophysics Data System (ADS)
Forbes, Jeffrey M.; Zhang, Xiaoli; Maute, Astrid; Hagan, Maura E.
2018-05-01
New mechanisms for imposing planetary wave (PW) variability on the ionosphere-thermosphere system are discovered in numerical experiments conducted with the National Center for Atmospheric Research thermosphere-ionosphere-electrodynamics general circulation model. First, it is demonstrated that a tidal spectrum modulated at PW periods (3-20 days) entering the ionosphere-thermosphere system near 100 km is responsible for producing ±40 m/s and ±10-15 K PW period oscillations between 110 and 150 km at low to middle latitudes. The dominant response is broadband and zonally symmetric (i.e., "S0") over a range of periods and is attributable to tidal dissipation; essentially, the ionosphere-thermosphere system "vacillates" in response to dissipation of the PW-modulated tidal spectrum. In addition, some specific westward propagating PWs such as the quasi-6-day wave are amplified by the presence of the tidal spectrum; the underlying mechanism is hypothesized to be a second-stage nonlinear interaction. The S0 total neutral mass density (ρ) response at 325 km consists of PW period fluctuations of order ±3-4%, roughly equivalent to the day-to-day variability associated with low-level geomagnetic activity. The variability in ρ over short periods (˜< 9 days) correlates with temperature changes, indicating a response of hydrostatic origin. Over longer periods ρ is also controlled by composition and mean molecular mass. While the upper-thermosphere impacts are modest, they do translate to more significant changes in the F region ionosphere.
Nightside Detection of a Large-Scale Thermospheric Wave Generated by a Solar Eclipse
NASA Astrophysics Data System (ADS)
Harding, B. J.; Drob, D. P.; Buriti, R. A.; Makela, J. J.
2018-04-01
The generation of a large-scale wave in the upper atmosphere caused by a solar eclipse was first predicted in the 1970s, but the experimental evidence remains sparse and comprises mostly indirect observations. This study presents observations of the wind component of a large-scale thermospheric wave generated by the 21 August 2017 total solar eclipse. In contrast with previous studies, the observations are made on the nightside, after the eclipse ended. A ground-based interferometer located in northeastern Brazil is used to monitor the Doppler shift of the 630.0-nm airglow emission, providing direct measurements of the wind and temperature in the thermosphere, where eclipse effects are expected to be the largest. A disturbance is seen in the zonal and meridional wind which is at or above the 90% significance level based on the measured 30-day variability. These observations are compared with a first principles numerical model calculation from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, which predicted the propagation of a large-scale wave well into the nightside. The modeled disturbance matches well the difference between the wind measurements and the 30-day median, though the measured perturbation (˜60 m/s) is larger than the prediction (38 m/s) for the meridional wind. No clear evidence for the wave is seen in the temperature data, however.
Effects of 27-day averaged tidal forcing on the thermosphere-ionosphere as examined by the TIEGCM
NASA Astrophysics Data System (ADS)
Maute, A. I.; Forbes, J. M.; Hagan, M. E.
2016-12-01
The variability of the ionosphere and thermosphere is influenced by solar and geomagnetic forcing and by lower atmosphere coupling. During the last solar minimum low- and mid-latitude ionospheric observations have shown strong longitudinal signals which are associated with upward propagating tides. Progress has been made in explaining observed ionospheric and thermospheric variations by investigating possible coupling mechanisms e.g., wind dynamo, propagation of tides into the upper thermosphere, global circulation changes, and compositional effects. To fully understand the vertical coupling a comprehensive set of simultaneous measurements of key quantities is missing. The Ionospheric Connection (ICON) explorer will provide such a data set and the data interpretation will be supported by numerical modeling to investigate the lower to upper atmosphere coupling. Due to ICON's orbit, 27 days of measurements are needed to cover all longitudes and local times and to be able to derive tidal components. In this presentation we employ the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) to evaluate the influence of the 27-day processing window on the ionosphere and thermosphere state. Specifically, we compare TIEGCM simulations that are forced at its 97 km lower boundary by daily tidal fields from 2009 MERRA-forced TIME-GCM output [Häusler et al., 2015], and by the corresponding 27-day mean tidal fields. Apart from the expected reduced day-to-day variability when using 27-day averaged tidal forcing, the simulations indicate net NmF2 changes at low latitudes, which vary with season. First results indicate that compositional effects may influence the Nmf2 modifications. We will quantify the effect of using a 27-day averaged diurnal tidal forcing versus daily ones on the equatorial vertical drift, low and mid-latitude NmF2 and hmF2, global circulation, and composition. The possible causes for the simulated changes will be examined. The result of this study will be important for the comparison of the ICON observations with the accompanying ICON-TIEGCM simulations and guide the model-data interpretation.
The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.
1989-06-01
During the past six years, rapid advances in three observational techniques (ground-based radars, optical interferometers and satellite-borne instruments) have provided a means of observing a wide range of spectacular interactions between the coupled magnetosphere, ionosphere and thermosphere system. Perhaps the most fundamental gain has come from the combined data-sets from the NASA Dynamics Explorer (DE) Satellites. These have unambiguously described the global nature of thermospheric flows, and their response to magnetospheric forcing. The DE spacecraft have also described, at the same time, the magnetospheric particle precipitation and convective electric fields which force the polar thermosphere and ionosphere. The response of the thermosphere to magnetospheric forcing is far more complex than merely the rare excitation of 1 km s-1 wind speeds and strong heating; the heating causes large-scale convection and advection within the thermosphere. These large winds grossly change the compositional structure of the upper thermosphere at high and middle latitudes during major geomagnetic disturbances. Some of the major seasonal and geomagnetic storm-related anomalies of the ionosphere are directly attributable to the gross wind-induced changes of thermospheric composition; the mid-latitude ionospheric storm `negative phase', however, is yet to be fully understood. The combination of very strong polar wind velocities and rapid plasma convection forced by magnetospheric electric fields strongly and rapidly modify F-region plasma distributions generated by the combination of local solar and auroral ionization sources. Until recently, however, it has been difficult to interpret the observed complex spatial and time-dependent structures and motions of the thermosphere and ionosphere because of their strong and nonlinear coupling. It has recently been possible to complete a numerical and computational merging of the University College London (UCL) global thermospheric model and the Sheffield University ionospheric model. This has produced a self-consistent coupled thermospheric--ionospheric model, which has become a valuable diagnostic tool for examining thermospheric--ionospheric interactions in the polar regions. In particular, it is possible to examine the effects of induced winds, ion transport, and the seasonal and diurnal U.T. variations of solar heating and photoionization within the polar regions. Polar and high-latitude plasma density structure at F-region altitudes can be seen to be strongly controlled by U.T., and by season, even for constant solar and geomagnetic activity. In the winter, the F-region polar plasma density is generally dominated by the effects of transport of plasma from the dayside (sunlit cusp). In the summer polar region, however, an increase in the proportion of molecular to atomic species, created by the global seasonal circulation and augmented by the geomagnetic forcing, controls the plasma composition and generally depresses plasma densities at all U.Ts. A number of these complex effects can be seen in data obtained from ground-based radars, Fabry--Perot interferometers and in the combined DE data-sets. Several of these observations will be used, in combination with simulations using the UCL--Sheffield coupled model, to illustrate the major features of large-scale thermosphere--ionosphere interactions in response to geomagnetic forcing. The past decade has seen a major improvement in the quality and quantity of experimental data available to study the thermosphere and ionosphere and their response to magnetospheric forcing. Earlier, large measured changes of individual parameters were difficult to place in a global or large-scale perspective. However, a clear picture of the distinction between the solar and geomagnetic forcing processes has emerged from the combined data-sets available from spacecraft such as the Dynamics Explorers, and from ground-based radar and optical observations of the polar thermosphere. A first experimental view of the strong coupling between the thermosphere and ionosphere has also emerged from these combined new data-sets. In parallel with the development of observing techniques, numerical models of the thermosphere and ionosphere have matured. We are at a state where the combined thermosphere and ionosphere can be modelled self-consistently. We can now realistically simulate the response of the combined system to the magnetospheric forcing, and also investigate the many and varied feedback processes between the two components. The models can be used to understand and interpret the diversity of experimental observations, and provide the framework for evaluating phenomena which are as yet not well understood. The dominant thermosphere--ionosphere interactions which appear from the modelling studies and which have counterparts in the experimental database can be summarized. In the winter polar region, ionization enhancements are observed which are due to auroral particle precipitation in both the E-region and in the F-region. The former are relatively easy to understand, since decay rates are generally rapid, and large-scale transport is unimportant. The sole caveat will be related to sporadic-E layers of long-lived metallic ions. In the polar F-region, neutral winds, neutral composition changes, convection changes and solar photoionization all cause important modifications of plasma distributions. In the winter, plasma convection and winds cause important effects in the horizontal and vertical transport of plasma, respectively. As such, plumes of high density (or low-density) plasma are transported large distances from their origin, and local plasma densities are rarely explicable by local sources and sinks. The exact distributions will depend very much on detailed plasma convection patterns. However, the winter subauroral trough and localized polar troughs will be created when the combination of convection and corotation cause plasma stagnation in regions out of sunlight and photoionization. There is a strong U.T. modulation of plasma density within the winter polar cap and dusk auroral oval (generally) as the polar cusp enters sunlight for a few hours around 18h U.T., and there is a direct source of high-density plasma (photoionization plus particle ionization) convected through the cusp. At other U.Ts, the source is generally cut off, and polar plasma densities generally decay. Summer F-region high-latitude and polar plasma densities are generally a factor of about 3-5 lower than in winter. This is due to the seasonal F-region neutral composition variation, generated by summer to winter mean circulation, by which increased plasma recombination rates (due to much higher molecular nitrogen densities) more than compensate for the increased solar photoionization source in the summer polar cap. In turn, this mean circulation is generated by the combination of asymmetric solar insolation and greater geomagnetic heating in the summer compared with winter polar regions (Rees et al. 1985, 1987). Particularly at times of high geomagnetic activity, the summer `F-region' neutral composition is close to that of the standard atmosphere E-region. The major features of the summer polar F-region are thus quite different to those of the corresponding winter region. Plasma troughs develop in regions of very strong Joule heating, i.e. where ion convection is strongest. As such, the location and intensity of the troughs is quite dependent on the plasma convection patterns. Summer-time troughs tend to occur in the same regions where rapid transport causes high-density plasma plumes in the winter polar region. The classical subauroral trough is distinctly a feature of the winter polar F-region. Even at equinox, the full subauroral trough does not develop, while in winter it fully encircles the geomagnetic polar cap for much of the U.T. day (except around 18h U.T.). In the summer F-region, stagnation troughs do not develop within the polar cap, irrespective of convection pattern. Any polar cap troughs are a result of changes in neutral composition. Subauroral troughs can only develop around the summer polar region when the auroral oval is expanded so that the midnight part of the auroral oval extends into the nightside. Conditions for this situation are likely to occur preferentially in the southern polar region, due to the greater offset of the geomagnetic from geographic pole. The E-region response to geomagnetic forcing is also strong, although generally rather less marked than in the F-region, in terms of the neutral thermal and compositional response. The major feed-back between the thermosphere and ionosphere occurs due to the effects of high induced winds, since the neutral chemical changes do not significantly affect the ionospheric chemistry. Apart from localized effects such as sporadic-E layers, high-speed auroral oval winds do not cause significant vertical transport of E-region molecular species, due to rapid recombination. The most significant vertical transport effects will be in non-sunlit regions, where ion production is lowest. The dynamo effect of induced E-region winds of 200-400 m s-1 is also quite significant. Such winds reduce horizontal currents, with an implication that the FAC or Pedersen currents may also be decreased, with a possible feedback to the convection electric field. There is still relatively little data available for detailed case-study comparisons. Such studies have been quite successful in improving our understanding of the F-region behaviour, and the CEDAR initiative and programmes such as LTCS promise to extend the range of multiparameter data-sets to the E-region as well. Simulating atmospheric density and compositional structure with numerical models is one of the most testing demands. Density at a given altitude is very sensitive to the total thermospheric energy budget, and is thus liable to be the first casualty of cumulative small errors in the many external terms of the energy input. There are also some indeterminate factors in the radiative energy budget of the lower thermosphere and upper mesosphere. In practice, we have found that the present version of the coupled model computes density and composition relatively accurately, compared with mean mass spectrometer and incoherent scatter (MSIS) predictions for comparable solar and geomagnetic activity levels and for different seasonal conditions. Typical differences (MSIS to model) of around 20% occur at F-region altitudes in the data-sets shown in the model simulations described within this paper. This is roughly comparable with the standard deviation of MSIS in comparison with satellite data-sets for specific locations and times. The numerical models have greater spatial and temporal resolution than MSIS models and relate to real physical processes. Undoubtedly, however, the real thermosphere contains a whole spectrum of high-frequency variations which are beyond present parametrization techniques, our current description of geomagnetic inputs and present computer limitations. From the initial coupled-model simulations it is possible to examine key features of the coupling between the magnetosphere and the thermosphere--ionosphere. Field-aligned currents reflect the divergence or convergence of the ionospheric Pedersen current. The Pedersen current depends on changes of the ionospheric conductivity and also the dynamo effects of induced winds. Both FAC and E-region winds display considerable seasonal, U.T. and geomagnetic activity variations. Except in the unlikely event that the magnetosphere acts as a `zero-resistance' source of charge, and momentum, etc., we would anticipate, on the basis of these thermosphere--ionosphere model simulations, to see corresponding modulation of magnetosphere--ionosphere forcing as a function of U.T., season and geomagnetic activity. However, a detailed theoretical evaluation of such processes will have to await the development of a new range of coupled models embracing the near-Earth environment. As new experimental data from coordinated ground-based campaigns becomes available over the next several years, and it is to be hoped from new space missions within the next decade, we may hope that the validity of many of the simplified assumptions we currently have to make within present models can be tested. Undoubtedly, many present concepts will be found wanting. The impact of global images of particle precipitation and energy deposition, coupled with perhaps the development of techniques of imaging polar plasma convection patterns will mean that future models are capable of looking at the effects of short period and smaller-scale variations in forcing. The present patterns of magnetospheric forcing are too simplified and averaged in time and space. While the thermosphere averages out rapid and short-scale momentum inputs, the energy input integrates all variations, including the effect of rapid forcing variations. The thermospheric composition responds to this `additional' energy source in a way which presently cannot be simulated accurately, and we already know how sensitive the polar plasma environment appears to be to thermospheric composition changes forced by the combined solar and magnetospheric forcing. We are indebted to Dr Fred Rich for provision of the Heppner & Maynard polar electric fields in the form of harmonic coefficients. We also thank John Harmer and Hilary Hughes for their assistance in preparing, running and processing the computer simulations using the UCL--Sheffield coupled ionospheric--thermospheric model. Computer time was made available by the University of London Computer Centre (CRAY 1-S) and on the CRAY-XMP-48 at the Rutherford Appleton Laboratory (Science and Engineering Research Council). The research was supported by grants from the U.K. SERC, and from the European Office of Aerospace Research and Development (AFOSR-86-341). The IGRF magnetic field model was provided, in computer-readable form, by the British Geological Survey, Edinburgh.
First look at GOCE-derived thermosphere density and wind measurements
NASA Astrophysics Data System (ADS)
Doornbos, E.; Bruinsma, S. L.; Koppenwallner, G.; Fritsche, B.; Visser, P. N.; van den IJssel, J.; Kern, M.
2011-12-01
Accelerometers carried by low-Earth orbiters such as GOCE have the ability to provide highly detailed data on thermospheric density and winds. Like its predecessor missions, CHAMP and GRACE, GOCE has not been specifically designed for studies of the thermosphere. Nevertheless, their application in this domain has resulted in density and wind data sets containing information at unprecedented levels of coverage and precision, resulting in many scientific papers. The orbit of GOCE is unique. It is nearly sun-synchronous, and due to its drag free control system, its altitude can be kept fixed for several years, at about 270 km. This leads to sampling characteristics that are ideal for studying the effect of variations in solar and magnetospheric energy input on the thermosphere density and wind. Besides the presentation of the first GOCE-derived density and wind measurements, this poster will describe the GOCE data processing approach, which differs from that of the earlier missions in the special consideration required for both the handling of the thruster accelerations and the aerodynamic modelling.
Chemistry in the Thermosphere and Ionosphere.
ERIC Educational Resources Information Center
Roble, Raymond G.
1986-01-01
An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…
NASA Astrophysics Data System (ADS)
Guo, Jia-Peng; Deng, Yue; Zhang, Dong-He; Lu, Yang; Sheng, Cheng; Zhang, Shun-Rong
2018-03-01
Using the Millstone Hill incoherent scatter radar observations during 2015 St. Patrick's Day storm, subauroral polarization streams (SAPSs) have been specified in the nonhydrostatic Global Ionosphere-Thermosphere Model simulations. The results reveal that the effect of SAPS on the coupled thermosphere-ionosphere system includes the following: (1) Sudden frictional heating of SAPS results in acoustic-gravity waves in the thermosphere. The vertical oscillation is localized, while the meridional disturbance propagates poleward and equatorward. (2) The SAPS-associated horizontal wind field includes an enhanced westward wind within SAPS channel and a twin of vortex-like winds north (clockwise) and south (anticlockwise) of subauroral latitudes. (3) Due to the neutral-ion drag, ions in the vicinity of SAPS channel oscillate vertically with neutrals, resulting in a perturbation of 0.3 TECu in ionospheric total electron content. The SAPS-induced traveling atmospheric disturbances can elevate the plasma and increase the total electron content in midlatitude ionosphere. (4) It is confirmed that the Coriolis force can contribute to the poleward turning of the neutral wind during the post-SAPS interval. In addition, the traveling atmospheric disturbance induced by the variation of auroral input and high-latitude convection is possibly the primary cause of the poleward neutral wind surge during the magnetic storm on 17-18 March 2015. The combination of the two factors can make the northward meridional wind surge reach a magnitude of 100 m/s. This study improves our understanding of the SAPS's effect on neutral dynamics and ion-neutral coupling processes during geomagnetically disturbed intervals.
A statistical survey of heat input parameters into the cusp thermosphere
NASA Astrophysics Data System (ADS)
Moen, J. I.; Skjaeveland, A.; Carlson, H. C.
2017-12-01
Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.
Kinetics of Fast Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)
2002-01-01
This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.
NASA Technical Reports Server (NTRS)
Keating, G. M.; Tolson, R. H.; Hinson, E. W.
1979-01-01
Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.
Thermosphere Extension of the Whole Atmosphere Community Climate Model
2010-12-04
tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784, doi:10.1029/2002JD002853. Immel, T... troposphere to the upper thermosphere and their variability on interannual, seasonal, and daily scales. These quantities are compared with observational and...gravity waves are excited by tropospheric processes. As their amplitudes grow exponen- tially with altitude, they will cause larger variability
One-Dimensional Hybrid Satellite Track Model for the Dynamics Explorer 2 (DE 2) Satellite
NASA Technical Reports Server (NTRS)
Deng, Wei; Killeen, T. L.; Burns, A. G.; Johnson, R. M.; Emery, B. A.; Roble, R. G.; Winningham, J. D.; Gary, J. B.
1995-01-01
A one-dimensional hybrid satellite track model has been developed to calculate the high-latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2 (DE 2) satellite measurements and theory. This model is based on Emery et al. satellite track code but also includes elements of Roble et al. global mean thermosphere/ionosphere model. A number of parameterizations and data handling techniques are used to input satellite data from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are determined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation spectra are used in an auroral model to calculate particle impact ionization rates below the satellite. These rates are combined with a solar ionization rate profile and used to solve the O(+) diffusion equation, with the measured electron density as an upper boundary condition. The calculated O(+) density distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model to calculate the electron and molecular ion densities. The electron temperature is also calculated by solving the electron energy equation with an upper boundary condition determined by the DE 2 measurement. The model enables calculations of altitude profiles of conductivity and Joule beating rate along and below the satellite track. In a first application of the new model, a study is made of thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit, is compared with the model predictions of the height-integrated energy conversion rate. Good quantitative agreement between these two estimates has been reached. In addition, measurements taken at the incoherent scatter radar site at Chatanika (65.1 deg N, 147.4 deg W) during a DE 2 overflight are compared with the model calculations. A good agreement was found in lower thermospheric conductivities and Joule heating rate.
NASA Astrophysics Data System (ADS)
Yue, Jia; Xu, Jiyao; Chang, Loren C.; Wu, Qian; Liu, Han-Li; Lu, Xian; Russell, James
2013-12-01
The morphology of the migrating terdiurnal tide with zonal wavenumber 3 (TW3) in the mesosphere and lower thermosphere (MLT) is revealed using the TIMED satellite datasets from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the TIMED Doppler Interferometer (TIDI) instruments from 2002 to 2009, as well as the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The annual mean structures of the TW3 from the TIME-GCM clearly resemble the first real symmetric (3,3) Hough mode. The TW3 temperature and zonal wind components have three peaks at midlatitudes and near the equator, while the TW3 meridional wind components show four peaks at mid and low latitudes. These features are consistent with those resolved in SABER temperature and TIDI zonal wind above ~95 km. TW3 components in the TIME-GCM are stronger during winter and spring months at midlatitudes, which is in agreement with previous ground-based radar measurements. On the other hand, TW3 components of temperature, zonal and meridional winds from SABER and TIDI display different seasonal variations at different altitudes and latitudes. The results presented in this paper will provide an observational basis for further modeling study of terdiurnal tide impacts on the thermosphere and ionosphere.
Results of the AEROS satellite program: Summary
NASA Technical Reports Server (NTRS)
Lammerzahl, P.; Rawer, K.; Roemer, N.
1980-01-01
Published literature reporting aeronomic data collected on two AEROS missions is summarized. The extreme ultraviolet solar radiation and other significant parameters of the thermosphere/ionosphere were investigated. Kinetic pressure, the quantity of atomic nitrogen, and partial densities of helium, oxygen, nitrogen, argon, and atomic nitrogen were determined. The thermal electron population, superthermal energy distribution, plasma density, ion temperature, and composition according to ion types were measured. The chief energy supply in the thermosphere was calculated. Aeronomic calculations showing that variations in the parameters of the ionosphere cannot be correlated with fluctuations of extreme ultraviolet solar radiation were performed. The AEROS data were compared with data from S3-1, ISIS, and AE-C satellites. Models of the thermosphere and ionosphere were developed.
Thermospheric Nitric Oxide Response to Shock-led Storms
Knipp, D. J.; Pette, D. V.; Kilcommons, L. M.; Isaacs, T. L.; Cruz, A. A.; Mlynczak, M. G.; Hunt, L. A.; Lin, C. Y.
2017-01-01
We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric ‘overcooling’. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events. PMID:28824340
Thermospheric Nitric Oxide Response to Shock-led Storms.
Knipp, D J; Pette, D V; Kilcommons, L M; Isaacs, T L; Cruz, A A; Mlynczak, M G; Hunt, L A; Lin, C Y
2017-02-01
We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric 'overcooling'. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.
MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere
NASA Astrophysics Data System (ADS)
Dandenault, P. B.
2017-12-01
We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.
Data-driven Inference and Investigation of Thermosphere Dynamics and Variations
NASA Astrophysics Data System (ADS)
Mehta, P. M.; Linares, R.
2017-12-01
This paper presents a methodology for data-driven inference and investigation of thermosphere dynamics and variations. The approach uses data-driven modal analysis to extract the most energetic modes of variations for neutral thermospheric species using proper orthogonal decomposition, where the time-independent modes or basis represent the dynamics and the time-depedent coefficients or amplitudes represent the model parameters. The data-driven modal analysis approach combined with sparse, discrete observations is used to infer amplitues for the dynamic modes and to calibrate the energy content of the system. In this work, two different data-types, namely the number density measurements from TIMED/GUVI and the mass density measurements from CHAMP/GRACE are simultaneously ingested for an accurate and self-consistent specification of the thermosphere. The assimilation process is achieved with a non-linear least squares solver and allows estimation/tuning of the model parameters or amplitudes rather than the driver. In this work, we use the Naval Research Lab's MSIS model to derive the most energetic modes for six different species, He, O, N2, O2, H, and N. We examine the dominant drivers of variations for helium in MSIS and observe that seasonal latitudinal variation accounts for about 80% of the dynamic energy with a strong preference of helium for the winter hemisphere. We also observe enhanced helium presence near the poles at GRACE altitudes during periods of low solar activity (Feb 2007) as previously deduced. We will also examine the storm-time response of helium derived from observations. The results are expected to be useful in tuning/calibration of the physics-based models.
Future Drag Measurements from Venus Express
NASA Astrophysics Data System (ADS)
Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen
Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.
Variability of Thermosphere and Ionosphere Responses to Solar Flares
NASA Technical Reports Server (NTRS)
Qian, Liying; Burns, Alan G.; Chamberlin, Philip C.; Solomon, Stanley C.
2011-01-01
We investigated how the rise rate and decay rate of solar flares affect the thermosphere and ionosphere responses to them. Model simulations and data analysis were conducted for two flares of similar magnitude (X6.2 and X5.4) that had the same location on the solar limb, but the X6.2 flare had longer rise and decay times. Simulated total electron content (TEC) enhancements from the X6.2 and X5.4 flares were 6 total electron content units (TECU) and approximately 2 TECU, and the simulated neutral density enhancements were approximately 15% -20% and approximately 5%, respectively, in reasonable agreement with observations. Additional model simulations showed that for idealized flares with the same magnitude and location, the thermosphere and ionosphere responses changed significantly as a function of rise and decay rates. The Neupert Effect, which predicts that a faster flare rise rate leads to a larger EUV enhancement during the impulsive phase, caused a larger maximum ion production enhancement. In addition, model simulations showed that increased E x B plasma transport due to conductivity increases during the flares caused a significant equatorial anomaly feature in the electron density enhancement in the F region but a relatively weaker equatorial anomaly feature in TEC enhancement, owing to dominant contributions by photochemical production and loss processes. The latitude dependence of the thermosphere response correlated well with the solar zenith angle effect, whereas the latitude dependence of the ionosphere response was more complex, owing to plasma transport and the winter anomaly.
NASA Astrophysics Data System (ADS)
Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Hunt, L. A.; Maute, A.
2017-06-01
Carbon dioxide (CO2) infrared emissions at 15 μm is the primary radiative cooling mechanism of the thermosphere in the altitude range of 100-135 km. This paper explores the role of two important diurnal nonmigrating tides, the DE2 and DE3, in the modulation of CO2 15 μm emissions during the solar minimum year 2008 by (i) analyzing Sounding the Atmosphere using Broadband Emission Radiometry (SABER) CO2 cooling rate data and (ii) photochemical modeling using dynamical tides from the empirical Climatological Tidal Model of the Thermosphere model. Tidal diagnostics of SABER data shows that the CO2 cooling rate amplitudes for the DE2 and DE3 components are on the order of approximately 20-50% relative to the monthly means, and they maximize around the lower bound (100 km) of the analyzed height interval. The photochemical modeling reproduces the observed results, albeit with systematic amplitude differences which is likely related to the uncertainty in the model input backgrounds, especially atomic oxygen. The main tidal coupling mechanism is found to be the temperature dependence of the collisional excitation of the CO2 ν2 vibrational state. However, neutral density becomes equally important above ˜110 km, thereby explaining observed evanescent DE2 and DE3 phases which are not present in temperature tides. The contribution of vertical tidal advection is comparatively small. The relative importance of the coupling mechanisms is the same at all latitudes/seasons. These results indicate that upward propagating nonmigrating tides forced by latent heat release in the lower atmosphere impact the thermospheric energy budget by modulating the longitudinal/local time behavior of the CO2 infrared cooling.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.
2005-01-01
A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.
Storm time global thermosphere: A driven-dissipative thermodynamic system
NASA Astrophysics Data System (ADS)
Burke, W. J.; Lin, C. S.; Hagan, M. P.; Huang, C. Y.; Weimer, D. R.; Wise, J. O.; Gentile, L. C.; Marcos, F. A.
2009-06-01
Orbit-averaged mass densities $\\overline{\\rho and exospheric temperatures $\\overline{T ∞ inferred from measurements by accelerometers on the Gravity Recovery and Climate Experiment (GRACE) satellites are used to investigate global energy Eth and power Πth inputs to the thermosphere during two complex magnetic storms. Measurements show $\\overline{\\rho, $\\overline{T ∞, and Eth rising from and returning to prevailing baselines as the magnetospheric electric field $\\varepsilon$ VS and the Dst index wax and wane. Observed responses of Eth and $\\overline{T ∞ to $\\varepsilon$ VS driving suggest that the storm time thermosphere evolves as a driven-but-dissipative thermodynamic system, described by a first-order differential equation that is identical in form to that governing the behavior of Dst. Coupling and relaxation coefficients of the Eth, $\\overline{T ∞, and Dst equations are established empirically. Numerical solutions of the equations for $\\overline{T ∞ and Eth are shown to agree with GRACE data during large magnetic storms. Since $\\overline{T ∞ and Dst have the same $\\varepsilon$ VS driver, it is possible to combine their governing equations to obtain estimates of storm time thermospheric parameters, even when lacking information about interplanetary conditions. This approach has the potential for significantly improving the performance of operational models used to calculate trajectories of satellites and space debris and is also useful for developing forensic reconstructions of past magnetic storms. The essential correctness of the approach is supported by agreement between thermospheric power inputs calculated from both GRACE-based estimates of Eth and the Weimer Poynting flux model originally derived from electric and magnetic field measurements acquired by the Dynamics Explorer 2 satellite.
Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite
NASA Astrophysics Data System (ADS)
Gan, Q.; Oberheide, J.
2017-12-01
The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.
NASA Technical Reports Server (NTRS)
Bougher, Stephen
2005-01-01
The Mars Thermosphere General Circulation Model (MTGCM) was exercised for Ls = 90 (aphelion) solar minimum, and Ls = 270 perihelion) solar maximum conditions. Simulated MTGCM outputs (i.e. helium density distributions) were compared to those previously observed for Earth and Venus. Winter polar night bulges of helium are predicted on Mars, similar to those observed on the nightside of Venus and in the winter polar regions of Earth. A poster on this research was presented at the European Geophysical Society Meeting (EGS) in 2003. This research paves the way for what might be expected in the polar night regions of Mars during upcoming aerobraking and mapping Campaigns. Lastly, Mars thermosphere (approx. 100-130 km) winter polar warming was observed at high Northern latitudes during the perihelion season, but not at high Southern latitudes during the opposite aphelion season. Presumably, the Mars thermospheric circulation is responsible for the dynamically controlled heating needed to warm polar night temperatures above radiative equilibrium values. Again, MTGCM simulations were conducted for Ls = 90 and Ls = 270 conditions; polar temperatures were examined and found to be much warmer at Northern high latitudes (perihelion) than at Southern high latitudes (aphelion), similar to Mars aerobraking datasets. The Mars thermospheric circulation is found to be stronger during perihelion solstice conditions than during aphelion conditions, owing to both stronger seasonal solar and dust heating during Mars perihelion. An invited talk was given at the Spring AGU 2004 on this research. A forthcoming GRL paper was drafted on this same topic, but not submitted before the termination of this 1-year grant.
Semiannual and annual variations in the height of the ionospheric F2-peak
NASA Astrophysics Data System (ADS)
Rishbeth, H.; Sedgemore-Schulthess, K. J. F.; Ulich, T.
2000-03-01
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric , in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric . The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.
How Might the Thermosphere and Ionosphere React to an Extreme Space Weather Event?
NASA Astrophysics Data System (ADS)
Fuller-Rowell, T. J.; Fedrizzi, M.; Codrescu, M.; Maruyama, N.; Raeder, J.
2015-12-01
If a Carrington-type CME event of 1859 hit Earth how might the thermosphere, ionosphere, and plasmasphere respond? To start with, the response would be dependent on how the magnetosphere reacts and channels the energy into the upper atmosphere. For now we can assume the magnetospheric convection and auroral precipitation inputs would look similar to a 2003 Halloween storm but stronger and more expanded to mid-latitude, much like what the Weimer empirical model predicts if the solar wind Bz and velocity were -60nT and 1500km/s respectively. For a Halloween-level geomagnetic storm event, the sequence of physical process in the thermosphere and ionosphere are thought to be well understood. The physics-based coupled models, however, have been designed and somewhat tuned to simulate the response to this level of event that have been observed in the last two solar cycles. For an extreme solar storm, it is unclear if the response would be a natural linear extrapolation of the response or if non-linear processes would begin to dominate. A numerical simulation has been performed with a coupled thermosphere ionosphere model to quantify the likely response to an extreme space weather event. The simulation predict the neutral atmosphere would experience horizontal winds of 1500m/s, vertical winds exceeding 150m/s, and the "top" of the thermosphere well above 1000km. Predicting the ionosphere response is somewhat more challenging because there is significant uncertainty in quantifying some of the other driver-response relationships such as the magnitude and shielding time-scale of the penetration electric field, the possible feedback to the magnetosphere, and the amount of nitric oxide production. Within the limits of uncertainty of the drivers, the magnitude of the response can be quantified and both linear and non-linear responses are predicted.
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.
2007-01-01
We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.
A magnetospheric signature of some F layer positive storms
NASA Technical Reports Server (NTRS)
Miller, N. J.; Mayr, H. G.; Grebowsky, J. M.; Harris, I.; Tulunay, Y. K.
1981-01-01
Calculations of electron density distributions in the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating are presented which indicate a link between the heating and magnetospheric plasma disturbances near the equator. The calculations were made using a self-consistent model of the global sunlit thermosphere-ionosphere system describing the evolution of equatorial plasma disturbances. The heat input is found to cause electron density enhancements that propagate along magnetic field lines from the F2 maximum over mid-latitudes to the equator in the magnetosphere and which correspond to the positive phase of an F layer storm. The positive phase is shown to be generated by the induction of equatorward winds that raise the mid-latitude F layer through momentum transfer from neutral atoms to ionospheric ions, which ions pull electrons with them. Model results are used to identify plasma signatures of equatorward winds and an intensified magnetospheric electric field in Explorer 45 and Arial 4 measurements taken during the positive phase of an F layer storm.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Volland, H.
1971-01-01
A model is proposed in which latitudinal variations in composition and temperature are used to interpret the semiannual effect in the thermospheric density. Two heat sources are postulated for the semiannual circulation: one at high latitudes associated with the semiannual component in the occurance of magnetic storms and a second weaker one that peaks at the equator associated with the semiannual migration between both hemispheres. Depending on the relative magnitude of these sources, the latitude regions in which composition and temperature effects dominate vary. The temperature effects however should be expected weakest at low to mid latitudes where the relative concentration of atomic oxygen is enriched during equinox. At high latitudes the semiannual temperature component would peak, associated with an oxygen depletion in the lower thermosphere during equinox. In combining these features it is shown that the total atmospheric density could still exhibit a relatively small latitude dependence in the semiannual component with the tendency to decrease at high latitudes, in agreement with observations.
CTIPe model capabilities during the 2015 St. Patrick's Day storm
NASA Astrophysics Data System (ADS)
Fernandez-Gomez, I.; Fedrizzi, M.; Codrescu, M.; Borries, C.
2017-12-01
The Coupled Thermosphere Ionosphere Plasmaphere electrodynamics (CTIPe) model is a global physics based model that will be used to explore the ionosphere - thermosphere system response to the onset of 2015 St. Patrick's day storm. This storm, which was one of the strongest geomagnetic storms of the solar cycle 24, was generated by a magnetic cloud followed by a coronal mass ejection (CME) impact. The ionospheric disturbances are identified to be caused by superposition of many effects, like prompt penetration electric fields, neutral winds, thermal expansion and composition changes. Over Europe, measurements like ionosonde observations and Total Electron Content (TEC) maps derived from Global Navigation Satellite System (GNSS) indicate four storm phases (compression, start of main phase, partial recovery and second substorm) during 17th March 2015. CTIPe reproduces well the positive ionospheric storm phases, the compression of the ionosphere to a thin shell and the surges excited in the Auroral region. Furthermore, it reproduces well the changes in the neutral mass density measured by the SWARM satellites. Finally, CTIPe exhibits a coherent storm response for the thermospheric winds, temperature, composition and electron densities during the storm. These model results will be used to support the interpretation of the storms driving mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittencourt, J.A.
1977-08-01
The behavior of the F2-peak height difference, delta h/sub F2/, between low-latitude magnetic conjugate points, is known to be governed by thermospheric winds blowing along the magnetic meridian. Ground-based ionosonde measurement of h/sub m F2/, at two pairs of magnetic conjugate stations, were analyzed in conjunction with the results of a realistic dynamic computer model of the tropical ionospheric F-region, to determine thermospheric wind velocities. The behavior of monthly average values of the sun, at conjugate points, of the thermospheric horizontal wind velocity component in the magnetic meridian, at low latitudes, is inferred for months of solstice and equinox, asmore » well as for periods of low and high solar activity.« less
NASA Technical Reports Server (NTRS)
Hedin, A. E.
1979-01-01
The neutral temperature, neutral densities for N2, O2, O, Ar, He and H, mean molecular weight, and total mass density as predicted by the Mass Spectrometer and Incoherent Scatter empirical thermosphere model are presented in tabular form. The predictions are based on selected altitudes, latitudes, local times, days and other geophysical conditions. The model is dependent on a least squares fit to density data from mass spectrometers on five satellites and temperature data from four incoherent scatter stations, providing coverage for most of solar sunspot cycle 20.
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Maute, A.
2015-12-01
Variability of the midlatitude ionosphere and thermosphere during the 2009 and 2013 sudden stratosphere warmings (SSWs) is investigated in the present study using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. Both the COSMIC observations and TIME-GCM simulations reveal perturbations in the
LITES and GROUP-C Mission Update: Ionosphere and Thermosphere Sensing from the ISS
NASA Astrophysics Data System (ADS)
Stephan, A. W.; Budzien, S. A.; Chakrabarti, S.; Hysell, D. L.; Powell, S. P.; Finn, S. C.; Cook, T.; Bishop, R. L.
