Dielectric and electrical studies of PVC-PPy blends in dilute solution of THF
NASA Astrophysics Data System (ADS)
Sharma, Deepika; Tripathi, Deepti
2018-05-01
An influence of adding Polypyrrole (PPy) which is an intrinsically conducting polymer (ICP), on the dielectric dispersion behavior of Polyvinyl chloride (PVC) in dilute solution of Tetrahydrofuran (THF) at low frequency is reported. The blends of PVC with PPy forms colloidal suspension in THF. The dielectric dispersion study of PVC-PPy blends in THF has been carried out in the frequency range of 20 Hz to 2 MHz at temperature of 303K. The effect of increasing PPy concentration on dielectric and electrical parameters such as complex dielectric function [ɛ*(ω)], loss tangent [tan δ], complex electric modulus [M*(ω)], ac conductivity [σac], and complex impedance [Z*(ω)] of PVC - PPy blends in THF solution were studied. The electrode polarization and ionic conduction appears to have dominant influence on the complex dielectric constant in the low frequency region. The relaxation time values corresponding to these two phenomena are also reported.
NASA Astrophysics Data System (ADS)
Junyan, Liang; Pingdi, Xu; Jingxian, Bao; Ling, He; Nan, Zhu
2018-03-01
The self-assembly behavior of fluorinated unit end-functionalized poly(methyl methacrylate) (PDFHM-ef-PMMA) in solution and its influence on the surface microstructure, elemental composition and omniphobic property of cast film was investigated in this work. Specifically, three mixed solutions of tetrahydrofuran (THF)/methanol (MeOH), THF/H2O and THF/H2O/MeOH in various compositions were employed separately as the selective solvents. In THF/MeOH solution, the aggregate morphologies of PDFHM-ef-PMMA changed gradually from core-shell spheres to worm, and then to elliptical vesicles as MeOH content increased. In THF/H2O solution, spherical and bowl-shaped aggregates with significantly larger sizes than those in THF/MeOH solution were favored despite lower H2O content. The further addition of MeOH to THF/H2O mixture could reduce the size of aggregate but hardly change original aggregate morphology. During the film formation process, those self-assembled aggregates in THF/MeOH solution fused with one another to form a smooth surface. When such surface was fully covered by fluorinated segments, the outstanding hexadecane and water slide-off properties and ink-resistant property required for antifouling application were demonstrated. Instead, the aggregates formed in THF/H2O/MeOH mixture were subjected to secondary aggregation of PDFHM-ef-PMMA chains during solvent evaporation, leading to the formation of a particulate film with poor adhesion towards glass plate and hexadecane-repellent property.
Wooten, Alfred J; Carroll, Patrick J; Walsh, Patrick J
2008-06-11
Heterobimetallic Lewis acids M 3(THF) n (BINOLate) 3Ln [M = Li, Na, K; Ln = lanthanide(III)] are exceptionally useful asymmetric catalysts that exhibit high levels of enantioselectivity across a wide range of reactions. Despite their prominence, important questions remain regarding the nature of the catalyst-substrate interactions and, therefore, the mechanism of catalyst operation. Reported herein are the isolation and structural characterization of 7- and 8-coordinate heterobimetallic complexes Li 3(THF) 4(BINOLate) 3Ln(THF) [Ln = La, Pr, and Eu], Li 3(py) 5(BINOLate) 3Ln(py) [Ln = Eu and Yb], and Li 3(py) 5(BINOLate) 3La(py) 2 [py = pyridine]. Solution binding studies of cyclohexenone, DMF, and pyridine with Li 3(THF) n (BINOLate) 3Ln [Ln = Eu, Pr, and Yb] and Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = La and Eu; DMEDA = N, N'-dimethylethylene diamine] demonstrate binding of these Lewis basic substrate analogues to the lanthanide center. The paramagnetic europium, ytterbium, and praseodymium complexes Li 3(THF) n (BINOLate) 3Ln induce relatively large lanthanide-induced shifts on substrate analogues that ranged from 0.5 to 4.3 ppm in the (1)H NMR spectrum. X-ray structure analysis and NMR studies of Li 3(DMEDA) 3(BINOLate) 3Ln [Ln = Lu, Eu, La, and the transition metal analogue Y] reveal selective binding of DMEDA to the lithium centers. Upon coordination of DMEDA, six new stereogenic nitrogen centers are formed with perfect diastereoselectivity in the solid state, and only a single diastereomer is observed in solution. The lithium-bound DMEDA ligands are not displaced by cyclohexenone, DMF, or THF on the NMR time scale. Use of the DMEDA adduct Li 3(DMEDA) 3(BINOLate) 3La in three catalytic asymmetric reactions led to enantioselectivities similar to those obtained with Shibasaki's Li 3(THF) n (BINOLate) 3La complex. Also reported is a unique dimeric [Li 6(en) 7(BINOLate) 6Eu 2][mu-eta (1),eta (1)-en] structure [en = ethylenediamine]. On the basis of these studies, it is hypothesized that the lanthanide in Shibasaki's Li 3(THF) n (BINOLate) 3Ln complexes cannot bind bidentate substrates in a chelating fashion. A hypothesis is also presented to explain why the lanthanide catalyst, Li 3(THF) n (BINOLate) 3La, is often the most enantioselective of the Li 3(THF) n (BINOLate) 3Ln derivatives.
Smith, Micholas Dean; Cai, Charles M.; Cheng, Xiaolin; ...
2018-03-06
Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan.more » Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide’s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to “catch-up” such that their high yield production from biomass can be synergized in a single pot reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Micholas Dean; Cai, Charles M.; Cheng, Xiaolin
Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan.more » Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide’s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to “catch-up” such that their high yield production from biomass can be synergized in a single pot reaction.« less
Shen, Yi-Chen; Chng, Lee-Muei; Wang, Yuan-Chuen; Shieh, Chwen-Jen; Lin, Kuo-Li; Hsu, Shih-Lan; Chou, Hong-Nong; Chang, Chieh-Ming J
2012-12-28
This work investigated column elution chromatography coupled with supercritical anti-solvent precipitation to produce carotenoid rich microsized particulates from microalgal Dunaliella salina species. The extract contained carotenoids ranging from 61.3 mg/g(salina) to 72.5 mg/g(salina) using ultrasonic stirred ethyl ether or tetrahydrofuran (THF) extraction. When 10 L of ethyl alcohol was employed to elute the THF extract, purity of trans-β-carotene is 823.6 mg/g with a recovery of 86.2%. It was found that the supercritical anti-solvent of THF solution at 160 bar and 318 K produced powdered particulates with a purity of carotenoids above 90%. Subsequently, a central composite response surface design method was used to design supercritical anti-solvent precipitation of carotenoid-rich THF solution. This was accomplished by increasing the pressure from 140 bar to 180 bar and the time from 40 min to 60 min at a feed flow rate of 0.2 mL/min. A CO(2) flow rate of 15 L/min and a temperature of 318 K were also used to determine the effects on purity and recovery of trans-β-carotene. The combined process produced micronized precipitates with a mean particle size ranging from 3.5 μm to 19 μm and the purity of trans-β-carotene attained was 926.8 mg/g with a recovery of 54%. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jarmuła, Adam; Cieplak, Piotr; Montfort, William R.
2005-02-01
We applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach to evaluate relative stability of the extended (flat) and C-shaped (bent) solution conformational forms of the 5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) molecule in aqueous solution. Calculations indicated that both forms have similar free energies in aqueous solution but detailed energy components are different. The bent solution form has lower intramolecular electrostatic and van der Waals interaction energies. The flat form has more favorable solvation free energy and lower contribution from the bond, angle and torsion angle molecular mechanical internal energies. We exploit these results and combine them with known crystallographic data to provide a model for the progressive binding of the mTHF molecule, a natural cofactor of thymidylate synthase (TS), to the complex forming in the TS-catalyzed reaction. We propose that at the time of initial weak binding in the open enzyme the cofactor molecule remains in a close balance between the flat and bent solution conformations, with neither form clearly favored. Later, thymidylate synthase undergoes conformational change leading to the closure of the active site and the mTHF molecule is withdrawn from the solvent. That effect shifts the thermodynamic equilibrium of the mTHF molecule toward the bent solution form. At the same time, burying the cofactor molecule in the closed active site produces numerous contacts between mTHF and protein that render change in the shape of the mTHF molecule. As a result, the bent solution conformer is converted to more strained L-shaped bent enzyme conformer of the mTHF molecule. The strain in the bent enzyme conformation allows for the tight binding of the cofactor molecule to the productive ternary complex that forms in the closed active site, and facilitates the protonation of the imidazolidine N10 atom, which promotes further reaction.
2010-03-18
Grignard reagent was added drop-wise to a well-stirred THF solution (10 mL) of trichloromethylsilane (5.431 g, 36.3 mmol) in a 250 mL flask. After...chloromethylsilane) The Grignard reagent , (Me3Si)2NC6H4MgBr was prepared exactly as previously described from 37.6 mmol of magnesium and 30 mmol of (N...trimethylsilyl)2-4-bromoaniline in THF (25 mL). This Grignard reagent was added drop-wise to a well-stirred THF solution (10 mL) of trichloromethylsilane
Park, Min Soo; Joo, Wonchul; Kim, Jin Kon
2006-05-09
We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.
Structural changes in block copolymer micelles induced by cosolvent mixtures†
Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.; Sullivan, Millicent O.
2013-01-01
We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles. PMID:24282441
Structural changes in block copolymer micelles induced by cosolvent mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.
2012-11-26
We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (lowmore » interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.« less
He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei
2015-01-01
Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182
Synthesis and Characterization of Dipolar Organic Molecules for Nonlinear Optical Materials
1992-05-08
BH3, THF; then, aqueous NaOH; ii. pyridinium chlorochromate , methylene chloride; iii. lithium diisopropylamide, THF 50 effective. After purification... pyridinium chlorochromate (1.5 g, 6.96 mmol) was added. The solution was stirred at room temperature for 48 hours. The organic solution was decanted from...the alcohol was oxidized to the aldehyde. Swern oxidation5 was first attempted but gave very low yield in our hands. Alternatively, pyridinium chloro
Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J
2011-03-23
Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.
Izod, Keith; Wills, Corinne; Clegg, William; Harrington, Ross W
2007-05-14
The reaction between either MgI2 or CaI2 and 2 equiv of [(Me3Si)2{Me2(H3B)P}C]K (2) in toluene gives the corresponding organo-alkaline earth metal compounds [(Me3Si)2{Me2(H3B)P}C]2M in moderate to good yields [M = Mg (3), Ca (4)]. Compound 3 crystallizes solvent-free, whereas X-ray quality crystals of 4 could not be obtained in the absence of coordinating solvents; crystallization of 4 from cold methylcyclohexane/THF gives the solvate [(Me3Si)2{Me2(H3B)P}C]2Ca(THF)4 (4a). The corresponding heavier alkaline earth metal complexes [(Me3Si)2{Me2(H3B)P}C]2M(THF)5 [M = Sr (7), Ba (8)] are obtained from the reaction between MI2 and 2 equiv of 2 in THF, followed by recrystallization from cold methylcyclohexane/THF. Compound 3 degrades over a period of several weeks at room-temperature both in the solid state and in toluene solution to give the free phosphine-borane (Me3Si)2{Me2(H3B)P}CH (5) as the sole phosphorus-containing product. In addition, compounds 3, 4, and 4a react rapidly with THF in toluene solution, yielding 5 as the sole phosphorus-containing product; in contrast, compounds 7 and 8 are stable toward this solvent.
Eedugurala, Naresh; Wang, Zhuoran; Yan, KaKing; ...
2017-01-25
A series of homoleptic rare-earth silazido compounds and their silica-grafted derivatives were prepared to compare spectroscopic and catalytic features under homogeneous and interfacial conditions. Trivalent tris(silazido) compounds Ln{N(SiHMe 2) tBu} 3 (Ln = Sc (1), Y (2), Lu (3)) are prepared in high yield by salt metathesis reactions. Solution-phase and solid-state characterization of 1–3 by NMR and IR spectroscopy and X-ray diffraction reveals Ln←H–Si interactions. These features are retained in solvent-coordinated 2·Et 2O, 2·THF, and 3·THF. The change in spectroscopic features characterizing the secondary interactions (ν SiH, 1 J SiH) from the unactivated SiH in the silazane HN(SiHMe 2) tBumore » follows the trend 3 > 2 > 1 ≈ 2·Et 2O > 2·THF ≈ 3·THF. Ligand lability follows the same pattern, with Et 2O readily dissociating from 2·Et 2O while THF is displaced only during surface grafting reactions. 1 and 2·THF graft onto mesoporous silica nanoparticles (MSN) to give Ln{N(SiHMe 2) tBu} n@MSN (Ln = Sc (1@MSN), Y (2@MSN)) along with THF and protonated silazido as HN(SiHMe 2) tBu and H 2N tBu. The surface species are characterized by multinuclear and multidimensional solid-state (SS) NMR spectroscopic techniques, as well as diffuse reflectance FTIR, elemental analysis, and reaction stoichiometry. A key 1 J SiH SSNMR measurement reveals that the grafted sites most closely resemble Ln·THF adducts, suggesting that siloxane coordination occurs in grafted compounds. These species catalyze the hydroamination/bicyclization of aminodialkenes, and both solution-phase and interfacial conditions provide the bicyclized product with equivalent cis:trans ratios. As a result, similar diastereoselectivities mediated by catalytic sites under the two conditions suggest similar effective environments.« less
Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias; ...
2017-11-26
Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias
Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less
Gao, Ming; Patwardhan, Neeraj N; Carlier, Paul R
2013-09-25
Chiral organometallic reagents are useful in asymmetric synthesis, and configurational stability of these species is critical to success. In this study we followed the epimerization of a chiral Grignard reagent, prepared by Mg/Br exchange of bromonitrile trans-2b. This compound underwent highly retentive Mg/Br exchange in Et2O; less retention was observed in 2-MeTHF and THF. Epimerization rate constants k(tc) were determined at 195 K by measuring the diastereomer ratio of deuteration product d1-3b as a function of the delay time before quench. Studies were also performed at varying concentrations of Et2O in toluene. Remarkable dynamic range in k(tc) was seen: relative to reaction at 0.12 M Et2O in toluene, epimerization was 26-, 800-, and 1300-fold faster in Et2O, 2-MeTHF, and THF, respectively. Thus, the identity and concentration of an ethereal solvent can dramatically affect configurational stability. Reaction stoichiometry experiments suggested that, in Et2O, the Grignard reagent derived from trans-2b exists as an i-PrMgCl heterodimer; the invariance of k(tc) over a 20-fold range in [Mg]total ruled out mandatory deaggregation (or aggregation) on the epimerization path. Analysis of the dependency of k(tc) on [Et2O] and temperature in Et2O/toluene solution at 195, 212, and 231 K indicated fast incremental solvation before rate-limiting ion-pair separation and provided an estimate of the entropic cost of capturing a solvent ligand (-13 ± 3 eu). Calculations at the MP2/6-31G*(PCM)//B3LYP/6-31G* level provide support for these conclusions and map out a possible "ionogenic conducted tour" pathway for epimerization.
Bolotaulo, Duer; Metta-Magaña, Alejandro; Fortier, Skye
2017-03-07
Using an improved, chromatography-free dipyrrin synthesis, the α,β-unsubstituted dipyrrins [RC(C 4 H 2 N) 2 H] (2) (R = tolyl (2toly l ), p-OMe-C 6 H 4 (2anis), mesityl (2mes), ferrocenyl (2Fc)) were isolated in good to excellent yields. Deprotonation of 2 with Na[N(SiMe 3 ) 2 ] gives the alkali metal salts [Na(DME) n ][RC(C 4 H 2 N) 2 ] (3) which reacts with UO 2 Cl 2 (THF) 3 to give the uranyl bis(dipyrrinates) UO 2 [RC(C 4 H 2 N) 2 ] 2 (L) (L = THF (4R-THF); DMAP (4R-DMAP)) (R = tolyl, p-OMe-C 6 H 4 , mesityl, ferrocenyl). The THF adducts, 4R-THF, are unstable in aromatic and nonpolar solvents and rapidly decompose to 2 and an intractable uranium-containing solid. On the other hand, the DMAP adducts, 4R-DMAP, are indefinitely stable in solution. The solid-state structures of 4R-THF and 4R-DMAP reveal distorted trigonal bipyramidal geometries. In the solid-state, the dipyrrinate ligands exhibit significant distortions including bowing and, in some instances, out-of-plane equatorial N-atom coordination, likely as a consequence of steric crowding and interligand repulsion. The complexes, 4R-DMAP, have been fully characterized by NMR, UV/Vis, and fluorescence spectroscopies, and their electrochemical properties have been investigated through cyclic voltammetry. The cyclic voltammograms of 4R-DMAP display several redox features but present a reversible wave at ca. -1.9 V (vs. Fc 0/+ ) attributable to a ligand centred reduction. Fluorescence measurements of all compounds reveal that only the mesityl derivatives 2mes, 3mes, and 4mes fluoresce with modest Stokes shift that ranges from ca. 30-70 nm, with 4mes displaying the greatest relative emission intensity.
Bragg, Arthur E; Schwartz, Benjamin J
2008-04-24
The excited states of atomic anions in liquids are bound only by the polarization of the surrounding solvent. Thus, the electron-detachment process following excitation to one of these solvent-bound states, known as charge-transfer-to-solvent (CTTS) states, provides a useful probe of solvent structure and dynamics. These transitions and subsequent relaxation dynamics also are influenced by other factors that alter the solution environment local to the CTTS anion, including the presence of cosolutes, cosolvents, and other ions. In this paper, we examine the ultrafast CTTS dynamics of iodide in liquid tetrahydrofuran (THF) with a particular focus on how the solvent dynamics and the CTTS electron-ejection process are altered in the presence of various counterions. In weakly polar solvents such as THF, iodide salts can be strongly ion-paired in solution; the steady-state UV-visible absorption spectroscopy of various iodide salts in liquid THF indicates that the degree of ion-pairing changes from strong to weak to none as the counterion is switched from Na+ to tetrabutylammonium (t-BA+) to crown-ether-complexed Na+, respectively. In our ultrafast experiments, we have excited the I- CTTS transition of these various iodide salts at 263 nm and probed the dynamics of the CTTS-detached electrons throughout the visible and near-IR. In the previous paper of this series (Bragg, A. E.; Schwartz, B. J. J. Phys. Chem. B 2008, 112, 483-494), we found that for "counterion-free" I- (obtained by complexing Na+ with a crown ether) the CTTS electrons were ejected approximately 6 nm from their partner iodine atoms, the result of significant nonadiabatic coupling between the CTTS excited state and extended electronic states supported by the naturally existing solvent cavities in liquid THF, which also serve as pre-existing electron traps. In contrast, for the highly ion-paired NaI/THF system, we find that approximately 90% of the CTTS electrons are "captured" by a nearby Na+ to form (Na+, e-)THF "tight-contact pairs" (TCPs), which are chemically and spectroscopically distinct from both solvated neutral sodium atoms and free solvated electrons. A simple kinetic model is able to reproduce the details of the electron capture process, with 63% of the electrons captured quickly in approximately 2.3 ps, 26% captured diffusively in approximately 63 ps, and the remaining 11% escaping out into the solution on subnanosecond time scales. We also find that the majority of the CTTS electrons are ejected to within 1 or 2 nm of the Na+. This demonstrates that the presence of the nearby cation biases the relocalization of CTTS-generated electrons from I- in THF, changing the nonadiabatic coupling to the extended, cavity-supported electronic states in THF to produce a much tighter distribution of electron-ejection distances. In the case of the more loosely ion-paired t-BA+-I-/THF system, we find that only 10-15% of the CTTS-ejected electrons associate with t-BA+ to form "loose-contact pairs" (LCPs), which are characterized by a much weaker interaction between the electron and cation than occurs in TCPs. The formation of (t-BA+, e-)THF LCPs is characterized by a Coulombically induced blue shift of the free eTHF- spectrum on a approximately 5-ps time scale. We argue that the weaker interaction between t-BA+ and the parent I- results in little change to the CTTS-ejection process, so that only those electrons that happen to localize in the vicinity of t-BA+ are captured to form LCPs. Finally, we interpret the correlation between electron capture yield and counterion-induced perturbation of the I- CTTS transition as arising from changes in the distribution of ion-pair separations with cation identity, and we discuss our results in the context of relevant solution conductivity measurements.
NASA Astrophysics Data System (ADS)
Jones, Anthony C.; Holliday, A. Kenneth; Cole-Hamilton, David J.; Ahmad, M. Munir; Gerrard, Neil D.
1984-09-01
Electrolysis of tetrahydrofuran (thf) solutions of dimethylmagnesium containing tetraethylammonium percholrate using a gallium anode gives [Me 3Ga·thf], but higher yields of both [Me 3Ga·thf] and [Me 3In·thf] are obtained on electrolysis of thf solutions of Grignard reagents with sacrificial metal anodes in the absence of a carrying electrolyte. The thf adducts can be converted into adducts with other Lewis bases, [ Me3M· L], M = Ga or In, L = PMe 3, PEt 3, NEt 3, by simple base exchange reactions. Base-free trimethylgallium can be prepared from: (i) reaction of methyl iodide with the intermetallic compound [Mg 5Ga 2] in a high boiling ether; (ii) electrolysis of Grignard reagents in high boiling ethers using sacrificial gallium anodes; (iii) reactions of GaCl 3 with Grignard reagents in high boiling ethers or (iv) ether exchange reaction between [Me 3Ga·OEt 2] and high boiling ethers. All of these reactions lead to adducts between trimethylgallium and the high boiling ether which, on heating, decompose to give base-free trimethylgallium. [Me 3Ga·OEt 2] can be prepared from reaction of Grignard reagents with gallium trichloride in diethylether or from electrolysis of Grignard reagents in diethyl ether using a sacrificial gallium anode. Similar reactions using an indium anode lead to [Me 3In·OEt 2] from which base-free trimethylindium can be liberated using known chemistry. The use of alkyls prepared in this way for vapour phase epitaxy as well as the purity of the alkyls are discussed.
Highly enantioselective arylation of aldehydes and ketones using AlArEt(2)(THF) as aryl sources.
Zhou, Shuangliu; Wu, Kuo-Hui; Chen, Chien-An; Gau, Han-Mou
2009-05-01
A series of AlArEt(2)(THF) (Ar = Ph (1a), 4-MeC(6)H(4) (1b), 4-MeOC(6)H(4) (1c), 4-Me(3)SiC(6)H(4) (1d), 2-naphthyl (1e)) were synthesized from reactions of AlEt(2)Br(THF) with ArMgBr. In CDCl(3) solution, the (1)H NMR spectra showed that AlArEt(2)(THF) compounds exist as a mixture of four species of formulas of AlAr(x)Et(3-x) (THF) (x = 0, 1, 2, or 3). AlArEt(2)(THF) compounds were found to be superior and atom-economic reagents for asymmetric aryl additions to organic carbonyls. Aryl additions of AlArEt(2)(THF) to aldehydes catalyzed by the titanium(IV) complex of (R)-H(8)-BINOL were efficient with a short reaction time of 1 h, affording aryl addition products as exclusive or main products in high yields and excellent enantioselectivities of up to 98% ee. Although ethyl additions to aldehydes occurred in minor extent, this study demonstrates that increasing the amount of AlArEt(2)(THF) from 1.2 to 1.4 or to 1.6 equiv significantly improved the aryl addition products of up to >99%. On the other hand, asymmetric arylations of AlArEt(2)(THF) to ketones employing a titanium(IV) catalyst of (S)-BINOL produced optically active tertiary alcohols exclusively in excellent enantioselectivities of up to 94% ee.
Merrill, Laura C; Schaefer, Jennifer L
2017-09-19
Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.
NASA Astrophysics Data System (ADS)
Zhang, Xian-Rui; Zhang, Lei
2017-06-01
Three salt solvates of azilsartan (AZ) with 2-methylimidazole (2MI) (namely AZ-2MI-H2O, AZ-2MI-ACE and AZ-2MI-THF) and one azilsartan solvate (AZ-DIO, ACE = acetone, THF = tetrahydrofuran, and DIO = 1,4-dioxane) were manufactured by solvent-controlled self-assembly in aqueous-organic solutions. The experimental result of AZ-DIO shows that AZ is high affinity to DIO molecule, which has a unique ability to prevent salt formation between AZ and 2MI. Thermal studies of three salt solvates exhibit poor thermodynamic stability in environmental conditions. Solubility experiments show that AZ-2MI-ACE and AZ-2MI-THF are unstable and convert to AZ-2MI-H2O in aqueous solution, and that AZ-2MI-H2O exhibits increased solubility and retention stability in an aqueous medium compared with the commercial AZ-A crystalline form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, D.J.; Jordan, R.F.; Baenziger, N.C.
1990-09-01
The reaction of (C{sub 5}Me{sub 5})Zr(CH{sub 3}){sub 3} with ((C{sub 5}H{sub 4}Me){sub 2}Fe)(BPh{sub 4}) in THF yields ((C{sub 5}Me{sub 5})Zr(CH{sub 3}){sub 2}(THF){sub 2})(BPh{sub 4}) (1) via oxidative cleavage of a Zr-CH{sub 3} bond. X-ray diffraction reveals that the cation of 1 adopts a square-pyramidal/four-legged piano-stool structure with cis CH{sub 3} groups. The orientations of the THF ligands and the Zr-O bond distances suggest that Zr-O {pi}-bonding is important for at least one of the THF ligands. Data for 1: a = 14.551 (2) {angstrom}, b = 15.191 (4) {angstrom}, c = 17.852 (19) {angstrom}, {beta} = 92.26 (3){degree}, V =more » 3,943 (6) {angstrom}{sup 3}, Z = 4 in space group P2{sub 1}/c. Reaction of 1 with excess dmpe in THF solution yields ((C{sub 5}Me{sub 5})Zr(CH{sub 3}){sub 2}(dmpe)(THF))(BPh{sub 4}) (2), which also has been characterized by X-ray diffraction.« less
Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M
2016-08-18
A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the percentage of ThF4 that can be used in the MSR to optimize the neutron economy.
Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; ...
2014-12-04
We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC andmore » under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Alex E.; Chan, Chinglin; Rheingold, Arnold L.
The m-terphenyl isocyanide complex, HCo(CNAr Mes2) 4 (Ar Mes2 = 2,6-(2,4,6-Me 3C 6H 2) 2C 6H 3), serves as a unique example of a well-defined isocyano analogue to HCo(CO) 4. Given the well documented Brønsted acidity of HCo(CO) 4 in both protic and nonprotic media, the Brønsted acidity of HCo(CNAr Mes2) 4 was assessed for a quantitative comparison. Acid bracketing experiments in THF solution revealed that HCo(CNAr Mes2) 4 has a Morris relative pK α THF value of 38.5-40.7, which is considerably higher than that of HCo(CO) 4 (pK α THF (calc) = 11.4) and thereby indicates insignificant Brønsted acidity.more » Furthermore, the relative acidity of HCo(CNAr Mes2) 4 rivals that of tetra-phosphine cobalt hydrides (i.e., HCo(PR 3) 4; pK α THF (calc) ≥ 48), despite the good π-acidity properties of the isocyano unit. To systematically determine the effect of substituting an isocyanide for a CO ligand on the acidity of the Co-H unit in HCoL 4 complexes, the full series of HCo(CO) n(CNAr Mes2) 4-n monohydrides and [Co(CO) n(CNAr Mes2) 4-n] - (n = 1-4) metalates were prepared and characterized. Acid bracketing studies on the [Co(CO) n(CNAr Mes2) 4-n] - metalates in THF solution revealed a regular progression of increasing pK α THF values as isocyanides are added to the Co center. However, the monoisocyanide tricarbonyl hydride, HCo(CO) 3(CNAr Mes2), possesses a pK α THF value of 28.6-32.5, which is also significantly higher than that of HCo(CO) 4 and the monophosphine complex HCo(CO) 3(PPh 3). Accordingly, the unconventional ability of isocyanide ligands to function as stronger σ-donors than organophosphines is discussed within the context of both the Brønsted acidity and spectroscopic features of the HCo(CO) n(CNAr Mes2) 4-n monohydrides.« less
Carpenter, Alex E.; Chan, Chinglin; Rheingold, Arnold L.; ...
2016-07-07
The m-terphenyl isocyanide complex, HCo(CNAr Mes2) 4 (Ar Mes2 = 2,6-(2,4,6-Me 3C 6H 2) 2C 6H 3), serves as a unique example of a well-defined isocyano analogue to HCo(CO) 4. Given the well documented Brønsted acidity of HCo(CO) 4 in both protic and nonprotic media, the Brønsted acidity of HCo(CNAr Mes2) 4 was assessed for a quantitative comparison. Acid bracketing experiments in THF solution revealed that HCo(CNAr Mes2) 4 has a Morris relative pK α THF value of 38.5-40.7, which is considerably higher than that of HCo(CO) 4 (pK α THF (calc) = 11.4) and thereby indicates insignificant Brønsted acidity.more » Furthermore, the relative acidity of HCo(CNAr Mes2) 4 rivals that of tetra-phosphine cobalt hydrides (i.e., HCo(PR 3) 4; pK α THF (calc) ≥ 48), despite the good π-acidity properties of the isocyano unit. To systematically determine the effect of substituting an isocyanide for a CO ligand on the acidity of the Co-H unit in HCoL 4 complexes, the full series of HCo(CO) n(CNAr Mes2) 4-n monohydrides and [Co(CO) n(CNAr Mes2) 4-n] - (n = 1-4) metalates were prepared and characterized. Acid bracketing studies on the [Co(CO) n(CNAr Mes2) 4-n] - metalates in THF solution revealed a regular progression of increasing pK α THF values as isocyanides are added to the Co center. However, the monoisocyanide tricarbonyl hydride, HCo(CO) 3(CNAr Mes2), possesses a pK α THF value of 28.6-32.5, which is also significantly higher than that of HCo(CO) 4 and the monophosphine complex HCo(CO) 3(PPh 3). Accordingly, the unconventional ability of isocyanide ligands to function as stronger σ-donors than organophosphines is discussed within the context of both the Brønsted acidity and spectroscopic features of the HCo(CO) n(CNAr Mes2) 4-n monohydrides.« less
NASA Astrophysics Data System (ADS)
Gafurov, B. A.; Mirsaidov, I. U.; Nasrulloeva, D. Kh.; Badalov, A.
2013-10-01
Lanthanide borohydride tris-tetrahydrofuranates (Ln(BH4) · 3THF, where THF is tetrahydrofuran and Ln is La, Nd, Sm, Gd, Er, Yb, and Lu) is synthesized via the exchange reaction of lanthanide(III) chloride and sodium borohydride in THF. It is found that synthesis proceeds according to a stepwise mechanism and the product of the reaction (lanthanide borohydride) initiates the process. The two-step character of the desolvation of Ln(BH4)3 · 3THF under steady-state conditions in the temperature range of 300 to 400 K is determined through X-ray phase and chemical analyses, tensiometry, and gas volumetry. It is established that one mole and then two moles of THF are removed from the initial sample at the first and second steps, respectively. Equations for barograms are obtained and the thermodynamic characteristics of desolvation of Ln(BH4)3 · 3THF under study are calculated. Gibbs energy values of the stages of process are determined semi-empirically. The law of its change for the entire series of Ln(BH4)3 · 3THF is determined with the emergence of the tetrad effect.
Spectroscopic investigations of ThF and ThF+.
Barker, Beau J; Antonov, Ivan O; Heaven, Michael C; Peterson, Kirk A
2012-03-14
The electronic spectra of ThF and ThF(+) have been examined using laser induced fluorescence and resonant two-photon ionization techniques. The results from high-level ab initio calculations have been used to guide the assignment of these data. Spectra for ThF show that the molecule has an X (2)Δ(3/2) ground state. The upper spin-orbit component, X (2)Δ(5/2) was found at an energy of 2575(15) cm(-1). The low-lying states of ThF(+) were probed using dispersed fluorescence and pulsed field ionization-zero kinetic energy (PFI-ZEKE) photoelectron spectroscopy. Vibronic progressions belonging to four electronic states were identified. The lowest energy states were clearly (1)Σ(+) and (3)Δ(1). Although the energy ordering could not be rigorously determined, the evidence favors assignment of (1)Σ(+) as the ground state. The (3)Δ(1) state, of interest for investigation of the electron electric dipole moment, is just 315.0(5) cm(-1) above the ground state. The PFI-ZEKE measurements for ThF yielded an ionization energy of 51 581(3) cm(-1). Molecular constants show that the vibrational constant increases and the bond length shortens on ionization. This is consistent with removal of a non-bonding Th-centered 6d or 7s electron. Laser excitation of ThF(+) was used to probe electronically excited states in the range of 19,000-21,500 cm(-1).
THF water hydrate crystallization: an experimental investigation
NASA Astrophysics Data System (ADS)
Devarakonda, Surya; Groysman, Alexander; Myerson, Allan S.
1999-08-01
Supersaturated solutions of THF-water hydrate system were experimentally studied before and during crystallization, to examine the system's behavior in the metastable zone and observe any anomalies suggesting cluster formation. Nucleation induction time measurements, with and without additives, were performed to screen potential growth inhibitors. Shifts in the onset points of crystallization for water and THF-water mixtures with additives were measured using differential scanning calorimetry (DSC). Aspartame was among one of the few successfully screened inhibitors. Preliminary on-line crystal size distribution (CSD) measurements were performed on this system to monitor the crystal size during crystallization. The CSD data was also used to compute the hydrate crystal growth rates, which were found to be in the order of 145 μm/h.
Scandium complexes with the tetraphenylethylene and anthracene dianions.
Ellis, John E; Minyaev, Mikhail E; Nifant'ev, Ilya E; Churakov, Andrei V
2018-06-01
The structural study of Sc complexes containing dianions of anthracene and tetraphenylethylene should shed some light on the nature of rare-earth metal-carbon bonding. The crystal structures of (18-crown-6)bis(tetrahydrofuran-κO)sodium bis(η 6 -1,1,2,2-tetraphenylethenediyl)scandium(III) tetrahydrofuran disolvate, [Na(C 4 H 8 O) 2 (C 12 H 24 O 6 )][Sc(C 26 H 20 ) 2 ]·2C 4 H 8 O or [Na(18-crown-6)(THF) 2 ][Sc(η 6 -C 2 Ph 4 ) 2 ]·2(THF), (1b), (η 5 -1,3-diphenylcyclopentadienyl)(tetrahydrofuran-κO)(η 6 -1,1,2,2-tetraphenylethenediyl)scandium(III) toluene hemisolvate, [Sc(C 17 H 13 )(C 26 H 20 )(C 4 H 8 O)]·0.5C 7 H 8 or [(η 5 -1,3-Ph 2 C 5 H 3 )Sc(η 6 -C 2 Ph 4 )(THF)]·0.5(toluene), (5b), poly[[(μ 2 -η 3 :η 3 -anthracenediyl)bis(η 6 -anthracenediyl)bis(η 5 -1,3-diphenylcyclopentadienyl)tetrakis(tetrahydrofuran)dipotassiumdiscandium(III)] tetrahydrofuran monosolvate], {[K 2 Sc 2 (C 14 H 10 ) 3 (C 17 H 13 ) 2 (C 4 H 8 O) 4 ]·C 4 H 8 O} n or [K(THF) 2 ] 2 [(1,3-Ph 2 C 5 H 3 ) 2 Sc 2 (C 14 H 10 ) 3 ]·THF, (6), and 1,4-diphenylcyclopenta-1,3-diene, C 17 H 14 , (3a), have been established. The [Sc(η 6 -C 2 Ph 4 ) 2 ] - complex anion in (1b) contains the tetraphenylethylene dianion in a symmetrical bis-η 3 -allyl coordination mode. The complex homoleptic [Sc(η 6 -C 2 Ph 4 ) 2 ] - anion retains its structure in THF solution, displaying hindered rotation of the coordinated phenyl rings. The 1D 1 H and 13 C{ 1 H}, and 2D COSY 1 H- 1 H and 13 C- 1 H NMR data are presented for M[Sc(Ph 4 C 2 ) 2 ]·xTHF [M = Na and x = 4 for (1a); M = K and x = 3.5 for (2a)] in THF-d 8 media. Complex (5b) exhibits an unsymmetrical bis-η 3 -allyl coordination mode of the dianion, but this changes to a η 4 coordination mode for (1,3-Ph 2 C 5 H 3 )Sc(Ph 4 C 2 )(THF) 2 , (5a), in THF-d 8 solution. A 45 Sc NMR study of (2a) and UV-Vis studies of (1a), (2a) and (5a) indicate a significant covalent contribution to the Sc-Ph 4 C 2 bond character. The unique Sc ate complex, (6), contains three anthracenide dianions demonstrating both a η 6 -coordination mode for two bent ligands and a μ 2 -η 3 :η 3 -bridging mode of a flat ligand. Each [(1,3-Ph 2 C 5 H 3 ) 2 Sc 2 (C 14 H 10 ) 3 ] 2- dianionic unit is connected to four neighbouring units via short contacts with [K(THF) 2 ] + cations, forming a two-dimensional coordination polymer framework parallel to (001).
Lyubov, Dmitry M; Cherkasov, Anton V; Fukin, Georgy K; Ketkov, Sergey Yu; Shavyrin, Andrey S; Trifonov, Alexander A
2014-10-14
The reaction of Ap(9Me)Lu(CH2SiMe3)2(thf) (Ap(9Me) = (2,4,6-trimethylphenyl)[6-(2,4,6-triisopropylphenyl)pyridine-2-yl]amido ligand) with two molar equivalents of PhSiH3 affords a trinuclear alkyl-hydrido cluster [(Ap(9Me)Lu)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2]. The analogous reactions with Ap(9Me)Ln(CH2SiMe3)2(thf) (Ln = Y, Yb) are more complex and result in the formation of mixtures of two types of trinuclear alkyl-hydrido complexes [(Ap(9Me)Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] and [(Ap(9Me)Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiH2Ph)(thf)2] differing in the alkyl group. The DFT calculations of [(Ap*Y)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] (Ap* = (2,6-diisopropylphenyl)[6-(2,4,6-triisopropylphenyl)pyridine-2-yl]amido ligand) confirm localization of the HOMO on the Ap*-Y(1A)-CH2SiMe3 fragment, thus explaining its enhanced reactivity. Analysis of the electron density distribution reveals the Y-H and H-H bonding interactions in the (Y)3(μ(2)-H)3(μ(3)-H)2 moiety. The NMR studies of diamagnetic complexes [(Ap(9Me)Lu)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] and [(Ap*Y)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] demonstrated that the trinuclear cores are retained in the solution and revealed exchange between μ(3)- and μ(2)-bridging hydrido ligands. Complexes [(Ap*Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2], the cationic yttrium hydrido cluster [(Ap*Y)3(μ(2)-H)3(μ(3)-H)2(thf)3](+)[B(C6F5)4](-) as well as [(Ap(9Me)Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] proved to be active in catalysis of ethylene polymerization under mild conditions.
Pore shape of honeycomb-patterned films: modulation and interfacial behavior.
Wan, Ling-Shu; Ke, Bei-Bei; Zhang, Jing; Xu, Zhi-Kang
2012-01-12
The control of the pore size of honeycomb-patterned films has been more or less involved in most work on the topic of breath figures. Modulation of the pore shape was largely ignored, although it is important to applications in replica molding, filtration, particle assembly, and cell culture. This article reports a tunable pore shape for patterned films prepared from commercially available polystyrene (PS). We investigated the effects of solvents including tetrahydrofuran (THF) and chloroform (CF) and hydrophilic additives including poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), poly(ethylene glycol) (PEG), and poly(N-vinyl pyrrolidone) (PVP). Water droplets on/in the polymer solutions were observed and analyzed for simulating the formation and stabilization of breath figures. Interfacial tensions of the studied systems were measured and considered as a main factor to modulate the pore shape. Results indicate that the pores gradually change from near-spherical to ellipsoidal with the increase of additive content when using CF as the solvent; however, only ellipsoidal pores are formed from the THF solution. It is demonstrated that the aggregation of the additives at the water/polymer solution interface is more efficient in the THF solution than that in the CF solution. This aggregation decreases the interfacial tension, stabilizes the condensed water droplets, and shapes the pores of the films. The results may facilitate our understanding of the dynamic breath figure process and provide a new pathway to prepare patterned films with different pore structures.
Herman, Agnieszka
2015-01-01
Ocean–atmosphere interactions are complex and extend over a wide range of temporal and spatial scales. Among the key components of these interactions is the ocean–atmosphere (latent and sensible) turbulent heat flux (THF). Here, based on daily optimally-interpolated data from the extratropical Southern Hemisphere (south of 30°S) from a period 1985–2013, we analyze short-term variability and trends in THF and variables influencing it. It is shown that, in spite of climate-change-related positive trends in surface wind speeds over large parts of the Southern Ocean, the range of the THF variability has been decreasing due to decreasing air–water temperature and humidity differences. Occurrence frequency of very large heat flux events decreased accordingly. Remarkably, spectral analysis of the THF data reveals, in certain regions, robust periodicity at frequencies 0.03–0.04 day−1, corresponding exactly to frequencies of the baroclinic annular mode (BAM). Finally, it is shown that the THF is correlated with the position of the major fronts in sections of the Antarctic Circumpolar Current where the fronts are not constrained by the bottom topography and can adjust their position to the atmospheric and oceanic forcing, suggesting differential response of various sections of the Southern Ocean to the changing atmospheric forcing. PMID:26449323
Structure and Conductivity of Semiconducting Polymer Hydrogels.
Huber, Rachel C; Ferreira, Amy S; Aguirre, Jordan C; Kilbride, Daniel; Toso, Daniel B; Mayoral, Kenny; Zhou, Z Hong; Kopidakis, Nikos; Rubin, Yves; Schwartz, Benjamin J; Mason, Thomas G; Tolbert, Sarah H
2016-07-07
Poly(fluorene-alt-thiophene) (PFT) is a conjugated polyelectrolyte that self-assembles into rod-like micelles in water, with the conjugated polymer backbone running along the length of the micelle. At modest concentrations (∼10 mg/mL in aqueous solutions), PFT forms hydrogels, and this work focuses on understanding the structure and intermolecular interactions in those gel networks. The network structure can be directly visualized using cryo electron microscopy. Oscillatory rheology studies further tell us about connectivity within the gel network, and the data are consistent with a picture where polymer chains bridge between micelles to hold the network together. Addition of tetrahydrofuran (THF) to the gels breaks those connections, but once the THF is removed, the gel becomes stronger than it was before, presumably due to the creation of a more interconnected nanoscale architecture. Small polymer oligomers can also passivate the bridging polymer chains, breaking connections between micelles and dramatically weakening the hydrogel network. Fits to solution-phase small-angle X-ray scattering data using a Dammin bead model support the hypothesis of a bridging connection between PFT micelles, even in dilute aqueous solutions. Finally, time-resolved microwave conductivity measurements on dried samples show an increase in carrier mobility after THF annealing of the PFT gel, likely due to increased connectivity within the polymer network.
NASA Astrophysics Data System (ADS)
Xiao, Jinchong; Yin, Zongyou; Yang, Bo; Liu, Yi; Ji, Li; Guo, Jun; Huang, Ling; Liu, Xuewei; Yan, Qingyu; Zhang, Hua; Zhang, Qichun
2011-11-01
Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO.Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO. Electronic supplementary information (ESI) available: XRD patterns and simulations, and FT-IR spectra. CCDC reference numbers 840471. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1nr10655d
Liu, Tianbiao; Cox, Jonathan T.; Hu, Dehong; ...
2015-01-05
We present a fundamental study on [(μ-Cl) 3 Mg 2 (THF) 6 ] + dimer electrolytes using various physical methods including Subambient Pressure Ionization with Nanoelectrospray Mass spectrometry (SPIN-MS), Raman spectroscopy, 25Mg{ 1H} NMR, 27Al{ 1H} NMR and electrochemical analysis. For the first time, long time sought THF solvated [MgCl] + species was experimentally characterized by SPIN mass spectrometry in the solution of the Mgdimer containing electrolyte, confirming the mono-Cl- abstraction reaction between MgCl 2 and an Al Lewis acid. Solvated MgCl 2 in the electrolyte was confirmed by Raman spectroscopy. The experimental results establish the previously proposed dimerization equilibriummore » of solvated [MgCl] + and MgCl2 with [(μ-Cl) 3Mg 2(THF)6] +. 25Mg{ 1H} NMR, 27Al{ 1H} NMR and electrochemical analysis on chloration reaction of [(μ-Cl) 3Mg 2(THF) 6]AlPh 3Cl with external Cl- led to further insights on the coordination chemistry of the dimer electrolyte. Finally, a comprehensive mechanism is proposed for the reversible electrochemical Mg deposition and stripping and Mg 2+ and Cl- ion transports of the Mg dimer electrolytes in rechargeable Mg batteries.« less
Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process
NASA Astrophysics Data System (ADS)
Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender
2017-12-01
Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.
Ionic Liquid as an Effective Additive for Rechargeable Magnesium Batteries
Pan, Baofei; Lau, Ka -Cheong; Vaughey, John T.; ...
2017-03-02
Here, the effect of the addition of an ionic liquid DEME•TFSI to an electrolyte solution of Mg(HMDS) 2-MgCl 2 in THF was studied electrochemically and spectroscopically. Reversible magnesium deposition/dissolution was achieved with the DEME•TFSI-modified electrolyte. This electrolyte shows higher ionic conductivity, and a linear relationship was observed between the ionic conductivity and the concentration of DEME•TFSI in THF solution of Mg(HMDS) 2-MgCl 2. Mg-Mo 6S 8 coin cells have also been successfully cycled using Mg(HMDS) 2-MgCl 2 electrolyte with the addition of DEME•TFSI. Raman and NMR spectroscopy suggest that DEME•TFSI facilitates magnesium deposition/dissolution by improving ionic conductivity of the electrolyte.
Four-Wavelength Lidar Evaluation of Particle Characteristics and Aerosol Densities
1985-06-01
34 Cure2: 11.4% with/witlhot 0.0 OAS Own 3: 25.9% PONameter .0s _ uve :1 %omu-lmlto x -, 0 2 0.01 Tagt 199% ---- Target solution Curve 1: 11.8% Bt-fit...propagation paths. 2. (U) MULTUVELZNGTI LMIAR SYSTIM (U) The multiwavelength lidar systmn is installed within a 6-meter long van to facilitate opera- ti"ms...the, lidar receivers fog application to the Smoke Week VI/SNOW-TWO exparimenta. New extended-range logarithmic amlif jets were ýý -& led on thfý 0.53
The mechanism of epoxide carbonylation by [Lewis Acid]+[Co(CO)4]- catalysts.
Church, Tamara L; Getzler, Yutan D Y L; Coates, Geoffrey W
2006-08-09
A detailed mechanistic investigation of epoxide carbonylation by the catalyst [(salph)Al(THF)2]+ [Co(CO)4]- (1, salph = N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine), THF = tetrahydrofuran) is reported. When the carbonylation of 1,2-epoxybutane (EB) to beta-valerolactone is performed in 1,2-dimethoxyethane solution, the reaction rate is independent of the epoxide concentration and the carbon monoxide pressure but first order in 1. The rate of lactone formation varies considerably in different solvents and depends primarily on the coordinating ability of the solvent. In mixtures of THF and cis/trans-2,5-dimethyltetrahydrofuran, the reaction is first order in THF. From spectroscopic and kinetic data, the catalyst resting state was assigned to be the neutral (beta-aluminoxy)acylcobalt species (salph)AlOCH(Et)CH2COCo(CO)4 (3a), which was successfully trapped with isocyanates. As the formation of 3a from EB, CO, and 1 is rapid, lactone ring closing is rate-determining. The favorable impact of donating solvents was attributed to the necessity of stabilizing the aluminum cation formed upon generation of the lactone.
Effect of clathrate hydrate formation and decomposition on NMR parameters in THF-D2O solution.
Rousina-Webb, Alexander; Leek, Donald M; Ripmeester, John
2012-06-28
The NMR spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)) and the diffusion coefficient D were measured for (1)H in a 1:17 mol % solution of tetrahydrofuran (THF) in D(2)O. The aim of the work was to clarify some earlier points raised regarding the utility of these measurements to convey structural information on hydrate formation and reformation. A number of irregularities in T(1) and T(2) measurements during hydrate processes reported earlier are explained in terms of the presence of interfaces and possible temperature gradients. We observe that T(1) and T(2) in solution are exactly the same before and after hydrate formation, thus confirming that the solution is isotropic. This is inconsistent with the presence of memory effects, at least those that may affect the dynamics to which T(1) and T(2) are sensitive. The measurement of the diffusion coefficient for a number of hours in the subcooled solution before nucleation proved invariant with time, again suggesting that the solution remains isotropic without affecting the guest dynamics and diffusion.
Programmatic Summary: Self-Regulating, Self-Pressurizing Tubules for Integrated Circulatory Systems
2009-02-01
Conditions: (i) 3- aminopropyl silane; (ii) 2-furoyl chloride, Et3N, CH2Cl2, 0 C to RT, 24 h; (iii) Compound 2, THF, RT, 24 h.; and (iv) Toluene, reflux... aminopropyl )trimethoxy silane. Next, we treated the amino-terminated slides with a solution of 2-furoyl chloride to yield furan functionalized slides...Conditions: (i) 3- aminopropyl silane; (ii) 2-furoyl chloride, Et3N, CH2Cl2, 0 C to RT, 24 h; (iii) Compound 2, THF, RT, 24 h.; and (iv) Toluene, reflux
1993-10-29
menthol , R-(-)-pantalactone, BBr3 (IM in CH2C12), PhMe2SiCI and t-BuLi were purchased from Aldrich and used as received. Mo(CHCMe2Ph)(NAr)(O-t-Bu)2 was...2,3- (COCl)2norbornadiene1 9 (9.05 g, 41.7 mmol) in THF (50 mL) was added dropwise to a stirred THF (200 mL) solution of IR, 2S, 5R-(-)- menthol (14.33 g
Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas
2016-08-08
Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.
Wasowicz, Tomasz J; Pranszke, Bogusław
2015-01-29
We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states. Fragmentation yields of these excited fragments have been measured as functions of the projectile energy (velocity). Our results show that the fragmentation mechanism depends on the projectile cations and is dominated by electron transfer from tetrahydrofuran molecules to cations. It has been additionally hypothesized that in the C(+)+THF collisions a [C-C4H8O](+) complex is formed prior to dissociation. The possible reaction channels involved in fragmentation of THF under the H(+), C(+), and O(+) cations impact are also discussed.
Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm
NASA Astrophysics Data System (ADS)
Wang, Hongzhen; Ciret, Charles; Godet, Jean-Luc; Cassagne, Christophe; Boudebs, Georges
2018-06-01
The nonlinear (NL) responses of liquid water, ethanol and tetrahydrofuran (THF) are investigated at 355 nm using a Nd:YAG laser delivering pulses of 10 ps. The experiments are performed using the D4σ method combined with the Z-scan technique. Third-order NL refractive indices are determined, as well as the two-photon absorption coefficient and the critical self-focus power. The NL refractive indices are found to be constant for intensity up to 150 GW/cm2 for the three considered solvents, revealing no higher order nonlinearities. Water appears to be a better solvent than ethanol and THF in the UV domain because of its lower NL index and absence of NL absorption. We expect the present study to be useful for NL index measurements in solutions and for numerous future fundamental interest or potential applications.
Fazili, Zia; Pfeiffer, Christine M; Zhang, Mindy; Jain, Ram B; Koontz, Deborah
2008-01-01
The 5,10-methylenetetrahydrofolate reductase (NADPH) (MTHFR) C677T polymorphism may affect whole-blood folate pattern measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and total folate measured by LC-MS/MS, microbiologic assay, and Bio-Rad radioassay (BR). We analyzed 171 whole blood hemolysates from 2 blood banks for folate pattern and total folate concentrations using these 3 methods and determined MTHFR genotype. The median (range) total folate concentration by LC-MS/MS was higher in the US set [378 (228-820) nmol/L; n = 96] than in the European set [250 (122-582) nmol/L; n = 75]. The whole-blood folate pattern [median (range)] was similar for individuals with C/C (n = 73) and C/T (n = 66) genotype: 88% (71%-91%) and 86% (50%-91%), respectively, for 5-methyltetrahydrofolic acid (5CH(3)THF) vs 12% (9%-29%) and 14% (9%-51%) for forms other than 5-methyltetrahydrofolic acid (non-5CH(3)THF). Individuals with T/T (n = 32) genotype had 58% (22%-87%) 5CH(3)THF vs 42% (13%-78%) non-5CH(3)THF. Compared with microbiologic assay results, LC-MS/MS (r = 0.94) and BR (r = 0.87) results were significantly lower (-10% and -45%, respectively); however, these differences were concentration dependent and also genotype dependent for the BR assay (-48% for C/C+C/T and -31% for T/T). The microbiologic assay completely recovered [mean (SD)] folates added to a whole blood hemolysate, except for tetrahydrofolic acid (THF) [46.4% (8.1%)]. The BR assay under-recovered 5CH(3)THF [51% (4.1%)] and 5-formyltetrahydrofolic acid [18% (0.1%)], and over-recovered THF [152% (19%)]. MTHFR C677T polymorphism influences the folate pattern in whole blood. The agreement between total folate by LC-MS/MS and microbiologic assay, independent of the MTHFR genotype, allows the use of one regression equation. Because BR results are genotype dependent, different regression equations should be used.
A high selective cataluminescence sensor for the determination of tetrahydrofuran vapor
NASA Astrophysics Data System (ADS)
Cao, Xiaoan; Dai, Huimei; Chen, Suilin; Zeng, Jiayi; Zhang, Keke; Sun, Yan
2013-02-01
A novel tetrahydrofuran (THF) vapor sensor was designed based on the cataluminescence (CTL) of THF on nanosized γ-Al2O3/MgO (mol ratio = 1.5:1). SEM and XRD were applied for its characterization. We found that the CTL was strongly produced when THF vapor flowed through a nanosized Al-Mg mixed-metal oxide surface, while the CTL was weakly generated when THF vapor flowed through a single nanosized γ-Al2O3 or MgO surface. Quantitative analysis was performed at an optimal temperature of 279 °C, a wavelength of 460 nm and a flow rate of 360 mL min-1. The linear range of the CTL intensity versus concentrations of THF vapor was 1.0-3000 mL m-3 with a detection limit of 0.67 mL m-3. No (or only very low) interference was observed by formaldehyde, methanol, ethanol, benzene, toluene, ethyl acetate, ammonia, cyclohexane, chloroform, glycol armour ether, glycol ether, isopropyl ether and n-butyl ether or acetic acid. Since the response of the sensor was rapid and the system was easy to handle, we believe that the sensor has great potential for real-world use.
Arzbacher, Stefan; Petrasch, Jörg; Ostermann, Alexander; Loerting, Thomas
2016-01-01
Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT) imaging with ice and tetrahydrofuran (THF) clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point), significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K. PMID:28773789
Cole, Marcus L; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Konstas, Kristina; Wang, Jun
2007-01-01
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.
Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu
2017-07-19
This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H 2 O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.
Wan, Liwen F; Prendergast, David
2014-10-15
The knowledge of Mg solvation structure in the electrolyte is requisite to understand the transport behavior of Mg ions and their dissolution/deposition mechanism at electrolyte/electrode interfaces. In the first established rechargeable Mg-ion battery system [D. Aurbach et al. Nature 2000, 407, 724], the electrolyte is of the dichloro complex (DCC) solution family, Mg(AlCl2BuEt)2/THF, resulting from the reaction of Bu2Mg and EtAlCl2 with a molar ratio of 1:2. There is disagreement in the literature regarding the exact solvation structure of Mg ions in such solutions, i.e., whether Mg(2+) is tetra- or hexacoordinated by a combination of Cl(-) and THF. In this work, theoretical insight into the solvation complexes present is provided based on first-principles molecular dynamics simulations (FPMD). Both Mg monomer and dimer structures are considered in both neutral and positively charged states. We found that, at room temperature, the Mg(2+) ion tends to be tetracoordinated in the THF solution phase instead of hexacoordinated, which is the predominant solid-phase coordination. Simulating the X-ray absorption spectra (XAS) at the Mg K-edge by sampling our FPMD trajectories, our predicted solvation structure can be readily compared with experimental measurements. It is found that when changing from tetra- to hexacoordination, the onset of X-ray absorption should exhibit at least a 1 eV blue shift. We propose that this energy shift can be used to monitor changes in the Mg solvation sphere as it migrates through the electrolyte to electrolyte/electrode interfaces and to elucidate the mechanism of Mg dissolution/deposition.
Aluminium(III) amidinates formed from reactions of `AlCl' with lithium amidinates.
Mayo, Dennis H; Peng, Yang; Zavalij, Peter; Bowen, Kit H; Eichhorn, Bryan W
2013-10-01
The disproportionation of AlCl(THF)n (THF is tetrahydrofuran) in the presence of lithium amidinate species gives aluminium(III) amidinate complexes with partial or full chloride substitution. Three aluminium amidinate complexes formed during the reaction between aluminium monochloride and lithium amidinates are presented. The homoleptic complex tris(N,N'-diisopropylbenzimidamido)aluminium(III), [Al(C13H19N2)3] or Al{PhC[N(i-Pr)]2}3, (I), crystallizes from the same solution as the heteroleptic complex chloridobis(N,N'-diisopropylbenzimidamido)aluminium(III), [Al(C13H19N2)2Cl] or Al{PhC[N(i-Pr)]2}2Cl, (II). Both have two crystallographically independent molecules per asymmetric unit (Z' = 2) and (I) shows disorder in four of its N(i-Pr) groups. Changing the ligand substituent to the bulkier cyclohexyl allows the isolation of the partial THF solvate chloridobis(N,N'-dicyclohexylbenzimidamido)aluminium(III) tetrahydrofuran 0.675-solvate, [Al(C19H27N2)2Cl]·0.675C4H8O or Al[PhC(NCy)2]2Cl·0.675THF, (III). Despite having a twofold rotation axis running through its Al and Cl atoms, (III) has a similar molecular structure to that of (II).
Development of a lateral flow dipstick immunoassay for evaluation of folate levels in maize.
Liang, Qiuju; Yi, Chen; Jiang, Ling; Tan, Guiyu; Zhang, Chunyi; Wang, Baomin
2017-09-01
Folates (vitamin B9) are essential for all organisms as cofactors for one-carbon metabolism. However, measurement of folates is technically complicated and time-consuming. In this study, we developed a dipstick immunoassay using a folate-specific monoclonal antibody (mAb), allowing rapid and low-cost detection of folates. The indicator range of the dipstick for 5-formylterahydrofolate (5-CHO-THF), 5-methyltetrahydrofolate (5-CH 3 -THF) and their polyglutamyl forms was 100-200 ng mL -1 ; moreover, no cross-reactivity was observed with tetrahydrofolate (THF) or 5,10-methenyltetrahydrofolate (5,10-CH=THF) at 500 ng mL -1 , or with the folate precursors pterin-6-COOH, p-aminobenzoate (pABA), and L-glutamate, or with the folate analogues methotrexate and 10-formyltetrahydrofolate (10-CHO-THF) at up to 1000 ng mL -1 . The dipstick immunoassay was tested in maize seeds; the results classified the seeds into those with low, moderate, and high levels of folates, and were in agreement with those of liquid chromatography-mass spectrometry. Thus, we conclude that the dipstick assay will provide a versatile tool to facilitate large-scale screening of maize rich in folates. Graphical Abstract The dipstick based immunoassay for analyzing folate level in maize.
Thermal conductivity of hydrate-bearing sediments
Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.
2009-01-01
A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.
Peterson, Gregory W; Lu, Annie X; Epps, Thomas H
2017-09-20
This work investigates the processing-structure-activity relationships that ultimately facilitate the enhanced performance of UiO-66-NH 2 metal-organic frameworks (MOFs) in electrospun polystyrene (PS) fibers for chemical warfare agent detoxification. Key electrospinning processing parameters including solvent type (dimethylformamide [DMF]) vs DMF/tetrahydrofuran [THF]), PS weight fraction in solution, and MOF weight fraction relative to PS were varied to optimize MOF incorporation into the fibers and ultimately improve composite performance. It was found that composites spun from pure DMF generally resulted in MOF crystal deposition on the surface of the fibers, while composites spun from DMF/THF typically led to MOF crystal deposition within the fibers. For cases in which the MOF was incorporated on the periphery of the fibers, the composites generally demonstrated better gas uptake (e.g., nitrogen, chlorine) because of enhanced access to the MOF pores. Additionally, increasing both the polymer and MOF weight percentages in the electrospun solutions resulted in larger diameter fibers, with polymer concentration having a more pronounced effect on fiber size; however, these larger fibers were generally less efficient at gas separations. Overall, exploring the electrospinning parameter space resulted in composites that outperformed previously reported materials for the detoxification of the chemical warfare agent, soman. The data and strategies herein thus provide guiding principles applicable to the design of future systems for protection and separations as well as a wide range of environmental remediation applications.
Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P
2013-03-01
The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.
Trivalent Rare-Earth-Metal Bis(trimethylsilyl)amide Halide Complexes by Targeted Oxidations.
Bienfait, André M; Wolf, Benjamin M; Törnroos, Karl W; Anwander, Reiner
2018-05-07
In contrast to previously applied salt metathesis protocols the targeted rare-earth-metal compounds Ln[N(SiMe 3 ) 2 ] 2 (halogenido) were accessed by oxidation of Ln(II) silylamide precursors. Treatment of Sm[N(SiMe 3 ) 3 ] 2 (thf) 2 with 0.5 equiv of C 2 Cl 6 or 0.25 equiv of TeBr 4 in thf and crystallization thereof gave [Sm{N(SiMe 3 ) 2 } 2 (μ-X)(thf)] 2 (X = Cl, Br). A similar reaction/crystallization procedure performed with 0.5 equiv of 1,2-diiodoethane gave monomeric Sm[N(SiMe 3 ) 2 ] 2 I(thf) 2 . Switching to Yb[N(SiMe 3 ) 2 ] 2 (thf) 2 , the aforementioned oxidants generated monomeric five-coordinate complexes Yb[N(SiMe 3 ) 2 ] 2 X(thf) 2 (X = Cl, Br, I). The reaction of Eu[N(SiMe 3 ) 2 ] 2 (thf) 2 with 0.5 equiv of C 2 Cl 6 in thf yielded the separated ion pair [Eu{N(SiMe 3 ) 2 } 3 Cl][(thf) 5 Eu(μ-Cl) 2 Eu(thf) 5 ]. Performing the chlorination in n-hexane led to oxidation followed by rapid disproportionation into EuCl 3 (thf) x and Eu[N(SiMe 3 ) 2 ] 3 . The bromination reaction did not afford crystalline material, while the iodination gave crystals of divalent EuI 2 (thf) 5 . Use of trityl chloride (Ph 3 CCl) as the oxidant in thf accomplished the Eu(III) species [Eu{N(SiMe 3 ) 2 } 2 (μ-Cl)(thf)] 2 . In situ oxidation of putative [Tm{N(SiMe 3 ) 2 } 2 (thf) x ] using 0.5 equiv of C 2 Cl 6 in thf followed by crystallization from n-hexane led to the formation of a mixture of [Tm{N(SiMe 3 ) 2 } 2 (μ-Cl)(thf)] 2 and Tm[N(SiMe 3 ) 2 ] 3 . Switching the oxidant to 0.5 equiv of 1,2-diiodoethane and crystallizing from thf repeatedly afforded the bis-halogenated complex Tm[N(SiMe 3 ) 2 ]I 2 (thf) 3 .
Reis, H; Papadopoulos, M G; Grzybowski, A
2006-09-21
This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.
Aroulanda, Christie; Lafon, Olivier; Lesot, Philippe
2009-08-06
The conformational dynamics and orientational behavior of two model cyclic molecules, cis-decalin (cis-dec) and tetrahydrofurane (THF), dissolved in weakly ordering, polypeptidic chiral liquid crystals (CLCs) are theoretically discussed and experimentally investigated using deuterium and carbon-13 NMR spectroscopies. The analysis of enantiomeric and enantiotopic discriminations in these compounds is shown to depend on the rate of conformational exchange regime, slow or fast. The slow exchange regime is illustrated through the case of cis-dec at low temperature (243 K). We show that the deuterium NMR spectra in this regime can be qualitatively and quantitatively interpreted by restricting the conformational pathway of cis-dec to two enantiomeric conformers of C(2)-symmetry. The orientational order parameters of these interconverting enantiomers are calculated by matching the (2)H quadrupolar splittings with calculated conformer structures. The fast exchange regime is investigated through the examples of cis-dec at high temperature (356 K) and THF at room temperature (300 K). The (2)H NMR spectra above the coalescence temperature are analyzed by introducing the concept of "average molecular structure". This fictitious structure allows easily identifying NMR equivalences of solutes dissolved in CLC. However, it cannot be applied to determine consistent orientational order parameters. This study emphasizes that enantiotopic discriminations observed for flexible molecules in the fast exchange regime can be quantitatively interpreted only by considering the orientational order of each conformer.
Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F
2009-01-01
Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.
Schenk, Christian; Kracke, Andreas; Fink, Karin; Kubas, Adam; Klopper, Wim; Neumaier, Marco; Schnöckel, Hansgeorg; Schnepf, Andreas
2011-03-02
The reaction of GeBr with LiSi(SiMe(3))(3) leads to the metalloid cluster compound [(THF)(2)Li](3)Ge(14)[Si(SiMe(3))(3)](5) (1). After the introduction of a first cluster of this type, in which 14 germanium atoms form an empty polyhedron, [(THF)(2)Li](3)Ge(14)[Ge(SiMe(3))(3)](5) (2), we present here further investigations on 1 to obtain preliminary insight into its chemical and bonding properties. The molecular structure of 1 is determined via X-ray crystal structure solution using synchrotron radiation. The electronic structure of the Ge(14) polyhedron is further examined by quantum chemical calculations, which indicate that three singlet biradicaloid entities formally combine to yield the singlet hexaradicaloid character of 1. Moreover, the initial reactions of 1 after elimination of the [Li(THF)(2)](+) groups by chelating ligands (e.g., TMEDA or 12-crown-4) are presented. Collision induced dissociation experiments in the gas phase, employing FT-ICR mass spectrometry, lead to the elimination of the singlet biradicaloid Ge(5)H(2)[Si(SiMe(3))(3)](2) cluster. The unique multiradicaloid bonding character of the metalloid cluster 1 might be used as a model for reactions and properties in the field of surface science and nanotechnology.
Clegg, William; Conway, Ben; Hevia, Eva; McCall, Matthew D; Russo, Luca; Mulvey, Robert E
2009-02-18
The new dialkyl(aryl) lithium zincates [(THF)(2)Li(C(6)H(4)-OMe)MeZnMe] (4), [(TMEDA)Li(C(6)H(4)-OMe)MeZnMe] (6), [(THF)(3)Li(C(6)H(4)-OMe)(t)BuZn(t)Bu] (7), and [(PMDETA)Li(C(6)H(4)-OMe)(t)BuZn(t)Bu] (8) have been prepared by co-complexation reactions of lithiated anisole with the relevant dialkylzinc compound and the relevant Lewis base. These new heterobimetallic compounds have been characterized in solution using (1)H, (13)C{H}, and (7)Li NMR spectroscopy, and the molecular structures of 6 and 8 have been elucidated by X-ray crystallography. In 6 the distinct metals are connected through the anisole ligand which binds in an ambidentate fashion (through carbon-zinc and oxygen-lithium contacts) and also through one of the methyl groups, to close a [LiOCCZnC] six-membered ring; whereas 8 displays an open structure where anisole connects the two metals (in the same mode as in 6) but with the tert-butyl groups exclusively bonded terminally to zinc. Reactivity studies of zincates 4 and 7 with the amine TMP(H) supply experimental evidence that these heterobimetallic compounds are intermediates in the two-step deprotonation reaction of anisole by TMP-dialkyl zincates and show the relevance of the alkyl groups in the efficiency of TMP-dialkyl zincate bases. In addition, important solvent effects have also been evaluated. When hexane is added to THF solutions of compounds 4 or 7, the homoleptic tetraorganozincate [(THF)(2)Li(2)Zn(C(6)H(4)-OMe)(4)] (5) is obtained as the result of a disproportionation process. This lithium-rich zincate has also been spectroscopically and crystallographically characterized.
NASA Astrophysics Data System (ADS)
Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin
2012-02-01
Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.
Halogen-free boron based electrolyte solution for rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi
2014-02-01
All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.
Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D
2004-12-27
Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief discussion of the dehalogenation chemistry, along with relevant environmental perspectives, is included.
A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.
Sulfonated block ionomers possess advantageous properties for a wide range of diverse applications such as desalination membranes, fuel cells, electroactive media, and photovoltaic devices. Unfortunately, their inherently high incompatibilities and glass transition temperatures e ff ectively prevent the use of thermal annealing, routinely employed to re fi ne the morphologies of nonionic block copolymers. An alternative approach is therefore required to promote morphological equilibration in block ionomers. The present study explores the morphological characteristics of midblock- sulfonated pentablock ionomers (SBIs) di ff ering in their degree of sulfonation (DOS) and cast from solution followed by solvent-vapor annealing (SVA). Transmission electronmore » microscopy con fi rms that fi lms deposited from di ff erent solvent systems form nonequilibrium morphologies due to solvent-regulated self-assembly and drying. A series of SVA tests performed with solvents varying in polarity reveals that exposing cast fi lms to tetrahydrofuran (THF) vapor for at least 2 h constitutes the most e ff ective SVA protocol, yielding the anticipated equilibrium morphology. That is, three SBI grades subjected to THF-SVA self-assemble into well-ordered lamellae wherein the increase in DOS is accompanied by an increase in lamellar periodicity, as measured by small-angle X-ray scattering.« less
Lemelin, V; Bass, A D; Cloutier, P; Sanche, L
2016-02-21
Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10(-11) Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10(-17) cm(2) range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.
A Magnesium-Activated Carbon Hybrid Capacitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, HD; Shterenberg, I; Gofer, Y
2013-12-11
Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionicmore » complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.« less
Shi, Haohong; Luo, Xingjing
2016-01-01
Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavanagh, Molly C.; Young, Ryan M.; Schwartz, Benjamin J.
2008-10-07
Although electron transfer reactions are among the most fundamental in chemistry, it is still not clear how to isolate the roles of the solute and solvent in moving charge between reactants in solution. In this paper, we address this question by comparing the ultrafast charge-transfer-to-solvent (CTTS) dynamics of potasside (K{sup -}) in diethyl ether (DEE) to those of sodide (Na{sup -}) in both DEE and tetrahydrofuran (THF). We find that for sodide in both DEE and THF, CTTS excitation leads to delayed ejection of a solvated electron that appears with its equilibrium absorption spectrum. This indicates that the ejected electronsmore » are localized in pre-existing solvent traps, suggesting that the structure of liquid DEE is characterized by cavities that are favorably polarized to localize an excess electron, as has been previously shown is the case for liquid THF. We also find that the geminate recombination dynamics following CTTS excitation of sodide in THF and DEE are similar, suggesting that the nature of the CTTS excited states and their coupling to the electronic states supported by the naturally occurring solvent cavities are similar in the two solvents. In contrast, the geminate recombination dynamics of potasside and sodide in DEE are different, with red-edge excitation of the K{sup -} CTTS band producing a greater number of long-lived electrons than is seen following the corresponding red-edge excitation of the Na{sup -} CTTS band. This indicates that the CTTS excited states of K{sup -} are better able to couple to the electronic states supported by the naturally occurring solvent cavities, allowing us to compare the energetic positions of the potasside and sodide ground and CTTS excited states on a common absolute scale. Finally, we also observe a strong transient absorption following the CTTS excitation of potasside in DEE that correlates well with the 766 nm position of the gas-phase potassium D-line. The data indicate that CTTS excitation of alkali metal anions essentially instantaneously produces a gas-phase-like neutral alkali metal atom, which then spontaneously undergoes partial ejection of the remaining valence electron to form a neutral alkali metal cation:solvated electron tight-contact pair.« less
Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U
2014-11-01
Polyurethane (PU) is a promising polymer to support bone-matrix producing cells due to its durability and mechanical resistance. In this study two types of medical grade poly-ether urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU-HA) composites were investigated for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were electrospun to attain scaffolds with randomly orientated non-woven fibres. Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30 DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1 respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical properties of the resulting composites were evaluated by FTIR and physical properties by SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5 osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs were seeded on the scaffolds to test their biocompatibility and ability to support mineralised matrix production over a 28 day culture period. Cell viability was assayed by MTT and calcium and collagen deposition by Sirius red and alizarin red respectively. SEM images of both electrospun PU scaffolds and PU-HA composite scaffolds showed differences in fibre morphology with changes in solvent combinations and size of HA particles. Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and thicker diameters. Mechanical testing demonstrated that the Young׳s Modulus and yield strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in PU-HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR characterisation confirmed the presence of HA in all composite scaffolds. Although all scaffolds supported proliferation of both cell types and deposition of calcified matrix, PU-HA composite fibres containing nano-HA enabled the highest cell viability and collagen deposition. These scaffolds have the potential to support bone matrix formation for bone tissue engineering. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lif Spectroscopy of ThF and the Preparation of ThF^{+} for the Jila eEDM Experiment
NASA Astrophysics Data System (ADS)
Ng, Kia Boon; Zhou, Yan; Gresh, Dan; Cairncross, William; Roussy, Tanya; Shagam, Yuval; Cheng, Lan; Ye, Jun; Cornell, Eric
2017-06-01
ThF^{+} is a promising candidate for a second-generation molecular ion-based measurement of the permanent electric dipole moment of the electron (eEDM). Compared to the current HfF^{+} eEDM experiment, ThF^{+} has several advantages: (i) the eEDM-sensitive ^{3}Δ_1 electronic state is the ground state, which facilitates a long measurement coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces a greater flexibility for rotational state-selective photoionization via core-nonpenetrating Rydberg states. We use laser-induced fluorescence (LIF) spectroscopy to find suitable intermediate states required for the state selective ionization process. We present the results of our LIF spectroscopy of ThF, and our current progress on efficient ThF ionization and on ThF^{+} dissociation.
Synthesis of Synthetic Hydrocarbons Via Alpha Olefins.
1985-05-01
THF complex, 0OC; (e) Pyridinium chlorochromate , dry CH2 CL29 room temperature; b (f) methyltriphenylphosphonium bromide, dimethyl sulfoxide, room...vigorously stirred solution of pyridinium chlorochromate (27.91 g, 0.13 mol) in dry methylene chloride (175 mL) was added all at once a solution of l... pyridinium chlorochroniate. 3 Our four-step synthesis of l-decene-2-1 3 C from 1-bromooctane is outlined in the Scheme. This synthetic sequence provides the
Nylon surface modification: 2. Nylon-supported composite films.
Herrera-Alonso, Margarita; McCarthy, Thomas J; Jia, Xinqiao
2006-02-14
We have developed techniques for the introduction of reactive functional groups to nylon surfaces via site-specific reactions targeting at the naturally abundant amide repeating units on the surface. In this report, we describe the fabrication of nylon-supported composite surfaces using the most efficient modification methods we have developed. N-Alkylation with (3-glycidoxypropyl)triethoxysilane (GPTES) in the presence of potassium tert-butoxide (t-BuOK) leads to surfaces with silica-like reactivity. Subsequent chemical vapor deposition using tetrachlorosilane (SiCl4) and water results in composite films with a thin layer of silica, which was made hydrophobic by reaction with a fluorinated silane reagent. Reduction of the amide groups with borane-THF (BH3-THF) complex leads to a 69% conversion of surface amides to the corresponding secondary amine groups. Alginate was chosen as the model polyelectrolyte for the introduction of a hydrated surface layer. Because of the strong electrostatic interaction between alginate and the amine-enriched nylon surfaces, the adsorption is fast and concentration-independent (within the concentration range studied). The polysaccharide coats the surface homogeneously, without the formation of large aggregates. The amine surfaces obtained by reduction with BH3-THF ((BH3-THF)nylon-NH) and by alkylation with 2-bromoethylamine hydrobromide (BEA-HBr, (EBA-HBr)nylon-NH2) were also used to study gold deposition through electroless plating. Immobilization of a negatively charged metal complex (AuCl4(-)) was achieved through electrostatic interaction. Gold particles disperse preferentially in the bulk of (EBA-HBr)nylon-NH2 films, while they remain confined to the outer surface layer of (BH3-THF)nylon-NH films.
Investigation on the effect of THF on Nitrogen Hydrate formation under isobaric condition
NASA Astrophysics Data System (ADS)
Jamil, N.; Husin, H.; Aman, Z.; Hassan, Z.
2018-03-01
In this paper, we studied nitrogen (N2) hydrate formation in the presence of tetrahydrofuran (THF) under 3 different conditions; different concentration of THF (0, 3 and 30 %(v/v), different temperature setting (room temperature and induced temperature) and different water content (15, 35 and 55 mL) in an isobaric condition. We found that in the presence of THF which acting as an enhancer, hydrate formation kinetic is highly influenced by these parameters. We observed a striking contrast in hydrate formation behaviour observed at room temperature (RT) and induced temperature (IT) with and without the presence of THF under similar operating conditions. At the presence of 30 %(v/v) of THF in 15 mL water, it can be seen that, hydrate tend to form faster than other samples. Visual observation of N2hydrates are also conducted at 30 %(v/v) of THF in 15 mL water.
Izod, Keith; Bowman, Lyndsey J; Wills, Corinne; Clegg, William; Harrington, Ross W
2009-05-07
A straightforward Peterson olefination reaction between either [{(Me(2)PhSi)(3)C}Li(THF)] or in situ-generated [(Me(3)Si)(2){Ph(2)P(BH(3))}CLi(THF)(n)] and paraformaldehyde gives the alkenes (Me(2)PhSi)(2)C[double bond, length as m-dash]CH(2) () and (Me(3)Si){Ph(2)P(BH(3))}C[double bond, length as m-dash]CH(2) (), respectively, in good yield. Ultrasonic treatment of with lithium in THF yields the lithium complex [{(Me(2)PhSi)(2)C(CH(2))}Li(THF)(n)](2) (), which reacts in situ with one equivalent of KOBu(t) in diethyl ether to give the potassium salt [{(Me(2)PhSi)(2)C(CH(2))}K(THF)](2) (). Similarly, ultrasonic treatment of with lithium in THF yields the lithium complex [[{Ph(2)P(BH(3))}(Me(3)Si)C(CH(2))]Li(THF)(3)](2).2THF (). The bis(phosphine-borane) [(Me(3)Si){Me(2)(H(3)B)P}CH(Me(2)Si)(CH(2))](2) () may be prepared by the reaction of [Me(2)P(BH(3))CH(SiMe(3))]Li with half an equivalent of ClSiMe(2)CH(2)CH(2)SiMe(2)Cl in refluxing THF. Metalation of with two equivalents of MeLi in refluxing THF yields the lithium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}]Li(THF)(3)](2) (), whereas metalation with two equivalents of MeK in cold diethyl ether yields the potassium complex [[{Me(2)P(BH(3))}(Me(3)Si)C{(SiMe(2))(CH(2))}](2)K(2)(THF)(4)](infinity) () after recrystallisation. X-Ray crystallography shows that, whereas the lithium complex crystallises as a discrete molecular species, the potassium complexes and crystallise as sheet and chain polymers, respectively.
A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems.
De Angelis, Sonia; De Renzo, Maddalena; Carlucci, Claudia; Degennaro, Leonardo; Luisi, Renzo
2016-05-04
A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent.
McGinness, Colleen A; Slater, C Stewart; Savelski, Mariano J
2008-12-01
Pervaporation technology can effectively separate a tetrahydrofuran (THF) solvent-water waste stream at an azeotropic concentration. The performance of a Sulzer 2210 polyvinyl alcohol (PVA) membrane and a Pervatech BV silica membrane were studied, as the operating variables feed temperature and permeate pressure, were varied. The silica membrane was found to exhibit a flux of almost double that of the PVA membrane, but both membranes had comparable separation ability in purifying the solvent-water mixture. At benchmark feed conditions of 96 wt% THF and 4 wt% water, 50 degrees C and 10 torr permeate pressure, the silica membrane flux was 0.276 kg/m(2)hr and selectivity was 365. For both membranes, flux was found to increase at an exponential rate as the feed temperature increased from 20 to 60 degrees C. The flux through the silica membrane increases at a 6% faster rate than the PVA membrane. Flux decreased as permeate pressure was increased from 5 to 25 torr for both membranes. The amount of water in the permeate decreased exponentially as the permeate pressure was increased, but increased linearly with increasing temperature. Optimum conditions for flux and selectivity are at low permeate pressure and high feed temperature. When a small amount of salt is added to the feed solution, an increase in flux is observed. Overall models for flux and permeate concentration were created from the experimental data. The models were used to predict scale-up performance in separating an azeotropic feed waste to produce dehydrated THF solvent for reuse and a permeate stream with a dilute THF concentration.
Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi
2016-12-01
Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor
Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less
Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; ...
2016-11-04
Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Eide, Edwin F.; Helm, Monte L.; Walter, Eric D.
2013-02-04
The 17-electron radical CpCr(CO)2(IMe)• (IMe = 1,3-dimethylimidazol-2-ylidene) was synthesized by the reaction of IMe with [CpCr(CO)3]2, and characterized by single crystal X-ray diffraction and by EPR, IR and variable temperature 1H NMR spectroscopy. The metal-centered radical is monomeric under all conditions and exhibits Curie paramagnetic behavior in solution. An electrochemically reversible reduction to 18-electron CpCr(CO)2(IMe)- takes place at E½ = -1.89(1) V vs Cp2Fe+•/0 in MeCN, and was accomplished chemically with KC8 in THF. The salts K+(18-crown-6)[CpCr(CO)2(IMe)]- • ½THF and K+[CpCr(CO)2(IMe)]- • ¾THF were crystallographically characterized. Monomeric ion pairs are found in the former, whereas the latter has a polymericmore » structure due to a network of K∙∙∙O(CO) interactions. Protonation of K+(18-crown-6)[CpCr(CO)2(IMe)]- • ½THF gives the hydride CpCr(CO)2(IMe)H, which could not be isolated, but was characterized in solution; a pKa of 27.2(4) was determined in MeCN. A thermochemical analysis provides the Cr-H bond dissociation free energy (BDFE) for CpCr(CO)2(IMe)H in MeCN solution as 47.3(6) kcal mol-1. This value is exceptionally low for a transition metal hydride, and implies that the reaction 2 [Cr-H] → 2 [Cr•] + H2 is exergonic (ΔG = -9.0(8) kcal mol-1). This analysis explains the experimental observation that generated solutions of the hydride produce CpCr(CO)2(IMe)• (typically on the timescale of days). By contrast, CpCr(CO)2(PCy3)H has a higher Cr-H BDFE (52.9(4) kcal mol-1), is more stable with respect to H2 loss, and is isolable. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. M.L.H. carried out the crystallographic studies and was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The EPR studies were performed at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Prabhu, V; Chatson, K B; Abrams, G D; King, J
1996-01-01
In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis by these two pathways in Arabidopsis thaliana (L.) Heynh. Columbia wild type. We confirmed the tight coupling of the GDC/ SHMT system and observed directly in a higher plant the flux of formate through the C1-THF synthase/SHMT system. The accumulation of 13C-enriched serine over 24 h from the GDC/SHMT activities was 4-fold greater than that from C1-THF synthase/SHMT activities. Our experiments strongly suggest that the two pathways operate independently in Arabidopsis. Plants exposed to methotrexate and sulfanilamide, powerful inhibitors of THF biosynthesis, reduced serine synthesis by both pathways. The results suggest that continuous supply of THF is essential to maintain high rates of serine metabolism. Nuclear magnetic resonance is a powerful tool for the examination of THF-mediated metabolism in its natural cellular environment. PMID:8819325
Increasing hydrogen storage capacity using tetrahydrofuran.
Sugahara, Takeshi; Haag, Joanna C; Prasad, Pinnelli S R; Warntjes, Ashleigh A; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2009-10-21
Hydrogen hydrates with tetrahydrofuran (THF) as a promoter molecule are investigated to probe critical unresolved observations regarding cage occupancy and storage capacity. We adopted a new preparation method, mixing solid powdered THF with ice and pressurizing with hydrogen at 70 MPa and 255 +/- 2 K (these formation conditions are insufficient to form pure hydrogen hydrates). All results from Raman microprobe spectroscopy, powder X-ray diffraction, and gas volumetric analysis show a strong dependence of hydrogen storage capacity on THF composition. Contrary to numerous recent reports that claim it is impossible to store H(2) in large cages with promoters, this work shows that, below a THF mole fraction of 0.01, H(2) molecules can occupy the large cages of the THF+H(2) structure II hydrate. As a result, by manipulating the promoter THF content, the hydrogen storage capacity was increased to approximately 3.4 wt % in the THF+H(2) hydrate system. This study shows the tuning effect may be used and developed for future science and practical applications.
Morphometry of human terminal and vellus hair follicles.
Vogt, Annika; Hadam, Sabrina; Heiderhoff, Marc; Audring, Heike; Lademann, Juergen; Sterry, Wolfram; Blume-Peytavi, Ulrike
2007-11-01
Previous studies suggest that drug delivery systems based on particles can be used to deposit active compounds in hair follicles and to target hair follicle-associated cell populations. The development of application protocols is complicated by the fact that there is no information available on the size and the position of key target structures in the different hair follicle types and their intra- and interindividual variation. Therefore, we performed morphometric measurements on histological sections of human terminal (THF) and vellus hair follicles (VHF) from the scalp and the retroauricular region. With 3864 +/- 605 microm and 580 +/- 84 microm in THF compared to 646 +/- 140 microm and 225 +/- 34 microm in VHF, the total length and the length of the infundibulum differed significantly as determined by paired t-test (P < 0.0001). The same level of significance was observed for the position and the length of the bulge region. The thickness of the epithelial lining was lowest in VHF (45 +/- 14 microm at 100 microm from skin surface) compared to 65 +/- 20 microm at 150 microm in THF, while the thickness of the interfollicular epidermis ranged between 64 +/- 12 microm and 99 +/- 18 microm in VHF-bearing skin and 72 +/- 16 microm and 136 +/- 37 microm in THF-bearing skin. In addition, the diameter of the hair follicle opening was determined at 50 microm intervals from the skin surface. Our data suggest that hair follicle types in defined body regions represent rather homogenous groups and that particle-based drug delivery may be a feasible approach, also in larger numbers of individuals. We provide precise information on the size and the position of key target structures in VHF and THF.
Lorenz, Volker; Ehle, Sophie; Liebing, Phil; Engelhardt, Felix; Hashemi-Haeri, Haleh; Oehler, Florian; Hinderberger, Dariush; Busse, Sabine; Urbaschok, Jens; Edelmann, Frank T
2017-12-19
A unique trivalent manganese siloxide complex, blue-violet Mn III Li 2 Cl[(Ph 2 SiO) 2 O] 2 (THF) 4 ·2THF (3) has been prepared by a straightforward two-step synthetic protocol. Lithiation of (Ph 2 SiOH) 2 O (1) followed by reaction with MnCl 2 (THF) 2 gave the structurally remarkable Mn(ii) precursor Mn II Li 4 Cl 2 [(Ph 2 SiO) 2 O] 2 (THF) 5 ·2THF (2). Surprisingly, the final oxidation step could be achieved using KMnO 4 in THF to provide the Mn(iii) species 3 in high yield (91%). Both title compounds were structurally characterized by single-crystal X-ray diffraction.
2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis.
Jad, Yahya E; Acosta, Gerardo A; Khattab, Sherine N; de la Torre, Beatriz G; Govender, Thavendran; Kruger, Hendrik G; El-Faham, Ayman; Albericio, Fernando
2016-02-01
2-MeTHF and CPME were evaluated as greener alternatives for the most employed solvents in peptide synthesis. The ability of these solvents to dissolve amino acid derivatives and a range of coupling reagents were evaluated as well as the swelling of polystyrene and polyethylene glycol resins. In addition, racemization and coupling efficiencies were also determined. We concluded that the use of 2-MeTHF with combination of DIC/OxymaPure gave the lowest racemization level during stepwise synthesis of Z-Phg-Pro-NH2 and the highest purity during SPPS of Aib-enkephalin pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH2).
Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad
NASA Astrophysics Data System (ADS)
Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.
2011-08-01
We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (<150 fs) charge separation occurs in the solid-state films and leads to the formation of long-lived mobile charge carriers with characteristic transient absorption signatures similar to those that have been observed in P3HT:PCBM bulk heterojunction blends. While π-stacking interactions between neighboring P3HT chains are weak in the micelles, they are strong in thin films drop-cast from ortho-dichlorobenzene. Here, PCB-P3HT self-assembles into a network of long fibers, clearly seen in atomic force microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.
Study of Electron Ionization and Fragmentation of Non-hydrated and Hydrated Tetrahydrofuran Clusters
NASA Astrophysics Data System (ADS)
Neustetter, Michael; Mahmoodi-Darian, Masoomeh; Denifl, Stephan
2017-05-01
Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy 70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters.
Gouranton, Erwan; Yazidi, Claire El; Cardinault, Nicolas; Amiot, Marie Josèphe; Borel, Patrick; Landrier, Jean-François
2008-12-01
Epidemiological studies have suggested that lycopene has protective effects against various diseases including cardiovascular diseases. However, mechanistic studies to understand these effects are difficult due to the insolubility of lycopene in aqueous culture medium. The objective of the present study was to use LDL or BSA as physiological vehicles for lycopene and to compare them with various classical vehicles. Among tested vehicles, only LDL, BSA, THF/BHT, beadlets, and liposomes were able to solubilise lycopene. No cytotoxicity was observed with these vehicles. LDL and BSA allowed good stability of lycopene during incubation (52% and 43% for 2microM lycopene solutions), but remained less efficient than THF/BHT or beadlets (67% and 62%). Incubation of adipocytes (3T3-L1) with the different vehicles for 24 and 48h showed that beadlets best delivered lycopene to cells. Finally, whatever the vehicle used, intracellular localization of lycopene was the same: lipid droplets (32-51%), plasma membrane (32-37%) and nuclear membrane (19-29%). As a conclusion, LDL or BSA display comparable properties to THF/BHT or beadlets. It is the first time that lycopene carried by physiological vehicles is shown to reach different subcellular compartments supporting molecular effects in adipocyte, such as cell signaling or nuclear receptor interacting.
The inhibition of tetrahydrofuran clathrate-hydrate formation with antifreeze protein
NASA Astrophysics Data System (ADS)
Zeng, H.; Wilson, L. D.; Walker, V. K.; Ripmeester, J. A.
2003-01-01
The effect of Type I fish antifreeze protein (AFP) from the winter flounder, Pleuronectes americanus (Walbaum), (WfAFP) on the formation of tetrahydrofuran (THF) clathrate hydrate was studied by observing changes in THF crystal morphology and determining the induction time for nucleation. AFP retarded THF clathrate-hydrate growth at the tested temperatures and modified the THF clathrate-hydrate crystal morphology from octahedral to plate-like. AFP appears to be even more effective than the kinetic inhibitor, polyvinylpyrrolidone (PVP). Recombinant AFP from an insect, a spruce budworm, Choristoneura fumiferana (Clem.), moth, (Cf) was also tested for inhibition activity by observation of the THF-hydrate-crystal-growth habit. Like WfAFP, CfAFP appeared to show adsorption on multiple THF-hydrate-crystal faces. A protein with no antifreeze activity, cytochrome C, was used as a control and it neither changed the morphology of the THF clathrate-hydrate crystals, nor retarded the formation of the hydrate. Preliminary experiments on the inhibition activity of WfAFP on a natural gas hydrate assessed induction time and the amount of propane gas consumed. Similar to the observations for THF, the data indicated that WfAFP inhibited propane-hydrate growth. Taken together, these results support our hypothesis that AFPs can inhibit clathrate-hydrate growth and as well, offer promise for the understanding of the inhibition mechanism.
Pucci, Carlotta; Cousin, Fabrice; Dole, François; Chapel, Jean-Paul; Schatz, Christophe
2018-02-20
The formulation pathway and/or the mixing method are known to be relevant in many out-of-equilibrium processes. In this work, we studied the effect of the mixing conditions on the physicochemical properties of poly-ε-caprolactone (PCL) particles prepared by solvent displacement. More specifically, water was added in one shot (fast addition) or drop by drop to PCL solution in tetrahydrofuran (THF) to study the impact of the mixing process on particle properties including size, stability, and crystallinity. Two distinct composition maps representing the Ouzo domain characteristic of the presence of metastable nanoparticles have been established for each mixing method. Polymer nanoparticles are formed in the Ouzo domain according to a nucleation and growth (or aggregation) mechanism. The fast addition promotes a larger nucleation rate, thus favoring the formation of small and uniform particles. For the drop-by-drop addition, for which the polymer solubility gradually decreases, the composition trajectories systematically cross an intermediate unstable region between the solubility limit of the polymer and the Ouzo domain. This leads to heterogeneous nucleation as shown by the formation of larger and less stable particles. Particles formed in the Ouzo domain have semi-crystalline properties. The PCL melting point is decreased with the THF fraction trapped in particles in accordance with Flory's theory for melt crystallization. On the other hand, the degree of crystallinity is constant, around 20% regardless of the THF fraction. No difference between fast and slow addition could be detected on the semi-crystalline properties of the particles which emphasize that thermodynamic rather than kinetic factors drive the polymer crystallization in particles. The recovery of bulk PCL crystallinity after the removal of THF from particles tends to confirm this hypothesis.
Gärtner, Martin; Görls, Helmar; Westerhausen, Matthias
2007-09-03
Several preparative procedures for the synthesis of the THF complexes of the alkaline earth metal bis(phenylamides) of Mg (1), Ca (2), Sr (3), and Ba (4) are presented such as metalation of aniline with strontium and barium, metathesis reactions of MI2 with KN(H)Ph, and metalation of aniline with arylcalcium compounds or dialkylmagnesium. The THF content of these compounds is rather low and an increasing aggregation is observed with the size of the metal atom. Thus, tetrameric [(THF)2Ca{mu-N(H)Ph}2]4 (2) and polymeric [(THF)2Sr{mu-N(H)Ph}2]infinity and {[(THF)2Ba{mu-N(H)Ph}2]2[(THF)Ba{mu-N(H)Ph}2]2}infinity show six-coordinate metal atoms with increasing interactions to the pi systems of the phenyl groups with increasing the radius of the alkaline earth metal atom.
Roles of Sodium Dodecyl Sulfate on Tetrahydrofuran-Assisted Methane Hydrate Formation.
Siangsai, Atsadawuth; Inkong, Katipot; Kulprathipanja, Santi; Kitiyanan, Boonyarach; Rangsunvigit, Pramoch
2018-06-01
Sodium dodecyl sulfate (SDS) markedly improved tetrahydrofuran (THF) - assisted methane hydrate formation. Firstly, methane hydrate formation with different THF amount, 1, 3, and 5.56 mol%, was studied. SDS with 1, 4, and 8 mM was then investigated for its roles on the methane hydrate formation with and without THF. The experiments were conducted in a quiescent condition in a fixed volume crystallizer at 8 MPa and 4°C. The results showed that almost all studied THF and SDS concentrations enhanced the methane hydrate formation kinetics and methane consumption compared to that without the promoters, except 1 mol% THF. Although, with 1 mol% THF, there were no hydrates formed for 48 hours, the addition of just 1 mM SDS surprisingly promoted the hydrate formation with a significant increased in the kinetics. This prompts the use of methane hydrate technology for natural gas storage application with minimal promoters.
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Dandan; Fei, Wenwen; Tan, Jingyun; Li, Shengli; Zhou, Hongping; Zhang, Shengyi; Wu, Jieying; Tian, Yupeng
2014-06-01
A series of triphenylamine-based chromophores (L1-3) with donor-π-donor (D-π-D) model have been designed and synthesized via solid phase Wittig reaction. Their one/two-photon fluorescence and electrochemical properties have been investigated. The results show that L2 and L3 exhibited strong and wide-dispersed two-photon-excited fluorescence (TPEF) in different solvents. Chromophore L3 displays the strongest intensity two-photon absorption activity and large cross-sections (>3600 GM) in the range of 680-840 nm in THF, the largest δ up to 8899 GM in the near-IR range, and the measured maximum TPA cross-sections per molecular weight (δmax/MW) is 8.64 GM/g (L3) in THF. Significantly, it also exhibits good solubility in common organic solvents when the chromophore was modified by polyether units as peripheral groups.
1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
Inoue, Daisuke; Tsunoda, Tsubasa; Sawada, Kazuko; Yamamoto, Norifumi; Saito, Yuji; Sei, Kazunari; Ike, Michihiko
2016-11-01
In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855 T , which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343 T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707 T and Pseudonocardia asaccharolytica JCM 10410 T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.
Schollenberger, Martin; Radke, Wolfgang
2011-10-28
A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Asymmetric Aryl Polyhedral Oligomeric SilSesquioxanes (ArPOSS) with Enhanced Solubility (Preprint)
2011-03-23
by reaction of an aryl Grignard or lithium reagent with SiCl4 under reaction conditions s imilar to those previously reported [22]. The aryl...cooling to room temperature, this Grignard reagent w as added via canula to a SiCl 4 (25.1 g, 0.148 m ol) THF (70 mL) solution and stirred overnight
Pfeiffer, Christine M.; Sternberg, Maya R.; Fazili, Zia; Lacher, David A.; Zhang, Mindy; Johnson, Clifford L.; Hamner, Heather C.; Bailey, Regan L.; Rader, Jeanne I.; Yamini, Sedigheh; Berry, R. J.; Yetley, Elizabeth A.
2016-01-01
Serum and red blood cell (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured serum folate forms [5-methyltetrahydrofolate (5-methylTHF), unmetabolized folic acid (UMFA), non-methyl folate (sum of THF, 5-formylTHF, 5,10-methenylTHF), and MeFox (5-methylTHF oxidation product)] by HPLC-MS/MS and RBC total folate by microbiologic assay in US persons ≥1 year (n ~7500) participating in the National Health and Nutrition Examination Survey 2011–2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37.5 nmol/L; 100%), UMFA (1.21 nmol/L; 99.9%), MeFox (1.53 nmol/L; 98.8%), and THF (1.01 nmol/L; 85.2%) were mostly detectable. 5-FormylTHF (3.6%) and 5,10-methenylTHF (4.4%) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86.7%); UMFA (4.0%), non-methyl folate (4.7%), and MeFox (4.5%) contributed smaller amounts. Age was positively related to MeFox but showed a U-shaped pattern for other folates. We generally noted sex and race-ethnic biomarker differences and weak (Spearman r <0.4) but significant (P <0.05) correlations with physiologic and lifestyle variables. Fasting, kidney function, smoking, and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiologic, and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological characteristics. PMID:25917925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goracci, G., E-mail: sckgorag@ehu.es; Arbe, A.; Alegría, A.
2016-04-21
We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly (2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but withoutmore » evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to the lack of cooperativity effects in the relaxation of these molecules within the polymeric matrix.« less
Miyasaka, Hitoshi; Motokawa, Natsuko; Atsuumi, Ryo; Kamo, Hiromichi; Asai, Yuichiro; Yamashita, Masahiro
2011-01-21
A series of paddlewheel diruthenium(ii, ii) complexes with various fluorine-substituted benzoate ligands were isolated as THF adducts and structurally characterized: [Ru(2)(F(x)PhCO(2))(4)(THF)(2)] (F(x)PhCO(2)(-) = o-fluorobenzoate, o-F; m-fluorobenzoate, m-F; p-fluorobenzoate, p-F; 2,6-difluorobenzoate, 2,6-F(2); 3,4-difluorobenzoate, 3,4-F(2); 3,5-difluorobenzoate, 3,5-F(2); 2,3,4-trifluorobenzoate, 2,3,4-F(3); 2,3,6-trifluorobenzoate, 2,3,6-F(3); 2,4,5-trifluorobenzoate, 2,4,5-F(3); 2,4,6-trifluorobenzoate, 2,4,6-F(3); 3,4,5-trifluorobenzoate, 3,4,5-F(3); 2,3,4,5-tetrafluorobenzoate, 2,3,4,5-F(4); 2,3,5,6-tetrafluorobenzoate, 2,3,5,6-F(4); pentafluorobenzoate, F(5)). By adding fluorine atoms on the benzoate ligands, it was possible to tune the redox potential (E(1/2)) for [Ru(2)(II,II)]/[Ru(2)(II,III)](+) over a wide range of potentials from -40 mV to 350 mV (vs. Ag/Ag(+) in THF). 2,3,6-F(3), 2,3,4,5-F(4), 2,3,5,6-F(4) and F(5) were relatively air-stable compounds even though they are [Ru(2)(II,II)] species. The redox potential in THF was dependent on an electronic effect rather than on a structural (steric) effect of the o-F atoms, although more than one substituent in the m- and p-positions shifted E(1/2) to higher potentials in relation to the general Hammett equation. A quasi-Hammett parameter for an o-F atom (σ(o)) was estimated to be ∼0.2, and a plot of E(1/2)vs. a sum of Hammett parameters including σ(o) was linear. In addition, the HOMO energy levels, which was calculated based on atomic coordinates of solid-state structures, as well as the redox potential were affected by adding F atoms. Nevertheless, a steric contribution stabilizing their static structures in the solid state was present in addition to the electronic effect. On the basis of the electronic effect, the redox potential of these complexes is correlated to the HOMO energy level, and the electronic effect of F atoms is the main factor controlling the ionization potential of the complexes with ligands free from the rotational constraint, i.e. complexes in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The reactivity of the THF insoluble fraction of the ashy resid component of Wilsonville recycle oil (WRO) during liquefaction of Black Thunder coal in tetralin was determined at 415{degrees}C and 60 minutes. The liquefaction runs were made by combining this material with Black Thunder coal at the same ratio used in the WRO coal runs. THF conversion and product distribution from liquefaction in tetralin in the presence of the THF insoluble fraction of the ashy resid were similar to results from liquefaction in WRO. THF conversion was greater than loot with an oil yield that was somewhat higher than inmore » WRO. Differences in HC gas yield and H{sub 2} consumption were slight, while conversion and product distribution from liquefaction of Black Thunder coal in tetralin or in the WRO distillate were quite different. In both these solvents the 85--86% THF conversions were less than for runs in which the THF insoluble fraction of the ashy resid was present. This establishes that the THF insoluble fraction of the ashy resid is the reactive fraction of the WRO.« less
Honciuc, Andrei; Baptiste, Denver Jn; Campbell, Ian P; Schwartz, Daniel K
2009-07-07
Single-molecule total internal reflection fluorescence microscopy was used to obtain real-time images of fluorescently labeled hexadecanoic (palmitic) acid molecules as they adsorbed at the interface between fused silica and three different solvents: hexadecane (HD), tetrahydrofuran (THF), and water. These solvents were chosen to explore the effect of solvent polarity on the activation energy associated with the attachment rate, i.e., the rate at which molecules were transferred to the surface from the near-surface layer. Direct counting of single-molecule events, made under steady-state conditions at extremely low coverage, provided direct, model-independent measurements of this attachment rate, in contrast with conventional ensemble-averaged methods, which are influenced by bulk transport and competing detachment processes. We found that the attachment rate increased with increasing temperature for all solvents. Arrhenius analyses gave activation energies of 5+/-2 kJ/mol for adsorption from HD, 10+/-2 kJ/mol for adsorption from THF, and 19+/-2 kJ/mol for adsorption from water. These energies increased systematically with the solvent polarity and, therefore, with the expected strength of the solvent-substrate interaction. We hypothesize that the adsorption of amphiphilic solute molecules from solution can be regarded as a competitive exchange between solute molecules and surface-bound solvent. In this scenario, adsorption is an activated process, and the activation energy for attachment is associated with the solvent-substrate interaction energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrido, J. M.; Algaba, J.; Blas, F. J., E-mail: felipe@uhu.es
2016-04-14
We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombicmore » intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with experimental data. The three CG models predict reasonably well (but only qualitatively) the surface tension of THF, as a function of temperature, from the triple point to the critical temperature. On the other hand, only the TraPPE united-atoms models are able to predict accurately the experimental surface tension of the system in the whole temperature range.« less
About the solubility of reduced SWCNT in DMSO
NASA Astrophysics Data System (ADS)
Guan, Jingwen; Martinez-Rubi, Yadienka; Dénommée, Stéphane; Ruth, Dean; Kingston, Christopher T.; Daroszewska, Malgosia; Barnes, Michael; Simard, Benoit
2009-06-01
Single-walled carbon nanotubes (SWCNT) have been reduced with sodium naphthalide in THF. The reduced SWCNT are not only soluble in dimethylsulfoxide (DMSO) to form a stable solution/suspension, but also react spontaneously at room temperature with DMSO to evolve hydrocarbon gases and are converted into functionalized SWCNT. The degree of functionalization is about 2C% and the addends are mainly methyl and small oxygen-containing hydrocarbons. The functionalized SWCNT are apparently more soluble and stable in DMSO solution. It may open a new era for further processing and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon
Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O 2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO 2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely ofmore » central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O 2 and QOOH + O 2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less
Zhang, Guangchao; Deng, Baojia; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu; Zhu, Xiancui; Huang, Zeming; Mu, Xiaolong
2016-10-21
Different di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands were synthesized and their catalytic activities towards isoprene polymerization were investigated. Treatment of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-(CyN[double bond, length as m-dash]CH)C 8 H 5 NH in toluene or in THF afforded dinuclear rare-earth metal alkyl complexes having indolyl ligands in different hapticities with central metals {[η 2 :η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf)(CH 2 SiMe 3 )} 2 (Cy = cyclohexyl, Ind = Indolyl, RE = Yb (1), Er (2), Y (3)) or {[η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf) 2 (CH 2 SiMe 3 )} 2 (RE = Yb (4), Er (5), Y (6), Gd (7)), respectively. These two series of dinuclear complexes could be transferred to each other easily by only changing the solvents in the process. Reaction of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF afforded the unexpected trinuclear erbium alkyl complex [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 Er 3 (thf) 5 (CH 2 SiMe 3 ) (8), which can also be prepared by reaction of 3 equiv. of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Accordingly, complexes [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 RE 3 (thf) 5 (CH 2 SiMe 3 ) (RE = Y (9), Dy (10)) were prepared by reactions of 3 equiv. of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Reactions of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF, followed by treatment with 1 equiv. of [(2,6- i Pr 2 C 6 H 3 )N[double bond, length as m-dash]CHNH(C 6 H 3 i Pr 2 -2,6)] afforded, after workup, the dinuclear rare-earth metal complexes [η 1 -μ-η 1 :η 1 -3-( t BuNCH 2 )Ind][η 1 -μ-η 1 :η 3 -3-( t BuNCH 2 )Ind]RE 2 (thf)[(η 3 -2,6- i Pr 2 C 6 H 3 )NCHN(C 6 H 3 i Pr 2 -2,6)] 2 (RE = Er (11), Y (12)) having the indolyl ligands bonded with the rare-earth metal in different ligations. All new complexes 1-12 were fully characterized by spectroscopic methods and elemental analyses, and their structures were determined by X-ray crystallographic analyses. It was found that, except for complexes 1, 4, 11 and 12, all complexes were highly efficient catalysts for selective isoprene polymerization (up to 99% 1,4-cis selectivity) with the cooperation of co-catalysts, and the trinuclear complexes displayed advantages over dinuclear complexes in terms of molecular weight of polymers.
An excellent fluorescent dye with a twistable aromatic chain and its axially chiral crystals.
Ma, Yan; Hao, Rui; Shao, Guangsheng; Wang, Yuan
2009-04-30
A new organic fluorescent dye, 2,4-dichloro-6-[p-(N,N-diethylamino)biphenylyl]-1,3,5-triazine (DBQ), with an electron withdrawing-donating pair bridged by a twistable aromatic chain has been synthesized. DBQ exhibits high fluorescence quantum yields (0.96 in hexane and 0.71 in THF), high extinction coefficients, and an excitation window extending up to approximately 480 nm. Due to the strong intramolecular charge transfer character, DBQ shows obviously solvent-dependent Stokes shifts with a value as high as 6360 cm(-1) in THF and controllable fluorescence emission in the visible region from "blue" to "orange". The axially chiral structures of DBQ crystals were clearly revealed by the X-ray analyses and CD spectroscopy measurements. Two enantiomers of DBQ were obtained by spontaneous resolution upon crystallization without any chiral auxiliary. The low rotation barriers around the interannular bonds in DBQ molecules resulted in an efficient and selective multiplication of each of the chiral structures when DBQ crystallized in THF at room temperature in the presence of an enantiopure crystal seed, leaving racemized DBQ molecules in the solution. The special crystalline properties of DBQ provided a new approach to the design and synthesis of organic chiral crystals. The photophysical properties of DBQ make it promising in the preparation of new fluorescent probes with high sensitivity.
Selective Anion Binding by a Cofacial Binuclear Zinc Complex of a Schiff-Base Pyrrole Macrocycle
Devoille, Aline M. J.; Richardson, Patricia; Bill, Nathan; Sessler, Jonathan L.; Love, Jason B.
2011-01-01
The synthesis of the new cofacial binuclear zinc complex [Zn2(L)] of a Schiff-base pyrrole macrocycle is reported. It was discovered that the binuclear microenvironment between the two metals of [Zn2(L)] is suited for the encapsulation of anions, leading to the formation of [K(THF)6][Zn2(μ-Cl)(L)].2THF and [Bun4N][Zn2(μ-OH)(L)] which were characterized by X-ray crystallography. Unusually obtuse Zn-X-Zn angles (X=Cl: 150.54(9)° and OH: 157.4(3)°) illustrate the weak character of these interactions and the importance of the cleft pre-organization to stabilize the host. In the absence of added anion, aggregation of [Zn2(L)] was inferred and investigated by successive dilutions and by the addition of coordinating solvents to [Zn2(L)] solutions using NMR spectroscopy as well as isothermal microcalorimetry (ITC). On anion addition, evidence for de-aggregation of [Zn2(L)], combined with the formation of the 1:1 host-guest complex, was observed by NMR spectroscopy and ITC titrations. Furthermore, [Zn2(L)] binds to Cl− selectively in THF as deduced from the ITC analyses, while other halides induce only de-aggregation. These conclusions were reinforced by DFT calculations, which indicated that the binding energies of OH− and Cl− were significantly greater than for the other halides. PMID:21391550
Ganguly, Mainak; Mondal, Chanchal; Pal, Anjali; Pratik, Saied Md; Pal, Jaya; Pal, Tarasankar
2014-07-07
The participation of sodium borohydride (NaBH4) in hydrogen bonding interactions and transient anion radical formation has been proved. Thus, the properties of NaBH4 are extended beyond the purview of its normal reducing capability and nucleophilic property. It is reported that ortho- and para-nitroanilines (NAs) form stable aggregates only in tetrahydrofuran (THF) in the presence of NaBH4 and unprecedented orange/red colorations are observed. The same recipe with nitrobenzene instead of nitroanilines (NAs) in the presence of NaBH4 evolves a transient rose red solution due to the formation of a highly fluorescent anion radical. Spectroscopic studies (UV-vis, fluorescence, RLS, Raman, NMR etc.) as well as theoretical calculations supplement the J-aggregate formation of NAs due to extensive hydrogen bonding. This is the first report where BH4(-) in THF has been shown to support such an aggregation process through H-bonding. It is further confirmed that stable intermolecular hydrogen bond-induced aggregation requires a geometrical match in both the nitro- and amino-functionalities attached to the phenyl ring with proper geometry. On the contrary, meta-nitroaniline remains as the odd man out and does not take part in such aggregation. Surprisingly, Au nanoparticles dismantle the J-aggregates of NA in THF. Explicit hydrogen bond formation in NA has been confirmed experimentally considering its promising applications in different fields including non-linear optics.
Synthesis of Structurally Diverse Emissive Molecular Rotors with Four-Component Ugi Stators.
García-González, Ma Carmen; Aguilar-Granda, Andrés; Zamudio-Medina, Angel; Miranda, Luis D; Rodríguez-Molina, Braulio
2018-03-02
The use of the multicomponent Ugi reaction to rapidly prepare a library of dumbbell-like molecular rotors is highlighted here. The synthetic strategy consisted of the atom-economic access to 15 bulky and structurally diverse iodinated stators, which were cross-coupled to the 1,4-diethynylphenylene rotator. From those experiments, up to six rotors 1a-c and 1l-n were obtained, with yields ranging from 35 to 69% per coupled C-C bond. In addition to the framework diversity, five of these compounds showed aggregate-enhanced emission properties thanks to their conjugated 1,4-bis(phenylethynyl)benzene cores, a property that rises by increasing the water fraction (f w ) in their THF solutions. The results highlight the significance of the diversity-oriented synthesis of rapid access to new molecular fluorescent rotors.
Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions.
Khaokeaw, Chenwit; Sukwattanasinitt, Mongkol; Rashatasakhon, Paitoon
2016-03-01
Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304-330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level.