2016-12-01
The Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiments are scheduled for launch to the International Space Station (ISS) in November 2016 as part of the Space Test Program Houston #5 payload (STP-H5). The two experiments provide technical development and risk-reduction for future space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. The combined instrument suite of these experiments offers a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor and tomographic approaches. LITES is an imaging spectrograph that spans 60-140 nm and continuously acquires limb profiles of the ionosphere and thermosphere from 150-350 km altitude. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients and an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements. High-cadence limb images and nadir photometry from GROUP-C/LITES are combined to tomographically reconstruct high-fidelity two-dimensional volume emission rates within the ISS orbital plane. The GPS occultation receiver provides independent measurements to calibrate and validate advanced daytime ionospheric algorithms and nighttime tomography. The vantage from the ISS on the lower portion of the thermosphere and ionosphere will yield measurements complementary to the NASA GOLD and ICON missions which are expected to fly during the STP-H5 mission. We present a mission status update and available early orbit observations, and the opportunities for using these new data to help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere system that have important implications for operational systems.
NASA Astrophysics Data System (ADS)
Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.
2015-12-01
Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.
Thermosphere-Ionosphere-Mesosphere Modeling Using the Time-GCM
1997-09-30
observations during the GEM/SUNDIAL period of 28-29 March 1992,” J . Geophys. Res., 101, 26,681-26,696. T . J . Fuller-Rowell, M. V. Codrescu, R. G. Roble, and...South Pole, Mawson and Halley. The simulation provided a global background context upon which the widely-separated optical observations can be placed. The...of the ionosphere,” J . Geophys. Res., submitted. B. A. Emery, et al., 1996. “AMIE-TIGCM comparisons with global ionospheric and thermospheric
NASA Astrophysics Data System (ADS)
Pino, Lorenzo; Ehrenreich, David; Wyttenbach, Aurélien; Bourrier, Vincent; Nascimbeni, Valerio; Heng, Kevin; Grimm, Simon; Lovis, Christophe; Malik, Matej; Pepe, Francesco; Piotto, Giampaolo
2018-04-01
Space-borne low- to medium-resolution (ℛ 102-103) and ground-based high-resolution spectrographs (ℛ 105) are commonly used to obtain optical and near infrared transmission spectra of exoplanetary atmospheres. In this wavelength range, space-borne observations detect the broadest spectral features (alkali doublets, molecular bands, scattering, etc.), while high-resolution, ground-based observations probe the sharpest features (cores of the alkali lines, molecular lines). The two techniques differ by several aspects. (1) The line spread function of ground-based observations is 103 times narrower than for space-borne observations; (2) Space-borne transmission spectra probe up to the base of thermosphere (P ≳ 10-6 bar), while ground-based observations can reach lower pressures (down to 10-11 bar) thanks to their high resolution; (3) Space-borne observations directly yield the transit depth of the planet, while ground-based observations can only measure differences in the apparent size of the planet at different wavelengths. These differences make it challenging to combine both techniques. Here, we develop a robust method to compare theoretical models with observations at different resolutions. We introduce πη, a line-by-line 1D radiative transfer code to compute theoretical transmission spectra over a broad wavelength range at very high resolution (ℛ 106, or Δλ 0.01 Å). An hybrid forward modeling/retrieval optimization scheme is devised to deal with the large computational resources required by modeling a broad wavelength range 0.3-2 μm at high resolution. We apply our technique to HD 189733b. In this planet, HST observations reveal a flattened spectrum due to scattering by aerosols, while high-resolution ground-based HARPS observations reveal sharp features corresponding to the cores of sodium lines. We reconcile these apparent contrasting results by building models that reproduce simultaneously both data sets, from the troposphere to the thermosphere. We confirm: (1) the presence of scattering by tropospheric aerosols; (2) that the sodium core feature is of thermospheric origin. When we take into account the presence of aerosols, the large contrast of the core of the sodium lines measured by HARPS indicates a temperature of up to 10 000K in the thermosphere, higher than what reported in the literature. We also show that the precise value of the thermospheric temperature is degenerate with the relative optical depth of sodium, controlled by its abundance, and of the aerosol deck.
NASA Astrophysics Data System (ADS)
Kam, Hosik; Kim, Yong Ha; Hong, Jun-Seok; Lee, Joon-Chan; Choi, Yeon-Ju; Min, Kyung Wook
2014-09-01
The Korea scientific microsatellite, STSAT-1 (Science and Technology Satellite-1), was launched in 2003 and observed far ultraviolet (FUV) airglow from the upper atmosphere with a Far-ultraviolet IMaging Spectrograph (FIMS) at an altitude of 690 km. The FIMS consists of a dual-band imaging spectrograph of 900-1150 Å (S-band) and 1340-1715 Å (L-band). Limb scanning observations were performed only at the S-band, resulting in intensity profiles of OI 989 Å, OI 1026 Å, NII 1085 Å and NI 1134 Å emission lines near the horizon. We compare these emission intensities with those computed by using a theoretical model, the AURIC (Atmospheric Ultraviolet Radiance Integrated Code). The intensities of the OI 1026 Å, NII 1085 Å and NI 1134 Å emissions measured by using the FIMS are overall consistent with the values computed by using AURIC under the thermospheric and solar activity conditions on August 6, 1984, which is close to the FIMS's observation condition. We find that the FIMS dayglow intensity profiles match reasonably well with AURIC intensity profiles for the MSIS90 oxygen atom density profiles within factors of 0.5 and 2. However, the FIMS intensities of the OI 989 Å line are about 2 ˜ 4 times stronger than the AURIC intensities, which is expected because AURIC does not properly simulate resonance scattering of airglow and solar photons at 989 Å by atomic oxygen in the thermosphere. We also find that the maximum tangential altitudes of the oxygen bearing dayglows (OI 989 Å, OI 1026 Å) are higher than those of the nitrogen-bearing dayglows (NII 1085 Å, NI 1134 Å), which is confirmed by using AURIC model calculations. This is expected because the oxygen atoms are distributed at higher altitudes in the thermosphere than the nitrogen molecules. Validations of the qualities of both the FIMS instrument and the AURIC model indicate that AURIC should be updated with improved thermospheric models and with measured solar FUV spectra for better agreement with the observations. Once the updated AURIC model is available, one can extract valuable information on the densities and compositions of the thermosphere from limb scanning observations with an FUV instrument such as FIMS.
NASA Technical Reports Server (NTRS)
Sojka, Jan J.
2003-01-01
The Grant supported research addressing the question of how the NASA Solar Terrestrial Probes (STP) Mission called Geospace electrodynamics Connections (GEC) will resolve space-time structures as well as collect sufficient information to solve the coupled thermosphere-ionosphere- magnetosphere dynamics and electrodynamics. The approach adopted was to develop a high resolution in both space and time model of the ionosphere-thermosphere (I-T) over altitudes relevant to GEC, especially the deep-dipping phase. This I-T model was driven by a high- resolution model of magnetospheric-ionospheric (M-I) coupling electrodynamics. Such a model contains all the key parameters to be measured by GEC instrumentation, which in turn are the required parameters to resolve present-day problems in describing the energy and momentum coupling between the ionosphere-magnetosphere and ionosphere-thermosphere. This model database has been successfully created for one geophysical condition; winter, solar maximum with disturbed geophysical conditions, specifically a substorm. Using this data set, visualizations (movies) were created to contrast dynamics of the different measurable parameters. Specifically, the rapidly varying magnetospheric E and auroral electron precipitation versus the slower varying ionospheric F-region electron density, but rapidly responding E-region density.
The role of data assimilation in maximizing the utility of geospace observations (Invited)
NASA Astrophysics Data System (ADS)
Matsuo, T.
2013-12-01
Data assimilation can facilitate maximizing the utility of existing geospace observations by offering an ultimate marriage of inductive (data-driven) and deductive (first-principles based) approaches to addressing critical questions in space weather. Assimilative approaches that incorporate dynamical models are, in particular, capable of making a diverse set of observations consistent with physical processes included in a first-principles model, and allowing unobserved physical states to be inferred from observations. These points will be demonstrated in the context of the application of an ensemble Kalman filter (EnKF) to a thermosphere and ionosphere general circulation model. An important attribute of this approach is that the feedback between plasma and neutral variables is self-consistently treated both in the forecast model as well as in the assimilation scheme. This takes advantage of the intimate coupling between the thermosphere and ionosphere described in general circulation models to enable the inference of unobserved thermospheric states from the relatively plentiful observations of the ionosphere. Given the ever-growing infrastructure for the global navigation satellite system, this is indeed a promising prospect for geospace data assimilation. In principle, similar approaches can be applied to any geospace observing systems to extract more geophysical information from a given set of observations than would otherwise be possible.
A two-dimensional model of odd nitrogen in the thermosphere and mesosphere
NASA Technical Reports Server (NTRS)
Gerard, J. C.; Roble, R. G.; Rusch, D. W.
1980-01-01
Satellite measurements of the global nitric oxide distribution demonstrating the need for a two dimensional model of odd nitrogen photochemistry and transport in the thermosphere and mesosphere are reviewed. The main characteristics of a new code solving the transport equation for N(4S), N(2D), and N0 are given. This model extends from pole to pole between 75 and 275 km and reacts to the magnetic activity, the ultraviolet solar flux, and the neutral wind field. The effects of ionization and subsequent odd nitrogen production by high latitude particle precipitation are also included. Preliminary results are illustrated for a magnetically quiet solar minimum period with no neutral wind.
NASA Astrophysics Data System (ADS)
Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.
2018-04-01
The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.
NASA Technical Reports Server (NTRS)
Rees, D.; Fuller-Rowell, T. J.
1989-01-01
A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.
NASA Astrophysics Data System (ADS)
Doornbos, E.; Bruinsma, S.; Conde, M.; Forbes, J. M.
2013-12-01
Observations made by the European Space Agency (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite have enabled the production of a spin-off product of high resolution and high accuracy data on thermosphere density, derived from aerodynamic analysis of acceleration measurements. In this regard, the mission follows in the footsteps of the earlier accelerometer-carrying gravity missions CHAMP and GRACE. The extremely high accuracy and redundancy of the six accelerometers carried by GOCE in its gravity gradiometer instrument has provided new insights on the performance and calibration of these instruments. Housekeeping data on the activation of the GOCE drag free control thruster, made available by ESA has made the production of the thermosphere data possible. The long duration low altitude of GOCE, enabled by its drag free control system, has ensured the presence of very large aerodynamic accelerations throughout its lifetime. This has been beneficial for the accurate derivation of data on the wind speed encountered by the satellite. We have compared the GOCE density observations with data from CHAMP and GRACE. The crosswind data has been compared with CHAMP observations, as well as ground-based observations, made using Scanning Doppler Imagers in Alaska. Models of the thermosphere can provide a bigger, global picture, required as a background in the interpretation of the local space- and ground-based measurements. The comparison of these different sources of information on thermosphere density and wind, each with their own strengths and weaknesses, can provide scientific insight, as well as inputs for further refinement of the processing algorithms and models that are part of the various techniques. Density and crosswind data derived from GOCE (dusk-dawn) and CHAMP (midnight-noon) satellite accelerometer data, superimposed over HWM07 modelled horizontal wind vectors.
NASA Astrophysics Data System (ADS)
Pilinski, M.; Crowley, G.; Sutton, E.; Codrescu, M.
2016-09-01
Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. In this paper, we will review the driving requirements for our model, summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models. As part of the analysis, we compare the drag observed by a variety of satellites which were not used as part of the assimilation-dataset and whose perigee altitudes span a range from 200 km to 700 km.
NASA Astrophysics Data System (ADS)
Maute, A. I.; Hagan, M. E.; Roble, R. G.; Richmond, A. D.; Yudin, V. A.; Liu, H.; Goncharenko, L. P.; Burns, A. G.; Maruyama, N.
2013-12-01
The ionosphere-thermosphere system is not only influenced from geospace but also by meteorological variability. Ionospheric observations of GPS TEC during the current solar cycle have shown that the meteorological variability is important during solar minimum, but also can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to help understand the mechanisms that couple the lower and upper atmosphere over the solar cycle. Numerical modelers invoke different methods to simulate realistic, specified events of meteorological variability, e.g. specify the lower boundary forcing, nudge the middle atmosphere, data assimilation. To study the vertical coupling, we first need to assess the numerical models and the various methods used to simulate realistic events with respect to the dynamics of the mesosphere-lower thermosphere (MLT) region, the electrodynamics, and the ionosphere. This study focuses on Stratospheric Sudden Warming (SSW) periods since these are associated with a strongly disturbed middle atmosphere which can have effects up to the ionosphere. We will use the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation model (TIME-GCM) to examine several recent SSW periods, e.g. 2009, 2012, and 2013. The SSW period in TIME-GCM will be specified in three different ways: 1. using reanalysis data to specify the lower boundary; 2. nudging the neutral atmosphere (temperature and winds) with the Whole Atmosphere Community Climate Model (WACCM)/Goddard Earth Observing System Model, Version 5 (GEOS-5) results; 3. nudging the background atmosphere (temperature and winds) with WACCM/GEOS5 results. The different forcing methods will be evaluated for the SSW periods with respect to the dynamics of the MLT region, the low latitude vertical drift changes, and the ionospheric effects for the different SSW periods. With the help of ionospheric data at different longitudinal sectors it will be possible to assess the simulations of the SSW periods and provide guidance for future studies.
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.
2017-12-01
During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the strength of the ionospheric convection, field-aligned current densities and ring current pressure amplitude and distribution.
NASA Technical Reports Server (NTRS)
Leslie, Fred W.; Justus, C. G.
2008-01-01
Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.
A Combined Solar and Geomagnetic Index for Thermospheric Climate
NASA Technical Reports Server (NTRS)
Hunt, Linda; Mlynczak, Marty
2015-01-01
Infrared radiation from nitric oxide (NO) at 5.3 Â is a primary mechanism by which the thermosphere cools to space. The SABER instrument on the NASA TIMED satellite has been measuring thermospheric cooling by NO for over 13 years. Physically, changes in NO emission are due to changes in temperature, atomic oxygen, and the NO density. These physical changes however are driven by changes in solar irradiance and changes in geomagnetic conditions. We show that the SABER time series of globally integrated infrared power (Watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This fit enables several fundamental properties of NO cooling to be determined as well as their variability with time, permitting reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to be solar cycle dependent. This reconstruction provides a long-term time series of an integral radiative constraint on thermospheric climate that can be used to test climate models.
INSIGHT (interaction of low-orbiting satellites with the surrounding ionosphere and thermosphere)
NASA Astrophysics Data System (ADS)
Schlicht, Anja; Reussner, Elisabeth; Lühr, Hermann; Stolle, Claudia; Xiong, Chao; Schmidt, Michael; Blossfeld, Mathis; Erdogan, Eren; Pancetta, Francesca; Flury, Jakob
2016-04-01
In the framework of the DFG special program "Dynamic Earth" the project INSIGHT, started in September 2015, is studying the interactions between the ionosphere and thermosphere as well as the role of the satellites and their instruments in observing the space environment. Accelerometers on low-Earth orbiters (LEOs) are flown to separate non-gravitational forces acting on the satellite from influences of gravitational effects. Amongst others these instruments provide valuable information for improving our understanding of thermospheric properties like densities and winds. An unexpected result, for example, is the clear evidence of geomagnetic field control on the neutral upper atmosphere. The charged particles of the ionosphere act as mediators between the magnetic field and the thermosphere. In the framework of INSIGHT the climatology of the thermosphere will be established and the coupling between the ionosphere and thermosphere is studied. There are indications that the accelerometers are influenced by systematic errors not identified up to now. For GRACE it is one of the discussed reasons, why this mission so far did not reach the baseline accuracy. Beutler et al. 2010 discussed the limited use of the GRACE accelerometer measurements in comparison to stochastic pulses in gravity field recovery. Analysis of the accelerometer measurements show many structures in the high frequency region which can be traced back to switching processes of electric circuits in the spacecraft, like heater and magnetic torquer switching, or so called twangs, which can be associated with discharging of non-conducting surfaces of the satellite. As all observed signals have the same time dependency a common origin is very likely, namely the coupling of time variable electric currents into the accelerometer signal. In GOCE gravity field gradients non-gravitational signatures around the magnetic poles are found indicating that even at lower frequencies problems occur. INSIGHT will identify systematic errors in the accelerometer measurements and establish an algorithm to separate these errors from real accelerations with the analysis of satellite rotations on GOCE. A transfer to other accelerometer missions will be studied. Accelerometer missions are characterized by satellites of a complex geometry and surface structure making it necessary to take their shape and surface interactions into account. On the other hand accelerometers have to be calibrated in space as biases and bias drifts are inherent. These two facts make it difficult to scale thermospheric densities. To overcome this problem a high precision orbit determination of satellites of simpler structure is more suitable. In the framework of INSIGHT a multi-satellite solution of satellite laser ranging (SLR) measurements is aimed for absolute density determination of the thermosphere. Besides, due to the coupling processes between the ionosphere and thermosphere it shall be studied how ionospheric target quantities such as the electron density can be used to improve thermospheric density modeling. This presentation provides the overall structure of the project INSIGHT as well as first results.
NASA Astrophysics Data System (ADS)
Hickey, M. P.
2010-12-01
There has been a recent resurgence of interest in the association between tsunamis and traveling ionospheric disturbances (TIDs), fueled in part by the use of GPS satellite technologies to remotely monitor the ionosphere. The TID observations have also triggered a renewed interest in the modeling of such events. Up to this point in time the various model simulations have incorporated various simplifications, some of which are briefly described. A future challenge is to bring together suites of models that each realistically describes one of the subsystems. In this talk I will describe the results of using a linear spectral full-wave model to simulate the propagation of a gravity wave disturbance from the sea surface to the thermosphere. In the model this disturbance is driven by a lower boundary perturbation that mimics a tsunami. A linear model describing the response of the ionosphere to neutral atmosphere perturbations, and airglow perturbations driven by ionosphere and neutral atmosphere fluctuations are also described. Additionally, the gravity wave disturbances carries wave momentum, which will be deposited in the thermosphere accompanying the viscous dissipation of wave energy and lead to accelerations of the mean state. In spite of the simplicity of these models, much can be learned from them. It is suggested that these rare events offer a fairly unique opportunity to test models describing such processes. Model predictions of total electron content (TEC) fluctuations are also briefly compared with TEC measurements obtained following some recent major tsunamis.
The Development of New Solar Indices for use in Thermospheric Density Modeling
NASA Technical Reports Server (NTRS)
Tobiska, W. Kent; Bouwer, S. Dave; Bowman, Bruce R.
2006-01-01
New solar indices have been developed to improve thermospheric density modeling for research and operational purposes. Out of 11 new and 4 legacy indices and proxies, we have selected three (F10.7, S10.7, and M10.7) for use in the new JB2006 empirical thermospheric density model. In this work, we report on the development of these solar irradiance indices. The rationale for their use, their definitions, and their characteristics, including the ISO 21348 spectral category and sub-category, wavelength range, solar source temperature region, solar source feature, altitude region of terrestrial atmosphere absorption at unit optical depth, and terrestrial atmosphere thermal processes in the region of maximum energy absorption, are described. We also summarize for each solar index, the facility and instrument(s) used to observe the solar emission, the time frame over which the data exist, the measurement cadence, the data latency, and the research as well as operational availability. The new solar indices are provided in forecast (http://SpaceWx.com) as well as real-time and historical (http://sol.spacenvironment.net/jb2006/) time frames. We describe the forecast methodology, compare results with actual data for active and quiet solar conditions, and compare improvements in F10.7 forecasting with legacy High Accuracy Satellite Drag Model (HASDM) and NOAA SEC forecasts.
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Komjathy, A.; Wang, C.; Rosen, G.
2016-12-01
As part of the NASA-NSF Space Weather Modeling Collaboration, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics system that is based on Data Assimilation (DA) models. MEPS is composed of seven physics-based data assimilation models that cover the globe. Ensemble modeling can be conducted for the mid-low latitude ionosphere using the four GAIM data assimilation models, including the Gauss Markov (GM), Full Physics (FP), Band Limited (BL) and 4DVAR DA models. These models can assimilate Total Electron Content (TEC) from a constellation of satellites, bottom-side electron density profiles from digisondes, in situ plasma densities, occultation data and ultraviolet emissions. The four GAIM models were run for the March 16-17, 2013, geomagnetic storm period with the same data, but we also systematically added new data types and re-ran the GAIM models to see how the different data types affected the GAIM results, with the emphasis on elucidating differences in the underlying ionospheric dynamics and thermospheric coupling. Also, for each scenario the outputs from the four GAIM models were used to produce an ensemble mean for TEC, NmF2, and hmF2. A simple average of the models was used in the ensemble averaging to see if there was an improvement of the ensemble average over the individual models. For the scenarios considered, the ensemble average yielded better specifications than the individual GAIM models. The model differences and averages, and the consequent differences in ionosphere-thermosphere coupling and dynamics will be discussed.
Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J
2014-02-01
The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.
Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity
NASA Astrophysics Data System (ADS)
Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.
2018-03-01
Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.
NASA Astrophysics Data System (ADS)
Ritter, Patricia; Luehr, Hermann
The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere during magnetospheric substorms. This paper presents substorm related observations of the magnetic field on ground and by the CHAMP satellite, their implications for the substorm current reconfiguration scenario, and thermospheric air density signatures after substorm onsets. Based on a large number of events, the average high and low latitude magnetic field signatures after substorm onsets reveal that the magnetic field observations cannot be described adequately by a simple current wedge model. A satisfactory agreement between model results and observations at satellite altitude and on ground can be achieved only if the current reconfiguration scenario combines the following four elements: (1) a gradual decrease of the tail lobe field; (2) a re-routing of a part of the cross-tail current through the ionosphere; (3) eastward ionospheric currents at low and mid latitudes driven by Region-2 field-aligned currents (FACs); and (4) a partial ring current connected to these Region-2 FACs. With the onset of energy input into the ionosphere we observe that the thermospheric density is enhanced first at high latitudes on the night side. The disturbance then travels at an average speed of 650 m/s to lower latitudes, and reaches the equator after 3-4 hours. Under the influence of the Coriolis force the traveling atmospheric disturbance (TAD) is deflected westward.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fesen, C. G.
1990-01-01
The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.
Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)
NASA Astrophysics Data System (ADS)
Keating, G.; Theriot, M.; Bougher, S.
2008-09-01
From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the atmosphere rises on the dayside producing adiabatic cooling and drops on the nightside producing some adiabatic heating. (See figure 1). The thermosphere was discovered from drag measurements to respond to the near 27-day period of the rotating Sun, for which regions of maximum solar activity reappear every 27 days. The increased euv emission from active regions increased temperatures and thermospheric density, (See Figure 2). Fig. 2 Exospheric Temperatures Compared to 10.7cm Solar Index Second diurnal survey (12/5/79 - 3/6/80) Pioneer Venus Orbiter measurements (OAD) 11 day running means [2] Estimates were also made of the response to the 11- year Solar Cycle by combining the Pioneer Venus and Magellan data. Dayside exospheric temperatures changed about 80K over the solar cycle, [8]. Earlier estimates of temperature change gave 70K based on Lyman alpha measurements. The responses to solar variability were much weaker than on Earth due apparently to the much stronger O/CO2 cooling on Venus which tended to act as a thermostat on thermospheric temperatures. Another discovery from drag measurements was the 4 to 5 day oscillation of the Venus thermosphere [3], (See figure 3). These oscillations are interpreted as resulting from the 4-day super-rotation of the atmosphere near the cloud tops. Other indications of the super-rotation of the thermosphere come from displacement of the helium bulge and atomic hydrogen bulge from midnight to near 4AM. Fig. 3 Four to Five Day Oscillations in Thermospheric Densities Magellan 1992. During 2008, the Venus Express periapsis will be dropped from 250km down to approximately 180km to allow drag measurements to be made in the North Polar Region, [9]. Drag measurements above 200km have already been obtained from both Pioneer Venus and Magellan so measurements near 180km should be accurate. In 2009, the periapsis may be decreased to a lower altitude allowing accelerometer measurements to be obtained of drag as a function of altitude, to determine density, scale height, inferred temperature, pressure, and other parameters as a function of altitude. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects in over 30 years. The Venus Express accelerometer drag experiment is very similar to accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter which orbit Mars. The Venus Express drag measurements of the polar region will allow a global empirical model of the thermosphere to emerge. Previous drag measurements have been made principally near the equator. The experiment may help us understand on a global scale, tides, winds, gravity waves, planetary waves, and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The rotating vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The super-rotation may affect escape rates and the evolution of the atmosphere. References: [1] Keating, G. M., et al: Venus Thermosphere and Exosphere: First Satellite Drag Measurements of an Extraterrestrial Atmosphere. Science, Vol. 203, No. 4382, 772-774, Feb. 23, 1979. [2] Keating, G. M. and Bougher, S.W.: Isolation of Major Venus Cooling Mechanism and Implications for Earth and Mars, Journal of Geophysical Research, Vol. 97, 4189-4197, 1992. [3] Keating, G.M.; Taylor, F.W.; Nicholson, J. V. II; and Hinson, E.W. : Short-Term Cyclic Variations and Diurnal Variations of the Venus Upper Atmosphere, Science, Vol. 205, No. 4401, 62-64, July 6, 1979. [4] Bougher, S. W.; Dickinson, R. E.; Ridley, E. C.; Roble, R. G.; Nagy, A. F.; and Cravens, T. E.: Venus mesosphere and thermosphere, II, Global circulation, temperature, and density variations, Icarus, Vol. 68, 284-312, 1986. [5] Keating, G. M. et al.: Evidence of Long-Term Global Decline in the Earth's Thermospheric Densities Apparently Related to Anthropogenic Effects, Geophysical Research Letters, Vol. 27, No. 10, 1522-1526, 2000. [6] Keating, G. M. et al.: Models of Venus Neutral Upper Atmosphere Structure and Composition: The Venus International Reference Atmosphere (Edited by A. L. Kliore, V. I. Moros, and G. M. Keating) Advances in Space Research, Vol. 5, No. 11, 117-171,1985. [7] Keating, G. M.; Hsu, N.C., and Lyu, J.: Improved Thermospheric Model for the Venus International Reference Atmosphere, Proceedings of the 31st Scientific Assembly of COSPAR, Birmingham, England, 139, 1996 (Invited) [8] Keating, G. M. and Hsu, N. C.: The Venus Atmospheric Response to Solar Cycle Variations, Geophysical Research Letters, Vol. 20, 2751-2754, 1993. [9] Keating, G.M. et al: Future drag measurements from Venus Express. Adv
Thermospheric O I 844.6-nm emission in twilight
NASA Technical Reports Server (NTRS)
Bahsoun-Hamade, F.; Wiens, R. H.; Shepherd, G. G.; Richards, P. G.
1994-01-01
The thermospheric O I 844.6-nm column emission rate was measured over Toronto, a midlatitude station, in the autumn of 1991 using an imaging Fabry-Perot spectrometer. Twilight decay curves were measured on four clear evenings when the solar zenith angle was between 95 degs and 104 degs, giving corresponding column emission rates between 874 R and 130 R at 20 degs elevation angle in the azimuth of the Sun. The expected decay curves were calculated from the field line interhemisperic plasma model assuming only photoelectron impact excitation as the production mechanism with a cross section appropriate to an optically thin atmosphere. The agreement was good when the solar and geomagnetic activity levels were low to moderate, but the emission rate was overestimated during high activity periods. The comparison indicates that the photoelectron impact mechanism with a thin-atmosphere cross section is sufficient to explain the twilight decay of the thermospheric O I 844.6-nm emission.
Some new aspects on the superrotation of the thermosphere
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1974-01-01
The motion of the thermosphere with a rotational velocity between 10 and 20 per cent in excess of the earth's rotational velocity has been deduced by King-Hele and his co-workers from the change of the inclination of satellite orbits. To date, no completely satisfactory explanation of the observations has been presented. In this paper, it is shown that in the thermosphere there exists a small diurnal mean driving force in the eastward direction. This force has not previously been considered in analyses of superrotation. A critical review of the observations and a theoretical analysis that takes account of both equinox and solstice conditions is presented. In the lower height region, where the great majority of observations were made, it is possible to achieve agreement between observations and a dynamical model. Additional observational data are needed in the isothermal region for a more complete analysis.
F layer positive response to a geomagnetic storm - June 1972
NASA Technical Reports Server (NTRS)
Miller, N. J.; Grebowsky, J. M.; Mayr, H. G.; Harris, I.; Tulunay, Y. K.
1979-01-01
A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside midlatitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17-18, 1972. It is inferred that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F-layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in the apparent response to magnetospheric E x B drifts. A summer F-layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F-layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics.
The Dynamics of Helium and its Impact on the Upper Thermosphere
NASA Astrophysics Data System (ADS)
Sutton, E. K.; Thayer, J. P.; Wang, W.; Solomon, S. C.; Schmidt, F.
2015-12-01
The TIE-GCM was recently augmented to include helium and argon, two approximately inert species that can be used as tracers of dynamics in the thermosphere. The former species is treated as a major species due to its large abundance near the upper boundary. The effects of exospheric transport are also included in order to simulate realistic seasonal and latitudinal helium distributions. The latter species is treated as a classical minor species, imparting absolutely no forces on the background atmosphere. In this study, we examine the interplay of the various dynamical terms - i.e. background circulation, molecular and Eddy diffusion - as they drive departures from the distributions that would be expected under assumptions of diffusive equilibrium. As this has implications on the formulation of all semi-empirical thermospheric models, we use this understanding to identify the conditions under which helium can significantly affect nowcasts and forecasts of neutral density.
Densities and temperatures in the polar thermosphere
NASA Technical Reports Server (NTRS)
Gardner, L. J.
1977-01-01
The atomic oxygen density at 120 km, the 630 nm airglow temperature, the helium density at 300 km and the molecular nitrogen density near 400 km were examined as functions of geomagnetic latitude, geomagnetic time, season and magnetic activity level. The long-term averages of these quantities were examined so as to provide a baseline of these thermospheric parameters from which future studies may be made for comparison. The hours around magnetic noon are characterized by low temperatures, high 0 and He densities, and median nitrogen densities. The pre-midnight hours exhibit high temperatures, high He density, low nitrogen density and median 0 densities. The post-midnight sector shows low 0 and He densities, median temperatures and high nitrogen densities. These results are compared to recent models and observations and are discussed with respect to their causes due to divergence of the wind field and energy deposition in the thermosphere.
NASA Astrophysics Data System (ADS)
Fedrizzi, M.; Fuller-Rowell, T. J.; Maruyama, N.; Fang, T. W.; Codrescu, M.
2016-12-01
The Sun can directly impact the Earth's environment during solar storms when the interaction between their magnetic fields can severely modify the quiet-time electric fields and current patterns in the ionosphere, which in turn affect neutral temperature, density, winds and composition, and plasma density. The nature of the various solar wind features and their interaction with the upper atmosphere is likely to channel the response into different pathways. Depending on whether the forcing is impulsive or gradual, of long or short durations, intense or moderate, the partitioning of the energy will be different. For instance, a sudden onset of energy deposition is likely to generate a more intense wave field at the expense of the energy being partitioned into local heating, thermal expansion, and composition change. The net electrodynamic and ionospheric response is likely to be significantly different in the two cases. As the ionosphere and thermosphere constituents are controlled by gravity, diffusion, chemical reactions, and bulk transport, it is essential to understand how these processes determine global responses in O and N2 after heating occurs at high latitudes. Since these disturbances are superimposed on a solar EUV-driven circulation system that is mainly ordered in a geographic coordinate frame that varies with local time and season, the interactions can be complex, and ionosphere-thermosphere responses are very different depending on prevailing conditions. The relative abundances of O and N2 are fundamental to understanding local plasma densities and total mass densities, both of which are key parameters underlying space weather forecast needs. In this study, the Coupled model of the Thermosphere, Ionosphere, Plasmasphere and electrodynamics (CTIPe) and the recently developed Ionosphere-Plasmasphere-Electrodynamics (IPE) models are used to quantitatively assess how well the models reproduce the structure of the O/N2 changes and the negative phase observed during geomagnetic storm events. Various datasets from ground and space are used to validate the model results.
Plasma-Neutral Coupling on the Dark and Bright Sides of Antarctica
NASA Astrophysics Data System (ADS)
Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Zhao, J.; Huang, W.; Roberts, B. R.; Fuller-Rowell, T. J.; Richmond, A. D.; Gerrard, A. J.; Weatherwax, A. T.; Gardner, C. S.
2014-12-01
The polar mesosphere and thermosphere provide a unique natural laboratory for studying the complex physical, chemical, neutral dynamical and electrodynamics processes in the Earth's atmosphere and space environment. McMurdo (geographic 77.83S, geomagnetic 80S) is located by the poleward edge of the aurora oval; so energetic particles may penetrate into the lower thermosphere and mesosphere along nearly vertical geomagnetic field lines. Lidar observations at McMurdo from December 2010 to 2014 have discovered several neutral atmosphere phenomena closely related to ionosphereic parameters and geomagnetic activity. For example, the diurnal tidal amplitude of temperatures not only increases super-exponentially from 100 to 110 km but also its growth rate becomes larger at larger Kp index. The lidar discovery of neutral iron (Fe) layers with gravity wave signatures in the thermosphere enabled the direct measurements of neutral temperatures from 30 to 170 km, revealing the neutral-ion coupling and aurora-enhanced Joule heating. A lidar 'marathon' of 174-hour continuous observations showed dramatic changes of composition (Fe atoms and ice particles) densities (over 40 times) in the mesopause region and their correlations to solar events. In this paper we will study the plasma-neutral coupling on the dark side of Antarctica via observation analysis and numerical modeling of the thermospheric Fe layers in the 100-200 km. A newly developed thermospheric Fe/Fe+ model is used to quantify how Fe+ ions are transported from their main deposition region to the E-F region and then neutralized to form Fe layers under dark polar conditions. We will also study the plasma-neutral coupling on the bright side of Antarctica via analyzing Fe events in summer. Complementary observations will be combined to show how the extreme changes of Fe layers are related to aurora particle precipitation and visible/sub-visible ice particles. These observations and studies will open new areas of scientific inquiry regarding the composition, chemistry, neutral dynamics, thermodynamics, and electrodynamics of one of the least-understood regions in the atmosphere.
NASA Astrophysics Data System (ADS)
Chu, X.; Xu, Z.; Zhao, J.; Yu, Z.; Knipp, D. J.; Kilcommons, L. M.; Chen, C.; Fong, W.; Barry, I. F.; Hartinger, M.
2016-12-01
The discovery of thermospheric neutral Fe layers by lidar observations in Antarctica has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly, complementing the radar measurements of the ionosphere and the magnetometer measurements of the geomagnetic field. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere (AIM) coupling and processes. The stunning Fe layer event on 28 May 2011 with clear gravity wave signatures has been simulated successfully with the University of Colorado Thermosphere-Ionosphere Fe/Fe+ (TIFe) model, confirming the theoretical hypothesis that such thermospheric Fe layers are produced through the neutralization of converged Fe+layers. Over 5.5 years of lidar observations at McMurdo have revealed many more cases with variety of patterns - besides the `gravity wave' patterns, there are `diffusive' patterns with both upward and downward phase progressions of Fe layers, and `superposition' patterns with both gravity wave signature and diffusive background. Surprisingly, these Fe layer events exhibit close correlations with geomagnetic storms. They also correspond to remarkable activity of extreme solar wind events, e.g., high-speed stream (HSS) and coronal mass ejection (CME), etc. This paper conducts a systematic investigation of the coupling among TIFe layers, geomagnetic storms, solar wind and IMF via combining ground-based lidar, magnetometer, and SuperDARN data with DMSP, ACE and WIND satellite data along with the TIFe model simulations. We aim to quantitatively determine the relationship between TIFe and magnetic storms, and explore the mechanisms responsible for such correlations. The new insights gained through this investigation will certainly advance our understandings of the AIM coupling processes, especially the neutral atmosphere responses to geomagnetic storms and solar activity.
Empirical wind model for the middle and lower atmosphere. Part 2: Local time variations
NASA Technical Reports Server (NTRS)
Hedin, A. E.; Fleming, E. L.; Manson, A. H.; Schmidlin, F. J.; Avery, S. K.; Clark, R. R.; Franke, S. J.; Fraser, G. J.; Tsuda, T.; Vial, F.
1993-01-01
The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Local time variations in the mesosphere are derived from rocket soundings, incoherent scatter radar, MF radar, and meteor radar. Low-order spherical harmonics and Fourier series are used to describe these variations as a function of latitude and day of year with cubic spline interpolation in altitude. The model represents a smoothed compromise between the original data sources. Although agreement between various data sources is generally good, some systematic differences are noted. Overall root mean square differences between measured and model tidal components are on the order of 5 to 10 m/s.
NASA Astrophysics Data System (ADS)
McInerney, J. M.; Liu, H.; Marsh, D. R.; Solomon, S. C.; Vitt, F.; Conley, A. J.
2017-12-01
The total solar eclipse of August 21, 2017 transited the entire continental United States. This presented an opportunity for model simulation of eclipse effects on the lower atmosphere, upper atmosphere, and ionosphere. The Community Earth System Model (CESM), v2.0, now includes a functional version of the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) that has a fully interactive ionosphere and thermosphere. WACCM-X, with a model top up to 700 kilometers, is an atmospheric component of CESM and is being developed at the National Center for Atmospheric Research in Boulder, Colorado. Here we present results from simulations using this model during a total solar eclipse. This not only gives insights into the effects of the eclipse through the entire atmosphere from the surface through the ionosphere/thermosphere, but also serves as a validation tool for the model.