The Control of Orbital Mixing in Ruthenium Complexes Containing Quinone Related Ligands
1991-04-04
and sodium, respectively. Tetrabutylammonium perchlorate (TBAP) and tetrabutylammonium hexafluorophosphate (Kodak; TBAH) were recrystallized from...solution. Lithium perchlorate trihydrate (0.036 g; 0.23 mmol) in methanol (2 mL) was added to the hot reaction mixture. The mixture was cooled to room...and lithium aluminum hydride suspension in THF (this required the use of the 4,5-dimethylated orthophenylenediamine complex for solubility reasons
Bryan, Aimee M; Long, Gary J; Grandjean, Fernande; Power, Philip P
2013-10-21
The synthesis, magnetic, and spectroscopic characteristics of the synthetically useful dimeric cobalt(II) silylamide complex [Co{N(SiMe3)2}2]2 (1) and several of its Lewis base complexes have been investigated. Variable-temperature nuclear magnetic resonance (NMR) spectroscopy of 1 showed that it exists in a monomer-dimer equilibrium in benzene solution and has an association energy (ΔGreacn) of -0.30(20) kcal mol(-1) at 300 K. Magnetic data for the polycrystalline, red-brown [Co{N(SiMe3)2}2]2 (1) showed that it displays strong antiferromagnetic exchange coupling, expressed as -2JexS1S2, between the two S = (3)/2 cobalt(II) centers with a Jex value of -215(5) cm(-1), which is consistent with its bridged dimeric structure in the solid state. The electronic spectrum of 1 in solution is reported for the first time, and it is shown that earlier reports of the melting point, synthesis, electronic spectrum, and magnetic studies of the monomer "Co{N(SiMe3)2}2" are consistent with those of the bright green-colored tetrahydrofuran (THF) complex [Co{N(SiMe3)2}2(THF)] (4). Treatment of 1 with various Lewis bases yielded monomeric three-coordinated species-[Co{N(SiMe3)2}2(PMe3)] (2), and [Co{N(SiMe3)2}2(THF)] (4), as well as the previously reported [Co{N(SiMe3)2}2(py)] (3)-and the four-coordinated species [Co{N(SiMe3)2}2(py)2] (5) in good yields. The paramagnetic complexes 2-4 were characterized by electronic and (1)H NMR spectroscopy, and by X-ray crystallography in the case of 2 and 4. Magnetic studies of 2-5 and of the known three-coordinated cobalt(II) species [Na(12-crown-4)2][Co{N(SiMe3)2}3] (6) showed that they have considerably larger χMT products and, hence, magnetic moments, than the spin-only values of 1.875 emu K mol(-1) and 3.87 μB, which is indicative of a significant zero-field splitting and g-tensor anisotropy resulting from the pseudo-trigonal crystal field. A fit of χMT for 2-6 yields a large g-tensor anisotropy, large negative D-values (between -62 cm(-1) and -82 cm(-1)), and E-values between ±10 cm(-1) and ±21 cm(-1).
Pfeiffer, Christine M; Sternberg, Maya R; Fazili, Zia; Lacher, David A; Zhang, Mindy; Johnson, Clifford L; Hamner, Heather C; Bailey, Regan L; Rader, Jeanne I; Yamini, Sedigheh; Berry, R J; Yetley, Elizabeth A
2015-06-28
Serum and erythrocyte (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured the serum folate forms (5-methyltetrahydrofolate (5-methylTHF), unmetabolised folic acid (UMFA), non-methyl folate (sum of tetrahydrofolate (THF), 5-formyltetrahydrofolate (5-formylTHF), 5,10-methenyltetrahydrofolate (5,10-methenylTHF)) and MeFox (5-methylTHF oxidation product)) by HPLC-MS/MS and RBC total folate by microbiologic assay in US population ≥ 1 year (n approximately 7500) participating in the National Health and Nutrition Examination Survey 2011-2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37·5 nmol/l; 100 %), UMFA (1·21 nmol/l; 99·9 %), MeFox (1·53 nmol/l; 98·8 %), and THF (1·01 nmol/l; 85·2 %) were mostly detectable. 5-FormylTHF (3·6 %) and 5,10-methenylTHF (4·4 %) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86·7 %); UMFA (4·0 %), non-methyl folate (4·7 %) and MeFox (4·5 %) contributed smaller amounts. Age was positively related to MeFox, but showed a U-shaped pattern for other folates. We generally noted sex and race/ethnic biomarker differences and weak (Spearman's r< 0·4) but significant (P< 0·05) correlations with physiological and lifestyle variables. Fasting, kidney function, smoking and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiological and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological characteristics.
Jeanguenin, Linda; Lara-Núñez, Aurora; Pribat, Anne; Mageroy, Melissa Hamner; Gregory, Jesse F.; Rice, Kelly C.; de Crécy-Lagard, Valérie; Hanson, Andrew D.
2010-01-01
5-Formyltetrahydrofolate (5-CHO-THF) is formed by a side reaction of serine hydroxymethyltransferase. Unlike other folates, it is not a one-carbon donor but a potent inhibitor of folate enzymes and must therefore be metabolized. Only 5-CHO-THF cycloligase (5-FCL) is generally considered to do this. However, comparative genomic analysis indicated (i) that certain prokaryotes lack 5-FCL, implying that they have an alternative 5-CHO-THF-metabolizing enzyme, and (ii) that the histidine breakdown enzyme glutamate formiminotransferase (FT) might moonlight in this role. A functional complementation assay for 5-CHO-THF metabolism was developed in Escherichia coli, based on deleting the gene encoding 5-FCL (ygfA). The deletion mutant accumulated 5-CHO-THF and, with glycine as sole nitrogen source, showed a growth defect; both phenotypes were complemented by bacterial or archaeal genes encoding FT. Furthermore, utilization of supplied 5-CHO-THF by Streptococcus pyogenes was shown to require expression of the native FT. Recombinant bacterial and archaeal FTs catalyzed formyl transfer from 5-CHO-THF to glutamate, with kcat values of 0.1–1.2 min−1 and Km values for 5-CHO-THF and glutamate of 0.4–5 μm and 0.03–1 mm, respectively. Although the formyltransferase activities of these proteins were far lower than their formiminotransferase activities, the Km values for both substrates relative to their intracellular levels in prokaryotes are consistent with significant in vivo flux through the formyltransferase reaction. Collectively, these data indicate that FTs functionally replace 5-FCL in certain prokaryotes. PMID:20952389
Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; ...
2016-07-21
Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O 2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO 2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely ofmore » central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O 2 and QOOH + O 2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Karacan; T. Torul
2007-08-15
The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highestmore » degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.« less
Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications
Mostofian, Barmak; Cai, Charles M.; Smith, Micholas Dean; ...
2016-08-02
Pretreatment facilitates more complete deconstruction of plant biomass to enable more economic production of lignocellulosic biofuels and byproducts. Various co-solvent pretreatments have demonstrated advantages relative to aqueous-only methods by enhancing lignin removal to allow unfettered access to cellulose. However, there is a limited mechanistic understanding of the interactions between the co-solvents and cellulose that impedes further improvement of such pretreatment methods. Recently, tetrahydrofuran (THF) has been identified as a highly effective co-solvent for the pretreatment and fractionation of biomass. Here, to elucidate the mechanism of the THF water interactions with cellulose, we pair simulation and experimental data demonstrating that enhancedmore » solubilization of cellulose can be achieved by the THF water co-solvent system at equivolume mixtures and moderate temperatures (≤445 K). The simulations show that THF and water spontaneously phase separate on the local surface of a cellulose fiber, owing to hydrogen bonding of water molecules with the hydrophilic cellulose faces and stacking of THF molecules on the hydrophobic faces. Furthermore, a single fully solvated cellulose chain is shown to be preferentially bound by water molecules in the THF water mixture. In light of these findings, co-solvent reactions were performed on microcrystalline cellulose and maple wood to show that THF significantly enhanced cellulose deconstruction and lignocellulose solubilization at simulation conditions, enabling a highly versatile and efficient biomass pretreatment and fractionation method.« less
USDA-ARS?s Scientific Manuscript database
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...
NASA Astrophysics Data System (ADS)
İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram
2008-11-01
In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Teng; Manna, Kuntal; Lin, Wenbin
New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C–H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ~2.5 × 10 6 and turnover frequencies of ~1.1 × 10 5 h –1. Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF) 2 speciesmore » in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy•–)CoI(THF) 2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.« less
NASA Astrophysics Data System (ADS)
Trpkovic, Andreja; Todorovic-Markovic, Biljana; Kleut, Duska; Misirkic, Maja; Janjetovic, Kristina; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanovic, Svetlana; Dramicanin, Miroslav; Markovic, Zoran; Trajkovic, Vladimir
2010-09-01
The present study investigated the hemolytic properties of fullerene (C60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC60THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC60CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC60EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC60THF, but not nC60CDX or nC60EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC60THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC60THF. The nC60THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC60THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.
Unified analysis of optical absorption spectra of carotenoids based on a stochastic model.
Uragami, Chiasa; Saito, Keisuke; Yoshizawa, Masayuki; Molnár, Péter; Hashimoto, Hideki
2018-05-03
The chemical structures of the carotenoid molecules are very simple and one might think that the electronic feature of it is easily predicted. However, it still has so much unknown information except the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulating it from the resonance Raman spectra is also the effective way. From this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different kinds of cyclic carotenoid molecules, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated based on a stochastic model using Brownian oscillators. The parameters obtained from the simulation made it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yenilmez Çiftçi, Gönül; Eker, Yakup; Şenkuytu, Elif; Yuksel, Fatma
2016-08-01
In the present work, the partially or fully substituted spiro-, ansa, open-chain forms of 2,2'-methylenediphenoxy, 1,1'-methylenedi-2-naphthoxy cyclotriphosphazene derivatives and their spectral properties were reported. The reactions of hexachlorocyclotriphosphazene [trimer, N3P3Cl6, (1)] with 2,2'-methylenediphenol (2) and 1,1'-methylenedi-2-naphthol (3) in THF produced new cyclotriphosphazene compounds (4-11). All these compounds (4-11) were fully characterized by elemental analysis, FT-IR, MALDI-TOF mass spectrometry, UV Vis, 1H, 13C and 31P NMR spectroscopy. The molecular structures of 4, 5, 7, 9 and 10 were also determined by X-ray crystallography. All five structures were found in monoclinic system, C2/c, P21/n or P21/c space groups. The fluorescence behaviour of the studied cyclotriphosphazene derivatives (9-11) were also examined in THF solution. Compound 11 showed the highest fluorescence emission behaviour that of compounds 4-10.
Wet air co-oxidation of decabromodiphenyl ether (BDE209) and tetrahydrofuran.
Zhao, Hongxia; Zhang, Feifang; Qu, Baocheng; Xue, Xingya; Liang, Xinmiao
2009-09-30
The wet air co-oxidation (WACO) of a major commercial polybrominated diphenyl ether flame retardant congener, decabromodiphenyl ether (BDE209), was investigated using tetrahydrofuran (THF) as an initiator in a stainless autoclave at temperature range of 120-170 degrees C and 0.5MPa oxygen pressure. Compared to the single oxidation of BDE209 under the same conditions, the addition of THF in the reaction system greatly improved the removal efficiency of BDE209. The effect of temperature on the reaction was studied. The removals of BDE209 and Br increased with increasing temperature. In addition, the effect of NaNO(2) as the catalyst on the WACO was also investigated and the results showed that the addition of NaNO(2) could improve the Br removal efficiency.
Zhang, Chunmei; Liu, Ruiting; Zhang, Jie; Chen, Zhenxia; Zhou, Xigeng
2006-07-24
The reactivity of [Cp(2)Ln(mu-OH)(THF)]2 (Ln = Y (1), Er (2), Yb (3)) toward PhEtCCO, PhNCO, Cp3Ln, [Cp2Ln(mu-CH3)]2, and the LiCl adduct of Cp2Ln(n)Bu(THF)x was examined. In all cases, OH-centered reactivity is observed: complexes 1-3 react with PhEtCCO to form the O-H addition products [Cp2Ln(mu-eta1:eta2-O2CCHEtPh)]2 (Ln = Yb (5), Er (6), Y (7), respectively, for 1-3), whereas treatment of 1 with PhNCO affords the addition/CpH-elimination/rearrangement product [{Cp2Y(THF)}2(mu-eta2:eta2-O2CNPh)] (8), which contains an unusual PhNCO(2) dianionic ligand. Analogous compound [Cp2Ln(THF)]2(mu-eta2:eta2-O2CNPh) (Ln = Yb (9), Er (10)) and 8 can be obtained in a higher yield by treatment of [Cp2Ln(mu-OH)(THF)]2 with PhNCO followed by reaction with the corresponding Cp3Ln. However, attempts to prepare the corresponding heterobimetallic complex by reacting stoichiometric amounts of [Cp2Y(mu-OH)(THF)]2 with PhNCO followed by treating it with Cp3Yb are unsuccessful. Instead, only rearrangement products 8 and 9 are obtained. Furthermore, the reaction of 3 with [Cp2Yb(mu-CH3)]2 or Cp3Yb forms oxo-bridged compound [Cp2Yb(THF)]2(mu-O) (11), whereas the reaction of [Cp2ErCl]2 with Li(n)Bu followed by treatment with 2 affords unexpected mu-oxo lanthanocene cluster (Cp2Er)3(mu-OH)(mu3-O)(mu-Cl)Li(THF)4 (12). In contrast to 1 and 2, 3 shows a strong tendency to undergo the intermolecular elimination of CpH at room temperature, giving trinuclear species [Cp2Yb(mu-OH)]2[CpYb(THF)](mu3-O) (4). The single-crystal X-ray diffraction structures of 1, 2, and 4-12 are described. All the results offer an interesting contrast to transition- and main-metal hydroxide complexes.
Wooten, Alfred J; Carroll, Patrick J; Walsh, Patrick J
2007-08-16
Shibasaki's heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K; Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-pi interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes.
Impact of Na- and K-C π-Interactions on the Structure and Binding of M3(sol)n(BINOLate)3Ln Catalysts
Wooten, Alfred J.; Carroll, Patrick J.; Walsh, Patrick J.
2008-01-01
Shibasaki’s heterobimetallic complexes M3(THF)n(BINOLate)3Ln [M = Li, Na, K, Ln = lanthanide(III)] are among the most successful asymmetric Lewis acid catalysts. Why does M3(THF)n(BINOLate)3Ln readily bind substrates when M = Li but not when M = Na or K? Structural studies herein indicate Na- and K-C cation-π interactions and alkali metal radius may be more important than even lanthanide radius. Also reported is a novel polymeric [K3(THF)2(BINOLate)3Yb]n structure that provides the first evidence of interactions between M3(THF)n(BINOLate)3Ln complexes. PMID:17658838
Huang, Yong; Tsai, Yueh-Hsuan; Hung, Wen-Chou; Lin, Chieh-Shen; Wang, Wei; Huang, Jui-Hsien; Dutta, Saikat; Lin, Chu-Chieh
2010-10-18
A series of lithium and sodium complexes with OOO-tridentate bis(phenolate) ligands have been synthesized and fully characterized. The reaction of 2,2'-dihydroxy-3,3',5,5'-tetrakis[(1-methyl-1-phenyl)ethyl]dibenzyl ether (L(1)-H(2)) with different ratios of (n)BuLi in toluene or tetrahydrofuran (THF) gave [Li(2)(L(1)-H)(2)] (1), [Li(4)L(1)(2)] (2), and [Li(2)L(1)(THF)(3)] (3), respectively. Similarly, [Na(L(1)-H)(THF)] (4), [Na(2)(L(1)-H)](2) (5), and [Na(4)L(1)(2)] (6) were prepared by the reaction of L(1)-H(2) and NaN[Si(CH(3))(3)](2) or sodium metal. In addition, the reaction of 2,2'-dihydroxy-3,3',5,5'-tetra-tert-butyldibenzyl ether (L(2)-H(2)) with (n)BuLi in toluene or THF yields Li(2)(L(2)-H)(2)] (7) and [Li(2)(L(2)-H)(2)(THF)(2)] (8), respectively. Further treatment of 7 with 2 mol equiv of benzyl alcohol provides [Li(2)(L(2)-H)(2)(BnOH)(2)] (9). Complexes 1-4 and 6-9 have been structurally characterized by single-crystal X-ray analysis. The dinuclear nature of complexes 1 and 3 was confirmed from their molecular structure. Complexes 2 and 6 illustrate tetranuclear species; however, complex 4 shows a mononuclear feature. A p-π interaction exists from the phenyl ring of the 2-(methyl-1-phenylethyl) groups to the central metal in complexes 2, 4, and 6, which could effectively stabilize the metal center. Among them, complexes 1, 2, and 5-9 displayed efficient catalytic behavior for the ring-opening polymerization of L-lactide in the presence of benzyl alcohol. Experimental results indicate that among these alkali-metal complexes, the sodium compound 6 displays a rapid catalytic polymerization of L-lactide in "living" fashion, yielding poly(L-lactide) with a controlled molecular weight and narrow polydispersity indices for a wide range of monomer-to-initiator ratios.
Isaacson, Carl; Mohr, Thomas K G; Field, Jennifer A
2006-12-01
Groundwater contamination by cyclic ethers, 1,4-dioxane (dioxane), a probable human carcinogen, and tetrahydrofuran (THF), a co-contaminant at many chlorinated solvent release sites, are a growing concern. Cyclic ethers are readily transported in groundwater, yet little is known about their fate in environmental systems. High water solubility coupled with low Henry's law constants and octanol-water partition coefficients make their removal from groundwater problematic for both remedial and analytical purposes. A solid-phase extraction (SPE) method based on activated carbon disks was developed for the quantitative determination of dioxane and THF. The method requires 80 mL samples and a total of 1.2 mL of solvent (acetone). The number of steps is minimized due to the "in-vial" elution of the disks. Average recoveries for dioxane and THF were 98% and 95%, respectively, with precision, as indicated by the relative standard deviation of <2% to 6%. The method quantitation limits are 0.31 microg/L for dioxane and 3.1 microg/L for THF. The method was demonstrated by analyzing groundwater samples for dioxane and THF collected during a single sampling campaign at a TCA-impacted site. Dioxane concentrations and areal extent of dioxane in groundwater were greater than those of either TCA or THF.
Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.
2007-01-01
The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.
Oyen, David; Fenwick, R Bryn; Aoto, Phillip C; Stanfield, Robyn L; Wilson, Ian A; Dyson, H Jane; Wright, Peter E
2017-08-16
The rate-determining step in the catalytic cycle of E. coli dihydrofolate reductase is tetrahydrofolate (THF) product release, which can occur via an allosteric or an intrinsic pathway. The allosteric pathway, which becomes accessible when the reduced cofactor NADPH is bound, involves transient sampling of a higher energy conformational state, greatly increasing the product dissociation rate as compared to the intrinsic pathway that obtains when NADPH is absent. Although the kinetics of this process are known, the enzyme structure and the THF product conformation in the transiently formed excited state remain elusive. Here, we use side-chain proton NMR relaxation dispersion measurements, X-ray crystallography, and structure-based chemical shift predictions to explore the structural basis of allosteric product release. In the excited state of the E:THF:NADPH product release complex, the reduced nicotinamide ring of the cofactor transiently enters the active site where it displaces the pterin ring of the THF product. The p-aminobenzoyl-l-glutamate tail of THF remains weakly bound in a widened binding cleft. Thus, through transient entry of the nicotinamide ring into the active site, the NADPH cofactor remodels the enzyme structure and the conformation of the THF to form a weakly populated excited state that is poised for rapid product release.
Sherlock, Mark; Behan, Lucy Ann; Hannon, Mark J; Alonso, Aurora Aragon; Thompson, Christopher J; Murray, Robert D; Crabtree, Nicola; Hughes, Beverly A; Arlt, Wiebke; Agha, Amar; Toogood, Andrew A; Stewart, Paul M
2015-11-01
Patients with hypopituitarism have increased morbidity and mortality. There is ongoing debate about the optimum glucocorticoid (GC) replacement therapy. To assess the effect of GC replacement in hypopituitarism on corticosteroid metabolism and its impact on body composition. We assessed the urinary corticosteroid metabolite profile (using gas chromatography/mass spectrometry) and body composition (clinical parameters and full body DXA) of 53 patients (19 female, median age 46 years) with hypopituitarism (33 ACTH-deficient/20 ACTH-replete) (study A). The corticosteroid metabolite profile of ten patients with ACTH deficiency was then assessed prospectively in a cross over study using three hydrocortisone (HC) dosing regimens (20/10 mg, 10/10 mg and 10/5 mg) (study B) each for 6 weeks. 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity was assessed by urinary THF+5α-THF/THE. Endocrine Centres within University Teaching Hospitals in the UK and Ireland. Urinary corticosteroid metabolite profile and body composition assessment. In study A, when patients were divided into three groups - patients not receiving HC and patients receiving HC≤20 mg/day or HC>20 mg/day - patients in the group receiving the highest daily dose of HC had significantly higher waist-to-hip ratio (WHR) than the ACTH replete group. They also had significantly elevated THF+5α-THF/THE (P=0.0002) and total cortisol metabolites (P=0.015). In study B, patients on the highest HC dose had significantly elevated total cortisol metabolites and all patients on HC had elevated THF+5α-THF/THE ratios when compared to controls. In ACTH-deficient patients daily HC doses of >20 mg/day have increased WHR, THF+5α-THF/THE ratios and total cortisol metabolites. GC metabolism and induction of 11β-HSD1 may play a pivitol role in the development of the metabolically adverse hypopituitary phenotype. © 2015 European Society of Endocrinology.
Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo
2012-01-01
The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.
An Unsymmetric Ligand Framework for Noncoupled Homo- and Heterobimetallic Complexes.
Haas, Ruth M; Hern, Zachary; Sproules, Stephen; Hess, Corinna R
2017-12-18
We introduce a new unsymmetric ligand, PDIpCy (PDI = pyridyldiimine; Cy = cyclam), that offers two distinct, noncoupled coordination sites. A series of homo- and heterobimetallic complexes, [Zn 2 (PDIpCy)(THF)(OTf) 4 ] (1; THF = tetrahydrofuran and OTf = triflate), [Ni 2 (PDIpCy)(THF)(OTf) 2 ](OTf) 2 (2), and [NiZn(PDIpCy)(THF)(OTf) 4 ] (3), are described. The one-electron-reduced compounds, [Zn 2 (PDIpCy)(OTF) 3 ] (4), [Ni 2 (PDIpCy)(OTf)](OTf) 2 (5), and [NiZn(PDIpCy)(OTf) 3 ] (6), were isolated, and their electronic structures were characterized. The reduced compounds are charge-separated species, with electron storage at either the PDI ligand (4) or at the PDI-bound metal ion (5 and 6).
NASA Astrophysics Data System (ADS)
Glimsdal, Eirik; Westlund, Robert; Lindgren, Mikael
2009-05-01
Because of their strong nonlinear optical properties, Platinum(II) acetylides are investigated as potential chromophores for optical power limiting (OPL) applications. The strong excited state absorption and efficient intersystem crossing to the triplet states in these materials are desired properties for good OPL performance. We recently reported on OPL and photo-physical properties of Pt(II)-acetylide chromophores in solution, modified with thiophenyl or triazole groups. [R. Westlund et al. J. Mater. Chem. 18, 166 (2008); E. Glimsdal et al. Proc. SPIE 6740, 67400M (2007)] The chromophores were later incorporated into poly(methyl-methacrylate) (PMMA) glasses. A variety of doped organic solids were prepared, reaching concentrations of up to 13 wt% of the guest molecule. Raman spectra of the doped solid devices proved that the chemical structure of the nonlinear dyes remains intact upon the polymerization of the solid matrix. Luminescence spectra confirm that the basic photo-physical properties (absorption, emission and inter-system crossing) observed for the solute molecules in THF are maintained also in the solid state. In particular, the phosphorescence lifetime stays in the order of μs to ms, just as in the oxygen evacuated liquid samples. Also, the wavelength dependence and time-dynamics of the triplet absorption spectra of the dyes, dissolved in THF solution and dispersed in solid PMMA matrices, were investigated and compared. Ground state UV absorption spectra between 300 and 420 nm have corresponding broad band visible triplet-triplet absorption between 400 and 800 nm. The triplet state extinction coefficients were determined to be in the order of 104 M-1cm-1.
Analogs of Estrogen Metabolites as Probes of Estrogen-Induced Tumorigenesis
1999-07-01
bromination reaction by reverse phase HPLC revealed a mixture of 4-bromoestradiol (5-10%), 2-bromoestradiol 28 (’-15%) and 2,4- dibromoestradiol 29...mixture. HPLC analysis of the reaction mixture revealed that the estradiol was completely consumed and 2,4-dibromoestradiol 29 was the major product...purification by HPLC .5 A solution of 30 in THF at -78’C was treated with various organolithium reagents and stirred for three hours after which the
Computer Solutions to Heat and Diffraction Equations in High Energy Laser Windows. Volume II
1976-11-01
IF L =2 AND TI2.1) = T(l.l)» Gn TO 135 TO FOLLOW UP THp IMPRESSION THAT INTERGRANn IS STRAIGHT LINE. .tQ. 1ABS ) 60 TO ,135 LACllLATE NEXT...IJA ’.(M MUMBFR OF "DAIAIM« ARRAYS -rAPO UDA »? CONTAIN THE TViDTCtb DI" DATA IM ’DATAIN1 WHICH ARF (0 iE PLOTTED AT THF BFGTNMT’MR 0^ EACH
Kwon, Seung-Hwan; Hong, Sa-Ik; Ma, Shi-Xun; Lee, Seok-Yong; Jang, Choon-Gon
2015-06-01
In this study, we investigated the mechanisms of 3',4',7-trihydroxyflavone (THF) protection of neuronal cells from neuronal cell death induced by the oxidative stress-related neurotoxin hydrogen peroxide (H2O2). Pretreatment with THF significantly elevated cell viability, reduced H2O2-induced lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production, glutathione (GSH) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, and mitochondria membrane potential (MMP) loss. Western blot data demonstrated that THF inhibited the H2O2-induced up- or down-regulation of cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), Bax, Bcl-2, and Bcl-xL, and attenuated the H2O2-induced release of cytochrome c from the mitochondria to the cytosol. In addition, pretreatment with THF attenuated H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinases (PI3K)/Akt. THF also inhibited nuclear factor-κB (NF-κB) translocation to the nucleus induced by H2O2, down-stream of H2O2-induced phosphorylation of MAPKs and PI3K/Akt. These data provide the first evidence that THF protects neuronal cells against H2O2-induced oxidative stress, possibly through ROS reduction, mitochondria protection, and NF-κB modulation via MAPKs and PI3K/Akt pathways. The neuroprotective effects of THF make it a promising candidate as a therapeutic agent for neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Campino, Carmen; Carvajal, Cristian A; Cornejo, Javiera; San Martín, Betty; Olivieri, Oliviero; Guidi, Giancesare; Faccini, Giovanni; Pasini, Francesco; Sateler, Javiera; Baudrand, Rene; Mosso, Lorena; Owen, Gareth I; Kalergis, Alexis M; Padilla, Oslando; Fardella, Carlos E
2010-02-01
Cortisol availability is modulated by several enzymes: 11β-HSD2, which transforms cortisol (F) to cortisone (E) and 11β-HSD1 which predominantly converts inactive E to active F. Additionally, the A-ring reductases (5α- and 5β-reductase) inactivate cortisol (together with 3α-HSD) to tetrahydrometabolites: 5αTHF, 5βTHF, and THE. The aim was to assess 11β-HSD2, 11β-HSD1, and 5β-reductase activity in hypertensive patients. Free urinary F, E, THF, and THE were measured by HPLC-MS/MS in 102 essential hypertensive patients and 18 normotensive controls. 11β-HSD2 enzyme activity was estimated by the F/E ratio, the activity of 11β-HSD1 in compare to 11β-HSD2 was inferred by the (5αTHF + 5βTHF)/THE ratio and 5β-reductase activity assessed using the E/THE ratio. Activity was considered altered when respective ratios exceeded the maximum value observed in the normotensive controls. A 15.7% of patients presented high F/E ratio suggesting a deficit of 11β-HSD2 activity. Of the remaining 86 hypertensive patients, two possessed high (5αTHF + 5βTHF)/THE ratios and 12.8% had high E/THE ratios. We observed a high percentage of alterations in cortisol metabolism at pre-receptor level in hypertensive patients, previously misclassified as essential. 11β-HSD2 and 5β-reductase decreased activity and imbalance of 11β-HSDs should be considered in the future management of hypertensive patients.
Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei
2016-01-01
One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433
Segro, Scott S; Cabezas, Yaniel; Malik, Abdul
2009-05-15
A sol-gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol-gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol-gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol-gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol-gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol-gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions-even after 18h of exposure to 1M HCl (pH approximately 0.0) and 1M NaOH (pH approximately 14.0).
Pietrzik, Klaus; Bailey, Lynn; Shane, Barry
2010-08-01
There is a large body of evidence to suggest that improving periconceptional folate status reduces the risk of neonatal neural tube defects. Thus increased folate intake is now recommended before and during the early stages of pregnancy, through folic acid supplements or fortified foods. Furthermore, there is growing evidence that folic acid may have a role in the prevention of other diseases, including dementia and certain types of cancer. Folic acid is a synthetic form of the vitamin, which is only found in fortified foods, supplements and pharmaceuticals. It lacks coenzyme activity and must be reduced to the metabolically active tetrahydrofolate form within the cell. L-5-methyl-tetrahydrofolate (L-5-methyl-THF) is the predominant form of dietary folate and the only species normally found in the circulation, and hence it is the folate that is normally transported into peripheral tissues to be used for cellular metabolism. L-5-methyl-THF is also available commercially as a crystalline form of the calcium salt (Metafolin(R)), which has the stability required for use as a supplement. Studies comparing L-5-methyl-THF and folic acid have found that the two compounds have comparable physiological activity, bioavailability and absorption at equimolar doses. Bioavailability studies have provided strong evidence that L-5-methyl-THF is at least as effective as folic acid in improving folate status, as measured by blood concentrations of folate and by functional indicators of folate status, such as plasma homocysteine. Intake of L-5-methyl-THF may have advantages over intake of folic acid. First, the potential for masking the haematological symptoms of vitamin B(12) deficiency may be reduced with L-5-methyl-THF. Second, L-5-methyl-THF may be associated with a reduced interaction with drugs that inhibit dihydrofolate reductase.
Development of Organic Nonlinear Optical Materials
1992-10-22
been used by Casstevens, et al, to analyze DFWM results on Langmuir - Blodgett films of SiPc derivatives and evaporated films of metal free phthalocyanine...of poly (THF) (MW = 650 g/mol), a soluble branched polymer was produced. The reaction was carried out either neat, or in THF without addition of any...substantially and poly (THF) proved suitable. The resultant polymer was soluble with a lower Tg due to plasticizing effects. A major cause of concern in this work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goracci, G., E-mail: sckgorag@ehu.es; Arbe, A.; Alegría, A.
2015-09-07
We have investigated a mixture of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and tetrahydrofuran (THF) (70 wt. % PDMAEMA/30 wt. % THF) by combining dielectric spectroscopy and quasielastic neutron scattering (QENS) on a labelled sample, focusing on the dynamics of the THF molecules. Two independent processes have been identified. The “fast” one has been qualified as due to an internal motion of the THF ring leading to hydrogen displacements of about 3 Å with rather broadly distributed activation energies. The “slow” process is characterized by an Arrhenius-like temperature dependence of the characteristic time which persists over more than 9 orders of magnitude in time. Themore » QENS results evidence the confined nature of this process, determining a size of about 8 Å for the volume within which THF hydrogens’ motions are restricted. In a complementary way, we have also investigated the structural features of the sample. This study suggests that THF molecules are well dispersed among side-groups nano-domains in the polymer matrix, ruling out a significant presence of clusters of solvent. Such a good dispersion, together with a rich mobility of the local environment, would prevent cooperativity effects to develop for the structural relaxation of solvent molecules, frustrating thereby the emergence of Vogel-Fulcher-like behavior, at least in the whole temperature interval investigated.« less
Lanthanide(II) complexes of a phosphine-borane-stabilised carbanion.
Izod, Keith; Clegg, William; Harrington, Ross W
2010-08-07
The reaction between two equivalents of the potassium salt [(Me(3)Si)(2){Me(2)P(BH(3))}C]K (4) and SmI(2)(THF)(2) in refluxing THF yields the dialkylsamarium(II) compounds [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Sm(THF) (5a) or [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Sm(THF)(3) (5b), depending on the crystallisation conditions, in good yield as air- and moisture-sensitive crystalline solids. X-ray crystallography shows that, whereas both alkyl ligands chelate the samarium(II) ion in 5a, in 5b one alkyl ligand chelates the metal centre and one binds the metal only through its borane hydrogen atoms. The reaction between YbI(2) and two equivalents of 4 in refluxing benzene yields the solvent-free dialkylytterbium(II) compound [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Yb (8). In contrast to 5a and 5b, compound 8 reacts rapidly with THF to give the free phosphine-borane (Me(3)Si)(2){Me(2)P(BH(3))}CH as the only identifiable product.
Aminotroponiminate calcium and strontium complexes.
Datta, Simmi; Gamer, Michael T; Roesky, Peter W
2008-06-07
Heteroleptic aminotroponiminate complexes of calcium and strontium have been prepared. The monomeric calcium complex [((iPr)2ATI)CaI(THF)3] 1 ((iPr)2ATI = N-isopropyl-2-(isopropylamino)troponiminate) and the corresponding dimeric strontium compound [( (iPr)2ATI)SrI(THF)2]2 2 were obtained by reaction of [((iPr)2ATI)K] and MI2. Whereas the mixed ligand compound of composition [((iPr)2ATI)Ca(iPrAT)]2 3 (iPrAT = 2-(isopropylamino)troponate) was not obtained via a salt metathesis but by reaction of [Ca(N(SiMe3)2)2(THF)2] with ( (iPr)2ATI)H and (iPrAT)H, the diphosphanylamido complex [( (iPr)2ATI)Ca((Ph2P)2N)(THF)2] was obtained by reaction of CaI2 with the potassium compounds [( (iPr)2ATI)K] and [K(THF)n][N(PPh2)2]. The single crystal X-ray structures of all compounds were established and the latter compound shows a eta2-coordination mode of the ligand via the nitrogen and one phosphorus atom.
NASA Astrophysics Data System (ADS)
Lin, Chen-Hao; Nesterov, Vladimir N.; Richmond, Michael G.
2018-03-01
The diphosphine 1,2-(PPh2)2-closo-1,2-C2B10H10 reacts with BrRe(CO)5 and fac-BrRe(CO)3(THF)2 to give fac-BrRe(CO)3[1,2-(PPh2)2-closo-1,2-C2B10H10] (1) in high yields (>80%). Compound 1 is the first structurally characterized rhenium carbonyl that contains an ancillary carborane-based diphosphine ligand. 1 has been characterized in solution by IR and NMR spectroscopies (1H and 31P), and the solid-state structure has been determined by X-ray diffraction analysis. The electrochemical properties of 1 have been investigated by cyclic voltammetry, and the composition of the DFT-computed HOMO and LUMO levels are discussed relative to the electrochemical data. The thermodynamics for the formation of 1 from the rhenium precursors BrRe(CO)5 and fac-BrRe(CO)3(THF)2 have been evaluated by DFT calculations.
Templated Synthesis of Aluminum Nanoparticles - A New Route to Stable Energetic Materials
2009-11-05
aluminum hydride (LiAlH4), anhydrous aluminum chloride (AlCl3), titanium (IV) isopropoxide , and 1-methylpyrrolidine were supplied by Sigma-Aldrich. The...film containing the titanium salt was immersed in a tetrahydrofuran (THF) solution of 1-methylpyrrolidine alane (0.5 or 1 M) with stirring for 12 h...and a small amount of titanium from the catalyst. However, there was only a negligible amount of oxygen in the specimen despite the fact that the EDX
Photochemistry of Metal-Metal Bonded Transition Element Complexes
1980-12-12
longest-lived metal - metal bonded complex in 298 K fluid solution is of tl.e order of _10-6 a in lifetime (7). Thus, excited state reactions of any kind must...may be greater since cage escape of Re(CO)5 radicals may be less thin unity. There is a solvent viscosity effect on the disappearance quantum yield of...M2 (CO) 1 0 in the presence of 12,consistent with a solvent cage effect (11). In polar solvents (pyridine, THF, alcohols, etc.) the photochemistry of
Kottalanka, Ravi K; Harinath, A; Rej, Supriya; Panda, Tarun K
2015-12-14
We report here a series of alkali and alkaline earth metal complexes, each with a bulky iminopyrrolyl ligand [2-(Ph3CN=CH)C4H3NH] (1-H) moiety in their coordination sphere, synthesized using either alkane elimination or silylamine elimination methods or the salt metathesis route. The lithium salt of molecular composition [Li(2-(Ph3CN=CH)C4H3N)(THF)2] (2) was prepared using the alkane elimination method, and the silylamine elimination method was used to synthesize the dimeric sodium and tetra-nuclear potassium salts of composition [(2-(Ph3CN=CH)C4H3N)Na(THF)]2 (3) and [(2-(Ph3CN=CH)C4H3N)K(THF)0.5]4 (4) respectively. The magnesium complex of composition [(THF)2Mg(CH2Ph){2-(Ph3CN=CH)C4H3N}] (5) was synthesized through the alkane elimination method, in which [Mg(CH2Ph)2(OEt2)2] was treated with the bulky iminopyrrole ligand 1-H in 1 : 1 molar ratio, whereas the bis(iminopyrrolyl)magnesium complex [(THF)2Mg{2-(Ph3CN=CH)C4H3N}2] (6) was isolated using the salt metathesis route. The heavier alkaline earth metal complexes of the general formula {(THF)nM(2-(Ph3CN=CH)C4H3N)2} [M = Ca (7), Sr (8), and n = 2; M = Ba (9), n = 3] were prepared in pure form using two synthetic methods: in the first method, the bulky iminopyrrole ligand 1-H was directly treated with the alkaline earth metal precursor [M{N(SiMe3)2}2(THF)n] (where M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent at ambient temperature. The complexes 7-9 were also obtained using the salt metathesis reaction, which involves the treatment of the potassium salt (4) with the corresponding metal diiodides MI2 (M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent. The molecular structures of all the metal complexes (1-H, 2-9) in the solid state were established through single-crystal X-ray diffraction analysis. The complexes 5-9 were tested as catalysts for the ring-opening polymerization of ε-caprolactone. High activity was observed in the heavier alkaline earth metal complexes 7-9, with a very narrow polydispersity index in comparison to that of magnesium complexes 5 and 6.
Chiesa, Luca; Panseri, Sara; Pavlovic, Radmila; Cannizzo, Francesca Tiziana; Biolatti, Bartolomeo; Divari, Sara; Villa, Roberto; Arioli, Francesco
2016-07-01
The effects of long-term administration of low doses of dexamethasone (DX) and prednisolone (PL) on the metabolism of endogenous corticosteroids were investigated in veal calves. In addition to cortisol (F) and cortisone (E), whose interconversion is regulated by 11β-hydroxysteroid dehydrogenases (11βHSDs), special attention was paid to tetrahydrocortisol (THF), allo-tetrahydrocortisol (aTHF), tetrahydrocortisone (THE) and allo-tetrahydrocortisone (aTHE), which are produced from F and E by catalytic activity of 5α and 5β-reductases. A specifically developed HPLC-ESI-MS/MS method achieved the complete chromatographic separation of two pairs of diastereoisomers (THF/aTHF and THE/aTHE), which, with appropriate mass fragmentation patterns, provided an unambiguous conformation. The method was linear (r(2) > 0.9905; 0.5-25 ng ml(-1)), with LOQQ of 0.5 ng ml(-1). Recoveries were in range 75-114%, while matrix effects were minimal. The experimental study was carried out on three groups of male Friesian veal calves: group PL (n = 6, PL acetate 15 mg day(-1) p.o. for 31 days); group DX (n = 5, 5 mg of estradiol (E2) i.m., weekly, and 0.4 mg day(-1) of DX p.o. for 31 days) and a control group (n = 8). Urine was collected before, during (twice) and at the end of treatment. During PL administration, the tetrahydro-metabolite levels decreased gradually and remained low after the suspension of treatment. DX reduced urinary THF that persisted after the treatment, while THE levels decreased during the experiment, but rebounded substantially after the DX was withdrawn. Both DX and PL significantly interfered with the production of F and E, leading to their complete depletion. Taken together, the results demonstrate the influence of DX and PL administration on 11βHSD activity and their impact on dysfunction of the 5-reductase pathway. In conclusion, profiling tetrahydro-metabolites of F and E might serve as an alternative, indirect but reliable, non-invasive procedure for assessing the impact of synthetic glucocorticosteroids administration.
Izod, Keith; Liddle, Stephen T; Clegg, William
2003-06-25
Metathesis between either SrI2 or BaI2 and 2 equiv of {(Me3Si)2(MeOMe2Si)C}K in THF yields the novel heavier alkali metal dialkyls {(Me3Si)2(MeOMe2Si)C}2M(L) [M(L) = Sr(THF) (2), Ba(DME) (3) (DME = 1,2-dimethoxyethane)] after recrystallization.
NASA Astrophysics Data System (ADS)
Li, Qiang-Gen; Deng, Chao; Ren, Yi; Wong, Ning-Bew; Chu, San-Yan; Wang, Xin
Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6-311+G(d,p) and 6-311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(=O)XH (X D S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(=X)OH are much more stable than the silanone forms CH3Si(=O)XH in the gas-phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(=O)XH are dominant. This situation may be attributed to the fact that the Si=O and O=H single bonds in the silanol forms are stronger than the Si=X and X=H single bonds in the silanone forms, respectively, even though the Si=X (X D S, Se, and Te) double bonds are much weaker than the Si=O double bondE These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si=S double bond is stronger than the S=O double bond for the tautomeric equilibrium of RSi(=O)SH (R=H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(=S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution.0
Zhang, Guangchao; Wei, Yun; Guo, Liping; Zhu, Xiancui; Wang, Shaowu; Zhou, Shuangliu; Mu, Xiaolong
2015-02-02
Two series of new dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in novel μ-η(2) :η(1) :η(1) hapticities are synthesized and characterized. Treatment of [RE(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of 3-(tBuN=CH)C8 H5 NH (L1 ) in THF gives the dinuclear rare-earth metal alkyl complexes trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH(CH2 SiMe3 )}Ind)RE(thf)(CH2 SiMe3 )]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C=N group is transferred to the amido group by alkyl CH2 SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μ-η(2) :η(1) :η(1) bonding modes, forming the dinuclear rare-earth metal alkyl complexes. When L1 is reduced to 3-(tBuNHCH2 )C8 H5 NH (L2 ), the reaction of [Yb(CH2 SiMe3 )3 (thf)2 ] with 1 equivalent of L2 in THF, interestingly, generated the trans-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (major) and cis-[(μ-η(2) :η(1) :η(1) -3-{tBuNCH2 }Ind)Yb(thf)(CH2 SiMe3 )]2 (minor) complexes. The catalytic activities of these dinuclear rare-earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio- and stereoselectivities for isoprene 1,4-cis-polymerization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women.
Page, Rachael; Robichaud, André; Arbuckle, Tye E; Fraser, William D; MacFarlane, Amanda J
2017-05-01
Background: Folate requirements increase during pregnancy and lactation. It is recommended that women who could become pregnant, are pregnant, or are lactating consume a folic acid (FA)-containing supplement. Objectives: We sought to determine breast-milk total folate and unmetabolized folic acid (UMFA) contents and their relation with FA-supplement use and doses in a cohort of Canadian mothers who were enrolled in the MIREC (Maternal-Infant Research on Environmental Chemicals) study. Design: Breast-milk tetrahydrofolate (THF), 5-methyl-THF, 5-formyl-THF, 5,10-methenyl-THF, and UMFA were measured with the use of liquid chromatography-tandem mass spectrometry ( n = 561). Total daily supplemental FA intake was based on self-reported FA-supplement use. Results: UMFA was detectable in the milk of 96.1% of the women. Total daily FA intake from supplements was associated with breast folate concentration and species. Breast-milk total folate was 18% higher ( P < 0.001) in supplement users ( n = 401) than in nonusers ( n = 160), a difference driven by women consuming >400 μg FA/d ( P ≤ 0.004). 5-Methyl-THF was 19% lower ( P < 0.001) and UMFA was 126% higher ( P < 0.001) in supplement users than in nonusers. Women who consumed >400 μg FA/d had proportionally lower 5-methyl-THF and higher UMFA than did women who consumed ≤400 μg FA/d. Conclusions: FA-supplement use was associated with modestly higher breast-milk total folate. Detectable breast-milk UMFA was nearly ubiquitous, including in women who did not consume an FA supplement. Breast-milk UMFA was proportionally higher than 5-methyl-THF in women who consumed >400 μg FA/d, thereby suggesting that higher doses exceed the physiologic capacity to metabolize FA and result in the preferential uptake of FA in breast milk. Therefore, FA-supplement doses >400 μg may not be warranted, especially in populations for whom FA fortification is mandatory. © 2017 American Society for Nutrition.
Zhou, Wen; Thompson, John R; Leznoff, Clifford C; Leznoff, Daniel B
2017-02-16
The preparation and structural characterization of a series of chromium phthalocyanine complexes with multiple metal and ring oxidation states were achieved using PcCr II (1) (Pc=phthalocyanine) or PcCr II (THF) 2 (1⋅THF 2 ) as starting materials. The reaction of soluble 1⋅THF 2 with Br 2 or I 2 gave the PcCr III halide complexes PcCrX(THF) (X=I/I 3 , Br; 3, 4, respectively). Treatment of 1 with 0.5 equivalent of PhIO or air generated the dinuclear [PcCr(THF)] 2 (μ-O) (5), whereas the addition of one equivalent of AgSbF 6 to 1 resulted in oxidation to THF-solvated octahedral [PcCr III (THF) 2 ]SbF 6 (6). The reduction of 1 with three sequential equivalents of KEt 3 BH resulted in the isolation of [K(DME) 4 ][Pc 3- Cr II ] (7), [K(DME) 4 ] 2 [Pc 4- Cr II ] (8) and [K 6 (DME) 4 ][Pc 4- Cr I ] 2 (9), respectively. The reduced products are deep purple in colour, with visible absorption maxima between 500-580 nm. The ring-reduced complexes 7 and 8 are monomeric, whereas 9 is a 1D chain of dinuclear [PcCr] 2 units with intercalated K + cations and supported by Cr-Cr interactions of 2.988(2) Å. Addition of four equivalents of KC 8 resulted in the demetallated product PcK 2 (DME) 4 (10), which has a 1D chain structure. The isolation and structural characterization of new PcCr complexes spanning five oxidation states, including rare examples of crystalline reduced Pc-ring species emphasizes the broad redox activity and stability of phthalocyanine-based complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Li; Yu, Lin-Lu; Zhang, Jun-Jie; Xie, Xiang-Ting; Tao, Qing; Yan, Xin; Hong, Qing; Qiu, Ji-Guo
2016-01-01
ABSTRACT Sphingomonas sp. strain Ndbn-20 degrades and utilizes the herbicide dicamba as its sole carbon and energy source. In the present study, a tetrahydrofolate (THF)-dependent dicamba methyltransferase gene, dmt, was cloned from the strain, and three other genes, metF, dhc, and purU, which are involved in THF metabolism, were found to be located downstream of dmt. A transcriptional study revealed that the four genes constituted one transcriptional unit that was constitutively transcribed. Lysates of cells grown with glucose or dicamba exhibited almost the same activities, which further suggested that the dmt gene is constitutively expressed in the strain. Dmt shared 46% and 45% identities with the methyltransferases DesA and LigM from Sphingomonas paucimobilis SYK-6, respectively. The purified Dmt catalyzed the transfer of methyl from dicamba to THF to form the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA) and 5-methyl-THF. The activity of Dmt was inhibited by 5-methyl-THF but not by DCSA. The introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba. In conclusion, this study identified a THF-dependent dicamba methyltransferase, Dmt, with potential applications for the genetic engineering of dicamba-resistant crops. IMPORTANCE Dicamba is a very important herbicide that is widely used to control more than 200 types of broadleaf weeds and is a suitable target herbicide for the engineering of herbicide-resistant transgenic crops. A study of the mechanism of dicamba metabolism by soil microorganisms will benefit studies of its dissipation, transformation, and migration in the environment. This study identified a THF-dependent methyltransferase, Dmt, capable of catalyzing dicamba demethylation in Sphingomonas sp. Ndbn-20, and a preliminary study of its enzymatic characteristics was performed. Introduction of a codon-optimized dmt gene into Arabidopsis thaliana enhanced resistance against dicamba, suggesting that the dmt gene has potential applications for the genetic engineering of herbicide-resistant crops. PMID:27422839
Second generation measurement of the electric dipole moment of the electron using trapped ThF+ ions
NASA Astrophysics Data System (ADS)
Ng, Kia Boon; Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matthew; Ni, Yiqi; Ye, Jun; Cornell, Eric
2016-05-01
ThF+ has been chosen as the candidate for a second generation measurement of the electric dipole moment of the electron (eEDM). Compared to the current HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states. Here, we present progress of our experimental setup, preliminary spectroscopic data of multi-photon ionization, and discussions of new features in ion trapping, state preparation and population readout.
Preparation and physical characterization of pure beta-carotene.
Laughlin, Robert G; Bunke, Gregory M; Eads, Charles D; Laidig, William D; Shelley, John C
2002-05-01
Pure all-trans beta-carotene has been prepared on the 10's of grams scale by isothermal Fractional Dissolution (FD) of commercial laboratory samples in tetrahydrofuran (THF). beta-Carotene purified in this way is black, with a faint brownish tinge. The electronic spectra of black samples extend into the near infrared, with end-absorption past 750 nm. Black samples react directly with dioxygen under mild conditions to yield the familiar orange or red powders. Pure beta-carotene rigorously obeys Beer's Law in octane over the entire UV-Vis spectral range, while commercial laboratory samples and recrystallized samples do not. NMR self-diffusion coefficient data demonstrate that beta-carotene exists as simple molecular solutions in octane and toluene. The anomalously high crystallinity of beta-carotene can be attributed (from analysis using molecular mechanics) to the facts that: (1) the number of theoretically possible conformers of beta-carotene is extremely small, and (2) only a small fraction of these (ca. 12%, or 127) may actually exist in fluid phases.
IRIS Toxicological Review of Tetrahydrofuran (THF) (External Review Draft)
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of tetrahydrofuran (THF) that when finalized will appear on the Integrated Risk Information System (IRIS) database.
NASA Astrophysics Data System (ADS)
Singh, Man
Viscosities (η, N s m-2) and surface tensions (γ, N m-1) of methanol, ethanol, glycerol, ethyl acetate, n-hexane, diethyl ether, chloroform, benzene, carbon tetrachloride (CCl4), tetrahydrofuran (THF), dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile, and formic acid have been measured with survismeter and compared with the data obtained by Ubbehold viscometer and stalagmometer, respectively. The ±1.1 × 10-5 N s m-2 and ±1.3 × 10-6 N m-1 deviations are noted in the data, in fact literature data of surface tension and viscosity are available to 2nd and 3rd place of decimals, respectively, while the survismeter measures them to 3rd and 4th place of decimals, respectively. The survismeter is 2-in-1 for viscosity and surface tension measurements together with high accuracies several times better than those of the separately measured data. Viscosities and surface tensions of aqueous DMSO, THF, DMF, and acetonitrile from 0.01 to 0.20 mol kg-1 and mannitol from 0.005 to 0.02 mol kg-1 have been measured with survismeter with ±1.2 × 10-5 N s m-2 and ±1.3 × 10-6 N m-1 deviations, respectively. The data are used for friccohesity and dipole moment determination, the lower viscosities, surface tension, and friccohesity values are noted for mannitol as compared to DMSO, THF, DMF, and acetonitrile solutions. The weaker molecular interactions are noted for mannitol. As compared to viscometer and stalagmometer individually, it is inexpensive and minimizes 2/3rd of consumables, human efforts, and infrastructure with 10 times better accuracies.
NASA Astrophysics Data System (ADS)
Indra, Sandipa; Guchhait, Biswajit; Biswas, Ranjit
2016-03-01
We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (XTHF/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ XTHF/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, XTHF/Diox ˜ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.
Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals
NASA Technical Reports Server (NTRS)
Freund, F.; Gupta, A. D.; Kumar, D.
1999-01-01
Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.
Zhou, Hongyan; Wang, Lei
2017-07-01
The title ion-association metal complex, [Li(C 4 H 8 O) 4 ] 2 [Mg 2 (C 43 H 61 O 3 ) 2 ], has been synthesized from the tridentate phenolic ligand tris-(3,5-di- tert -butyl-2-hy-droxy-phen-yl)methane in tetra-hydro-furan (THF). The aryl-oxo magnesiate complex anion is binuclear with each Mg 2 O 4 complex unit inversion-related and bridged through the two tridentate chelating phenolate O-donors of the ligand. The complex centres have a distorted tetra-hedral stereochemistry [Mg-O range 1.8796 (17)-2.0005 (16) Å] and an Mg⋯Mg separation of 2.9430 (14) Å]. The LiO 4 coodination sphere of the cation comprises four THF O-donor atoms and has a slightly distorted tetra-hedral conformation [Li-O range 1.899 (5)- 1.953 (5) Å]. In the crystal, a number of stabilizing intra-anion C-H⋯O hydrogen-bonding inter-actions are present but no inter-species associations are found.
Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap
Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; ...
2016-01-26
Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. In conclusion, the present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.
NASA Astrophysics Data System (ADS)
Bozkurt, Y.; Sahin, A.; Sunulu, A.; Aydogdu, M. O.; Altun, E.; Oktar, F. N.; Ekren, N.; Gunduz, O.
2017-04-01
Polyurethane (PU) is a synthetic polymer that is used for construction of scaffold in tissue engineering applications in order to obtain desirable mechanical, physical and chemical properties like elasticity and durability. Bovine derived hydroxyapatite (BHAp) is a ceramic based natural polymer that is used as the most preferred implant material in orthopedics and dentistry due to their chemically and biologically similarity to the mineral phase found in the human bone structure. PU and bovine derived hydroxyapatite (BHAp) solutions with different concentrations were prepared with dissolving polyurethane and BHAp in Dimethylformamide (DMF) and Tetrahydrofuran (THF) solutions. Blended PU-BHAp solutions in different concentrations were used for electrospinning technique to create nanofiber scaffolds and new biocomposite material together. SEM, FTIR and physical analysis such as viscosity, electrical conductivity, density measurement and tensile strength measurement tests were carried out after production process.
Fritz, Timothy A; Liu, Lu; Finer-Moore, Janet S; Stroud, Robert M
2002-06-04
Mutant forms of thymidylate synthase (TS) with substitutions at the conserved active site residue, Trp 80, are deficient in the hydride transfer step of the TS reaction. These mutants produce a beta-mercaptoethanol (beta-ME) adduct of the 2'-deoxyuridine-5'-monophosphate (dUMP) exocyclic methylene intermediate. Trp 80 has been proposed to assist hydride transfer by stabilizing a 5,6,7,8-tetrahydrofolate (THF) radical cation intermediate [Barrett, J. E., Lucero, C. M., and Schultz, P. G. (1999) J. Am. Chem. Soc. 121, 7965-7966.] formed after THF changes its binding from the cofactor pocket to a putative alternate site. To understand the molecular basis of hydride transfer deficiency in a mutant in which Trp 80 was changed to Gly, we determined the X-ray structures of this mutant Escherichia coli TS complexed with dUMP and the folate analogue 10-propargyl-5,8-dideazafolate (CB3717) and of the wild-type enzyme complexed with dUMP and THF. The mutant enzyme has a cavity in the active site continuous with bulk solvent. This cavity, sealed from bulk solvent in wild-type TS by Leu 143, would allow nucleophilic attack of beta-ME on the dUMP C5 exocyclic methylene. The structure of the wild-type enzyme/dUMP/THF complex shows that THF is bound in the cofactor binding pocket and is well positioned to transfer hydride to the dUMP exocyclic methylene. Together, these results suggest that THF does not reorient during hydride transfer and indicate that the role of Trp 80 may be to orient Leu 143 to shield the active site from bulk solvent and to optimally position the cofactor for hydride transfer.
Iftikar, Fathima I.; Hickey, Anthony J. R.