NASA Astrophysics Data System (ADS)
Calabia, A.; Matsuo, T.; Jin, S.
2017-12-01
The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.
Dramatic changes of the thermosphere and ionosphere caused by the quasi-two-day wave forcing
NASA Astrophysics Data System (ADS)
Yue, J.; Wang, W.
2013-12-01
Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. However, the mechanisms of this effect either by penetrating directly into the thermosphere or by perturbing the dynamo electrodynamics have not been determined. We employ the NCAR TIME-GCM to simulate the interaction between traveling planetary waves and mean wind or tides, and the impact of this interaction on the ionospheric E-region dynamo, F-region plasma density, thermospheric density and O/N2. In particular, as shown in Figure 1, the TEC decreases by 20-30% during a strong QTDW event in the lower thermosphere from the TIME-GCM output. We find a simultaneously 20-30% decrease of O/N2 in the F2 peak in Figure 2. Therefore, the changes of the thermosphere general circulation, neutral temperature and eddy diffusivity are investigated to account for the O/N2 decrease. Because the QTDW dissipates in the lower thermosphere and drive the mean wind westward, the general circulation patterns are altered and the upwelling is enhanced. On the other hand, the QTDW interacts strongly with tides in the mesosphere and lower thermosphere, consequently changing the wind dynamo in the E-region. The effects of these interactions on the changes of the thermosphere and ionosphere will be reported. Decrease of TEC by the QTDW forcing Change of O/N2 by the QTDW forcing
NASA Astrophysics Data System (ADS)
Crowley, G.; Pilinski, M.; Sutton, E. K.; Codrescu, M.; Fuller-Rowell, T. J.; Matsuo, T.; Fedrizzi, M.; Solomon, S. C.; Qian, L.; Thayer, J. P.
2016-12-01
Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected by the variability in density and motion of the near earth space environment. Drastic changes in the neutral density of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, temporarily losing track of satellites, and errors when predicting collisions in space. We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral atmospheric state related to orbital drag conditions. The system outputs include neutral density, winds, temperature, composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near real-time and predicted space weather data and indices as the inputs. Features of this technique include: • Satellite drag specifications with errors lower than current models • Altitude coverage up to 1000km • Background state representation using both first principles and empirical models • Assimilation of satellite drag and other datatypes • Real time capability • Ability to produce 72-hour forecasts of the atmospheric state In this paper, we will summarize the model design and assimilative architecture, and present preliminary validation results. Validation results will be presented in the context of satellite orbit errors and compared with several leading atmospheric models including the High Accuracy Satellite Drag Model, which is currently used operationally by the Air Force to specify neutral densities. As part of the analysis, we compare the drag observed by a variety of satellites which were not used as part of the assimilation-dataset and whose perigee altitudes span a range from 200km to 700 km.
Thermospheric nitric oxide from the ATLAS 1 and Spacelab 1 missions
NASA Technical Reports Server (NTRS)
Torr, Marsha R.; Torr, D. G.; Chang, T.; Richards, P.; Swift, W.; Li, N.
1995-01-01
Spectral and spatial images obtained with the Imaging Spectrometric Observatory on the ATLAS 1 and Spacelab 1 missions are used to study the ultraviolet emissions of nitric oxide in the thermosphere. By synthetically fitting the measured NO gamma bands, intensities are derived as a function of altitude and latitude. We find that the NO concentrations inferred from the ATLAS 1 measurements are higher than predicted by our thermospheric airglow model and tend to lie to the high side of a number of earlier measurements. By comparison with synthetic spectral fits, the shape of the NO gamma bands is used to derive temperature as a function of altitude. Using the simultaneous spectral and spatial imaging capability of the instrument, we present the first simultaneously acquired altitude images of NO gamma band temperature and intensity in the thermosphere. The lower thermospheric temperature images show structure as a function of altitude. The spatial imaging technique appears to be a viable means of obtaining temperatures in the middle and lower thermosphere, provided that good information is also obtained at the higher altitudes, as the contribution of the overlying, hotter NO is nonnegligible. By fitting both self-absorbed and nonabsorbed bands of the NO gamma system, we show that the self absorption effects are observable up to 200 km, although small above 150 km. The spectral resolution of the instrument (1.6 A) allows separation of the N(+)(S-5) doublet, and we show the contribution of this feature to the combination of the NO gamma (1, 0) band and the N(+)(S-5) doublet as a function of altitude (less than 10% below 200 km). Spectral images including the NO delta bands support previous findings that the fluorescence efficiency is much higher than that determined from laboratory measurements. The Spacelab 1 data indicate the presence of a significant population of hot NO in the vehicle environment of that early shuttle mission.
NASA Astrophysics Data System (ADS)
Snively, J. B.
2017-12-01
Our understanding of acoustic-gravity wave (AGW) dynamics at short periods ( minutes to hour) and small scales ( 10s to 100s km) in the mesosphere, thermosphere, and ionosphere (MTI) has benefited considerably from horizontally- and vertically-resolved measurements of layered species. These include, for example, imagery of the mesopause ( 80-100 km) airglow layers and vertical profiles of the sodium layer via lidar [e.g., Taylor and Hapgood, PSS, 36(10), 1988; Miller et al., PNAS, 112(49), 2015; Cao et al., JGR, 121, 2016]. In the thermosphere-ionosphere, AGW perturbations are also revealed in electron density profiles [Livneh et al., JGR, 112, 2007] and maps of total electron content (TEC) from global positioning system (GPS) receivers [Nishioka et al., GRL, 40(21), 2013]. To the extent that AGW signatures in layered species can be quantified, and the ambient atmospheric state measured or estimated, numerical models enable investigations of dynamics at intermediate altitudes that cannot readily be measured (e.g., above and below the 80-100 km mesopause region). Here, new 2D and 3D versions of the Model for Acoustic-Gravity Wave Interactions and Coupling (MAGIC) [e.g., Snively and Pasko, JGR, 113(A6), 2008, and references therein] are introduced and applied to investigate spectra of short-period AGW that can pass through the mesopause region to reach and impact the thermosphere. Simulation case studies are constructed to investigate both their signatures through the hydroxyl airglow layer [e.g., Snively et al., JGR 115(A11), 2010] and their effects above. These waves, with large vertical wavelengths and fast horizontal phase speeds, also include those that may be subject to evanescence at mesopause or in the middle-thermosphere, with potential for ducting or dissipation between where static stability is higher. Despite complicating interpretations of momentum fluxes, evanescence plays an under-appreciated role in vertical coupling by AGW [Walterscheid and Hecht, JGR, 108(D11), 2003]; it enables rapid ascents via tunneling and in some cases may enhance observable signatures. Results provide insight into these complications, and suggest opportunities to better-interpret signatures of waves that may have large effects via vertical coupling into the thermosphere despite limited impacts on mean flow.
SAMI3_ICON: Model of the Ionosphere/Plasmasphere System
NASA Astrophysics Data System (ADS)
Huba, J. D.; Maute, A.; Crowley, G.
2017-10-01
The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the F layer at NmF2 (hmF2).
The non-storm time corrugated upper thermosphere: What is beyond MSIS?
NASA Astrophysics Data System (ADS)
Liu, Huixin; Thayer, Jeff; Zhang, Yongliang; Lee, Woo Kyoung
2017-06-01
Observations in the recent decade have revealed many thermospheric density corrugations/perturbations under nonstorm conditions (Kp < 2). They are generally not captured by empirical models like Mass Spectrometer Incoherent Scatter (MSIS) but are operationally important for long-term orbital evolution of Low Earth Orbiting satellites and theoretically for coupling processes in the atmosphere-ionosphere system. We review these density corrugations by classifying them into three types which are driven respectively by the lower atmosphere, ionosphere, and solar wind/magnetosphere. Model capabilities in capturing these features are discussed. A summary table of these corrugations is included to provide a quick guide on their magnitudes, occurring latitude, local time, and season.
Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor
NASA Astrophysics Data System (ADS)
Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team
2017-10-01
Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.
NASA Astrophysics Data System (ADS)
Dhadly, Manbharat; Conde, Mark
2017-06-01
It is widely presumed that the convective stability and enormous kinematic viscosity of Earth's upper thermosphere hinders development of both horizontal and vertical wind shears and other gradients. Any strong local structure (over scale sizes of several hundreds of kilometers) that might somehow form would be expected to dissipate rapidly. Air flow in such an atmosphere should be relatively simple, and transport effects only slowly disperse and mix air masses. However, our observations show that wind fields in Earth's thermosphere have much more local-scale structure than usually predicated by current modeling techniques, at least at auroral latitudes; they complicate air parcel trajectories enormously, relative to typical expectations. For tracing air parcels, we used wind measurements of an all-sky Scanning Doppler Fabry-Perot interferometer and reconstructed time-resolved two-dimensional maps of the horizontal vector wind field to infer forward and backward air parcel trajectories over time. This is the first comprehensive study to visualize the complex motions of thermospheric air parcels carried through the actual observed local-scale structures in the high-latitude winds. Results show that thermospheric air parcel transport is a very difficult observational problem, because the trajectories followed are very sensitive to the detailed features of the driving wind field. To reconstruct the actual motion of a given air parcel requires wind measurements everywhere along the trajectory followed, with spatial resolutions of 100 km or less, and temporal resolutions of a few minutes or better. Understanding such transport is important, for example, in predicting the global-scale impacts of aurorally generated composition perturbations.
Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds
NASA Astrophysics Data System (ADS)
Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.
2018-01-01
This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.
NASA Technical Reports Server (NTRS)
Terada, Naoki; Leblanc, Francois; Nakagawa, Hiromu; Medvedev, Alexander S.; Yigit, Erdal; Kuroda, Takeshi; Hara, Takuya; England, Scott L.; Fujiwara, Hitoshi; Terada, Kaori;
2017-01-01
Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small-scale perturbations with apparent wavelengths between approx. 100 and approx. 500 km in the Ar density around the exobase show a clear dependence on temperature (T(sub 0)) of the upper thermosphere. The average amplitude of the perturbations is approx. 10% on the dayside and approx. 20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low-latitude region of Earths upper thermosphere, respectively. The amplitudes are inversely proportional to T(sub 0), suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T(sub 0), dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small-scale perturbations are mainly determined by convective breaking saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.
NASA Astrophysics Data System (ADS)
Pokhotelov, Dimitry; Becker, Erich; Stober, Gunter; Chau, Jorge L.
2018-06-01
Thermal tides play an important role in the global atmospheric dynamics and provide a key mechanism for the forcing of thermosphere-ionosphere dynamics from below. A method for extracting tidal contributions, based on the adaptive filtering, is applied to analyse multi-year observations of mesospheric winds from ground-based meteor radars located in northern Germany and Norway. The observed seasonal variability of tides is compared to simulations with the Kühlungsborn Mechanistic Circulation Model (KMCM). It is demonstrated that the model provides reasonable representation of the tidal amplitudes, though substantial differences from observations are also noticed. The limitations of applying a conventionally coarse-resolution model in combination with parametrisation of gravity waves are discussed. The work is aimed towards the development of an ionospheric model driven by the dynamics of the KMCM.
NASA Astrophysics Data System (ADS)
Eswaraiah, S.; Kim, Yong Ha; Liu, Huixin; Ratnam, M. Venkat; Lee, Jaewook
2017-08-01
We have investigated the coupling between the stratosphere and mesosphere-lower thermosphere (MLT) in the Southern Hemisphere (SH) during 2010 minor sudden stratospheric warmings (SSWs). Three episodic SSWs were noticed in 2010. Mesospheric zonal winds between 82 and 92 km obtained from King Sejong Station (62.22°S, 58.78°W) meteor radar showed the significant difference from usual trend. The zonal wind reversal in the mesosphere is noticed a week before the associated SSW similar to 2002 major SSW. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km is simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to 2002 major SSW.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
McCormack, J. P.; Sassi, F.; Hoppel, K.; Ma, J.; Eckermann, S. D.
2015-12-01
We investigate the evolution of neutral atmospheric dynamics in the 10-100 km altitude range before, during, and after recent stratospheric sudden warmings (SSWs) using a prototype high-altitude version of the Navy Global Environmental Model (NAVGEM), which combines a 4-dimensional variational (4DVAR) data assimilation system with a 3-time-level semi-Lagrangian semi-implicit global forecast model. In addition to assimilating conventional meteorological observations, NAVGEM also assimilates middle atmospheric temperature and constituent observations from both operational and research satellite platforms to provide global synoptic meteorological analyses of winds, temperatures, ozone, and water vapor from the surface to ~90 km. In this study, NAVGEM analyses are used to diagnose the spatial and temporal evolution of the main dynamical drivers in the mesosphere and lower thermosphere (MLT) before, during, and after specific SSW events during the 2009-2013 period when large disturbances were observed in the thermosphere/ionosphere (TI) region. Preliminary findings show strong modulation of the semidiurnal tide in the MLT during the onset of an SSW. To assess the impact of the neutral atmosphere dynamical variability on the TI system, NAVGEM analyses are used to constrain simulations of select SSW events using the specified dynamics (SD) configuration of the extended Whole Atmosphere Community Climate Model (WACCM-X).
Anticipated Observation of Waves and Tides by the GOLD Mission Using a GCM and GLOW model
NASA Astrophysics Data System (ADS)
Greer, K.; Solomon, S. C.; Rusch, D. W.
2017-12-01
One of the major scientific objectives of the GOLD mission is to address the significance of atmospheric waves and tides propagating from below on the thermospheric temperature structure. Here we examine the modes of tides and spectrum of waves that will be observed by GOLD in geostationary orbit. The GOLD instrument is an imaging spectrograph that will measure the Earth's emissions from 132 to 162 nm. These measurements will be used to image thermospheric temperature and composition near 160 km on the dayside disk at half-hour time scales. TIE-GCM is used to produce a realistic model atmosphere, where different wave and tidal components can be easily extracted, and GLobal AirglOW (GLOW) model produces the emissions in the spectral bands observed by GOLD.
Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere
NASA Astrophysics Data System (ADS)
Lu, G.; Sheng, C.
2017-12-01
High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.
Energy Transport in the Thermosphere During the Solar Storms of April 2002
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.; Martin-Torres, F. J.; Crowley, Geoff; Funke, Bernd; Lu, Gang; Russell, III, James M.; Kozyra, Janet; Sharma, Ramesh; Gordley, Larry; Paxton, Larry
2005-01-01
The dramatic solar storm events of April 2002 deposited a large amount of energy into the Earth's upper atmosphere, substantially altering the thermal structure, the chemical composition, the dynamics, and the radiative environment. We examine the flow of energy within the thermosphere during this storm period from the perspective of infrared radiation transport and heat conduction. Observations from the SABER instrument on the TIMED satellite are coupled with computations based on the ASPEN thermospheric general circulation model to assess the energy flow. The dominant radiative response is associated with dramatically enhanced infrared emission from nitric oxide at 5.3 microns from which a total of approx. 7.7 x 10(exp 23) ergs of energy are radiated during the storm. Energy loss rates due to NO emission exceed 2200 Kelvin per day. In contrast, energy loss from carbon dioxide emission at 15 microns is only approx. 2.3% that of nitric oxide. Atomic oxygen emission at 63 microns is essentially constant during the storm. Energy loss from molecular heat conduction may be as large as 3.8% of the NO emission. These results confirm the "natural thermostat" effect of nitric oxide emission as the primary mechanism by which storm energy is lost from the thermosphere below 210 km.
NASA Marshall Engineering Thermosphere Model. 2.0
NASA Technical Reports Server (NTRS)
Owens, J. K.
2002-01-01
This Technical Memorandum describes the NASA Marshall Engineering Thermosphere Model-Version 2.0 (MET-V 2.0) and contains an explanation on the use of the computer program along with an example of the MET-V 2.0 model products. The MET-V 2.0 provides an update to the 1988 version of the model. It provides information on the total mass density, temperature, and individual species number densities for any altitude between 90 and 2,500 km as a function of latitude, longitude, time, and solar and geomagnetic activity. A description is given for use of estimated future 13-mo smoothed solar flux and geomagnetic index values as input to the model. Address technical questions on the MET-V 2.0 and associated computer program to Jerry K. Owens, Spaceflight Experiments Group, Marshall Space Flight Center, Huntsville, AL 35812 (256-961-7576; e-mail Jerry.Owens@msfc.nasa.gov).
On the fast zonal transport of the STS-121 space shuttle exhaust plume in the lower thermosphere
NASA Astrophysics Data System (ADS)
Yue, Jia; Liu, Han-Li; Meier, R. R.; Chang, Loren; Gu, Sheng-Yang; Russell, James, III
2013-03-01
Meier et al. (2011) reported rapid eastward transport of the STS-121 space shuttle (launch: July 4, 2006) main engine plume in the lower thermosphere, observed in hydrogen Lyman α images by the GUVI instrument onboard the TIMED satellite. In order to study the mechanism of the rapid zonal transport, diagnostic tracer calculations are performed using winds from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulation of July, 2006. It is found that the strong eastward jet at heights of 100-110 km, where the exhaust plume was deposited, results in a persistent eastward tracer motion with an average velocity of 45 m/s. This is generally consistent with, though faster than, the prevailing eastward shuttle plume movement with daily mean velocity of 30 m/s deduced from the STS-121 GUVI observation. The quasi-two-day wave (QTDW) was not included in the numerical simulation because it was found not to be large. Its absence, however, might be partially responsible for insufficient meridional transport to move the tracers away from the fast jet in the simulation. The current study and our model results from Yue and Liu (2010) explain two very different shuttle plume transport scenarios (STS-121 and STS-107 (launch: January 16, 2003), respectively): we conclude that lower thermospheric dynamics is sufficient to account for both very fast zonal motion (zonal jet in the case of STS-121) and very fast meridional motion to polar regions (large QTDW in the case of STS-107).
Generation of traveling atmospheric disturbances during pulsating geomagnetic storms
NASA Astrophysics Data System (ADS)
Gardner, Larry; Schunk, Robert
Traveling Atmospheric Disturbances (TADs) are effective in transporting momentum and en-ergy deposited at high latitudes to the mid and low latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper ther-mosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here, a high-resolution global thermosphere-ionosphere model was used to study the basic characteristic of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the May 4, 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs were excited that propagated away form the auroral oval both toward the poles and toward the equator at all longitudes, with the maximum amplitudes between midnight and dawn. The TAD amplitudes were a maximum near the poles, diminished towards the equator and were larger on the nightside than on the dayside. The TADs propagated at a slight upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreas-ing latitude. The TADs crossed the equator and propagated to mid-latitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500-3000 km and the phase speeds from 800-1000 m/s. The maximum TAD perturbations are 20% for the mass density 14% for the neutral temperature and 100 m/s for the winds.
Generation of traveling atmospheric disturbances during pulsating geomagnetic storms
NASA Astrophysics Data System (ADS)
Gardner, L. C.; Schunk, R. W.
2010-08-01
Traveling atmospheric disturbances (TADs) are effective in transporting momentum and energy deposited at high latitudes to the midlatitude and low-latitude regions of the thermosphere. They also act to transport momentum and energy from the lower thermosphere into the upper thermosphere. Previously, model studies have been conducted to determine the characteristics of isolated, single-pulse TADs, but the generation of multiple TADs excited during pulsating storms have not been considered before. Here a high-resolution global thermosphere-ionosphere model was used to study the basic characteristics of multiple TADs excited during pulsating storms, including idealized weak and strong pulsating storms, and an approximation of the 4 May 1998 pulsating storm. For all three pulsating storm simulations, multiple TADs that propagated away from the auroral oval toward both the poles and the equator at all longitudes, with the maximum amplitudes between midnight and dawn, were excited. The TAD amplitudes were at maximum near the poles and diminished toward the equator and were larger on the nightside than on the dayside. The TADs propagated at a slightly upward angle to the horizontal, with the result that the lower boundary of the TADs increased with decreasing latitude. The TADs crossed the equator and propagated to midlatitudes in the opposite hemisphere, where wave interference occurred for the strong pulsating storm cases. The TAD wavelengths vary from 2500 to 3000 km and the phase speeds vary from 800 to 1000 m/s. The maximum TAD perturbations are 20% for the mass density, 14% for the neutral temperature, and 100 m/s for the winds.
Mars’ seasonal mesospheric transport seen through nitric oxide nightglow
NASA Astrophysics Data System (ADS)
Milby, Zachariah; Stiepen, Arnaud; Jain, Sonal; Schneider, Nicholas M.; Deighan, Justin; Gonzalez-Galindo, Francisco; Gerard, Jean-Claude; Stevens, Michael H.; Bougher, Stephen W.; Evans, J. Scott; Stewart, A. Ian; Chaffin, Michael; Crismani, Matteo; McClintock, William E.; Clarke, John T.; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Forget, Francois; Lo, Daniel Y.; Hubert, Benoît; Jakosky, Bruce
2017-10-01
We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude to the north.These questions are now addressed through an extensive dataset of disk images, in complement to improved simulations of the LMD-MGCM and the Mars Global Ionosphere-Thermosphere Model (MGITM) models.
Mlynczak, Martin G; Hunt, Linda A; Mertens, Christopher J; Thomas Marshall, B; Russell, James M; Woods, Thomas; Earl Thompson, R; Gordley, Larry L
2014-04-16
Infrared radiative cooling of the thermosphere by carbon dioxide (CO 2 , 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared cooling agents over a complete solar cycle. SABER has documented dramatic variability in the radiative cooling on time scales ranging from days to the 11 year solar cycle. Deep minima in global mean vertical profiles of radiative cooling are observed in 2008-2009. Current solar maximum conditions, evidenced in the rates of radiative cooling, are substantially weaker than prior maximum conditions in 2002-2003. The observed changes in thermospheric cooling correlate well with changes in solar ultraviolet irradiance and geomagnetic activity during the prior maximum conditions. NO and CO 2 combine to emit 7 × 10 18 more Joules annually at solar maximum than at solar minimum. First record of thermospheric IR cooling rates over a complete solar cycleIR cooling in current solar maximum conditions much weaker than prior maximumVariability in thermospheric IR cooling observed on scale of days to 11 years.
NASA Astrophysics Data System (ADS)
Maute, A. I.; Hagan, M. E.; Richmond, A. D.; Liu, H.; Yudin, V. A.
2014-12-01
The ionosphere-thermosphere system is affected by solar and magnetospheric processes and by meteorological variability. Ionospheric observations of total electron content during the current solar cycle have shown that variability associated with meteorological forcing is important during solar minimum, and can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to study the comparative importance of geomagnetic and meterological forcing.This study focuses on the January 2013 Stratospheric Sudden Warming (SSW) period, which is associated with a very disturbed middle atmosphere as well as with moderately disturbed solar geomagntic conditions. We employ the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) with a nudging scheme using Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of the meteorological and solar wind forcing on the upper atmosphere. The model results are evaluated by comparing with observations e.g., TEC, NmF2, ion drifts. We study the effect of the SSW on the wave spectrum, and the associated changes in the low latitude vertical drifts. These changes are compared to the impact of the moderate geomagnetic forcing on the TI-system during the January 2013 time period by conducting numerical experiments. We will present select highlights from our study and elude to the comparative importance of the forcing from above and below as simulated by the TIME-GCM.
NASA Astrophysics Data System (ADS)
Foerster, M.; Cnossen, I.; Haaland, S.
2013-12-01
The non-dipolar portions of Earth's main magnetic field constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The offset is presently considerable larger (factor ~2) in the Southern Hemisphere compared to the Northern, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern Hemisphere. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained from almost a decade of measurements starting in 2001 of the electron drift instrument (EDI) on board the Cluster satellites and an accelerometer on board the CHAMP spacecraft, respectively. Using the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model, on the other hand, we simulated a 20-day spring equinox interval of low solar activity with both symmetric dipole and realistic (IGRF) geomagnetic field configurations to prove the importance of the hemispheric differences for the plasma and neutral wind dynamics. The survey of both the numerical simulation and the statistical observation results show some prominent asymmetries between the two hemispheres, which are likely due to the different geographic-geomagnetic offset, or even due to different patterns of geomagnetic flux densities. Plasma drift differences can partly be attributed to differing ionospheric conductivities. The forthcoming Swarm satellite mission will provide valuable observations for further detailed analyses of the North-South asymmetries of plasma convection and neutral wind dynamics.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.
1987-01-01
A linear trasnfer function model of the earth's thermosphere which includes the electric field momentum source is used to study the differences in the response characteristics for Joule heating and momentum coupling in the thermosphere. It is found that, for Joule/particle heating, the temperature and density perturbations contain a relatively large trapped component which has the property of a low-pass filter, with slow decay after the source is turned off. The decay time is sensitive to the altitude of energy deposition and is significantly reduced as the source peak moves from 125 to 150 km. For electric field momentum coupling, the trapped components in the temperature and density perturbations are relatively small. In the curl field of the velocity, however, the trapped component dominates, but compared with the temperature and density its decay time is much shorter. Outside the source region the form of excitation is of secondary importance for the generation of the various propagating gravity wave modes.
NASA Technical Reports Server (NTRS)
Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.
1987-01-01
The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.
Empirical model of atomic nitrogen in the upper thermosphere
NASA Technical Reports Server (NTRS)
Engebretson, M. J.; Mauersberger, K.; Kayser, D. C.; Potter, W. E.; Nier, A. O.
1977-01-01
Atomic nitrogen number densities in the upper thermosphere measured by the open source neutral mass spectrometer (OSS) on Atmosphere Explorer-C during 1974 and part of 1975 have been used to construct a global empirical model at an altitude of 375 km based on a spherical harmonic expansion. The most evident features of the model are large diurnal and seasonal variations of atomic nitrogen and only a moderate and latitude-dependent density increase during periods of geomagnetic activity. Maximum and minimum N number densities at 375 km for periods of low solar activity are 3.6 x 10 to the 6th/cu cm at 1500 LST (local solar time) and low latitude in the summer hemisphere and 1.5 x 10 to the 5th/cu cm at 0200 LST at mid-latitudes in the winter hemisphere.
Seasonal Variability in Global Eddy Diffusion and the Effect on Thermospheric Neutral Density
NASA Astrophysics Data System (ADS)
Pilinski, M.; Crowley, G.
2014-12-01
We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time between January 2004 and January 2008 were estimated from residuals of neutral density measurements made by the CHallenging Minisatellite Payload (CHAMP) and simulations made using the Thermosphere Ionosphere Mesosphere Electrodynamics - Global Circulation Model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy-diffusivity models. The eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the RMS difference between the TIME-GCM model and density data from a variety of satellites is reduced by an average of 5%. This result, indicates that global thermospheric density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates how eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are some limitations of this method, which are discussed, including that the latitude-dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion consistent with diffusion observations made by other techniques.
NASA Astrophysics Data System (ADS)
Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Hunt, L. A.; Maute, A. I.
2015-12-01
Tidal diagnostics of SABER CO2 15 μm data shows a substantial modulation of the energy budget of the lower thermosphere due to nonmigrating tides: relative amplitudes of the CO2 cooling rates for the DE2 and DE3 components are on the order of 15-50% with respect to the monthly mean emissions. Supporting photochemical tidal modeling using TIME-GCM and the empirical CTMT model reproduces the general amplitude structures and phases. Furthermore, it indicates that the main tidal coupling mechanism is the temperature dependence of the collisional excitation of the CO2 (01101) fundamental band transition (ν2). The response to neutral density variations is as important as temperature above 115 km as such explaining an unexpected tidal phase behavior in the observation. The contribution of vertical advection is comparatively small. In order to test the sensitivity of the modeled DE2 and DE3 CO2 VER tides to the solar cycle and to the specific choice of mean temperature, atomic oxygen, and CO2 density, we extend the modeling by using background from MSIS, SABER, and SCIAMACHY. The results indicate that the current uncertainties in the background temperature and atomic oxygen used for the photochemical modeling do not impact our conclusion about the relative importance of the tidal coupling mechanisms. Our results quantify the response of the CO2 15 μm infrared cooling of the lower thermosphere to tropospheric tides and delineate the coupling mechanisms that lead to the observed strong longitudinal and local time variability.
NASA Astrophysics Data System (ADS)
Bounhir, Aziza; Benkhaldoun, Zouhair; Kaab, Mohamed; Makela, Jonathan J.; Harding, Brian; Fisher, Daniel J.; Lagheryeb, Amine; Khalifa, Malki; Lazrek, Mohamed; Daassou, Ahmed
2015-08-01
In this paper we report on the thermospheric winds and temperatures over Oukaimeden Observatory in Morocco in some stormy nights during the year 2014. These results are based on Fabry-Perot interferometer (FPI) measurements of Doppler shifts and Doppler broadenings of the 630.0nm spectral emission and pertain to the lower thermosphere region, near 250km altitude. This FPI is a part of RENOIR experiment installed thanks to scientific cooperation program with university of Illinois Urbana (USA).The storm energy input modify the global circulation in the thermosphere resulting in significant changes in the ionospheric plasma properties. Thermospheric and ionospheric storms are closely connected.We first set up the climatological behavior of the thermospheric winds and temperature during quiet nights. These results will be presented in this session in a separate abstract (M. Kaab & Z. Benkhaldoun et al) . Then we investigate the departure of the winds and the temperatures from their climatological behavior during some magnetic storms. The winds present many features. We can notice westward winds and an enhancement of the equatorward winds with sometimes an appearance of a poleward component. We also notice a significant increase of the temperature that last several hours. By looking trough the geomagnetic indices we investigate the delay of thermospheric storm time in our region and its effects on the winds and temperature patterns.
NASA Astrophysics Data System (ADS)
Ferdousi, B.; Nishimura, Y.; Maruyama, N.; Lyons, L. R.
2017-12-01
Subauroral Polarization Streams (SAPS), which can be identified as intense northward electric field driving sunward plasma convection, are mostly observed at the dusk-premidnight subauroral region. Their existence is associated with the closure of region 2 field-aligned current (R2 FAC) through the low conductivity region equatorward of the electron equatorward boundary. Observations suggest that SAPS flow speed increases with geomagnetic activity. So far, most studies have focused on the magnetosphere-ionosphere (M-I) coupling process of SAPS. However, recent observation of subauroral neutral wind suggest that there is a strong interaction between SAPS and the thermosphere (T). In this study, we focus on the effect of thermospheric wind on the ionosphere plasma drift associated with SAPS during the March 17, 2013 "St. Patrick's day" geomagnetic storm. We use both observations and the self-consistent magnetosphere-ionosphere-thermosphere (M-I-T) numerical "RCM-CTIPe" model to study such a relation. Observation results from DMSP-18 and GOCE satellites show that as the storm progresses, sunward ion flows intensify and move equatorward, and are accompanied by strengthening of subauroral neutral winds with a 2-hour delay. Our model successfully reproduces time evolution of the sunward ion drift and neutral wind. However, the simulated ion drift spreads considerably wider in latitude than the observations. To seek for better agreement between the observation and simulation results, we adopt a conductance distribution more consistent with input from the magnetosphere based on RCM aurora precipitation. We also perform a force term analysis to investigate the rate of momentum transfer from the neutral wind to ion flow. We then compare simulation runs with and without thermosphere coupling to study the effect of the feedback from neutral winds to SAPS.
Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation
NASA Astrophysics Data System (ADS)
Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.
2017-12-01
We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
NASA Astrophysics Data System (ADS)
Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.
2017-12-01
The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.
High altitude atmospheric modeling
NASA Technical Reports Server (NTRS)
Hedin, Alan E.
1988-01-01
Five empirical models were compared with 13 data sets, including both atmospheric drag-based data and mass spectrometer data. The most recently published model, MSIS-86, was found to be the best model overall with an accuracy around 15 percent. The excellent overall agreement of the mass spectrometer-based MSIS models with the drag data, including both the older data from orbital decay and the newer accelerometer data, suggests that the absolute calibration of the (ensemble of) mass spectrometers and the assumed drag coefficient in the atomic oxygen regime are consistent to 5 percent. This study illustrates a number of reasons for the current accuracy limit such as calibration accuracy and unmodeled trends. Nevertheless, the largest variations in total density in the thermosphere are accounted for, to a very high degree, by existing models. The greatest potential for improvements is in areas where we still have insufficient data (like the lower thermosphere or exosphere), where there are disagreements in technique (such as the exosphere) which can be resolved, or wherever generally more accurate measurements become available.
Empirical wind model for the middle and lower atmosphere. Part 1: Local time average
NASA Technical Reports Server (NTRS)
Hedin, A. E.; Fleming, E. L.; Manson, A. H.; Schmidlin, F. J.; Avery, S. K.; Franke, S. J.
1993-01-01
The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and longitude (stationary wave 1). The model represents a smoothed compromise between the data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Root mean square differences between data and model are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal wind, and 10 m/s and 4 m/s, respectively, for meridional wind.
NASA Astrophysics Data System (ADS)
Mueller-Wodarg, Ingo; Svedhem, Håkan; Bruinsma, Sean; Gurvits, Leonid; Cimo, Giuseppe; Molera Calves, Guifre; Bocanegra Bahamon, Tatiana; Rosenblatt, Pascal; Duev, Dmitry; Marty, Jean-Charles; Progebenko, Sergei
The Venus Express Atmospheric Drag Experiment (VExADE) has enabled first ever in-situ measurements of the density of the near-polar thermosphere of Venus above an altitude of 165 km. The measured values have been compared with existing models such as VTS3, which has been built mainly with the Pioneer Venus Orbiter Mass Spectrometer (PV-ONMS) data taken near 16˚ latitude, but extrapolated globally. The VExADE density values have been derived from the Precise Orbit Determination (POD) of the VEx spacecraft using both navigation and dedicated tracking data around pericenter passes during several VExADE campaigns. The last campaign has also benefited from the Planetary Radio Interferometry and Doppler Experiment (PRIDE) tracking. The combination of POD techniques has provided 46 reliable estimates of the polar thermosphere density. An independent set of density measurements was also taken by inferring the torque of the VEx spacecraft exerted by Venus’ upper atmosphere on the spacecraft during pericenter passes. This method has provided more than 120 density values in remarkably good agreement with the density values provided by the POD method. To date, the VExADE data have probed a range of 160 to 185 km in altitude, 80 to 90 degrees North in latitude and 5 to 20 hours in local time. While sampling in these ranges is insufficient to establish detailed horizontal density structures of the polar thermosphere a set of important properties can be inferred. First, the densities are lower by a factor of around 1.5 than the densities predicted by VTS3. At the same time, we find the density scale heights of VExADE and VTS3 to be consistent. Second, the density values exhibit strong variability, which is not taken into account in the VTS3 model. In order to investigate this dynamical behavior of the polar thermosphere, the ratio between the VExADE and VTS3 density has been analyzed. The latitude, altitude and local time trends are tentatively identified, but the sparse sampling provided by the VExADE data prevents us from drawing any definitive conclusions. We tentatively interpret the measured densities by a vertical wave-like pattern in the thermosphere with the amplitude of about 40% of the mean density value and a vertical wavelength of about 15 km. The causes of this vertical structure are as yet unknown. In order to improve sampling in this altitude range and thereby advance our understanding of the behavior of the polar thermosphere, further measurements are needed. An opportunity will be offered by the forthcoming aerobraking campaign scheduled for June-July 2014. The altitude of the spacecraft will decrease down to 130 km where the sensitivity of the accelerometer will enable density measurements. Tracking data and torque data may still be used to provide reliable density measurements at higher altitudes (150 to 185 km range).
NASA Astrophysics Data System (ADS)
Klimenko, Vladimir; Klimenko, Maxim; Bessarab, Fedor; Korenkov, Yurij; Karpov, Ivan
The Sudden Stratospheric Warming (SSW) is a large-scale phenomenon, which response is detected in the mesosphere, thermosphere and ionosphere. SSW ionospheric effects are studied using multi-instrumental satellites and by ground-based measurements. We report a brief overview of the observational and theoretical results of the global ionospheric response and its formation mechanisms during Sudden Stratospheric Warming. We also present the results of our investigation of thermosphere-ionosphere response to the SSW obtained within the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP). The SSW effects were modeled by specifying various boundary conditions at the height of 80 km in the GSM TIP model: (1) by setting the stationary perturbations s = 1 of the temperature and density at high latitudes; (2) by setting the global distribution of the neutral atmosphere parameters, calculated in the TIME-GCM and CCM SOCOL models for the conditions of the SSW 2009 event. It has been shown that the selected low boundary conditions do not allow to fully reproduce the observed variation in the ionospheric parameters during SSW 2009 event. Based on observations of the velocity of vertical plasma drift obtained by the incoherent scatter radar at Jicamarca, we introduced additional electric potential in the GSM TIP model, which allowed us to reproduce the zonal electric field (ÉB vertical plasma drift) and the observed SSW effects in the low-latitude ionosphere. Furthermore, we tried to reproduce the SSW ionospheric effects by including internal gravity waves in the high-latitude mesosphere. We discuss the model calculation results and possible reasons for model/data disagreements and give the proposals for further investigations. This work was supported by RFBR Grants No.12-05-31217 and No.14-05-00578.
NASA Astrophysics Data System (ADS)
Huang, Cong; Xu, Ji-Yao; Zhang, Xiao-Xin; Liu, Dan-Dan; Yuan, Wei; Jiang, Guo-Ying
2018-04-01
In this work, we utilize thermospheric wind observations by the Fabry-Perot interferometers (FPI) from the Kelan (KL) station (38.7°N, 111.6°E, Magnetic Latitude: 28.9°N) and the Xinglong (XL) station (40.2°N, 117.4°E, Magnetic Latitude: 30.5°N) in central China during the St. Patrick's Day storm (from Mar. 17 to Mar. 19) of 2015 to analyze thermospheric wind disturbances and compare observations with the Horizontal Wind Model 2007 (HWM07). The results reveal that the wind measurements at KL show very similar trends to those at XL. Large enhancements are seen in both the westward and equatorward winds after the severe geomagnetic storm occurred. The westward wind speed increased to a peak value of 75 m/s and the equatorward wind enhanced to a peak value of over 100 m/s. There also exist obvious poleward disturbances in the meridional winds during Mar. 17 to Mar. 19. According to the comparison with HWM07, there exist evident wind speed and temporal differences between FPI-winds and the model outputs in this severe geomagnetic storm. The discrepancies between the observations and HWM07 imply that the empirical model should be used carefully in wind disturbance forecast during large geomagnetic storms and more investigations between measurements and numerical models are necessary in future studies.