2013-01-01
Hearts are the first organs to fail in animals exposed to heat stress. Predictions of climate change mediated increases in ocean temperatures suggest that the ectothermic heart may place tight constraints on the diversity and distribution of marine species with cardiovascular systems. For many such species, their upper temperature limits (Tmax) and respective heart failure (HF) temperature (THF) are only a few degrees from current environmental temperatures. While the ectothermic cardiovascular system acts as an “ecological thermometer,” the exact mechanism that mediates HF remains unresolved. We propose that heat-stressed cardiac mitochondria drive HF. Using a common New Zealand fish, Notolabrus celidotus, we determined the THF (27.5°C). Haemoglobin oxygen saturation appeared to be unaltered in the blood surrounding and within heat stressed hearts. Using high resolution respirometry coupled to fluorimeters, we explored temperature-mediated changes in respiration, ROS and ATP production, and overlaid these changes with THF. Even at saturating oxygen levels several mitochondrial components were compromised before THF. Importantly, the capacity to efficiently produce ATP in the heart is limited at 25°C, and this is prior to the acute THF for N. celidotus. Membrane leakiness increased significantly at 25°C, as did cytochrome c release and permeability to NADH. Maximal flux rates and the capacity for the electron transport system to uncouple were also altered at 25°C. These data indicate that mitochondrial membrane integrity is lost, depressing ATP synthesis capacity and promoting cytochrome c release, prior to THF. Mitochondria can mediate HF in heat stressed hearts in fish and play a significant role in thermal stress tolerance, and perhaps limit species distributions by contributing to HF. PMID:23724026
Iftikar, Fathima I; Hickey, Anthony J R
2013-01-01
Hearts are the first organs to fail in animals exposed to heat stress. Predictions of climate change mediated increases in ocean temperatures suggest that the ectothermic heart may place tight constraints on the diversity and distribution of marine species with cardiovascular systems. For many such species, their upper temperature limits (Tmax) and respective heart failure (HF) temperature (T(HF)) are only a few degrees from current environmental temperatures. While the ectothermic cardiovascular system acts as an "ecological thermometer," the exact mechanism that mediates HF remains unresolved. We propose that heat-stressed cardiac mitochondria drive HF. Using a common New Zealand fish, Notolabrus celidotus, we determined the THF (27.5°C). Haemoglobin oxygen saturation appeared to be unaltered in the blood surrounding and within heat stressed hearts. Using high resolution respirometry coupled to fluorimeters, we explored temperature-mediated changes in respiration, ROS and ATP production, and overlaid these changes with T(HF). Even at saturating oxygen levels several mitochondrial components were compromised before T(HF). Importantly, the capacity to efficiently produce ATP in the heart is limited at 25°C, and this is prior to the acute T(HF) for N. celidotus. Membrane leakiness increased significantly at 25°C, as did cytochrome c release and permeability to NADH. Maximal flux rates and the capacity for the electron transport system to uncouple were also altered at 25°C. These data indicate that mitochondrial membrane integrity is lost, depressing ATP synthesis capacity and promoting cytochrome c release, prior to T(HF). Mitochondria can mediate HF in heat stressed hearts in fish and play a significant role in thermal stress tolerance, and perhaps limit species distributions by contributing to HF.
Effect of solution concentration on MEH-PPV thin films
NASA Astrophysics Data System (ADS)
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.
Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.
Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P
2015-08-28
The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.
Aguilar, David; Fernández, Ignacio; Cuesta, Luciano; Yañez-Rodríguez, Víctor; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P; López Ortiz, Fernando
2010-10-01
Ortho lithiation of N-benzamido-P,P,P-triaryliminophosphoranes through deprotonation with alkyllithium bases was achieved with ortho-C═O and ortho-P═N chemoselectivity. However, the synthetic scope of these processes was rather limited. Ortho-lithiated N-benzamido-P,P,P-triphenyliminophosphorane 8 was efficiently prepared via lithium/halogen exchange of the corresponding ortho-brominated precursor with s-BuLi in THF at -90 °C. The reaction of 8 with a variety of electrophiles provides an easy and mild method for the regioselective synthesis of ortho-modified iminophosphoranes via C-C (alkylation and hydroxyalkylation) and C-X (X = I, Si, P, Sn, and Hg) bond-forming reactions. NMR characterization of 8 in THF solution showed that 8 exists as an equilibrium mixture of one monomer and two dimers. The Li atoms of these species become members of five-membered rings through chelation by the ortho-metalated carbon and the carbonyl oxygen. The dimers differ in the relative orientation of the two chelates with respect to the plane defined by the C(2)Li(2) core. The equilibrium between all species is established by splitting the dimers into monomers and subsequent recombination with formation of a different dimer.
Syntheses and structures of alkaline earth metal bis(diphenylamides).
Gärtner, Martin; Fischer, Reinald; Langer, Jens; Görls, Helmar; Walther, Dirk; Westerhausen, Matthias
2007-06-11
Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.
One-Step Production of Amphiphilic Nanofibrillated Cellulose Using a Cellulose-Producing Bacterium.
Tajima, Kenji; Kusumoto, Ryo; Kose, Ryota; Kono, Hiroyuki; Matsushima, Tokuo; Isono, Takuya; Yamamoto, Takuya; Satoh, Toshifumi
2017-10-09
Nanofibrillated bacterial cellulose (NFBC) is produced by culturing a cellulose-producing bacterium (Gluconacetobacter intermedius NEDO-01) with rotation or agitation in medium supplemented with carboxymethylcellulose (CMC). Despite a high yield and dispersibility in water, the product immediately aggregates in organic solvents. To broaden its applicability, we prepared amphiphilic NFBC by culturing strain NEDO-01 in medium supplemented with hydroxyethylcellulose or hydroxypropylcellulose instead of CMC. Transmission electron microscopy analysis revealed that the resultant materials (HE-NFBC and HP-NFBC, respectively) comprised relatively uniform fibers with diameters of 33 ± 7 and 42 ± 8 nm, respectively. HP-NFBC was dispersible in polar organic solvents such as methanol, acetone, isopropyl alcohol, acetonitrile, tetrahydrofuran (THF), and dimethylformamide, and was also dispersible in poly(methyl methacrylate) (PMMA) by solvent mixing using THF. HP-NFBC/PMMA composite films were highly transparent and had a higher tensile strength than neat PMMA film. Thus, HP-NFBC has a broad range of applications, including as a filler material.
Guo, Zongxia; Wang, Kun; Yu, Ping; Wang, Xiangnan; Lan, Shusha; Sun, Kai; Yi, Yuanping; Li, Zhibo
2017-11-02
The effect of the length of linear alkyl chains substituted at imine positions on the assembly of tetrachlorinated perylene bisimides (1: PBI with -C 6 H 13 ; 2: PBI with -C 12 H 25 ) has been investigated. Solvent-induced assembly was performed in solutions of THF and methanol with varying volume ratios. Morphological (SEM, AFM, and TEM) and spectral (UV/Vis, fluorescence, FTIR, and XRD) methods were used to characterize the assembled nanostructures and the molecular arrangement in the aggregates. It was found that uniform structures could be obtained for both molecules in solutions with a high ratio of methanol. PBI 1 formed rigid nanosheets, whereas 2 assembled into longer nanostripes with a high ratio of length to width. On combining the morphological data with the spectral data, it was suggested that π-π stacking predominated in assemblies of 1, and the synergetic effect of van der Waals interactions from the long alkyl chains and π-π stacking between neighboring building blocks facilitated the growth of the long-range-ordered nanostructures of 2. By changing the linear chain length, the hierarchical assembly of PBIs modified on bay positions could be manipulated effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-Coordinate Magnesium(I) Dimers Stabilized by Super Bulky Amido Ligands.
Boutland, Aaron J; Dange, Deepak; Stasch, Andreas; Maron, Laurent; Jones, Cameron
2016-08-01
A variety of very bulky amido magnesium iodide complexes, LMgI(solvent)0/1 and [LMg(μ-I)(solvent)0/1 ]2 (L=-N(Ar)(SiR3 ); Ar=C6 H2 {C(H)Ph2 }2 R'-2,6,4; R=Me, Pr(i) , Ph, or OBu(t) ; R'=Pr(i) or Me) have been prepared by three synthetic routes. Structurally characterized examples of these materials include the first unsolvated amido magnesium halide complexes, such as [LMg(μ-I)]2 (R=Me, R'=Pr(i) ). Reductions of several such complexes with KC8 in the absence of coordinating solvents have afforded the first two-coordinate magnesium(I) dimers, LMg-MgL (R=Me, Pr(i) or Ph; R'=Pr(i) , or Me), in low to good yields. Reductions of two of the precursor complexes in the presence of THF have given the related THF adduct complexes, L(THF)Mg-Mg(THF)L (R=Me; R'=Pr(i) ) and LMg-Mg(THF)L (R=Pr(i) ; R'=Me) in trace yields. The X-ray crystal structures of all magnesium(I) complexes were obtained. DFT calculations on the unsolvated examples reveal their Mg-Mg bonds to be covalent and of high s-character, while Ph⋅⋅⋅Mg bonding interactions in the compounds were found to be weak at best. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pentaarylcyclopentadienyl Iron, Cobalt, and Nickel Halides.
Chakraborty, Uttam; Modl, Moritz; Mühldorf, Bernd; Bodensteiner, Michael; Demeshko, Serhiy; van Velzen, Niels J C; Scheer, Manfred; Harder, Sjoerd; Wolf, Robert
2016-03-21
The preparation of new stable half-sandwich transition metal complexes, having a bulky cyclopentadienyl ligand C5(C6H4-4-Et)5 (Cp(Ar1)) or C5(C6H4-4-nBu)5 (Cp(Ar2)), is reported. The tetrahydrofuran (THF) adduct [Cp(Ar1)Fe(μ-Br)(THF)]2 (1a) was synthesized by reacting K[Cp(Ar1)] with [FeBr2(THF)2] in THF, and its molecular structure was determined by X-ray crystallography. Complex 1a easily loses its coordinated THF molecules under vacuum to form the solvent-free complex [Cp(Ar1)Fe(μ-Br)]2 (1b). The analogous complexes [Cp(Ar1)Co(μ-Br)]2 (2), [Cp(Ar1)Ni(μ-Br)]2 (3), and [Cp(Ar2)Ni(μ-Br)]2 (4) were synthesized from CoBr2 and [NiBr2(1,2-dimethoxyethane)]. The mononuclear, low-spin cobalt(III) and nickel(III) complexes [Cp(Ar2)MI2] (5, M = Co; 6, M = Ni) were prepared by reacting the radical Cp(Ar2) with NiI2 and CoI2. The complexes were characterized by NMR and UV-vis spectroscopies and by elemental analyses. Single-crystal X-ray structure analyses revealed that the dimeric complexes 1a, 1b, and 3 have a planar M2Br2 core, whereas 2 and 4 feature a puckered M2Br2 ring.
Toward Rotational State-Selective Photoionization of ThF+ Ions
NASA Astrophysics Data System (ADS)
Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun
2016-06-01
ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.
[Removal of mixed waste gases by the biotrickling filter].
Zhang, Ding-Feng; Fang, Jun-Yi; Ye, Jie-Xu; Qiu, Song-Kai; Qian, Dong-Sheng; Dai, Qi-Zhou; Chen, Dong-Zhi
2013-06-01
A biotrickling filter (BTF) was designed for treating mixed waste gases, which contained hydrogen sulfide (H2S), tetrahydrofuran (THF) and dichloromethane (DCM) at the start-up and steady states. The removal efficiency of H2S and DCM could maintain about 99% and 60%, respectively, and the removal efficiency of DCM was reduced from 90% to 37% with the shortening empty bed retention time (EBRT) form 50 to 20 seconds when the inlet concentrations were 200, 100, 100 mg x m(-3) of H2S, THF, DCM, respectively. In the theoretical study, the biodegradation efficiency of contaminants was H2S > THF > DCM by analyzing the Michaelis-Menten Dynamic model.
A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates.
Andersson, Ove; Häussermann, Ulrich
2018-04-19
Type II clathrate hydrates (CHs) M·17 H 2 O, with M = tetrahydrofuran (THF) or 1,3-dioxolane, are known to collapse, or amorphize, on pressurization to ∼1.3 GPa in the temperature range 77-140 K. On heating at 1 GPa, these pressure-amorphized CH states show a weak, stretched sigmoid-shaped, heat-capacity increase because of a glass transition. Here we use thermal conductivity and heat capacity measurements to show that also type II CH with M = cyclobutanone (CB) collapses on isothermal pressurization and undergoes a similar, weak, glass transition upon heating at 1 GPa. Furthermore, we reveal for both THF CH and CB CH a second, much more pronounced, glass transition at temperatures above the thermally weak glass transition on heating in the 0.2-0.7 GPa range. This result suggests the general occurrence of two glass transitions in water-rich (94 mol %) pressure-collapsed CHs. Because of a large increase in dielectric permittivity concurrently as the weak heat capacity increase, the first glass transition must be due to kinetic unfreezing of water molecules. The thermal features of the second glass transition, measured on isobaric temperature cycling, are typical of a glass-liquid-glass transition, which suggests that pressure-amorphized CHs transform reversibly to liquids.
1989-03-01
PVA, CTBN , PBAA, PMMA, etc. As a test of this predictability, we dissolved a vinyl acetate polymer in THF, and then added PMVT, and did succeed in...Polyvinyl acetate CTBN Carboxy terminated butadiene acrylonitrile PBAA Polybutadiene acrylic acid PMMA Polymethyl. methacrylate THF Tetrahydrofuran NMR
2007-08-08
McCarthy Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003 Electrophilic aromatic substitution reactions...with a fluorinated silane reagent. Reduction of the amide groups with borane-THF (BH 3-THF) complex leads to a 69% conversion of surface amides to the
Preliminary Study on LiF4-ThF4-PuF4 Utilization as Fuel Salt of miniFUJI Molten Salt Reactor
NASA Astrophysics Data System (ADS)
Waris, Abdul; Aji, Indarta K.; Pramuditya, Syeilendra; Widayani; Irwanto, Dwi
2016-08-01
miniFUJI reactor is molten salt reactor (MSR) which is one type of the Generation IV nuclear energy systems. The original miniFUJI reactor design uses LiF-BeF2-ThF4-233UF4 as a fuel salt. In the present study, the use of LiF4-ThF4-PuF4 as fuel salt instead of LiF-BeF2-ThF4-UF4 will be discussed. The neutronics cell calculation has been performed by using PIJ (collision probability method code) routine of SRAC 2006 code, with the nuclear data library is JENDL-4.0. The results reveal that the reactor can attain the criticality condition with the plutonium concentration in the fuel salt is equal to 9.16% or more. The conversion ratio diminishes with the enlarging of plutonium concentration in the fuel. The neutron spectrum of miniFUJI MSR with plutonium fuel becomes harder compared to that of the 233U fuel.
Structural dependence of MEH-PPV chromism in solution.
de Magalhães, Carlos E T; Savedra, Ranylson M L; Dias, Karina S; Ramos, Rodrigo; Siqueira, Melissa F
2017-03-01
The chromism observed in the MEH-PPV polymer in tetrahydrofuran (THF) solution is discussed as a function of the structural morphology of the backbone chains. To evaluate this phenomenon, we carried out simulations employing a hybrid methodology using molecular dynamics and quantum mechanical approaches. Our results support the hypothesis that the morphological order-disorder transition is related to the change from red to blue phase observed experimentally. The morphological disorder is associated with total or partial twisted arrangements in the polymer backbone, which induces an electronic conjugation length more confined to shorter segments. In addition, the main band of the MEH-PPV UV-Vis spectrum at the lower wavelength is related to the blue phase, in contrast to the red phase found for the more planar backbone chains.
NASA Astrophysics Data System (ADS)
Bieringer, R.; Abetz, V.; Müller, A. H. E.
ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.
Cuscuta europaea plastid apparatus in various developmental stages: localization of THF1 protein.
Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, L'udmila; Blehová, Alžbeta
2013-05-01
It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in "get together" tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy
2015-10-15
A heterobimetallic complex [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO{sub 3}–TiO{sub 2} composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity,more » phase identification and chemical composition of microspherical architectured CdTiO{sub 3}–TiO{sub 2} composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO{sub 3}–TiO{sub 2} composite oxides photoanode film has been fabricated from single source precursor [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO{sub 3}–TiO{sub 2} thin film photoelectrode. • Application as dye sensitized photoanode for solar application.« less
Boyle, Timothy J; Bunge, Scott D; Clem, Paul G; Richardson, Jacob; Dawley, Jeffrey T; Ottley, Leigh Anna M; Rodriguez, Mark A; Tuttle, Bruce A; Avilucea, Gabriel R; Tissot, Ralph G
2005-03-07
Using either an ammoniacal route, the reaction between DyCl3, Na0, and HOR in liquid ammonia, or preferentially reacting Dy(N(SiMe3)2)3 with HOR in a solvent, we isolated a family of dysprosium alkoxides as [Dy(mu-ONep)2(ONep)]4 (1), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(THF)]2(mu-ONep) (2), (ONep)2Dy[(mu3-ONep)(mu-ONep)Dy(ONep)(py)]2(mu-ONep) (3), [Dy3(mu3-OBut)2(mu-OBut3(OBut)4(HOBut)2] (4), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(THF)2] (5), [Dy3(mu3-OBut)2(mu-OBut)3(OBut)4(py)2] (6), (DMP)Dy(mu-DMP)4[Dy(DMP)2(NH3)]2 (7), [Dy(eta6-DMP)(DMP)2]2 (8), Dy(DMP)3(THF)3 (9), Dy(DMP)3(py)3 (10), Dy(DIP)3(NH3)2 (11), [Dy(eta6-DIP)(DIP)2]2 (12), Dy(DIP)3(THF)2 (13), Dy(DIP)3(py)3 (14), Dy(DBP)3(NH3) (15), Dy(DBP)3 (16), Dy(DBP)3(THF) (17), Dy(DBP)3(py)2 (18), [Dy(mu-TPS)(TPS2]2 (19), Dy(TPS)3(THF)3 (20), and Dy(TPS)3(py)3 (21), where ONep = OCH2CMe3, OBut) = OCMe3, DMP = OC6H3(Me)(2)-2,6, DIP = OC6H3(CHMe2)(2)-2,6, DBP = OC6H3(CMe3)(2)-2,6, TPS = OSi(C6H5)3, tol = toluene, THF = tetrahydrofuran, and py = pyridine. We were not able to obtain X-ray quality crystals of compounds 2, 8, and 9. The structures observed and data collected for the Dy compounds are consistent with those reported for its other congeners. A number of these precursors were used as Dy dopants in Pb(Zr0.3Ti0.7)O3 (PZT 30/70) thin films, with compound 12 yielding the highest-quality films. The resulting Pb0.94Dy0.04(Zr0.3Ti0.7)O3 [PDyZT (4/30/70)] had similar properties to PZT (30/70), but showed substantial resistance to polarization reversal fatigue.
Darensbourg, Donald J.; Niezgoda, Sharon A.; Holtcamp, Matthew W.; Draper, Jennifer D.; Reibenspies, Joseph H.
1997-05-21
A synthetic methodology for the preparation of a large variety of eta(3)-HB(3-Phpz)(3)Cd(acetate) adducts is presented which involves replacement of toluene in the eta(3)-HB(3-Phpz)(3)Cd(acetate) solvate complex by the appropriate cyclic ether or cyclic thioether. In this manner, adducts of THF, dioxane, propylene oxide, cyclohexene oxide, and propylene sulfide were isolated. The solid-state structures of several of these complexes were determined by X-ray crystallography, revealing a six-coordinate complex where the acetate ligand is shown to be fairly symmetrically bonded to the cadmium center. In methylene chloride solution, the cyclic ether or thioether readily dissociates to afford the five-coordinate complex, as demonstrated by (113)Cd NMR. A quantitative assessment of the binding of these base adducts of eta(3)-HB(3-Phpz)(3)Cd(acetate) was determined by measuring the temperature dependence of the equilibrium constants for the five- and six-coordinate derivatives. The presence of one sharp (113)Cd resonance in this equilibrium mixture is indicative of rapid intermolecular exchange between the five- and six-coordinate complexes when compared to the chemical shift differences in these two species ( approximately 6600 Hz at 89 MHz). The order established for ether binding is THF > dioxane > propylene sulfide > cyclohexene oxide >/= propylene oxide, with DeltaH degrees and DeltaS degrees spanning the ranges -27.7 to 24.3 kJ/mol and -89.7 to -94.1 J/(mol K). The epoxide and thioepoxide adducts were shown to serve as models for the initiation step in the copolymerization of epoxides with carbon dioxide catalyzed by metal carboxylates. That is, the carboxylate ligand was shown to ring-open the epoxide or thioepoxide, subsequently affording polyethers or polythioethers with ester end groups. By way of contrast, in the presence of CO(2) and epoxides, this system led to cyclic carbonate production.
Developing Novel Fluorescent Materials with Near Infrared Emission by Using m-Phenylene
NASA Technical Reports Server (NTRS)
Pang, Yi; Liao, Ling; Meador, Michael A.
2003-01-01
Our research focuses on development of novel p-conjugated polymers with desired emission. In the current study, the structure of a highly green-emitting poly[(m-phenylenevinylene)- alt-( p-phenylenevinylene)] has been modified by increasing the content of p-phenylene to achieve red- and infrared-emission. The polymer is synthesized via Wittig-Horner condensation, which is known to lead to trans-olefin linkage. The polymer is soluble in common organic solvents such as toluene, chloroform and THF. The spectroscopic properties of the polymer in both solution and film states will be discussed in comparison with its model compound.
See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A
2017-10-18
Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest to the Mg electrolyte community.
NASA Astrophysics Data System (ADS)
Wang, Yaochuan; Liu, Siyuan; Liu, Dajun; Wang, Guiqiu; Xiao, Haibo
2016-02-01
A dipolar dipicolinate derivative, trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (P-1), and a P-1based V-shaped compound, {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N-phenyl-N-{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]}aniline (P-2), with intense two-photon fluorescence emission properties were systematically investigated by using steady-state absorption and fluorescence spectroscopy, open-aperture Z-scans, and two-photon excited fluorescence (TPF). The two-photon absorption cross-section of the V-shaped compound P-2 in tetrahydrofuran (THF) was determined to be 208 GM, which represents a 6.5-fold enhancement compared with its dipolar counterpart P-1 (32 GM). Extension of the intramolecular charge transfer (ICT) in the V-shaped dipicolinate derivative has been suggested as the mechanism of enhancement. The excited state dynamics from transient absorption spectroscopy were analyzed and discussed. The formation and relaxation lifetimes of the ICT state for these dipicolinate derivatives in THF solutions were found to be several picoseconds and several hundred picoseconds, respectively. The results show an increased ICT character of the V-shaped compound and a potential application for this compound in two-photon fluorescence imaging fields.
Nowak-Król, Agnieszka; Fimmel, Benjamin; Son, Minjung; Kim, Dongho; Würthner, Frank
2015-01-01
Foldamer systems comprised of two perylene bisimide (PBI) dyes attached to the conjugated backbones of 1,2-bis(phenylethynyl)benzene and phenylethynyl-bis(phenylene)indane, respectively, were synthesized and investigated with regard to their solvent-dependent properties. UV/Vis absorption and steady-state fluorescence spectra show that both foldamers exist predominantly in a folded H-aggregated state consisting of π-π-stacked PBIs in THF and in more random conformations with weaker excitonic coupling between the PBIs in chloroform. Time-resolved fluorescence spectroscopy and transient absorption spectroscopy reveal entirely different relaxation pathways for the photoexcited molecules in the given solvents, i.e. photoinduced electron transfer leading to charge separated states for the open conformations (in chloroform) and relaxation into excimer states with red-shifted emission for the stacked conformations (in THF). Supported by redox data from cyclic voltammetry and Rehm-Weller analysis we could relate the processes occurring in these solution-phase model systems to the elementary processes in organic solar cells. Accordingly, only if relaxation pathways such as excimer formation are strictly avoided in molecular semiconductor materials, excitons may diffuse over larger distances to the heterojunction interface and produce photocurrent via the formation of electron/hole pairs by photoinduced electron transfer.
NASA Astrophysics Data System (ADS)
Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi
2014-05-01
Four ternary coordination polymers (CPs) namely, {[Ni(SDB)(BITMB)(H2O)]·H2O}n (CP1), {[Cd(SDB)(BITMB) (H2O)]·(THF)(H2O)}n (CP2), {[Zn2(SDB)2(BITMB)]·(THF)2}n (CP3) and {[Co2(SDB)2(BITMB)]·(Dioxane)3}n (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal-organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2-CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1-CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25-83% dye removal from aqueous solutions in the presence of CP1-CP4 was observed.
Effects of electrolytes on redox potentials through ion pairing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas
Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less
Densil, Simon; Chang, Chien-Huei; Chen, Chia-Ling; Mathavan, Alagarsamy; Ramdass, Arumugam; Sathish, Veerasamy; Thanasekaran, Pounraj; Li, Wen-Shan; Rajagopal, Seenivasan
2018-06-01
Three anthracene-based Schiff base complexes, R1-R3 (R1 = (E)-N´-((anthracen-10-yl)methylene)benzohydrazide; R2 = (E)-1-((anthracen-10-yl)methylene)-4-phenylsemicarbazide; and R3 = (E)-1-((anthracen-10-yl)methylene)-4-phenylthiosemicarbazide) were synthesized from 9-anthracenecarboxaldehyde, benzohydrazide, 4-phenylsemicarbazide and 4-phenylthiosemi-carbazide respectively, and characterized by various spectral techniques. The absorption spectral characteristics of R1-R3 were bathochromically tuned to the visible region by extending the π conjugation. These target compounds were weakly fluorescent in tetrahydrofuran (THF) solution because of rapid isomerization of the C=N double bond in the excited state. However, the aqueous dispersion of R1-R3 in the THF/water mixture by the gradual addition of water up to 90% resulted in an increase in the fluorescence intensity mainly due to aggregation-induced emission enhancement (AIEE) properties. The formation of nanoaggregates of R1-R3 were confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The compounds R1-R3 are ideal probes for the fluorescence sensing of bovine serum albumin (BSA) and breast cancer cells by optical cell imaging. Copyright © 2018 John Wiley & Sons, Ltd.
Effects of electrolytes on redox potentials through ion pairing
Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas; ...
2017-09-21
Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less
U(IV) chalcogenolates synthesized via oxidation of uranium metal by dichalcogenides.
Gaunt, Andrew J; Scott, Brian L; Neu, Mary P
2006-09-04
Treatment of uranium metal with dichalcogenides in the presence of a catalytic amount of iodine in pyridine affords molecular U(IV) chalcogenolates that do not require stabilizing ancillary ligands. Oxidation of U(0) by PhEEPh yields monomeric seven-coordinate U(EPh)4(py)3 (E = S(1), Se(2)). The dimeric eight-coordinate complexes [U(EPh)2(mu2-EPh)2(CH3CN)2]2 (E = S(3), Se(4)) are obtained by crystallization from solutions of 1 and 2 dissolved in acetonitrile. Oxidation of U(0) by pySSpy and crystallization from thf yields nine-coordinate U(Spy)4(thf) (5). Incorporation of elemental selenium into the oxidation of U(0) by PhSeSePh results in the isolation of [U(py)2(SePh)(mu3-Se)(mu2-SePh)]4.4py (6), a tetrameric cluster in which each U(IV) ion is eight-coordinate and the U4Se4 core forms a distorted cube. The compounds were analyzed spectroscopically and the single-crystal X-ray structures of 1 and 3-6 were determined. The isolation of 1-6 represents six new examples of actinide chalcogenolates and allows insight into the nature of "hard" actinide ion-"soft" chalcogen donor interactions.
Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase.
Kolomeitsev, Alexander A; Koppel, Ilmar A; Rodima, Toomas; Barten, Jan; Lork, Enno; Röschenthaler, Gerd-Volker; Kaljurand, Ivari; Kütt, Agnes; Koppel, Ivar; Mäemets, Vahur; Leito, Ivo
2005-12-21
A principle for creating a new generation of nonionic superbases is presented. It is based on attachment of tetraalkylguanidino, 1,3-dimethylimidazolidine-2-imino, or bis(tetraalkylguanidino)carbimino groups to the phosphorus atom of the iminophosphorane group using tetramethylguanidine or easily available 1,3-dimethylimidazolidine-2-imine. Seven new nonionic superbasic phosphazene bases, tetramethylguanidino-substituted at the P atom, have been synthesized. Their base strengths are established in tetrahydrofuran (THF) solution by means of spectrophotometric titration and compared with those of eight reference superbases designed specially for this study, P2- and P4-iminophosphoranes. The gas-phase basicities of several guanidino- and N',N',N'',N''-tetramethylguanidino (tmg)-substituted phosphazenes and their cyclic analogues are calculated, and the crystal structures of (tmg)3P=N-t-Bu and (tmg)3P=N-t-Bu x HBF4 are determined. The enormous basicity-increasing effect of this principle is experimentally verified for the tetramethylguanidino groups in the THF medium: the basicity increase when moving from (dma)3P=N-t-Bu (pKalpha = 18.9) to (tmg)3P=N-t-Bu (pKalpha = 29.1) is 10 orders of magnitude. A significantly larger basicity increase (up to 20 powers of 10) is expected (based on the high-level density functional theory calculations) to accompany the similar gas-phase transfer between the (dma)3P=NH and (tmg)3P=NH bases. Far stronger basicities still are expected when, in the latter two compounds, all three dimethylamino (or tetramethylguanidino) fragments are replaced by methylated triguanide fragments, (tmg)2C=N-. The gas-phase basicity (around 300-310 kcal/mol) of the resulting base, [(tmg)2C=N-]3P=NH, having only one phosphorus atom, is predicted to exceed the basicity of (dma)3P=NH by more than 40 powers of 10 and to surpass also the basicity of the widely used commercial [(dma)3P=N]3P=N-t-Bu (t-BuP4) superbase.
Casimiro, M; García-López, J; Iglesias, M J; López-Ortiz, F
2014-10-14
A multinuclear magnetic resonance ((1)H, (7)Li, (13)C, (15)N, (31)P) and DFT computational study at the M06-2X(SMD,THF)/6-311+G(d,p)//B3LYP/6-31G(d) level of the structure of a N-lithiated phosphinimidic amide (R)-Ph2P(=NCO2Me)NHCH(Me)Ph 13 has been performed. In THF solution it exists as an equilibrium mixture of monomers and dimers. The monomers consist of a six-membered ring formed by coordination of the lithium atom with the deprotonated nitrogen and the oxygen atom of the carbonyl group. This coordination mode is in contrast to the standard N,N-chelation observed in N-lithiated N,N'-bis(trimethylsilyl)phosphinimidic amides. The calculations showed that the metallacycle adopts a twist-boat conformation and that the lithium atom is in a tetrahedral environment involving O,N-chelation by the ligand and coordination to two/one THF molecules in the monomer/dimer. Dimerization takes place through O-Li bridges. For all species two series of isomers have been identified, which originated by restricted rotation of the methoxy group and ring inversion. The twist-boat conformational interconversion seems to be operating for explaining the pattern of signals observed in the (7)Li and (31)P NMR spectra. The structure found for the most stable dimer is analogous to the molecular structure reported for a related C(α)-lithiated phosphazene 20. The structural study revealed that the chiral side-arm of the N-lithiated species is oriented to the outer face of the pro-S P-phenyl ring, which shows one ortho-proton very close to the nitrogen atom of the carbamate moiety. In this conformation, proton abstraction by a base is highly favoured, in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Leinonen, Heli; Lajunen, Marja
2012-09-01
Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.
NASA Astrophysics Data System (ADS)
Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad
2015-10-01
A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.
Facile synthesis of bis(dichalcogenophosphinate)s and a remarkable [Li8(OH)6]2+ polyhedron.
Davies, Robert P; Martinelli, M Giovanna; Patel, Laura; White, Andrew J P
2010-05-17
The synthesis and characterization of three lithium complexes of novel bis(dichalcogenophosphinate) ligands are reported: (PhP(S)(2)CH(2)CH(2)P(S)(2)Ph)Li(2)(THF)(4) (2), (PhP(Se)(2)CH(2)CH(2)P(Se)(2)Ph)Li(2)(THF)(4).(PhP(Se)(2)CH(2)CH(2)P(Se)(2)Ph)Li(2)(THF)(6) (3), and [PhP(Te)(2)CH(2)CH(2)P(Te)(2)Ph][Li(8)(OH)(6)(THF)(8)] (4). The synthetic route to these complexes proceeds via the insertion reaction of elemental chalcogens into the phosphorus-lithium bonds of 1,2-dilithio-1,2-di(phenylphosphine)ethylene (1). X-ray analysis of 2 revealed isobidentate coordination of the lithiums by the dithiophosphinate groups. In contrast, the diselenophosphinate groups in 3 coordinate the lithium centers in both isobidentate and monodentate modes, and the ditellurophosphinate groups in 4 form non-coordinate separate ion pairs. The countercation in 4 is shown to be a unique [Li(8)(OH)(6)](2+) rhombic dodecahedral polyhedron, putatively formed from the capping of a hexameric [Li(OH)](6) aggregate with lithium cations on its open faces.
Lense, Sheri; Piro, Nicholas A; Kassel, Scott W; Wildish, Andrew; Jeffery, Brent
2016-08-01
The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6'-dihy-droxy-2,2'-bi-pyridine ligand in a distorted octa-hedral geometry. Both complexes co-crystallize with a non-coordinating tetra-hydro-furan (THF) solvent mol-ecule and exhibit inter-molecular but not intra-molecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to inter-molecular hydrogen bonding between a hy-droxy group from the 6,6'-dihy-droxy-2,2'-bi-pyridine ligand and the halide ligand from a neighboring complex. The THF mol-ecule is hydrogen bonded to the remaining hy-droxy group.
Taha, Mohamed; Lee, Ming-Jer
2013-06-28
Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.
Treatability Study of Pentaborane(9)
NASA Technical Reports Server (NTRS)
McDonald, Joseph K.; Wright, Jeffery S.; Gaines, Donald F.
2000-01-01
Procedures for the safe destruction of liquid pentaborane(9), B5H9, by solvolysis were investigated. The objective of the study was to establish the optimum conditions for a pilot plant operation that would use water, or alcohol, or water-alcohol mixtures as the solvolysis reagent Small amounts of B5H9 sprayed from a syringe will not necessarily enflame, nor will a small pool on a spot plate. Therefore, a procedure was developed to reproducibly demonstrate the flammability of B5H9 In these tests every sample of neat B5H9 ignited and burned with a very sooty flame till the sample was consumed. The spontaneous self-ignition of B5H9 was quenched by the addition of small concentrations of the ethers THF (tetrahydrofuran) or DME (1,2-dimethoxy ethane). It was found that 10% (volume) of either provided total quenching with a large margin of safety. When these stabilized solutions were exposed to air, they decomposed and evaporated leaving a residue that was identified by NMR analysis as boric acid. Most of the laboratory solvolysis experiments used the 90% B5H9, 10% THF solution. This mixture was safer to handle and its solvolysis reactivity was virtually identical to that of 100% B5H9. Reaction rates were analyzed by measurement of hydrogen evolved during the solvolysis reactions. In terms of the minimum overall complete reaction time, the data indicate that 50150 alcohol/water is the optimum solvolysis reagent. This reaction produced a mixture of boric acid, B(OH)3, and triethoxyborane, B(OEt)3 [Et = C2H5], and mixed exchange derivatives thereof.
Treatability Study of Pentaborane(9)
NASA Technical Reports Server (NTRS)
McDonald, Joseph K.; Wright, Jeffery S.; Gaines, Donald F.
2000-01-01
Procedures for the safe destruction of liquid pentaborane(9), B5H9, by solvolysis were investigated. The objective of the study was to establish the optimum conditions for a pilot plant operation that would use water, or alcohol, or water-alcohol mixtures as the solvolysis reagent. Small amounts of B5H9 sprayed from a syringe will not necessarily enflame, nor will a small pool on a spot plate. Therefore, a procedure was developed to reproducibly demonstrate the flammability of B5H9. In these tests every sample of neat B5H9 ignited and burned with a very sooty flame till the sample was consumed. The spontaneous self-ignition of B5H9 was quenched by the addition of small concentrations of ethers THF (tetrahydrofuran) or DME (1,2-dimethoxy ethane). It was found that ten percent (volume) of either provided total quenching with a large margin of safety. When these stabilized solutions were exposed to air, they decomposed and evaporated leaving a residue that was identified by nuclear magnetic resonance (NMR) analysis as boric acid. Most of the laboratory solvolysis experiments used the 90 percent B5H9, 10 percent THF solution. This mixture was safer to handle and its solvolysis reactivity was virtually identical to that of 100 percent B5H9. Reaction rates were analyzed by measurement of hydrogen evolved during the solvolysis reactions. In terms of the minimum overall complete reaction time, the data indicate that 50/50 alcohol/water is the optimum solvolysis reagent. This reaction produced a mixture of boric acid, B(OH)3, and triethoxyborane, B(OEt)3[Et = C2H5], and mixed exchange derivatives thereof.
Maria, Leonor; Santos, Isabel C; Santos, Isabel
2018-05-23
The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.
Wiesinger, Herbert; Eydeler, Urte; Richard, Frank; Trummer, Dietmar; Blode, Hartmut; Rohde, Beate; Diefenbach, Konstanze
2012-10-01
Neural tube defects (NTDs) are congenital malformations that occur during early embryonic development. Suboptimal maternal folate status is a well-known risk factor for the occurrence of NTDs, and periconceptional folic acid supplementation has been shown to reduce the risk of NTDs. Folate-supplemented oral contraceptives (OCs) offer a means of improving folate status in women of childbearing potential by increasing their likelihood of having raised folate levels at the time of conception. This study aimed to demonstrate bioequivalence of ethinylestradiol (EE), drospirenone and L-5-methyl-tetrahydrofolate (L-5-methyl-THF; active moiety of levomefolate calcium) when taken as a new folate-supplemented OC containing EE/drospirenone/levomefolate calcium, with the respective OC containing EE/drospirenone and a tablet containing levomefolate calcium only. This was a randomized, open-label, three-period crossover study carried out at a single centre in Germany. The study included 45 healthy women (age range 18-38 years). The women were randomly assigned to single doses of (i) EE 0.03 mg/drospirenone 3 mg/levomefolate calcium 0.451 mg (SAFYRAL®), (ii) EE 0.03 mg/drospirenone 3 mg (Yasmin®), and (iii) levomefolate calcium 0.451 mg, administered using a crossover design, with one or more menstrual cycle washout between doses. The primary variables were maximum concentrations (C(max)) and area under the concentration versus time curve (AUC) values for EE, drospirenone and L-5-methyl-THF. The bioavailability of EE and drospirenone was similar after administration of EE/drospirenone/levomefolate calcium and EE/drospirenone. The geometric mean ratios (GMRs) and its 90% confidence intervals (CIs) for AUC values and C(max) were within the pre-specified range (80.00-125.00%) for bioequivalence for EE and drospirenone in both formulations. The bioavailability of L-5-methyl-THF was similar after administration of EE/drospirenone/levomefolate calcium and levomefolate calcium. The respective GMRs and 90% CIs of baseline-uncorrected and -corrected AUC(last) (AUC from time zero to time of last measurable concentration) and C(max) were also within the 80.00-125.00% range. The novel folate-supplemented OC EE/drospirenone/levomefolate calcium is bioequivalent to the established OC Yasmin® (EE/drospirenone components) and to levomefolate calcium (folate component).
NASA Astrophysics Data System (ADS)
Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.
2013-09-01
We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.
Evaluation method of the performance of kinetic inhibitor for clathrate hydrate
NASA Astrophysics Data System (ADS)
Muraoka, M.; Susuki, N.; Yamamoto, Y.
2016-12-01
As a part of a Japanese National hydrate research program (MH21, funded by METI), we study the formation of tetrahydrofuran (THF) clathrate hydrate from polyvinylpyrrolidone (PVP) aqueous solution as a function of growth rate V and adsorbed PVP concentration c using the unidirectional growth technique. This study aims to propose a simple method for evaluating the performance of kinetic hydrate inhibitors (KHIs) for the clathrate hydrate-aqueous solution system. The degree of super cooling ΔT calculated from the growth-induced interface shift under steady-state conditions was used for evaluating the KHIs performance. Using this method, a single experimental run can be completed within 3.5 h of the compulsory nucleation by setting V = 5 μm s-1. We believe this method is useful for screening various KHIs and clarifying the inhibition mechanism of KHIs.
Kim, Keugtae; Chiba, Yoko; Kobayashi, Azusa; Arai, Hiroyuki; Ishii, Masaharu
2017-11-01
Hydrogenobacter thermophilus is an obligate chemolithoautotrophic bacterium of the phylum Aquificae and is capable of fixing carbon dioxide through the reductive tricarboxylic acid (TCA) cycle. The recent discovery of two novel-type phosphoserine phosphatases (PSPs) in H. thermophilus suggests the presence of a phosphorylated serine biosynthesis pathway; however, the physiological role of these novel-type metal-independent PSPs (iPSPs) in H. thermophilus has not been confirmed. In the present study, a mutant strain with a deletion of pspA , the catalytic subunit of iPSPs, was constructed and characterized. The generated mutant was a serine auxotroph, suggesting that the novel-type PSPs and phosphorylated serine synthesis pathway are essential for serine anabolism in H. thermophilus. As an autotrophic medium supplemented with glycine did not support the growth of the mutant, the reversible enzyme serine hydroxymethyltransferase does not appear to synthesize serine from glycine and may therefore generate glycine and 5,10-CH 2 -tetrahydrofolate (5,10-CH 2 -THF) from serine. This speculation is supported by the lack of glycine cleavage activity, which is needed to generate 5,10-CH 2 -THF, in H. thermophilus Determining the mechanism of 5,10-CH 2 -THF synthesis is important for understanding the fundamental anabolic pathways of organisms, because 5,10-CH 2 -THF is a major one-carbon donor that is used for the synthesis of various essential compounds, including nucleic and amino acids. The findings from the present experiments using a pspA deletion mutant have confirmed the physiological role of iPSPs as serine producers and show that serine is a major donor of one-carbon units in H. thermophilus IMPORTANCE Serine biosynthesis and catabolism pathways are intimately related to the metabolism of 5,10-CH 2 -THF, a one-carbon donor that is utilized for the biosynthesis of various essential compounds. For this reason, determining the mechanism of serine synthesis is important for understanding the fundamental anabolic pathways of microorganisms. In the present study, we experimentally confirmed that a novel phosphoserine phosphatase in the obligate chemolithoautotrophic bacterium Hydrogenobacter thermophilus is essential for serine biosynthesis. This finding indicates that serine is synthesized from an intermediate of gluconeogenesis in H. thermophilus In addition, because glycine cleavage system activity and genes encoding an enzyme capable of producing 5,10-CH 2 -THF were not detected, serine appears to be the major one-carbon donor to tetrahydrofolate (THF) in H. thermophilus . Copyright © 2017 American Society for Microbiology.
Barat, P; Brossaud, J; Lacoste, A; Vautier, V; Nacka, F; Moisan, M-P; Corcuff, J-B
2013-04-01
The objective of this study was to investigate low-grade inflammation in children with type 1 diabetes (T1D) and its association with cortisol levels as well as its bioavailability through 11β-hydroxy steroid dehydrogenase type 1 (11β-HSD1) activity. Children with T1D (n=45) and their non-diabetic siblings (n=28) participated in the study. Interleukin-6 (IL-6) and high-sensitivity C-reactive protein (CRPhs) were measured between 1400 and 1800h. Glucocorticoid metabolites were measured in the first morning urine on clinic day and 11β-HSD1 activity was estimated by tetrahydrocortisol/tetrahydrocortisone (THF/THE) ratio. Diabetic patients presented with an increased THF/THE ratio compared with controls (median: 0.68 [range: 0.45-1.18] vs 0.45 [0.27-0.98], respectively; P<10(-3)). There was no difference between diabetic patients and controls for IL-6 (0.6ng/mL [0.6-6.8] vs 0.6 [0.6-2.2], respectively; P=0.43) and CRPhs (0.4mg/L [0-7.4] vs 0.3 [0-8.2]; P=0.26, respectively). When adjusted for age, gender and BMI, the THF/THE ratio was significantly associated with CRPhs (β=0.32, P=0.02) in diabetic patients, but not in controls. Low-grade inflammation assessed by plasma CRPhs and IL-6 concentrations was not detectable in our cohort of T1D children. Nocturnal 11β-HSD1 activity was increased and associated with plasma CRPhs concentration in diabetic patients. These results may be explained by either a direct or inflammation-mediated effect of the relative hepatic lack of insulin due to subcutaneous insulin therapy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Gorman, Paul D.; English, Niall J.; MacElroy, J. M. D.
2012-01-01
Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled "1SC 1LC"), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H2-THF and pure-H2 systems, in which there is double H2 occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.
Correlation consistent basis sets for actinides. I. The Th and U atoms.
Peterson, Kirk A
2015-02-21
New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.
Clark, Lawrence; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Mountford, Philip; Townley, Josh P
2010-08-07
New trivalent lanthanoid aryloxide complexes have been prepared by redox transmetallation/protolysis (rtp) reactions using 2,4-di-tert-butylphenol (dbpH). Mononuclear octahedral complexes from tetrahydrofuran (thf) were of the type [Ln(dbp)(3)(thf)(3)] (Ln = La (1), Pr (2), Nd (3), Gd (4), Er (5)). The lanthanoid contraction results in the rather subtle change in stereochemistry from meridional (La, Pr, Nd, Gd) to facial (Er). An analogous reaction with neodymium in dimethoxyethane (dme), resulted in the isolation of the seven coordinate [Nd(dbp)(3)(dme)(2)] (6), and this is comparable with the thf complexes in terms of steric crowding. Dinuclear complexes of the type [Ln(2)(dbp)(6)(thf)(2)], (Ln = Nd (7), Er (8)) were obtained when 1 and 5 were recrystallised from toluene. These dimeric complexes contain two bridging and four terminal phenolates, as well as a single coordinated molecule of thf at each metal. A similar structural motif was observed for the products when the reaction was performed in diethyl ether, and in the absence of a solvent, yielding [Nd(2)(dbp)(6)(Et(2)O)(2)] (9) and [Nd(2)(dbp)(6)(dbpH)(2)] (10) respectively. Complexes 3 and 4 alone were efficient but poorly-controlled initiators for the ROP of rac-lactide, but with an excess of BnOH as a co-initiator they showed features consistent with immortal polymerisation. Use of BnNH(2) led to well-controlled, amine-initiated immortal ROP of rac-lactide, only the second report of this type of process for a group 3 or lanthanoid system.
Gnimpieba, Etienne Z; Eveillard, Damien; Guéant, Jean-Louis; Chango, Abalo
2011-08-01
Dynamical modeling is an accurate tool for describing the dynamic regulation of one-carbon metabolism (1CM) with emphasis on the alteration of DNA methylation and/or dUMP methylation into dTMP. Using logic programming we present a comprehensive and adaptative mathematical model to study the impact of folate deficiency, including folate transport and enzymes activities. 5-Methyltetrahydrofolate (5mTHF) uptake and DNA and dUMP methylation were studied by simulating nutritional 5mTHF deficiency and methylenetetrahydrofolate reductase (MTHFR) gene defects. Both conditions had distinct effects on 1CM metabolite synthesis. Simulating severe 5mTHF deficiency (25% of normal levels) modulated 11 metabolites. However, simulating a severe decrease in MTHFR activity (25% of normal activity) modulated another set of metabolites. Two oscillations of varying amplitude were observed at the steady state for DNA methylation with severe 5mTHF deficiency, and the dUMP/dTMP ratio reached a steady state after 2 h, compared to 2.5 h for 100% 5mTHF. MTHFR activity with 25% of V(max) resulted in an increased methylated DNA pool after half an hour. We observed a deviation earlier in the profile compared to 50% and 100% V(max). For dUMP methylation, the highest level was observed with 25%, suggesting a low rate of dUMP methylation into dTMP with 25% of MTHFR activity. In conclusion, using logic programming we were able to construct the 1CM for analyzing the dynamic system behavior. This model may be used to refine biological interpretations of data or as a tool that can provide new hypotheses for pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Masayuki; Miguel Salcedo-Gómez, Pedro; Yedidi, Ravikiran S.
We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014–0.0028 μM) with minimal cytotoxicity (CC50: 39.0 μM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510more » emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.« less
Canepa, Pieremanuele; Gautam, Gopalakrishnan Sai; Malik, Rahul; ...
2015-04-08
Multivalent (MV) battery architectures based on pairing a Mg metal anode with a high-voltage (~3 V) intercalation cathode offer a realistic design pathway toward significantly surpassing the energy storage performance of traditional Li-ion-based batteries, but there are currently only few electrolyte systems that support reversible Mg deposition. Using both static first-principles calculations and ab initio molecular dynamics, we perform a comprehensive adsorption study of several salt and solvent species at the interface of Mg metal with an electrolyte of Mg 2+ and Cl–dissolved in liquid tetrahydrofuran (THF). Our findings not only provide a picture of the stable species at themore » interface but also explain how this system can support reversible Mg deposition, and as such, we provide insights in how to design other electrolytes for Mg plating and stripping. Furthermore, the active depositing species are identified to be (MgCl) + monomers coordinated by THF, which exhibit preferential adsorption on Mg compared to possible passivating species (such as THF solvent or neutral MgCl 2 complexes). We found that upon deposition, the energy to desolvate these adsorbed complexes and facilitate charge transfer is shown to be small (~61–46.2 kJ mol –1 to remove three THF from the strongest adsorbing complex), and the stable orientations of the adsorbed but desolvated (MgCl) + complexes appear to be favorable for charge transfer. Lastly, observations of Mg–Cl dissociation at the Mg surface at very low THF coordinations (0 and 1) suggest that deleterious Cl incorporation in the anode may occur upon plating. In the stripping process, this is beneficial by further facilitating the Mg removal reaction.« less
Lucas-González, Raquel; Viuda-Martos, Manuel; Pérez-Álvarez, José Ángel; Fernández-López, Juana
2017-03-01
The aim of the work was to study the influence of particle size in the composition, physicochemical, techno-functional and physio-functional properties of two flours obtained from persimmon (Diospyros kaki Trumb. cvs. 'Rojo Brillante' (RBF) and 'Triump' (THF) coproducts. The cultivar (RBF and THF) and particle size significantly affected all parameters under study, although depending on the evaluated property, only one of these effects predominated. Carbohydrates (38.07-46.98 g/100 g) and total dietary fiber (32.07-43.57 g/100 g) were the main components in both flours (RBF and THF). Furthermore, insoluble dietary fiber represented more than 68% of total dietary fiber content. All color properties studied were influenced by cultivar and particle size. For both cultivars, the lower particle size, the higher lightness and hue values. RBF flours showed high values for emulsifying activity (69.33-74.00 mL/mL), while THF presented high values for water holding capacity (WHC: 9.47-12.19 g water/g sample). The bile holding capacity (BHC) and fat/oil binding values were, in general, higher in RBF (19.61-12.19 g bile/g sample and 11.98-9.07, respectively) than THF (16.12-12.40 g bile/g sample and 9.78-7.96, respectively). The effect of particle size was really evident in both WHC and BHC. Due to their dietary fiber content, techno-functional and physio-functional properties, persimmon flours seem to have a good profile to be used as potential functional ingredient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canepa, Pieremanuele; Gautam, Gopalakrishnan Sai; Malik, Rahul
Multivalent (MV) battery architectures based on pairing a Mg metal anode with a high-voltage (~3 V) intercalation cathode offer a realistic design pathway toward significantly surpassing the energy storage performance of traditional Li-ion-based batteries, but there are currently only few electrolyte systems that support reversible Mg deposition. Using both static first-principles calculations and ab initio molecular dynamics, we perform a comprehensive adsorption study of several salt and solvent species at the interface of Mg metal with an electrolyte of Mg 2+ and Cl–dissolved in liquid tetrahydrofuran (THF). Our findings not only provide a picture of the stable species at themore » interface but also explain how this system can support reversible Mg deposition, and as such, we provide insights in how to design other electrolytes for Mg plating and stripping. Furthermore, the active depositing species are identified to be (MgCl) + monomers coordinated by THF, which exhibit preferential adsorption on Mg compared to possible passivating species (such as THF solvent or neutral MgCl 2 complexes). We found that upon deposition, the energy to desolvate these adsorbed complexes and facilitate charge transfer is shown to be small (~61–46.2 kJ mol –1 to remove three THF from the strongest adsorbing complex), and the stable orientations of the adsorbed but desolvated (MgCl) + complexes appear to be favorable for charge transfer. Lastly, observations of Mg–Cl dissociation at the Mg surface at very low THF coordinations (0 and 1) suggest that deleterious Cl incorporation in the anode may occur upon plating. In the stripping process, this is beneficial by further facilitating the Mg removal reaction.« less
Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong
2014-02-14
The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.
Tsilchorozidou, Tasoula; Honour, John W; Conway, Gerard S
2003-12-01
Androgen excess in women with polycystic ovary syndrome (PCOS) may be ovarian and/or adrenal in origin, and one proposed contributing mechanism is altered cortisol metabolism. Increased peripheral metabolism of cortisol may occur by enhanced inactivation of cortisol by 5alpha-reductase (5alpha-R) or impaired reactivation of cortisol from cortisone by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) resulting in decreased negative feedback suppression of ACTH secretion maintaining normal plasma cortisol concentrations at the expense of androgen excess. We have tested whether any enzyme dysregulation was related to circulating insulin or androgen concentrations in women with PCOS and have sought to clarify their relationship with obesity. First, to avoid obesity-related effects on cortisol metabolism, 18 lean women with PCOS were compared with 19 lean controls who were closely matched for body mass index (BMI). Second, the impact of obesity was studied in a cross-section of 42 PCOS women of a broad range of BMI. We measured 24-h urinary excretion of steroid metabolites by gas chromatography/mass spectrometry and fasting metabolic and hormone profiles. Urinary excretion of androgens [androsterone (P = 0.003), etiocholanolone (P = 0.02), and C19 steroid sulfates (P = 0.009)], cortisone metabolites [tetrahydrocortisone (THE) (P = 0.02), alpha-cortolone (P < 0.001), beta-cortol + beta-cortolone (P < 0.001), cortolones (P < 0.001), and E metabolites (P < 0.001)], and TCM (P = 0.002) were raised in lean PCOS subjects when compared with controls. A significantly higher 5alpha-tetrahydrocortisol (5alpha-THF)/5beta-THF ratio (P = 0.04) and a significantly lower alpha-THF + THF + alpha-cortol/THE + cortolones ratio (P = 0.01) were found in lean PCOS women compared with lean controls, indicating both enhanced 5alpha-R and reduced 11beta-HSD1 activities. A decreased THE/cortolones ratio (P = 0.03) was also found in lean PCOS women compared with lean controls, indicating increased 20 alpha/beta-HSD activity. In the group of 42 PCOS subjects, measures of 5alpha/5beta reduction were positively correlated with the homeostasis model insulin resistance index (HOMA-R): alpha-THF/THF and HOMA-R (r = 0.34; P = 0.03), androsterone/etiocholanolone and HOMA-R (r = 0.32; P = 0.04), and total 5alpha /total 5beta and HOMA-R (r = 0.37; P = 0.02). A positive correlation was also found between measures of 5alpha-R and BMI (r = 0.37; P = 0.02). No correlation was found between measures of 11beta-HSD1 activity and indices of insulin sensitivity or BMI. We have demonstrated that there is an increased production rate of cortisol and androgens as measured in vivo in lean PCOS women. Insulin seems to enhance 5alpha reduction of steroids in PCOS but was not associated with the elevated cortisol production rate. The changes in 5alpha-R, 11beta-HSD1, and 20alpha/beta-HSD enzyme activities observed in PCOS may contribute to the increased production rates of cortisol and androgens, supporting the concept of a widespread dysregulation of steroid metabolism. This dysregulation does not seem to be the primary cause of PCOS because no correlation was found between serum androgen levels or urinary excretion of androgens with measurements of either 5alpha-R or 11beta-HSD1 activities.
Chemical route for formation of intermetallic Zn 4Sb 3 phase
NASA Astrophysics Data System (ADS)
Denoix, A.; Solaiappan, A.; Ayral, R. M.; Rouessac, F.; Tedenac, J. C.
2010-05-01
Synthesis of intermetallic zinc antimonide phases via low temperature solution route was investigated. Trial experiments were carried out under inert atmosphere at 70 °C using metallic Zn, SbCl 3 and NaBH 4 as reactants and tetrahydrofuran (THF), dimethylsulfoxide (DMSO) as organic media. Powder X-ray analysis confirmed the nucleation and growth of ZnSb phases in presence of excess Zn. SEM analysis revealed the existence of core-shell structure comprising of Zn core and Sb shell. Such particles get transformed into Zn 4Sb 3 crystalline phases upon thermal treatment at 300 °C/6 h in a silica tube closed under high secondary vacuum.
Bertz, Steven H; Hardin, Richard A; Heavey, Thomas J; Jones, Daniel S; Monroe, T Blake; Murphy, Michael D; Ogle, Craig A; Whaley, Tara N
2013-07-29
Grow slow: The usual direct treatment of MeLi and CuSPh did not yield X-ray quality crystals of MeCu(SPh)Li. An indirect method starting from Me2CuLi⋅LiSPh and chalcone afforded the desired crystals by the slow reaction of the intermediate π-complex (see scheme). This strategy produced the first X-ray crystal structure of a Posner cuprate. A complementary NMR study showed that the contact ion pair was also the main species in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid Crystals of Dendron-like Pt Complexes Processable into Nanofilms
2013-05-01
vermicular dendrimers of the phenyleneethynylene type, which resulted be very soluble in non-polar solvents such as CHCl3, THF, toluene. Their chemical... dendrimers of the phenyleneethynylene type, which resulted be very soluble in non-polar solvents such as CHCl3, THF, toluene. Their chemical...2012 and 2013, to synthesize the same above dendron like oligomers but without the platinum atom in order to give, for example, the dendrimers
Walfort, B; Pandey, S K; Stalke, D
2001-09-07
A single ethylene oxide anion derived from the ether cleavage reaction of thf with ButLi is stabilised by the inverse podant [Li3(NBut)3S)]+ to give a high- and a low-temperature polymorph with a considerable difference in conformation and packing.
Izod, Keith; McFarlane, William; Tyson, Brent V; Clegg, William; Harrington, Ross W
2004-12-07
The vinylidene phosphine (Pr(n)(2)P)(2)C=CH(2) (1) undergoes Schlenk dimerisation on treatment with an excess of any of the alkali metals Li, Na or K to give the butane-1,4-diide complexes [(L)M{(Pr(n)(2)P)(2)CCH(2)}](2)[(L)M =(THF)(2)Li (6), (THF)(3)Na (7b), (DME)(2)K (8b)], after recrystallisation. Whereas the reaction between the analogous phenyl derivative (Ph(2)P)(2)C=CH(2) and K results in cleavage of a P-C bond, 1 reacts smoothly with K to give 8, with no evidence for P-C cleavage. Compound 6 is an excellent ligand transfer reagent: metathesis reactions between either 6 or its phenyl analogue [(THF)(2)Li{(Ph(2)P)(2)CCH(2)}](2) (2) and two equivalents of Cp(2)ZrCl(2) in THF give the corresponding dinuclear zirconocene derivatives [Cp(2)Zr(Cl){(R(2)P)(2)CCH(2)}](2) in good yields [R = Ph (11), Pr(n)(12)]. Compounds 6, 7b, 8b, 11 and 12 have been characterised by multi-element NMR spectroscopy and, where possible, by elemental analysis; compounds 6, 7b, 11 and 12 have additionally been characterised by X-ray crystallography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Micholas Dean; Cheng, Xiaolin; Petridis, Loukas
Deconstruction of cellulose is crucial for the chemical conversion of lignocellulose into fuel/bioproduct precursors. Recently, a water-organosolv cosolvent system (THF-water) has been shown to both phase-separate on cellulose surfaces and partially deconstruct Avicel (cellulose) in the absence of acid. Here we employ molecular dynamics simulations to determine whether other common water-organosolv cosolvent systems (acetone, ethanol, and γ-valerolactone) exhibit phase separation at cellulose surface and whether this alters a purely physical cellulose dissociation pathway. Despite finding varied degrees of phase-separation of organosolv on cellulose surfaces, physical dissociation is not enhanced. Interestingly, however, the total amount the median water-cellulose contact lifetimes increasesmore » for the cosolvent systems in the order of THF > acetone > ethanol > γ-valerolactone. Together our results indicate two points: a purely physical process for deconstruction of cellulose is unlikely for these cosolvents, and in THF-water, unlike γ-valerolactone- (and some concentrations of acetone and ethanol) water cosolvents, a significant fraction of surface water is slowed. As a result, this slowing may be of importance in enhancing chemical deconstruction of cellulose, as it permits an increase in potential THF-water-cellulose reactions, even while the amount of water near cellulose is decreased.« less
Zeng, Bu-Bing; Wu, Yikang; Jiang, Sheng; Yu, Qian; Yao, Zhu-Jun; Liu, Zhong-Hai; Li, Hong-Yan; Li, Yan; Chen, Xiao-Guang; Wu, Yu-Lin
2003-01-03
A class of structurally simplified analogues of the naturally occurring annonaceous acetogenins were developed, amongst which some non-THF analogues showed remarkable cytotoxicities against tumor cell lines, as well as good selectivity between human tumor cells and normal cells. The synthetic routes were significantly shortened because of the removal of the chiral centers bearing the THF rings on the natural templates. This simplification also provides access to the parallel synthesis of these mimics by a combinatorial strategy. The remaining stereogenic centers at the positions alpha to the ethereal links were introduced by the Chiron approach from the easily accessible chiral building blocks 6a and/or 6b, made in turn from L-ascorbic acid or D-mannitol, while the one in the butenolide segment was taken from L-lactate. All four diastereomeric non-THF analogues 2a-2d showed remarkable activity against the HCT-8 cell line, and better differentiation was found when testing against the HT-29 cell line. It was also discovered that both the butenolide and ethylene glycol subunits play essential roles in the cytotoxicities against tumor cell lines, while the 10-substituted hydroxy group and the absolute configuration of methyl group at the butenolide moiety are less important for their activity.
Insight into Oxide-Bridged Heterobimetallic Al/Zr Olefin Polymerization Catalysts.
Boulho, Cédric; Zijlstra, Harmen S; Hofmann, Alexander; Budzelaar, Peter H M; Harder, Sjoerd
2016-11-21
Reaction of (TBBP)AlMe⋅THF with [Cp* 2 Zr(Me)OH] gave [(TBBP)Al(THF)-O-Zr(Me)Cp* 2 ] (TBBP=3,3',5,5'-tetra-tBu-2,2'-biphenolato). Reaction of [DIPPnacnacAl(Me)-O-Zr(Me)Cp 2 ] with [PhMe 2 NH] + [B(C 6 F 5 ) 4 ] - gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)-O-Zr(THF)Cp 2 ] + [B(C 6 F 5 ) 4 ] - (DIPPnacnac=HC[(Me)C=N(2,6-iPr 2 -C 6 H 3 )] 2 ). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40-47 kcal mol -1 ) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six-membered-ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal-Me-C angle that prevents synchronized bond-breaking and making. A more-likely pathway is dissociation of the Al-O-Zr complex into an aluminate and the active polymerization catalyst [Cp* 2 ZrMe] + . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Smith, Micholas Dean; Cheng, Xiaolin; Petridis, Loukas; ...
2017-11-03
Deconstruction of cellulose is crucial for the chemical conversion of lignocellulose into fuel/bioproduct precursors. Recently, a water-organosolv cosolvent system (THF-water) has been shown to both phase-separate on cellulose surfaces and partially deconstruct Avicel (cellulose) in the absence of acid. Here we employ molecular dynamics simulations to determine whether other common water-organosolv cosolvent systems (acetone, ethanol, and γ-valerolactone) exhibit phase separation at cellulose surface and whether this alters a purely physical cellulose dissociation pathway. Despite finding varied degrees of phase-separation of organosolv on cellulose surfaces, physical dissociation is not enhanced. Interestingly, however, the total amount the median water-cellulose contact lifetimes increasesmore » for the cosolvent systems in the order of THF > acetone > ethanol > γ-valerolactone. Together our results indicate two points: a purely physical process for deconstruction of cellulose is unlikely for these cosolvents, and in THF-water, unlike γ-valerolactone- (and some concentrations of acetone and ethanol) water cosolvents, a significant fraction of surface water is slowed. As a result, this slowing may be of importance in enhancing chemical deconstruction of cellulose, as it permits an increase in potential THF-water-cellulose reactions, even while the amount of water near cellulose is decreased.« less
Lampert, Zach E; Reynolds, C Lewis; Papanikolas, John M; Aboelfotoh, M Osama
2012-10-25
We report the results of a detailed investigation that addresses the influence of polymer morphology and chain aggregation, as controlled by the chemical nature of the solvent, on the optical gain properties of the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV). Using the variable stripe length technique in the picosecond regime, we have extensively studied the optical gain performance of asymmetric planar waveguides formed with thin MEH-PPV films spin-cast from concentrated chlorobenzene (CB) and tetrahydrofuran (THF) solutions onto thermally oxidized silicon substrates. CB and THF solvents were chosen based on their known ability to promote and effectively limit aggregate formation, respectively. Very large net gain coefficients are demonstrated, reaching values of 330 and 365 cm(-1), respectively, when optically pumping the waveguides with a maximum energy density of 85 μJ/cm(2). Our results clearly demonstrate that polymer morphology, and hence, the chain conformation dependence of the degree of aggregation in the films as controlled by the solvent, has minimal impact on the net gain. Moreover, the waveguides exhibit low loss coefficients of 10-20 cm(-1) at the ASE wavelength. These results question the importance of polymer morphology and aggregate formation in polymer-based optical devices operating at high excitation densities in the stimulated emission regime as would be characteristic of lasers and optical amplifiers.
NASA Astrophysics Data System (ADS)
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-01
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1H, 13C and 31P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641 nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co2+ ions due to showing high selectivity with a low limit of detection.
Thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system
NASA Astrophysics Data System (ADS)
Capelli, E.; Beneš, O.; Konings, R. J. M.
2014-06-01
The present study describes the full thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system which is one of the key systems considered for a molten salt reactor fuel. The work is an extension of the previously assessed LiF-NaF-ThF4-UF4 system with addition of BeF2 which is characterized by very low neutron capture cross section and a relatively low melting point. To extend the database the binary BeF2-ThF4 and BeF2-UF4 systems were optimized and the novel data were used for the thermodynamic assessment of BeF2 containing ternary systems for which experimental data exist in the literature. The obtained database is used to optimize the molten salt reactor fuel composition and to assess its properties with the emphasis on the melting behaviour.
Castillo, Oscar; Delgado, Esther; Gómez-García, Carlos J; Hernández, Diego; Hernández, Elisa; Martín, Avelino; Martínez, José I; Zamora, Félix
2017-10-02
The use of theoretical calculations has allowed us to predict the coordination behavior of dithiolene [M(SC 6 H 4 S) 2 ] 2- (M = Ni, Pd, Pt) entities, giving rise to the first organometallic polymers {[K 2 (μ-H 2 O) 2 ][Ni(SC 6 H 4 S) 2 ]} n and {[K 2 (μ-H 2 O) 2 (thf)] 2 [K 2 (μ-H 2 O) 2 (thf) 2 ][Pd 3 (SC 6 H 4 S) 6 ]} n by one-pot reactions of the corresponding d 10 metal salts, 1,2-benzenedithiolene, and KOH. The polymers are based on σ,π interactions between potassium atoms and [M(SC 6 H 4 S) 2 ] 2- (M = Ni, Pd) entities. In contrast, only σ interactions are observed when the analogous platinum derivative is used instead, yielding the coordination polymer {[K 2 (μ-thf) 2 ][Pt(SC 6 H 4 S) 2 ]} n .
NASA Astrophysics Data System (ADS)
Rebelo, André; Cunha, Tiago; Mendes, Mónica; da Silva, Filipe Ferreira; García, Gustavo; Limão-Vieira, Paulo
2016-06-01
Kinetic-energy release distributions have been obtained from the width and shapes of the time-of-flight (TOF) negative ion mass peaks formed in collisions of fast potassium atoms with D-Ribose (DR) and tetrahydrofuran (THF) molecules. Recent dissociative ion-pair formation experiments yielding anion formation have shown that the dominant fragment from D-Ribose is OH- [D. Almeida, F. Ferreira da Silva, G. García, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013)] whereas in the case of THF is O- [D. Almeida, F. Ferreira da Silva, S. Eden, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 690 (2014)]. The results for DR and THF show an energy distribution profile reminiscent of statistical degradation via vibrational excitation and partly due to direct transformation of the excess energy in translational energy.
Shoshana, O; Pérez Lustres, J L; Ernsting, N P; Ruhman, S
2006-06-14
Using multichannel femtosecond spectroscopy we have followed Na- charge transfer to solvent (CTTS) dynamics in THF solution. Absorption of the primary photoproducts in the visible, resolved here for the first time, consists of an asymmetric triplet centered at 595 nm, which we assign to a metastable incompletely solvated neutral atomic sodium species. Decay of this feature within approximately 1 ps to a broad and structureless solvated neutral is accompanied by broadening and loss of spectral detail. Kinetic analysis shows that both the spectral structure and the decay of this band are independent of the excitation photon frequency in the range 400-800 nm. With different pump-probe polarizations the anisotropy in transient transmission has been charted and its variation with excitation wavelength surveyed. The anisotropies are assigned to the reactant bleach, indicating that due to solvent-induced symmetry breaking, the CTTS absorption band of Na- is made up of discreet orthogonally polarized sub bands. None of the anisotropy in transient absorption could be associated with the photoproduct triplet band even at the earliest measurable time delays. Along with the documented differences in the spatial distribution of ejected electrons across the tested excitation wavelength range, these results lead us to conclude that photoejection is extremely rapid, and that loss of correlations between the departing electron and its neutral core is faster than our time resolution of approximately 60 fs.
NASA Astrophysics Data System (ADS)
Asim, Sadia; Mansha, Asim; Landgraf, Stephan; Grampp, Günter; Zahid, Muhammad; Bhatti, Haq Nawaz
2014-01-01
The exciplex emission spectra of N-ethylcarbazole with 1,2-dicyanobenzene (NEC/1,2-DCB), N-methylcarbazole with 1,2-dicyanobenzene (NMC/1,2-DCB), 1,3-dicyanobenzene (NMC/1,3-DCB), and 1,4-dicyanobenzene (NMC/1,4-DCB) are studied in tetrahydrofuran (THF) for the temperature range starting from 253 K to 334 K. Thermochromic shifts along with the spectral properties including change in peak intensities and the ratio of exciplex peak intensity to fluorophore peak intensity are studied. Effect of temperature on the energy of zero-zero transitions hνo‧, Huang-Rhys factor (S), Gauss broadening of vibronic level (σ) and the dominant high-frequency vibration (hνν) are also part of investigation. Enthalpy of exciplex formation (ΔHEX∗) calculated by the model proposed by A. Weller and the Gibb's energy of electron transfer (ΔGet∗) for all exciplex systems are also discussed in the present paper. All the exciplexes under study were observed to be dipolar in nature. The exciplex of the N-methylcarbazole/1,4-dicyanobenzene was found to be the most stable and the N-methylcarbazole/1,3-dicyanobenzene was the weakest exciplex system.
NASA Astrophysics Data System (ADS)
Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret
2013-03-01
Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)
Lorenz, Sara E; Schmiege, Benjamin M; Lee, David S; Ziller, Joseph W; Evans, William J
2010-07-19
The metallocene precursors needed to provide the tetramethylcyclopentadienyl yttrium complexes (C(5)Me(4)H)(3)Y, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), and [(C(5)Me(4)H)(2)Y(mu-H)](2) for reactivity studies have been synthesized and fully characterized, and their reaction chemistry has led to an unexpected conversion of an azide to an amide. (C(5)Me(4)H)(2)Y(mu-Cl)(2)K(THF)(x), 1, synthesized from YCl(3) and KC(5)Me(4)H reacts with allylmagnesium chloride to make (C(5)Me(4)H)(2)Y(eta(3)-C(3)H(5)), 2, which is converted to [(C(5)Me(4)H)(2)Y][(mu-Ph)(2)BPh(2)], 3, with [Et(3)NH][BPh(4)]. Complex 3 reacts with KC(5)Me(4)H to form (C(5)Me(4)H)(3)Y, 4. The reduced dinitrogen complex, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-N(2)), 5, can be synthesized from either [(C(5)Me(4)H)(2)Y](2)[(mu-Ph)(2)BPh(2)], 3, or (C(5)Me(4)H)(3)Y, 4, with potassium graphite under a dinitrogen atmosphere. The (15)N labeled analogue, [(C(5)Me(4)H)(2)Y(THF)](2)(mu-eta(2):eta(2)-(15)N(2)), 5-(15)N, has also been prepared, and the (15)N NMR data have been compared to previously characterized reduced dinitrogen complexes. Complex 2 reacts with H(2) to form the corresponding hydride, [(C(5)Me(4)H)(2)Y(mu-H)](2), 6. Complex 5 displays similar reactivity to that of the analogous [(C(5)Me(4)H)(2)Ln(THF)](2)(mu-eta(2):eta(2)-N(2)) complexes (Ln = La, Lu), with substrates such as phenazine, anthracene, and CO(2). In addition, 5 reduces Me(3)SiN(3) to form (C(5)Me(4)H)(2)Y[N(SiMe(3))(2)], 7.
Sacha, Gregory A; Schmitt, William J; Nail, Steven L
2006-01-01
The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.
Hemilability of the 1,2-Bis(dimethylphosphino)ethane (dmpe) Ligand in Cp*Mo(NO)(κ2-dmpe).
Holmes, Aaron S; Patrick, Brian O; Levesque, Taleah M; Legzdins, Peter
2017-09-18
Reaction of Cp*Mo(NO)Cl 2 with 1 equiv of 1,2-bis(dimethylphosphino)ethane (dmpe) in THF at ambient temperature forms [Cp*Mo(NO)(Cl)(κ 2 -dmpe)]Cl (1), which is isolable as an analytically pure yellow powder in 65% yield. Further addition of 2 equiv of Cp 2 Co to 1 in CH 2 Cl 2 affords dark red Cp*Mo(NO)(κ 2 -dmpe) (2), which was isolated in 36% yield by recrystallization from Et 2 O at -30 °C. Reaction of a benzene solution of 2 with an equimolar amount of elemental sulfur results in the immediate production of dark blue (μ-S)[Cp*Mo(NO)(κ 1 -dmpeS)] 2 (3), which is a rare example of a bimetallic transition-metal complex bridged by only a single sulfur atom and involving Mo═S═Mo bonding. In contrast, reaction of 2 with an excess of sulfur in benzene results in the formation of Cp*Mo(NO)(η 2 -S 2 )(κ 1 -dmpeS) (4). Complex 4 can also be formed by the addition of elemental sulfur to 3, thereby indicating that 3 is a precursor to 4. Cp*Mo(NO)(κ 2 -dmpe) (2) also undergoes interesting transformations when treated with organic bromides. For instance, reaction of 2 with 5 equiv benzyl bromide in THF produces the bimetallic complex (μ-dmpe)[Cp*Mo(NO)Br 2 ] 2 (5) and bibenzyl after 4 d at 70 °C probably via radical intermediates. In contrast to its reaction with benzyl bromide, complex 2 forms [Mo(NO)Br 2 (κ 2 -dmpe)] 2 (6), olefin, alkane, and Cp*H when treated with 5 equiv of 1-bromopropane or 1-bromooctane in THF at 70 °C for 72 h. Interestingly, complex 2 does not display any reactivity with bromobenzene or 1-bromoadamantane even after being heated for several days at 70 °C. All new complexes were characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them were established by single-crystal X-ray crystallographic analyses.
Sudiwala, Sonia; De Castro, Sandra C P; Leung, Kit-Yi; Brosnan, John T; Brosnan, Margaret E; Mills, Kevin; Copp, Andrew J; Greene, Nicholas D E
2016-07-01
The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Cantat, Thibault; Scott, Brian L; Morris, David E; Kiplinger, Jaqueline L
2009-03-02
The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyl]amido ligand (PNP) toward UI3(THF)4 and UCl4 has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of UI3(THF)4 afforded the trivalent halide complex (PNP)UI2(4-tBu-pyridine)2 (7) in the presence of 4-tert-butylpyridine. The same reaction carried out with UCl4 and no donor ligand gave [(PNP)UCl3]2 (8), in which the uranium coordination sphere in the (PNP)UCl3 unit is completed by a bridging chloride ligand. When UCl4 is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl3(THF) (9), (PNP)UCl3(TMPO)2 (10), and (PNP)UCl3(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)2UI (12), and uranium(IV), (PNP)2UCl2 (13), were easily isolated from the analogous reactions between 2 equiv of 6 and UI3(THF)4 or UCl4, respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and 1H and 31P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa3-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual kappa2-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C5Me5 analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The electronic influence of replacing the C5Me5 ligands with PNP was investigated using electronic absorption spectroscopy and electrochemistry. For 12 and 13, a chemically reversible wave corresponding to the UIV/UIII redox transformation comparable to that for 3 and 4 was observed. However, a 350 mV shift of this couple to more negative potentials was observed on substitution of the bis(C5Me5) by the bis(PNP) framework, therefore pointing to a greater electronic density at the metal center in the PNP complexes. The UV-visible region of the electronic spectra for the mono(PNP) and bis(PNP) complexes appear to be dominated by PNP ligand-based transitions that are shifted to higher energy in the uranium complexes than in the simple ligand anion (6) spectrum, for both the UVI and UIII oxidation states. The near IR region in complexes 1-4 and 7, 9, 11-13 is dominated by f-f transitions derived from the 5f3 and 5f2 valence electronic configuration of the metal center. Though complexes of both ligand sets exhibit similar intensities in their f-f bands, a somewhat larger ligand-field splitting was observed for the PNP system, consistent with its higher electron donating ability.
Buckner, Steven W; Fischer, Matthew J; Jelliss, Paul A; Luo, Rensheng; Minteer, Shelley D; Rath, Nigam P; Siemiarczuk, Aleksander
2006-09-04
The complex [7,10-mu-H-7-CO-7,7-(PPh3)2-isonido-7,8,9-ReC2B7H9] has been synthesized by treatment of the complex salt [NHMe3][3,3-Cl2-3,3-(CO)2-closo-3,1,2-ReC2B9H11] with PPh3 in refluxing THF (tetrahydrofuran) and isolated as intensely colored orange-red microcrystals. Spectroscopic NMR and IR data have suggested that the product has a highly asymmetric structure with two inequivalent PPh3 ligands and a single CO ligand. Measurement of 11B NMR spectra in particular have indicated seven distinct boron vertexes, although the resulting cage degradation by removal of two BH vertexes was confirmed only following X-ray crystallographic analysis, which revealed the pentadecahedral isonido-7,8,9-ReC2B7 architecture. The 11B NMR resonances span an enormous chemical shift range (Deltadelta = 113), and this appears to be a direct consequence of the deshielding of the boron vertex directly opposite the quadrilateral |ReCCB| aperture. The new complex has been shown by electrochemical measurements to undergo a reversible one-electron oxidation. Digitally simulated cyclic voltammograms support a proposed square scheme (E(1/2) = 0.58, 0.69 V vs ferrocene) involving a reversible isonido-closo transition of the metallacarborane cage. Most unusually for a metallacarborane complex, ambient temperature solutions in CH2Cl2 and DMF have been shown to be intensely turquoise-blue fluorescent (lambda(em) = 442 nm, Phi = 0.012). Fluorescence spectroscopy measurements in MeTHF (2-methyltetrahydrofuran) glass at 77 K have indicated that the likely cause of such a broad emission is dual fluorescence (lambda(em) = 404, 505 nm), with both emissions displaying vibronic structure. Following excited-state lifetime decay analysis, the emissive behavior has been accredited to metal-perturbed 1IL states, with the lower energy emission arising from a slight geometric distortion of the initially excited complex.
Synthesis of Fuels and Value-Added Nitrogen-Containing Compounds from N2
2014-11-24
The Haber - Bosch ammonia synthesis is one of the great technological achievements of the 20th century, having revolutionized agriculture and hence the...catalytic synthesis of ammonia or hydrazine compatible with renewable (CO2-free) hydrogen. N Ph N Ph N V Ar iPr iPr N THF N N Ph N Ph N V Ar Ar THF...atom transfer from renewable H2. Concurrent with these efforts, we have also been exploring related molybdenum platforms for ammonia oxidation. The
Salt-Induced Block Copolymer Micelles as Nanoreactors for the Formation of CdS Nanoparticles
2001-11-01
or corona of micelles is presented. Poly(styrene-block-2-vinylpyridine) ( PS - b - P2VP ) and cadmium ions form aggregates of single micelles, called...ratio and block copolymer concentration in THF etc. EXPERIMENTAL DETAILS The synthesis of the PS - b - P2VP block copolymer was performed using sequential...nanoparticles: PS - b - P2VP block copolymer was dissolved in THF at different concentrations under vigorous stirring for 1 hour. Cd(Ac)2.2H 20 dissolved in a
Monte Carlo simulations of liquid tetrahydrofuran including pseudorotationa)
NASA Astrophysics Data System (ADS)
Chandrasekhar, Jayaraman; Jorgensen, William L.
1982-11-01
Monte Carlo statistical mechanics simulations have been carried out for liquid tetrahydrofuran (THF) with and without pseudorotation at 1 atm and 25 °C. The intermolecular potential functions consisted of Lennard-Jones and Coulomb terms in the TIPS format reported previously for ethers. Pseudorotation of the ring was described using the generalized coordinates defined by Cremer and Pople, viz., the puckering amplitude and the phase angle of the ring. The corresponding intramolecular potential function was derived from molecular mechanics (MM2) calculations. Compared to the gas phase, the rings tend to be more flat and the population of the C2 twist geometry is slightly higher in liquid THF. However, pseudorotation has negligible effect on the calculated intermolecular structure and thermodynamic properties. The computed density, heat of vaporization, and heat capacity are in good agreement with experiment. The results are also compared with those from previous simulations of acyclic ethers. The present study provides the foundation for investigations of the solvating ability of THF.
Thermodynamic assessment of the LiF-ThF4-PuF3-UF4 system
NASA Astrophysics Data System (ADS)
Capelli, E.; Beneš, O.; Konings, R. J. M.
2015-07-01
The LiF-ThF4-PuF3-UF4 system is the reference salt mixture considered for the Molten Salt Fast Reactor (MSFR) concept started with PuF3. In order to obtain the complete thermodynamic description of this quaternary system, two binary systems (ThF4-PuF3 and UF4-PuF3) and two ternary systems (LiF-ThF4-PuF3 and LiF-UF4-PuF3) have been assessed for the first time. The similarities between CeF3/PuF3 and ThF4/UF4 compounds have been taken into account for the presented optimization as well as in the experimental measurements performed, which have confirmed the temperatures predicted by the model. Moreover, the experimental results and the thermodynamic database developed have been used to identify potential compositions for the MSFR fuel and to evaluate the influence of partial substitution of ThF4 by UF4 in the salt.
Smith, Micholas Dean; Mostofian, Barmak; Cheng, Xiaolin; ...
2015-10-05
The deconstruction of cellulose is an essential step in the production of ethanol from lignocellulosic biomass. However, the presence of lignin hinders this process. Recently, a novel cosolvent based biomass pretreatment method called CELF (Cosolvent Enhanced Lignocellulosic Fractionation) which employs tetrahydrofuran (THF) in a single phase mixture with water, was found to be highly effective at solubilizing and extracting lignin from lignocellulosic biomass and achieving high yields of fermentable sugars. Here, using all-atom molecular-dynamics simulation, we find that THF preferentially solvates lignin, and in doing so, shifts the equilibrium configurational distribution of the biopolymer from a crumpled globule to coil,more » independent of temperature. Whereas pure water is a bad solvent for lignin, the THF : water cosolvent acts as a "theta" solvent, in which solvent : lignin and lignin : lignin interactions are approximately equivalent in strength. Furthermore, under these conditions, polymers do not aggregate, thus providing a mechanism for the observed lignin solubilization that facilitates unfettered access of celluloytic enzymes to cellulose.« less
Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.
Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J
2016-08-01
Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messori, M.; Vaccari, A.
1994-11-01
The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by themore » similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6 tabs.« less
Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maioriello, J.; Larsen, J.W.
1988-12-31
A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina
Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanBmore » has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products.« less
Cuscuta europaea plastid apparatus in various developmental stages
Švubová, Renáta; Ovečka, Miroslav; Pavlovič, Andrej; Slováková, Ľudmila; Blehová, Alžbeta
2013-01-01
It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in “get together” tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host. PMID:23438585
Gonçalves, Cristine; Gomez, Jean-Pierre; Même, William; Rasolonjatovo, Bazoly; Gosset, David; Nedellec, Steven; Hulin, Philippe; Huin, Cécile; Le Gall, Tony; Montier, Tristan; Lehn, Pierre; Pichon, Chantal; Guégan, Philippe; Cheradame, Hervé; Midoux, Patrick
2017-08-01
Neutral amphiphilic triblock ABA copolymers are of great interest to solubilize hydrophobic drugs. We reported that a triblock ABA copolymer consisting of methyl-2-oxazoline (MeOx) and tetrahydrofuran (THF) (MeOx 6 -THF 19 -MeOx 6 ) (TBCP2) can solubilize curcumin (Cur) a very hydrophobic molecule exhibiting multiple therapeutic effects but whose insolubility and low stability in water is a major drawback for clinical applications. Here, we provide evidences by flow cytometry and confocal microscopy that Cur penetration in normal and ΔF508-CFTR human airway epithelial cell lines is facilitated by TBCP2. When used on ΔF508-CFTR cell lines, the Cur/TBCP2 formulation promotes the restoration of the expression of the CFTR protein in the plasma membrane. Furthermore, patch-clamp and MQAE fluorescence experiments show that this effect is associated with a correction of a Cl - selective current at the membrane surface of F508del-CFTR cells. The results show the great potential of the neutral amphiphilic triblock copolymer MeOx 6 -THF 19 -MeOx 6 as carrier for curcumin in a Cystic Fibrosis context. We anticipate that other MeOx n -THF m -MeOx n copolymers could have similar behaviours for other highly insoluble therapeutic drugs or cosmetic active ingredients. Copyright © 2017 Elsevier B.V. All rights reserved.
Saeki, Akinori; Kozawa, Takahiro; Ohnishi, Yuko; Tagawa, Seiichi
2007-02-22
The initial decrease of solvated electrons in tetrahydrofuran (THF) upon addition of biphenyl was investigated by picosecond pulse radiolysis. Transient absorption spectra derived from the biphenyl radical anion (centered at 408 and 655 nm) and solvated electrons of THF (infrared) were successfully measured in the wavelength region from 400 to 900 nm by the extension of a femtosecond continuum probe light to near-ultraviolet using a second harmonic generation of Ti:sapphire laser and a CaF2 plate. From the analysis of kinetic traces at 1300 nm considering the overlap of primary solvated electrons and partial biphenyl radical anion, C37, which is defined by the solute concentration to reduce the initial yield of solvated electrons to 1/e, was found to be 87 +/- 3 mM. The rate constant of solvated electrons with biphenyl was determined as 5.8 +/- 0.3 x 10(10) M(-1) s(-1). We demonstrate that the kinetic traces at both 408 nm mainly due to biphenyl radical anion and 1300 nm mainly due to solvated electrons are reproduced with high accuracy and consistency by a simple kinetic analysis. Much higher concentrations of biphenyl (up to 2 M) were examined, showing further increase of the initial yield of biphenyl radical anion accompanying a fast decay component. This observation is discussed in terms of geminate ion recombination, scavenging, delayed geminate ion recombination, and direct ionization of biphenyl at high concentration.
Wu, Bing; Wilding, Matthew J T; Kuppuswamy, Subramaniam; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2016-12-05
To understand the metal-metal bonding and conformational flexibility of first-row transition metal heterobimetallic complexes, a series of heterobimetallic Ti/M and V/M complexes (M = Fe, Co, Ni, and Cu) have been investigated. The titanium tris(phosphinoamide) precursors ClTi(XylNP i Pr 2 ) 3 (1) and Ti(XylNP i Pr 2 ) 3 (2) have been used to synthesize Ti/Fe (3), Ti/Ni (4, 4 THF ), and Ti/Cu (5) heterobimetallic complexes. A series of V/M (M = Fe (7), Co (8), Ni (9), and Cu (10)) complexes have been generated starting from the vanadium tris(phosphinoamide) precursor V(XylNP i Pr 2 ) 3 (6). The new heterobimetallic complexes were characterized and studied by NMR spectroscopy, X-ray crystallography, electron paramagnetic resonance, and Mössbauer spectroscopy, where applicable, and computational methods (DFT). Compounds 3, 4 THF , 7, and 8 are C 3 -symmetric with three bridging phosphinoamide ligands, while compounds 9 and 10 adopt an asymmetric geometry with two bridging phosphinoamides and one phosphinoamide ligand bound η 2 to vanadium. Compounds 4 and 5, on the other hand, are asymmetric in the solid state but show evidence for fluxional behavior in solution. A correlation is established between conformational flexibility and metal-metal bond order, which has important implications for the future reactivity of these and other heterobimetallic molecules.
Fundamental Investigations of the Tribological Properties of Biological Interfaces
2007-11-01
flat at the bottom of a septum-sealed vial that was purged with nitrogen gas. Into this vial, dry, distilled toluene, and 0.1 mL each of...allowed to polymerize with o-Si " 0’r +N .N+-- O ___0 stirring at 60-75 C for 43 hours. The 0 CN 2. Soxhlet extraction reaction was terminated by exposure 3...with THF to air. The PS-modified silicon wafer CN - 4 was washed by Soxhlet extraction 4- in THF for 44 hours to remove any 0 free polymer. Scheme 1
Izod, Keith; Liddle, Stephen T; Clegg, William
2004-08-07
Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))
Alteration of Folic Metabolism in Breast Cancer
2014-08-01
folates into 5-‐ methyl -‐THF. As shown in Fig. 5 , upon methionine deprivation...for 1hr, 5-‐ methyl -‐THF accounts for >90% of all folates in MDA-‐MB-‐468 triple negative breast...Annual 3. DATES COVERED 01Aug2013 – 31July2014 4. TITLE AND SUBTITLE Alteration of Folate Metabolism in Breast Cancer
Preparation of Radiolabeled Compounds for the U.S. Army Drug Development Program.
1996-12-01
with borane -THF complex gave an 83% radiochemical yield of [14C]-19 after several recrystallizations from ethanol. In the master synthesis , alcohol...amide [14C]-15 in 88% radiochemical yield and 99% radiochemical purity after chromatography. Reduction of [14C]-15 with borane -THF complex afforded a...163 mCi) and tetrahydrofuran (freshly distilled) (28.6 mL) in a 1 00-mL RBF was cooled to 0 0C by an ice-bath. Borane -tetra- hydrofuran complex (10.8 mL
Schenk, Christian; Schnepf, Andreas
2008-10-14
The reaction of GeBr with LiGe(SiMe(3))(3) yields the largest metalloid cluster compound of germanium Ge(14)[Ge(SiMe(3))(3)](5)Li(3)(THF)(6), in which 14 germanium atoms are arranged as a hollow sphere in the cluster core, showing that in the case of germanium also fullerene-like compounds might be present in the borderland between the molecular and solid states.
Double addition of diethylamine to biacetylene (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trofimov, B.A.; Vavilova, A.N.
1986-03-01
Biacetylene reacts with an excess of diethylamine in dilute solutions of anhydrous acetonitrile, methanol, ethanol, and THF to form the diadduct 1,3-bis(diethyl-amino)-1,3-butadiene (lambda/sub max/ 325 nm). During concentration of the reaction mixture the latter undergoes hydration by the residual amounts of water in the 3-(diethylamino)-2-butenal. The spectral characteristics (UV, IR, PMR) of the intermediate reaction products are given. The kinetics of the stage of addition of the diethylamine and water to the monoadduct, 1-(diethylamino)-1-buten-3-yne, were studied. It was concluded that the addition of the nucleophile to the triple bond during its secondary amination and hydration is facilitated by the concertedmore » transfer of a proton.« less
Synthesis and reactivity of ultra-fine coal liquefaction catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linehan, J.C.; Matson, D.W.; Fulton, J.L.
1992-10-01
The Pacific Northwest Laboratory is currently developing ultra-fine iron-based coal liquefaction catalysts using two new particle production technologies: (1) modified reverse micelles (MRM) and (2) rapid thermal decomposition of solutes (RTDS). These methodologies have been shown to allow control over both particle size (from 1 nm to 60 nm) and composition when used to produce ultra-fine iron-based materials. Powders produced using these methods are found to be selective catalysts for carbon-carbon bond scission using the naphthyl bibenzylmethane model compound, and to promote the production of THF soluble coal products during liquefaction studies. This report describes the materials produced by bothmore » MRM and the RTDS methods and summarizes the results of preliminary catalysis studies using these materials.« less
Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent.
Herrera, Marvin Ustaris; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki
2013-12-01
The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si. Copyright © 2013 Elsevier Inc. All rights reserved.
Dumesic, James A.; Ribeiro Gallo, Jean Marcel; Alonso, David
2014-07-08
Described is a process to produce hydroxymethyl furfural (HMF) from biomass-derived sugars. The process includes the steps of reacting a C5 and/or C6 sugar-containing reactant derived from biomass in a monophasic or biphasic reaction solution comprising water and a co-solvent. The co-solvent can be beta-, gamma-, and/or delta-lactones derived from biomass, tetrahydrofuran (THF) derived from biomass, and/or methyltetrahydrofuran (MTHF) derived from biomass. The reaction takes place in the presence of an acid catalyst and a dehydration catalyst for a time and under conditions such that at least a portion of glucose or fructose present in the reactant is converted to HMF.
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-05
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1 H, 13 C and 31 P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co 2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co 2+ ions due to showing high selectivity with a low limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Naya, Shin-ichi; Niwa, Tadahiro; Negishi, Ryo; Kobayashi, Hisayoshi; Tada, Hiroaki
2014-12-08
Adsorption experiments and density functional theory (DFT) simulations indicated that Cu(acac)2 is chemisorbed on the monoclinic sheelite (ms)-BiVO4 surface to form an O2-bridged binuclear complex (OBBC/BiVO4) like hemocyanin. Multi-electron reduction of O2 is induced by the visible-light irradiation of the OBBC/BiVO4 in the same manner as a blue Cu enzyme. The drastic enhancement of the O2 reduction renders ms-BiVO4 to work as a good visible-light photocatalyst without any sacrificial reagents. As a model reaction, we show that this biomimetic hybrid photocatalyst exhibits a high level of activity for the aerobic oxidation of amines to aldehydes in aqueous solution and imines in THF solution at 25 °C giving selectivities above 99% under visible-light irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Van, Vinh; Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
2-Methyltetrahydrofuran (2-MeTHF) is a promising environmentally friendly solvent and biofuel component which is derived from renewable resources. Following the principles of Green Chemistry, 2-MeTHF has been evaluated in various fields like organometallics, metathesis, and biosynthesis on the way to more eco-friendly syntheses. Cyclopentane as the prototype of five-membered rings is well-known to exist as twist or envelope structures. However, the conformational analysis of its heterocyclic derivative 2-methyl-tetrahydrothiophene (MTTP) yielded two stable twist conformers and two envelope transition states. Here, we report on the heavy atom r_s structure of the oxygen-analog of MTTP, 2-MeTHF, studied by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemistry. One conformer of 2-MeTHF was observed and highly accurate molecular parameters were determined using the XIAM program. In addition, all 13C-isotopologues were assigned in natural abundance of 1%. A structural determination based on the r_s positions of all carbon atoms was achieved via Kraitchman's equations. The methyl group in 2-MeTHF undergoes internal rotation and causes A-E splittings of the rotational lines. The barrier was calculated to be 1142 wn at the MP2/6-311++G(d,p) level of theory, which is rather high. Accordingly, narrow A-E splittings could be observed for only a few transitions. However, the barrier height could be fitted while the angles between the internal rotor axis and the principal axes of inertia were taken from the experimental geometry. V. Pace, P. Hoyos, L. Castoldi, P. Domínguez de María, A. R. Alcántara, ChemSusChem 5 (2012), 1369-1379. a) D. F. Aycock, Org. Process Res. Dev. 11 (2007),156-159. b) M. Smoleń, M. Kȩdziorek, K. Grela, Catal. Commun. 44 (2014), 80-84. V. Van, C. Dindic, H.V.L. Nguyen, W. Stahl, ChemPhysChem 16 (2015), 291-294. H. Hartwig, H. Dreizler, Z. Naturforsch. A 51 (1996), 923-932. J. Kraitchman, Am. J. Phys. 21 (1953), 17-24.
Solvent effect on the synthesis of clarithromycin: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Duran, Dilek; Aviyente, Viktorya; Baysal, Canan
2004-02-01
Clarithromycin (6- O-methylerythromycin A) is a 14-membered macrolide antibiotic which is active in vitro against clinically important gram-positive and gram-negative bacteria. The selectivity of the methylation of the C-6 OH group is studied on erythromycin A derivatives. To understand the effect of the solvent on the methylation process, detailed molecular dynamics (MD) simulations are performed in pure DMSO, pure THF and DMSO:THF (1:1) mixture by using the anions at the C-6, C-11 and C-12 positions of 2',4''-[ O-bis(TMS)]erythromycin A 9-[ O-(dimethylthexylsilyl)oxime] under the assumption that the anions are stable on the sub-nanosecond time scale. The conformations of the anions are not affected by the presence of the solvent mixture. The radial distribution functions are computed for the distribution of different solvent molecules around the `O-' of the anions. At distances shorter than 5 Å, DMSO molecules are found to cluster around the C-11 anion, whereas the anion at the C-12 position is surrounded by the THF molecules. The anion at the C-6 position is not blocked by the solvent molecules. The results are consistent with the experimental finding that the methylation yield at the latter position is increased in the presence of a DMSO:THF (1:1) solvent mixture. Thus, the effect of the solvent in enhancing the yield during the synthesis is not by changing the conformational properties of the anions, but rather by creating a suitable environment for methylation at the C-6 position.
Graham, Adora G; Fedin, Matvey V; Miller, Joel S
2017-09-12
[TCNE] .- (TCNE=tetracyanoethylene) has been isolated as D 2h π-[TCNE] 2 2- possessing a long, 2.9 Å multicenter 2-electron-4-center (2e - /4c) C-C bond, and as C 2 π-[TCNE] 2 2- possessing a longer, 3.04 Å multicenter 2e - /6c (4 C+2 N atoms) bond. Temperature-dependent UV/Vis spectroscopic measurements in 2-methyltetrahydrofuran (MeTHF) has led to the determination of the dimerization, 2[TCNE] .- ⇌π-[TCNE] 2 2- , equilibrium constants, K eq (T), [[TCNE] 2 2- ]/[[TCNE] .- ] 2 , enthalpy, ΔH, and entropy, ΔS, of dimerization for [Mepy] 2 [TCNE] 2 (Mepy=N-methylpyridinium, H 3 CNC 5 H 5 + ) possessing D 2h π-[TCNE] 2 2- and [NMe 4 ] 2 [TCNE] 2 possessing C 2 π-[TCNE] 2 2- conformations in the solid state; however, both form D 2h π-[TCNE] 2 2- in MeTHF solution. Based on ΔH=-3.6±0.1 kcal mol -1 (-15.2 kJ mol -1 ), and ΔS=-11±1 eu (-47 J mol -1 K -1 ) and ΔH=-2.4±0.2 kcal mol -1 (-10.2 kJ mol -1 ), and ΔS=-8±1 eu (-32 J mol -1 K -1 ) in MeTHF for [NMe 4 ] 2 [TCNE] 2 and [Mepy] 2 [TCNE] 2 , respectively, the calculated K eq (298 K) are 1.6 and 1.3 m -1 , respectively. The observed K eq (145 K) are 3 and 2 orders of magnitude greater for [NMe 4 ] 2 [TCNE] 2 and [Mepy] 2 [TCNE] 2 , respectively. The K eq (130 K) is 4470, 257, ≈0.8, and ≪0.1 m -1 for [NMe 4 ] 2 [TCNE] 2 , [Mepy] 2 [TCNE] 2 , [NEt 4 ] 2 [TCNE] 2 , and [N(nBu) 4 ] 2 [TCNE] 2 , respectively, decreasing with increasing cation size. At standard conditions and below ambient temperature the equilibrium favors the dimer for the NMe 4 + and Mepy + cations. From the decreasing enthalpy, NMe 4 + >Mepy + , along with the decrease in dimer formation K eq (T) as NMe 4 + >Mepy + >NEt 4 + >N(nBu) 4 + , the dimer bond energy decreases with increasing cation size in MeTHF. This is attributed to a decrease in the [A] + ⋅⋅⋅[TCNE] - attractive interactions with increasing cation size. Solid state UV/Vis spectroscopic determinations of [NMe 4 ] 2 [TCNE] 2 are reported and compared to D 2h π-[TCNE] 2 2- conformers. The feasibility and limitations of temperature-dependent electron paramagnetic resonance (EPR) measurements for the determination of K eq (T) are also discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunshan Song; Hatcher, P.G.; Saini, A.K.
It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminousmore » coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.« less
Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films
NASA Astrophysics Data System (ADS)
Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang
2018-04-01
In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.
Venezenin: a new bioactive Annonaceous acetogenin from the bark of Xylopia aromatica.
Colman-Saizarbitoria, T; Gu, Z M; Zhao, G X; Zeng, L; Kozlowski, J F; McLaughlin, J L
1995-04-01
Asimicin and a new cytotoxic Annonaceous acetogenin, venezenin [1], were isolated from the bark of Xylopia aromatica by bioactivity-directed fractionation using lethality to brine shrimp. Compound 1 represents an unusual type of C37 Annonaceous acetogenin, lacking either tetrahydrofuran (THF) or epoxide rings and possessing a double bond located two methylenes away from a vicinal diol in the hydrocarbon chain. The structure of 1 was elucidated by 1H- and 13C-nmr, COSY, single-relayed COSY, and by HMBC techniques, and derivatization. Annomontacin 10-one [6] and 18/21-cis-annomontacin-10-one [7], two semi-synthetic mono-THF acetogenins were prepared from 1. These acetogenins showed cytotoxicity, comparable or superior to adriamycin, against three human solid tumor cell lines. Reduction of the 10-keto of 1 to the racemic OH-10 derivative enhanced the bioactivity, as did the conversion of 1 to 6 and 7. Venezenin [1], like other Annonaceous acetogenins, showed inhibition of oxygen uptake by rat liver mitochondria and demonstrated that the THF ring may not be essential to this mode of action.
Weis, Eric M; Barnes, Charles L; Duval, Paul B
2006-12-11
The first example of a lanthanide tetrakis(dithiolene) complex, [Na5(THF)10Ce(mnt)4] (1) (mnt = 1,2-maleonitrile-1,2-dithiolate), has been synthesized and characterized by X-ray crystallography and spectroscopic methods. In the solid state, 1 exists as a 2-D corrugated honeycomb network polymer in which the monomeric units comprising the trigonal nodes are knitted together by interlocking dative Na-N bonds extended from nitrile groups of bifunctional mnt ligands coordinated through the sulfur atoms to adjacent cerium centers. Individual honeycomb sheets are separated by 14.8 A. Compound 1 dissolves in donor solvents such as THF and acetonitrile to give soluble [Ce(mnt)4]5- units that exhibit spectroscopic features (i.e., NMR, luminescence, UV-vis) that are consistent with the 4f1 Ce(III) ion. In the first examination of the redox chemistry of a lanthanide dithiolene complex, cyclic voltammetry measurements conducted on 1 reveal a single irreversible oxidation wave that is likely attributable to ligand-centered oxidation.
NASA Astrophysics Data System (ADS)
Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu
2008-11-01
Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.
Gwyther, Jessica; Gilroy, Joe B; Rupar, Paul A; Lunn, David J; Kynaston, Emily; Patra, Sanjib K; Whittell, George R; Winnik, Mitchell A; Manners, Ian
2013-07-08
With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu-catalyzed azide-alkyne cycloaddition reactions of azide-terminated P2VP and alkyne end-functionalized P3HT homopolymers. When the block copolymers were self-assembled in a solution of a 50% (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP-selective alcoholic solvent (MeOH
Evaluation of mixed solvent electrolytes for ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Shen, D. H.; Subbarao, S.; Deligiannis, F.; Dawson, S.; Halpert, G.
1988-01-01
The ethylene carbonate/2-methyltetrahydrofuran (EC/2-MeTHF) mixed-solvent electrolyte has been experimentally found to possess many desirable electrolyte characteristics for ambient-temperature secondary Li-TiS2 cell applications. As many as 300 cycles have been demonstrated, and a cycling efficiency figure-of-merit of 38.5 percent, for 10-percent EC/90-percent MeTHF mixed-solvent electrolyte in experimental Li-TiS2 cells. The improved performance of this electrolyte is attributable to the formation of a beneficial passivating film on the Li electrode by interaction with the EC.
2006-07-31
BuLi . A 96 : 4 mixture of trans : cis isomers was obtained in 84% overall yield; stereoisomers were easily separated by chroma- tography. Iodination of...the tetrafluorobenzene group12 was carried out with n- BuLi –I2 in THF affording 4 in 85% yield (Scheme 1). Orange-yellow prismatic crystals have been...mmol) of phosphonium salt 1 were suspended in 1 mL of THF at 70 1C. 0.7 mmol of n- BuLi (1.6 M) were added and the mixture was warmed up to room
Lu, Bruce Z; Senanayake, Chris; Li, Nansheng; Han, Zhengxu; Bakale, Roger P; Wald, Stephen A
2005-06-23
[reaction: see text] An efficient method has been developed to prepare all four isomers of the hydroxyl derivatives of sibutramine by addition of Grignard reagents (R)- or (S)-5 to a single enantiomer of sulfinyl imine (R)-1 simply by tuning the reaction solvent. The phenomenon of the reversed diastereoselectivity in CH(2)Cl(2) and THF implied that the reaction may proceed through a chelated cyclic transition state in CH(2)Cl(2) and nonchelated acyclic transition state in THF.
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Gündüz, Bayram
2017-06-01
In this study, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) was achieved using the experimental and theoretical studies. The electronic, optical and spectroscopic properties of DCJTB molecule were first investigated by performing experimental both solution and thin film techniques and then theoretical calculations. Theoretical results showed that one intense electronic transition is 505.26 nm a quite reasonable and agreement with the measured experimental data 505.00 and 503 nm with solution technique and film technique, respectively. Experimental and simple models were also taken into consideration to calculate the optical refractive index (n) of DCJTB molecule. The structural and electronic properties were next calculated using density functional theory (DFT) with B3LYP/6-311G (d, p) basis set. UV, FT-IR spectra characteristics and the electronic properties, such as frontier orbitals, and band gap energy (Eg) of DCJTB were also recorded time-dependent (TD) DFT approach. The theoretical Eg value were found to be 2.269 eV which is consistent with experimental results obtained from solution technique for THF solvent (2.155 eV) and literature (2.16 eV). The results herein obtained reveal that solution is simple, cost-efficient and safe for optoelectronic applications when compared with film technique.
The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
See, Kimberly A.; Chapman, Karena W.; Zhu, Lingyang
2016-01-13
Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, 27Al and 35Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore themore » active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ–Cl)3·6THF]+ complex that is observed in the solid state structure. Additionally, conditioning creates free Cl– in the electrolyte solution, and we suggest the free Cl– adsorbs at the electrode surface to enhance Mg electrodeposition.« less
Kruczyński, T; Henke, F; Neumaier, M; Bowen, K H; Schnöckel, H
2016-02-01
It caused a sensation eight years ago, when the first room temperature stable molecular compound with a Mg-Mg bond (LMgMgL, L = chelating ligand) containing magnesium in the oxidation state +1 was prepared. Here, we report the preparation of a [Mg 16 Cp*8Br 4 K] - cluster anion (Cp* = pentamethylcyclopentadiene) with 27 Mg-Mg bonds. It has been obtained through the reaction of KCp* with a metastable solution of MgBr in toluene. A highly-resolved Fourier transform mass spectrum (FT-MS) of this cluster anion, brought into vacuum by electrospraying its solution in THF, provides the title cluster's stoichiometry. This Mg 16 cluster together with experiments on the metastable solution of MgBr show that: during the formation process of GRs (Grignard reagents) which are involved in most of sophisticated syntheses of organic products, not the highly reactive MgBr radical as often presumed, but instead the metalloid Mg 16 Cp*8Br 4 cluster anion and its related cousins that are the operative intermediates along the pathway from Mg metal to GRs ( e.g. Cp*MgBr).
Roques, Nans; Maspoch, Daniel; Wurst, Klaus; Ruiz-Molina, Daniel; Rovira, Concepció; Veciana, Jaume
2006-12-13
The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.
Kirsch, Susanne H; Herrmann, Wolfgang; Kruse, Vera; Eckert, Rudolf; Gräber, Stefan; Geisel, Jürgen; Obeid, Rima
2015-02-01
We aimed to study the effect of long-term supplementation of B-vitamins on folate forms in serum and whole blood (WB) in elderly German subjects. 59 participants (mean age 67 years) were randomized to daily receive either vitamin D3 (1200 IU), folic acid (500 μg), vitamin B12 (500 μg), vitamin B6 (50 mg), and calcium carbonate (456 mg) or vitamin D3 plus calcium carbonate. Serum and WB folate forms were measured before and after 6 and 12 months. B-vitamins supplementation for 6 months led to higher concentrations of 5-methyltetrahydrofolate (5-methylTHF) in serum (mean 49.1 vs. 19.6 nmol/L) and WB (1332 vs. 616 nmol/L). Also non-methyl-folate concentrations in serum and WB were higher after 6 months with B-vitamins supplementation. Unmetabolized folic acid (UFA) increased after supplementation. tHcy concentration was lowered after 1 year of B-vitamin supplementation (mean 13.1 vs. 9.6 μmol/L). A stronger reduction of tHcy after 1 year was found in participants who had baseline level >12.5 μmol/L (mean 17.0 vs. 11.9 μmol/L) compared to those with baseline tHcy lower than this limit (mean 9.1 vs. 7.4 μmol/L). In contrast, the increases in serum and WB 5-methylTHF were comparable between the two groups. One year B-vitamins supplementation increased the levels of 5-methylTHF and non-methyl-folate in serum and WB, normalized tHcy, but caused an increase in the number of cases with detectable UFA in serum. Lowering of tHcy was predicted by baseline tHcy, but not by baseline serum or WB 5-methylTHF.
Homoleptic diphosphacyclobutadiene complexes [M(η(4)-P2C2R2)2]x- (M = Fe, Co; x = 0, 1).
Wolf, Robert; Ehlers, Andreas W; Khusniyarov, Marat M; Hartl, František; de Bruin, Bas; Long, Gary J; Grandjean, Fernande; Schappacher, Falko M; Pöttgen, Rainer; Slootweg, J Chris; Lutz, Martin; Spek, Anthony L; Lammertsma, Koop
2010-12-27
The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and Mössbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.
Buehlmeier, Judith; Remer, Thomas; Frings-Meuthen, Petra; Maser-Gluth, Christiane; Heer, Martina
2016-04-01
Low-grade metabolic acidosis (LGMA), as induced by high dietary acid load or sodium chloride (NaCl) intake, has been shown to increase bone and protein catabolism. Underlying mechanisms are not fully understood, but from clinical metabolic acidosis interactions of acid-base balance with glucocorticoid (GC) metabolism are known. We aimed to investigate GC activity/metabolism under alkaline supplementation and NaCl-induced LGMA. Eight young, healthy, normal-weight men participated in two crossover designed interventional studies. In Study A, two 10-day high NaCl diet (32 g/d) periods were conducted, one supplemented with 90 mmol KHCO3/day. In Study B, participants received a high and a low NaCl diet (31 vs. 3 g/day), each for 14 days. During low NaCl, the diet was moderately acidified by replacement of a bicarbonate-rich mineral water (consumed during high NaCl) with a non-alkalizing drinking water. In repeatedly collected 24-h urine samples, potentially bioactive-free GCs (urinary-free cortisol + free cortisone) were analyzed, as well as tetrahydrocortisol (THF), 5α-THF, and tetrahydrocortisone (THE). With supplementation of 90 mmol KHCO3, the marker of total adrenal GC secretion (THF + 5α-THF + THE) dropped (p = 0.047) and potentially bioactive-free GCs were reduced (p = 0.003). In Study B, however, GC secretion and potentially bioactive-free GCs did not exhibit the expected fall with NaCl-reduction as net acid excretion was raised by 30 mEq/d. Diet-induced acidification/alkalization affects GC activity and metabolism, which in case of long-term ingestion of habitually acidifying western diets may constitute an independent risk factor for bone degradation and cardiometabolic diseases.
FT-Raman and FT-IR spectra of some heterobimetallic complexes with phenylcyclopentadienyl ligands
NASA Astrophysics Data System (ADS)
Nie, Chong-Shi; Guo, Jianhua; Qian, Changtao; Tan, Ying
1996-11-01
The FT-Raman and selected IR spectra of 14 heterobimetallic complexes of (CO) 3CrC 6H 5-C 5H 4M(CO) n(NO) mX (M = transition metal, X = other ligands) are reported. FT-Raman exhibits distinct strong characteristic bands of coordinated C 6H 5-C 5H 4 ligand ring deformation near 1540, 1490 and 1280 cm -1 and the coordinated phenyl ring deformation mode near 1000 cm -1, which are negligible in IR spectra. It is also easy to find the M-CO stretching and M-C-O bending as well as phenyl-M stretching bands in the FT-Raman spectra. The v(CO) IR absorptions in THF solution were reasonably assigned according to the local symmetry of the complexes.