Infrasound Studies at the USArray (Invited)
NASA Astrophysics Data System (ADS)
de Groot-Hedlin, C. D.
2013-12-01
Many surface and atmospheric sources, both natural and anthropogenic, have generated infrasound signals that have been recorded on USArray transportable array (TA) seismometers at ranges up to thousands of kilometers. Such sources, including surface explosions, large bolides, mining events, and a space shuttle, have contributed to an understanding of infrasound propagation. We show examples of several atmospheric sources recorded at the TA. We first used USArray data to investigate infrasound signals from the space shuttle 'Atlantis'. Inclement weather in Florida forced the shuttle to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allowed us to test infrasound propagation modeling capabilities through the atmosphere to hundreds of kilometers range from the shuttle's path. Shadow zones and arrival times were predicted by tracing rays launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. Both models predict alternating regions of high and low ensonification to the NW, in line with observations. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds. The models also predict increasing waveform complexity with increasing distance, in line with observations. Several hundreds of broadband seismic stations in the U.S. Pacific Northwest recorded acoustic to seismic coupled signals from a large meteor that entered the atmosphere above northeastern Oregon on 19 February 2008. The travel times of the first arriving energy are consistent with a terminal explosion source model, suggesting that the large size of the explosion masked any signals associated with a continuous line source along its supersonic trajectory. Infrasound was detected at distances over 500 km from the source. A finite-difference time-domain algorithm that allows for propagation through a windy, viscous medium was developed to model signals from this source. We compare synthetics that have been computed using a G2S-ECMWF atmospheric model to signals recorded along an azimuth of 210 degrees from the source. The results show that the timing and the range extent of the direct, stratospherically ducted and thermospherically ducted acoustic branches are accurately predicted. However, estimates of absorption obtained from standard attenuation models predict much greater attenuation for thermospheric returns at frequencies greater than 0.1 Hz than is observed. We conclude that either the standard absorption model for the thermospheric is incorrect, or that thermospheric returns undergo non-linear propagation at very high altitude. In the former case, a better understanding of atmospheric absorption at high altitudes is required; in the latter, non-linear propagation modeling methods are needed to model infrasound propagation at thermospheric altitudes. Finally, we show infrasound signals recorded at TA barometers, generated by a small asteroid that entered Earth's atmosphere at distances between 6000-10000 km from the TA.
NASA Technical Reports Server (NTRS)
Eparvier, F. G.; Barth, C. A.
1992-01-01
Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.
NASA Astrophysics Data System (ADS)
Jiao, Jing; Yang, Guotao; Wang, Jihong; Zhang, Tiemin; Peng, Hongyan; Xun, Yuchang; Liu, Zhengkuan; Wang, Chi
2017-11-01
The atmospheric sodium layer normally occurs in the mesopause (80-105 km) region, but rarely in the lower thermosphere region (>105 km) at low latitude. We observed a kind of peculiar sodium layer in lower thermosphere at Haikou (19.99°N, 110.34°E)-the thermospheric convective sodium layer (TCSL) in a lidargram. The TCSL's sodium density unstably developed over time and appeared as several discontinuous convective shapes vertically. It is the first time convective sodium layer observed in the lower thermosphere region (105-120 km). Based on Haikou lidar data, we obtained 14 TCSL events during 180 nights from March 2010 to August 2012. Most of the apogees of the TCSL events are higher than 108 km. A TCSL event lasts several hours and is composed of several convective structures, with each veitical shape lasting ∼5-30 min. All TCSL events occurred during spring and summer, and generally appear near midnight (22:00-00:00 LT). The TCSL has potential regional feature and appears to be related to the thermospheric sporadic E (Es) layers, winds, and field-aligned ionospheric irregularities (FAI).
Thermospheric recovery during the 5 April 2010 geomagnetic storm
NASA Astrophysics Data System (ADS)
Sheng, Cheng; Lu, Gang; Solomon, Stanley C.; Wang, Wenbin; Doornbos, Eelco; Hunt, Linda A.; Mlynczak, Martin G.
2017-04-01
Thermospheric temperature and density recovery during the 5 April 2010 geomagnetic storm has been investigated in this study. Neutral density recovery as revealed by Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) simulations was slower than observations from GOCE, CHAMP, and GRACE satellites, suggesting that the cooling processes may not be fully represented in the model. The NO radiative cooling rate in TIEGCM was also compared with TIMED/SABER measurements along satellite orbits during this storm period. It was found that the model overestimated the NO cooling rate at low latitudes and underestimated it at high latitudes. The effects of particle precipitation on NO number density and NO cooling rate at high latitudes were examined in detail. Model experiments showed that while NO number density and NO cooling rate do change with different specifications of the characteristic energy of auroral precipitating electrons, neutral temperature and density recovery remain more or less the same. The reaction rates of key NO chemistry were tested as well, and the NO number density between 110 and 150 km was found to be very sensitive to the reaction rate of N(2D) + O2 → NO + O. A temperature-dependent reaction rate for this reaction proposed by Duff et al. (2003) brought the TIEGCM NO cooling rate at high latitudes closer to the SABER observations. With the temperature-dependent reaction rate, the neutral density recovery time became quite close to the observations in the high-latitude Southern Hemisphere. But model-data discrepancies still exist at low latitudes and in the Northern Hemisphere, which calls for further investigation.
Basic Features of Global Circulation in the Mesopause Lower Thermosphere Region
NASA Technical Reports Server (NTRS)
Portnyagin, Y. I.
1984-01-01
D1 and D2 techniques have been used and are being used for observations at stations located in the high, middle, and low latitudes of both hemispheres. The systematical and wind velocity measurements with these techniques make it possible to specify and to refine earlier mesopause-lower thermosphere circulation models. With this in view, an effort was made to obtain global long term average height-latitude sections of the wind field at 70 to 110 km using the analysis of long period D1 and D2 observations. Data from 26 meteor radar and 6 ionospheric stations were taken for analysis.
NASA Astrophysics Data System (ADS)
McDonald, S. E.; Emmert, J. T.; Krall, J.; Mannucci, A. J.; Vergados, P.
2017-12-01
To understand how and why the distribution of geospace plasma in the ionosphere/plasmasphere is evolving over multi-decadal time scales in response to solar, heliospheric and atmospheric forcing, it is critically important to have long-term, stable datasets. In this study, we use a newly constructed dataset of GPS-based total electron content (TEC) developed by JPL. The JPL Global Ionosphere Mapping (GIM) algorithm was used to generate a 35-station dataset spanning two solar minimum periods (1993-2014). We also use altimeter-derived TEC measurements from TOPEX-Poseidon and Jason-1 to construct a continuous dataset for the 1995-2014 time period. Both longterm datasets are compared to each other to study interminimum changes in the global TEC (during 1995-1995 and 2008-2009). We use the SAMI3 physics-based model of the ionosphere to compare the simulations of 1995-2014 with the JPL TEC and TOPEX/Jason-1 datasets. To drive SAMI3, we use the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI) model to specify the EUV irradiances, and NRLMSIS to specify the thermosphere. We adjust the EUV irradiances and thermospheric constituents to match the TEC datasets and draw conclusions regarding sources of the differences between the two solar minimum periods.
Effects of a Major Tsunami on the Energetics and Dynamics of the Thermosphere
NASA Astrophysics Data System (ADS)
Hickey, M. P.; Walterscheid, R. L.; Schubert, G.
2009-12-01
Using a spectral full-wave model we investigate how the energetics and dynamics of the thermosphere are influenced by the dissipation of a tsunami-driven gravity wave disturbance. Gravity waves are generated in the model by a surface displacement that mimics a tsunami having a characteristic horizontal wavelength of 400 km and a horizontal phase speed of 200 m/s. The gravity wave disturbance is fast with a large vertical wavelength and is able to reach F-region altitudes before significant viscous dissipation occurs. The gravity wave transports significant amounts of energy and momentum to this region of the atmosphere. The energy reaching the lower thermosphere could be ~ 1012 J for large tsunami events. The change in velocity associated with the wave momentum deposition in a region ~ 100 km deep centered on 250 km altitude could be 150 - 200 m/s. Thermal effects associated with the divergence of the sensible heat flux are modest (~ 20 K over the same region). The affected region could have a lateral extent of 1000 km or more, and an along-track extent of as much as 8000 km. The induced winds should be observable through a variety of methods but the thermal effects might be difficult to observe.
Understanding the Latitude Structure of Nitric Oxide in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Fuller-Rowell, T.J.
1997-01-01
The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum. The first task was to use the UARS-HALOE data to confirm the SME observations. The purpose of this first phase was to verify the UARS-NO structure is consistent with the SME data. The next task was to determine the cause of the discrepancy between modeled and observed nitric oxide latitude structure. The result from the final phase indicated that the latitude structure in the Photo-Electron (PE) production rate was the most important.
Whole Atmosphere Simulation of Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.
2018-02-01
We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.
Mid-latitude thermospheric dynamics from an inter-hemispheric prospective
NASA Astrophysics Data System (ADS)
Wu, Q.; Wang, W.; Li, T.; Huang, C.; Zhang, X.; McCarthy, M.; Noto, J.; Kerr, R.
2017-12-01
Mid-latitude thermosphere is strongly affected by mesospheric tides and geomagnetic latitude variations. Past mid-latitude observations are mostly from the northern hemisphere. Only recently, thermospheric wind instruments are being deployed in the southern mid-latitude regions. In this study, we will examine simultaneous northern and southern mid-latitude thermospheric winds and investigate how seasonal and geomagnetic latitude differences affecting the thermospheric winds. We will use thermospheric winds from two southern Fabry-Perot interferometers (FPI) at Palmer (64°S, 64°W, MLAT 54°S) and Mt. John (44°S, 170.5°E, MLAT 47.5°S) and compare to three northern FPIs at Millstone Hill (42°N, 71°W, MLAT 52°N), Boulder (40°N, 105°W, MLAT 47°N), and Kelan (38.7°N, 111.6°E, MLAT 28.9°N). These instruments distributed in both the American and Asia-Pacific sectors. In the American sector northern hemisphere and the Asia-Pacific sector southern hemisphere, the geomagnetic latitude is larger than the geographic. In each of the respective opposite the hemisphere, the geographic latitude is larger than the geomagnetic. Observations in these two longitudinal sectors with opposite geomagnetic and geographic offsets will allow us to examine the magnetic latitude and seasonal effects in greater details. We will compare the observations with NCAR TIEGCM simulations to perform an inter-hemispheric comparison of the mid-latitude thermospheric dynamics.
Estimating Neutral Atmosphere Drivers using a Physical Model
2009-03-30
Araujo-Pradere, M. Fedrizzi, 2007, Memory effects in the ionosphere storm response. EGU General Assembly , Vienna, Austria Codrescu, M., T.J. Fuller...Strickland, D, 2007: Application of thermospheric general circulation models for space weather operations. J. Adv. Space Res., edited by Schmidtke
Whole Atmosphere Modeling and Data Analysis: Success Stories, Challenges and Perspectives
NASA Astrophysics Data System (ADS)
Yudin, V. A.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Matsuo, T.; Ortland, D. A.; Maute, A. I.; Solomon, S. C.; Smith, A. K.; Liu, H.; Wu, Q.
2015-12-01
At the end of the 20-th century Raymond Roble suggested an ambitious target of developing an atmospheric general circulation model (GCM) that spans from the surface to the thermosphere for modeling the coupled atmosphere-ionosphere with drivers from terrestrial meteorology and solar-geomagnetic inputs. He pointed out several areas of research and applications that would benefit highly from the development and improvement of whole atmosphere modeling. At present several research groups using middle and whole atmosphere models have attempted to perform coupled ionosphere-thermosphere predictions to interpret the "unexpected" anomalies in the electron content, ions and plasma drifts observed during recent stratospheric warming events. The recent whole atmosphere inter-comparison case studies also displayed striking differences in simulations of prevailing flows, planetary waves and dominant tidal modes even when the lower atmosphere domain of those models were constrained by similar meteorological analyses. We will present the possible reasons of such differences between data-constrained whole atmosphere simulations when analyses with 6-hour time resolution are used and discuss the potential model-data and model-model differences above the stratopause. The possible shortcomings of the whole atmosphere simulations associated with model physics, dynamical cores and resolutions will be discussed. With the increased confidence in the space-borne temperature, winds and ozone observations and extensive collections of ground-based upper atmosphere observational facilities, the whole atmosphere modelers will be able to quantify annual and year-to-variability of the zonal mean flows, planetary wave and tides. We will demonstrate the value of tidal and planetary wave variability deduced from the space-borne data and ground-based systems for evaluation and tune-up of whole atmosphere simulations including corrections of systematic model errors. Several success stories on the middle and whole atmosphere simulations coupled with the ionosphere models will be highlighted, and future perspectives for links of the space and terrestrial weather predictions constrained by current and scheduled ionosphere-thermosphere-mesosphere satellite missions will be presented
Chemistry of the thermosphere and ionosphere
NASA Technical Reports Server (NTRS)
Torr, D. G.; Torr, M. R.
1979-01-01
In the present paper, some of the most important features of the Atmosphere Explorer program, involving studies of the chemistry of the ionosphere and thermosphere, are reviewed. Solar flux and cross sections are tabulated, along with the revised reference spectrum F47113 as compared with the preliminary R74113. The principal results examined include some unexpected variations in the EUV flux and in the response of the thermosphere, revealed by extreme ultraviolet spectrophotometers; discrepancies between the measured and calculated electron flux; recent developments in the detection of nocturnal mid- and low-latitude sources of ionization; and the application of AE satellite data to the study of ionospheric and thermospheric processes, rate coefficients, and atomic and molecular processes.
Short-term cyclic variations and diurnal variations of the Venus upper atmosphere
NASA Technical Reports Server (NTRS)
Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.
1979-01-01
The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.
NASA Astrophysics Data System (ADS)
Sun, Yang-Yi; Liu, Huixin; Miyoshi, Yasunobu; Liu, Libo; Chang, Loren C.
2018-05-01
In this study, we evaluate the El Niño-Southern Oscillation (ENSO) signals in the two dominant temperature diurnal tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscillation (QBO) scale (18-34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996-February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simulations and 15-year (February 2002-February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The results show that ENSO warm phases shorten the period ( 2 years) of the QBO in DW1 amplitude near the equator and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens ( 2.5 years) during the ENSO neutral and cold phases. Correlation analysis shows the long-lasting effect of ENSO on the tidal QBO in the mesosphere and lower thermosphere.[Figure not available: see fulltext.
Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.
de Groot-Hedlin, C D
2016-04-01
The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.
Daytime O/N2 Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)
NASA Astrophysics Data System (ADS)
Stephan, Andrew W.; Meier, R. R.; England, Scott L.; Mende, Stephen B.; Frey, Harald U.; Immel, Thomas J.
2018-02-01
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as ΣO/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure ΣO/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.
NASA Astrophysics Data System (ADS)
Foerster, M.; Haaland, S.; Cnossen, I.
2014-12-01
We present statistical studies of both the high-latitude ionospheric potential pattern deduced from long-term observations of the Cluster Electron Drift Instrument (EDI) and upper thermospheric neutral wind circulation patterns in the Northern (NH) and Southern Hemisphere (SH) obtained from accelerometers on board of low-Earth orbiting satellites like CHAMP during about the same time interval. The cross-polar cap potential difference during southward IMF conditions appears to be on average slightly (~7%) larger in the SH compared with the NH, while the neutral wind magnitude and vorticity amplitude are mostly larger in the NH than in the SH, especially during high solar activity conditions. We attribute such behaviour to peculiarities of the hemispheres due to the non-dipolar portions of Earth's main magnetic field that constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The pole is presently displaced almost twice the distance in the SH compared to the NH, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. To analyse this behaviour, we have run several numerical simulations using the first-principle Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model under various seasonal conditions. The survey of both the numerical simulation results and the observations confirm prominent asymmetries between the two hemispheres for these parameters.
NASA Astrophysics Data System (ADS)
Chu, X.
2017-12-01
A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.
The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.
2017-01-01
Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Schunk, R. W.
1985-01-01
A time-dependent, three-dimensional, multi-ion model of the ionospheric F region at 120-800 km altitude is presented. Account is taken of field-aligned diffusion, cross-field electrodynamic drifts in equatorial and high latitude regions, interhemispheric flow, thermospheric winds, polar wind escape, energy-dependent chemical reactions and neutral composition changes. Attention is also given to the effects of ion production by solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow, local heating and cooling processes, offsets between the geomagnetic and geographic poles, and bending of field lines near the magnetic equator. The model incorporates all phenomena described by previous models and can be applied to tracing magnetic storm and substorm disturbances from high to low latitudes on a global scale. Sample results are provided for ionospheric features during a June solstice, the solar maximum and in a period of low geomagnetic activity. The model will eventually be used to study coupled ionosphere-thermosphere activity.
Assimilation of thermospheric measurements for ionosphere-thermosphere state estimation
NASA Astrophysics Data System (ADS)
Miladinovich, Daniel S.; Datta-Barua, Seebany; Bust, Gary S.; Makela, Jonathan J.
2016-12-01
We develop a method that uses data assimilation to estimate ionospheric-thermospheric (IT) states during midlatitude nighttime storm conditions. The algorithm Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE) uses time-varying electron densities in the F region, derived primarily from total electron content data, to estimate two drivers of the IT: neutral winds and electric potential. A Kalman filter is used to update background models based on ingested plasma densities and neutral wind measurements. This is the first time a Kalman filtering technique is used with the EMPIRE algorithm and the first time neutral wind measurements from 630.0 nm Fabry-Perot interferometers (FPIs) are ingested to improve estimates of storm time ion drifts and neutral winds. The effects of assimilating remotely sensed neutral winds from FPI observations are studied by comparing results of ingesting: electron densities (N) only, N plus half the measurements from a single FPI, and then N plus all of the FPI data. While estimates of ion drifts and neutral winds based on N give estimates similar to the background models, this study's results show that ingestion of the FPI data can significantly change neutral wind and ion drift estimation away from background models. In particular, once neutral winds are ingested, estimated neutral winds agree more with validation wind data, and estimated ion drifts in the magnetic field-parallel direction are more sensitive to ingestion than the field-perpendicular zonal and meridional directions. Also, data assimilation with FPI measurements helps provide insight into the effects of contamination on 630.0 nm emissions experienced during geomagnetic storms.
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Jones, M., Jr.; Picone, J. M.; Drob, D. P.; Siskind, D. E.
2017-12-01
The thermosphere-ionosphere (T-I) exhibits a strong ( ±20%) semiannual oscillation (SAO) in globally averaged mass and electron density; the source of the SAO is still unclear. Two prominent proposed mechanisms are: (1) the "thermospheric spoon" mechanism (TSM) [Fuller-Rowell, 1998], which is a resolved-scale, seasonally dependent mixing process that drives an SAO through interhemispheric meridional and vertical transport of constituents and (2) seasonal variations in eddy diffusion (Kzz) associated with breaking gravity waves ("Kzz hypothesis") [Qian et al. 2009]. In this study, we use the National Center for atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to investigate the source of the T-I SAO. We performed numerical experiments over a continuous calendar year assuming constant solar and geomagnetic forcing and several configurations of lower atmospheric tidal forcing, lower atmospheric gravity wave forcing, and the obliquity of Earth's rotational axis with respect to the ecliptic plane. The prominent results are as follows: (1) In the absence of lower atmospheric gravity wave and tidal forcing a 30% SAO in globally averaged mass density (with respect to its global annual average) is simulated in the TIME-GCM, suggesting that seasonally-varying Kzz driven by breaking gravity waves is not the primary driver of the T-I SAO; (2) When the Earth's obliquity is set to zero (i.e., perpetual equinox) the T-I SAO is reduced to 2%; (3) When Earth's obliquity is set to 11.75° (i.e., half its actual value), the mass density SAO is 10%; (4) The meridional and vertical transport patterns in the simulations are consistent with the TSM, except that coupling with the upper mesospheric circulation also contributes to the T-I SAO; and (5) Inclusion of lower atmospheric tidal and gravity wave forcing weakens the TSM and thus damps the T-I SAO. These results suggest that the TSM accurately describes the primary source of the T-I SAO.
Stratospheric Sudden Warming Effects on the Upper Thermosphere
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Kosch, M. J.; Emmert, J. T.
2015-12-01
It has been controversial whether a stratospheric sudden warming (SSW) event has any measurable impact on the upper thermosphere. In this study, we use long-term records of the global average thermospheric total mass density derived from satellite orbital decay data during 1967-2013. This enables, for the first time, a statistical investigation of the thermospheric density response to SSW events. A superposed epoch analysis of 37 SSW events reveals a density reduction of 3-7% at 250-575 km around the time of polar vortex weakening. The temperature perturbation is estimated to be -7.0 K at 400 km. We suggest enhanced wave forcing from the lower atmosphere as a possible cause for the density reduction observed during SSWs.
Analysis of the 20th November 2003 Extreme Geomagnetic Storm using CTIPe Model and GNSS Data
NASA Astrophysics Data System (ADS)
Fernandez-Gomez, I.; Borries, C.; Codrescu, M.
2016-12-01
The ionospheric instabilities produced by solar activity generate disturbances in ionospheric density (ionospheric storms) with important terrestrial consequences such as disrupting communications and positioning. During the 20th November 2003 extreme geomagnetic storm, significant perturbations were produced in the ionosphere - thermosphere system. In this work, we replicate how this system responded to the onset of this particular storm, using the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics physics based model. CTIPe simulates the changes in the neutral winds, temperature, composition and electron densities. Although modelling the ionosphere under this conditions is a challenging task due to energy flow uncertainties, the model reproduces some of the storm features necessary to interpret the physical mechanisms behind the Total Electron Content (TEC) increase and the dramatic changes in composition during this event.Corresponding effects are observed in the TEC simulations from other physics based models and from observations derived from Global Navigation Satellite System (GNSS) and ground-based measurements.The study illustrates the necessity of using both, measurements and models, to have a complete understanding of the processes that are most likely responsible for the observed effects.
NASA Astrophysics Data System (ADS)
Xu, H.; Shiokawa, K.; Oyama, S. I.; Otsuka, Y.
2017-12-01
We studied the high-latitude thermospheric wind variations near the onset time of isolated substorms. Substorm-related energy input from the magnetosphere to the polar ionosphere modifies the high-latitude ionosphere and thermosphere. For the first time, this study showed the characteristics of high-latitude thermospheric wind variations at the substorm onset. We also investigated the possibility of these wind variations as a potential trigger of substorm onset by modifying the ionospheric current system (Kan, 1993). A Fabry-Perot interferometer (FPI) at Tromsoe, Norway provided wind measurements estimated from Doppler shift of both red-line (630.0 nm for the F region) and green-line (557.7 nm for the E region) emissions of aurora and airglow. We used seven-year data sets obtained from 2009 to 2015 with a time resolution of 13 min. We first identified the onset times of local isolated substorms using ground-based magnetometer data obtained at the Tromsoe and Bear Island stations, which belongs to the IMAGE magnetometer chain. We obtained 4 red-line events and 5 green-line events taken place at different local times. For all these events, the peak locations of westward ionospheric currents identified by the ground-based magnetometer chain were located at the poleward side of Tromsoe. Then, we calculated two weighted averages of wind velocities for 30 min around the onset time and 30 min after the onset time of substorms. We evaluated differences between these two weighted averages to estimate the strength of wind changes. The observed wind changes at these substorm onsets were less than 49 m/s (26 m/s) for red-line (green-line) events, which are much smaller than the typical plasma convection speed. This indicates that the plasma motion caused by substorm-induced thermospheric winds through ion-neutral collisions is a minor effect as the driver of high-latitude plasma convection, as well as the triggering of substorm onset. We discuss possible causes of these observed wind changes at the onset of substorms based on the mechanisms of thermospheric diurnal tides, arc-induced electric field and Joule heating caused by the auroral activities that were identified by the cross sections of all-sky images, as well as the IMF-associated plasma convection model.
The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere
NASA Astrophysics Data System (ADS)
Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.
2008-12-01
The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on the temporal and spatial resolutions the model simulations can provide. We shall discuss the concept and organization of the TFM and present samples of GW simulations that illustrate the capabilities of the model and its user interface. We shall discuss in particular the waves that leak into the mesopause from the thermosphere above and propagate into the region from tropospheric weather systems below.
Solar activity variations of nocturnal thermospheric meridional winds over Indian longitude sector
NASA Astrophysics Data System (ADS)
Madhav Haridas, M. K.; Manju, G.; Arunamani, T.
2016-09-01
The night time F-layer base height information from ionosondes located at two equatorial stations Trivandrum (TRV 8.5°N, 77°E) and Sriharikota (SHAR 13.7°N, 80.2°E) spanning over two decades are used to derive the climatology of equatorial nocturnal Thermospheric Meridional Winds (TMWs) prevailing during High Solar Activity (HSA) and Low Solar Activity (LSA) epochs. The important inferences from the analysis are 1) Increase in mean equatorward winds observed during LSA compared to HSA during pre midnight hours; 25 m/s for VE (Vernal Equinox) and 20 m/s for SS (Summer Solstice), AE (autumnal Equinox) and WS (Winter Solstice). 2) Mean wind response to Solar Flux Unit (SFU) is established quantitatively for all seasons for pre-midnight hours; rate of increase is 0.25 m/s/SFU for VE, 0.2 m/s/SFU for SS and WS and 0.08 m/s/SFU for AE. 3) Theoretical estimates of winds for the two epochs are performed and indicate the role of ion drag forcing as a major factor influencing TMWs. 4) Observed magnitude of winds and rate of flux dependencies are compared to thermospheric wind models. 5) Equinoctial asymmetry in TMWs is observed for HSA at certain times, with more equatorward winds during AE. These observations lend a potential to parameterize the wind components and effectively model the winds, catering to solar activity variations.
Upper-Thermospheric Observations and Neutral-Gas Dynamics at High Latitudes During Solar Maximum.
1987-01-01
quickly, allowing the higher-latitude lines to spring back in towards the Earth ( Vallance -Jones, 1974). This also compresses and heats the plasma on high... Richards , and D. G. Torr. A new determination of the ultraviolet heating efficiency of the thermosphere. J. Geophys. Res., 85, 6819 - 6826, 1980b. Torr...M. R., D. G. Torr, and P. G. Richards . The solar ultraviolet heating efficiency of the midlatitude thermosphere. Geophys. Res. Lett., 7, 373 - 376
Variations of total electron content during geomagnetic disturbances: A model/observation comparison
NASA Technical Reports Server (NTRS)
Roble, G. Lu X. Pi A. D. Richmond R. G.
1997-01-01
This paper studies the ionospheric response to major geomagnetic storm of October 18-19, 1995, using the thermosphere-ionosphere electrodynamic general circulation model (TIE-GCM) simulations and the global ionospheric maps (GIM) of total electron content (TEC) observations from the Global Positioning System (GPS) worldwide network.
North-south asymmetric thermosphere response to geomagnetic storms caused by coronal mass ejections
NASA Astrophysics Data System (ADS)
Oliveira, D. M.; Zesta, E.; Schuck, P. W.; Sutton, E. K.
2017-12-01
We use CHAMP and GRACE density data in a statistical and superposed epoch analysis study to investigate the thermosphere global space and time response to CME-caused geomagnetic storms in the time period of September 2001 to September 2011. In order to account for solar cycle effects, we inter-calibrate both CHAMP and GRACE data against the Jacchia-Bowman 2008 (JB2008) empirical model under a regime of very low geomagnetic activity by fitting a polynomial fit with orthogonal expansion into the modeled density. We choose two different approaches related to physical effects of CME interactions with the magnetosphere. The zero epoch times are chosen as follows: in the first case, the instance of CME impact time associated with compression effects and, in the second case, the instance of time in which the IMF Bz turns suddenly southward, associated with the storm main phase onset. In general, in the second case, the thermosphere effects are more superposed in time in comparison to the effects of the first case. We find that, on average, large scale wave structures, presumably traveling atmospheric disturbances (TADs), propagate from auroral to equatorial regions in lag times as short as 3 hours. We also find that all local time regions, i.e., the global response, takes 2 more hours to occur. In addition, our findings show that there exists a strong north-south asymmetric heating, being most pronounced in the Southern Hemisphere in the moments preceding and following the zero epoch time. We attribute this effect to a combination of several factors that affect high latitude energy input into the upper atmosphere, such as seasons, IMF By component, and universal times, that is, the dipole longitude position during the developing of the storm main phase, the crucial time for energy input and subsequent thermosphere heating during geomagnetic storms.
First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations
NASA Astrophysics Data System (ADS)
Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce
2017-10-01
As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus
2018-05-01
Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.
Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview
NASA Technical Reports Server (NTRS)
Kazimirovsky, E. S.
1989-01-01
The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control.
Non-thermal distribution of O(1D) atoms in the night-time thermosphere
NASA Technical Reports Server (NTRS)
Yee, Jeng-Hwa
1988-01-01
The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.
Tidal coupling with the lower atmosphere (invited review)
NASA Technical Reports Server (NTRS)
Forbes, J. M.
1986-01-01
The various ways are reviewed in which propagating tidal components excited in the mesophere and below affect the structure of the thermosphere and ionosphere above 100 km. Dynamo effects are not treated here. The physical processes affecting the propagation of upward propagating tides are examined and how they are interrelated in the context of a numerical model. Propagating diurnal and semidiurnal tides which reach thermospheric heights are excited primarily by insolation absorption by tropospheric water vapor (0 to 5 km) and stratospheric/mesospheric ozone (40 to 60 km), respectively. Simulation of these oscillations requires consideration of mean zonal winds and meridional temperature gradients, and the damping effects of turbulent and molecular dissipation, radiative cooling, and ion drag. These effects must be considered on a spherical rotating atmosphere extending from the ground to above 300 km, as they are in the model developed by Forbes depicted schematically.
The SZ-5 Spaceship Orbit Changes During The 2003 "Halloween Storm"
NASA Astrophysics Data System (ADS)
Huang, C.; Liu, D.; Guo, J.
2017-12-01
We analyse the daily major semi-axis variations of SZ-5 (ShenZhou V) spaceship during Oct. 20 to Dec. 30 in 2003, which includes the period of the 2003 "Halloween Storm". The significant orbital decay has been observed in late October due to the great solar flares and the severe geomagnetic storms. According to the equation of the air-drag-force on a spacecraft and the SZ-5 orbital decay information, we derive the thermospheric density relative changes during the 2003 "Halloween Storm" and compare the results with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00). The analyses show that the thermosperic density (at the altitude of SZ-5, about 350 km) in storm time enchances to approximately three times as much as that in the quiet time but the empirical model may underestimate the thermospheric density changes during this severe storm.
Generation of Traveling Atmospheric Disturbances During a Pulsating Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Gardner, L. C.; Schunk, R. W.
2009-12-01
Traveling Atmospheric Disturbances (TAD’s) are studied with a 3-D high-resolution (1°x3°) global thermosphere/ionosphere model to determine the importance of the high-latitude production mechanisms contained in the model. The possible production mechanisms are the oval size, the precipitating electron characteristic energy and energy flux, and the cross polar cap potential. The production mechanisms are pulsed at a one-hour period, as was observed in a recent long-duration geomagnetic storm. With auroral pulsation a TAD is generated that propagates equatorward away from the high-latitude auroral oval, depositing energy and transporting mass and momentum into the mid- and low-latitude thermosphere system. Depending on the amount of energy input into the high-latitude auroral zone, the TAD may travel to mid-latitudes, low-latitudes, or if sufficient energy is deposited, the TAD may even propagate across the opposite pole. These and other aspects of TAD generation will be shown.
Key Issues in the Production of Ionospheric Outflows
NASA Astrophysics Data System (ADS)
Lotko, W.
2017-12-01
Global models demonstrate that outflows of ionospheric ions can have profound effects on the dynamics of the solar wind-magnetosphere-ionosphere-thermosphere system, particularly during geomagnetic storms. Yet the processes that determine where and when outflows occur are poorly understood, in large part because a full complement of critical multivariable measurements of outflows and their causal drivers has yet to be assembled. Development of accurate regional and global predictive models of outflows has been hampered by this lack of empirical knowledge, but models are also challenged by the additional requirement of having to reduce the complex microphysics of ion energization into lumped relations that specify outflow characteristics through causal regulators. Opportunities to improve understanding of this problem are vast. This overview will focus on a limited set of priority questions that address how ions overcome gravity to leave the ionosphere; the timing, rate, spatial distribution and energetics of their exodus; how their flight impacts the ionosphere-thermosphere environment that spawns outflows; and the influence of magnetospheric feedback on outflow production.
New non-LTE model of OH(v) in the mesopshere/lower thermosphere
NASA Astrophysics Data System (ADS)
Panka, Peter; Kutepov, Alexander; Kalogerakis, Konstantinos; Janches, Diego; Feofilov, Artem; Rezac, Ladi; Marsh, Daniel; Yigit, Erdal
2017-04-01
We present a new detailed non-LTE model of OH(v) for the nighttime mesosphere/lower thermosphere. The model accounts for chemical production of vibrationally excited OH and for various vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges with main atmospheric constituents. The new feature was added to account for the "indirect" vibrational-electronic (VE) mechanism OH(v)→O(1D)→N2(v) of the OH vibrational energy transfer to N2, recently suggested by Sharma et al. [2015] and confirmed through laboratory studies by Kalogerakis et al. [2016]. We study the impact of this mechanism on the OH(v) populations and emissions in the two SABER channels at 1.6 and 2.0 μm. We also discuss the implications this mechanism will have on the retrieval of OH and O densities, as well as its effects on the nighttime CO2 density retrievals from the SABER 4.3 μm channel.
Low-latitude Ionospheric Heating during Solar Flares
NASA Astrophysics Data System (ADS)
Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.
2013-12-01
The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.
Occurrence of the dayside three-peak density structure in the F2 and the topside ionosphere
NASA Astrophysics Data System (ADS)
Astafyeva, Elvira; Zakharenkova, Irina; Pineau, Yann
2016-07-01
In this work, we discuss the occurrence of the dayside three-peak electron density structure in the ionosphere. We first use a set of ground-based and satellite-borne instruments to demonstrate the development of a large-amplitude electron density perturbation at the recovery phase of a moderate storm of 11 October 2008. The perturbation developed in the F2 and low topside ionospheric regions over the American sector; it was concentrated on the north from the equatorial ionization anomaly (EIA) but was clearly separated from it. At the F2 region height, the amplitude of the observed perturbation was comparable or even exceeded that of the EIA. Further analysis of the observational data together with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model simulation results showed that a particular local combination of the thermospheric wind surges provided favorable conditions for the generation of the three-peak EIA structure. We further proceed with a statistical study of occurrence of the three-peak density structure in the ionosphere in general. Based on the analysis of 7 years of the in situ data from CHAMP satellite, we found that such three-peak density structure occurs sufficiently often during geomagnetically quiet time. The third ionization peak develops in the afternoon hours in the summer hemisphere at solstice periods. Based on analysis of several quiet time events, we conclude that during geomagnetically quiet time, the prevailing summer-to-winter thermospheric circulation acts in similar manner as the storm-time enhanced thermospheric winds, playing the decisive role in generation of the third ionization peak in the daytime ionosphere.
Into the thermosphere: The atmosphere explorers
NASA Technical Reports Server (NTRS)
Burgess, Eric; Torr, Douglass
1987-01-01
The need to study the lower thermosphere with the new instrument, data handling, and spacecraft technology available in the 1960s led to the formulation and establishment of the Atmospheric Explorer program. This book provides an overview of this program with particular emphasis on the AE3, AE4, and AE5 satellites, which represent early examples of problem-dedicated missions. Both the satellites and their instrumentation on the one hand and the experimental and scientific considerations in studying the thermosphere on the other are discussed.
NASA Astrophysics Data System (ADS)
Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.
On the basis of the Global Self-consistent model of the thermosphere ionosphere and protonosphere GSM TIP developed in WD IZMIRAN the calculations for the quiet geomagnetic conditions of the equinox in the minimum of solar activity are carried out In the calculations the new block of the computation of electric fields in the ionosphere briefly described in COSPAR2006-A-00108 was used Two variants of calculations are executed with the account only the dynamo field generated by the thermosphere winds - completely self-consistent and with use of the model MSIS-90 for the calculation of the composition and temperature of the neutral atmosphere The results of the calculations are compared among themselves The global distributions of the foF2 the latitude behavior of the N e and T e on the near-midnight meridian at two height levels 233 and 626 km the latitude-altitude sections on the near-midnight meridian of the T e and time developments on UT of zonal component of the thermosphere wind and ion temperature at height sim 300 km and foF2 and h m F2 for three longitudinal chains of stations - Brazil Pacific and Indian in a vicinity of geomagnetic equator COSPAR2006-A-00109 calculated in two variants are submitted It is shown that at the self-consistent approach the maxima of the crests of the equatorial ionization anomaly EIA in the foF2 are shifted concerning calculated with the MSIS aside later evening hours The equatorial electron temperature anomaly EETA is formed in both variants of calculations However at the
NASA Astrophysics Data System (ADS)
Wang, Jack C.; Tsai-Lin, Rong; Chang, Loren C.; Wu, Qian; Lin, Charles C. H.; Yue, Jia
2018-06-01
The Quasi-biennial Oscillation (QBO) is a persistent oscillation in the zonal mean zonal winds of the low latitude middle atmosphere that is driven by breaking planetary and gravity waves with a period near two years. The atmospheric tides that dominate the dynamics of the mesosphere and lower thermosphere region (MLT, between heights of 70-120 km) are excited in the troposphere and stratosphere, and propagate through QBO-modulated zonal mean zonal wind fields. This allows the MLT tidal response to also be modulated by the QBO, with implications for ionospheric/thermospheric variability. Interannual oscillations in solar radiation can also directly drive the variations in the ionosphere with similar periodicities through the photoionization. Many studies have observed the connection between the solar activity and QBO signal in ionospheric features such as total electron content (TEC). In this research, we develop an empirical model to isolate stratospheric QBO-related tidal variability in the MLT diurnal and semidiurnal tides using values from assimilated TIMED satellite data. Migrating tidal fields corresponding to stratospheric QBO eastward and westward phases, as well as with the quasi-biennial variations in solar activity isolated by the Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) analysis from Hilbert-Huang Transform (HHT), are then used to drive the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). The numerical experiment results indicate that the ionospheric QBO is mainly driven by the solar quasi-biennial variations during the solar maximum, since the solar quasi-biennial variation amplitude is directly proportionate to the solar cycle. The ionospheric QBO in the model is sensitive to both the stratospheric QBO and solar quasi-biennial variations during the solar minimum, with solar effects still playing a stronger role.
Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.
1990-01-01
The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.
NASA Astrophysics Data System (ADS)
Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.
2017-02-01
Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.
NASA Astrophysics Data System (ADS)
Flynn, Sierra; Knipp, Delores J.; Matsuo, Tomoko; Mlynczak, Martin; Hunt, Linda
2018-05-01
We present the first-ever global assessment of thermospheric nitric oxide infrared radiative flux (NOF) variability. NOF (W/m2) from 100- to 250-km altitude is extracted from 13.7 years of data from the TIMED satellite, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, and decomposed into four empirical orthogonal functions (EOFs) and their amplitudes. We determine the strongest modes of NOF variability in the data set and develop a compact model of NOF. The first four EOFs account for 83% of the variability in the data. We illustrate the NOF model and discuss the geophysical associations of the EOFs. The first EOF represents 69% of the total variance and correlates strongly with Kp and solar shortwave flux, suggesting that geomagnetic activity and solar weather account for a large portion of NOF variability. EOF 2 shows annual and seasonal variations, possibly due to annual and seasonal thermospheric composition and temperature changes and may represent the chemical breathing mode of NOF. EOF 3 shows annual variations and correlates with solar energetic particle events and X-flares. EOF 3 may represent winter time solar energetic particle event-enhanced diurnal tide effects. EOF 4 suggests a meridional transport mechanism at the predawn and postdusk equator after strong storms. The EOF uncertainty is verified using cross-validation analysis. Quantifying the spatial and temporal variabilities of NOF using eigenmodes will increase the understanding of how upper atmospheric nitric oxide cooling behaves and could increase the accuracy of future space weather and climate models.
Evidence of nonlinear interaction between quasi 2 day wave and quasi-stationary wave
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang; Wu, Qian; Russell, James M.
2015-02-01
The nonlinear interaction between the westward quasi 2 day wave (QTDW) with zonal wave number s = 3 (W3) and stationary planetary wave with s = 1 (SPW1) is first investigated using both Thermosphere, Ionosphere, and Mesosphere Electric Dynamics (TIMED) satellite observations and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. A QTDW with westward s = 2 (W2) is identified in the mesosphere and lower thermosphere (MLT) region in TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and TIMED/TIMED Doppler Imager (TIDI) wind observations during 2011/2012 austral summer period, which coincides with a strong SPW1 episode at high latitude of the northern winter hemisphere. The temperature perturbation of W2 QTDW reaches a maximum amplitude of ~8 K at ~30°S and ~88 km in the Southern Hemisphere, with a smaller amplitude in the Northern Hemisphere at similar latitude and minimum amplitude at the equator. The maximum meridional wind amplitude of the W2 QTDW is observed to be ~40 m/s at 95 km in the equatorial region. The TIME-GCM is utilized to simulate the nonlinear interactions between W3 QTDW and SPW1 by specifying both W3 QTDW and SPW1 perturbations at the lower model boundary. The model results show a clear W2 QTDW signature in the MLT region, which agrees well with the TIMED/SABER temperature and TIMED/TIDI horizontal wind observations. We conclude that the W2 QTDW during the 2011/2012 austral summer period results from the nonlinear interaction between W3 QTDW and SPW1.
Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves
NASA Astrophysics Data System (ADS)
Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.
2014-01-01
In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.
NASA Astrophysics Data System (ADS)
Johnson, R. M.
1991-02-01
The incoherent scatter radar located at Sondre Stromfjord (Greenland) obtained E and F region measurements during the first Lower Thermosphere Coupling Study (LTCS 1), September 21-26, 1987. Lower thermospheric neutral winds deduced from these measurements show that the neutral dynamics are influenced by both tidal oscillations and magnetospheric forcing. During an interval which was relatively quiet geomagnetically, September 23-24, a semidiurnal oscillation dominated the neutral motion. The model equinox tidal amplitudes and phases of Forbes (1982) for the diurnal tide are roughly in agreement with the observed diurnal oscillation for the first four days of the experiment. Vertical variations in the observed diurnal phases are consistent with the results of Forbes and Hagan (1988) and may provide evidence of dissipation of the propagating (1, 1) tidal mode. The semidiurnal motion observed during this period is not well represented by the recent theoretical results for the amplitude and phase of the semidiurnal tide (Forbes and Vial, 1991). Neutral winds obtained during a geomagnetically active interval, September 25-26, displayed a flow pattern that was significantly distorted from that observed during the preceding, relatively quiet interval.
Thermosphere Response to Geomagnetic Variability during Solar Minimum Conditions
NASA Astrophysics Data System (ADS)
Forbes, Jeffrey; Gasperini, Federico; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean; Haeusler, Kathrin; Hagan, Maura
2015-04-01
The response of thermosphere mass density to variable geomagnetic activity at solar minimum is revealed as a function of height utilizing accelerometer data from GRACE near 480 km, CHAMP near 320 km, and GOCE near 260 km during the period October-December, 2009. The GOCE data at 260 km, and to some degree the CHAMP measurements at 320 km, reveal the interesting feature that the response maximum occurs at low latitudes, rather than at high latitudes where the geomagnetic energy input is presumed to be deposited. The latitude distribution of the response is opposite to what one might expect based on thermal expansion and/or increase in mean molecular weight due to vertical transport of N2 at high latitudes. We speculate that what is observed reflects the consequences of an equatorward meridional circulation with downward motion and compressional heating at low latitudes. A numerical simulation using the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to assist with this diagnosis. At 480 km GRACE reveals maximum density responses at high southern (winter) latitudes, consistent with recent interpretations in terms of compositional versus temperature effects near the oxygen-helium transition altitude during low solar activity.
Applicability of a diffusion model to lateral transport in the terrestrial and lunar exospheres.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1972-01-01
Kinetic theory is used to determine a series expansion of the vertical flux of particles in an exosphere in terms of time and space derivatives of particle concentration, exobase velocity, and temperature. For sufficiently large scale variations of these parameters in time and space, the series can be truncated to a form that is similar to a diffusion equation. Owing to this analogy, it is possible to unite the mathematical description of molecular diffusion, which governs thermospheric flow, and the corresponding exospheric equation by using effective transport coefficients which change smoothly with altitude through the transition from thermosphere to exosphere. A new definition of the exobase for lateral flow emerges from the analogy of exospheric and thermospheric diffusion, as the altitude where the horizontal mean free path length equals the mean horizontal extent of ballistic trajectories of the transported gas, as opposed to the scale height of the dominant gas which determines the exobase for escape. It is shown that the approximation of exospheric lateral flow as a diffusion process is applicable to global scale problems concerning terrestrial helium and heavier gases, and lunar gases heavier than helium.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, M.; Bowman, B.; Branson, J.
The dominant error source in the force models used to predict low perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying high-resolution density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal, semidiurnal and terdiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index a p to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low perigee satellites.
High accuracy satellite drag model (HASDM)
NASA Astrophysics Data System (ADS)
Storz, Mark F.; Bowman, Bruce R.; Branson, Major James I.; Casali, Stephen J.; Tobiska, W. Kent
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab's High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.
EEJ and EIA variations during modeling substorms with different onset moments
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Klimenko, M. V.
2015-11-01
This paper presents the simulations of four modeling substorms with different moment of substorm onset at 00:00 UT, 06:00 UT, 12:00 UT, and 18:00 UT for spring equinoctial conditions in solar activity minimum. Such investigation provides opportunity to examine the longitudinal dependence of ionospheric response to geomagnetic substorms. Model runs were performed using modified Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). We analyzed GSM TIP simulated global distributions of foF2, low latitude electric field and ionospheric currents at geomagnetic equator and their disturbances at different UT moments substorms. We considered in more detail the variations in equatorial ionization anomaly, equatorial electrojet and counter equatorial electrojet during substorms. It is shown that: (1) the effects in EIA, EEJ and CEJ strongly depend on the substorm onset moment; (2) disturbances in equatorial zonal current density during substorm has significant longitudinal dependence; (3) the observed controversy on the equatorial ionospheric electric field signature of substorms can depend on the substorm onset moments, i.e., on the longitudinal variability in parameters of the thermosphere-ionosphere system.
NASA Astrophysics Data System (ADS)
Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore
2013-01-01
paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.
Two-way Effects of an ICME Event at Mars
NASA Astrophysics Data System (ADS)
Regoli, L.; Fang, X.; Dong, C.; Tenishev, V.; Lee, Y.; Bougher, S. W.; Manchester, W.
2017-12-01
The influence of enhanced solar activity on planetary magnetospheres is a subject of great interest. At Mars, given the small size of its induced magnetosphere compared to the size of the planet, a gravitationally bound oxygen corona extends above the bow shock upstream of the planet. These oxygen atoms can be ionized by different processes and precipitate into the upper atmosphere of Mars. When they deposit their energy, they heat the thermosphere locally according to the path they follow which is mainly determined by the magnetic field configuration within the induced magnetosphere. While previous studies have investigated the energy deposition during interplanetary coronal mass ejection (ICME) events, this study focuses on the effect that an enhanced thermosphere/ionosphere has in the surrounding environment, including the increased escape. For this, we use a combination of models comprising a global circulation model of the Martian atmosphere (MGITM), a 3D model of the hot oxygen corona (AMPS), a multi-fluid magnetohydrodynamics (MHD) model of the induced magnetosphere and a test particle code (MCPIT) to propagate the precipitating ions into the exobase.
NASA Astrophysics Data System (ADS)
Varotsos, C. A.; Efstathiou, M. N.
2018-03-01
In this paper we investigate the evolution of the energy emitted by CO2 and NO from the Earth's thermosphere on a global scale using both observational and empirically derived data. In the beginning, we analyze the daily power observations of CO2 and NO received from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) equipment on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite for the entire period 2002-2016. We then perform the same analysis on the empirical daily power emitted by CO2 and NO that were derived recently from the infrared energy budget of the thermosphere during 1947-2016. The tool used for the analysis of the observational and empirical datasets is the detrended fluctuation analysis, in order to investigate whether the power emitted by CO2 and by NO from the thermosphere exhibits power-law behavior. The results obtained from both observational and empirical data do not support the establishment of the power-law behavior. This conclusion reveals that the empirically derived data are characterized by the same intrinsic properties as those of the observational ones, thus enhancing the validity of their reliability.
NASA Technical Reports Server (NTRS)
1991-01-01
A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.
Refilling the plasmasphere through the exospheric sieve
NASA Astrophysics Data System (ADS)
Krall, J.; Huba, J.; Emmert, J. T.
2016-12-01
The ability to compute plasmasphere densities is critical to many space weather concerns. The sensitivity of refilling to the solar cycle is compelling because, paradoxically, refilling rates are generally lowest when the ionosphere is strongest. In the past, this has been attributed to a dearth of exosphere H at solar maximum. While H is needed to supply H + O+ -> H+ + O charge exchange, recent work demonstrates a significant sensitivity to O [1]. Results will be based on preliminary model-data comparisons using in situ Van Allen Probe EMFISIS data and the SAMI3 ionosphere/plasmasphere code. We will assess the impact of atmospheric composition (i.e., O and H) and solar activity (e.g., F10.7) on plasmasphere refilling rates and density following magnetic storms. SAMI3 (Sami3 is Also a Model of the Ionosphere) is a first-principles ionosphere/plasmasphere model. SAMI3 includes 7 ion species (H+, He+, O+, N+, O2+, N2+, NO+), each treated as a separate fluid, with temperature equations being solved for H+, He+, O+ and e- [2]. SAMI3 uses the empirical MSIS thermosphere/exosphere model to specify O and H densities. SAMI3 includes scaling factors that can be used to tune MSIS densities to bring them in line with measurements of satellite drag. Key inputs for this data-driven modeling are the thermosphere oxygen (O) and hydrogen (H) densities, and the F10.7 proxy for solar ultraviolet irradiance. [1 ]Krall, J., J. T. Emmert, F. Sassi, S. E. McDonald, and J. D. Huba (2016), Day-to-day variability in the thermosphere and its impact on plasmasphere refilling, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA022328. [2] Huba, J. and J. Krall (2013), Modeling the plasmasphere with SAMI3, Geophys. Res. Lett., 40, 6-10, doi:10.1029/2012GL054300 Research supported by NRL base funds.
NASA Astrophysics Data System (ADS)
Waldrop, L.; Kerr, R. B.; Huang, Y.
2018-04-01
Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.
NASA Astrophysics Data System (ADS)
Snowden, D.; Yelle, R. V.; Cui, J.; Wahlund, J.-E.; Edberg, N. J. T.; Ågren, K.
2013-09-01
We derive vertical temperature profiles from Ion Neutral Mass Spectrometer (INMS) N2 density measurements from 32 Cassini passes. We find that the average temperature of Titan’s thermosphere varies significantly from pass-to-pass between 112 and 175 K. The temperatures from individual temperature profiles also varies considerably, with many passes exhibiting wave-like temperature perturbations and large temperature gradients. Wave-like temperature perturbations have wavelengths between 150 and 420 km and amplitudes between 3% and 22% and vertical wave power spectra of the INMS data and HASI data have a slope between -2 and -3, which is consistent with vertically propagating atmospheric waves. The lack of a strong correlation between temperature and latitude, longitude, solar zenith angle, or local solar time indicates that the thermal structure of Titan’s thermosphere is not primarily determined by the absorption of solar EUV flux. At N2 densities greater than 108 cm-3, Titan’s thermosphere is colder when Titan is observed in Saturn’s magnetospheric lobes compared to Saturn’s plasma sheet as proposed by Westlake et al. (Westlake, J.H. et al. [2011]. J. Geophys. Res. 116, A03318. http://dx.doi.org/10.1029/2010JA016251). This apparent correlation suggests that magnetospheric particle precipitation causes the temperature variability in Titan’s thermosphere; however, at densities smaller than 108 cm-3 the lobe passes are hotter than the plasma sheet passes and we find no correlation between the temperature of Titan’s thermosphere and ionospheric signatures of enhanced particle precipitation, which suggests that the correlation is not indicative of a physical connection. The temperature of Titan’s thermosphere also may have decreased by ∼10 K around mid-2007. Finally, we classify the vertical temperature profiles to show which passes are hot and cold and which passes have the largest temperature variations. In a companion paper (Part II), we estimate the strength of energy sources and sinks in Titan’s thermosphere.
NASA Astrophysics Data System (ADS)
Gasperini, Federico
In a society increasingly dependent on space technology, space weather has become a prominent scientific paradigm. In the last decade evidence has shown that terrestrial weather significantly influences space weather. Periodic absorption of solar radiation in local time and longitude by tropospheric water vapor and stratospheric ozone as well as latent heat release in clouds generate a spatially- and temporally-evolving spectrum of global-scale atmospheric waves (i.e., tides, planetary waves and Kelvin waves). A subset of these waves propagates vertically, evolving with height due to wave-mean flow, wave-wave, and wave-plasma interactions, and driving electric fields of tidal origin in the dynamo region. While considerable improvements have been made on the understanding of MLT dynamics, driven in part by the development and deployment of new instruments and techniques, relatively little is known about the coupling of waves in the 120-300 km `thermospheric gap' between satellite remote-sensing and in-situ wave diagnostics. The dissertation herein reveals vertical wave coupling in this height region and quantifies its role in determining thermospheric variability. This objective is accomplished employing quasi-Sun-synchronous satellite measurements (i.e., TIMED, CHAMP, and GOCE) and state-of-the-art numerical modeling simulations (i.e., TIME-GCM/MERRA). Evidence is found for the vertical propagation from the lower to the middle thermosphere of the eastward propagating diurnal tide with zonal wave number 3 (DE3) and the 3-day ultra-fast Kelvin wave (UFKW), two major global-scale atmospheric oscillations of tropospheric origin. These waves are shown to nonlinearly interact and produce secondary waves responsible for significant longitudinal and day-to-day variability. For solar and geomagnetic quiet conditions, atmospheric waves are found to be responsible for up to 60% of the total variability, demonstrating lower atmosphere coupling as a key contributor to thermosphere weather, at least in the absence of major solar-driven variability. Additionally, background atmospheric conditions (i.e., dissipation and zonal mean winds) and found to significantly impact the latitudinal-temporal evolution of upward propagating waves.
NASA Astrophysics Data System (ADS)
Jarvis, M. J.; Jenkins, B.; Rodgers, G. A.
1998-09-01
F region peak heights, derived from ionospheric scaled parameters through 38-year data series from both Argentine Islands (65°S, 64°W) and Port Stanley (52°S, 58°W) have been analyzed for signatures of secular change. Long-term changes in altitude, which vary with month and time of day, were found at both sites. The results can be interpreted either as a constant decrease in altitude combined with a decreasing thermospheric wind effect or as a constant decrease in altitude which is altitude-dependent. Both interpretations leave inconsistencies when the results from the two sites are compared. The estimated long-term decrease in altitude is of a similar order of magnitude to that which has been predicted to result in the thermosphere from anthropogenic change related to greenhouse gases. Other possibilities should not, however, be ruled out.
Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion
NASA Astrophysics Data System (ADS)
Rishbeth, H.; Müller-Wodarg, I. C. F.; Zou, L.; Fuller-Rowell, T. J.; Millward, G. H.; Moffett, R. J.; Idenden, D. W.; Aylward, A. D.
2000-08-01
The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2) at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP), without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down) motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs at high geographic latitudes, where the zenith angle effect becomes overwhelming and causes a midwinter depression of electron density, despite the enhanced atomic/molecular ratio. This leads to a semiannual variation of NmF2. A different situation exists in winter at longitudes near the magnetic poles, where the downwelling occurs at relatively low geographic latitudes so that solar radiation is strong enough to produce large values of NmF2. This circulation-driven mechanism provides a reasonably complete explanation of the observed pattern of F2 layer annual and semiannual quiet-day variations.
Takahashi, Hideo; Kahramangil, Bora; Berber, Eren
2018-04-01
Microwave thermosphere ablation is a new treatment modality that creates spherical ablation zones using a single antenna. This study aims to analyze local recurrence associated with this new treatment modality in patients with malignant liver tumors. This is a prospective clinical study of patients who underwent microwave thermosphere ablation of malignant liver tumors between September 2014 and March 2017. Clinical, operative, and oncologic parameters were analyzed using Kaplan-Meier survival and Cox proportional hazards model. One hundred patients underwent 301 ablations. Ablations were performed laparoscopically in 87 and open in 13 patients. Pathology included neuroendocrine liver metastasis (n = 115), colorectal liver metastasis (n = 100), hepatocellular cancer (n = 21), and other tumor types (n = 65). Ninety-day morbidity was 7% with one not procedure-related mortality. Median follow-up was 16 months with 65% of patients completing at least 12 months of follow-up. The rate of local tumor recurrence rate per lesion was 6.6% (20/301). Local tumor, new hepatic, and extrahepatic recurrences were detected in 15%, 40%, and 40% of patients, respectively. Local recurrence rate per pathology was 12% for both colorectal liver metastasis (12/100) and other metastatic tumors (8/65). No local recurrence was observed to date in the neuroendocrine liver metastasis and in the limited number of patients with hepatocellular cancers. Tumor size >3 cm and tumor type were independent predictors of local recurrence. This is the first study to analyze local recurrence after microwave thermosphere ablation of malignant liver tumors. Short-term local tumor control rate compares favorably with that reported for radiofrequency and other microwave technologies in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vadas, Sharon L.; Crowley, Geoff
2010-07-01
We model the gravity waves (GWs) excited by Tropical Storm (TS) Noel at 0432 UT on 30 October 2007. Using forward ray tracing, we calculate the body forces which result from the saturation and dissipation of these GWs. We then analyze the 59 traveling ionospheric disturbances (TIDs) observed by the TIDDBIT ionospheric sounder at 0400-1000 UT near Wallops Island. These TIDs were located at the bottomside of the F layer at z = 230-290 km, had periods of τr = 15 to 90 min, horizontal wavelengths of λH = 100 to 3000 km, and horizontal phase speeds of cH = 140 to 650 m/s. 33 (˜60%) of the TIDs were propagating northwest(NW) and north(N)ward, from the direction of TS Noel 1700-2000 km away. We show that these TIDs were likely GWs. 40% of these GWs had phase speeds larger than 280m/s. This precluded a tropospheric source and suggested mesospheric and thermospheric sources instead. Using reverse ray tracing, we compare the GW locations with the regions of convective overshoot, mesospheric body forces, and thermospheric body forces. We identify 27 of the northwest/northward propagating GWs as likely being secondary GWs excited by thermospheric body forces. Three may have originated from mesospheric body forces, although this is much less likely. None are identified as primary GWs excited directly by TS Noel. 11 of these GWs with cH < 205 m/s likely reflected near the tropopause prior to detection. This secondary GW spectrum peaks at λH ˜ 100-300 km and cH ˜ 100-300 m/s. To our knowledge, this is the first identification and quantification of secondary GWs from thermospheric body forces.
NASA Astrophysics Data System (ADS)
Conde, M. G.; Anderson, C.; Hecht, J. H.
2011-12-01
Numerous observations of thermospheric neutral winds at altitudes of 240 km and higher clearly show wind structures occurring at auroral latitudes in response to magnetospheric forcing. It is also known from observations that magnetospheric forcing is not a major driver of winds down at mesopause heights and below. Because it is difficult to measure winds in the intervening "transition region" between these height regimes, very little is known about how deeply the magnetospherically driven neutral wind structures penetrate into the lower thermosphere, what factors affect this penetration, and what consequences it may have for transport of chemical species. Here we will show neutral wind maps obtained at F-region and E-region heights in the auroral zone using Fabry-Perot Doppler spectroscopy of the 630 nm and 558 nm optical emissions. Although thermospheric neutral winds are smoothed by viscosity and inertia, observed responses to magnetospheric forcing still include wind responses on time scales as short as 10 minutes or less, and on length scales shorter than 100 km horizontally and 5 km vertically. The data also show that the degree of penetration of magnetospheric forcing into the lower thermospheric wind field is highly variable from day to day. Signatures of magnetospheric forcing are sometimes seen at altitudes as low as 120 km, whereas at other times the E-region does not seem to respond at all. Possible links will be explored between this variability and the day to day differences seen in the column integrated thermospheric [O]/[N2] ratio over Alaska.
Why Fly ITSP and GEC or Don't We Understand the Ionosphere and Thermosphere?
NASA Astrophysics Data System (ADS)
Paxton, L. J.
2007-05-01
The ionosphere/thermosphere (I/T) community faces some significant challenges in the next few years. Principal among these challenges is that of conveying to the broader space science community the need for additional, focused space-based research missions that address the major problems of I/T physics. What do we say when we hear that 1) the I/T is basically understood, 2) I/T science is about improving the specification of the I/T rather than answering basic questions and 3) the only reason we study the I/T is for its practical applications to communications, navigation and orbit-dynamics? The ability of first principles models to produce a reasonable fit to observations seems to provide prima facie evidence that we do understand the physics, chemistry and dynamics of the I/T. However, we have so few systematic, well calibrated, unambiguous, global measurements of the I/T and there are so many poorly characterized inputs to the models that there is a great range in the ability of the model to be "tuned" to reproduce a particular set of measurements. The ability of the models to reproduce the general behavior should enable us to determine what our "known unknowns" are and provide valuable insight into those processes or quantities that we must measure in order to make further progress in our understanding. Future missions, especially those like GEC or ITSP as well as potential Explorer-class missions, that look at the I/T in a new way, will tell us if there are "unknown unknowns" that await our investigation.. There are still new and exciting questions at all spatial and temporal scales in the ionosphere and thermosphere. The pending missions - Ionosphere Thermosphere Storm Probes (ITSP) and Geospace Electrodynamics Connections (GEC) - are vital to testing our understanding of the physics of the storm-time response of the I/T and the electrodynamic connection of the ionosphere with geospace, respectively. With these missions we seek to characterize the spatial and temporal variability of the I/T and to understand the root cause of that variability on a global scale and in a global context.. Coupled with the rich variety and history of distributed ground-based measurements, we can address these issues that are at the heart of our need to understand the physical processes that are parameterized as sub-gridscale phenomena on the first principles models.
Energy coupling during the August 2011 magnetic storm
NASA Astrophysics Data System (ADS)
Huang, C. Y.; Su, Y.; Sutton, E. K.; Weimer, D. R.; Davidson, R.
2013-12-01
We present results from an analysis of high-latitude ionosphere-thermosphere (IT) coupling to the solar wind during a moderate magnetic storm which occurred on 5-6 August 2011. During the storm, a multi-point set of observations of the ionosphere and thermosphere was available. We make use of ionospheric measurements of electromagnetic and particle energy made by the Defense Meteorological Satellite Program (DMSP), and neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite to infer: (1) the energy budget and (2) timing of the energy transfer process during the storm. We conclude that the primary location for energy input to the IT system is the extremely high latitude region. We suggest that the total energy available to the IT system is not completely captured either by observation or empirical models.
Comment on "A hydrogen-rich early Earth atmosphere".
Catling, David C
2006-01-06
Tian et al. (Reports, 13 May 2005, p. 1014) proposed a hydrogen-rich early atmosphere with slow hydrogen escape from a cold thermosphere. However, their model neglects the ultraviolet absorption of all gases other than H2. The model also neglects Earth's magnetic field, which affects the temperature and density of ions and promotes nonthermal escape of neutral hydrogen.
NASA Astrophysics Data System (ADS)
Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.
On the basis of Global Self-consistent Model of Thermosphere Ionosphere and Protonosphere GSM TIP developed in WD IZMIRAN the calculations of the behavior of thermosphere F-region and upper ionosphere parameters at middle and low geomagnetic latitudes are carried out The calculations were carried out with use the new block of the calculation of electric fields in the ionosphere in which the decision of the three-dimensional equation describing the law of the conservation of the full current density in the ionosphere of the Earth is realized by adduction it to the two-dimensional by integration on the thickness of the current conductive layer of the ionosphere along equipotential geomagnetic field lines The calculations of the neutral atmosphere composition and temperature were executed with use of the MSIS model The quite geomagnetic conditions of the equinox were considered in the minimum of the solar activity There are presented the calculated global distributions of the critical frequency of the F2-layer of ionosphere for the different moments UT the latitudinal course of the N e and T e in the F-region and upper ionosphere in the vicinity of geomagnetic equator and unrolling on UT of the calculated velocities of zonal component of the thermospheric wind and ion temperature in the F-region of ionosphere as well as critical frequency and height of the F2-layer maximum of the ionosphere at three longitude chains of the stations Brazilian -- Fortaleza 4 0 r S 38 0 r W Jicamarca 11 9 r S 76 0 r W Cachoeira
NASA Astrophysics Data System (ADS)
Chau, J. L.; Hoffmann, P.; Pedatella, N. M.; Matthias, V.
2014-12-01
In recent years, there have been a series of reported ground- and satellite-based observations of lunar tide signatures in the equatorial and low latitude ionosphere around sudden stratospheric warming (SSW) events. More recently, Pedatella et al. [2014], using the Whole Atmosphere Community Climate Model Extended version (WACCM-X) and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) has demonstrated that the semi-diurnal lunar tide (M2) is an important contributor to the ionosphere variability during the 2009 SSW. Although the model results were focused on the low-latitude ionosphere and compare with Jicamarca electric fields, Pedatella et al. [2014] also reported that the M2 was enhanced in the northern mid and high latitudes (between 30 and 70oN) at mesospheric and lower thermospheric altitudes during the 2009 SSW. Motivated by this finding, we have analyzed winds from 80 to 100 kms obtained with meteor radars from Juliusruh (54oN) and Andøya (69oN) stations during five SSWs (2008, 2009, 2010, 2012, and 2013). By fitting the usual solar components (diurnal and semidiurnal and M2, we have been able to identify clearly the enhancement of the M2 as well as the semi diurnal solar tide during all these SSWs. The qualitative agreement with the Pedatella et al. [2014] simulations is very good, i.e., stronger signature at 54oN than at 69oN and enhanced around SSW. The analysis of other SSWs not only show the clear relationship with SSWs, but also the different behaviors in strength, time of occurrence, duration, etc., that appear to be associated to the mean wind dynamics as well as the stratospheric planetary wave characteristics.
Simultaneous observations of traveling convection vortices: Ionosphere-thermosphere coupling
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; Lynch, Kristina A.; Fernandes, Philip A.; Aruliah, Anasuya L.; Engebretson, Mark J.; Moen, Jøran I.; Oksavik, Kjellmar; Yahnin, Alexander G.; Yeoman, Timothy K.
2017-05-01
We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements with corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.
Changes of the Ionosphere Caused By the Interaction Between the Quasi-Two-Day Wave and Tides
NASA Astrophysics Data System (ADS)
Yue, J.; Wang, W.; Chang, L. C.
2014-12-01
Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. We have understood that the QTDW can impact the thermosphere and ionosphere either by directly penetrating into the lower thermosphere and modulating E-region dynamo in a period of about 2-days, or by enhancing mixing and decreasing thermosphere O/N2 and in ionospheric electron density. In this work, we introduce the third mechanism of how the QTDW impacts the ionosphere, the QTDW-tidal interactions occurring in the mesosphere and lower thermosphere (MLT). We employ the NCAR TIME-GCM to simulate the interaction between the QTDW and tides, and the impact of this interaction on the ionospheric E-region dynamo, equatorial fountain effect, and F-region plasma density. We find that the tidal amplitudes and phases are dramatically altered during strong QTDW events during post-solstice. In particular, the amplitudes of the migrating tides can decrease as much as 20-30%. The changed tides result in different dynamo electric field, vertical ion drift, and thus different diurnal and semidiurnal cycles in F-region electron density.
Density and pressure variability in the mesosphere and thermosphere
NASA Technical Reports Server (NTRS)
Davis, T. M.
1986-01-01
In an effort to isolate the essential physics of the mesosphere and the thermosphere, a steady one-dimensional density and pressure model has been developed in support of related NASA activities, i.e., projects such as the AOTV and the Space Station. The model incorporates a zeroth order basic state including both the three-dimensional wind field and its associated shear structure, etc. A first order wave field is also incorporated in period bands ranging from about one second to one day. Both basic state and perturbation quantities satsify the combined constraints of mass, linear momentum and energy conservation on the midlatitude beta plane. A numerical (iterative) technique is used to solve for the vertical wind which is coupled to the density and pressure fields. The temperature structure from 1 to 1000 km and the lower boundary conditions are specified using the U.S. Standard Atmosphere 1976. Vertical winds are initialized at the top of the Planetary Boundary Layer using Ekman pumping values over flat terrain. The model also allows for the generation of waves during the geostrophic adjustment process and incorporates wave nonlinearity effects.
The quasi 2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA
NASA Astrophysics Data System (ADS)
Wang, Jack C.; Chang, Loren C.; Yue, Jia; Wang, Wenbin; Siskind, D. E.
2017-05-01
The quasi 2 day wave (QTDW) is a traveling planetary wave that can be enhanced rapidly to large amplitudes in the mesosphere and lower thermosphere (MLT) region during the northern winter postsolstice period. In this study, we present five case studies of QTDW events during January and February 2005, 2006 and 2008-2010 by using the Thermosphere-Ionosphere-Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) nudged with the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) Weather Forecast Model. With NOGAPS-ALPHA introducing more realistic lower atmospheric forcing in TIME-GCM, the QTDW events have successfully been reproduced in the TIME-GCM. The nudged TIME-GCM simulations show good agreement in zonal mean state with the NOGAPS-ALPHA 6 h reanalysis data and the horizontal wind model below the mesopause; however, it has large discrepancies in the tropics above the mesopause. The zonal mean zonal wind in the mesosphere has sharp vertical gradients in the nudged TIME-GCM. The results suggest that the parameterized gravity wave forcing may need to be retuned in the assimilative TIME-GCM.
Change in the radiative output of the Sun in 1992 and its effect in the thermosphere
NASA Technical Reports Server (NTRS)
White, O. R.; Rottman, G. J.; Woods, T. N.; Knapp, B. G.; Keil, S. L.; Livingston, W. C.; Tapping, K. F.; Donnelly, R. F.; Puga, L. C.
1994-01-01
Ground and space measurements of the solar spectral irradiance at radio, visible, UV, and X ray wavelengths show a large decline in the first 6 months of 1992. This sustained drop in the solar output is important in understanding the connection between the emergent magnetic flux on the Sun and the radiative output as well as in understanding the effects of such change in the upper atmosphere of the earth. We present preliminary estimates of the observed changes as the means to spur inquiry into this solar event in the declining phase of solar cycle 22. Typical decreases are 15% in Lyman alpha and 40% in 10.7-cm radio flux. Mass spectrometer and incoherent scatter model calculations at 600 km in the thermosphere indicate a 30% decrease in the temperature and a 3X decrease in the density of the thermosphere near the altitude where both the Upper Atmosphere Research Satellite (UARS) and Hubble Space Telescope (HST) are flying. Decrease of the orbital period of the UARS shows the expected effect of decreasing density at flight altitude. Work in progress indicates that the output change results from the decline in solar magnetic flux to a lower level of activity in the southern hemisphere of the Sun.
CISM: Modeling the Sun-Earth Connection
NASA Astrophysics Data System (ADS)
Hughes, W. J.; Team, T. C.
2003-12-01
The Center for Integrated SpaceWeather Modeling (CISM), an NSF Science and Technology Center that is a consortium of ten institutions headed by Boston University, has as its primary goal the development of a series of ever improving versions of a comprehensive physics-based simulation model that describes the space environment from the Sun to the Earth. CISM will do this by coupling existing models of components of the system. In this paper we review our progress to date and summarize our plans. We discuss results of initial coupling of MHD models of the corona and solar wind, and of a global magnetospheric MHD model with a global ionosphere/thermosphere model, a radiation belt model, and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere. Including the Dartmouth radiation belt model shows how the radiation belts evolve in a realistic magnetosphere.
Modeling Density Variation in the Thermosphere
2011-04-29
static electromagnetic fields as follows: when a volume of the ionosphere is bounded on the sides by an equipotential surface and on the bottom by the...generation of electromagnetic energy along that geomagnetic-field line. An Equipotential -Boundary Poynting-Flux (EBPF) theorem was presented for quasi
NASA Astrophysics Data System (ADS)
McInerney, Joseph M.; Marsh, Daniel R.; Liu, Han-Li; Solomon, Stanley C.; Conley, Andrew J.; Drob, Douglas P.
2018-05-01
We performed simulations of the atmosphere-ionosphere response to the solar eclipse of 21 August 2017 using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X v. 2.0) with a fully interactive ionosphere and thermosphere. Eclipse simulations show temperature changes in the path of totality up to -3 K near the surface, -1 K at the stratopause, ±4 K in the mesosphere, and -40 K in the thermosphere. In the F region ionosphere, electron density is depleted by about 55%. Both the temperature and electron density exhibit global effects in the hours following the eclipse. There are also significant effects on stratosphere-mesosphere chemistry, including an increase in ozone by nearly a factor of 2 at 65 km. Dynamical impacts of the eclipse in the lower atmosphere appear to propagate to the upper atmosphere. This study provides insight into coupled eclipse effects through the entire atmosphere from the surface through the ionosphere.
Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations
NASA Astrophysics Data System (ADS)
Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.
2014-12-01
We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.
Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide
NASA Technical Reports Server (NTRS)
Justus, C. G.; James, B. F.
2000-01-01
This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.
LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment
NASA Astrophysics Data System (ADS)
Mlynczak, M. G.; Yee, J. H.
2017-12-01
We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.
NASA Astrophysics Data System (ADS)
Taori, A.; Dashora, N.; Raghunath, K.; Russell, J. M., III; Mlynczak, Martin G.
2011-07-01
We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5°N, 79.2°E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted.
A Trade Study of Thermosphere Empirical Neutral Density Models
2014-08-01
n,m = Degree and order, respectively ′ = Geocentric latitude Approved for public release; distribution is unlimited. 2 λ = Geocentric ...coordinate. The ECI coordinate system also known as the Approved for public release; distribution is unlimited. 3 geocentric equatorial system has...seconds for numerical integration. The EGM96 model specifies V in the Earth-Center, Earth-Fixed (ECEF) coordinate frame, a geocentric coordinate
Simultaneous Observations of TADs in GOCE, CHAMP and GRACE Density Data Compared with CTIPe
NASA Astrophysics Data System (ADS)
Bruinsma, S. L.; Fedrizzi, M.