Novel approach for extraction of quercetin using molecular imprinted membranes
NASA Astrophysics Data System (ADS)
Kamarudin, Siti Fatimah; Ahmad, Mohd Noor; Dzahir, Irfan Hatim Mohamed; Nasir, Azalina Mohamed; Ishak, Noorhidayah; Halim, Nurul Farhanah
2017-12-01
Quercetin imprinted membrane (QIM) was synthesized and applied for the extraction of quercetin. The quercetin imprinted membranes (QIM) were fabricated through a non-covalent approach via surface thermal polymerization. Polyvinylidene fluoride (PVDF) microfiltration membrane was used as a support to improve mechanical stability of the membrane. The thin imprinted layer was formed by copolymerization of acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinker in the presence of quercetin as template in tetrahydrofuran (THF) solution. The Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to visualize the surface of membrane. Batch rebinding and binding kinetic experiments proved that the binding properties of the QIM are higher than non-imprinted membranes (NIM). QIM also have higher selectivity towards quercetin compared to sinensetin and rosmarinic acid.
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Cui, Yu; Li, Yexin; Zheng, Luyi; Xie, Lijun; Ning, Rui; Liu, Zheng; Lu, Junling; Zhang, Gege; Liu, Chunxiang; Zhang, Guangyou
2015-02-01
A new probe was synthesized by incorporating an α,β -unsaturated ketone to a diketopyrrolopyrrole fluorophore. The probe had exhibited a selective and sensitive response to the sulfite against other thirteen anions and biothiols (Cys, Hcy and GSH), through the nucleophilic addition of sulfite to the alkene of probe with the detection limit of 0.1 μM in HEPES (10 mM, pH 7.4) THF/H2O (1:1, v/v). Meanwhile, it could be easily observed that the probe for sulfite changed from pink to colorless by the naked eye, and from pink to blue under UV lamp after the sulfite was added for 20 min. The NMR and Mass spectral analysis demonstrated the expected addition of sulfite to the Cdbnd C bonds.
The stabilization of electrolytes for rechargeable lithium batteries
NASA Technical Reports Server (NTRS)
Dominey, L. A.; Goldman, J. L.; Koch, V. R.; Nanjundiah, C.
1990-01-01
Recent experimental studies of Li secondary cells are reviewed, focusing on (1) the novel anion lithium trifluoromethanesulfonyl imide (LTI) and (2) the use of KO2 and KOH additives to stabilize the electrolyte. Sample data are presented in tables and graphs and briefly characterized. The charging limits of LTI were found to compare favorably with those of LiAsFe6/THF and 2-MeTHF. Significant improvements were also obtained with the additives, but the results were erratic, with 2-3-fold variations among identical preparations. These differences are tentatively attributed to Li-film inhomogeneities and reactions of O2(-) with the solvent and impurities, especially in the cathode pores.
NASA Astrophysics Data System (ADS)
Muna, E. D. M.; Pereira, R. P.
2016-07-01
The determination of the volatile organic solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) is applied on toxicological monitoring of employees in various industrial activities. The gas chromatography technique with flame ionization detector and headspace injection system has been applied. The analytical procedure developed allows the simultaneous determination of the above-mentioned solvents and the accuracy of the method was tested following the INMETRO guidelines through the DOQ-CGRE 008 Rev.04-July/2011.
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
Koch, Marius; Letrun, Romain; Vauthey, Eric
2014-03-12
The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.
Yu, Iris K M; Tsang, Daniel C W; Chen, Season S; Wang, Lei; Hunt, Andrew J; Sherwood, James; De Oliveira Vigier, Karine; Jérôme, François; Ok, Yong Sik; Poon, Chi Sun
2017-12-01
Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl 4 as the catalyst. The overall rate of the process was the fastest in ACN/H 2 O and acetone/H 2 O, followed by DMSO/H 2 O and THF/H 2 O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H 2 O and acetone/H 2 O. The constant HMF maxima (26-27mol%) in ACN/H 2 O, acetone/H 2 O, and DMSO/H 2 O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H 2 O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer
The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less
Erickson, Karla A.; Lichtscheidl, Alejandro G.; Monreal, Marisa Jennifer; ...
2017-11-04
The terminal actinide fluoride bonds in (C 5Me 5) 2ThF 2(py) (py = pyridine) and (C 5Me 5) 2UF 2(O=PR 3) (R = Me, Ph) react with two equivalents of Me 3SiN 3 in toluene to form the polymeric thorium bis(azide), [(C 5Me 5) 2Th(N 3)2] ∞, and a new class of monometallic uranium bis(azide) complexes, (C 5Me 5) 2U(N 3)2(O=PR 3), respectively. Full characterization of the novel complexes (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2UF 2(O=PR 3) are reported, including the solid-state structures of (C 5Me 5) 2ThF 2(py) and (C 5Me 5) 2U(N 3) 2(O=PPhmore » 3). Lastly, electronic absorption spectral data are also reported for (C 5Me 5) 2AnF 2(py) (An = Th, U) and (C 5Me 5) 2U(N 3) 2(O=PR 3) to confirm metal oxidation state and enable elucidation of the fluoride and azide ligand bonding in these complexes.« less
Control of lithium metal anode cycleability by electrolyte temperature
NASA Astrophysics Data System (ADS)
Ishikawa, Masashi; Kanemoto, Manabu; Morita, Masayuki
Precycling of lithium (Li) metal on a nickel substrate at low temperatures (0 and -20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) was found to enhance Li cycleability in the subsequent cycles at a room temperature (25°C). In contrast when the precycling at the low temperatures was performed in PC mixed with 2-methyltetrahydrofuran (2MeTHF) and LiPF 6 (LiPF 6-PC/2MeTHF), no improvement in the Li cycling efficiency was observed in the subsequent cycles at 25°C. These results suggest that the low-temperature precycling effect on the Li cycleability depends on a co-solvent used in the PC-based electrolytes. Ac impedance analysis revealed that the precycling in the low-temperature LiPF 6-PC/DMC electrolyte provided a compact Li interface with a low resistance. In marked constant to this, a Li anode interface formed by the precycling in the LiPF 6-PC/2MeTHF system was irregular and resistive to Li-ion diffusion. The origins of the low-temperature precycling effect dependent on the co-solvents were discussed.
NASA Astrophysics Data System (ADS)
Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad
2018-03-01
The induction time is a time interval to detect the initial hydrate formation, which is counted from the moment when the stirrer is turned on until the first detection of hydrate formation. The main objective of the present work is to predict and measure the induction time of methane hydrate formation in the presence or absence of tetrahydrofuran (THF) as promoter in the flow loop system. A laboratory flow mini-loop apparatus was set up to measure the induction time of methane hydrate formation. The induction time is predicted using developed Kashchiev and Firoozabadi model and modified model of Natarajan for a flow loop system. Furthermore, the effects of volumetric flow rate of the fluid on the induction time were investigated. The results of the models were compared with experimental data. They show that the induction time of hydrate formation in the presence of THF is very short at high pressure and high volumetric flow rate of the fluid. It decreases with increasing pressure and liquid volumetric flow rate. It is also shown that the modified Natarajan model is more accurate than the Kashchiev and Firoozabadi ones in prediction of the induction time.
Exploring the synthesis and characterization of nanoenergetic materials from sol-gel chemistry
NASA Astrophysics Data System (ADS)
Walker, Jeremy D.
Nanoenergetic composite materials have been synthesized by a sol-gel chemical process where the addition of a weak base molecule induces the gelation of a hydrated metal salt solution. A proposed 'proton scavenging' mechanism, where a weak base molecule extracts a proton from the coordination sphere of the hydrated iron (III) complex in the gelation process to form iron (III) oxide/hydroxide, FeIIIxOyHz, has been confirmed for the weak base propylene oxide (PO), a 1,2 epoxide, as well as for the weak bases tetrahydrofuran (THF), a 1,4 epoxide, and pyridine, a heterocyclic nitrogen-containing compound. Gelation mechanisms for the formation of FeIIIxOyHz from THF and pyridine have been presented and confirmed through pH, XPS, and IR studies. THF follows a similar mechanism as PO, where the epoxide extracts a proton from the coordination sphere of the hydrated iron complex forming a protonated epoxide, which then undergoes irreversible ring-opening after reaction with a nucleophile in solution. Pyridine also extracts a proton from the hydrated metal complex, however, the stable six-membered molecule has low associated ring strain and does not endure ring-opening. Energetic properties for the Fe2O3/Al and RuO 2/Al sol-gel synthesized systems are also presented. Sol-gel chemistry synthesizes x-ray amorphous oxide matrices which contain substantial quantities of residual water and organic species. The iron (III) matrix, formed from the addition of a weak base epoxide molecule to a hydrated iron (III) nitrate solution, consists of stoichiometric Fe2O3, FeO(OH), and Fe(OH)3 and can only definitely be described as of Fe IIIxOyHz. XPS characterization of the metal oxide matrix synthesized from the addition of the weak base propylene oxide to a hydrated ruthenium (III) chloride solution corresponds to that of hydrous ruthenium (IV) oxide. Fe2O3/Al energetic systems were synthesized from the epoxides PO, trimethylene oxide (TMO) and 3,3 dimethyl oxetane (DMO). Energetic systems formed from each epoxide were each synthesized with different components, including: varying concentrations of nano-scale Al, micron Al, and carbon nanotubes. Surface area analysis of the synthesized matrices shows a direct correlation between the surface area of the iron (III) oxide matrix and the quantified exothermic heat of reaction of the energetic material due to the magnitude of the interfacial surface area contact between the iron (III) oxide matrix and the aluminum particles. The Fe2O3(PO)/Al systems possess the highest heat of reaction values due to the oxide surface area available for contact with the aluminum particles. Also, within systems, 1:1 Fe:nano Al samples possess the highest heat of reaction. Samples with nano-scale Al particles start reaction at 430°C, before the melting point of Al, whereas samples containing micron-Al do not react until ˜800°C, after the melting point of Al. The RuO2/Al energetic systems behave differently dependent on the atmosphere the sample is heated. Heating the RuO2/Al samples in an inert atmosphere results in the complete reduction of the ruthenium oxide matrix to Ru(0) before reaction with the aluminum particles. This results in the exothermic formation of RuxAly intermetallics, with the stoichiometry dependent on the initial Ru:Al concentration. However, heating the samples in an oxygen-rich atmosphere results in an exothermic reaction between RuO2 and Al. Post-reaction analysis of these samples reveals the sole existence of ruthenium (IV) oxide as the exothermic reaction vaporizes the aluminum particles.
Superhydrophobic perfluoropolymer/polystyrene blend films induced by nonsolvent
NASA Astrophysics Data System (ADS)
Gengec, Nevin Atalay; Cengiz, Ugur; Erbil, H. Yildirim
2016-10-01
Statistical copolymers of perfluoroalkyl ethyl acrylate (Zonyl-TAN) and methyl methacrylate (MMA) were synthesized in a CO2 polymerization system where a CO2-expanded monomer mixture was formed at 13 MPa, and 80 °C by using AIBN as initiator. Flat and superhydrophobic surfaces were subsequently prepared on glass slides by applying a phase separation process where the synthesized p(TAN-co-MMA) copolymer and polystyrene (PS) were dissolved in THF solvent. Ethanol was added as the non-solvent to introduce superhydrophobicity during film formation. Water contact angle on the flat p(TAN-co-MMA) copolymer was 118° and increased up to 170° with the formation of surface roughness. The ratio of the ethanol non-solvent in the blend solution has an important effect on the magnitude of surface roughness during the phase separation process. Both pits and protrusions of 1-10 μm in size were formed on the surface when non-solvent was used. Surface roughness increased with the increase in the ethanol ratio and the PS content of the blend solution.
Effect of chain length on thermal conversion of alkoxy-substituted copper phthalocyanine precursors.
Fukuda, Takamitsu; Kikukawa, Yuu; Tsuruya, Ryota; Fuyuhiro, Akira; Ishikawa, Naoto; Kobayashi, Nagao
2011-11-21
A series of dialkoxy-substituted copper phthalocyanine (CuPc) precursors (4a-4d) have been prepared by treating phthalonitrile with the corresponding lithium alkoxide under mild conditions. The precursors exhibited high solubilities in common organic solvents, including acetone, toluene, tetrahydrofuran (THF), CH(2)Cl(2), and CHCl(3). Elongation of the alkoxy chains improved the solubilities of the precursors effectively, and accordingly, the butoxy-substituted derivative (4d) showed the highest solubility among 4a-4d. X-ray crystallography clarified that the conjugated skeletons of 4a-4d are all isostructural, and have two alkoxy groups in a syn-conformation fashion, leading to highly bent structures. Thermal conversions of the precursors examined by thermogravimetry (TG) and differential thermal analysis (DTA) demonstrate that 4a was converted into CuPc via two distinct exothermic processes in the 200-250 °C temperature range, while 4d exhibits only one exothermic signal in the DTA. In the field emission scanning electron microscopy (FESEM) images of 4a, the presence of two types of distinct crystal morphology (prismatic and plate-like crystals) can be recognized, implying that the two observed exothermic processes in the DTA can be attributed to the different crystal morphologies of the samples rather than the step-by-step elimination of the alkoxy groups. The thermal formation of CuPc from the precursors has been unambiguously confirmed by X-ray powder diffraction, UV-vis spectroscopy, and elemental analysis. The precursors were converted into CuPc at lower temperature with increasing chain length, presumably because of the increased void volume in the crystals. Thermal conversion performed in the solution phase results in a bright blue-colored solution with prominent absorption bands in the 650-700 nm region, strongly supporting the formation of CuPc.
Selective Conversion of CO2 into Isocyanate by Low-Coordinate Iron Complexes.
Broere, Daniël L J; Mercado, Brandon Q; Holland, Patrick L
2018-04-06
Discovery of the mechanisms for selective transformations of CO 2 into organic compounds is a challenge. Herein, we describe the reaction of low-coordinate Fe silylamide complexes with CO 2 to give trimethylsilyl isocyanate and the corresponding Fe siloxide complex. Kinetic studies show that this is a two-stage reaction, and the presence of a single equivalent of THF influences the rates of both steps. Isolation of a thermally unstable intermediate provides mechanistic insight that explains both the effect of THF in this reaction, and the way in which the reaction achieves high selectivity for isocyanate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid
2016-01-01
Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.
Elastic Organic Crystals of a Fluorescent π-Conjugated Molecule.
Hayashi, Shotaro; Koizumi, Toshio
2016-02-18
An elastic organic crystal of a π-conjugated molecule has been fabricated. A large fluorescent single crystal of 1,4-bis[2-(4-methylthienyl)]-2,3,5,6-tetrafluorobenzene (over 1 cm long) exhibited a fibril lamella morphology based on slip-stacked molecular wires, and it was found to be a remarkably elastic crystalline material. The straight crystal was capable of bending more than 180° under applied stress and then quickly reverted to its original shape upon relaxation. In addition, the fluorescence quantum yield of the crystal was about twice that of the compound in THF solution. Mechanical bending-relaxation resulted in reversible change of the morphology and fluorescence. This research offers a more general approach to flexible crystals as a promising new family of organic semiconducting materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrospinning of PVC with natural rubber
NASA Astrophysics Data System (ADS)
Othman, Muhammad Hariz; Mohamed, Mahathir; Abdullah, Ibrahim
2013-11-01
Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber's mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphology and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.
Smith, Micholas Dean; Cheng, Xiaolin; Petridis, Loukas; Mostofian, Barmak; Smith, Jeremy C
2017-11-03
Deconstruction of cellulose is crucial for the chemical conversion of lignocellulose into fuel/bioproduct precursors. Recently, a water-organosolv cosolvent system (THF-water) has been shown to both phase-separate on cellulose surfaces and partially deconstruct Avicel (cellulose) in the absence of acid. Here we employ molecular dynamics simulations to determine whether other common water-organosolv cosolvent systems (acetone, ethanol, and γ-valerolactone) exhibit phase separation at cellulose surface and whether this alters a purely physical cellulose dissociation pathway. Despite finding varied degrees of phase-separation of organosolv on cellulose surfaces, physical dissociation is not enhanced. Interestingly, however, the total amount the median water-cellulose contact lifetimes increases for the cosolvent systems in the order of THF > acetone > ethanol > γ-valerolactone. Together our results indicate two points: a purely physical process for deconstruction of cellulose is unlikely for these cosolvents, and in THF-water, unlike γ-valerolactone- (and some concentrations of acetone and ethanol) water cosolvents, a significant fraction of surface water is slowed. This slowing may be of importance in enhancing chemical deconstruction of cellulose, as it permits an increase in potential THF-water-cellulose reactions, even while the amount of water near cellulose is decreased.
Wu, Zhenying; Ren, Hao; Xiong, Wangdan; Roje, Sanja; Liu, Yuchen; Su, Kunlong; Fu, Chunxiang
2018-05-30
The brown midrib2 (bm2) mutant of maize, with a modified lignin composition, contains a mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. We here show that a MITE transposon insertion caused downregulation of MTHFR with accompanying decrease in 5-methyl-THF and increase in 5, 10-methylene-THF and THF in the bm2 mutant. Furthermore, MTHFR mutation did not change the content of SAM, the methyl group donor involved in the biosynthesis of guaiacyl (G) and syringyl (S) lignins, but increased the level of S-adenosyl homocysteine (SAH), the de-methylation product of SAM. Moreover, competitive inhibition of the maize caffeoyl CoA O-methyltransferase (CCoAOMT) and caffeic acid O-methyltransferase (COMT) enzyme activities by SAH was found, suggesting that SAH/SAM ratio rather than SAM concentration regulates the transmethylation reactions of lignin intermediates. Phenolic profiling revealed that caffeoyl alcohol glucose derivatives accumulated in the mutant, indicating impaired 3-O-methylation of monolignols. A remarkable increase in the unusual catechyl (C) lignin determined in the mutant demonstrates that MTHFR downregulation mainly affects G lignin biosynthesis, consistent with the observation that CCoAOMT is more sensitive to SAH inhibition than COMT. This study which uncovered a novel regulatory mechanism in lignin biosynthesis and may offer an effective approach to utilize lignocellulosic feedstocks in future.
NASA Astrophysics Data System (ADS)
Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok
2010-03-01
Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.
Chen, Yadan; Wang, Tao; Helmy, Roy; Zhou, George X; LoBrutto, Rosario
2002-07-01
A potentiometric titration method for methyl magnesium chloride and other Grignard reagents based on the reaction with 2-butanol in THF has been developed and validated. The method employs a commercially available platinum electrode, using an electrolyte compatible with non-aqueous solvents. Well-defined titration curves were obtained, along with excellent method precision. The endpoint was precisely determined based on the first derivative of the titration curve. Different solvents such as THF, diethyl ether and methylene chloride provided similar results with regard to sharpness of the endpoint and method precision. The method was applied to a wide array of Grignard reagents including methyl magnesium bromide, ethyl magnesium chloride, propyl magnesium chloride, vinyl magnesium chloride, phenyl magnesium chloride, and benzyl magnesium chloride with similar precision and accuracy. Application of in-line FTIR was demonstrated for in situ monitoring of the titration reaction, allowing characterization of the reaction species. An authentic spectrum of the MeMgCl-THF complex was obtained using spectral subtraction and the vibrational absorbance bands were identified. FTIR also provided an alternative for detecting the titration endpoint, and the titration results so obtained, provided a cross-validation of the accuracy of the potentiometric titration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.; Chander, S.; Gutterman, C.
Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than didmore » relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.« less
Liu, Chengwei; Qian, Qinqin; Nie, Kun; Wang, Yaorong; Shen, Qi; Yuan, Dan; Yao, Yingming
2014-06-14
Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.
Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.
Henriques, André M; Barbosa, André G H
2011-11-10
A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.
Wang, Dan; Li, Shu-Mu; Zheng, Jian-Quan; Kong, Duan-Yang; Zheng, Xiang-Jun; Fang, De-Cai; Jin, Lin-Pei
2017-01-17
2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL 2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL 2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L - is found. HL is nonfluorescent and ZnL 2 is weakly fluorescent in THF. The fluorescence emission of ZnL 2 enhances in THF/H 2 O as H 2 O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L - in ZnL 2 results in aggregation-induced emission enhancement (AIEE) for ZnL 2 in THF/H 2 O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL 2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL 2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL 2 molecules ordering stacking in THF/H 2 O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL 2 in mixed solvent.
Skibola, Christine F.; Smith, Martyn T.; Kane, Eleanor; Roman, Eve; Rollinson, Sara; Cartwright, Raymond A.; Morgan, Gareth
1999-01-01
Reduction of 5,10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). A common 677 C → T polymorphism in the MTHFR gene results in thermolability and reduced MTHFR activity that decreases the pool of methylTHF and increases the pool of methyleneTHF. Recently, another polymorphism in MTHFR (1298 A → C) has been identified that also results in diminished enzyme activity. We tested whether carriers of these variant alleles are protected from adult acute leukemia. We analyzed DNA from a case–control study in the United Kingdom of 308 adult acute leukemia patients and 491 age- and sex-matched controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. The MTHFR 677TT genotype was lower among 71 acute lymphocytic leukemia (ALL) cases compared with 114 controls, conferring a 4.3-fold decrease in risk of ALL [odds ratio (OR = 0.23; 95% CI = 0.06–0.81]. We observed a 3-fold reduction in risk of ALL in individuals with the MTHFR 1298AC polymorphism (OR = 0.33; 95% CI = 0.15–0.73) and a 14-fold decreased risk of ALL in those with the MTHFR 1298CC variant allele (OR = 0.07; 95% CI = 0.00–1.77). In acute myeloid leukemia, no significant difference in MTHFR 677 and 1298 genotype frequencies was observed between 237 cases and 377 controls. Individuals with the MTHFR 677TT, 1298AC, and 1298CC genotypes have a decreased risk of adult ALL, but not acute myeloid leukemia, which suggests that folate inadequacy may play a key role in the development of ALL. PMID:10536004
Sun, Song; Nie, Kun; Tan, Yufang; Zhao, Bei; Zhang, Yong; Shen, Qi; Yao, Yingming
2013-02-28
A series of neutral bimetallic lanthanide amido complexes supported by rigid phenylene bridged bis(β-diketiminate) ligands were synthesized, and their catalytic behavior for the polymerization of L-lactide and rac-lactide was explored. The amine elimination reaction of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with PARA-H(2), [PARA-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(para-phenylene)] in a 2:1 molar ratio in THF at 25 °C afforded the corresponding bimetallic lanthanide amido complexes PARA-{Ln[N(SiMe(3))(2)](2)}(2) [Ln = Nd(1), Sm(2), Y(3)] in high isolated yields. Similar reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with META-H(2), [META-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(meta-phenylene)] at 90 °C in toluene for about 48 h gave META-{Nd[N(SiMe(3))(2)](2)}(2) (4). Complexes 1-4 were well characterized by elemental analysis, IR spectroscopy, and their definitive structures were confirmed by an X-ray crystal structure analysis. The coordination environment and coordination geometry around the metal atoms are similar in these complexes. Each of the metal atoms is four-coordinated with two nitrogen atoms from the N,N-chelating β-diketiminate unit, and two nitrogen atoms from two (Me(3)Si)(2)N- groups to form a distorted tetrahedron. These complexes can serve as highly active initiators for L-lactide polymerization in toluene. In addition, they also showed high activity towards rac-lactide polymerization in THF at room temperature, giving heterotactic-enriched polymers (P(r) ≈ 0.70), and complex 4 displays obviously higher activity in comparison with complex 1.
Casals, Gregori; Marcos, Josep; Pozo, Óscar J; Aguilera, Paula; Herrero, Carmen; To-Figueras, Jordi
2013-06-01
Acute intermittent porphyria (AIP) is an autosomal dominant disease that results from a deficiency of hydroxymethylbilane synthase, the third enzyme of the heme biosynthetic pathway. AIP carriers may present acute neurovisceral attacks with hepatic overproduction of heme-precursors. In some patients, remission of the acute symptoms leads to long-term hepatic metabolic abnormalities. In this study, gas chromatography-mass spectrometry (GC/MS) was used to investigate urinary steroid metabolome of AIP patients. Steroid profiling in urine was performed in a group of AIP patients with biochemically active disease (n=22) and healthy controls (n = 20). Five asymptomatic AIP family carriers were also studied. Commonly used ratios for the evaluation of disturbances in the steroid metabolism were calculated. We found that etiocholanolone/androsterone and tetrahydrocortisol/5α-tetrahydrocortisol (THF/5α-THF) metabolic ratios were significantly increased in the urine of AIP patients compared to controls (2.3 ± 0.3 vs 0.8 ± 0.1; p < 0.001 and 2.9 ± 0.7 vs 0.9 ± 0.1; p < 0.01). The (THF+5α-THF)/tetrahydrocortisone ratio was reduced among the AIP patients (p < 0.01). Quantification of the steroid absolute concentrations showed that these variations were due to a decrease of the 5α metabolites. Other ratios, like cortisol/cortisone and 6β-hydroxycortisol/cortisol in the free steroid fraction did not show differences between patients and controls. All ratios were normal among the family carriers. A significant number of AIP patients present a basal decrease of steroid 5α-reductase activity in the liver. The deficiency may be related to malnutrition and hepatic energy misbalance associated with active AIP. Urinary steroid profiling by GC/MS may be a valuable tool to assess hepatic metabolome in AIP. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Harris, Caleb F; Bayless, Michael B; van Leest, Nicolaas P; Bruch, Quinton J; Livesay, Brooke N; Bacsa, John; Hardcastle, Kenneth I; Shores, Matthew P; de Bruin, Bas; Soper, Jake D
2017-10-16
A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO] 2- dianions, of the general formula [(OCO)Co II L] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)Co II L] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc + /Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [( S OCO)Co III (THF) 2 ] + containing a closed-shell [ S OCO] 2- diphenolate ligand bound to a S = 1 Co(III) center, or [( S OCO • )Co II (THF) 2 ] + with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [ S OCO • ] - containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [( S OCO 0 )Co II (THF) 3 ] 2+ , with a single unpaired electron localized on the d 7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell S OCO 0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.
Pusceddu, Irene; Herrmann, Markus; Kirsch, Susanne H; Werner, Christian; Hübner, Ulrich; Bodis, Marion; Laufs, Ulrich; Wagenpfeil, Stefan; Geisel, Jürgen; Herrmann, Wolfgang
2016-08-01
Deficiencies of folate, vitamins B12 and D are common age-related conditions. Vitamin B12 and folate are necessary for DNA methylation. Telomeres appear to be regulated by DNA methylation. Here, we study the effect of B vitamins supplementation on telomere length and global DNA methylation in a prospective study. In total, 60 elderly subjects were supplemented for 1 year with either vitamin B12, B6, folate, vitamin D and calcium (group A n = 31) or only vitamin D and calcium (group B n = 29). LINE-1 methylation, relative telomere length (T/S), vitamin B12, folate, homocysteine (tHcy) , 5-methyltetrahydrofolate (5-methylTHF), S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), cystathionine and vitamin D were quantified before and after supplementation. At baseline, tHcy was high, vitamin D was low, and T/S did not differ between groups A and B. Vitamin supplementation increased LINE-1 methylation in group A at site 317 but reduced LINE-1 methylation in group B at site 327. There was no correlation between T/S and LINE-1 methylation at baseline. Multiple backward regression analysis revealed baseline tHcy and 5-methylTHF are significant predictors of T/S. After supplementation in group B but not in group A, LINE-1 methylation correlated inversely with T/S, and LINE-1 methylation variation was an independent predictor of T/S variation. B vitamins decreased tHcy significantly in group A. Multiple backward regression analysis showed 5-methylTHF in group A and tHcy in group B were significant predictors for LINE-1 methylation. At baseline, the lower LINE-1 methylation observed in subjects with 5-methylTHF >10 nmol/l was in agreement with a reduced methyl group transfer due to a lower SAM formation. In group B, an increase in telomere length was correlated with lower LINE-1 methylation. Subjects with hyperhomocysteinemia >12 µmol/L had compared to those with normal tHcy a reduced LINE-1 methylation accompanied by a higher SAM and SAH (that inhibits demethylation of SAM) as well as lower 5-methylTHF. Additionally, subjects with tHcy > 12 µmol/L had longer telomeres when compared with subjects having tHcy < 12 µmol/L. The results suggest a possible effect of B vitamins for telomere biology in blood cells. Suboptimal B vitamins status and hyperhomocysteinemia are associated with altered DNA methylation and telomere length. These data have to be confirmed in future studies.
Catalytic copolymerization of CO and ethylene with a charge neutral palladium(II) zwitterion.
Lu, Connie C; Peters, Jonas C
2002-05-15
The synthesis of a zwitterionic Pd(II) complex supported by an anionic bis(phosphino)borate ligand, Ph(2)B(CH(2)PPh(2))(2) (abbreviated as [Ph(2)BP(2)]), is reported. The new complex, [Ph(2)BP(2)]PdMe(THF), is active for CO and ethylene copolymerization. The copolymerization activity and polyketone molecular weight for the neutral, zwitterionic system are compared with those for the cationic systems [R(2)E(CH(2)PPh(2))(2)PdMe(THF)][B(C(6)F(5))(4)] where ER(2) = SiPh(2) and CH(2). Surprisingly, the more electron rich zwitterionic system is a catalyst of activity comparable to that of the more conventional cationic systems.
Polymer-Nanoparticle Hybrid Photovoltaic Research for U.S. Air Force Applications
2010-01-06
6 S S O S S O II xi xiviii xii (69%) (93%) (64%) (92%) 4S SBr Br S S OO OO II S S OO aReagents and Conditions: i.THF, n- BuLi , C6H13Br, -78oC, ii...CHCl3, FeCl3 (cat.), Br2, iii. THF, n- BuLi , B(OBu)3, -78oC, 2 M HCl, iv. Toluene, 1,3-propandiol, Reflux, v. (a) Ether, n- BuLi -78oC, (b) 3...thiophenecarboxaldehyde, vi. (a) n- BuLi (2eqiv.), -23oC, I2 (3eqiv.), (b) Na2SO3 and HI solun, vii. CH2Cl2, P.C.C, r.t, viii. Cu, DMF, Reflux, ix
Brennessel, William W; Ellis, John E
2014-08-01
Homoleptic 2,2'-bipyridine (bipy) metalates of iron and cobalt have been synthesized directly from the corresponding homoleptic anthracene metalates. In the iron structure, bis[([2.2.2]cryptand)potassium(I)] tris(2,2'-bipyridine)ferrate(-I) anthracene(-I), [K(C18H36N2O6)]2[Fe(C10H8N2)3](C14H10), the asymmetric unit contains one potassium complex cation in a general position, the Fe center and one and a half bipy ligands of the ferrate complex on a crystallographic twofold axis that includes the Fe atom, and one half of an anthracene radical anion whose other half is generated by a crystallographic inversion center. The cations and anions are well separated and the geometry about the Fe center is essentially octahedral. In the cobalt structure, ([2.2.2]cryptand)potassium(I) bis(2,2'-bipyridine)cobaltate(-I) anthracene hemisolvate tetrahydrofuran (THF) disolvate, [K(C18H36N2O6)][Co(C10H8N2)2]·0.5C14H10·2C4H8O, the asymmetric unit contains the cation, anion, and both cocrystallized THF solvent molecules in general positions, and one half of a cocrystallized anthracene molecule whose other half is generated by a crystallographic inversion center. The cation and anion are well separated and the ligand planes in the cobaltate anion are periplanar. Each anthracene molecule is midway between and is oriented perpendicular to a pair of symmetry-related bipy ligands such that aromatic donor-acceptor interactions may play a role in the packing arrangement. The lengths of the bonds that connect the bipy rings support the assertion that the ligands are bipy radical anions in the iron structure. However, in the case of cobalt, these lengths are between the known ranges for a bipy radical anion and a bipy dianion, and therefore no conclusion can be made from the crystallography alone. One cocrystallized THF solvent molecule in the cobalt structure was modeled as disordered over three positions with appropriate geometric and thermal restraints, which resulted in a refined component mass ratio of 0.412 (4):0.387 (3):0.201 (3).
Rechargeable ambient temperature lithium cells
NASA Technical Reports Server (NTRS)
Holleck, G. L.
1980-01-01
The cycling performance of a secondary lithium cell with a 2-methyl THF lithium hectofluorarsenate electrolyte is discussed. Stripping efficiency, dendritization, passivation on standing, and discharge efficiency are considered.
Ultrafast photoinduced dynamics of the 3,6-diaminoacridinium derivative ATTO 465 in solution.
Arden-Jacob, Jutta; Drexhage, Karl-Heinz; Druzhinin, Sergey I; Ekimova, Maria; Flender, Oliver; Lenzer, Thomas; Oum, Kawon; Scholz, Mirko
2013-02-14
The excited state dynamics of the dye ATTO 465, a well-known fluorescence marker for biological applications, have been characterized in various solvents including THF, ethanol, methanol, water and the highly polar protic ionic liquid 2-hydroxyethylammonium formate (2-OH-EAF) by combining results from time-correlated single-photon counting (TCSPC) and ultrafast pump-supercontinuum probe (PSCP) spectroscopy as well as steady-state absorption and fluorescence. In water, 2-OH-EAF and two fluorinated alcohols, there is a pronounced blue-shift and broadening of the S(0) → S(1) absorption band and also a larger Stokes shift than in the other solvents, indicating a particular influence of hydrogen-bonding interactions. S(1) lifetimes from TCSPC at 25 °C range from 3.3 ns to 5.6 ns. An unusual increase in the S(1) lifetime with temperature is observed for ethanol and methanol, however water behaves in the opposite way. The behavior can be tentatively explained by a solvent- and temperature-dependent "proximity effect", where coupling of the close-lying S(1) and S(2) states influences the intramolecular relaxation rate of the dye. In addition, temperature-dependent complex equilibria of ATTO 465 with solvent molecules may influence the measured lifetimes. Several excited-state absorption (ESA) transitions are identified in the PSCP spectra, which are in good agreement with the position of the UV bands in the steady-state absorption spectra. Small shifts of the stimulated emission and ESA bands are consistent with solvation dynamics in the excited electronic state. An additional ~16 ps component in water, visible over the entire spectral range, is tentatively ascribed to a fast IC channel which is accessed by a fraction of ATTO 465 molecules.
Electrospinning of PVC with natural rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, Muhammad Hariz; Abdullah, Ibrahim; Mohamed, Mahathir
Polyvinyl chloride (PVC) was mixed with natural rubbers which are liquid natural rubber (LNR), liquid epoxidised natural rubber (LENR) and liquid epoxidised natural rubber acrylate (LENRA) for a preparation of a fine non-woven fiber’s mat. PVC and each natural rubbers(PVC:LENR, PVC:LNR and PVC:LENRA) were mixed based on ratio of 70:30. Electrospinning method was used to prepare the fiber. The results show that the spinnable concentration of PVC/ natural rubber/THF solution is 16 wt%. The morphology, diameter, structure and degradation temperature of electrospun fibers were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). SEM photos showed that the morphologymore » and diameter of the fibers were mainly affected by the addition of natural rubber. TGA results suggested that PVC electrospun fiber has higher degradation temperature than those electrospun fibers that contain natural rubber.« less
Electrospun cross linked rosin fibers
NASA Astrophysics Data System (ADS)
Baek, Woo-il; Nirmala, R.; Barakat, Nasser A. M.; El-Newehy, Mohamed H.; Al-Deyab, Salem S.; Kim, Hak Yong
2011-12-01
In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.
Charged triblock copolymer self-assembly into charged micelles
NASA Astrophysics Data System (ADS)
Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration
2011-03-01
Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.
Shi, Yi Wei; Ito, Kentaro; Matsuura, Yuji; Miyagi, Mitsunobu
2005-11-01
We report on low-loss multiwavelength laser delivery of hollow optical fiber in a wide wavelength region, from the visible to the infrared. Improved methods of liquid-phase coating were used to fabricate the hollow fiber with inner films of a silver and a cyclic olefin polymer (COP) layer. The surface roughness of the silver layer was reduced dramatically by pretreatment on the inner glass surface with an SnCl2 solution. The COP layer roughness was also decreased by using an ambient atmosphere of tetrahydrofuran (THF) solvent during the COP layer formation. Owing to the smooth surfaces, hollow fiber with optimum COP film thickness for CO2 laser light simultaneously yields low losses for a Er:YAG laser and a red pilot beam. The power durability of CO2 and Er:YAG lasers, as well as the loss properties for the pilot beam, is demonstrated.
Metamodeling and optimization of the THF process with pulsating pressure
NASA Astrophysics Data System (ADS)
Bucconi, Marco; Strano, Matteo
2018-05-01
Tube hydroforming is a process used in various applications to form the tube in a desired complex shape, by combining the use of internal pressure, which provides the required stress to yield the material, and axial feeding, which helps the material to flow towards the bulging zone. In many studies it has been demonstrated how wrinkling and bursting defects can be severely reduced by means of a pulsating pressure, and how the so-called hammering hydroforming enhances the formability of the material. The definition of the optimum pressure and axial feeding profiles represent a daunting challenge in the designing phase of the hydroforming operation of a new part. The quality of the formed part is highly dependent on the amplitude and the peak value of the pulsating pressure, along with the axial stroke. In this paper, a research is reported, conducted by means of explicit finite element simulations of a hammering THF operation and metamodeling techniques aimed at optimizing the process parameters for the production of a complex part. The improved formability is explored for different factors and an optimization strategy is used to determine the most convenient pressure and axial feed profile curves for the hammering THF process of the examined part. It is shown how the pulsating pressure allows the minimization of the energy input in the process, still respecting final quality requirements.
Guan, Shengzhou; Nie, Wanli; Borzov, Maxim V.
2011-01-01
The title compound, [ZrCl3(C19H25N2Si)(C4H8O)], was prepared from bis(N,N-dimethylamido-κN)(2-{2-[(1,2,3,3a,7a-η)-indenyl]-2-methylpropyl}-1H-imidazolido-κN 1)zirconium(IV) [(C16H16N2)Zr(NMe2)] by reaction with excess Me3SiCl in tetrahydrofuran (THF) at elevated temperature. The crystal studied contained a minor non-merohedral twin contaminant [6.3 (4)%] which was taken into account during the refinement. The coordination polyhedron of the ZrIV atom is a distorted octahedron [assuming that the five-membered ring of the indenyl group (Cp) occupies one coordination site], with the Cp group and a THF O atom at the apical positions and the three Cl and ligating N atoms at the equatorial positions. The Zr, Si and the methylene C atoms deviate noticeably from the imidazole ring plane [by −0.197 (5), −0.207 (5) and 0.119 (6) Å, respectively]. The THF ligand adopts an envelope conformation. PMID:21754279
The Scope of Direct Alkylation of Gold Surface with Solutions of C1-C4 n-Alkylstannanes.
Kaletová, Eva; Kohutová, Anna; Hajduch, Jan; Kaleta, Jiří; Bastl, Zdeněk; Pospíšil, Lubomír; Stibor, Ivan; Magnera, Thomas F; Michl, Josef
2015-09-23
Treatment of cleaned gold surfaces with dilute tetrahydrofuran or chloroform solutions of tetraalkylstannanes (alkyl = methyl, ethyl, n-propyl, n-butyl) or di-n-butylmethylstannyl tosylate under ambient conditions causes a self-limited growth of disordered monolayers consisting of alkyls and tin oxide. Extensive use of deuterium labeling showed that the alkyls originate from the stannane and not from ambient impurities, and that trialkylstannyl groups are absent in the monolayers, contrary to previous proposals. Methyl groups attached to the Sn atom are not transferred to the surface. Ethyl groups are transferred slowly, and propyl and butyl rapidly. In all cases, tin oxide is codeposited in submonolayer amounts. The monolayers were characterized by ellipsometry, contact angle goniometry, polarization modulated IR reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy with ferrocyanide/ferricyanide, which revealed a very low charge-transfer resistance. The thermal stability of the monolayers and their resistance to solvents are comparable with those of an n-octadecanethiol monolayer. A preliminary examination of the kinetics of monolayer deposition from a THF solution of tetra-n-butylstannane revealed an approximately half-order dependence on the bulk solution concentration of the stannane, hinting that more than one alkyl can be transferred from a single stannane molecule. A detailed structure of the attachment of the alkyl groups is not known, and it is proposed that it involves direct single or multiple bonding of one or more C atoms to one or more Au atoms.
Rechargeability of the ambient temperature cell Li/2Me-THF, LiAsF6/Cr0.5V0.5S2
NASA Astrophysics Data System (ADS)
Abraham, K. M.; Harris, P. B.; Natwig, D. L.
1983-12-01
Practical usefulness of Cr0.5V0.5S2 as a rechargeable positive electrode for ambient temperature Li cells has been assesed. The rate-capacity behavior or the Cr0.5V0.5S2 cathode has been evaluated as a function of carbon content, electrolyte, and temperature. Rechargeability of the disulfide has been investigated by extended cycling of Li cells utilizing 2Me-THF/LiAsF6. Cells with cathode capacities as large as 10 Ahr have been constructed and tested. Many cells have exceeded 200 deep discharge-charge cycles. A scheme of studies useful for assessing the practicality of potential solid cathodes for ambient temperature rechargeable Li cells is presented.
Magnesium Electrorefining in Non-Aqueous Electrolyte at Room Temperature
NASA Astrophysics Data System (ADS)
Kwon, Kyungjung; Park, Jesik; Kusumah, Priyandi; Dilasari, Bonita; Kim, Hansu; Lee, Churl Kyoung
Magnesium, of which application is often limited by its poor corrosion resistance, is more vulnerable to corrosion with existence of metal impurities such as Fe. Therefore, for the refining and recycling of magnesium, high temperature electrolysis using molten salts has been frequently adopted. In this report, the purification of magnesium scrap by electrolysis at room temperature is investigated with non-aqueous electrolytes. An aprotic solvent of tetrahydrofuran (THF) was used as a solvent of the electrolyte. Magnesium scrap was used as anode materials and ethyl magnesium bromide (EtMgBr) was dissolved in THF for magnesium source. The purified magnesium can be uniformly electrodeposited on copper electrode under potentiostatic conditions. The deposits were confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis.
Synthesis of 1,4-amino alcohols by Grignard reagent addition to THF and N-tosyliminobenzyliodinane.
Tejo, Ciputra; See, Yang Feng Anders; Mathiew, Mitch; Chan, Philip Wai Hong
2016-01-21
The synthesis of 1,4-amino alcohols from THF treated with N-tosyliminobenzyliodinane (PhINTs) followed by a Grignard reagent under mild reaction conditions at room temperature is described herein. Various Grignard reagents were shown to be compatible, furnishing the corresponding 4-substituted-N-1,4-tosylamino alcohols in good to excellent yields. A partial or full detosylation of the N-tosyl-1,4-amino alcohol was observed in instances involving a sterically bulky Grignard reagent, leading to the deprotected 1,4-amino alcohol product in moderate to good yields. The synthetic utility of this protocol was demonstrated by the synthesis of a 5-substituted-N-tosyl-1,5-amino alcohol from THP and the conversion of two examples to their corresponding γ-lactam and pyrrolidine adducts.
Anionic polymerization of p-(2,2'-diphenylethyl)styrene and applications to graft copolymers.
Huang, Minglu; Han, Bingyong; Lu, Jianmin; Yang, Wantai; Fu, Zhifeng
2017-01-01
Well-controlled anionic polymerization of an initiator-functionalized monomer, p -(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n -BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES- b -PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.
IRIS Toxicological Review of Tetrahydrofuran (THF) (External ...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of tetrahydrofuran (THF) that when finalized will appear on the Integrated Risk Information System (IRIS) database. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for tetrahydrofuran. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.
Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min
2006-01-01
Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505
Mono- and dinuclear tetraphosphabutadiene ferrate anions.
Chakraborty, Uttam; Leitl, Julia; Mühldorf, Bernd; Bodensteiner, Michael; Pelties, Stefan; Wolf, Robert
2018-03-12
Reduction of [Cp Ar Fe(μ-Br)] 2 (1, Cp Ar = C 5 (C 6 H 4 -4-Et) 5 ) by potassium napthalenide, followed by the addition of white phosphorus, affords [K(18-c-6){Cp Ar Fe(η 4 -P 4 )}] (2, 18-c-6 = [18]crown-6), which features a planar cyclo-P 4 2- ligand. The related diiron complex [Na 2 (THF) 5 (Cp Ar Fe) 2 (μ,η 4:4 -P 4 )] (3) was obtained by reducing 1 with sodium amalgam in the presence of P 4 . Protonation of 3 affords [Na(THF) 3 ][(Cp Ar Fe) 2 (μ,η 4:4 -P 4 )(H)] (4), while the reaction of 3 with trimethylchlorosilane gives the nortricyclane compound P 7 (SiMe 3 ) 3 as the main product.
Wo, Yaqi; Li, Zi; Colletta, Alessandro; Wu, Jianfeng; Xi, Chuanwu; Matzger, Adam J; Brisbois, Elizabeth J; Bartlett, Robert H; Meyerhoff, Mark E
2017-07-15
Stable and long-term nitric oxide (NO) releasing polymeric materials have many potential biomedical applications. Herein, we report the real-time observation of the crystallization process of the NO donor, S -nitroso- N -acetylpenicillamine (SNAP), within a thermoplastic silicone-polycarbonate-urethane biomedical polymer, CarboSil 20 80A. It is demonstrated that the NO release rate from this composite material is directly correlated with the surface area that the CarboSil polymer film is exposed to when in contact with aqueous solution. The decomposition of SNAP in solution (e.g. PBS, ethanol, THF, etc.) is a pseudo-first-order reaction proportional to the SNAP concentration. Further, catheters fabricated with this novel NO releasing composite material are shown to exhibit significant effects on preventing biofilm formation on catheter surface by Pseudomonas aeruginosa and Proteus mirabilis grown in CDC bioreactor over 14 days, with a 2 and 3 log-unit reduction in number of live bacteria on their surfaces, respectively. Therefore, the SNAP-CarboSil composite is a promising new material to develop antimicrobial catheters, as well as other biomedical devices.
Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.
Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C
2011-04-06
This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society
Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.
Domańska, Urszula; Zołek-Tryznowska, Zuzanna
2009-11-19
Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.
Feng, Shouai; Wei, Kang; Tian, Zhaofu; Li, Xiaolan; Meng, Dongling; Liao, Wenlong; Miao, Mingming; Yang, Yaling
2016-07-29
In this work, a simple and effective method based on magnetic solid-phase extraction combined with high-performance liquid chromatography was developed for the determination of benzo[α]pyrene (BaP) in cigarette smoke. Oleic acid coated Fe 3 O 4 (Fe 3 O 4 -OA) was synthesized and directly used as an efficient sorbent for the first time in magnetic solid-phase extraction (MSPE) procedure for the clean-up of BaP in cigarette smoke extracts. The synthesized Fe 3 O 4 -OA was characterized by transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. The extraction via Fe 3 O 4 -OA was dispersed in the extracts of cigarette smoke followed by the magnetic isolation, acetonitrile-tetrahydrofuran (ACN-THF; v/v = 9:1) was used for desorption of the analyte. The effects of important parameters such as the amount of adsorbent, solution pH, the content of acetonitrile, temperature and sorption time were investigated. The method showed good linearity for the determination of BaP in the concentration range of 0.5-50 ng mL -1 with a regression coefficient (R 2 ) of 0.9987. The limit of detection and limit of quantification for BaP were obtained to be 0.12 and 0.41 ng mL -1 , respectively. The mean recoveries were in the range from 81.0% to 97.6% at low, medium, high spiked levels, and the relative standard deviations were in the range of 2.7-6.8%. Combined with high-performance liquid chromatography and fluorescence detection, a simple and effective method was developed for the analysis of BaP in cigarette smoke. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Samah, N L M A; Lee, Khuan Y; Sulaiman, S A; Jarmin, R
2017-07-01
Intolerance of histamine could lead to scombroid poisoning with fatal consequences. Current detection methods for histamine are wet laboratory techniques which employ expensive equipment that depends on skills of seasoned technicians and produces delayed test analysis result. Previous works from our group has established that ISFETs can be adapted for detecting histamine with the use of a novel membrane. However, work to integrate ISFETs with a readout interfacing circuit (ROIC) circuit to display the histamine concentration has not been reported so far. This paper concerns the development of a ROIC specifically to integrate with a Mn(TPP)Cl-DOP-THF-Polyhema PVC membrane modified n-channel Si3N4 ISFET to display the histamine concentration. It embodies the design of constant voltage constant current (CVCC) circuit, amplification circuit and micro-controller based display circuit. A DC millivolt source is used to substitute the membrane modified ISFET as preliminary work. Input is histamine concentration corresponding to the safety level designated by the Food and Drugs Administration (FDA). Results show the CVCC circuit makes the output follows the input and keeps VDS constant. The amplification circuit amplifies the output from the CVCC circuit to the range 2.406-4.888V to integrate with the microcontroller, which is programmed to classify and display the histamine safety level and its corresponding voltage on a LCD panel. The ROIC could be used to produce direct output voltages corresponding to histamine concentrations, for in-situ applications.
Dombrowski, James P; Johnson, Gregory R; Bell, Alexis T; Tilley, T Don
2016-07-05
The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content.
Pfeiffer, Christine M; Sternberg, Maya R; Fazili, Zia; Yetley, Elizabeth A; Lacher, David A; Bailey, Regan L; Johnson, Clifford L
2015-01-01
Background: Serum total folate consists mainly of 5-methyltetrahydrofolate (5-methylTHF). Unmetabolized folic acid (UMFA) may occur in persons consuming folic acid–fortified foods or supplements. Objectives: We describe serum 5-methylTHF and UMFA concentrations in the US population ≥1 y of age by demographic variables and fasting time, stratified by folic acid–containing dietary supplement use. We also evaluate factors associated with UMFA concentrations >1 nmol/L. Methods: Serum samples from the cross-sectional NHANES 2007–2008 were measured for 5-methylTHF (n = 2734) and UMFA (n = 2707) by HPLC–tandem mass spectrometry. Results: In supplement users compared with nonusers, we found significantly higher geometric mean concentrations of 5-methylTHF (48.4 and 30.7 nmol/L, respectively) and UMFA (1.54 and 0.794 nmol/L, respectively). UMFA concentrations were detectable (>0.3 nmol/L) in >95% of supplement users and nonusers, regardless of demographic or fasting characteristics; concentrations differed significantly by age and fasting time, but not by sex and race-ethnicity, both in supplement users and nonusers. The prevalence of UMFA concentrations >1 nmol/L was 33.2% overall and 21.0% in fasting (≥8 h) adults (≥20 y of age). Using multiple logistic regression analysis, UMFA concentrations >1 nmol/L were associated with being older, non-Hispanic black, nonfasting (<8 h), having smaller body surface area, higher total folic acid intake (diet and supplements), and higher red blood cell folate concentrations. In fasting adults, a decrease in the mean daily alcohol consumption was also associated with increased odds of UMFA concentrations >1 nmol/L. Conclusions: UMFA detection was nearly ubiquitous, and concentrations >1 nmol/L were largely but not entirely explained by fasting status and by total folic acid intake from diet and supplements. These new UMFA data in US persons ≥1 y of age provide much-needed information on this vitamer in a fortified population with relatively high use of dietary supplements. PMID:25733468
Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem
2011-11-01
A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anderson, Nickolas H; Odoh, Samuel O; Williams, Ursula J; Lewis, Andrew J; Wagner, Gregory L; Lezama Pacheco, Juan; Kozimor, Stosh A; Gagliardi, Laura; Schelter, Eric J; Bart, Suzanne C
2015-04-15
The electronic structures of a series of highly reduced uranium complexes bearing the redox-active pyridine(diimine) ligand, (Mes)PDI(Me) ((Mes)PDI(Me) = 2,6-(2,4,6-Me3-C6H2-N═CMe)2C5H3N) have been investigated. The complexes, ((Mes)PDI(Me))UI3(THF) (1), ((Mes)PDI(Me))UI2(THF)2 (2), [((Mes)PDI(Me))UI]2 (3), and [((Mes)PDI(Me))U(THF)]2 (4), were examined using electronic and X-ray absorption spectroscopies, magnetometry, and computational analyses. Taken together, these studies suggest that all members of the series contain uranium(IV) centers with 5f (2) configurations and reduced ligand frameworks, specifically [(Mes)PDI(Me)](•/-), [(Mes)PDI(Me)](2-), [(Mes)PDI(Me)](3-) and [(Mes)PDI(Me)](4-), respectively. In the cases of 2, 3, and 4 no unpaired spin density was found on the ligands, indicating a singlet diradical ligand in monomeric 2 and ligand electron spin-pairing through dimerization in 3 and 4. Interaction energies, representing enthalpies of dimerization, of -116.0 and -144.4 kcal mol(-1) were calculated using DFT for the monomers of 3 and 4, respectively, showing there is a large stabilization gained by dimerization through uranium-arene bonds. Highlighted in these studies is compound 4, bearing a previously unobserved pyridine(diimine) tetraanion, that was uniquely stabilized by backbonding between uranium cations and the η(5)-pyridyl ring.
Sawant, Shilpa N; Selvaraj, Veerapandian; Prabhawathi, Veluchamy; Doble, Mukesh
2013-01-01
Silver and gold nanoparticles (of average size ∼20-27 nm) were incorporated in PU (Polyurethane), PCLm (Polycaprolactam), PC (polycarbonate) and PMMA (Polymethylmethaacrylate) by swelling and casting methods under ambient conditions. In the latter method the nanoparticle would be present not only on the surface, but also inside the polymer. These nanoparticles were prepared initially by using a cosolvent, THF. PU and PCLm were dissolved and swollen with THF. PC and PMMA were dissolved in CHCl₃ and here the cosolvent, THF, acted as an intermediate between water and CHCl₃. FTIR indicated that the interaction between the polymer and the nanoparticle was through the functional group in the polymer. The formation of E.coli biofilm on these nanocomposites under low (in a Drip flow biofilm reactor) and high shear (in a Shaker) conditions indicated that the biofilm growth was higher (twice) in the former than in the latter (ratio of shear force = 15). A positive correlation between the contact angle (of the virgin surface) and the number of colonies, carbohydrate and protein attached on it were observed. Ag nanocomposites exhibited better antibiofilm properties than Au. Bacterial attachment was highest on PC and least on PU nanocomposite. Casting method appeared to be better than swelling method in reducing the attachment (by a factor of 2). Composites reduced growth of organisms by six orders of magnitude, and protein and carbohydrate by 2-5 times. This study indicates that these nanocomposites may be suitable for implant applications.
de Jésus, Karine Pereira; Serre, Laurence; Zelwer, Charles; Castaing, Bertrand
2005-01-01
Fpg is a DNA glycosylase that recognizes and excises the mutagenic 8-oxoguanine (8-oxoG) and the potentially lethal formamidopyrimidic residues (Fapy). Fpg is also associated with an AP lyase activity which successively cleaves the abasic (AP) site at the 3′ and 5′ sides by βδ-elimination. Here, we present the high-resolution crystal structures of the wild-type and the P1G defective mutant of Fpg from Lactococcus lactis bound to 14mer DNA duplexes containing either a tetrahydrofuran (THF) or 1,3-propanediol (Pr) AP site analogues. Structures show that THF is less extrahelical than Pr and its backbone C5′–C4′–C3′ diverges significantly from those of Pr, rAP, 8-oxodG and FapydG. Clearly, the heterocyclic oxygen of THF is pushed back by the carboxylate of the strictly conserved E2 residue. We can propose that the ring-opened form of the damaged deoxyribose is the structure active form of the sugar for Fpg catalysis process. Both structural and functional data suggest that the first step of catalysis mediated by Fpg involves the expulsion of the O4′ leaving group facilitated by general acid catalysis (involving E2), rather than the immediate cleavage of the N-glycosic bond of the damaged nucleoside. PMID:16243784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bottomley, F.; Keizer, P.N.; White, P.S.