2012-12-01
The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 300 and 490 km since May 2001, and July 2002, respectively. Since November 2009, a third gravity field satellite mission, ESA's GOCE, is in a very low and near heliosynchronous dawn-dusk orbit at about 270 km. The spacecraft is actively maintained at that constant altitude using an ion propulsion engine that compensates the aerodynamic drag in the flight direction. The thrust level, combined with accelerometer and satellite attitude data, is used to compute atmospheric densities and cross-track winds. The response of the thermosphere to geomagnetic disturbances, i.e., space weather, has been extensively studied using the exceptional datasets of CHAMP and GRACE. Thanks to GOCE we now have a third excellent data set for these studies. In this presentation we will show the observed density and its variability for the geomagnetic storm of 5 April 2010, and compare it with predictions along the orbits obtained from a self-consistent physics-based coupled model of the thermosphere, ionosphere, plasmasphere and electrodynamics (CTIPe). For this storm, the CHAMP and GOCE orbit planes were perpendicular (12/24 Local Solar Time, and 6/18 LST, respectively) and the altitude difference was only approximately 30 km. The GRACE densities are at a much higher altitude of about 475 km. Wave-like features are revealed or enhanced after filtering of the densities and calculation of relative density variations. Traveling Atmospheric Disturbances are observed in the data, and the model's fidelity in reproducing the waves is evaluated.
Thermospheric neutral density estimates from heater-induced ion up-flow at EISCAT
NASA Astrophysics Data System (ADS)
Kosch, Michael; Ogawa, Yasunobu; Yamazaki, Yosuke; Vickers, Hannah; Blagoveshchenskaya, Nataly
We exploit a recently-developed technique to estimate the upper thermospheric neutral density using measurements of ionospheric plasma parameters made by the EISCAT UHF radar during ionospheric modification experiments. Heating the electrons changes the balance between upward plasma pressure gradient and downward gravity, resulting in ion up-flow up to ~200 m/s. This field-aligned flow is retarded by collisions, which is directly related to the neutral density. Whilst the ion up-flow is consistent with the plasma pressure gradient, the estimated thermospheric neutral density depends on the assumed composition, which varies with altitude. Results in the topside ionosphere are presented.
Background Lamb waves in the Earth's atmosphere
NASA Astrophysics Data System (ADS)
Nishida, Kiwamu; Kobayashi, Naoki; Fukao, Yoshio
2014-01-01
Lamb waves of the Earth's atmosphere in the millihertz band have been considered as transient phenomena excited only by large events. Here, we show the first evidence of background Lamb waves in the Earth's atmosphere from 0.2 to 10 mHz, based on the array analysis of microbarometer data from the USArray in 2012. The observations suggest that the probable excitation source is atmospheric turbulence in the troposphere. Theoretically, their energy in the troposphere tunnels into the thermosphere at a resonant frequency via thermospheric gravity wave, where the observed amplitudes indeed take a local minimum. The energy leak through the frequency window could partly contribute to thermospheric wave activity.
Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA) : an overview
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Sobral, J. H. A.; de Paula, E. R.; Batista, I. S.
1992-12-01
The Equatorial lonization Anomaly (EIA) development can undergo drastic modification in the form of an anomalous occurrence at local times outside that of its quiet time development and/or inhibition/enhancement at local times of its normal occurrences. This happens for disturbed electrodynamic conditions of the global ionosphere-thermosphere-magnetosphere system, consequent upon the triggering of a magnetospheric storm event. Direct penetration to equatorial latitudes of the magnetospheric electric fields and the thermospheric disturbances involving winds, electric fields and composition changes produce significant alteration in the EIA morphology and dynamics. Results on statistical behaviour based on accumulated ground-based data sets, and those from recent theoretical modelling efforts and from satellite and ground-based observations, are reviewed. Some outstanding problems of the EIA response to magnetospheric disturbances that deserve attention in the coming years are pointed out.
NASA Technical Reports Server (NTRS)
Milynczak, Martin G.
1991-01-01
The conversion of chemical potential energy and infrared radiative energy to kinetic energy by non-LTE processes involving ozone is a potentially significant source of heat in the terrestrial upper mesosphere and lower thermosphere. Heating rates are calculated and compared using two different statistical equilibrium models previously applied in the analysis of measurements of limb emission from ozone. The calculated heating depends strongly on the assumed distribution and relaxation of energy in the quasi-nascent ozone molecule. Finally, in the absence of a detailed data base of rate coefficients it may be possible to estimate the heating rate due to non-LTE processes in ozone from appropriate satellite measurements of the ozone concentration and of the infrared emission from ozone in the 9-12 micron spectral interval.
NASA Technical Reports Server (NTRS)
Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.
1984-01-01
Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.
NASA Astrophysics Data System (ADS)
Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.
1984-09-01
Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.
Atmospheric scattering effects on ground-based measurements of thermospheric winds
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Schmitt, G. A.; Hays, P. B.; Meriwether, J. W., Jr.; Tepley, C. A.; Cogger, L. L.
1983-01-01
Convergent or divergent thermospheric wind patterns detected by ground-based Fabry-Perot interferometric measurements of the Doppler shifts of atomic lines are demonstrated to occur in the presence of strong intensity gradients and a scattering atmosphere. Consideration is given to the color shifts observed when sighting to the north or the south, and a numerical model is developed to describe the wind patterns which produce the recorded shifts. An account is taken of the direct and scattered components of the brightness, with the atmosphere treated as a single scattering layer with a reflecting surface underneath. A scattering coefficient is calculated, together with the line shape of the wavelength shifts. The scattered light is demonstrated, both through simulations and measurements taken near Calgary, Alberta, to produce convergence or divergence of the color shifts, depending on the line-of-sight of the viewing.
Alternative Method for the Thermospheric Atomic Oxygen Density Determination
NASA Technical Reports Server (NTRS)
Bennett, A. C.; Omidvar, K.; Atlas, Robert (Technical Monitor)
2001-01-01
Atomic oxygen density in the upper thermosphere (approximately 300 km) can be calculated using ground based incoherent scatter radar and Fabry-Perot interferometer measurements. Burnside et al. was the first to try this method, but Buonsanto et al. provided an extensive treatment of the method in 1997. This paper further examines the method using 46 nights of data collected over six years and the latest information on the oxygen collision frequency. The method is compared with the MSIS (Mass Spectrometer Incoherent Scatter)-86 atomic oxygen prediction values, which are based upon in situ rocket born and satellite measurements from the 70s to the mid-80s. In general, the method supports the MSIS-86 model, but indicates several areas of discrepancy. Furthermore, no direct correlation is found between the geomagnetic conditions and the difference between the method and MSIS-86 predictions.
NASA Technical Reports Server (NTRS)
Antoniadis, D. A.
1976-01-01
The time-dependent equations of neutral air motion are solved subject to three constraints: two of them are the usual upper and lower boundary conditions and the third is the value of the wind-induced ion drift at any given height. Using incoherent radar data, this procedure leads to a fast, direct numerical integration of the two coupled differential equations describing the horizontal wind components and yields time dependent wind profiles and meridional exospheric neutral temperature gradients. The diurnal behavior of the neutral wind system and of the exospheric temperature is presented for two solstice and two equinox days. The data used were obtained by the St. Santin and the Millstone Hill incoherent scatter radars. The derived geographic distributions of the exospheric temperatures are compared with those predicted by the OGO-6 empirical thermospheric model.
Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili
2004-01-01
We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.
Differential equation of exospheric lateral transport and its application to terrestrial hydrogen
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1973-01-01
The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.
Effects of high-latitude drivers on Ionosphere/Thermosphere parameters
NASA Astrophysics Data System (ADS)
Shim, J.; Kuznetsova, M. M.; Rastaetter, L.; Berrios, D.; Codrescu, M.; Emery, B. A.; Fedrizzi, M.; Foerster, M.; Foster, B. T.; Fuller-Rowell, T. J.; Mannucci, A.; Negrea, C.; Pi, X.; Prokhorov, B. E.; Ridley, A. J.; Coster, A. J.; Goncharenko, L.; Lomidze, L.; Scherliess, L.
2012-12-01
In order to study effects of high-latitude drivers, we compared Ionosphere/Thermosphere (IT) model performance for predicting IT parameters, which were obtained using different models for the high-latitude ionospheric electric potential including Weimer 2005, AMIE (assimilative mapping of ionospheric electrodynamics) and global magnetosphere models (e.g. Space Weather Modeling Framework). For this study, the physical parameters selected are Total Electron Content (TEC) obtained by GPS ground stations, and NmF2 and hmF2 from COSMIC LEO satellites in the selected 5 degree eight longitude sectors. In addition, Ne, Te, Ti, and Tn at about 300 km height from ISRs are considered. We compared the modeled values with the observations for the 2006 AGU storm period and quantified the performance of the models using skill scores. Furthermore, the skill scores are obtained for three latitude regions (low, middle and high latitudes) in order to investigate latitudinal dependence of the models' performance. This study is supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. The CCMC converted ionosphere drivers from a variety of sources and developed an interpolation tool that can be employed by any modelers for easy driver swapping. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) as a resource for the space science communities to use.
Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2017-12-01
We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.
Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.; ...
2017-03-11
We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements withmore » corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyomin; Lessard, Marc R.; Jones, Sarah L.
We present simultaneous observations of magnetosphere-ionosphere-thermosphere coupling over Svalbard during a traveling convection vortex (TCV) event. Various spaceborne and ground-based instruments made coordinated measurements, including magnetometers, particle detectors, an all-sky camera, European Incoherent Scatter (EISCAT) Svalbard Radar, Super Dual Auroral Radar Network (SuperDARN), and SCANning Doppler Imager (SCANDI). The instruments recorded TCVs associated with a sudden change in solar wind dynamic pressure. The data display typical features of TCVs including vortical ionospheric convection patterns seen by the ground magnetometers and SuperDARN radars and auroral precipitation near the cusp observed by the all-sky camera. Simultaneously, electron and ion temperature enhancements withmore » corresponding density increase from soft precipitation are also observed by the EISCAT Svalbard Radar. The ground magnetometers also detected electromagnetic ion cyclotron waves at the approximate time of the TCV arrival. This implies that they were generated by a temperature anisotropy resulting from a compression on the dayside magnetosphere. SCANDI data show a divergence in thermospheric winds during the TCVs, presumably due to thermospheric heating associated with the current closure linked to a field-aligned current system generated by the TCVs. We conclude that solar wind pressure impulse-related transient phenomena can affect even the upper atmospheric dynamics via current systems established by a magnetosphere-ionosphere-thermosphere coupling process.« less
Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities
NASA Astrophysics Data System (ADS)
Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.
2015-12-01
The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.
Middle Atmosphere Program. Handbook for MAP, Volume 10
NASA Technical Reports Server (NTRS)
Taubenheim, J. (Editor)
1984-01-01
The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences.
Update of the DTM thermosphere model in the framework of the H2020 project `SWAMI'
NASA Astrophysics Data System (ADS)
Bruinsma, S.; Jackson, D.; Stolle, C.; Negrin, S.
2017-12-01
In the framework of the H2020 project SWAMI (Space Weather Atmosphere Model and Indices), which is expected to start in January 2018, the CIRA thermosphere specification model DTM2013 will be improved through the combination of assimilating more density data to drive down remaining biases and a new high cadence kp geomagnetic index in order to improve storm-time performance. Five more years of GRACE high-resolution densities from 2012-2016, densities from the last year of the GOCE mission, Swarm mean densities, and mean densities from 2010-2017 inferred from the geodetic satellites at about 800 km are available now. The DTM2013 model will be compared with the new density data in order to detect possible systematic errors or other kinds of deficiencies and a first analysis will be presented. Also, a more detailed analysis of model performance under storm conditions will be provided, which will then be the benchmark to quantify model improvement expected with the higher cadence kp indices. In the SWAMI project, the DTM model will be coupled in the 120-160 km altitude region to the Met Office Unified Model in order to create a whole atmosphere model. It can be used for launch operations, re-entry computations, orbit prediction, and aeronomy and space weather studies. The project objectives and time line will be given.
Sensitivity of Ionosphere/Thermosphere to different high-latitude drivers
NASA Astrophysics Data System (ADS)
Shim, J.; Kuznetsova, M. M.; Rastaetter, L.; Swindell, M.; Codrescu, M.; Emery, B. A.; Foerster, M.; Foster, B.; Fuller-Rowell, T. J.; Mannucci, A. J.; Pi, X.; Prokhorov, B.; Ridley, A. J.; Coster, A. J.; Goncharenko, L. P.; Lomidze, L.; Scherliess, L.; Crowley, G.
2013-12-01
We compared Ionosphere/Thermosphere (IT) parameters, which were obtained using different models for the high-latitude ionospheric electric potential (e.g., Weimer 2005, AMIE (assimilative mapping of ionospheric electrodynamics) and global magnetosphere models (e.g. Space Weather Modeling Framework)) and particle precipitation (e.g., Fuller-Rowell & Evans, Roble & Ridley, and SWMF). For this study, the physical parameters such as Total Electron Content (TEC), NmF2 and hmF2, and electron and neutral densities at the CHAMP satellite track are considered. In addition, we compared the modeled physical parameters with observed data including ground-based GPS TEC measurements, NmF2 and hmF2 from COSMIC LEO satellites in the selected 5 degree eight longitude sectors, and Ne and neutral density measured by the CHAMP satellite. We quantified the performance of the models using skill scores. Furthermore, the skill scores are obtained for three latitude regions (low, middle and high latitudes) in order to investigate latitudinal dependence of the models' performance. This study is supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. The CCMC converted ionosphere drivers from a variety of sources and developed an interpolation tool that can be employed by any modelers for easy driver swapping. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) as a resource for the space science communities to use.
NASA Technical Reports Server (NTRS)
Chamberlin, Phillip
2008-01-01
The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.
2015-10-27
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Eric K. Sutton 5d. PROJECT NUMBER 3001 5e. TASK NUMBER PPM00018035...principal components, hybrid model, helium model, neutral composition, low-Earth orbit 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...difficult force to determine and predict, in the orbit propagation model of low earth orbiting satellites [36]. The drag acceleration vector, ~a
Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.
2016-07-01
The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.
Thermospheric Mass Density Specification: Synthesis of Observations and Models
2013-10-21
Simulation Experiments (OSSEs) of the column-integrated ratio of atomic oxygen and molecular nitrogen. Note that OSSEs assimilate, for a given...realistic observing system, synthetically generated observational data often sampled from model simulation results, in place of actually observed values...and molecular oxygen mass mixing ratio). Note that in the TIEGCM the molecular nitrogen mass mixing ratio is specified so that the sum of mixing
NASA Astrophysics Data System (ADS)
Miladinovich, D.; Datta-Barua, S.; Bust, G. S.; Ramirez, U.
2017-12-01
Understanding physical processes during storm time in the ionosphere-thermosphere (IT) system is limited, in part, due to the inability to obtain accurate estimates of IT states on a global scale. One reason for this inability is the sparsity of spatially distributed high quality data sets. Data assimilation is showing promise toward enabling global estimates by blending high quality observational data sets with established climate models. We are continuing development of an algorithm called Estimating Model Parameters for Ionospheric Reverse Engineering (EMPIRE) to enable assimilation of global datasets for storm time estimates of IT drivers. EMPIRE is a data assimilation algorithm that uses a Kalman filtering routine to ingest model and observational data. The EMPIRE algorithm is based on spherical harmonics which provide a spherically symmetric, smooth, continuous, and orthonormal set of basis functions suitable for a spherical domain such as Earth's IT region (200-600 km altitude). Once the basis function coefficients are determined, the newly fitted function represents the disagreement between observational measurements and models. We apply spherical harmonics to study the March 17, 2015 storm. Data sources include Fabry-Perot interferometer neutral wind measurements and global Ionospheric Data Assimilation 4 Dimensional (IDA4D) assimilated total electron content (TEC). Models include Weimer 2000 electric potential, International Geomagnetic Reference Field (IGRF) magnetic field, and Horizontal Wind Model 2014 (HWM14) neutral winds. We present the EMPIRE assimilation results of Earth's electric potential and thermospheric winds. We also compare EMPIRE storm time E cross B ion drift estimates to measured drifts produced from the Super Dual Auroral Radar Network (SuperDARN) and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) measurement datasets. The analysis from these results will enable the generation of globally assimilated storm time IT state estimates for future studies. In particular, the ability to provide data assimilated estimation of the drivers of the IT system from high to low latitudes is a critical step toward forecasting the influence of geomagnetic storms on the near Earth space environment.
NASA Technical Reports Server (NTRS)
Fennelly, Judy A.; Torr, Douglas G.; Torr, Marsha R.; Richards, Phillip G.; Yung, Sopo
1993-01-01
The Imaging Spectrometric Observatory (ISO) was a part of the ATLAS 1 Mission flown on the shuttle Atlantis from March 24 to April 2, 1992. During limb scanning operations, the ISO measured the O+(2P) ion emission at 732 nm. We have used a numerical inversion technique to retrieve thermospheric atomic oxygen, molecular nitrogen and temperature profiles. These preliminary results indicate a lower thermospheric temperature cooler than that predicted by MSIS for the solar conditions during the mission. Although the densities agree at low altitudes, the reduced scale height produces O and N2 densities 25 percent lower than the MSIS at 300 km.
Solar rotation effects on the thermospheres of Mars and Earth.
Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G
2006-06-02
The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.
NASA Technical Reports Server (NTRS)
Rodriquez, Marcello; Jones, Sarah; Mentzell, Eric; Gill, Nathaniel
2011-01-01
The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermospheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.
Upper and Middle Atmospheric Density Modeling Requirements for Spacecraft Design and Operations
NASA Technical Reports Server (NTRS)
Davis, M. H. (Editor); Smith, R. E. (Editor); Johnson, D. L. (Editor)
1987-01-01
Presented and discussed are concerns with applications of neutral atmospheric density models to space vehicle engineering design and operational problems. The area of concern which the atmospheric model developers and the model users considered, involved middle atmosphere (50 to 90 km altitude) and thermospheric (above 90 km) models and their engineering application. Engineering emphasis involved areas such as orbital decay and lifetime prediction along with attitude and control studies for different types of space and reentry vehicles.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Nishioka, M.; Kubota, M.; Tsugawa, T.; Nagatsuma, T.; Komonjinda, S.; Yatini, C. Y.
2015-03-01
This is the first paper that reports simultaneous observations of zonal drift of plasma bubbles and the thermospheric neutral winds at geomagnetically conjugate points in both hemispheres. The plasma bubbles were observed in the 630 nm nighttime airglow images taken by using highly sensitive all-sky airglow imagers at Kototabang, Indonesia (geomagnetic latitude (MLAT): 10.0°S), and Chiang Mai, Thailand (MLAT: 8.9°N), which are nearly geomagnetically conjugate stations, for 7 h from 13 to 20 UT (from 20 to 03 LT) on 5 April 2011. The bubbles continuously propagated eastward with velocities of 100-125 m/s. The 630 nm images at Chiang Mai and those mapped to the conjugate point of Kototabang fit very well, which indicates that the observed plasma bubbles were geomagnetically connected. The eastward thermospheric neutral winds measured by two Fabry-Perot interferometers were 70-130 m/s at Kototabang and 50-90 m/s at Chiang Mai. We compared the observed plasma bubble drift velocity with the velocity calculated from the observed neutral winds and the model conductivity, to investigate the F region dynamo contribution to the bubble drift velocity. The estimated drift velocities were 60-90% of the observed velocities of the plasma bubbles, suggesting that most of the plasma bubble velocity can be explained by the F region dynamo effect.
NASA Astrophysics Data System (ADS)
Zhang, Shun-Rong; Holt, John M.; Erickson, Philip J.; Goncharenko, Larisa P.
2018-05-01
Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) and Mikhailov et al. (2017, https://doi.org/10.1002/2017JA023909) have recently examined thermospheric and ionospheric long-term trends using a data set of four thermospheric parameters (Tex, [O], [N2], and [O2]) and solar EUV flux. These data were derived from one single ionospheric parameter, foF1, using a nonlinear fitting procedure involving a photochemical model for the F1 peak. The F1 peak is assumed at the transition height ht with the linear recombination for atomic oxygen ions being equal to the quadratic recombination for molecular ions. This procedure has a number of obvious problems that are not addressed or not sufficiently justified. The potentially large ambiguities and biases in derived parameters make them unsuitable for precise quantitative ionospheric and thermospheric long-term trend studies. Furthermore, we assert that Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) conclusions regarding incoherent scatter radar (ISR) ion temperature analysis for long-term trend studies are incorrect and in particular are based on a misunderstanding of the nature of the incoherent scatter radar measurement process. Large ISR data sets remain a consistent and statistically robust method for determining long term secular plasma temperature trends.
Thermospheric Data Assimilation
2016-05-05
forecasting longer than 3 days. Furthermore, validation of assimilation analyses with independent CHAMP mass density observations confirms that the...approach developed in this project. 15. SUBJECT TERMS Data assimilation, Ensemble forecasting , Thermosphere-ionosphere coupled data assimilation...Neutral mass density specification and forecasting , 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 6 19a. NAME
Effects of solar activity in the middle atmosphere dynamical regime over Eastern Siberia, USSR
NASA Technical Reports Server (NTRS)
Gaidukov, V. A.; Kazimirovsky, E. S.; Zhovty, E. I.; Chernigovskaya, M. A.
1989-01-01
Lower thermospheric (90 to 120 km) wind data was acquired by ground based spaced-receiver method (HF, LF) near Irkutsk (52 deg N, 104 deg E). There is interrelated solar and meteorological control of lower thermosphere dynamics. Some features of solar control effects on the wind parameters are discussed.
The Equinox Transition Study - An overview. [thermosphere/ionosphere dynamics
NASA Technical Reports Server (NTRS)
Carlson, H. C., Jr.; Crowley, G.
1989-01-01
An overview is presented of the Equinox Transition Study (ETS), including the historical perspective, the experimental philosophy, and the results of the analysis. The broad scientific aim of ETS is to understand the electromechanical response of the thermosphere/ionosphere system to variable high-latitude forcing. Some of the results obtained from ETS are summarized.
Early Results from the RAIDS Experiment on the ISS
NASA Astrophysics Data System (ADS)
Budzien, S. A.; Bishop, R. L.; Stephan, A. W.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.
2009-12-01
The Remote Atmospheric and Ionospheric Detection System (RAIDS) is a suite of three photometers, three spectrometers, and two spectrographs which span the wavelength range 55-874 nm and remotely sense the thermosphere and ionosphere by scanning and imaging the limb. RAIDS was scheduled to fly to the Japanese Experiment Module—Exposed Facility (JEM-EF) aboard the International Space Station (ISS) in September 2009. RAIDS along with a companion hyperspectral imaging experiment will serve as the first US payload on the JEM-EF. The scientific objectives of the new RAIDS experiment are to study the temperature of the lower thermosphere (100-200 km), to measure composition and chemistry of the lower thermosphere and ionosphere, and to measure the initial source of OII 83.4 nm emission. RAIDS will provide valuable data useful for exploring tidal effects in the thermosphere and ionosphere system, validating dayside ionospheric remote sensing methods, and studying local time variations in important chemical and thermal processes. Early observational results from the RAIDS experiment will be presented. The RAIDS sensor suite performs multispectral limb scanning from the open end of the HICO-RAIDS Experiment Payload aboard the ISS.
NASA Astrophysics Data System (ADS)
Azeem, S. I.; Collins, R. L.; Larsen, M. F.; Stevens, M. H.; Taylor, M. J.
2016-12-01
Water deposition in the Mesosphere and Lower Thermosphere (MLT) from space traffic can lead to significant variations in the composition and dynamics of the region. Stevens et al., 2005 and Kelley et al., 2010, for example, showed that the fast global-scale plume transport from NASA's Space Shuttle launches can lead to the formation of PMCs. This is an important finding because PMCs have been implicated as possible indicators of long-term climate change [e.g. Thomas and Olivero, 2001 and references therein]. The water plume phenomenon raises a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to PMC formation and climatology. The Super Soaker rocket mission, funded by the NASA Heliophysics Technology and Instrument Development for Science (H-TIDes) program, seeks to investigate the time-dependent neutral chemistry and transport of water in the MLT and to determine the resultant impact on the local temperature and ice cloud formation. Super Soaker is tentatively scheduled for launch in April 2018 from the Poker Flat Rocket Range (PFRR), Alaska. The mission is designed to release a plume of water vapor from a rocket payload and observe how the atmosphere responds both during and after the release. The rocket experiment will be supported on the ground by lidar observations of temperature and PMCs, temperature maps using the Advanced Mesosphere Temperature Mapper (AMTM), ground-based wind observations using TMA releases, PFISR observations of electron density, and data from the NASA AIM and TIMED satellites. In this paper we review the Super Soaker rocket mission and describe initial numerical modeling results to provide a semi-quantitative view of the response of chemistry and energetic to the water plume deposition in the lower thermosphere.
NASA Astrophysics Data System (ADS)
Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Nishioka, M.; Kubota, M.; Tsugawa, T.; Nagatsuma, T.
2012-12-01
Plasma bubbles are plasma-density depletion which is developed by the Rayleigh-Taylor instability on the sunset terminator at equatorial latitudes. They usually propagate eastward after the sunset. The eastward propagation of the plasma bubbles is considered to be controlled by background eastward neutral winds in the thermosphere through the F-region dynamo effect. However, it is not clear how the F-region dynamo effect contributes to the propagation of the plasma bubbles, because plasma bubbles and background neutral winds have not been simultaneously observed at geomagnetic conjugate points in the northern and southern hemispheres. In this study, geomagnetic conjugate observations of the plasma bubbles at low latitudes with thermospheric neutral winds were reported. The plasma bubbles were observed at Kototabang (0.2S, 100.3E, geomagnetic latitude (MLAT): 10.0S), Indonesia and at Chiang Mai (18.8N, 98.9E, MLAT: 8.9N), Thailand, which are geomagnetic conjugate stations, on 5 April, 2011 from 13 to 22 UT (from 20 to 05 LT). These plasma bubbles were observed in the 630-nm airglow images taken by using highly-sensitive all-sky airglow imagers at both stations. They propagated eastward with horizontal velocities of about 100-125 m/s. Background thermospheric neutral winds were also observed at both stations by using two Fabry-Perot interferometers (FPIs). The eastward wind velocities were about 70-130 m/s at Kototabang, and about 50-90 m/s at Chiang Mai. We estimated ion drift velocities by using these neutral winds observed by FPIs and conductivities calculated from the IRI and MSIS models. The estimated velocities were about 60-90 % of the drift velocities of plasma bubbles. This result shows that most of the plasma bubble drift can be explained by the F-region dynamo effect, and additional electric field effect may come in to play.
NASA Technical Reports Server (NTRS)
Garcia, R. R.
1986-01-01
The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.
NASA Astrophysics Data System (ADS)
Semenov, A.; Shefov, N.; Fadel, Kh.
The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.
NASA Technical Reports Server (NTRS)
Hedin, A. E.
1979-01-01
The tables contain the neutral temperature, neutral densities for N2, O2, O, Ar, He and H, mean molecular weight, and total mass density as predicted by the Mass Spectrometer and Incoherent Scatter empirical thermosphere model for selected altitudes, latitudes, local times, days and other geophysical conditions. The model is based on a least squares fit to density data from mass spectrometers on five satellites and temperature data from four incoherent scatter stations, providing coverage for most of solar sunspot cycle 20. Included in the model data base are longitudinally average N3, He, and O densities from the OGO-6 mass spectrometer longitudinally average N2, He, O and Ar densities from the AEROS-A (NATE) mass spectrometer the N2, He, O, and Ar densities from the San Marco 3 mass spectrometer the N2 densities from the AE-B mass spectrometer and the N2, He, O, and Ar densities from the AE-C (OSS, NACE, NATE) mass spectrometers. The O2 and H densities are inferred using ion mass spectrometer data from AE-C (BIMS). Neutral exospheric temperature data are included from Arecibo, St. Santin, Millstone Hill and Jicamarca.
Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation
NASA Astrophysics Data System (ADS)
Gan, Quan; Wang, Wenbing; Yue, Jia; Liu, Hanli; Chang, Loren C.; Zhang, Shaodong; Burns, Alan; Du, Jian
2016-10-01
The Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to theoretically study the 6 day wave effects on the ionosphere. By introducing a 6 day perturbation with zonal wave number 1 at the model lower boundary, the TIME-GCM reasonably reproduces the 6 day wave in temperature and horizontal winds in the mesosphere and lower thermosphere region during the vernal equinox. The E region wind dynamo exhibits a prominent 6 day oscillation that is directly modulated by the 6 day wave. Meanwhile, significant local time variability (diurnal and semidiurnal) is also seen in wind dynamo as a result of altered tides due to the nonlinear interaction between the 6 day wave and migrating tides. More importantly, the perturbations in the E region neutral winds (both the 6 day oscillation and tidal-induced short-term variability) modulate the polarization electric fields, thus leading to the perturbations in vertical ion drifts and ionospheric F2 region peak electron density (NmF2). Our modeling work shows that the 6 day wave couples with the ionosphere via both the direct neutral wind modulation and the interaction with atmospheric tides.
Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics
NASA Astrophysics Data System (ADS)
Karan, Deepak K.; Pallamraju, Duggirala
2018-05-01
The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the zonal scale sizes brings to light, for the first time, the varying nature of the neutral wave coupling in the daytime thermosphere during periods of geomagnetic disturbances.
NASA Astrophysics Data System (ADS)
Foerster, M.; Cnossen, I.; Haaland, S.
2015-12-01
Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern polar regions. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained over almost a full solar cycle during the first decade of this century by measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP spacecraft, respectively. The asymmetries are attributed to the non-dipolar portions of the Earth's magnetic field that constitute hemispheric differences in magnetic flux densities, different offsets of the invariant geomagnetic poles, and generally in different field configurations of both hemispheres. Seasonal and solar cycle effects of the asymmetries are considered and first trials to explain the effects by numerical modeling are presented.
Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy
Bowman, D. C.; Lees, J. M.
2018-04-27
We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less
Can molecular diffusion explain Space Shuttle plume spreading?
NASA Astrophysics Data System (ADS)
Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.
2010-04-01
The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.
NASA Technical Reports Server (NTRS)
Mendillo, M.; He, X.-Q.; Rishbeth, H.
1992-01-01
The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.
Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, D. C.; Lees, J. M.
We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less
Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity
NASA Technical Reports Server (NTRS)
Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe
2008-01-01
The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.
Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere
NASA Astrophysics Data System (ADS)
Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi
2017-04-01
An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2004-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.
NASA Astrophysics Data System (ADS)
Flanagan, Harold Patrick
A major issue in the process of predicting the future position of satellites in low earth orbit (LEO) is that the drag coefficient of a satellite is generally not precisely known throughout the satellite's lifespan. One reason for this problem is that as a satellite travels through the Earth's thermosphere, variations in the composition of the thermosphere directly affect the drag coefficient of the satellite. The greatest amount of uncertainty in the drag coefficient from these variations in the thermosphere comes from the amount of atomic oxygen that covers the satellites surface as the satellite descends to lower altitudes. This percent surface coverage of atomic oxygen directly affects the interaction between the surface of the satellite and the gas through which it is passing. The work performed in this thesis determines the drag coefficients of the ANDE-2 satellites over their life spans by using satellite laser ranging (SLR) data of the ANDE-2 satellites in unison with gas-surface interaction equations. The fractional coverage of atomic oxygen is determined by using empirically determined data and semi-empirical models that attempt to predict the fractional coverage of oxygen relative to the composition of the atmosphere. These drag coefficients are then used to determine the atmospheric densities experienced by these satellites over various days, so that inaccuracies in the atmospheric models can be observed. The drag coefficients of the ANDE-2 satellites decrease throughout the satellites' life, and vary most due to changes in the temperature and density of the atmosphere. The greatest uncertainty in the atmosphere's composition occurs at lower altitudes at the end of ANDE-2's life.
Wave-Mean Flow Interaction in the Storm-Time Thermosphere Using a Two-Dimensional Model
1990-01-01
Hunsucker, 1982; Richmond, 1978, 1979a; Rees et. al., 1984; Roble et. al., 1978; Testud , 1970). 3) A global meridional circulation driven by the...theory of oscillatory waves. Trans. Cambridge Phil. Snc., 8, 441-455. Testud , J., 1970: Gra.ity waves generated during magnetic substorms. J. Atmos. Terr
Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.
1982-01-01
Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.
Energetics of the April 2000 magnetic superstorm observed by DMSP
NASA Astrophysics Data System (ADS)
Burke, William J.; Huang, Cheryl Y.; Rich, Frederick J.
2006-01-01
During the late main phase of the April 6, 2000 storm with Dst approaching -300 nT, four Defense Meteorological Satellite Program (DMSP) satellites encountered repeated episodes of intense field-aligned currents whose magnetic perturbations exceeded 1300 nT, corresponding to |J∥| > 1 A/m. They had relatively fast rise times (˜5 min) and lasted for ˜20 min. The large magnetic perturbations occurred within the expanded auroral oval at magnetic latitudes below 60°. From Poynting-flux calculations we estimate that during each event several hundred tera-Joules of energy that dissipates in the mid-latitude ionosphere and thermosphere. Ground magnetometers at auroral and middle latitudes detected weak fluctuations that were incommensurate with magnetic perturbations observations at DMSP altitudes. Observed discrepancies between ground and satellite magnetometer measurements suggest that under storm conditions operational models systematically underestimate the level of electromagnetic energy available to the ionosphere thermosphere. We demonstrate a transmission-line model for M-I coupling that allows calculations of this electromagnetic energy input with no a priori knowledge of ionospheric conductances.
2006-09-30
disturbances from the lower atmosphere and ocean affect the upper atmosphere and how this variability interacts with the variability generated by solar and...represents “ general circulation model.” Both models include self-consistent ionospheric electrodynamics, that is, a calculation of the electric fields...and currents generated by the ionospheric dynamo, and consideration of their effects on the neutral dynamics. The TIE-GCM is used for studies that
NASA Astrophysics Data System (ADS)
Bougher, Stephen; Huestis, David
The responses of the Martian dayside thermosphere to solar flux variations (on both solar rotation and solar cycle timescales) have been the subject of considerable debate and study for many years. Available datasets include: Mariner 6,7,9 (UVS dayglow), Viking Lander 1-2 (UAMS densities upon descent), several aerobraking campaigns (MGS, Odyssey, MRO densities), and Mars Express (SPICAM dayglow). Radio Science derived plasma scale heights near the ionospheric peak can be used to derive neutral temperatures in this region (only); such values are not applicable to exobase heights (e.g. Forbes et al. 2008; Bougher et al. 2009). Recently, densities and temperatures derived from precise orbit determination of the MGS spacecraft (1999-2005) have been used to establish the responses of Mars' exosphere to long-term solar flux variations (Forbes et al., 2008). From this multi-year dataset, dayside exospheric temperatures weighted toward moderate southern latitudes are found to change by about 120 K over the solar cycle. However, the applicability of these drag derived exospheric temperatures to near solar minimum conditions is suspect (e.g Bruinsma and Lemoine, 2002). Finally, re-evaluation of production mechanisms for UV dayglow emissions implies revised values for exospheric temperatures (e.g. Simon et al., 2009; Huestis et al. 2010). Several processes are known to influence Mars' exospheric temperatures and their variability (Bougher et al., 1999; 2000; 2009). Solar EUV heating and its variations with solar fluxes received at Mars, CO2 15-micron cooling, molecular thermal conduction, and hydrodynamic heating/cooling associated with global dynamics all contribute to regulate dayside thermo-spheric temperatures. Poorly measured dayside atomic oxygen abundances render CO2 cooling rates uncertain at the present time. However, global thermospheric circulation models can be exercised for conditions spanning the solar cycle and Mars seasons to address the relative roles of these processes in driving observed variations in dayside exospheric temperatures. Mars Thermospheric General Circulation Model (MTGCM) simulations and resulting exo-spheric temperatures will be presented and compared with assimilated temperatures collected from all these available measurements over the solar cycle. It is important to match measure-ments at dayside local times and latitudes for specific seasons with corresponding MTGCM simulated outputs. Calculated local heat budgets and their variations illustrate the changes required to reproduce solar cycle variations in exospheric temperatures. The ability to success-fully predict solar cycle responses of the Martian upper atmosphere is important for simulations of present-day Mars volatile escape rates.
Gravity waves in the thermosphere observed by the AE satellites
NASA Technical Reports Server (NTRS)
Gross, S. H.; Reber, C. A.; Huang, F. T.
1983-01-01
Atmospheric Explorer (AE) satellite data were used to investigate the spectra characteristics of wave-like structure observed in the neutral and ionized components of the thermosphere. Power spectral analysis derived by the maximum entropy method indicate the existence of a broad spectrum of scale sizes for the fluctuations ranging from tens to thousands of kilometers.
NASA Astrophysics Data System (ADS)
Pancheva, D.; Miyoshi, Y.; Mukhtarov, P.; Jin, H.; Shinagawa, H.; Fujiwara, H.
2012-07-01
This paper for the first time presents a detailed comparison between simulated and observed global electron density responses to different atmospheric tides forced from below. The recently developed Earth's whole atmospheric model from the troposphere to the ionosphere, called GAIA, has been used for the simulation of the electron density tidal responses. They have been compared with the extracted from the COSMIC electron density data tidal responses for the period of time October 2007 to March 2009. Particular attention has been paid to the nonmigrating DE3/DE2 and migrating DW1, SW2 and TW3 electron density responses. The GAIA model reproduced quite well the COSMIC DE3/DE2 responses. Both simulations and observations revealed three altitude regions of enhanced electron density responses: (1) an upper level response, above 300 km height, apparently shaped mainly by the “fountain effect” (2) a response located near altitudes of ˜200-270 km, and (3) a lower thermospheric response situated near 120-150 km height. A possible mechanism is suggested for explaining the two lower level responses. For the first time the GAIA model simulations supported the observational evidence found in the COSMIC measurements that the ionospheric WN4 (WN3) longitude structure is not generated only by the DE3 (DE2) tide as it has been often assumed. As regards the comparison of the migrating DW1, SW2 and TW3 responses the obtained results clearly demonstrate that the GAIA model reproduce very well of the SW2 and TW3 COSMIC electron density responses. The only main discrepancy is seen in the migrating DW1 response; the observation does not support the splitting of the simulated response at both sides of the equator. This is due mainly to the difference between the SABER and GAIA SW2 tide in the lower thermosphere as it turned out that the DW1 electron density response strongly depends on the mean features of the lower thermospheric SW2 tide.