Hydrolysis of Cp{prime}NbCl{sub 4} (Cp{prime} = {eta}{sup 5}-C{sub 5}H{sub 5} (Cp), {eta}-C{sub 5}H{sub 4}Me (Cp{sup 1})) in tetrahydrofuran (THF) gave a mixture of products of general formula (Cp{prime}NbL{sub 4}){sub 2}({mu}-O), where L{sub 4} is a combination of H{sub 2}O and terminal or bridging Cl that gives eight-coordinate, pentavalent, niobium. For Cp{prime} = Cp, a major constituent of the mixture is (CpNb(H{sub 2}O)Cl{sub 3}){sub 2}({mu}-O) {times} 2THF {times} 0.05Et{sub 2}O (1), the structure of which was determined by X-ray diffraction. Reduction of (Cp{prime}NbL{sub 4}){sub 2}({mu}-O) with aluminum powder gave the cluster (Cp{prime}NbCl({mu}-Cl)){sub 3}({mu}{sub 3}-OH)({mu}{sub 3}-O) (2). The structure of 2 (Cp{prime}more » = Cp) as the THF adduct was determined by X-ray diffraction. Crystal data: monoclinic; P2{sub 1}/c; a = 9.966 (1) {angstrom}, b = 12.471 (2) {angstrom}, c = 20.321 (2) {angstrom}, {beta} = 93.86 (1){degree}.« less
Corbey, Jordan F; Farnaby, Joy H; Bates, Jefferson E; Ziller, Joseph W; Furche, Filipp; Evans, William J
2012-07-16
The effect of the neutral donor ligand, L, on the Ln(2)N(2) core in the (N═N)(2-) complexes, [A(2)(L)Ln](2)(μ-η(2):η(2)-N(2)) (Ln = Sc, Y, lanthanide; A = monoanion; L = neutral ligand), is unknown since all of the crystallographically characterized examples were obtained with L = tetrahydrofuran (THF). To explore variation in L, displacement reactions between {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)), 1, and benzonitrile, pyridine (py), 4-dimethylaminopyridine (DMAP), triphenylphosphine oxide, and trimethylamine N-oxide were investigated. THF is displaced by all of these ligands to form {[(Me(3)Si)(2)N](2)(L)Y}(2)(μ-η(2):η(2)-N(2)) complexes (L = PhCN, 2; py, 3; DMAP, 4; Ph(3)PO, 5; Me(3)NO, 6) that were fully characterized by analytical, spectroscopic, density functional theory, and X-ray crystallographic methods. The crystal structures of the Y(2)N(2) cores in 2-5 are similar to that in 1 with N-N bond distances between 1.255(3) Å and 1.274(3) Å, but X-ray analysis of the N-N distance in 6 shows it to be shorter: 1.198(3) Å.
Iron silylamide-grafted periodic mesoporous silica.
Deschner, Thomas; Törnroos, Karl W; Anwander, Reiner
2011-08-01
The surface chemistry of a series of well-defined metalorganic ferrous and ferric iron complexes on periodic mesoporous silica (PMS) was investigated. In addition to literature known Fe(II)[N(SiMe(3))(2)](2)(THF), Fe(II)[N(SiPh(2)Me(2))(2)](2), and Fe(III)[N(SiMe(3))(2)](2)Cl(THF), the new complexes [Fe(II){N(SiHMe(2))(2)}(2)](2) and Fe(III)[N(SiHMe(2))(2)](3)(μ-Cl)Li(THF)(3) were employed as grafting precursors. Selection criteria for the molecular precursors were the molecular size (monoiron versus diiron species), the oxidation state of the iron center (II versus III), and the functionality of the silylamido ligand (e.g., built-in spectroscopic probes). Hexagonal channel-like MCM-41 and cubic cage-like SBA-1 were chosen as two distinct PMS materials. The highest iron load (12.8 wt %) was obtained for hybrid material [Fe(II){N(SiHMe(2))(2)}(2)](2)@MCM-41 upon stirring the reaction mixture iron silylamide/PMS/n-hexane for 18 h at ambient temperature. Size-selective grafting and concomitantly extensive surface silylation were found to be prominent for cage-like SBA-1. Here, the surface metalation is governed by the type of iron precursor, the pore size, the reaction time, and the solvent. The formation of surface-attached iron-ligand species is discussed on the basis of diffuse reflectance infrared Fourier transform (DRIFT) and electron paramagnetic resonance (EPR) spectroscopy, nitrogen physisorption, and elemental analysis. © 2011 American Chemical Society
Pyrazolates advance cerium chemistry: a CeIII/CeIV redox equilibrium with benzoquinone.
Werner, Daniel; Deacon, Glen B; Junk, Peter C; Anwander, Reiner
2017-05-16
Two stable cerium(iv) 3,5-dialkylpyrazolate complexes are presented, namely dimeric [Ce(Me 2 pz) 4 ] 2 (Me 2 pz = 3,5-dimethylpyrazolate) and monomeric Ce(tBu 2 pz) 4 (tBu 2 pz = 3,5-di-tert-butylpyrazolate) along with their trivalent counterparts [Ce(Me 2 pz) 3 ] and [Ce(tBu 2 pz) 3 ] 2 . All complexes were obtained from protonolysis reactions employing the silylamide precursors Ce[N(SiHMe 2 ) 2 ] 4 and Ce[N(SiMe 3 ) 2 ] 3 . Treatment of homoleptic Ce IV and Ce III Me 2 pz complexes with 1,4-hydroquinone (H 2 hq) or 1,4-benzoquinone (bq), respectively, ultimately gave the same trimetallic Ce III species via a cerium redox equilibrium. The Ce III complex Ce 3 (Me 2 pz) 5 (pchd) 2 (L) (pchd = 1,4-bis(3,5-dimethylpyrazol-1-yl)cyclohex-2,5-diene-1,4-diolato; L = Me 2 pzH or (thf) 2 ) results from a di-1,4-pyrazolyl attack on pre-coordinated bq. The reduction of bq by [Ce(Me 2 pz) 3 (thf)] 2 , and re-oxidation by the resulting Ce IV species was supported by UV-vis spectroscopic investigations. Comparisons with the redox-innocent complexes [Ln(Me 2 pz) 3 (thf)] 2 (Ln = La and Pr) revealed far less selective reactions with bq, giving hexametallic and octametallic rare-earth metal side products containing 2-Me 2 pz substituted hq ligands.
On the nature of actinide- and lanthanide-metal bonds in heterobimetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlaisavljevich, Bess; Miró, Pere; Cramer, Christopher J.
2011-06-28
Eleven experimentally characterized complexes containing heterobimetallic bonds between elements of the f-block and other elements were examined by quantum chemical methods: [(η⁵-C₅H₅)₂(THF)LuRu(η⁵-C₅H₅) (CO)₂], [(η⁵-C₅Me₅)₂(I)ThRu(η⁵-C₅H₅) (CO)₂], [(η⁵-C₅H₅)₂YRe(η⁵-C₅H₅)₂], [{N(CH₂CH₂NSiMe₃)₃}URe(η⁵-C₅H₅)₂], [Y{Ga(NArCh)₂}{C(PPh₂NSiH₃)₂}(CH₃OCH₃)₂], [{N(CH₂CH₂NSiMe₃)₃}U{Ga(NArCH)₂}(THF)], [(η⁵-C₅H₅)₃UGa(η⁵-C₅Me₅)], [Yb(η⁵-C₅H₅){Si(SiMe₃)₃(THF)₂}], [(η⁵-C₅H₅)₃U(SnPh₃)], [(η⁵-C₅H₅)₃U(SiPh₃)], and (Ph[Me]N)₃USi(SiMe₃)₃. Geometries in good agreement with experiment were obtained at the density functional level of theory. The multiconfigurational complete active space self-consistent field method (CASSCF) and subsequent corrections with second order perturbation theory (CASPT2) were applied to further understand the electronic structure of the lanthanide/actinide–metal (or metal–metalloid) bonds. Fragment calculations and energy-decomposition analyses were also performed and indicate that charge transfer occurs from one supported metalmore » fragment to the other, while the bonding itself is always dominated by ionic character.« less
Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S.; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M.; Xiao, Bingguang; Burkey, Kent O.; Bush, Lowell P.; Conkling, Mark A.; Roje, Sanja; Xie, Jiahua
2013-01-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678
Beckmann, Jens; Bolsinger, Jens; Duthie, Andrew; Finke, Pamela
2013-09-14
The stoichiometrically controlled halogenation of the intramolecularly coordinated diaryltelluride (8-Me2NC10H6)2Te using SO2Cl2, Br2 and I2 was studied. At an equimolar ratio, the diarylhalotelluronium cations [(8-Me2NC10H6)2TeX](+) (1, X = Cl; 2, X = Br; 3, X = I) formed and were isolated as 1·Cl(-)·H2O·1/2THF, 2·Br(-), and 3·I(-), respectively. When the same reactions were carried out in the presence of KPF6, 1·PF6(-) and 22·Br(-)·PF6(-) were obtained. The chlorination of (8-Me2NC10H6)2Te with an excess of SO2Cl2 occurred with a double electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the ortho- and para-positions) and afforded the diaryltellurium dichloride (5,7-Cl2-8-Me2NC10H4)2TeCl2 (4). The bromination of (8-Me2NC10H6)2Te with three equivalents of Br2 took place with a single electrophilic substitution at the 8-dimethylaminonaphthyl residues (in the para-positions) and provided the diaryltellurium dibromide (5-Br-8-Me2NC10H5)2TeBr2 (5), while an excess of Br2 produced the diarylbromotelluronium cation [(5-Br-8-Me2NC10H5)2TeBr](+) (6) that was isolated as 6·Br3(-). The reaction of (8-Me2NC10H6)2Te with two or three equivalents of iodine provided 3·I3(-) and 3·I3(-)·I2, respectively. In the presence of water, 1·Cl(-)·H2O·1/2THF, 2·Br(-), 3·I(-) and 3·I3(-) hydrolyzed to give the previously known diarylhydroxytelluronium cation [(8-Me2NC10H6)2TeOH](+) (7) that was isolated as 7·Cl(-), 7·Br(-)·H2O·THF, 7·I(-) and 7·I3(-)·H2O, respectively. The molecular structures of 1-7 were investigated in the solid-state by (125)Te MAS NMR spectroscopy and X-ray crystallography and in solution by multinuclear NMR spectroscopy ((1)H, (13)C, (125)Te), electrospray mass spectrometry and conductivity measurements. The stabilization of cations 1-3 by the intramolecular coordination was estimated by DFT calculations at the B3PW91/TZ level of theory.
Champion, Martin J D; Farina, Paolo; Levason, William; Reid, Gillian
2013-09-28
Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group.
Impact of Weak Agostic Interactions in Nickel Electrocatalysts for Hydrogen Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klug, Christina M.; O’Hagan, Molly; Bullock, R. Morris
To understand how H2 binding and oxidation is influenced by [Ni(PR2NR'2)2]2+ PR2NR'2 catalysts with H2 binding energies close to thermoneutral, two [Ni(PPh2NR'2)2]2+ (R = Me or C14H29) complexes with phenyl substituents on phosphorous and varying alkyl chain lengths on the pendant amine were studied. In the solid state, [Ni(PPh2NMe2)2]2+ exhibits an anagostic interaction between the Ni(II) center and the α-CH3 of the pendant amine, and DFT and variable-temperature 31P NMR experiments suggest than the anagostic interaction persists in solution. The equilibrium constants for H2 addition to these complexes was measured by 31P NMR spectroscopy, affording free energies of H2 additionmore » (ΔG°H2) of –0.8 kcal mol–1 in benzonitrile and –1.6 to –2.3 kcal mol–1 in THF. The anagostic interaction contributes to the low driving force for H2 binding by stabilizing the four-coordinate Ni(II) species prior to binding of H2. The pseudo-first order rate constants for H2 addition at 1 atm were measured by variable scan rate cyclic voltammetry, and were found to be similar for both complexes, less than 0.2 s–1 in benzonitrile and 3 –6 s–1 in THF. In the presence of exogenous base and H2 , turnover frequencies of electrocatalytic H2 oxidation were measured to be less than 0.2 s–1 in benzonitrile and 4 –9 s–1 in THF. These complexes are slower electrocatalysts for H2 oxidation than previously studied [Ni(PR2NR'2)2]2+ complexes due to a competition between H2 binding and formation of the anagostic interaction. However, the decrease in catalytic rate is accompanied by a beneficial 130 mV decrease in overpotential. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Computational resources were provided at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Mass spectrometry experiments were performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located and the Pacific Northwest National Laboratory (PNNL). The authors thank Dr. Rosalie Chu for mass spectroscopy analysis. PNNL is operated by Battelle for DOE.« less
High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.
Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L
2014-01-24
The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.
Sameni, Soheila; Jeunesse, Catherine; Matt, Dominique; Toupet, Loïc
2009-10-12
The first diphosphines based on a double calixarene, namely 1,4 (or 1,3)-bis-(5-diphenylphosphino-25,26,27,28-tetrapropoxycalix[4]aren-17-yl)benzene (L(2), L(3)) were each prepared in four steps starting from 5,17-dibromo-25,26,27,28-tetrapropoxycalix[4]arene. Upon reaction of L(2) with [Au(tht)(thf)]BF(4), (tht = C(4)H(8)S) a rigid metallo-capsule was quantitatively formed, which adopts an oblique form owing to the distinct nature of the spacers linking the two calixarene half-spheres. In the solid state, the 1,4-substituted phenylene linker is turned towards the gold ion, suggesting the existence of weak bonding interactions between two aromatic CH protons of this ring and the metal centre (AuH =2.67 A). In contrast to this gold complex, the related silver complex shows dynamic behaviour in solution, the exchange between two enantiomeric oblique forms being facilitated by the greater stereochemical flexibility of Ag(I) vs. Au(I). A heteronuclear (109)Ag{(1)H} HMQC experiment established strong correlations between the CH protons of the phenylene linker and the (109)Ag ion. Dynamic behaviour similar to that observed for the silver complex was further observed in trans-[PtCl(2)L(2)], a chelate complex that could be obtained quantitatively from L(2) and [PtCl(2)(PhCN)(2)]. The intended formation of a chelate complex leading to a capsule with an endo-oriented metal centre was achieved by reacting L(3) with [Pd(allyl)(thf)(2)]BF(4). The complex thus formed constitutes the first organometallic transition metal complex embedded in a cavity with large portals. Binding of [RuCl(2)(p-cymene)] to L(2) and L(3) resulted in self-compacting bimetallic complexes in which each calixarene basket entraps a Ru(p-cymene) unit, thereby forming molecules occupying a minimal volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Kamal Kumar; Rachuri, Yadagiri; Academy of Scientific and Innovative Research
Four ternary coordination polymers (CPs) namely, ([Ni(SDB)(BITMB)(H{sub 2}O)]·H{sub 2}O){sub n} (CP1), ([Cd(SDB)(BITMB) (H{sub 2}O)]·(THF)(H{sub 2}O)){sub n} (CP2), ([Zn{sub 2}(SDB){sub 2}(BITMB)]·(THF){sub 2}){sub n} (CP3) and ([Co{sub 2}(SDB){sub 2}(BITMB)]·(Dioxane){sub 3}){sub n} (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal–organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2–CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes,more » versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1–CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25–83% dye removal from aqueous solutions in the presence of CP1–CP4 was observed. - Graphical abstract: Four new ternary transition metal CPs have been hydrothermally prepared and their structural aspects as well as photocatalytic activity for decolourization of metanil yellow (MY) dye have been investigated. - Highlights: • Four ternary coordination polymers containing Ni, Cd, Zn and Co center are prepared. • Crystal structure and thermal stability of all four CPs has been described. • PL and diffuse reflectance spectra of synthesized CPs have also been examined. • Band gap values suggest semiconducting behavior of prepared CPs. • Photocatalytic activity of CPs for oxidative degradation of metanil yellow is studied.« less
Langeslay, Ryan R; Fieser, Megan E; Ziller, Joseph W; Furche, Filipp; Evans, William J
2016-03-30
The reactivity of the recently discovered Th(2+) complex [K(18-crown-6)(THF)2][Cp″3Th], 1 [Cp'' = C5H3(SiMe3)2-1,3], with hydrogen reagents has been investigated and found to provide syntheses of new classes of thorium hydride compounds. Complex 1 reacts with [Et3NH][BPh4] to form the terminal Th(4+) hydride complex Cp″3ThH, 2, a reaction that formally involves a net two-electron reduction. Complex 1 also reacts in the solid state and in solution with H2 to form a mixed-valent bimetallic product, [K(18-crown-6)(Et2O)][Cp″2ThH2]2, 3, which was analyzed by X-ray crystallography, electron paramagnetic resonance and optical spectroscopy, and density functional theory. The existence of 3, which formally contains Th(3+) and Th(4+), suggested that KC8 could reduce [(C5Me5)2ThH2]2. In the presence of 18-crown-6, this reaction forms an analogous mixed-valent product formulated as [K(18-crown-6)(THF)][(C5Me5)2ThH2]2, 4. A similar complex with (C5Me4H)(1-) ligands was not obtained, but reaction of (C5Me4H)3Th with H2 in the presence of KC8 and 2.2.2-cryptand at -45 °C produced two monometallic hydride products, namely, (C5Me4H)3ThH, 5, and [K(2.2.2-cryptand)]{(C5Me4H)2[η(1):η(5)-C5Me3H(CH2)]ThH]}, 6. Complex 6 contains a metalated tetramethylcyclopentadienyl dianion, [C5Me3H(CH2)](2-), that binds in a tuck-in mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmurs, P.; Visseaux, M.; Baudry, D.
1996-10-01
Heterobimetallic zirconium-ruthenium and ytterbium-ruthenium dihydrides, having bridging phospholyl ligands, have been obtained for the first time. Reaction of bis({eta}{sup 5}-tetramethylphospholyl)dichlorozirconium [(TMP){sub 2}ZrCl{sub 2}] with RuH{sub 4}(PPh{sub 3}){sub 3} gave the zirconium-ruthenium heterobimetallic Cl{sub 2}Zr[{mu}({eta}{sup 5},{eta}{sup 1})-TMP]{sub 2}Ru(H){sub 2} (PPh{sub 3}){sub 2}. This compound was transformed into the hydridochloride Cl{sub 2}Zr[{mu}({eta}{sup 5},{eta}{sup 1})-TMP]{sub 2}Ru(H)(Cl)( PPh{sub 3}){sub 2} by the action of CCl{sub 4}. Similarly, reaction of [(TMP){sub 2}Yb] with RuH{sub 4}(PPh{sub 3}){sub 3} afforded (THF){sub 2}Yb[{mu}({eta}{sup 5}, meta{sup 1})-TMP]{sub 2}Ru(H){sub 2}(PPh{sub 3}){sub 2}. The structure of this compound, which has been determined by X-ray crystallography, confirms the trans configuration of themore » dihydride deduced previously from NMR data. Attempts to isolate products from the reaction of [(TMP){sub 2}UCl{sub 2}] or [(TMP){sub 2}U(BH{sub 4}){sub 2}] with RuH{sub 4}(PPh{sub 3}){sub 3} were unsuccessful, but NMR data show the formation of both heterobimetallic trans- and cis-ruthenium dihydride-uranium compounds X{sub 2}U[{mu}({eta}{sup 5},{eta}{sup 1})-TMP]{sub 2}Ru(H){sub 2}(P Ph{sub 3}){sub 2} (X = BH{sub 4}, Cl) in solution. 19 refs., 1 fig., 2 tabs.« less
Nakamura, Tomotaka; Harigaya, Yuhki; Kimura, Yuya; Kuroiwa, Megumi; Kurata, Yuhri; Isaka, Kazuichi; Suwa, Yuichi
2017-09-01
The inhibitory effect of 20 substances of various chemical species on the anaerobic ammonia oxidation (anammox) activity of an enrichment culture, predominated by Candidatus Brocadia, was determined systematically by using a 15 N tracer technique. The initial anammox rate was determined during first 25 min with a small-scale anaerobic batch incubation supplemented with possible inhibitors. Although Cu 2+ and Mn 2+ did not inhibit anammox, the remaining 18 substances [Ni 2+ , Zn 2+ , Co 2+ , [Formula: see text] , Fe 2+ , 4 amines, ethylenediaminetetraacetic acid (EDTA), ethylenediamine-N,N'-bis (2-hydroxyphenylacetic acid) (EDDHA), citric acid, nitrilotriacetic acid (NTA), N,N-dimethylacetamide (DMA), 1,4-dioxane, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and tetrahydrofuran (THF)] were inhibitory. Inhibitory effect of NTA, EDDHA, THF, DMF, DMA and amines on anammox was first determined in this study. Inhibitory effects of metals were re-evaluated because chelators, which may interfere inhibitory effect, have been used to dissolve metal salts into assay solution. The relative anammox activities as a function of concentration of each substance were described successfully (R 2 > 0.91) either with a linear inhibition model or with a Michaelis-Menten-based inhibition model. IC 50 values were estimated based on either model, and were compared. The IC 50 values of the 4 chelators (0.06-2.7 mM) and 5 metal ions (0.02-1.09 mM) were significantly lower than those of the 4 amines (10.6-29.1 mM) and 5 organic solvents (3.5-82 mM). Although it did not show any inhibition within 25 min, 0.1 mM Cu 2+ completely inhibited anammox activity in 240 min, suggesting that the inhibitory effect caused by Cu 2+ is time-dependent. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Lan, Hangzhen; Rönkkö, Tuukka; Parshintsev, Jevgeni; Hartonen, Kari; Gan, Ning; Sakeye, Motolani; Sarfraz, Jawad; Riekkola, Marja-Liisa
2017-02-24
In this study, a novel solid phase microextration (SPME) Arrow was prepared for the sampling of volatile low molecular weight alkylamines (trimethylamine (TMA) and triethylamine (TEA)) in wastewater, salmon and mushroom samples before gas chromatographic separation with mass spectrometer as detector. Acidified zeolitic imidazolate framework-8 (A-ZIF-8) was utilized as adsorbent and poly(vinyl chloride) (PVC) as the adhesive. The custom SPME Arrow was fabricated via a physical adhesion: (1) ZIF-8 particles were suspended in a mixture of tetrahydrofuran (THF) and PVC to form a homogeneous suspension, (2) a non-coated stainless steel SPME Arrow was dipped in the ZIF-8/PVC suspension for several times to obtain a uniform and thick coating, (3) the pore size of ZIF-8 was modified by headspace exposure to hydrochloric acid in order to increase the extraction efficiency for amines. The effect of ZIF-8 concentration in PVC solution, dipping cycles and aging temperature on extraction efficiency was investigated. In addition, sampling parameters such as NaCl concentration, sample volume, extraction time, potassium hydroxide concentration, desorption temperature and desorption time were optimized. The Arrow-to-Arrow reproducibilities (RSDs) for five ZIF-8 coated Arrows were 15.6% and 13.3% for TMA and TEA, respectively. The extraction with A-ZIF-8/PVC Arrow was highly reproducible for at least 130 cycles without noticeable decrease of performance (RSD<12.5%). Headspace SPME of 7.5mL sample solution with the fabricated ZIF-8 coated Arrow achieved linear ranges of 1-200ngmL -1 for both TMA and TEA. The limit of quantitation (LOQ) was 1ngmL -1 for both TMA and TEA. The method was successfully applied to the determination of TMA and TEA in wastewater, salmon and mushroom samples giving satisfactory selectivity towards the studied amines. Copyright © 2016 Elsevier B.V. All rights reserved.
Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code
NASA Astrophysics Data System (ADS)
Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian
2017-07-01
FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.
Sheraz, Muhammad Ali; Rehman, Ihtesham ur
2013-01-01
The present study deals with the preparation of polyurethane (PU) films impregnated with a nonsteroidal anti-inflammatory drug, tolfenamic acid (TA). Solvent evaporation technique has been employed for the preparation of TA-PU films in two different ratios of 1 : 2 and 1 : 5 in Tetrahydrofuran (THF) or THF-ethanol mixtures. The prepared films were characterized using X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and release studies. The results indicate transformation of crystalline TA to its amorphous form. The degree of crystallinity changes both by increasing the polymer concentration and solvent used for the film preparations. The release profiles of TA were also found to be affected, showing a decrease from approximately 50% to 25% from 1 : 2 to 1 : 5 ratios, respectively. PMID:24073394
Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.
Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong
2011-09-27
Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.
Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.
Law, S L; Newman, J H; Ptak, F L
1990-02-01
A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.
Yorsaeng, Sakkawet; Tsutsumi, Ken; Kitiyanan, Boonyarach; Nomura, Kotohiro
2015-10-14
Tungsten carbonyl dimers bridged with oligo(2,5-dialkoxy-1,4-phenylene vinylene)s through coordination with pyridine as the end groups, expressed as [W(CO)5]2-(nPV-Py2) [n = 1, 3; alkoxy = O(CH2)2OSi(i)Pr3], have been prepared from W(CO)5(THF) with nPV-Py2 in THF, and their structures were determined by X-ray crystallography. Both increase in absorbance and redshift in the λmax values in [W(CO)5]2-(nPV-Py2) from their nPV-Py2 were observed in the UV-vis spectra, due to increase in the conjugation length through tungsten by coordination of the pyridine moiety; an extension of the conjugation was also confirmed by the crystallographic analysis as well as fluorescence spectra.
NASA Astrophysics Data System (ADS)
Shekaari, Hemayat; Zafarani-Moattar, Mohammed Taghi
2008-04-01
Apparent molar volumes, V_φ , and compressibilities, kappa _φ , of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) have been determined from precise density and speed-of-sound measurements in organic solvents, methanol (MeOH), acetonitrile (MeCN), tetrahydrofuran (THF), N, N-dimethylacetamide (DMA), and dimethylsulfoxide (DMSO) in the dilute region of the ionic liquid. Corresponding values at infinite dilution are estimated by the Redlich-Mayer and Pitzer equations. The results have been interpreted by the interaction of the [BMIm][BF4] in the organic solvents. Results show that the structure and dielectric constant of the organic solvents play an important role for the ion-solvent interactions in these mixtures. It was found that the strength of interaction between [BMIm][BF4] with the studied organic solvents has the order DMSO > DMA > MeOH > MeCN > THF.
Das, Paramita; Ray, Samit Kumar
2014-03-15
Several blend membranes were prepared from different weight ratios of polyvinyl alcohol (PVA) and hydroxyethyl cellulose (HEC) and these unfilled membranes were crosslinked with maleic acid. In a similar way mixed matrix blend membranes were also prepared by varying weight ratio of PVA and HEC with micro and nano bentonite filler in each of these blends. These membranes were used for pervaporative dehydration of 89 wt% tetrahydrofuran (THF). Three membranes designated as UF (unfilled), MF2 (containing 2 wt% micro filler) and NF2 (containing 2 wt% nano filler) showing the best results for flux and selectivity were identified. These membranes were characterized by FTIR, UV, XRD and DTA-TG and used for separation of 80-99 wt% THF from water by pervaporation. The NF2 membrane was found to show the best results in terms of flux and separation factor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of solvents on the optical and morphological properties of MEH-PPV: PC70BM nanocomposites
NASA Astrophysics Data System (ADS)
Mhamdi, Asya; Ltaief, Adnen; Bouazizi, Abdelaziz
2017-10-01
Focused on phase separation and morphologies of polymer poly [2-methoxy-5-(2'-ethyl) hexoxy-1,4-phenylenevinylene] (MEH-PPV) and [6,6]-phenylC71-butyric acid methyl ester (PC70BM) nanocomposite, we studied the effect of organic solvent on the optical and morphological properties of these blends. The MEH-PPV: PC70BM films was prepared using three different solvent; Tetrahydrofuran (THF), Chlorobenzene (CB) and Toluene. On the other hand, the effect of 1-8 octanedithiol additives is also studied with the same different solvents. These blend films are characterized by photoluminescence spectroscopy, UV-Vis absorption spectroscopy and atomic force microscopy (AFM). The photoluminescence results show that the THF solvent provide the better charge transfer. In a morphological view point, the phase segregation was clearly appearing by the addition of the additive on the surface of the blend films.
Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi
2018-05-11
Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Could thermal sensitivity of mitochondria determine species distribution in a changing climate?
Iftikar, Fathima I; MacDonald, Julia R; Baker, Daniel W; Renshaw, Gillian M C; Hickey, Anthony J R
2014-07-01
For many aquatic species, the upper thermal limit (Tmax) and the heart failure temperature (THF) are only a few degrees away from the species' current environmental temperatures. While the mechanisms mediating temperature-induced heart failure (HF) remain unresolved, energy flow and/or oxygen supply disruptions to cardiac mitochondria may be impacted by heat stress. Recent work using a New Zealand wrasse (Notolabrus celidotus) found that ATP synthesis capacity of cardiac mitochondria collapses prior to T(HF). However, whether this effect is limited to one species from one thermal habitat remains unknown. The present study confirmed that cardiac mitochondrial dysfunction contributes to heat stress-induced HF in two additional wrasses that occupy cold temperate (Notolabrus fucicola) and tropical (Thalassoma lunare) habitats. With exposure to heat stress, T. lunare had the least scope to maintain heart function with increasing temperature. Heat-exposed fish of all species showed elevated plasma succinate, and the heart mitochondria from the cold temperate N. fucicola showed decreased phosphorylation efficiencies (depressed respiratory control ratio, RCR), cytochrome c oxidase (CCO) flux and electron transport system (ETS) flux. In situ assays conducted across a range of temperatures using naive tissues showed depressed complex II (CII) and CCO capacity, limited ETS reserve capacities and lowered efficiencies of pyruvate uptake in T. lunare and N. celidotus. Notably, alterations of mitochondrial function were detectable at saturating oxygen levels, indicating that cardiac mitochondrial insufficiency can occur prior to HF without oxygen limitation. Our data support the view that species distribution may be related to the thermal limits of mitochondrial stability and function, which will be important as oceans continue to warm. © 2014. Published by The Company of Biologists Ltd.
Templating Influence of Molecular Precursors on Pr(OH)3 Nanostructures.
Hemmer, Eva; Cavelius, Christian; Huch, Volker; Mathur, Sanjay
2015-07-06
Four new praseodymium alkoxo and amido compounds ([Pr3(μ3-OtBu)2(μ2-OtBu)3(OtBu)4(HOtBu)2] (1), [Pr{OC(tBu)3}3(THF)] (2), [PrCl{N(SiMe3)2}2(THF)]2 (3), and [PrCl{OC(tBu)3}2(THF)]2 (4)) were synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Application of these compounds in solvothermal synthesis of praseodymium oxide/hydroxide nanostructures showed their templating influence on the morphology and phase composition of the resulting solid-state materials. Differential reactivity of the chosen alkoxide ligands toward water and the different arrangements of metal-oxygen units in the studied precursor compounds strongly influenced the kinetics of hydrolysis and cross-condensation reactions as manifested in the morphological changes and phase composition of the final products. Thermal decomposition studies of 1-4 confirmed their conversion into the corresponding oxide phases. Activation of compounds 1, 2, and 4 by either a base or a stoichiometric amount of water showed the distinct influence of their chemical configuration on the obtained nanopowders: whereas 1 solely produced nanorods of Pr(OH)3, 2 predominantly formed a mixture of rod-shaped and spherical particles. The solvothermal decomposition of 4 resulted in Pr(OH)2Cl or PrOCl due to the presence of Cl ligands in the molecular precursor. The resultant materials were thoroughly characterized to demonstrate the relationship between precursor chemistry and the processing parameters that are clearly manifested in the morphology and phase of the final ceramics.
Sarazin, Yann; Howard, Ruth H; Hughes, David L; Humphrey, Simon M; Bochmann, Manfred
2006-01-14
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeste, Lesa R.; Chai, Geqing; Bielak, Magdalena
N{sup 10}-formyltetrahydrofolate synthetase (FTHFS) is a folate enzyme that catalyzes the formylation of tetrahydrofolate (THF) in an ATP dependent manner. Structures of FTHFS from the thermophilic homoacetogen, Moorella thermoacetica, complexed with (1) a catalytic intermediate-formylphosphate (XPO) and product-ADP; (2) with an inhibitory substrate analog-folate; (3) with XPO and an inhibitory THF analog, ZD9331, were used to analyze the enzyme mechanism. Nucleophilic attack of the formate ion on the gamma phosphate of ATP leads to the formation of XPO and the first product ADP. A channel that leads to the putative formate binding pocket allows for the binding of ATP andmore » formate in random order. Formate binding is due to interactions with the gamma-phosphate moiety of ATP and additionally to two hydrogen bonds from the backbone nitrogen of Ala276 and the side chain of Arg97. Upon ADP dissociation, XPO reorients and moves to the position previously occupied by the beta-phosphate of ATP. Conformational changes that occur due to the XPO presence apparently allow for the recruitment of the third substrate, THF, with its pterin moiety positioned between Phe384 and Trp412. This position overlaps with that of the bound nucleoside, which is consistent with a catalytic mechanism hypothesis that FTHFS works via a sequential ping-pong mechanism. More specifically, a random bi uni uni bi ping-pong ter ter mechanism is proposed. Additionally, the native structure originally reported at a 2.5 {angstrom} resolution was redetermined at a 2.2 {angstrom} resolution.« less
Chen, Hsuan-Ying; Liu, Mei-Yu; Sutar, Alekha Kumar; Lin, Chu-Chieh
2010-01-18
A series of heterobimetallic titanium(IV) complexes [LTi(O(i)Pr)(mu-O(i)Pr)(2)Li(THF)(2)], [LTi(O(i)Pr)(mu-O(i)Pr)(2)Na(THF)(2)], [LTi(mu-O(i)Pr)(2)Zn(O(i)Pr)(2)], and [LTi(mu-O(i)Pr)(2)Mg(O(i)Pr)(2)] (where L = bidentate bisphenol ligands) have been synthesized and characterized including a structural determination of [L(1)Ti(mu(2)-O(i)Pr)(2)(O(i)Pr)Li(THF)(2)] (1a). These complexes were investigated for their utility in the ring-opening polymerization (ROP) of l-lactide (LA). Polymerization activities have been shown to correlate with the electronic properties of the substituent within the bisphenol ligand. In contrast to monometallic titanium initiator 1e, all the heterobimetallic titanium initiators (Ti-Li, Ti-Na, Ti-Zn, and Ti-Mg) show enhanced catalytic activity toward ring-opening polymerization (ROP) of l-LA. In addition, the use of electron-donating methoxy or methylphenylsulfonyl functional ligands reveals the highest activity. The bisphenol bimetallic complexes give rise to controlled ring-opening polymerization, as shown by the linear relationship between the percentage conversion and the number-average molecular weight. The polymerization kinetics using 2c as an initiator were also studied, and the experimental results indicate that the reaction rate is first-order with respect to both monomer and catalyst concentration with a polymerization rate constant, k = 81.64 M(-1) min(-1).
NASA Astrophysics Data System (ADS)
Riyanto; Prawidha, A. D.
2018-01-01
Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com
Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGsmore » are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.« less
Influence of crystal habit on the compression and densification mechanism of ibuprofen
NASA Astrophysics Data System (ADS)
Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante
2002-08-01
Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.
Matuszewska, Alicja; Uchman, Mariusz; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Pispas, Stergios; Kováčik, Lubomír; Štěpánek, Miroslav
2015-12-14
Coassembly behavior of the double hydrophilic block copolymer poly(4-hydroxystyrene)-block-poly(ethylene oxide) (PHOS-PEO) with three amphiphilic phenylboronic acids (PBA) differing in hydrophobicity, 4-dodecyloxyphenylboronic acid (C12), 4-octyloxyphenylboronic acid (C8), and 4-isobutoxyphenylboronic acid (i-Bu) was studied in alkaline aqueous solutions and in mixtures of NaOHaq/THF by spin-echo (1)H NMR spectroscopy, dynamic and electrophoretic light scattering, and SAXS. The study reveals that only the coassembly of C12 with PHOS-PEO provides spherical nanoparticles with intermixed PHOS and PEO blocks, containing densely packed C12 micelles. NMR measurements have shown that spatial proximity of PHOS-PEO and C12 leads to the formation of ester bonds between -OH of PHOS block and hydroxyl groups of -B(OH)2. Due to the presence of PBA moieties, the release of compounds with 1,2- or 1,3-dihydroxy groups loaded in the coassembled PHOS-PEO/PBA nanoparticles by covalent binding to PBA can be triggered by addition of a surplus of glucose that bind to PBA competitively. The latter feature has been confirmed by fluorescence measurements using Alizarin Red as a model compound. Nanoparticles were proved to exhibit swelling in response to glucose as detected by light scattering.
NASA Astrophysics Data System (ADS)
Liu, Zongtang; Gu, Chenggang; Bian, Yongrong; Jiang, Xin; Sun, Yufeng; Fei, Zhenghao; Dai, Jingtao
2017-08-01
In this study, Fe/Ni bimetallic nanoparticles were supported on the attapulgite (A-Fe/Ni) to enhance the degradation reactivity of decabrominated diphenyl ether (BDE209) in aqueous solution. The Fe/Ni nanoparticles were well distributed on the attapulgite surface with an average diameter of 20-40 nm. The removal percentage of BDE209 by A-Fe/Ni was 1.59 times higher than Fe/Ni nanoparticles alone because attapulgite could act as supporting material to disperse Fe/Ni nanoparticles and prevent Fe/Ni nanoparticles from aggregation. The degradation kinetics for BDE209 debromination by A-Fe/Ni could be well described by a pseudo-first-order model, and the debromination rate constant of BDE209 increased with increasing the dosage of A-Fe/Ni, water/THF ratio, and decreasing the initial BDE209 concentration and solution pH. The degradation products were identified using a third-order polynomial regression equation between the experimental and reference gas chromatography relative retention times. Stepwise debromination from n-bromo-DE to (n - 1)-bromo-DE was a possible pathway with bromines being substituted sequentially by hydrogen. The preferred elimination of bromines of BDE209 by A-Fe/Ni followed the debromination preference of para-Br > meta-Br > ortho-Br. The results provide evidences for understanding the debromination mechanism of polybrominated diphenyl ether by clay-supported Fe/Ni nanoparticles.
High rectification in organic diodes based on liquid crystalline phthalocyanines.
Apostol, Petru; Eccher, Juliana; Dotto, Marta Elisa Rosso; Costa, Cassiano Batesttin; Cazati, Thiago; Hillard, Elizabeth A; Bock, Harald; Bechtold, Ivan H
2015-12-28
The optical and electrical properties of mesogenic metal-free and metalated phthalocyanines (PCs) with a moderately sized and regioregular alkyl periphery were investigated. In solution, the individualized molecules show fluorescence lifetimes of 4-6 ns in THF. When deposited as solid thin films the materials exhibit significantly shorter fluorescence lifetimes with bi-exponential decay (1.4-1.8 ns; 0.2-0.4 ns) that testify to the formation of aggregates viaπ-π intermolecular interactions. In diode structures, their pronounced columnar order outbalances the unfavorable planar alignment and leads to excellent rectification behavior. Field-dependent charge carrier mobilities are obtained from the J-V curves in the trap-limited space-charge-limited current regime and demonstrate that the metalated PCs display an improved electrical response with respect to the metal-free homologue. The excited-state lifetime characterization suggest that the π-π intermolecular interactions are stronger for the metal-free PC, confirming that the metallic centre plays an important role in the charge transport inside these materials.
Lu, Hua; Wang, Qiuhong; Li, Zhifang; Lai, Guoqiao; Jiang, Jianxiong; Shen, Zhen
2011-06-21
Pyrene derivative 1 containing four trimethylsilylethynyl substituents was synthesized and investigated as a chromogenic and fluorescent chemodosimeter sensor for fluoride ions. 1 showed a high sensitivity and specific selectivity over a rapid response time toward fluoride anions compared to other anions, such as Cl(-), Br(-), ClO(4)(-), H(2)PO(4)(-) and HPO(4)(2-). TD-DFT calculations showed that the delocalization of the σ-electrons of the silicon destabilized the HOMO energy level of 1, thus red shifting both its absorption and emission spectrum. The addition of F(-) removed the trimethylsilyl substituents and resulted in a blue shift of both the absorption and fluorescent spectra of 1, which could be monitored by the color change with the naked-eye. Moreover, an easy to prepare test paper, which was obtained by immersing a filter paper into a THF solution of 1, could be utilized to detect and estimate the concentration of fluoride anions in water.
Borelli, Mirko; Iasilli, Giuseppe; Minei, Pierpaolo; Pucci, Andrea
2017-08-06
Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1'-biphenyl)-4'-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY- co -JCBF)(m) compositions (m% = 0.10-1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl₃ and CH₂Cl₂. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors.
NASA Astrophysics Data System (ADS)
Salimimarand, Mina; La, Duong Duc; Kobaisi, Mohammad Al; Bhosale, Sheshanath V.
2017-02-01
The development of well-organized structures with high luminescent properties in the solid and aggregated states is of both scientific and technological interest due to their applications in nanotechnology. In this paper we described the synthesis of amphiphilic and dumbbell shaped AIE-active tetraphenylethylene (TPE) derivatives and studied their self-assembly with solvophobic control. Interestingly, both TPE derivatives form a 3D flower-shape supramolecular structure from THF/water solutions at varying water fractions. SEM microscopy was used to visualise step-wise growth of flower-shape assembly. TPE derivatives also show good mechanochromic properties which can be observed in the process of grinding, fuming and heating. These TPE derivative self-assemblies are formed due to two main important properties: (i) the TPE-core along with alkyl chains, optimizing the dispersive interactions within a construct, and (ii) amide-linkage through molecular recognition. We believe such arrangements prevent crystallization and favour the directional growth of flower-shape nanostructures in a 3D fashion.
Franke, Sebastian M; Rosenzweig, Michael W; Heinemann, Frank W; Meyer, Karsten
2015-01-01
We report the syntheses, electronic properties, and molecular structures of a series of mono- and dinuclear uranium(iv) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand ( Ad ArO) 3 N) 3- . The mononuclear complexes [(( Ad ArO) 3 N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(iii) starting material [(( Ad ArO) 3 N)U III (DME)] in DME via reduction of H 2 E and the elimination of 0.5 equivalents of H 2 . The dinuclear complexes [{(( Ad ArO) 3 N)U} 2 (μ-EH) 2 ] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, we created concentrated THF solutions that can be handled using simple glovebox techniques and can be stored at -35 °C for several weeks.
Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang
2018-06-05
Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.
Hartman, Brenda A.; Fazili, Zia; Pfeiffer, Christine M.; O’Connor, Deborah L.
2016-01-01
It is not known whether folate metabolism is altered during pregnancy to support increased DNA and RNA biosynthesis. By using a state-of-the-art LC tandem mass spectrometry technique, the aim of this study was to investigate differences in RBC folate forms between pregnant and nonpregnant women and between nonpregnant women consuming different concentrations of supplemental folic acid. Forms of folate in RBCs were used to explore potential shifts in folate metabolism during early erythropoiesis. Total RBC folate and folate forms [tetrahydrofolate; 5-methyltetrahydrofolate (5-methyl-THF); 4α-hydroxy-5-methyl-tetrahydrofolate (an oxidation product of 5-methyl-THF); 5-formyl-tetrahydrofolate; and 5,10-methenyl-tetrahydrofolate] were measured in 4 groups of women (n = 26): pregnant women (PW) (30–36 wk of gestation) consuming 1 mg/d of folic acid, and nonpregnant women consuming 0 mg/d (NPW-0), 1 mg/d (NPW-1), and 5 mg/d (NPW-5) folic acid. The mean ± SD RBC folate concentration of the NPW-0 group (890 ± 530 nmol/L) was lower than the NPW-1 (1660 ± 350 nmol/L) and NPW-5 (1980 ± 570 nmol/L) groups as assessed by microbiologic assay (n = 26, P < 0.0022). No difference was found between the NPW-1 and NPW-5 groups. We detected 5-methyl-THF [limit of detection (LOD) = 0.06 nmol/L] in all groups and tetrahydrofolate (LOD = 0.2 nmol/L) in most women regardless of methylenetetrahydrofolate reductase genotype. Most women consuming folic acid supplements had detectable concentrations of 5,10-methenyl-tetrahydrofolate (LOD = 0.31 nmol/L). However, there was no difference in the relative distribution of 5-methyl-THF (83–84%), sum of non-methyl folates (0.6–3%), or individual non-methyl folate forms in RBCs across groups. We conclude that although folic acid supplementation in nonpregnant women increases RBC total folate and the concentration of individual folate forms, it does not alter the relative distribution of folate forms. Similarly, distribution of RBC folate forms did not differ between pregnant and nonpregnant women. This trial was registered at clinicaltrials.gov as NCT01741077. PMID:24991041
Hartman, Brenda A; Fazili, Zia; Pfeiffer, Christine M; O'Connor, Deborah L
2014-09-01
It is not known whether folate metabolism is altered during pregnancy to support increased DNA and RNA biosynthesis. By using a state-of-the-art LC tandem mass spectrometry technique, the aim of this study was to investigate differences in RBC folate forms between pregnant and nonpregnant women and between nonpregnant women consuming different concentrations of supplemental folic acid. Forms of folate in RBCs were used to explore potential shifts in folate metabolism during early erythropoiesis. Total RBC folate and folate forms [tetrahydrofolate; 5-methyltetrahydrofolate (5-methyl-THF); 4α-hydroxy-5-methyl-tetrahydrofolate (an oxidation product of 5-methyl-THF); 5-formyl-tetrahydrofolate; and 5,10-methenyl-tetrahydrofolate] were measured in 4 groups of women (n = 26): pregnant women (PW) (30-36 wk of gestation) consuming 1 mg/d of folic acid, and nonpregnant women consuming 0 mg/d (NPW-0), 1 mg/d (NPW-1), and 5 mg/d (NPW-5) folic acid. The mean ± SD RBC folate concentration of the NPW-0 group (890 ± 530 nmol/L) was lower than the NPW-1 (1660 ± 350 nmol/L) and NPW-5 (1980 ± 570 nmol/L) groups as assessed by microbiologic assay (n = 26, P < 0.0022). No difference was found between the NPW-1 and NPW-5 groups. We detected 5-methyl-THF [limit of detection (LOD) = 0.06 nmol/L] in all groups and tetrahydrofolate (LOD = 0.2 nmol/L) in most women regardless of methylenetetrahydrofolate reductase genotype. Most women consuming folic acid supplements had detectable concentrations of 5,10-methenyl-tetrahydrofolate (LOD = 0.31 nmol/L). However, there was no difference in the relative distribution of 5-methyl-THF (83-84%), sum of non-methyl folates (0.6-3%), or individual non-methyl folate forms in RBCs across groups. We conclude that although folic acid supplementation in nonpregnant women increases RBC total folate and the concentration of individual folate forms, it does not alter the relative distribution of folate forms. Similarly, distribution of RBC folate forms did not differ between pregnant and nonpregnant women. This trial was registered at clinicaltrials.gov as NCT01741077. © 2014 American Society for Nutrition.
Harinath, Adimulam; Bhattacharjee, Jayeeta; Sarkar, Alok; Nayek, Hari Pada; Panda, Tarun K
2018-03-05
We report the preparation of alkali and alkaline earth (Ae) metal complexes supported by 2-picolylamino-diphenylphosphane chalcogenide [(Ph 2 P(=E)NHCH 2 (C 5 H 4 N)] [E = S (1-H); Se (2-H)] ligands. The treatment of the protic ligand, 1-H or 2-H, with alkali metal hexamethyldisilazides at room temperature afforded the corresponding alkali metal salts [M(THF) 2 (Ph 2 P(=E)NCH 2 (C 5 H 4 N)] [M = Li, E = S (3a), Se (3b)] and [{M(THF) n (Ph 2 P(=E)NCH 2 (C 5 H 4 N)} 2 ] [M = Na, E = S (4a), Se (4b); M = K, E = Se (5b)] in good yield. The homoleptic Ae metal complexes [κ 2 -(Ph 2 P(=Se)NCH 2 (C 5 H 4 N)Mg(THF)] (6b) and [κ 3 -{(Ph 2 P(=Se)NCH 2 (C 5 H 4 N)} 2 M(THF) n ] (M = Ca (7b), Sr (8b), Ba (9b)] were synthesized by the one-pot reaction of 2-H with [KN(SiMe 3 ) 2 ] and MI 2 in a 2:2:1 molar ratio at room temperature. The molecular structures of the protic-ligands 1-H and 2-H, as well as complexes 3a,b-5a,b and 6b-9b were established using single-crystal X-ray analysis. The Ae metal complexes 6b-9b were tested for ring-opening polymerization (ROP) of racemic lactide ( rac-LA) and copolymerization of rac-LA and ε-caprolactone (ε-CL) at room temperature. In the ROP of rac-LA, the calcium complex 7b exhibited high isoselectivity, with P i = 0.89, whereas both the barium and strontium complexes showed lower isoselectivity with P i = 0.78-0.62. In the copolymerization of rac-LA and ε-CL, both barium and strontium complexes proved to be efficient precatalysts for the formation of the block copolymer rac-LA-CL, but the reactivity of 9b was found to be better than that of 8b. All the polymers were fully characterized using differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography analyses. Kinetic studies on the ROP reaction of LA confirmed that the rate of polymerization followed the order Ba ≫ Sr ≈ Ca.
IRIS Toxicological Review of Tetrahydrofuran (THF) (Final Report)
EPA has released the Toxicological Review of Tetrahydrofuran: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.
Cheng, Shan; Qiu, Feng; Huang, Jia; He, Junqi
2007-03-01
RP-HPLC with UV photodiode array detection (UV-DAD) was developed and validated for the simultaneous determination of vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn (Crataegus pinnatifida Bge.) leaves. The analytes of interest were separated on a Diamonsil C18 column (250 x 4.6 mm id, 5 microm) with the mobile phase consisting of THF/ACN/methanol/ 0.05% phosphoric acid solution (pH 5.0) (18:1:1:80 v/vl/v). The flow rate was set at 1.0 mL/min and the eluent was detected at 340 nm for the four flavonoids. The method was linear over the studied range of 1.00-100 microg/mL for the four analytes of interest with the correlation coefficient for each analyte greater than 0.999. The LOD and LOQwere 0.03 and 0.10 microg/mL, 0.03 and 0.10 microg/mL, 0.05 and 0.15 pg/mL, 0.10 and 0.30 microg/mL for vitexin-2"-O-glucoside, vitexin-2"-0-rhamnoside, rutin, and hyperoside, respectively. The optimized method was successfully applied to the analysis of four important flavonoids in the extract of hawthorn leaves. The total amounts of the four flavonoids were 22.2, 62.3, 4.27, and 8.24 mg/g dry weight for vitexin-2"-O-glucoside, vitexin-2"-O-rhamnoside, rutin, and hyperoside in the extract of hawthorn leaves, respectively.
Fieser, Megan E.; Palumbo, Chad T.; La Pierre, Henry S.; Halter, Dominik P.; Voora, Vamsee K.; Ziller, Joseph W.
2017-01-01
A new series of Ln3+ and Ln2+ complexes has been synthesized using the tris(aryloxide)arene ligand system, ((Ad,MeArO)3mes)3–, recently used to isolate a complex of U2+. The triphenol precursor, (Ad,MeArOH)3mes, reacts with the Ln3+ amides, Ln(NR2)3 (R = SiMe3), to form a series of [((Ad,MeArO)3mes)Ln] complexes, 1-Ln. Crystallographic characterization was achieved for Ln = Nd, Gd, Dy, and Er. The complexes 1-Ln can be reduced with potassium graphite in the presence of 2.2.2-cryptand (crypt) to form highly absorbing solutions with properties consistent with Ln2+ complexes, [K(crypt)][((Ad,MeArO)3mes)Ln], 2-Ln. The synthesis of the Nd2+ complex [K(crypt)][((Ad,MeArO)3mes)Nd], 2-Nd, was unambiguously confirmed by X-ray crystallography. In the case of the other lanthanides, crystals were found to contain mixtures of 2-Ln co-crystallized with either a Ln3+ hydride complex, [K(crypt)][((Ad,MeArO)3mes)LnH], 3-Ln, for Ln = Gd, Dy, and Er, or a hydroxide complex, [K(crypt)][((Ad,MeArO)3mes)Ln(OH)], 4-Ln, for Ln = Dy. A Dy2+ complex with 18-crown-6 as the potassium chelator, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)Dy], 5-Dy, was isolated as a co-crystallized mixture with the Dy3+ hydride complex, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)DyH], 6-Dy. Structural comparisons of 1-Ln and 2-Ln are presented with respect to their uranium analogs and correlated with density functional theory calculations on their electronic structures. PMID:29163894
NASA Astrophysics Data System (ADS)
Cui, Honggang
2007-12-01
Amphiphilic block copolymers, consisting of at least two types of monomers with different affinity to the dissolving solvent(s), have been recognized as a molecular building unit for their chemical tunability and design flexibility. Amphiphilic block copolymers with a chargeable block have structural features of polyelectrolytes, block copolymers and surfactants. The combination of these different features offers great flexibility for developing novel assembled morphologies at the nanoscale and outstanding ability to control and manipulate those morphologies. The nanostructures, formed from the spontaneous association of amphiphilic block copolymer in selective solvents, show promise for applications in nanotechnology and pharmaceuticals, including drug delivery, tissue engineering and bio-imaging. A basic knowledge of their modes of self-assembly and their correspondence to application-related properties is just now being developed and poses a considerable scientific challenge. The goal of this dissertation is to investigate the associative behavior of charged, amphiphilic block copolymers in solvent mixtures while in the presence of organic counterions. Self-assembly of poly (acrylic acid)- block-poly (methyl acrylate)-block-polystyrene (PAA- b-PMA-b-PS) triblock copolymers produces nanodomains in THF/water solution specifically through the interaction with organic counterions (polyamines). These assembled structures can include classic micelles (spheres, cylinders and vesicles), but, more importantly, include non-classic micelles (disks, toroids, branched micelles and segmented micelles). Each micelle structure is stable and reproducible at different assembly conditions. The assembled micellar structures depend on not only solution components (thermodynamics) but also mixing procedure and consequent self-assembly pathway (kinetics). The key factors that determine the thermodynamic interactions that partially define the assembled structures and the kinetic assembly process include THF/water ratio, PS block length, the type and amount of organic counterions, and the mixing pathway. Their formation mechanism has been investigated from three aspects: (i) the chain structure of organic counterions, including spacer length, chain hydrophobicity between ionizable groups and the number of ionizable groups (amine group); (ii) molecular structure of the triblock copolymer, including block length of polystyrene and chain architecture; (iii) relative variation of the components, such as different ratios of THF to water and the different ratios of amine groups to acid groups. The first example of a novel micelle formed was the toroidal micelle. The toroidal micelle morphology, which is theoretically predicted but rarely observed, has been produced by the self assembly of PAA99- b-PMA73-b-PS66 in combination with 2,2-(ethylenedioxy)diethylamine (EDDA) and mixed THF/H2O solvent. It was found that toroids can be constructed by two mechanisms: elimination of energetically unfavored cylindrical micelle endcaps or perforation of disk-like micelles. Three-fold junctions were formed as intermediate structures to facilitate toroidal formation from cylindrical micelles. In order to construct toroids from cylindrical micelles, three requirements must be met: lower bending modulus (flexibility of cylinders), selfattraction between cylinders, and extra endcapping energy originating from chain packing frustration. Extremely high energy spheres can also fuse into toroids. Disk-like micelles can transform into a toroidal morphology when cylindrical packing geometry was initiated along the rims of disk-like micelles via solvent mixing that eventually perforated the disk center. The toroidal morphology can be kinetically trapped by either ridding the system of organic solvent or chemically crosslinking the PAA corona with EDDA via addition of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (DPEM). The interaction of positively-charged, multivalent organic amines with the negatively-charged PAA corona plays a decisive role in the formation of these micelles. Inter-chain binding from the interaction of the two amine end groups of diamines with acid groups from different PAA corona blocks governs the final assembled structures. Diamines with hydrophilic spacers induced the formation of micelles with larger interfacial curvature as the spacer length increased. Disk-like micelles, cylindrical micelles or spherical micelles were observed with the gradual increase of hydrophilic spacer length. Diamines with variable hydrophobic spacers showed a similar effect when the spacer length was less than six methylene units. Application of longer hydrophobic diamines had a reverse effect on the interfacial curvature. This effect was attributed to the interaction of hydrophobic diamine hydrocarbon linking chains with the PMA-b-PS hydrophobic core. These findings indicate an easy method to tune micelle structure with multivalent organic counterions. (Abstract shortened by UMI.)
'Pincer' dicarbene complexes of some early transition metals and uranium.