An assessment of twilight airglow inversion procedures using atmosphere explorer observations
NASA Technical Reports Server (NTRS)
Mcdade, I. C.; Sharp, W. E.
1993-01-01
The aim of this research project was to test and truth some recently developed methods for recovering thermospheric oxygen atom densities and thermospheric temperatures from ground-based observations of the 7320 A O(+)((sup 2)D - (sup 2)P) twilight air glow emission. The research plan was to use twilight observations made by the Visible Airglow Experiment (VAE) on the Atmosphere Explorer 'E' satellite as proxy ground based twilight observations. These observations were to be processed using the twilight inversion procedures, and the recovered oxygen atom densities and thermospheric temperatures were then to be examined to see how they compared with the densities and temperatures that were measured by the Open Source Mass Spectrometer and the Neutral Atmosphere Temperature Experiment on the satellite.
Lower thermosphere densities of N2, O and Ar under high latitude winter conditions
NASA Technical Reports Server (NTRS)
Dickinson, P. H. G.; Vonzahn, U.; Baker, K. D.; Jenkins, D. B.
1986-01-01
Measurements of the neutral thermosphere were conducted in northern Scandinavia during the Energy Budget Campaign. These measurements included determinations of N2, O, and Ar densities using rocket-borne experiments. The results obtained in the experiments are presented, taking into account also details regarding the employed experimental methods, and an evaluation of the significance of the data. It is found that there are striking differences in thermospheric distributions of the neutral constituents under different geomagnetic conditions. Under quiet geomagnetic conditions there was reasonable agreement with the United States Standard Atmosphere. The concentrations of N2 and Ar were about 70 percent of the predicted values, while the O concentration was about 2.5 times greater.
An Observational and Modelling Study of Auroral Upwelling in the Thermosphere
2016-05-05
linear warming up and cooling down before and after. The heating is centred on magnetic midday for Svalbard (0900 UT) and magnetic midnight for Kiruna...or nightside magnetic reconnection, respectively. The experiments and model simulations show that the manifestation of heating in the density changes...periods around magnetic midnight (2100UT) near new moon in February 2015. Results related to this study have been presented at the following
Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.
NASA Astrophysics Data System (ADS)
Coakley, Monica Marie
1995-01-01
This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements of bright neutral species in the daysky as well as the potential for twenty-four hour coverage.
Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere
NASA Technical Reports Server (NTRS)
Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.
1995-01-01
In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.
NASA Astrophysics Data System (ADS)
Zhou, Yunliang; Ma, S. Y.; Xiong, Chao; Luehr, Hermann
The total air mass densities at about 500 km altitude are derived using super-STAR accelerom-eter measurements onboard GRACE satellites for 25 great magnetic storms with minimum Dst less than 100 nT during 2002 to 2006 years. Taking NRLMSISE-00 model-predicted densities without active ap index input as a reference baseline of quiet-time mass density, the storm-time changes in upper thermospheric mass densities are obtained by subtraction for all the storm events and sorted into different grids of latitude by local time sector. The relationships of the storm-time density changes with various interplanetary parameters and magnetospheric ring current index of Sym-H are statistically investigated. The parameters include Akasofu energy coupling function, the merging electric field Em, the magnitude of IMF component in the GSM y-z plane etc. as calculated from OMNI data at 1 AU. It is found that the storm-time changes in the upper thermospheric mass density have the best linear correlation with the Sym-H index in general, showing nearly zero time delay at low-latitudes and a little time ahead at high-latitudes for most cases. Unexpectedly, the magnitude of IMF component in the y-z plane, Byz, shows correlation with storm-time mass density changes better and closer than Akasofu function and even Em. And, the mass density changes lag behind Byz about 1-4 hours for most cases at low-latitudes. The correlations considered above are local time dependent, showing the lowest at dusk sectors. For the largest superstorm of November 2003, the changes in mass density are correlated very closely with Byz, Em, and Sym-H index, showing correlation coefficients averaged over all latitudes in noon sector as high as 0.93, 0.91 and 0.90 separately. The physical factors controlling the lag times between the mass density changes at mid-low-latitudes and the interplanetary parameter variations are also analyzed. The results in this study may pro-vide useful suggestions for establishing empirical model to predict storm-time changes in upper thermospheric mass density. This work is supported by NSFC (No. 40804049) and Doctoral Fund of Ministry of Education of China (No. 200804860012).
Lammer, Helmut; Lichtenegger, Herbert I M; Kulikov, Yuri N; Griessmeier, Jean-Mathias; Terada, N; Erkaev, Nikolai V; Biernat, Helfried K; Khodachenko, Maxim L; Ribas, Ignasi; Penz, Thomas; Selsis, Franck
2007-02-01
Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances
UV Observations of Atomic Oxygen in the Cusp Region
NASA Astrophysics Data System (ADS)
Fritz, B.; Lessard, M.; Dymond, K.; Kenward, D. R.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.
2017-12-01
The Rocket Experiment for Neutral Upwelling (RENU) 2 launched into the dayside cusp on 13 December, 2015. The sounding rocket payload carried a comprehensive suite of particle, field, and remote sensing instruments to characterize the thermosphere in a region where pockets of enhanced neutral density have been detected [Lühr et al, 2004]. An ultraviolet photomultiplier tube (UV PMT) was oriented to look along the magnetic field line and remotely detect neutral atomic oxygen (OI) above the payload. The UV PMT measured a clear enhancement as the payload descended through a poleward moving auroral form, an indicator of structure in both altitude and latitude. Context for the UV PMT measurement is provided by the Special Sensor Ultraviolet Imager (SSULI) instrument on the Defense Meteorological Space Program (DMSP) satellite, which also measured OI as it passed through the cusp. UV tomography of SSULI observations produces a two-dimensional cross-section of volumetric emission rates in the high-latitude thermosphere prior to the RENU 2 flight. The volume emission rate may then be inverted to produce a profile of neutral density in the thermosphere. A similar technique is used to interpret the UV PMT measurement and determine structure in the thermosphere as RENU 2 descended through the cusp.
Retrieval of Lower Thermospheric Temperatures from O2 A Band Emission: The MIGHTI Experiment on ICON
NASA Astrophysics Data System (ADS)
Stevens, Michael H.; Englert, Christoph R.; Harlander, John M.; England, Scott L.; Marr, Kenneth D.; Brown, Charles M.; Immel, Thomas J.
2018-02-01
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) is a satellite experiment scheduled to launch on NASA's Ionospheric Connection Explorer (ICON) in 2018. MIGHTI is designed to measure horizontal neutral winds and neutral temperatures in the terrestrial thermosphere. Temperatures will be inferred by imaging the molecular oxygen Atmospheric band (A band) on the limb in the lower thermosphere. MIGHTI will measure the spectral shape of the A band using discrete wavelength channels to infer the ambient temperature from the rotational envelope of the band. Here we present simulated temperature retrievals based on the as-built characteristics of the instrument and the expected emission rate profile of the A band for typical daytime and nighttime conditions. We find that for a spherically symmetric atmosphere, the measurement precision is 1 K between 90-105 km during the daytime whereas during the nighttime it increases from 1 K at 90 km to 3 K at 105 km. We also find that the accuracy is 2 K to 11 K for the same altitudes. The expected MIGHTI temperature precision is within the measurement requirements for the ICON mission.
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
Thermospheric mass density model error variance as a function of time scale
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
NASA Astrophysics Data System (ADS)
Akmaev, R. A.; Fuller-Rowell, T. J.; Wu, F.; Wang, H.; Juang, H.; Moorthi, S.; Iredell, M.
2009-12-01
The upper atmosphere and ionosphere exhibit variability and phenomena that have been associated with planetary and tidal waves originating in the lower atmosphere. To study and be able to predict the effects of these global-scale dynamical perturbations on the coupled thermosphere-ionosphere-electrodynamics system a new coupled model is being developed under the IDEA project. To efficiently cross the infamous R2O “death valley”, from the outset the IDEA project leverages the natural synergy between NOAA’s National Weather Service’s (NWS) Space Weather Prediction and Environmental Modeling Centers and a NOAA-University of Colorado cooperative institute (CIRES). IDEA interactively couples a Whole Atmosphere Model (WAM) with ionosphere-plasmasphere and electrodynamics models. WAM is a 150-layer general circulation model (GCM) based on NWS’s operational weather prediction Global Forecast System (GFS) extended from its nominal top altitude of 62 km to over 600 km. It incorporates relevant physical processes including those responsible for the generation of tidal and planetary waves in the troposphere and stratosphere. Long-term simulations reveal realistic seasonal variability of tidal waves with a substantial contribution from non-migrating tidal modes, recently implicated in the observed morphology of the ionosphere. Such phenomena as the thermospheric Midnight Temperature Maximum (MTM), previously associated with the tides, are also realistically simulated for the first time.
Ionospheric chemistry. [minor neutrals and ionized constituents of thermosphere
NASA Technical Reports Server (NTRS)
Torr, D. G.
1979-01-01
This report deals primarily with progress in the chemistry of minor neutrals and ionized constituents of the thermosphere. Significant progress was made over the last few years in quantitative studies of many chemical processes. This success was primarily due to the advent of multiparameter multisatellite programs which permitted accurate simultaneous measurements to be made of many important parameters. In many cases studies of chemical reactions were made with laboratory-like precision. Rate coefficients have been derived as functions of temperature for a number of important reactions. New information has been acquired on nearly every major process which occurs in the thermosphere, including the recombination rates of all major molecular ions, charge transfer reactions, ion atom interchange reactions, and reactions of neutral and ionized metastable atoms and molecules.
NASA Technical Reports Server (NTRS)
Bedinger, J. F.; Constantinides, E.
1973-01-01
Barium and lithium vapors were released from sounding rockets in the thermosphere and observed from aboard the NASA Convair 990 at an altitude of 40,000 ft. The purpose of the releases was to (1) check out observational and operational procedures associated with the large high altitude barium release from a Scout rocket (BIC); (2) develop an all-weather technique for observing chemical releases; (3) evaluate methods of observing daytime releases, and (4) investigate the possibilities of observations from a manned satellite. The initial analysis indicates that the previous limitations on the usage of the vapor release method have been removed by the use of the aircraft and innovative photographic techniques. Methods of analysis and applications to the investigation of the thermosphere are discussed.
Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability.
Bougher, S; Jakosky, B; Halekas, J; Grebowsky, J; Luhmann, J; Mahaffy, P; Connerney, J; Eparvier, F; Ergun, R; Larson, D; McFadden, J; Mitchell, D; Schneider, N; Zurek, R; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D N; Bell, J M; Benna, M; Brain, D; Chaffin, M; Chamberlin, P; Chaufray, J-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Ma, Y; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R
2015-11-06
The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability. Copyright © 2015, American Association for the Advancement of Science.
A study of space shuttle plumes in the lower thermosphere
NASA Astrophysics Data System (ADS)
Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.
2011-12-01
During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.
NASA Astrophysics Data System (ADS)
Yue, Jia; Wang, Wenbin; Richmond, Arthur D.; Liu, Han-Li
2012-07-01
The Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to simulate the quasi-two-day wave (QTDW) modulation of the ionospheric dynamo and electron density. The QTDW can directly penetrate into the lower thermosphere and modulate the neutral winds at a period of two days. The QTDW modulation of the tidal amplitudes is not evident. The QTDW in zonal and meridional winds results in a quasi-two-day oscillation (QTDO) of the dynamo electric fields at southern midlatitudes, which is mapped into the conjugate northern magnetic midlatitudes. The QTDO of the electric fields in the E region is transmitted along the magnetic field lines to the F region and leads to the QTDOs of the vertical ion drift and total electron content (TEC) at low and mid latitudes. The QTDO of the vertical ion drift near the magnetic equator leads to the 2-day oscillation of the fountain effect. The QTDO of the TEC has two peaks at ±25 magnetic latitude (Mlat) and one near the dip equator. The equatorial peak is nearly out of phase with the ones at ±25 Mlat. The vertical ion drift at midlatitudes extends the QTDW response of the TEC to midlatitudes from the Equatorial Ionospheric Anomaly (EIA). Most differently from previous reports, we discover that the QTDW winds couple into the F region ionosphere through both the fountain effect and the middle latitude dynamos.
IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking
NASA Astrophysics Data System (ADS)
Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.
2013-12-01
Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities using ground based observations. The developed IMPACT framework is an open research framework enabling the exchange and testing of a variety of atmospheric density models, orbital propagators, drag coefficient models, ground based observations, etc. and study their effect on conjunctions and uncertainty predictions. The framework is based on a modern service-oriented architecture controlled by a web interface and providing 3D visualizations. The goal of this project is to revolutionize the ability to monitor and track space objects during highly disturbed space weather conditions, provide suitable forecasts for satellite drag conditions and conjunction analysis, and enable the exchange of models, codes, and data in an open research environment. We will present capabilities and results of the IMPACT framework including a demo of the control interface and visualizations.
NASA Astrophysics Data System (ADS)
Shim, J. S.; Rastätter, L.; Kuznetsova, M.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B. A.; Fedrizzi, M.; Förster, M.; Fuller-Rowell, T. J.; Gardner, L. C.; Goncharenko, L.; Huba, J.; McDonald, S. E.; Mannucci, A. J.; Namgaladze, A. A.; Pi, X.; Prokhorov, B. E.; Ridley, A. J.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.
2017-10-01
In order to assess current modeling capability of reproducing storm impacts on total electron content (TEC), we considered quantities such as TEC, TEC changes compared to quiet time values, and the maximum value of the TEC and TEC changes during a storm. We compared the quantities obtained from ionospheric models against ground-based GPS TEC measurements during the 2006 AGU storm event (14-15 December 2006) in the selected eight longitude sectors. We used 15 simulations obtained from eight ionospheric models, including empirical, physics-based, coupled ionosphere-thermosphere, and data assimilation models. To quantitatively evaluate performance of the models in TEC prediction during the storm, we calculated skill scores such as RMS error, Normalized RMS error (NRMSE), ratio of the modeled to observed maximum increase (Yield), and the difference between the modeled peak time and observed peak time. Furthermore, to investigate latitudinal dependence of the performance of the models, the skill scores were calculated for five latitude regions. Our study shows that RMSE of TEC and TEC changes of the model simulations range from about 3 TECU (total electron content unit, 1 TECU = 1016 el m-2) (in high latitudes) to about 13 TECU (in low latitudes), which is larger than latitudinal average GPS TEC error of about 2 TECU. Most model simulations predict TEC better than TEC changes in terms of NRMSE and the difference in peak time, while the opposite holds true in terms of Yield. Model performance strongly depends on the quantities considered, the type of metrics used, and the latitude considered.
Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations
NASA Astrophysics Data System (ADS)
Koskinen, T. T.; Guerlet, S.
2018-06-01
We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.
NASA Technical Reports Server (NTRS)
Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.
1991-01-01
A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included.
The Optical Profiling of the Atmospheric Limb (OPAL) CubeSat Experiment
NASA Astrophysics Data System (ADS)
Jeppesen, M.; Miller, J.; Cox, W.; Taylor, M. J.; Swenson, C.; Neilsen, T. L.; Fish, C. S.; Scherliess, L.; Christensen, A. B.; Cleave, M.
2015-12-01
The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument, CubeSat bus and mission are being designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.
Optical Profiling of the Atmospheric Limb CubeSat Experiment
NASA Astrophysics Data System (ADS)
Jeppesen, M.; Taylor, M. J.; Swenson, C.; Marchant, A.
2014-12-01
The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument and mission will be designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.
Improved Mars Upper Atmosphere Climatology
NASA Technical Reports Server (NTRS)
Bougher, S. W.
2004-01-01
The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.
Tidal waves within the thermosphere. [emphasizing wave dissipation and diffusion
NASA Technical Reports Server (NTRS)
Volland, H.; Mayr, H. G.
1974-01-01
The eigenfunctions of the atmosphere (the Hough functions within the lower atmosphere below about 100 km) change their structure and their propagation characteristics within the thermosphere due to dissipation effects such as heat conduction, viscosity, and ion drag. Wave dissipation can be parameterized to a first-order approximation by a complex frequency, the imaginary term of which simulates an effective ion drag force. It is shown how the equivalent depth, the attenuation, and the vertical wavelength of the predominant symmetric diurnal tidal modes change with height as functions of effective ion drag. The boundary conditions of tidal waves are discussed, and asymptotic solutions for the wave parameters like pressure, density, temperature, and wind generated by a heat input proportional to the mean pressure are given. Finally, diffusion effects upon the minor constituents within the thermosphere are described.
The Imaging Spectrometric Observatory for the ATLAS 1 mission
NASA Technical Reports Server (NTRS)
Torr, Douglas G.
1995-01-01
The Imaging Spectrometric Observatory (ISO) was flown on the ATLAS 1 mission and was enormously successful, providing a baseline database on the coupled stratospheric, mesospheric, thermospheric, and ionospheric regions. Specific ISO accomplishments include measurements of the hydroxyl radical, studies of the global ionosphere, retrieval of the concentrations of neutral species from the ISO data, studies of mesospheric oxygen emissions, retrieval of mesospheric O from oxygen emissions, studies of the OH Meinel bands and the search for the Herzberg III bands, search for metallic species, studies of thermospheric nitric oxide, auroral study of molecular nitrogen emissions, and studies of thermospheric species. Apart from participation in the data analysis, the primary post-flight responsibility of Marshall Space Flight Center was the delivery of the final post mission dataset. Support provided by the University of Alabama in Huntsville is described.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.
Quantification of Neutral Wind Variability in the Upper Thermosphere
NASA Technical Reports Server (NTRS)
Richards, Philip G.
2000-01-01
The overall objective of this grant was to: 1) Quantify thermospheric neutral wind behavior in the ionosphere. This was to be achieved by developing an improved empirical wind model. 2) Validating the procedure for obtaining winds from the height of the peak density. 3) Improving the model capabilities and making updated versions of the model available to other scientists. The approach is to use neutral winds derived from ionosonde measurements of the height of the peak electron density (h(sub m)F(sub 2)). One of the proposed first year tasks was to perform some validation studies on the method. Substantial progress has been made with regard to both the empirical model and the validation study. Funding from this grant has also enabled a number of fruitful collaborations with other researchers; one of the stated aims in the proposal. Graduate student Mayra Martinez has developed the mathematical formulation for the empirical wind model as part of her dissertation. As proposed, authors continued validation studies of the technique for determining winds from h(sub m)F(sub 2). They are submitted a paper to the Journal of Geophysical Research in December 1996 entitled "Therinospheric neutral winds at southern mid-latitudes: comparison of optical and ionosonde h(sub m)F(sub 2) methods. A second paper entitled "Ionospheric behavior at a southern mid-latitude in March 1995" has come out of the March 1995 data set and was published in The Journal of Geophysical Research. A new algorithm was developed. The ionosphere also have been modeled.
Stratospheric and Mesospheric Trace Gas Studies Using Ground-Based mm-Wave Receivers
NASA Technical Reports Server (NTRS)
daZafra, Robert L.
1997-01-01
The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum.
NASA Astrophysics Data System (ADS)
Lin, Jia-Ting; Liu, Hanli; Liu, Jann-Yenq; Lin, Charles C. H.; Chen, Chia-Hung; Chang, Loren; Chen, Wei-Han
In this study, ionospheric peak densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the tidal responses during the 2008/2009. The observations are further compared with the results from an atmosphere-ionosphere coupled model, TIME-GCM. The model assimilates MERRA 3D meteorological data between the lower-boundary (~30km) and 0.1h Pa (~62km) by a nudging method. The comparison shows general agreement in the major features of decrease of migrating tidal signatures (DW1, SW2 and TW3) in ionosphere around the growth phase of SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Both the observation and simulation indicate a pronounced enhancement of the ionospheric SW2 signatures after the stratospheric temperature increase. The model suggest that the typical morning enhancement/afternoon reduction of electron density variation is mainly caused by modification of the ionospheric migrating tidal signatures. The model shows that the thermospheric SW2 tide variation is similar to ionosphere as well as the phase shift. These phases shift of migrating tides are highly related to the present of induced secondary planetary wave 1 in the E region.
Atomic oxygen in the lower thermosphere
NASA Technical Reports Server (NTRS)
Lin, Florence J.; Chance, Kelly V.; Traub, Wesley A.
1987-01-01
The 63-micron line due to thermospheric atomic oxygen O(P-3), using a far-infrared spectrometer on a balloon platform at 37 km altitude over Palestine, TX, on June 20, 1983. From measurements of the equivalent width of this line at two elevation angles, a weak angular dependence is found: the equivalent width increases by a factor of 1.5 + or - 0.3 as the angle decreases from +30 deg to +1 deg. Since the optical depth of the O(P-3) line is large, the measured line intensity cannot be directly converted to a column abundance. Instead, the measurements are interpreted in terms of radiative transfer through a 16-layer atmosphere extending to 200 km. A model atmosphere for summer at 30 deg N, with an exospheric temperature of 1300 K, including an assumed daytime atomic oxygen abundance profile constructed from recent chemical and dynamical models and a water vapor abundance profile constructed from recent experimental and model results is used. For this assumed O(P-3) vertical profile shape a multiplicative scaling factor of 0.8, with an altitude-dependent uncertainty is determined. In the best-determined layer the uncertainty in the multiplier is + or - 0.2 at 119 km. The model-dependent peak atomic oxygen density is 3.6 (+ or - 1.9) x 10 to the 11th/cu cm at an altitude of about 101 km.
NASA Astrophysics Data System (ADS)
Klimenko, Maxim; Klimenko, Vladimir
Ionospheric storm is associated with the chain of events and phenomena in space environment, beginning at the Sun transmitted through the magnetosphere into the thermosphere-ionosphere system. On the electron density disturbances in the F region the ionospheric storms are classified into positive and negative. In particular a sign of ionospheric disturbances depends on considered latitudes. So in the high-latitude ionosphere the negative effects in electron density are formed most frequently and at mid- and low-latitudes the probability of a positive ionospheric storm increases. Previously performed the theoretical and experimental investigations of positive and negative ionospheric storms allowed to explain many aspects of ionospheric disturbances at different latitudes and their formation mechanisms. However, there are still some important differences and outstanding questions in the formation of these disturbances, which answers can be obtained, for example, using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). The GSM TIP model calculation results revealed the role of various mechanisms of ionospheric disturbances at low-, mid- and high-latitudes during geomagnetic storms on September 26-29, 2011. These investigations were supported by RFBR Grant No. 14-05-00578 and RAS Program 22.
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.;
2008-01-01
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Komjathy, A.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Paxton, L. J.
2017-10-01
We revisit three complex superstorms of 19-20 November 2003, 7-8 November 2004, and 9-11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and collocating (where possible) measurements of several physical parameters (total electron content or TEC, thermospheric infrared nitric oxide emission, and composition ratio) from multiple satellite platforms and ground-based measurements. A variety of metrics are utilized to examine global IT phenomena at 1 h timescales. The role of direct driving of IT dynamics by solar wind structures and the role of IT preconditioning in these storms, which feature complex unusual TEC responses, are examined and contrasted. Furthermore, IT responses to ICME magnetic clouds and upstream sheaths are separately characterized. We identify IT feedback effects that can be important for long-lasting strong storms. The role of the interplanetary magnetic field By component on ionospheric convection may not be well captured by existing coupling functions. Mechanisms of thermospheric overdamping and consequential ionospheric feedback need to be further studied.
NASA Astrophysics Data System (ADS)
Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.
2017-10-01
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.
Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal Waves
NASA Astrophysics Data System (ADS)
Sidorova, L. N.; Filippov, S. V.
2018-03-01
A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal waves. This conclusion was based on the discovered high degree correlation ( R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal waves on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes ( 600 km, ROCSAT-1; 1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the zonal thermospheric wind ( 400 km, CHAMP) modulated by the DE3 tidal wave is carried out; their considerable correlation ( R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the zonal wind associated with DE3 tidal waves can effect the longitudinal variations in the appearance frequency of the initial "seeding" perturbations, which further evolve into the plasma bubbles.
NASA Astrophysics Data System (ADS)
Evans, J. Scott; Stevens, Michael H.; Schneider, Nicholas M.; Stewart, Ian; Deighan, Justin; Jain, Sonal Kumar; Eparvier, Francis; Thiemann, E. M.; Bougher, Stephen W.; Jakosky, Bruce
2016-10-01
We present the first direct retrievals of neutral atomic oxygen in Mars's upper atmosphere using daytime FUV periapse limb scan observations from 130 - 200 km tangent altitude. Atmospheric composition is inferred using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] adapted to the Martian atmosphere [Evans et al., 2015]. For our retrievals we use O I 135.6 nm emission observed by IUVS on MAVEN under daytime conditions (solar zenith angle < 60 degrees) over both northern and southern hemispheres (latitudes between -65 and +35 degrees) from October 2014 to August 2016. We investigate the sensitivity of atomic oxygen density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our retrievals to predictions from the Mars Global Ionosphere-Thermosphere Model [MGITM, Bougher et al., 2015] and the Mars Climate Database [MCD, Forget et al., 1999] and quantify the differences throughout the altitude region of interest. The retrieved densities are used to characterize global transport of atomic oxygen in the Martian thermosphere.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1993-01-01
Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.
Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Dang, Tong; Lei, Jiuhou; Wang, Wenbin; Burns, Alan; Zhang, Binzheng; Zhang, Shun-Rong
2018-04-01
It has long been recognized that during solar eclipses, the ionosphere-thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere-ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high-resolution, coupled ionosphere-thermosphere-electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere-ionosphere coupling.
New Opportunities in Geospace Remote Sensing
NASA Astrophysics Data System (ADS)
Solomon, S. C.
2017-12-01
This paper will discuss scientific objectives that can be addressed with the serendipitous constellation of thermosphere-ionosphere observations provided by the NASA Ionospheric Connection Explorer (ICON) and Global-scale Observations of the Limb and Disk (GOLD) missions, the international Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2), instruments on the International Space Station and the Defense Meteorological Satellite Program, the European SWARM satellites, the NSF-sponsored AMPERE project, and the ongoing TIMED mission. The confluence of these space-based observations provide opportunities to extend the capabilities of ground-based observational networks, and to exploit opportunities for the development of numerical models and data assimilation methods. A particular focus is the global-scale context provided through GOLD mission measurements, and the challenges presented by their analysis and interpretation. GOLD can be considered a pathfinder for opportunistic instrumentation on commercial vehicles at geostationary orbit, so further speculation will be presented on what other future observations of the thermosphere-ionosphere and exosphere-plasmasphere could be made from these platforms.
NASA Astrophysics Data System (ADS)
Tobiska, W.; Knipp, D. J.; Burke, W. J.; Bouwer, D.; Bailey, J. J.; Hagan, M. P.; Didkovsky, L. V.; Garrett, H. B.; Bowman, B. R.; Gannon, J. L.; Atwell, W.; Blake, J. B.; Crain, W.; Rice, D.; Schunk, R. W.; Fulgham, J.; Bell, D.; Gersey, B.; Wilkins, R.; Fuschino, R.; Flynn, C.; Cecil, K.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, S. I.; Wiley, S.; Holland, M.; Malone, K.
2013-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET's Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the 'weather' of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
NASA Astrophysics Data System (ADS)
Shiokawa, K.; Otsuka, Y.; Tsuchiya, S.; Moral, A. C.; Okoh, D.
2017-12-01
We review recent observational results of medium-scale traveling ionospheric disturbances (MSTIDs) and equatorial plasma bubbles obtained by using airglow imagers and Fabry-Perot interferometers of the Optical Mesosphere Thermosphere Imagers (OMTIs) at Asian and African sectors. The OMTIs contains 20 airglow imagers and 5 Fabry-Perot interferometers (FPIs) at Canada, USA (Alaska), Russia, Finland, Norway, Iceland, Japan, Thailand, Indonesia, Australia, and Nigeria (http://stdb2.isee.nagoya-u.ac.jp/omti/). The 3-dimentional Fast Fourier Transformation of airglow images makes it possible to analyze 16-year airglow images obtained at Shigaraki (34.8N) and Rikubetsu (43.5N), Japan, to obtain phase velocity spectra of gravity waves and MSTIDs. The MSTIDs spectra show clear southwestward preference of propagation and minor northeastward propagation over Japan. We also found clear negative correlation between MSTID power and solar F10.7 flux, indicating that MSTIDs becomes more active during solar quiet time. This fact suggest the control of ionospheric Perkins and E-F coupling instabilities by solar activities. Three TIDs in airglow images over Indonesia, including midnight brightness waves (MBWs), were compared with CHAMP-satellite overpass to investigate neutral density variations in the thermosphere associated with the TIDs. We found clear correspondence in variations between the airglow intensities and neutral densities, suggesting that the observed TIDs over the equatorial region is caused by gravity waves. We also compare average thermospheric temperatures measured by the four FPIs for 3-4 years with the MSIS90E and GAIA models. The comparison shows that GAIA generally shows better fitting than the MSIS90E, but at the equatorial stations, GAIA tends to fail to reproduce the FPI temperature, probably due to ambiguity of location of the midnight temperature maximum. We also made statistics of plasma bubble occurrence using airglow imager and GNSS receiver at Abuja (9.0N), Nigeria near the geomagnetic equator based on 1.6 year observations. The bubble occurrence is high at equinoxes. There are 33 % of events for which bubble detection by airglow image and GNSS ROTI is different. We discuss possible cause of these differences in the presentation.
Measurement of metastable N/+/1S/ 5755-A emission in the twilight thermosphere
NASA Technical Reports Server (NTRS)
Torr, D. G.; Torr, M. R.; Meriwether, J. W., Jr.; Burnside, R.
1981-01-01
Measurements are reported of the 5755-A emission arising from the transition N(+)(1D-1S) made at Sutherland, South Africa (32.4 deg S, 20.8 deg E). The surface brightness of the emission in mid-November 1977 decayed from approximately 5 R at 10 solar depression angle (SDA) to approximately 1 R at 15 deg SDA. By the use of these data, it has been determined that less than 5% of all N2 ionizations result in the production of N(+) ions in the 1S state. Quenching of N(+)(1S) by neutral constituents and electrons is found to be negligible above 220 km in the twilight thermosphere in November and December 1977. Measurements of the 5755-A emission therefore potentially provide a ground based means of measuring the N2 density in the twilight thermosphere.
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Zhang, B.; Huang, C.
2017-12-01
Periodical oscillations with periods of several tens of minutes to several hours are commonly seen in the Alfven wave embedded in the solar wind. It is yet to be known how the solar wind oscillation frequency modulates the solar wind-magnetosphere-ionosphere coupled system. Utilizing the Coupled Magnetosphere-Ionosphere-Thermosphere Model (CMIT), we analyzed the magnetosphere-ionosphere-thermosphere system response to IMF Bz oscillation with periods of 10, 30, and 60 minutes from the perspective of energy budget and electrodynamic coupling processes. Our results indicate that solar wind energy coupling efficiency depends on IMF Bz oscillation frequency; energy coupling efficiency, represented by the ratio between globally integrated Joule heating and Epsilon function, is higher for lower frequency IMF Bz oscillation. Ionospheric Joule heating dissipation not only depends on the direct solar wind driven process but also is affected by the intrinsic nature of magnetosphere (i.e. loading-unloading process). In addition, ionosphere acts as a low-pass filter and tends to filter out very high-frequency solar wind oscillation (i.e. shorter than 10 minutes). Ionosphere vertical ion drift is most sensitive to IMF Bz oscillation compared to hmF2, and NmF2, while NmF2 is less sensitive. This can account for not synchronized NmF2 and hmF2 response to penetration electric fields in association with fast solar wind changes. This research highlights the critical role of IMF Bz oscillation frequency in constructing energy coupling function and understanding electrodynamic processes in the coupled solar wind-magnetosphere-ionosphere system.
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy;
2009-01-01
We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.
High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime
NASA Astrophysics Data System (ADS)
Turansky, Craig P.
The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.
Observations of Thermospheric Horizontal Winds at Watson Lake, Yukon Territory (lambda=65 Deg N)
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.; Killeen, T. L.; Solomon, Stanley C.
1996-01-01
Fabry-Perot interferometer observations of the thermospheric O I (6300 A) emission have been conducted from an airglow observatory at a dark field site in the southeastern Yukon Territory, Canada, for the period November 1991 to April 1993. The experiment operated in unattended, remote fashion, has resulted in a substantial data set from which mean neutral winds have been determined. Dependent upon geomagnetic activity, the nocturnal location of the site is either equatorward of the auroral oval or within oval boundaries. The data set is rich enough to permit hourly binning of neutral winds based upon the K(sub p) geomagnetic disturbance index as well as the season. For cases of low geomagnetic activity the averaged vector horizontal neutral wind exhibits the characteristics of a midlatitude site displaying antisunward pressure-gradient-driven winds. As the geomagnetic activity rises in the late afternoon and evening winds slowly rotate sunward in an anticlockwise direction, initially remaining near 100 m/s in speed but eventually increasing to 300 m/s for K(sub p) greater than 5. For the higher levels of activity the observed neutral wind flow pattern resembles a higher-latitude polar cap pattern characterized by ion drag forcing of thermospheric neutral gases. In addition, rotational Coriolis forcing on the dusk side enhances the ion drag forcing, resulting in dusk winds which trace out the clockwise dusk cell plasma flow. On the dawn side the neutral winds also rotate in an anticlockwise direction as the strength of geomagnetic disturbances increase. Since the site is located at a transition latitude between the midlatitude and the polar cap the data set provides a sensitive test for general circulation models which attempt to parameterize the contribution of magnetospheric processes. A comparison with the Vector Spherical Harmonic (VSH) model indicates several regions of poor correspondence for December solstice conditions but reasonable agreement for the vernal equinox.
Geophysical Plasmas and Atmospheric Modeling.
1985-03-01
Supriya Ganguli, Charles Goodrich, Adil Hassam, Y.C. Lee, Horace Mitchell, Dennis Papadopoulos, Harvey Rowland, Keith Sashegyi, Punyamurthula...Mesosphere and Lower Thermosphere" which is being prepared for publication in J. Geophys. Res. with John U P. Apruzese (NRL) and Mark R. Schoeberl (Goddard...and G.F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, John Wiley & Sons, New ;York, 1982. 18. See, for
Modeling the Thermosphere as a Driven-Dissipative Thermodynamic System
2013-03-01
8 Figure 2: Illustration of the geocentric solar magnetospheric coordinate system............15 Figure 3: Diagram of the...magnetic field in the z direction, Bz and the length of time Bz is in the negative z direction. The z direction is defined by Geocentric Solar...Magnetospheric (GSM) coordinates shown in Figure 2. Figure 2: Illustration of the geocentric solar magnetospheric (GSM) coordinate system. The origin is
Quantification of Transient Changes of Thermospheric Neutral Density
2014-11-24
Pedersen conductivity at high latitudes. Based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites...the model. The seasonal variations of the ratio have been investigated for both hemispheres, and an interhemispheric asymmetry has been identified...Satellite Program (DMSP) F- 15, F-16, F-17 and F-18 satellites and the Iridium satellite constellation is presented, using an inverse procedure for high
2011-03-01
atmosphere. The atmosphere is divided into separate layers: troposphere , stratosphere, mesosphere, and thermosphere. The lowest two kilometers of...of the other trace gases vary significantly with altitude. (Perram, et. al., 2010) The concentrations of water vapor and ozone can vary throughout...single most important absorber across this portion of the spectrum. Carbon dioxide, ozone and oxygen are also important. Scattering Scattering
NASA Astrophysics Data System (ADS)
Stolle, C.; Park, J.; Luhr, H.
2013-12-01
New opportunities for investigating the thermosphere/ionosphere interactions arise from in situ measurements on board low Earth orbiting satellites. Ten years of successful operation of the CHAMP satellite mission at a unique orbit altitude of about 400 km revealed many interesting features of the coupling between the thermosphere and ionosphere and the different atmospheric layers. Examples are the investigations of signatures of stratospheric warming events that are known to change significantly the dynamics of the equatorial ionosphere. It was shown that these modifications are due to an enhancement of lunar tidal effects, e.g. reflected in the thermospheric zonal wind, in the equatorial electroje or in the eastward electric field. Another topic concerns the energy deposit in the F-region though cooling of the thermal electron gas caused by elastic and inelastic processes (Schunk and Nagy, 2009). We find that a significant deposition is present during day at mid latitudes. At low latitudes the energy flux remain important until midnight. Observed heating rates depend on the satellite altitudes, but they are globally available from the CHAMP data. Further enhanced investigations are expected from ESA's three-satellite Swarm mission with a launch planned in 2014. The mission will provide observations of electron density, electron and ion temperature, ion drift and the electric field together with neutral density and winds. High-precision magnetic field observations will allow monitoring ionospheric currents.
Infrasonic Observations of Ground Shaking along the 2010 Mw 7.2 El Mayor Rupture
NASA Astrophysics Data System (ADS)
Degroot-Hedlin, C. D.; Walker, K.
2010-12-01
The Mw 7.2 El Mayor earthquake in northeast Baja California generated seismic waves that were felt for up to 90 seconds throughout southern California and northern Baja. The locations of the epicenter, aftershocks, and surface rupture suggest that the rupture was not focused at one specific location, but initiated near El Mayor, Mexico and extended northwest for roughly 120 km through the U.S. border. We analyze infrasound and seismic data recorded by three arrays and show that the surface shaking in the vicinity of the rupture also generated infrasound that was detected at least 200 km away to the north and west of the epicentral region, despite stratospheric winds from the west that only favor eastward propagation. Frequency domain beamforming of infrasound array signals recorded by an array near San Diego (MRIAR) shows a time progression of signal back azimuth that spans the entire rupture length. Ray trace modeling using 4-D atmospheric velocity models suggests that the observed infrasound signals refracted in the thermosphere. The signals have frequencies from 1 to 12 Hz, which is rather high given the level of thermospheric attenuation predicted by traditional models. A secondary infrasound wavetrain that arrived at MRIAR before the epicentral infrasound appears to have originated from an infrasonic radiator south of the array that was excited by the passing surface waves.
The production and escape of nitrogen atoms on Mars
NASA Technical Reports Server (NTRS)
Fox, J. L.
1992-01-01
The lack of agreement between our previously computed values and those measured by Viking of the N-15:N-14 isotope enhancement ratio has led us to reevaluate our model of the Martian ionosphere. In previous models, we were unable to reproduce the ion profiles measured by the RPA on Viking using electron temperatures that were higher that the ion temperatures. When we increased the electron temperatures to 2500-3000 K and with a zero flux upper boundary condition, the ion densities at high altitudes exceeded the measured values by a large factor. We found that we can better fit the observed profiles if we impose a loss process at the upper boundary of our model. If the horizontal fluxes of ions do not constitute a net loss of ions, then the escape of N due to dissociative recombination is also inhibited and better agreement with the measured isotope ratio is found. The production of escaping nitrogen atoms is closely related to the production of thermospheric odd nitrogen; therefore, the densities of NO measured by Viking provide a convenient check on our nitrogen escape model. Our standard model NO densities are less that the measured values by a factor of 2-3, as are those of previous models. We find that reasonable agreement can be obtained by assuming that the rate coefficient for loss of odd nitrogen in the reaction of N with NO is smaller at temperatures that prevail in the lower Martian thermosphere than the standard value, which applies to temperatures of 200-400 K. Other aspects of this investigation are presented.
Comparisons of thermospheric density data sets and models
NASA Astrophysics Data System (ADS)
Doornbos, Eelco; van Helleputte, Tom; Emmert, John; Drob, Douglas; Bowman, Bruce R.; Pilinski, Marcin
During the past decade, continuous long-term data sets of thermospheric density have become available to researchers. These data sets have been derived from accelerometer measurements made by the CHAMP and GRACE satellites and from Space Surveillance Network (SSN) tracking data and related Two-Line Element (TLE) sets. These data have already resulted in a large number of publications on physical interpretation and improvement of empirical density modelling. This study compares four different density data sets and two empirical density models, for the period 2002-2009. These data sources are the CHAMP (1) and GRACE (2) accelerometer measurements, the long-term database of densities derived from TLE data (3), the High Accuracy Satellite Drag Model (4) run by Air Force Space Command, calibrated using SSN data, and the NRLMSISE-00 (5) and Jacchia-Bowman 2008 (6) empirical models. In describing these data sets and models, specific attention is given to differences in the geo-metrical and aerodynamic satellite modelling, applied in the conversion from drag to density measurements, which are main sources of density biases. The differences in temporal and spa-tial resolution of the density data sources are also described and taken into account. With these aspects in mind, statistics of density comparisons have been computed, both as a function of solar and geomagnetic activity levels, and as a function of latitude and local solar time. These statistics give a detailed view of the relative accuracy of the different data sets and of the biases between them. The differences are analysed with the aim at providing rough error bars on the data and models and pinpointing issues which could receive attention in future iterations of data processing algorithms and in future model development.
Partitioning of Electromagnetic Energy Inputs to the Thermosphere during Geomagnetic Disturbances
2012-06-01
boundary of a local flux tube volume is an equipotential . Figure 4 contains maps of Poynting flux normal to a 500 km altitude surface and maps of height...as a cell quantity throughout its computational volume, we are able to generate maps of the Poynting flux, ⃗ ⃗⃗⃗⃗⃗⃗ , on altitude surfaces at...the top of the thermosphere. We used separate modules to integrate the Poynting flux over this surface to compute the total electromagnetic energy
2017-04-04
AFRL -AFOSR-JP-TR-2017-0028 Investigating the role of sub-auroral polarization stream electric field in coupled magnetosphere-ionosphere-thermosphere...SPONSOR/MONITOR’S ACRONYM(S) AFRL /AFOSR IOA 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -AFOSR-JP-TR-2017-0028 12. DISTRIBUTION/AVAILABILITY STATEMENT...during the 31 August 2005 geomagnetic storm Date: 19-24 June 2016 Presenter: Dr Cheryl Huang, Senior Research Physicist, AFRL /RVBXP
NASA Astrophysics Data System (ADS)
Vals, M.
2017-09-01
We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.
The Transfer Function Model as a Tool to Study and Describe Space Weather Phenomena
NASA Technical Reports Server (NTRS)
Porter, Hayden S.; Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)
2001-01-01
The Transfer Function Model (TFM) is a semi-analytical, linear model that is designed especially to describe thermospheric perturbations associated with magnetic storms and substorm. activity. It is a multi-constituent model (N2, O, He H, Ar) that accounts for wind induced diffusion, which significantly affects not only the composition and mass density but also the temperature and wind fields. Because the TFM adopts a semianalytic approach in which the geometry and temporal dependencies of the driving sources are removed through the use of height-integrated Green's functions, it provides physical insight into the essential properties of processes being considered, which are uncluttered by the accidental complexities that arise from particular source geometrie and time dependences. Extending from the ground to 700 km, the TFM eliminates spurious effects due to arbitrarily chosen boundary conditions. A database of transfer functions, computed only once, can be used to synthesize a wide range of spatial and temporal sources dependencies. The response synthesis can be performed quickly in real-time using only limited computing capabilities. These features make the TFM unique among global dynamical models. Given these desirable properties, a version of the TFM has been developed for personal computers (PC) using advanced platform-independent 3D visualization capabilities. We demonstrate the model capabilities with simulations for different auroral sources, including the response of ducted gravity waves modes that propagate around the globe. The thermospheric response is found to depend strongly on the spatial and temporal frequency spectra of the storm. Such varied behavior is difficult to describe in statistical empirical models. To improve the capability of space weather prediction, the TFM thus could be grafted naturally onto existing statistical models using data assimilation.
Silicon chemistry in the mesosphere and lower thermosphere
Gómez‐Martín, Juan Carlos; Feng, Wuhu; Janches, Diego
2016-01-01
Abstract Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere/lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO, SiO2, and Si+. Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two‐step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry‐climate model. The vertical profiles of Si+ and the Si+/Fe+ ratio are shown to be in good agreement with rocket‐borne mass spectrometric measurements between 90 and 110 km. Si+ has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on their relative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species. PMID:27668138
Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Lin, C. Y. T.; Deng, Y.
2017-12-01
During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.
Ozone in the stratosphere, mesosphere and lower thermosphere retrieved from MIPAS/ENVISAT data
NASA Astrophysics Data System (ADS)
Gil-Lopez, S.; Kaufmann, M.; Imk-Iaa Mipas/Envisat Team
The Michelson Interferometer for Passive Atmosphere Sounding (MIPAS) on board of the ENVISAT satellite measures the global distribution of infrared emissions by atmospheric gases from 4 μm to 15 μm. Whereas the standard measurement mode covers altitudes from 6 km to 68 km, only, the upper atmosphere mode spans the entire middle atmosphere from 6 km up to 100 km and allows for the retrieval of species from the troposphere up to the lower thermosphere. In this talk we present the derivation of ozone from the O_3(ν_2) and O_3(ν_3) fundamental bands at 13 μm and 10 μm. For the modeling of the infrared radiances it is essential to include a detailed non-local thermodynamic equilibrium (non-LTE) model in the retrieval scheme. For this purpose we are using the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA) which is embedded in the IMK/IAA retrieval processor. The retrieval yields global maps of day- and nighttime ozone volume mixing ratio for July 2002 and June 2003. The primary as well as the secondary ozone maximum are clearly resolved in the data. In addition, retrieved ozone shows the existence of a tertiary ozone maximum at the polar night terminator.
Silicon Chemistry in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Plane, John M. C.; Gomez-Martin, Juan Carlos; Feng, Wuhu; Janches, Diego
2016-01-01
Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO,SiO2, and S(exp +). Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two-step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry-climate model. The vertical profiles of Si+ and the Si(exp +)Fe(exp +) ratio are shown to be in good agreement with rocket-borne mass spectrometric measurements between 90 and 110 km. Si(exp +) has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on the irrelative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species.
Tidal Signals In GOCE Measurements And Time-GCM
NASA Astrophysics Data System (ADS)
Hausler, K.; Hagan, M. E.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.
2013-12-01
In this paper we investigate tidal signatures in GOCE measurements during 15-24 November 2009 and complementary simulations with the Thermosphere-Ionosphere- Mesosphere-Electrodynamics General Circulation Model (TIME-GCM). The TIME-GCM simulations are driven by inputs that represent the prevailing solar and geomagnetic conditions along with tidal and planetary waves applied at the lower boundary (ca. 30km). For this pilot study, the resultant TIME-GCM densities are analyzed in two ways: 1) we use results along the GOCE orbital track, to calculate ascending/descending orbit longitude- latitude density difference and sum maps for direct comparison with the GOCE diagnostics, and 2) we conduct a complete analysis of TIME-GCM results to unambiguously characterize the simulated atmospheric tides and to attribute the observed longitude variations to specific tidal components. TIME-GCM captures some but not all of the observed longitudinal variability. The good data- model agreement for wave-2, wave-3, and wave-4 suggests that thermospheric impacts can be attributed to the DE1, DE2, DE3, S0, SE1, and SE2 tides. Discrepancies between TIME-GCM and GOCE results are most prominent in the wave-1 variations, and suggest that further refinement of the lower boundary forcing is necessary before we extend our analysis and interpretation to densities associated with the remainder of the GOCE mission.
Periodic waves in the lower thermosphere observed by OI630 nm airglow images
NASA Astrophysics Data System (ADS)
Paulino, I.; Medeiros, A. F.; Vadas, S. L.; Wrasse, C. M.; Takahashi, H.; Buriti, R. A.; Leite, D.; Filgueira, S.; Bageston, J. V.; Sobral, J. H. A.; Gobbi, D.
2016-02-01
Periodic wave structures in the thermosphere have been observed at São João do Cariri (geographic coordinates: 36.5° W, 7.4° S; geomagnetic coordinates based on IGRF model to 2015: 35.8° E, 0.48° N) from September 2000 to November 2010 using OI630.0 nm airglow images. During this period, which corresponds to almost one solar cycle, characteristics of 98 waves were studied. Similarities between the characteristics of these events and observations at other places around the world were noted, primarily the spectral parameters. The observed periods were mostly found between 10 and 35 min; horizontal wavelengths ranged from 100 to 200 km, and phase speed from 30 to 180 m s-1. These parameters indicated that some of the waves, presented here, are slightly faster than those observed previously at low and middle latitudes (Indonesia, Carib and Japan), indicating that the characteristics of these waves may change at different places. Most of observed waves have appeared during magnetically quiet nights, and the occurrence of those waves followed the solar activity. Another important characteristic is the quasi-monochromatic periodicity that distinguish them from the single-front medium-scale traveling ionospheric disturbances (MSTIDs) that have been observed previously over the Brazilian region. Moreover, most of the observed waves did not present a phase front parallel to the northeast-southwest direction, which is predicted by the Perkins instability process. It strongly suggests that most of these waves must have had different generation mechanisms from the Perkins instability, which have been pointed out as being a very important mechanism for the generation of MSTIDs in the lower thermosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, G.; Roble, R.G.; Ridley, E.C.
Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 /sup 0/N, 105.5 /sup 0/W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north ofmore » Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours.« less
NASA Astrophysics Data System (ADS)
López-Puertas, Manuel; Funke, B.; Jurado-Navarro, Á. A.; García-Comas, M.; Gardini, A.; Boone, C. D.; Rezac, L.; Garcia, R. R.
2017-08-01
We present the validation of Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) CO2 daytime concentration in the mesosphere and lower thermosphere by comparing with Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) data. MIPAS shows a very good agreement with ACE below 100 km with differences of ˜5%. Above 100 km, MIPAS CO2 is generally lower than ACE with differences growing from ˜5% at 100 km to 20-40% near 110-120 km. Part of this disagreement can be explained by the lack of a nonlocal thermodynamic equilibrium correction in ACE. MIPAS also agrees very well (˜5%) with SABER below 100 km. At 90-105 km, MIPAS is generally smaller than SABER by 10-30% in the polar summers. At 100-120 km, MIPAS and SABER CO2 agree within ˜10% during equinox but, for solstice, MIPAS is larger by 10-25%, except near the polar summer. Whole Atmosphere Community Climate Model (WACCM) CO2 shows the major MIPAS features. At 75-100 km, the agreement is very good (˜5%), with maximum differences of ˜10%. At 95-115 km MIPAS CO2 is larger than WACCM by 20-30% in the winter hemisphere but smaller (20-40%) in the summer. Above 95-100 km WACCM generally overestimates MIPAS CO2 by about 20-80% except in the polar summer where underestimates it by 20-40%. MIPAS CO2 favors a large eddy diffusion below 100 km and suggests that the meridional circulation of the lower thermosphere is stronger than in WACCM. The three instruments and WACCM show a clear increase of CO2 with time, more markedly at 90-100 km.
NASA Astrophysics Data System (ADS)
Wang, Hui; Zhang, Kedeng; Zheng, Zhichao; Ridley, Aaron James
2018-03-01
The temporal and spatial variations in thermospheric neutral winds at an altitude of 400 km in response to subauroral polarization streams (SAPS) are investigated using global ionosphere and thermosphere model simulations under the southward interplanetary magnetic field (IMF) condition. During SAPS periods the westward neutral winds in the subauroral latitudes are greatly strengthened at dusk. This is due to the ion drag effect, through which SAPS can accelerate neutral winds in the westward direction. The new findings are that for SAPS commencing at different universal times, the strongest westward neutral winds exhibit large variations in amplitudes. The ion drag and Joule heating effects are dependent on the solar illumination, which exhibit UT variations due to the displacement of the geomagnetic and geographic poles. With more sunlight, stronger westward neutral winds can be generated, and the center of these neutral winds shifts to a later magnetic local time than neutral winds with less solar illumination. In the Northern Hemisphere and Southern Hemisphere, the disturbance neutral wind reaches a maximum at 18:00 and 04:00 UT, and a minimum at 04:00 and 16:00 UT, respectively. There is a good correlation between the neutral wind velocity and cos0.5(SZA) (solar zenith angle). The reduction in the electron density and enhancement in the air mass density at an altitude of 400 km are strongest when the maximum solar illumination collocates with the SAPS. The correlation between the neutral wind velocity and cos0.5(SZA) is also good during the northward IMF period. The effect of a sine-wave oscillation of SAPS on the neutral wind also exhibits UT variations in association with the solar illumination.
Akintunde, Akinjide; Petculescu, Andi
2014-10-01
This paper presents the results of a pilot study comparing the use of continuum and non-continuum fluid dynamics to predict infrasound attenuation in the rarefied lower thermosphere. The continuum approach is embodied by the Navier-Stokes equations, while the non-continuum method is implemented via the Burnett equations [Proc. London Math. Soc. 39, 385-430 (1935); 40, 382-435 (1936)]. In the Burnett framework, the coupling between stress tensor and heat flux affects the dispersion equation, leading to an attenuation coefficient smaller than its Navier-Stokes counterpart by amounts of order 0.1 dB/km at 0.1 Hz, 10 dB/km at 1 Hz, and 100 dB/km at 10 Hz. It has been observed that many measured thermospheric arrivals are stronger than current predictions based on continuum mechanics. In this context, the consistently smaller Burnett-based absorption is cautiously encouraging.
NASA Astrophysics Data System (ADS)
Yuan, T.; Zhang, Y.
2015-12-01
In this paper, we report our findings on the correlation between the neutral temperature (around the mesopause) and thermospheric column density O/N2 ratio, along with their response to geomagnetic storms above mid-latitude of North America. A temperature/wind Doppler Na lidar, operating at Fort Collins, CO (41°N, 105°W) and later at Logan, UT (42°N and 112°W), observed significant temperature increases (temperature anomaly) above 95 km (as much as 55 K at 105 km altitude) during four geomagnetic storms (April 2002, Nov. 2004, May 2005 and Oct. 2012). Coincident TIMED/GUVI observations indicate significant depletion in the thermospheric O/N2 ratio at the lidar locations. These observations suggest that the local mesopause warming seen by the lidar is due to transport of the high-latitude Joule and particle heated neutrals at the E and F layers to the mid-latitude region.
NASA Astrophysics Data System (ADS)
Martyshenko, K. V.; Yankovsky, V. A.
2017-03-01
The problem of systematic overestimation (20-50%) of the retrieved ozone concentrations in the altitude range of 60-80 km in the TIMED-SABER satellite experiment in the daytime has been solved. The reason for overestimation is the neglect of the electronic vibrational kinetics of photolysis products of ozone and molecular oxygen O2(b1Σg +, ν) and O2(a1Δg, ν). The IR emission band of O2(a1Δg, ν = 0) at 1.27 μm can be correctly used in remote sensing in order to obtain the ozone altitude profile in the altitude range of 50-88 km only with the use of a complete model of electronic vibrational kinetics of O2 and O3 photolysis products (YM2011) in the Earth's mesosphere and lower thermosphere. Alternative ozone tracers have been considered, and an optimum tracer in the altitude range of 50-100 km such as O2(b1Σg +, ν = 1) molecule emissions has been proposed.
NASA Astrophysics Data System (ADS)
Zhang, X.; Forbes, J. M.; Maute, A. I.
2017-12-01
Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan The existence of secondary waves in the mesosphere and thermosphere due to nonlinear interactions between atmospheric tides and longer-period waves have been revealed in both satellite data and in the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The longer-period waves include the quasi-2-day and 6-day westward-propagating "normal modes" of the atmosphere, and eastward-propagating ultra-fast Kelvin waves with periods between 2 and 4 days. The secondary waves add to both the temporal and longitude variability of the atmosphere beyond that associated with the linear superposition of the interacting waves, thus adding "complexity" to the system. Based on our knowledge of the processes governing atmosphere-ionosphere interactions, similar revelations are expected to occur in electric fields, vertical plasma drifts and F-region electron densities. Towards this end, examples of such ionospheric manifestations of wave-wave interactions in TIE-GCM simulations will be presented.
NASA Technical Reports Server (NTRS)
Blum, P. W.; Harris, I.
1973-01-01
The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.
NASA Astrophysics Data System (ADS)
Chau, J. L.; Hoffmann, P.; Pedatella, N. M.; Janches, D.; Murphy, D. J.; Stober, G.
2015-12-01
From recent ground- and satellite-based observations as well as from model results, it is well known that lunar tide signatures are amplified significantly during northern hemisphere sudden stratospheric warming events (SSWs). Such signatures have been observed in the equatorial and low latitude ionosphere and mesosphere, and at the mesosphere and lower thermosphere (MLT) at the northern mid and high latitude mesosphere. More recently, ionospheric signatures at mid-latitudes have been also observed in satellite instruments and such observations are corroborated with model results when the lunar tides are included. From these results (N. Pedatella, personal communication), there is a strong hemispheric asymmetry, where ionospheric perturbations occur primarily in the southern hemisphere. Motivated by these results, in this work we compare the tidal signatures in the MLT region at mid and high latitudes in both hemispheres. We make use of MLT winds obtained with specular meteor radars (SMR) at Juliusruh (54oN), Andøya (69oN), Rio Grande (54oS), and Davis (69oS) around the 2009 and 2013 major SSWs. In addition we complement our studies, with model results from the Whole Atmosphere Community Climate Model Extended version (WACCM-X) combined with the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) and the inclusions of lunar tides. Besides these results, we present a brief description and preliminary results of our new approach to derive wind fields in the MLT region using multi-static, multi-frequency specular meteor radars, called MMARIA.
NASA Astrophysics Data System (ADS)
Colace, Marco; Hackel, Stefan; Kirschner, Michael; Kahle, Ralph; Circi, Christian
2017-04-01
Satellites in Low Earth Orbit (LEO) are notably affected by the presence of the atmosphere, a predominant source of perturbations of the Keplerian motion at the altitudes of interest. For spacecraft of this class the main source of error in propagated trajectories is due to the mismodeling of the neutral density in the thermosphere and the associated drag force, which steadily decelerates orbital motion with both secular and periodic effects. Thermospheric density varies significantly with space and time because of complex interactions between solar activity and the Earth's atmosphere and magnetic field. Properly reproducing this variability by means of empirical dynamic models has always represented a difficult task but is of vital importance for orbit determination and propagation. The present study shows the influence of different atmospheric density models, predicted space weather proxies, and their related uncertainties on the orbit solutions of representative satellite missions. The study has been carried out by using a routine-like orbit propagation scenario applied to GRACE-1, Sentinel-1A, and TerraSAR-X, three LEO orbiting spacecraft with operational altitudes well spaced within the 400-700 km range. Archived space weather data predictions and some of the most recent and promising empirical atmospheric models (Naval Research Laboratory's NRLMSISE-00 and Jacchia-Bowman 2008) were used side-by-side with the well-known Jacchia 1971 model in order to assess potential gains in prediction accuracy. To evaluate the influence of solar variability on the atmospheric density models and associated orbit quality, two 2-month test time frames, in high and low solar activity periods, have been selected. The scope of the presentation is a detailed comparison of atmospheric density models and their influence on the estimated orbits of GRACE-1, Sentinel-1A and TerraSAR-X.
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the “weather” of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
Study on the Variation of Groundwater Level under Time-varying Recharge
NASA Astrophysics Data System (ADS)
Wu, Ming-Chang; Hsieh, Ping-Cheng
2017-04-01
The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we develop a mathematical model instead, which might help us to simulate the groundwater level variation. In this study, we will discuss the groundwater level change in a sloping unconfined aquifer with impermeable bottom under time-varying rainfall events. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Method (GITM) to analyzing the groundwater level after linearizing the Boussinesq equation. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results. To sum up, we have presented an alternative approach to solve the linearized Boussinesq equation for the response of groundwater level in a sloping unconfined aquifer. The present analytical results combine the effect of bottom slope and the time-varying recharge pattern on the water table fluctuations. Owing to the limitation and difficulty of measuring the groundwater level directly, we develop such a mathematical model that we can predict or simulate the variation of groundwater level affected by any rainfall events in advance.
Migrating diurnal tide variability induced by propagating planetary waves
NASA Astrophysics Data System (ADS)
Chang, Loren C.
The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on the tide is smaller than the advective tendencies throughout most of the MLT region, and cannot iv directly account for the changes in the tide during the QTDW model simulation. In the case of the UFK wave, baseline tidal amplitudes are found to show much smaller changes of 10% or less, despite the larger amplitudes of the UFK wave in the lower thermosphere region compared to the QTDW. Analysis of the nonlinear advective tendencies shows smaller magnitudes than those in the the case of the QTDW, with interaction regions limited primarily to a smaller region in latitude and altitude. Increased tidal convergence in the tropical lower thermosphere is attributed to eastward forcing of the background zonal mean winds by the UFK wave. Increasing the UFK wave forcing by an order of magnitude, although unrealistic, results in changes to the tide comparable in magnitude to the case of the QTDW. While child waves generated by nonlinear advection are present with both of the propagating planetary waves examined, the QTDW produces much greater tidal variability through both nonlinear and linear advection due to its broader horizontal and vertical structure, compared to the UFK wave. Planetary wave induced background atmosphere changes can also drive tidal variability, suggesting that changes to the tidal response in the MLT can also result from this indirect coupling mechanism, in addition to nonlinear advection.
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Yigit, Erdal
2018-01-01
The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).
Atomic oxygen and temperature in the lower thermosphere from the O-STATES sounding rocket project
NASA Astrophysics Data System (ADS)
Hedin, Jonas; Gumbel, Jörg; Megner, Linda; Stegman, Jacek; Seo, Mikael; Khaplanov, Mikhail; Slanger, Tom; Kalogerakis, Konstantinos; Friedrich, Martin; Torkar, Klaus; Eberhart, Martin; Löhle, Stefan; Fasoulas, Stefanos
2016-04-01
In October 2015 the O-STATES payload was launched twice from Esrange Space Center (67.9° N, 21.1° E) in northern Sweden, first into moderately disturbed and then into calm geomagnetic conditions. The basic idea of O-STATES ("Oxygen Species and Thermospheric Airglow in The Earth's Sky") is that comprehensive information on the composition, specifically atomic oxygen in the ground state O(3P) and first excited state O(1D), and temperature of the lower thermosphere can be obtained from a limited set of optical measurements. Starting point for the analysis are daytime measurements of the O2(b1 ∑ g+ - X3 ∑ g-) Atmospheric Band system in the spectral region 755-780 nm and the O(1D-3P) Red Line at 630 nm. In the daytime lower thermosphere, O(1D) is produced by O2 photolysis and the excited O2(b) state is mainly produced by energy transfer from O(1D) to the O2(X) ground state. In addition to O2 photolysis, both electron impact on O(3P) and dissociative recombination of O2+ are major sources of O(1D) in the thermosphere. Laboratory studies at SRI International have shown that O2(b) production in vibrational level v=1 dominates. While O2(b, v=0) is essentially unquenched, O2(b, v=1) is subject to collisional quenching that is dominated by O at altitudes above 160 km. Hence, the ratio of the Atmospheric Band emission from O2(b, v=1) and O2(b, v=0) is a measure of the O density at sufficiently high altitudes. In addition, the spectral shape of the O2 Atmospheric Band is temperature dependent and spectrally resolved measurements of the Atmospheric Bands thus provide a measure of atmospheric temperature. This O2 Atmospheric Band analysis has been suggested as a new technique for thermospheric remote sensing under the name Global Oxygen and Temperature (GOAT) Mapping. With O-STATES we want to characterize the GOAT technique by in-situ analysis of the O2 Atmospheric Band airglow and the underlying excitation mechanisms. By performing this dayglow analysis from a rocket payload, detailed local altitude profiles of the relevant emissions and interacting species can be obtained. The optical measurements are combined with independent detection of O and O2 (resonance fluorescence and electrochemical detection) as well as measurements of electron and ion densities. In this paper we describe the O-STATES project and present first results.
Modeling the Sun-Earth Connection
NASA Astrophysics Data System (ADS)
Hughes, W. J.
2003-04-01
Space weather is caused by a series of interconnected events, beginning at the Sun and ending in the near-Earth space environment. Our ability to predict conditions and events in space depends on our understanding of these connections, and more importantly, our ability to predict details, such as the orientation of the magnetic field within a CME that is on its way to Earth. One approach to both improved understanding and prediction is through the use of models, particularly computer simulation models. Although models of the space environment are not yet good enough for this approach to be quantitative, things are changing. Models of components of the system the magnetosphere or the Sun’s corona, for example are now approaching a point where the biggest uncertainties in the model results are due to uncertainties in boundary conditions or in interactions with neighboring regions. Thus the time is ripe for the models to be joined into one large model that can deal with the complex couplings between the components of the system. In this talk we will review efforts to do this being undertaken by the new NSF Science and Technology Center, the Center for Integrated Space Weather Modeling, a consortium of ten institutions headed by Boston University. We will discuss results of initial efforts to couple MHD models of the corona and solar wind, and to couple a global magnetospheric MHD model with a global ionosphere/thermosphere model and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere.
NASA Astrophysics Data System (ADS)
Watada, S.; Arai, N.; Murayama, T.; Iwakuni, M.; Nogami, M.; Oi, T.; Imanishi, Y.; Kitagawa, Y.
2010-12-01
With more than 20 microbarometers in a distance range from as small as 4 km to 1100 km, we observed the strongest explosive eruption since 2000 of the Sakurajima volcano, located at the southern end of the Kyushu Island in Japan. An MB2005 at 4-km away from the summit recorded one strong sharp acoustic signal with peak-to-peak amplitude 1200 Pa and duration 4 sec. This nearby microbarogram guarantees that no small eruption occurred with amplitude more than a few tens Pa within a day after this explosive eruption. At the I30H IMS array which is 1000 km away from the volcano, we observed a dispersed pressure wave train with duration 1 min and maximum amplitude 5 Pa and dominant periods 5-10 sec. Array analysis shows a tropospheric propagating infrasound from the azimuth of Sakurajima with an apparent velocity 0.345 km/s. All distant stations are nearly linearly aligned from Sakurajima to the I30H array and their azimuths are 37-65 deg. Within this small azimuth range, we observed a strong azimuthal anisotropy in traveltime and amplitude. The patterns of traveltime anomaly and amplitude are similar, earlier the arrival, larger the amplitude. This implies that these traveltime and amplitude anomalies are wave propagation origin and are likely caused by the wind, not by an asymmetric radiation pattern of the explosion source. More microbarograms including two MB2005s were running in the Honshu Island during the eruption but these records show little infrasound signals with amplitude more than a few Pa. There seems a clear areal boundary where infrasound was observed or not. Another prominent feature of waveforms is the multiple later phases reflected from the troposphere and the thermosphere. The record section of microbarograms recorded at less than 500 km from the volcano reveals nearly-equally time-separated later phases up to 5 bounces. The traveltime curves progressively increases the apparent velocity as the time increases and distance decreases, suggesting multiple reflections between the atmosphere and the ground. The time separation and slowness of these later phases are interpreted that these waves are reflected by an eastward wind at 10 km above aground. The microbarograms recorded at more than 500 km show later phases up to 4 bounces with a larger apparent velocity of about 0.4km/s, indicating their thermospheric origin. More elaborated modeling of traveltimes and amplitude of these tropospheric and thermospheric acoustic waves, together with multiple phases, will reveal the wind condition above the Japanese islands, which should be compared against daily models constructed by JMA for the weather forecast.
NASA Astrophysics Data System (ADS)
Watada, Shingo; Arai, Nobuo; Murayama, Takahiko; Iwakuni, Makiko; Nogami, Mami; Imanishi, Yuichi; Oi, Takuma; Kitagawa, Yuichi
2010-05-01
With more than 20 microbarometers in a distance range from as small as 4 km to 1100 km, we observed the strongest explosive eruption since 2000 of the Sakurajima volcano, located at the southern end of the Kyushu Island in Japan. An MB2005 at 4-km away from the summit recorded one strong sharp acoustic signal with peak-to-peak amplitude 1200 Pa and duration 4 sec. This nearby microbarogram guarantees that no small eruption occurred with amplitude more than a few tens Pa within a day after this explosive eruption. At the I30H IMS array which is 1000 km away from the volcano, we observed a dispersed pressure wave train with duration 1 min and maximum amplitude 5 Pa and dominant periods 5-10 sec. Array analysis shows a tropospheric propagating infrasound from the azimuth of Sakurajima with an apparent velocity 0.345 km/s. All distant stations are nearly linearly aligned from Sakurajima to the I30H array and their azimuths are 37-65 deg. Within this small azimuth range, we observed a strong azimuthal anisotropy in traveltime and amplitude. The patterns of traveltime anomaly and amplitude are similar, earlier the arrival, larger the amplitude. This implies that these traveltime and amplitude anomalies are wave propagation origin and are likely caused by the wind, not by an asymmetric radiation pattern of the explosion source. More microbarograms including two MB2005s were running in the Honshu Island during the eruption but these records show little infrasound signals with amplitude more than a few Pa. There seems a clear areal boundary where infrasound was observed or not. Another prominent feature of waveforms is the multiple later phases reflected from the troposphere and the thermosphere. The record section of microbarograms recorded at less than 500 km from the volcano reveals nearly-equally time-separated later phases up to 5 bounces. The traveltime curves progressively increases the apparent velocity as the time increases and distance decreases, suggesting multiple reflections between the atmosphere and the ground. The time separation and slowness of these later phases are interpreted that these waves are reflected by an eastward wind at 10 km above aground. The microbarograms recorded at more than 500 km show later phases up to 4 bounces with a larger apparent velocity of about 0.4km/s, indicating their thermospheric origin. More elaborated modeling of traveltimes and amplitude of these tropospheric and thermospheric acoustic waves, together with multiple phases, will reveal the wind condition above the Japanese islands, which should be compared against daily models constructed by JMA for the weather forecast.
The high-resolution Doppler imager on the Upper Atmosphere Research Satellite
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.
1993-01-01
The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.
Satellite Studies of Storm-Time Thermospheric Winds
NASA Technical Reports Server (NTRS)
Fejer, Bela G.
2005-01-01
In this project we have studied the climatology and storm-time dependence of longitude-averaged mid- and low-latitude thermospheric neutral winds observed by the WINDII instrument on board the UARS satellite. This satellite is in a circular, 57 deg inclination orbit at a height of 585 km; the orbit precesses at a rate of 5 deg per day. WINDII is a Michelson interferometer that measures Doppler shifts of the green line (557.7 nm) and red line (630.0 nm) airglow emissions at the Earth's limb, covering latitudes up to 72 deg.
An Overview of Modeling Middle Atmospheric Odd Nitrogen
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)
2001-01-01
Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.
NASA Astrophysics Data System (ADS)
Panka, P.; Kutepov, A. A.; Kalogerakis, K. S.; Janches, D.; Feofilov, A.; Rezac, L.; Marsh, D. R.; Yigit, E.
2017-12-01
We present first retrievals of O(3P) and OH densities in the mesosphere/lower thermosphere (MLT) using SABER/TIMED OH 2.0 and 1.6 μm limb emission observations. Recently, Kaufmann et al. [2014] reported that current SABER O(3P) densities are on average 30% higher compared to other observations. In this study we applied new detailed non-LTE model [Panka et al. 2017] of nighttime OH(v), which accounts for the new mechanism OH(v≥5)+O(3P)→O(1D)+OH(v-5) of energy transfer recently suggested by Sharma et al. [2015] and confirmed through laboratory studies by Kalogerakis et al. [2016]. Based on this model we developed a new self-consistent two channel retrieval approach for O(3P) and OH density. Using this approach, we retrieved O(3P) densities that are 10-40% lower than current SABER O(3P), as well as total OH density which is retrieved for the first time using SABER observations. We compare our retrieveals with the results of other observations and models. As it was recently shown by Panka et al. [2017], the new mechanism of OH quenching produces a significant pumping of CO2 4.3 µm emission. We discuss the effects these new O(3P) and OH retrievals have on the nighttime CO2 density retrievals from the SABER 4.3 µm channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.M.; Virdi, T.S.
The incoherent scatter radar located at Soendre Stroemfjord, Greenland (67{degree}N, 51{degree}W, 74.5{degree}{Lambda}) and the EISCAT incoherent scatter facility located in northern Scandinavia (69.5{degree}N, 19{degree}E, 66.3{degree}{Lambda}) both obtained E and F region measurements during the first campaign of the Lower Thermosphere Coupling Study (LTCS 1, September 21-25, 1987). Neutral winds deduced from these measurements have been analyzed for their mean flow and tidal components. A number of the altitude profiles for the mean winds and the diurnal and semidiurnal wave components at the two radar locations show similar variations with height, indicating that latitudinal rather than longitudinal effects are dominant inmore » determining the observed wind field. Diurnal tidal amplitudes and phases are reasonably well represented by theoretical model results (Forbes, 1982). The semidiurnal amplitudes and phases, although somewhat consistent between the two radars, are not well represented in equinox tidal model results (Forbes and Vial, this issue). Results from both radars indicate a vertical wavelength for the zonal semidiurnal oscillation of approximately 60 km. During a period of impulsive magnetospheric forcing (September 22-23), winds deduced from measurements at both radars show enhanced eastward flows near midnight accompanied by equatorward winds at Sondrestrom. Comparison with the results of a National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) simulation of the LTCS 1 interval shows generally better agreement with the observations at EISCAT than at Sondrestrom.« less
Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation
NASA Astrophysics Data System (ADS)
Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko
2016-07-01
One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.
New Measurements of Mars Thermospheric Variability from MAVEN EUVM Solar Occultations
NASA Astrophysics Data System (ADS)
Thiemann, E.; Eparvier, F. G.; Andersson, L.; Pilinski, M.; Chamberlin, P. C.; Fowler, C. M.; Dominique, M.; Bougher, S. W.; Gröller, H.; Girazian, Z.; Lillis, R. J.
2017-12-01
The Mars thermosphere encompasses both the coldest and hottest regions of the Mars neutral atmosphere, where temperatures warm from below 150 K at the well-mixed homopause to 300 K at the collisionless exobase, and change by comparable magnitudes over the diurnal cycle. In this dynamic and highly-structured region, atoms and molecules are accelerated by a number of processes, potentially leading to escape and permanent loss to space. Increasingly, evidence shows that atmospheric escape to space has resulted in the loss of a substantial portion of Mars's atmosphere over the planet's history. Given that the thermosphere is the neutral reservoir for atmospheric escape, understanding how and why it varies is crucial for understanding how Mars's climate has evolved over time. The Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter's Extreme Ultraviolet (EUV) Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These measurements are routine, inherently constrained to either 06:00 or 18:00 Local Time, and span all latitudes, a number of which have been revisited multiple times over the past 3 Earth years due to MAVEN's orbital precession. These factors, coupled with uncertainties in retrieved densities below 10%, make MAVEN EUVM occultations ideal for tracking both long-term and latitudinal thermospheric variability. Some notable trends revealed by the EUVM occultation data are variations in poleward warming due to changes in global circulation patterns, planetary-scale waves due to varying gravity wave or tidal forcing, and temperature due to solar EUV variability. In this study, we present these new measurements in detail. We begin by briefly presenting the measurement methods and uncertainties, and show an overview of the measurements made to-date, putting them in the context of observations made by other missions, other instruments onboard MAVEN, and the newly arrived ExoMars Trace Gas Orbiter (TGO). We then show observations of latitudinal and seasonal temperature and density variability made over the MAVEN mission, and discuss the possible underlying causes. We conclude by discussing plans to make these new data publically available as an official MAVEN data product.