Pugh, David; Wright, Joseph A; Freeman, Sandra; Danopoulos, Andreas A
2006-02-14
The complexes [(C-N-C)MX(n)(thf)(m)] with the 'pincer' 2,6-bis(imidazolylidene)pyridine, (C-N-C) = 2,6-bis(arylimidazol-2-ylidene)pyridine, aryl = 2,6-Pr(i)2C6H3, M = V, X = Cl, n = 2, m = 1 1a; M = Cr, X = Cl, n = 2, m = 0, 2a, X = Br, 2b; M = Mn, X = Br, n = 2, m = 0, 3; M = Nb, X = Cl, n = 3, m = 0, 4; and M = U, X = Cl, n = 4, m = 0, 5, were synthesised by (a) substitution of labile tmed (1a), thf (2a, 3, 5) or dme (4) by free (C-N-C) or by (b) reaction of the bisimidazolium salt (CH-N-CH)Br2 with {Cr[N(SiMe3)2]2(thf)2} followed by amine elimination (2b). Attempted alkylation of 1a, 2, 3a and 4 with Grignard or alkyl lithiums gave intractable mixtures, and in one case [reaction of 1a with (mesityl)MgBr] resulted in exchange of Cl by Br (1b). Oxidation of 1a or [(C-N-C)VCl3] with 4-methylmorpholine N-oxide afforded the trans-V(C-N-C)(=O)Cl2, 6, which by reaction with AgBF4 in MeCN gave trans-[V(C-N-C)(=O)(MeCN)2][BF4]2, 7. Reaction of 1a with p-tolyl azide gave trans-V(C-N-C)(=N-p-tolyl)Cl2 8. The complex trans-Ti(C-N-C)(=NBu(t))Cl2, 9, was prepared by substitution of the pyridine ligands in Ti(NBu(t))Cl2(py)3 by C-N-C.
Klementyeva, Svetlana V; Gamer, Michael T; Schmidt, Anna-Corina; Meyer, Karsten; Konchenko, Sergey N; Roesky, Peter W
2014-10-13
The reaction of decamethylytterbocene [(η(5) -C5 Me5 )2 Yb(THF)2 ] with SO2 at low temperature gave two new compounds, namely, the Yb(III) dithionite/sulfinate complex [{(η(5) -C5 Me5 )2 Yb(μ3 ,1κ(2) O(1,3) ,2κ(3) O(2,2',4) -S2 O4 )}2 {(η(5) -C5 Me5 )Yb(μ,1κO,2κO'-C5 Me5 SO2 )}2 ] (1) and the Yb(III) dithionite complex [{(η(5) -C5 Me5 )2 Yb}2 (μ,1κ(2) O(1,3) ,2κ(2) O(2,4) -S2 O4 )] (2). After extraction of 1, the mixture was heated to give the dinuclear tetrasulfinate complex [{(η(5) -C5 Me5 )Yb}2 (μ,κO,κO'-C5 Me5 SO2 )4 ] (3 a). In contrast, from the reaction of [(η(5) -C5 Me5 )2 Eu(THF)2 ] with SO2 only the tetrasulfinate complex [{(η(5) -C5 Me5 )Eu}2 (μ,κO,κO'-C5 Me5 SO2 )4 ] (3 b) was isolated. Two major reaction pathways were observed: 1) reductive coupling of two SO2 molecules to form the dithionite anion S2 O4 (2-) ; and 2) nucleophilic attack of one metallocene C5 Me5 ligand on the sulfur atom of SO2 . The compounds presented are the first dithionite and sulfinate complexes of the f-elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arvizu-Flores, Aldo A.; Sugich-Miranda, Rocio; Arreola, Rodrigo; Garcia-Orozco, Karina D.; Velazquez-Contreras, Enrique F.; Montfort, William R.; Maley, Frank; Sotelo-Mundo, Rogerio R.
2008-01-01
Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH2THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen-bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The kcat of the K48Q mutant was 430 fold lower than wild-type TS in activity, while the the Km for the (R)-stereoisomer of CH2THF was 300 µM, about 30 fold larger than Km from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideaza folate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutamt, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH2THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group. PMID:18403248
Redox-Active vs Redox-Innocent: A Comparison of Uranium Complexes Containing Diamine Ligands.
Pattenaude, Scott A; Mullane, Kimberly C; Schelter, Eric J; Ferrier, Maryline G; Stein, Benjamin W; Bone, Sharon E; Lezama Pacheco, Juan S; Kozimor, Stosh A; Fanwick, Phillip E; Zeller, Matthias; Bart, Suzanne C
2018-05-11
Uranium complexes ( Mes DAE) 2 U(THF) (1-DAE) and Cp 2 U( Mes DAE) (2-DAE) ( Mes DAE = [ArN-CH 2 CH 2 -NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), bearing redox-innocent diamide ligands, have been synthesized and characterized for a full comparison with previously published, redox-active diimine complexes, ( Mes DAB Me ) 2 U(THF) (1-DAB) and Cp 2 U( Mes DAB Me ) (2-DAB) ( Mes DAB Me = [ArN═C(Me)C(Me)═NAr]; Ar = Mes). These redox-innocent analogues maintain an analogous steric environment to their redox-active ligand counterparts to facilitate a study aimed at determining the differing electronic behavior around the uranium center. Structural analysis by X-ray crystallography showed 1-DAE and 2-DAE have a structural environment very similar to 1-DAB and 2-DAB, respectively. The main difference occurs with coordination of the ene-backbone to the uranium center in the latter species. Electronic absorption spectroscopy reveals these new DAE complexes are nearly identical to each other. X-ray absorption spectroscopy suggests all four species contain +4 uranium ions. The data also indicates that there is an electronic difference between the bis(diamide)-THF uranium complexes as opposed to those that only contain one diamide and two cyclopentadienyl rings. Finally, magnetic measurements reveal that all complexes display temperature-dependent behavior consistent with uranium(IV) ions that do not include ligand radicals. Overall, this study determines that there is no significant bonding difference between the redox-innocent and redox-active ligand frameworks on uranium. Furthermore, there are no data to suggest covalent bonding character using the latter ligand framework on uranium, despite what is known for transition metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linehan, J.C.; Bean, R.M.; Franz, J.A.
1990-05-01
Leonardite, an oxidized lignite, and Illinois {number sign}6 coal were treated with Trametes versicolor and Penicillium sp., respectively, and separately with aqueous base to yield soluble and insoluble products. The products and starting materials were analyzed by gel permeation chromatography (GPC), using both aqueous and organic eluents, and by high-field, high-speed-pinning (>10.0 kHz) {sup 13}C cross polarization/magic angle spinning (CPMAS) nuclear magnetic resonance spectroscopy (NMR). The weight average molecular weights (M{sub w}) of the fungal-and base-solubilized products determined by GPC using acidic tetrahydrofuran (THF) eluent were found to be consistently lower than the M{sub w} determined using basic aqueous eluents.more » The M{sub w} of the leonardite product was measured to be 1800 and 6100 daltons using the THF and aqueous eluents, respectively. The aqueous eluent (phosphate buffered at pH 11.5) was found to be superior to the THF eluent in its solubilizing power, with 10% more material analyzed with the basic eluent. The solubility of the biotreated products in aqueous base was greater than either the starting coal or the chemically solubilized product. The Trametes-solubilized leonardite was found to contain a higher percentage of aliphatic carbon than the raw lignite; the Penicillium- solubilized Illinois {number sign}6 contained more aromatic carbon than before fungal treatment as determined by {sup 13}C CPMAS NMR. Pre-oxidation of Illinois {number sign}6 decreases the relative amount of aliphatic carbon. The high-field, high-speed-spinning CPMAS NMR technique was quantitatively evaluated using Argonne premium coals,International Humic Society Standards, and model compounds at various temperatures. 7 refs., 4 figs., 3 tabs.« less
A fundamental study on the [(μ-Cl)3Mg2(THF)6]+ dimer electrolytes for rechargeable Mg batteries†
Cox, Jonathan T.; Hu, Dehong; Deng, Xuchu; Hu, Jianzhi; Hu, Mary Y.; Xiao, Jie; Shao, Yuyan; Tang, Keqi; Liu, Jun
2016-01-01
The long sought solvated [MgCl]+ species in the Mg-dimer electrolytes was characterized by soft mass spectrometry. The presented study provides an insightful understanding on the electrolyte chemistry of rechargeable Mg batteries. PMID:25562393
Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage.
Shin, Kyuchul; Kim, Yongkwan; Strobel, Timothy A; Prasad, P S R; Sugahara, Takeshi; Lee, Huen; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2009-06-11
In this study, we demonstrate that tetra-n-butylammonium borohydride [(n-C(4)H(9))(4)NBH(4)] can be used to form a hybrid hydrogen storage material. Powder X-ray diffraction measurements verify the formation of tetra-n-butylammonium borohydride semiclathrate, while Raman spectroscopic and direct gas release measurements confirm the storage of molecular hydrogen within the vacant cavities. Subsequent to clathrate decomposition and the release of physically bound H(2), additional hydrogen was produced from the hybrid system via a hydrolysis reaction between the water host molecules and the incorporated BH(4)(-) anions. The additional hydrogen produced from the hydrolysis reaction resulted in a 170% increase in the gravimetric hydrogen storage capacity, or 27% greater storage than fully occupied THF + H(2) hydrate. The decomposition temperature of tetra-n-butylammonium borohydride semiclathrate was measured at 5.7 degrees C, which is higher than that for pure THF hydrate (4.4 degrees C). The present results reveal that the BH(4)(-) anion is capable of stabilizing tetraalkylammonium hydrates.
NASA Astrophysics Data System (ADS)
Araujo, M. T. De; Carneiro, J. W. De M.; Taranto, A. G.
The PCM/COSMO approach was employed to calculate the relative stability of radicals derived from the antimalarial artemisinin. The calculations were performed in polar (water) and apolar (THF) solvent at the density functional level [B3LYP/6-31g(d)]. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. Replacement of oxygen atoms by CH2 unities was found to decrease the relative stability of the anionic radical intermediates. The degree of destabilization is reduced in the presence of solvent, being less in water than in THF. The dipole moment and the corresponding solvation free energies of these species modulate this effect. Derivatives with inverted stereochemistry are more stable than those with the artemisinin-like stereochemistry, although the solvent attenuates this stabilization effect. As was found in the in vacuo calculations, the radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.
NASA Astrophysics Data System (ADS)
Kimura, Yosuke; Asano, Masaharu; Chen, Jinhua; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru
2008-07-01
The effect of grafting solvents, such as isopropanol (iPrOH), tetrachloroethane (TCE), tetrahydrofuran (THF), and toluene, on the preparation of poly(ethylene- co-tetrafluoroethylene)-graft-poly(styrene sulfonic acid) (ETFE-g-PSSA) electrolyte membranes by the γ-ray preirradiation grafting method was investigated. It was found that the iPrOH can drastically accelerate the grafting, resulting in a higher degree of grafting. However, for an appropriate degree of grafting of about 50%, the sulfonic acid groups in the ETFE-g-PSSA membrane prepared with the iPrOH were mainly distributed near the membrane surface, as shown by low proton conductivity in the membrane thickness direction. In contrast to this result, the ETFE-g-PSSA membranes prepared with the THF, toluene and TCE exhibited uniform distribution of the sulfonic acid groups in the membrane. Especially, in the case of the TCE grafting solvent, the chemical stability of the resultant electrolyte membrane was clearly higher than those prepared with the other grafting solvents.
Chen, Zhi-Gang; Zhang, Dan-Ni; Cao, Lin; Han, Yong-Bin
2013-04-01
A total of nine lipases and three proteases were tested for enzymatic regioselective acylation(s) of cordycepin with vinyl acetate in organic media. The highest conversion with better initial reaction rate was achieved with immobilized Candida antarctica lipase B (Novozym 435). An eco-friendly solvent 2-methyltetrahydrofuran (MeTHF) was thought to be the most suitable reaction medium. Novozym 435 was found to be a useful biocatalyst for the 25-g scale syntheses of cordycepin acetate (96.2% isolated yield), and the biocatalyst displayed excellent regioselectivity and high operational stability during the transformation. The 5'-substituted cordycepin derivative was the sole detectable product from each acylation reaction. Novozym 435 could be recycled for the synthesis of cordycepin derivative on a 25-g scale and 63% of its original activity was maintained after being reused for 7 batches. MeTHF could be considered as an eco-friendly solvent for the large scale use in biotransformation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebrahimpoor, Sonia; Khoshnood, Razieh Sanavi; Beyramabadi, S. Ali
2016-12-01
Complexation of the Cd2+ ion with N, N'-dipyridoxylidene(1,4-butanediamine) Schiff base was studied in pure solvents including acetonitrile (AN), ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), dimethylformamide (DMF), water (H2O), and various binary solvent mixtures of acetonitrile-ethanol (AN-EtOH), acetonitrile-methanol (AN-MeOH), acetonitrile-tetrahydrofuran (AN-THF), acetonitrile-dimethylformamide (AN-DMF), and acetonitrile-water (AN-H2O) systems at different temperatures using the conductometric method. The conductance data show that the stoichiometry of complex is 1: 1 [ML] in all solvent systems. A non-linear behavior was observed for changes of log K f of [Cd( N, N'-dipyridoxylidene(1,4-butanediamine)] complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions. The results show that the thermodynamics of complexation reaction is affected by the nature and composition of the mixed solvents.
Deschner, Thomas; Klimpel, Michael; Tafipolsky, Maxim; Scherer, Wolfgang; Törnroos, Karl W; Anwander, Reiner
2012-06-28
Magnesium silylamide complexes Mg[N(SiHMe(2))(2)](2)(THF)(2) and Mg[N(SiPhMe(2))(2)](2) were synthesized according to transsilylamination and alkane elimination protocols, respectively, utilizing Mg[N(SiMe(3))(2)](2)(THF)(2) and [Mg(n-Bu)](2) as precursors. Cage-like periodic mesoporous silica SBA-1 was treated with donor solvent-free dimeric [Mg{N(SiHMe(2))(2)}(2)](2), [Mg{N(SiMe(3))(2)}(2)](2) and monomeric Mg[N(SiPhMe(2))(2)](2), producing hybrid materials [Mg(NR(2))(2)]@SBA-1 with magnesium located mainly at the external surface. Consecutive grafting of [Mg{N(SiHMe(2))(2)}(2)](2) and [Fe(II){N(SiHMe(2))(2)}(2)](2) onto SBA-1 led to heterobimetallic hybrid materials which exhibit complete consumption of the isolated surface silanol groups, evidencing intra-cage surface functionalization. All materials were characterized by DRIFT spectroscopy, nitrogen physisorption and elemental analysis.
Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik
2015-09-01
A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.
Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less
Lerner, H-W; Bolte, M; Wagner, M
2017-07-11
The thermo-labile triazenide Na[tBu 3 SiNNNSiMe 3 ] was prepared by the reaction of Me 3 SiN 3 with Na(thf) 2 [SitBu 3 ] in pentane at -78 °C. Treatment of Na[tBu 3 SiNNNSiMe 3 ] with an excess of carbon dioxide in pentane at -78 °C yielded the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and the carbamine acid (tBu 3 SiO)CONH 2 along with other products. From the reaction solution we could isolate the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 and carbamine acid (tBu 3 SiO)CONH 2 . At first single crystals of the carbamine acid (tBu 3 SiO)CONH 2 (triclinic, space group P1[combining macron]) were grown from this solution at room temperature. A second crop of crystals were obtained by concentrating the solution. The second charge consisted of the imido carbonate (tBu 3 SiO)(Me 3 SiO)C[double bond, length as m-dash]N-SitBu 3 (monoclinic, space group P2 1 /n).
NASA Astrophysics Data System (ADS)
Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu
2016-07-01
The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.
DeGayner, Jordan A.; Jeon, Ie-Rang
2015-01-01
The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N,N′,N′′,N′′′-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone (NMePhLH2) was metalated to give the series of dinuclear complexes [(TPyA)2M2(NMePhL2–)]2+ (TPyA = tris(2-pyridylmethyl)amine, M = MnII, FeII, CoII). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = –1.64(1) and –2.16(2) cm–1 for M = MnII and FeII, respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA)2M2(NMePhL3–˙)]+. Following a slightly different synthetic procedure, the related complex [(TPyA)2CrIII2(NMePhL3–˙)]3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePhL3–˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = –626(7), –157(7), –307(9), and –396(16) cm–1 for M = CrIII, MnII, FeII, and CoII, respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M–L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA)2Fe2(NMePhL3–˙)]+ behaves as a single-molecule magnet with a relaxation barrier of Ueff = 52(1) cm–1. These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal–radical coupling trends across a transmetallic series of complexes. PMID:29435213
IRIS Toxicological Review of Tetrahydrofuran (THF) (Interagency Science Discussion Draft)
EPA is releasing the draft report, Toxicological Review of Tetrahydrofuran, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Proc...
Yang, Jingying; Xie, Zuowei
2015-04-14
Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.
Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework
Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; ...
2015-10-27
Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C 6 H 4 CH 2 ) 3 N] 3- (TriNO x 3- ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNO x )thf][BAr F 4 ], in which Ar F =3,5-(CF 3 ) 2 -C 6 H 3 , and [Ce(TriNO x )py][OTf] . A rare complete Ce-halide series, Ce(TriNO x )X, in which X=F - , Clmore » - , Br - , I - , was also synthesized. We explored the solution chemistry of these complexes through detailed solution-phase electrochemistry and 1 H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X - group. DFT calculations on the series of calculations corroborated the experimental findings. Also, the use of a bulky and strongly donating tethered tripodal nitroxide ligand allowed the controlled redox chemistry at cerium. As a result, rare examples of cationic Ce IV complexes were synthesized and fully characterized. The full Ce-halide series supported by the tripodal ligand framework is also reported (see scheme).« less
Zheng, Ming; Chen, Fang-Yuan; Tian, Jia-Nan; Pan, Qing-Jiang
2018-04-02
To provide deep insight into cation-cation interactions (CCIs) involving hexavalent actinyl species that are major components in spent nuclear fuel and pose important implications for the effective removal of radiotoxic pollutants in the environment, a series of homo- and heterobimetallic actinide complexes supported by cyclopentadienyl (Cp) and polypyrrolic macrocycle (H 4 L) ligands were systematically investigated using relativistic density functional theory. The metal sort in both parts of (THF)(H 2 L)(OAn VI O) and (An') III Cp 3 from U to Np to Pu, as well as the substituent bonding to Cp from electron-donating Me to H to electron-withdrawing Cl, SiH 3 , and SiMe 3 , was changed. Over 0.70 electrons are unraveled to transfer from the electron-rich U III to the electron-deficient An VI of the actinyl moiety, leading to a more stable An V -U IV isomer; in contrast, uranylneptunium and uranylplutonium complexes behave as electron-resonance structures between VI-III and V-IV. These were further corroborated by geometrical and electronic structures. The energies of CCIs (i.e., O exo -An' bonds) were calculated to be -19.6 to -41.2 kcal/mol, affording those of OUO-Np (-23.9 kcal/mol) and OUO-Pu (-19.6 kcal/mol) with less electron transfer (ET) right at the low limit. Topological analyses of the electron density at the O exo -An' bond critical points demonstrate that the CCIs are ET or dative bonds in nature. A positive correlation has been built between the CCIs' strength and corresponding ET amount. It is concluded that the CCIs of O exo -An' are driven by the electrostatic attraction between the actinyl oxo atom (negative) and the actinide ion (positive) and enhanced by their ET. Finally, experimental syntheses of (THF)(H 2 L)(OU VI O)(An') III Cp 3 (An' = U and Np) were well reproduced by thermodynamic calculations that yielded negative free energies in a tetrahydrofuran solution but a positive one for their uranylplutonium analogue, which was synthetically inaccessible. So, our thermodynamics would provide implications for the synthetic possibility of other theoretically designed bimetallic actinide complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, D.E.; Jordan, R.F.; Rogers, R.D.
1995-08-01
The amine elimination reaction of C{sub 2}B{sub 9}H{sub 13} and Zr(NEt{sub 2}){sub 4} yields the mono-dicarbollide complex ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(NHEt{sub 2}), (1), which has been shown to adopt a three-legged piano stool structure by X-ray crystallography. Crystal data for 1: space group P2{sub 1}/c, a = 10.704(4) A, b = 11.066(3) A, c = 20.382(8) A, {beta} = 99.20(3){degree}, V = 2383(1) A{sup 3}, Z = 4. Complex 1 undergoes facile ligand substitution by THF and 4-picoline, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}-(THF) (2) and ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline){sub 2} (3).more » Compound 3 exists as the four-coordinate species ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline) in CH{sub 2}Cl{sub 2} solution. Complex 1 reacts selectively with 2 equiv of [NH{sub 2}ET{sub 2}]Cl, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})ZrCl{sub 2}(NHEt{sub 2}){sub 2} (4). Similarly, the reaction of C{sub 2}B{sub 9}H{sub 13} and Ti(NR{sub 2}){sub 4} yields ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Ti(NR{sub 2}){sub 2}(NHR{sub 2}) (5, R = Me; 6, R = Et). Compounds 1-6 are potential precursors to group 4 metal ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})MR{sub 2}L{sub n} alkyl species. 25 refs., 3 figs., 3 tabs.« less
Fang, Ming; Farnaby, Joy H; Ziller, Joseph W; Bates, Jefferson E; Furche, Filipp; Evans, William J
2012-04-11
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a. © 2012 American Chemical Society
2003-09-01
transition temperature TBT tributyltin THF tetrahydrofuran TPE thermoplastic elastomer 4 EXECUTIVE SUMMARY The goal of this research is to...compounds that are environmentally persistant cause damage to the ecosystem, and enter the food chain. The ban on tributyltin ( TBT ) antifoulants by the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Lucas R.; Robinson, David B.; Cappillino, Patrick J.
2014-02-11
The prevalent approach to developing new nanomaterials is a trial and error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during synthesis can only be inferred from the final synthetic structure. Directly observing real-time nanomaterial growth provides unprecedented insight into the relationship between synthesis conditions and product evolution, and facilitates a mechanistic approach to nanomaterial development. Here we use in situ liquid stage scanning transmission electron microscopy to observe the growth of mesoporous palladium in a solvated block copolymer (BCP) template under various synthesis conditions,more » and ultimately determine a refined synthesis procedure that yields ordered pores. We find that at low organic solvent (tetrahydrofuran, THF) content, the BCP assembles into a rigid, cylindrical micelle array with a high degree of short-range order, but poor long-range order. Upon slowing the THF evaporation rate using a solvent-vapor anneal step, the long-range order is greatly improved. The electron beam induces nucleation of small particles in the aqueous phase around the micelles. The small particles then flocculate and grow into denser structures that surround the micelles, forming an ordered mesoporous structure. The microscope observations revealed that template disorder can be addressed prior to reaction, and is not invariably induced by the growth process itself, allowing us to more quickly optimize the synthetic method. This work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. This research was funded in part by: the Presidential Early Career Award for Scientist and Engineers for I.A., the University of California Academic Senate and the University of California Laboratory fee research grant, the Laboratory-Directed Research and Development program at Sandia National Laboratories, and the Chemical Imaging Initiative at Pacific Northwest National Laboratory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.« less
‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis
Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.
2010-01-01
The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205
Hernan-Gomez, Alberto; Orr, Samantha; Uzelac, Marina; Kennedy, Alan; Barroso, Santiago; Jusseau, Xavier; Lemaire, Sebastien; Farina, Vittorio; Hevia, Eva
2018-06-01
Pairing a range of bis(aryl) zinc reagents ZnAr2 with the stronger Lewis acidic [(ZnArF2)] (ArF = C6F5), enables highly stereoselective cross-coupling between glycosyl bromides and ZnAr2 without the use of a transition metal. Reactions occur at room temperature with excellent levels of stereoselectivity, where ZnArF2 acts as a non-coupling partner although its presence is crucial for the execution of the C(sp2)-C(sp3) bond formation process. Mechanistic studies have uncovered a unique synergistic partnership between the two zinc reagents, which circumvents the need for transition-metal catalysis or forcing reaction conditions. Key to the success of the coupling is the avoidance of solvents that act as Lewis bases vs. diarylzinc compounds (e.g. THF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Galdámez, J Román; Danner, Ronald P; Duda, J Larry
2007-07-20
The application of a mass spectrometer detector in capillary column inverse gas chromatography is shown to be a valuable tool in the measurement of diffusion and solubility in polymer-solvent systems. The component specific detector provides excellent results for binary polymer-solvent systems, but it is particularly valuable because it can be readily applied to multicomponent systems. Results for a number of infinitely dilute solvents in poly(vinyl acetate) (PVAc) are reported over a range of temperature from 60 to 150 degrees C. Results are also reported for finite concentrations of toluene and methanol in PVAc from 60 to 110 degrees C. Finally, the technique was applied to study the effect of finite concentrations of toluene on the diffusion coefficients of THF and cyclohexane in PVAc. The experimental data compare well with literature values for both infinite and finite concentrations, indicating that the experimental protocol described in this work is sound.
Effect of molecular conformation on the mechanofluorochromic properties based on DDIF
NASA Astrophysics Data System (ADS)
Mai, Runsheng; Peng, Huojun; Meng, Yuying; Chang, Xinyue; Jiang, Yue; Gao, Jinwei; Zhou, Guofu; Liu, Jun-ming
2017-07-01
Mechanofluorochromic (MFC) materials are smart materials in that their absorption and/or emission can respond to mechanical stimuli. They have received much attention recently. Although there have been several new material systems designed, little work has been done regarding the influence of molecular conformation on MFC properties. Herein, to disclose the relationship between molecular conformation and MFC properties, two molecules based on a 6, 12-Dihydro-6, 12-diaza-indeno[1,2-b]fluorine (DDIF) building block with thienyl linker, BDDIF-Th and BDDIF-BTh, have been designed and synthesized. Optical and electrochemical properties have been studied by UV-vis spectrometer and cyclic voltammetry measurements. Weak aggregation-induced emission (AIE) phenomena were obtained in the tetrahydrofuran (THF)/water solution. MFC behaviors suggest that BDDIF-Th is more sensible to the external mechanical forces than BDDIF-BTh. The color change could be attributed to the appearance of new emission peak instead of a bathochromic or hypsochromic effect. Theoretical calculations reveal that MFC performance is highly related to the molecular conformation, meaning that the BDDIF-BTh with perpendicular conformation is more difficult to flatten than the comparatively planar BDDIF-Th.
Electrochemical studies on niobium triselenide cathode material for lithium rechargeable cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratnakumar, B.V.; Ni, C.L.; DiStefano, S.
1989-01-01
Niobium triselenide offers promise as a high energy density cathode material for ambient temperature lithium rechargeable cells. The electrochemical behavior of NbSe/sub 3/ in the battery electrolyte, i.e., 1.5m LiAsF/sub 6//2 Me-THF is reported here. A detailed study has been carried out using various ac and dc electrochemical techniques to establish the mechanism of intercalation of three equivalents of Li with NbSe/sub 3/ as well as the rate governing processes in the reduction of NbSe/sub 3/. Based on the experimental data, an equivalent circuit has been formulated to represent the NbSe/sub 3/-solution interface. The kinetic parameters for the reduction ofmore » NbSe/sub 3/ were evaluated from the ac and dc measurements. Finally, the structural change in NbSe/sub 3/ on lithiation during initial discharge which results in higher cell voltages and different electrochemical response as compared to virgin NbSe/sub 3/ was identified to be a loss of crystallographic order, i.e., amorphous by x-ray diffraction.« less
Development of ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Subbarao, S.; Shen, D. H.; Dawson, S.; Deligiannis, F.; Taraszkiewicz, J.; Halpert, G.
1988-01-01
JPL is developing ambient temperature secondary lithium cells for future spacecraft applications. Prior studies on experimental laboratory type Li-TiS2 cells yielded promising results in terms of cycle life and rate capability. To further assess the performance of this cell, 5 Ah engineering model cells were developed. Initially baseline cells were designed and fabricated. Each cell had 15 cathodes and 16 anodes and the ratio of anode to cathode capacity is 6:1. A solution of 1.5 molar LiAsF6 in 2Me-THF was used as the electrolyte. Cells were evaluated for their cycle life at C/1 and C/5 discharge rates and 100 percent depth of discharge. The cells were cycled between voltage limits 1.7 and 2.8 volts. The rate of charge in all cases is C/10. The results obtained indicate that cells can operate at C/10 to C/2 discharge rates and have an initial energy density of 70 Wh/kg. Cells delivered more than 100 cycles at C/2 discharge rate. The details of cell design, the test program, and the results obtained are described.
Development of ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Subbarao, S.; Shen, D. H.; Dawson, S.; Deligiannis, F.; Taraszkiewicz, J.; Halpert, Gerald
1987-01-01
JPL is developing ambient temperature secondary lithium cells for future spacecraft applications. Prior studies on experimental laboratory type Li-TiS2 cells yielded promising results in terms of cycle life and rate capability. To further assess the performance of this cell, 5 Ah engineering model cells were developed. Initially baseline cells were designed and fabricated. Each cell had 15 cathodes and 16 anodes and the ratio of anode to cathode capacity is 6:1. A solution of 1.5 molar LiAsF6 in 2Me-THF was used as the electrolyte. Cells were evaluated for their cycle life at C/1 and C/5 discharge rates and 100 percent depth of discharge. The cells were cycled between voltage limits 1.7 and 2.8 volts. The rate of charge in all cases is C/10. The results obtained indicate that cells can operate at C/10 to C/2 discharge rates and have an initial energy density of 70 Wh/kg. Cells delivered more than 100 cycles at C/2 discharge rate. The details of cell design, the test program, and the results obtained are described.
Vedejs, E; Kongkittingam, C
2000-04-21
N-Benzothiazole-2-sulfonyl (Bts)-protected amino acid chlorides were used to prepare the hindered cyclosporin 8-11 tetrapeptide subunit 1. The synthesis was performed via 3a and the deprotected amines 5a, 13, and 19, including three repeated cycles involving N-methylation using iodomethane/potassium carbonate, deprotection of the Bts group, and N-acylation with a N-Bts-amino acid chloride such as 9b or 9c. Among three Bts cleavage methods compared (H3PO2/THF; NaBH4/EtOH; PhSH/K2CO3), the third gave somewhat higher overall yields. N-Acylation of 5a with the Bts-protected N-methylamino acid chloride 10b followed by deprotection was also highly efficient and could be used as an alternative route to 11. Each of the deprotected amines was isolated without chromatography using simple extraction methods to remove neutral byproducts. The tetrapeptide 1 was obtained in analytically pure form as the monohydrate.
Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.
Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R
2013-09-05
Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.
Synthesis and Characterization of Cerium(IV) Metallocenes
Sutton, Andrew; Clark, David Lewis; Scott, Brian Lindley; ...
2015-12-11
In this study, by applying a salt metathesis approach between Ce(OtBu 3) 2(NO 3) 2(THF) 2 and the potassium salts of mono- and ditrimethylsilyl substituted cyclopentadienes, we were able to isolate two new Ce(IV) metallocenes, including to the best of our knowledge, the first structurally characterized bis-cyclopentadiene Ce(IV) compound.
Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents.
Kuzmina, Olesya M; Steib, Andreas K; Flubacher, Dietmar; Knochel, Paul
2012-09-21
A simple, practical iron salt catalyzed procedure allows fast cross-couplings of N-heterocyclic chlorides and bromides with various electron-rich and -poor arylmagnesium reagents. A solvent mixture of THF and tBuOMe is found to be essential for achieving high yields mainly by avoiding homocoupling side reactions.
ERIC Educational Resources Information Center
Crouch, R. David; Holden, Michael S.; Romany, Candice A.
2004-01-01
The use of KOH and a phase transfer catalyst to achieve diastereoselective Darzens condensation is described and a modification of the method for use in organic chemistry is carried out. The experiment involves the condensation of t-butyl chloroacentate and p-tolualdehyde with KOH and benzyltriethylammonium chloride in THF.
Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange
ERIC Educational Resources Information Center
Snider, Barry B.
2015-01-01
In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0°C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of…
2018-01-01
Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite–gelatin with a silane cross-linker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite–gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite–gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite–gelatin composite is a promising material for BTE application. PMID:29623305
Heterobimetallic Ti/Co Complexes That Promote Catalytic N-N Bond Cleavage.
Wu, Bing; Gramigna, Kathryn M; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2015-11-16
Treatment of the tris(phosphinoamide) titanium precursor ClTi(XylNP(i)Pr2)3 (1) with CoI2 leads to the heterobimetallic complex (η(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2(μ-Cl)CoI (2). One-electron reduction of 2 affords (η(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2CoI (3), which can be reduced by another electron under dinitrogen to generate the reduced diamagnetic complex (THF)Ti(XylNP(i)Pr2)3CoN2 (4). The removal of the dinitrogen ligand from 4 under vacuum affords (THF)Ti(XylNP(i)Pr2)3Co (5), which features a Ti-Co triple bond. Treatment of 4 with hydrazine or methyl hydrazine results in N-N bond cleavage and affords the new diamagnetic complexes (L)Ti(XylNP(i)Pr2)3CoN2 (L = NH3 (6), MeNH2 (7)). Complexes 4, 5, and 6 have been shown to catalyze the disproportionation of hydrazine into ammonia and dinitrogen gas through a mechanism involving a diazene intermediate.
Deprotonation of a Seemingly Hydridic Diborane(6) To Build a B-B Bond.
Kaese, Thomas; Budy, Hendrik; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias
2017-06-19
Deprotonation of the doubly arylene-bridged diborane(6) derivative 1H 2 with (Me 3 Si) 3 CLi or (Me 3 Si) 2 NK gives the B-B σ-bonded species M[1H] in essentially quantitative yields (THF, room temperature; M=Li, K, arylene=4,4'-di-tert-butyl-2,2'-biphenylylene). With nBuLi as the base, the yield of Li[1H] drops to 20 % and the 1,1-bis(9-borafluorenyl)butane Li[2H] is formed as a side product (30 %). In addition to the 1,1-butanediyl fragment, the two boron atoms of Li[2H] are linked by a μ-H bridge. In the closely related molecule Li[3H], the corresponding μ-H atom can be abstracted with (Me 3 Si) 3 CLi to afford the B-B-bonded conjugated base Li 2 [3] (THF, 150 °C; 15 %). Li[1H] and Li[2H] were characterized by NMR spectroscopy and X-ray crystallography. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Panteleev, S. V.; Maslennikov, S. V.; Ignatov, S. K.; Spirina, I. V.; Kruglova, M. V.; Gribkov, B. A.; Vdovichev, S. N.
2013-04-01
The evolution of compact surface of the 100 nm copper film deposited on the glass-ceramics doped with vanadium coating in the course of the oxidation by the CCl4-L (L = dimethylformamide (DMF), tetrahydrofuran (THF), dimethylsulfoxide (DMSO), CCl4 concentration ≈ 1 mol/L) was studied by atomic force microscopy (AFM) in contact mode. The dynamics of active centers formation and destruction was investigated in the course of the oxidation process. The metallic sample dissolution rate was estimated as a function of the coordinating solvent nature. The development of the metal surface oxidation was established to lead to a significant increase of surface roughness. This phenomenon can be explained by the fact that different parts of the surface react at different rates. Further course of the reaction leads to a significant decrease of the surface roughness of copper films. The amount of the metal reacted has an almost linear dependence on the reaction time. AFM scans indicate that there is the same mechanism of the reaction between copper and carbon tetrachloride for all solvents.
Ancillary Ligand Effects upon the Photochemistry of Mn(bpy)(CO)3X Complexes (X = Br-, PhCC-).
Yempally, Veeranna; Moncho, Salvador; Hasanayn, Faraj; Fan, Wai Yip; Brothers, Edward N; Bengali, Ashfaq A
2017-09-18
The photochemistry of two Mn(bpy)(CO) 3 X complexes (X = PhCC - , Br - ) has been studied in the coordinating solvents THF (terahydrofuran) and MeCN (acetonitrile) employing time-resolved infrared spectroscopy. The two complexes are found to exhibit strikingly different photoreactivities and solvent dependencies. In MeCN, photolysis of 1-(CO)(Br) [1 = Mn(bpy)(CO) 2 ] affords the ionic complex [1-(MeCN) 2 ]Br as a final product. In contrast, photolysis of 1-(CO)(CCPh) in MeCN results in facial to meridional isomerization of the parent complex. When THF is used as solvent, photolysis results in facial to meridional isomerization in both complexes, though the isomerization rate is larger for X = Br - . Pronounced differences are also observed in the photosubstitution chemistry of the two complexes where both the rate of MeCN exchange from 1-(MeCN)(X) by THFA (tetrahydrofurfurylamine) and the nature of the intermediates generated in the reaction are dependent upon X. DFT calculations are used to support analysis of some of the experiments.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Suganya, Tamilarasan; Kasirajan, Ramachandran; Renganathan, Sahadevan
2014-03-01
In situ transesterification of Enteromorpha compressa algal biomass was carried out for the production of biodiesel. The maximum methyl esters (ME) yield of 98.89% was obtained using ultrasonic irradiation. Tetra hydro furan (THF) and acid catalyst (H2SO4) was found to be an appropriate co-solvent and catalyst for high free fatty acids (FFA) content E. compressa biomass to increase the efficiency of the reactive in situ process. The optimization study was conducted to obtain the maximum yield and it was determined as 30vol% of THF as a co-solvent, 10wt% of H2SO4, 5.5:1 ratio of methanol to algal biomass and 600rpm of mixing intensity at 65°C for 90min of ultrasonic irradiation time. The produced biodiesel was characterized by (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) analysis. Kinetic studies revealed that the reaction followed the first-order reaction mechanism. Rapid in situ transesterification was found to be suitable technique to produce biodiesel from marine macroalgae feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12
Ragsdale, Stephen W.
2011-01-01
This review focuses on the reaction mechanism of enzymes that use B12 and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B12 and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B12-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B12 macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B12 is generated and maintained. PMID:18804699
Tahir, Muhammad Nazir; Cho, Eunae; Mischnick, Petra; Lee, Jae Yung; Yu, Jae-Hyuk; Jung, Seunho
2014-04-01
In this study, serine protease (subtilisin Carlsberg) was immobilized on pentynyl dextran (PyD, O-alkynyl ether of dextran, 1) and used for the transesterification of N-acetyl-L-phenylalanine ethyl ester (2) with different aliphatic (1-propanol, 1-butanol, 1-pentanol, 1-hexanol) and aromatic (benzyl alcohol, 2-phenyl ethanol, 4-phenyl-1-butanol) alcohols in tetrahydrofuran (THF). The effect of carbon chain length in aliphatic and aromatic alcohols on initial and average transesterification rate, transesterification activity of immobilized enzyme and yield of the reaction under selected reaction conditions was investigated. The transesterification reactivity of the enzyme and yield of the reaction increased as the chain length of the alcohols decreased. Furthermore, almost no change in yield was observed when the immobilized enzyme was repeatedly used for selected alcohols over six cycles. Intrinsic fluorescence analysis showed that the catalytic activity of the immobilized enzyme in THF was maintained due to retention of the tertiary structure of the enzyme after immobilization on PyD (1).
Synthesis and characterization of new 19-vertex macropolyhedral boron hydrides.
Dopke, J A; Powell, D R; Gaines, D F
2000-02-07
The new boron hydride anions 10-R-B19H19- (R = H, Thx) were synthesized by the reaction of M2[B18H20] (M = Na, K) with HBRCl.SMe2 (R = H, Thx) or HBCl2.SMe2 in diethyl ether. The anions are comprised of edge-sharing, nido 10- and 11-vertex cluster fragments, and are characterized by their 11B, 11B[1H], and 11B-11B COSY NMR spectra. The salt [(Ph3P)2N][B19H20].0.5THF crystallized in the triclinic space group P1 (a = 12.6344-(2) A, b = 13.5978(2) A, c = 14.1401(2) A; alpha = 77.402(2) degrees, beta = 81.351(2) degrees, gamma = 73.253(2) degrees). Possible synthetic pathways are discussed. The dianion B19H19(2-) is formed by deprotonation of B19H20- with Proton Sponge (1,8-bis(dimethylamino)naphthalene) in THF, and is identified on the basis of its 11B, 11B[1H], and 11B-11B COSY NMR spectra.
Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E
2015-05-22
We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low energy electron induced fragmentation and reactions of DNA and its molecular components
NASA Astrophysics Data System (ADS)
Bass, Andrew
2005-05-01
Much research has been stimulated by the recognition that ionizing radiation can, in condensed matter, generate large numbers of secondary electrons with energies less than 20 eV [1] and by the experimental demonstration that such electrons may induce both single and double strand breaks in plasmid DNA [2]. Identifying the underlying mechanisms involves several research methodologies, from further experiments with DNA to studies of the electron interaction with the component `sub-units' of DNA in both the gas and condensed phases [3]. In particular, understanding electron-induced strand break damage, the type of damage most difficult for organisms to repair, necessitates study of the sub-units of DNA back-bone, and here Tetrahyrofuran (THF) and its derivatives, provide a useful model for the furyl ring at the centre of the deoxyribose sugar. In this contribution, we review with particular reference to DNA and related molecules, the use of electron spectroscopy and mass spectrometry to study electron-induced fragmentation and reactions in thin molecular solids. We describe a newly completed instrument that combines laser post-ionization with a time-of-flight mass analyzer for highly sensitive ion and neutral detection. Use of the instrument is illustrated with results for THF and derivatives. Anion desorption measurements reveal the role of transient negative ions (TNI) and Dissociative Electron Attachment in significant molecular fragmentation and permit effective cross sections for this electron-induced damage to be obtained. The neutral yield functions also illustrate the importance of TNI, mirroring features seen in recently measured cross sections for electron induced aldehyde production in THF [4]. 1. J. A. Laverne and S. M. Pimblott, Radiat. Res. 141, 208 (1995) 2. B. Boudaiffa, et al, Science 287, 1658 (2000) 3. L. Sanche. Physica Scripta. 68, C108, (2003) 4. S.-P. Breton, et al.,J. Chem. Phys. 121, 11240 (2004)
NASA Astrophysics Data System (ADS)
Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail
2008-04-01
Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis. The results demonstrate that freeze-drying is a suitable sample preparation technique to study elemental distribution of ions in H. floribundus and P. calomelanos plant tissues using μ-PIXE spectroscopy. Furthermore, cellular structure was preserved in samples prepared using this technique.
Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.
Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtscheidl, Alejandro Gaston; Pagano, Justin K.; Scott, Brian Lindley
The organometallic uranium species (C 5Me 4R) 2UBr 2 (R = Me, Et) were obtained by treating their chloride analogues (C 5Me 4R) 2UCl 2 (R = Me, Et) with Me 3SiBr. Treatment of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with K(O-2,6- iPr 2C 6H 3) afforded the halide aryloxide mixed-ligand complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(X) (R = Me, Et; X = Cl, Br). Complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br) (R = Me, Et) can also be synthesized by treating (C 5Me 4R) 2U(O-2,6-more » iPr 2C 6H 3)(Cl) (R = Me, Et) with Me 3SiBr, respectively. Reduction of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with KC 8 led to isolation of uranium(III) “ate” species [K(THF)][(C 5Me 5) 2UX 2] (X = Cl, Br) and [K(THF) 0.5][(C 5Me 4Et) 2UX 2] (X = Cl, Br), which can be converted to the neutral complexes (C 5Me 4R) 2U[N(SiMe 3) 2] (R = Me, Et). Analyses by nuclear magnetic resonance spectroscopy, X-ray crystallography, and elemental analysis are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M.J.; Zinder, S.H.
1988-01-01
The authors previously described a thermophilic (60/sup 0/C), syntrophic, two-membered culture which converted acetate to methane via a two-step mechanism in which acetate was oxidized to H/sub 2/ and CO/sub 2/. While the hydrogenotrophic methanogen Methanobacterium sp. strain THF in the biculture was readily isolated, we were unable to find a substrate that was suitable for isolation of the acetate-oxidizing member of the biculture. In this study, we found that the biculture grew on ethylene glycol, and an acetate-oxidizing, rod-shape bacterium (AOR) was isolated from the biculture by dilution into medium containing ethylene glycol as the growth substrate. When themore » axenic culture of the AOR was recombined with a pure culture of Methanobacterium sp. strain THF, the reconstituted biculture grew on acetate and converted it to CH/sub 4/. The AOR used ethylene glycol, 1,2-propanediol, formate, pyruvate, glycine-betaine, and H/sub 2/-CO/sub 2/ as growth substrates. Acetate was the major fermentation product detected from these substrates, except for 1,2-propanediol, which was converted to 1-propanol and propionate. N,N-Dimethylglycine was also formed from glycine-betaine. Acetate was formed in stoichiometric amounts during growth on H/sub 2/-CO/sub 2/, demonstrating that the AOR is an acetogen. This reaction, which was carried out by the pure culture of the AOR in the presence of high partial pressures of H/sub 2/, was the reverse of the acetate oxidation reaction carried out by the AOR when hydrogen partial pressures were kept low by coculturing it with Methanobacterium sp. strain THF. The DNA base composition of the AOR was 47 mol% guanine plus cytosine, and no cytochromes were detected.« less
Yi, Chae S.; Gao, Ruili
2009-01-01
The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the alkyne-to-carboxylic acid coupling reaction to give synthetically useful enol ester products. Strong solvent effect was observed for the ruthenium catalyst in modulating the activity and selectivity; the coupling reaction in CH2Cl2 led to the regioselective formation of gem-enol ester products, while the stereoselective formation of (Z)-enol esters was obtained in THF. The coupling reaction was found to be strongly inhibited by PCy3. The coupling reaction of both PhCO2H/PhC≡CD and PhCO2D/PhC≡CH led to the extensive deuterium incorporation on the vinyl positions of the enol ester products. An opposite Hammett value was observed when the correlation of a series of para-substituted p-X-C6H4CO2H (X = OMe, CH3, H, CF3, CN) with phenylacetylene was examined in CDCl3 (ρ = +0.30) and THF (ρ = −0.68). Catalytically relevant Ru-carboxylate and –vinylidene-carboxylate complexes, (PCy3)2(CO)(Cl)Ru(κ2-O2CC6H4-p-OMe) and (PCy3)2(CO)(Cl)RuC(=CHPh)O2CC6H4-p-OMe, were isolated, and the structure of both complexes was completely established by X-ray crystallography. A detailed mechanism of the coupling reaction involving a rate-limiting C-O bond formation step was proposed on the basis of these kinetic and structural studies. The regioselective formation of the gem-enol ester products in CH2Cl2 was rationalized by a direct migratory insertion of the terminal alkyne via a Ru-carboxylate species, whereas the stereoselective formation of (Z)-enol ester products in THF was explained by invoking a Ru-vinylidene species. PMID:20161379
NASA Astrophysics Data System (ADS)
Limbach, Hans-Heinrich; Meschede, Ludger; Scherer, Gerd
1989-05-01
Stratagems are presented for the determination of kinetic isotope effects of proton exchange reactions by dynamic NMR spectroscopy. In such experiments, lineshape analyses and/or polarization transfer experiments are performed on the exchanging protons or deuterons as well as on remote spins, as a function of the deuterium fraction in the mobile proton sites. These methods are NMR analogs of previous proton inventory techniques involving classical kinetic methods. A theory is developed in order to derive the kinetic isotope effects as well as the number of transferred protons from the experimental NMR spectra. The technique is then applied to the problem of proton exchange in the system 15N,15N'-di-p-fluorophenylibrmamidine, a nitrogen analog of formic acid, dissolved in tetrahydrofuran-d8 (THF). DFFA forms two conformers in THF to which s-trans and s-cis structures have been assigned. Only the s-trans conformer is able to dimerize and exchange protons. Lineshape simulations and magnetization transfer experiments were carried out at 189,2 K, at a concentration of 0.02 mol l-1, as a function of the deuterium fraction D in the 1H-15N sites. Using 1H NMR spectroscopy, a linear dependence of the inverse proton lifetimes on D was observed. From this it was concluded that two protons are transported in the rate limiting step of the proton exchange. This result is expected for a double proton transfer in an s-trans dimer with a cyclic structure. The full kinetic HH/HD/DD isotope effects of 233:11:1 at 189 K were determined through 19F NMR experiments on the same samples. The deviation from the rule of geometric mean, although substantial, is much smaller than found in previous studies of intramolecular HH transfer reactions. Possible causes of this effect are discussed.
Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene
Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.; ...
2017-09-27
Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less
Lichtscheidl, Alejandro Gaston; Pagano, Justin K.; Scott, Brian Lindley; ...
2016-01-06
The organometallic uranium species (C 5Me 4R) 2UBr 2 (R = Me, Et) were obtained by treating their chloride analogues (C 5Me 4R) 2UCl 2 (R = Me, Et) with Me 3SiBr. Treatment of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with K(O-2,6- iPr 2C 6H 3) afforded the halide aryloxide mixed-ligand complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(X) (R = Me, Et; X = Cl, Br). Complexes (C 5Me 4R) 2U(O-2,6- iPr 2C 6H 3)(Br) (R = Me, Et) can also be synthesized by treating (C 5Me 4R) 2U(O-2,6-more » iPr 2C 6H 3)(Cl) (R = Me, Et) with Me 3SiBr, respectively. Reduction of (C 5Me 4R) 2UCl 2 and (C 5Me 4R) 2UBr 2 (R = Me, Et) with KC 8 led to isolation of uranium(III) “ate” species [K(THF)][(C 5Me 5) 2UX 2] (X = Cl, Br) and [K(THF) 0.5][(C 5Me 4Et) 2UX 2] (X = Cl, Br), which can be converted to the neutral complexes (C 5Me 4R) 2U[N(SiMe 3) 2] (R = Me, Et). Analyses by nuclear magnetic resonance spectroscopy, X-ray crystallography, and elemental analysis are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, K. W.; Chen, S. S.; Pang, W. L.
The effects of Lithium triflate salt (LiCF{sub 3}SO{sub 3}), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF{sub 3}SO{sub 3}) and (PMMA+PC+LiCF{sub 3}SO{sub 3}) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperaturemore » to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF{sub 3}SO{sub 3}) system is 2.83x10{sup -12} Scm{sup -1}, 4.39x10{sup -11} Scm{sup -1} and 3.93x10{sup -6} Scm{sup -1} respectively. The conductivity for (PMMA+PC+LiCF{sub 3}SO{sub 3}) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10{sup -5} Scm{sup -1}. Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH{sub 3} band.« less
Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun
2013-02-28
The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.
Mallardo, Valentina; Rizzi, Ruggiero; Sassone, Francesca C; Mansueto, Rosmara; Perna, Filippo M; Salomone, Antonio; Capriati, Vito
2014-08-14
An efficient functionalization of diaryltetrahydrofurans via a regioselective THF-directed ortho-lithiation is first described. This reaction can be successfully carried out in cyclopentyl methyl ether as a "greener" alternative to Et2O, with better results in terms of yield and selectivity and, surprisingly, also in protic eutectic mixtures competitively with protonolysis.
Pentadienyl chemistry of the heavy alkaline-earth metals revisited.
Reiners, Matthias; Fecker, Ann Christin; Freytag, Matthias; Jones, Peter G; Walter, Marc D
2014-05-14
Open-metallocenes of the heavy alkaline-earth metals [(η(5)-Pdl')2M(thf)n] (M = Ca (1), Sr (2), n = 1; M = Ba (3), n = 2; Pdl' = 2,4-tBu2C5H5) are readily prepared by salt-metathesis between MI2 and KPdl' and characterized by NMR spectroscopy and X-ray diffraction studies.
Mo(CO)/sub 6/-promoted reductive cleavage of the carbon-sulfur bond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luh, T.Y.; Wong, C.S.
1985-12-13
In order to study the reductive cleavage of carbon-sulfur bonds by Mo(CO/sub 6/, various organosulfur compounds are reacted with Mo(CO)/sub 6/ in THF. Results of these experiments demonstrate that benzylic-, aryl-, or ..cap alpha..-acyl-activated carbon-sulfur bonds are reduced by treatment with Mo(CO)/sub 6/. 1 table.
NASA Astrophysics Data System (ADS)
Rubira, Rafael Jesus Gonçalves; Aoki, Pedro Henrique Benites; Constantino, Carlos José Leopoldo; Alessio, Priscila
2017-09-01
The developing of organic-based devices has been widely explored using ultrathin films as the transducer element, whose supramolecular architecture plays a central role in the device performance. Here, Langmuir and Langmuir-Blodgett (LB) ultrathin films were fabricated from iron phthalocyanine (FePc) solutions in chloroform (CHCl3), dichloromethane (CH2Cl2), dimethylformamide (DMF), and tetrahydrofuran (THF) to determine the influence of different solvents on the supramolecular architecture of the ultrathin films. The UV-vis absorption spectroscopy shows a strong dependence of the FePc aggregation on these solvents. As a consequence, the surface pressure vs. mean molecular area (π-A) isotherms and Brewster angle microscopy (BAM) reveal a more homogeneous (surface morphology) Langmuir film at the air/water interface for FePc in DMF. The same morphological pattern observed for the Langmuir films is preserved upon LB deposition onto solid substrates. The Raman and FTIR analyses indicate the DMF-FePc interaction relies on coordination bonds between N atom (from DMF) and Fe atom (from FePc). Besides, the FePc molecular organization was also found to be affected by the DMF-FePc chemical interaction. It is interesting to note that, if the DMF-FePc leads to less aggregated FePc either in solution or ultrathin films (Langmuir and LB), with time (one week) the opposite trend is found. Taking into account the N-Fe interaction, the performance of the FePc ultrathin films with distinct supramolecular architectures composing sensing units was explored as proof-of-principle in the detection of trace amounts of atrazine herbicide in water using impedance spectroscopy. Further statistical and computational analysis reveal not only the role played by FePc supramolecular architecture but also the sensitivity of the system to detect atrazine solutions down to 10-10 mol/L, which is sufficient to monitor the quality of drinking water even according to the most stringent international regulations.
NASA Astrophysics Data System (ADS)
Djouhra, Aggoun; Ali, Ourari; Ramiro, Ruiz-Rosas; Emilia, Morallon
2017-09-01
A new colorimetric receptor HL, acting as a bidentate Schiff base ligand, has been synthesized by condensation of 2-methoxybenzylamine on 2,3-dihydroxybenzaldehyde in a methanolic solution. Interestingly, this chelating agent can selectively detect Cu2 +, Co2 +, Fe2 + and Fe3 + ions with a simple and an easy-to-make, well defined naked-eye visible color changes in two different solvents like acetonitrile and methanol. This bidentate ligand coordinates three metal ions of Co(II), Cu(II) and Fe(II) via nitrogen and oxygen atoms. The molecular structures of the synthesized compounds were elucidated by various physicochemical properties such as the elemental analysis, FT-IR, HNMR, UV-Vis and the Mass spectrometry. The resulting general formulae [M(L)2·H2O] (M(II) = Cu, Fe, Co) are proposed as mononuclear complexes. The solvatochromism properties of these compounds were studied with their absorption spectra using different solvents as methanol (MeOH), acetonitrile (AN), tetrahydrofuran (THF), dimethylformamid (DMF), dimethylsulfoxid (DMSO) and dichloromethane (DC). The Electrochemical behavior of copper complex was explored in DMF solutions by cyclic voltammetry (CV) with two working electrodes: glassy carbon (GC) and platinum electrode (Pt). This study reveals that copper complex shows successively two redox systems as CuIII/II and CuII/I. The FeIII/II and CoII/I redox systems have also been studied in DMF and DMSO media.
Foley, Nicholas A; Lail, Marty; Lee, John P; Gunnoe, T Brent; Cundari, Thomas R; Petersen, Jeffrey L
2007-05-30
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.
Ruiz-Muelle, Ana Belén; Oña-Burgos, Pascual; Ortuño, Manuel A; Oltra, J Enrique; Rodríguez-García, Ignacio; Fernández, Ignacio
2016-02-12
The synthesis and structural characterization of allenyl titanocene(IV) [TiClCp2 (CH=C=CH2 )] 3 and propargyl titanocene(IV) [TiClCp2 (CH2 -C≡C-(CH2 )4 CH3 )] 9 have been described for the first time. Advanced NMR methods including diffusion NMR methods (diffusion pulsed field gradient stimulated spin echo (PFG-STE) and DOSY) have been applied and established that these organometallics are monomers in THF solution with hydrodynamic radii (from the Stokes-Einstein equation) of 3.5 and 4.1 Å for 3 and 9, respectively. Full (1) H, (13) C, Δ(1) H, and Δ(13) C NMR data are given, and through the analysis of the Ramsey equation, the first electronic insights into these derivatives are provided. In solution, they are involved in their respective metallotropic allenyl-propargyl equilibria that, after quenching experiments with aromatic and aliphatic aldehydes, ketones, and protonating agents, always give the propargyl products P (when carbonyls are employed), or allenyl products A (when a proton source is added) as the major isomers. In all the cases assayed, the ratio of products suggests that the metallotropic equilibrium should be faster than the reactions of 3 and 9 with electrophiles. Indeed, DFT calculations predict lower Gibbs energy barriers for the metallotropic equilibrium, thus confirming dynamic kinetic resolution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, T. F.
1978-01-01
The solubility limits of Synthoil and PAMCO asphaltenes have been measured as a function of Hildebrand solubility parameters and hydrogen bonding. Solvents with moderate hydrogen bonding capacity such as dioxane, ethyl benzoate and dibutyl phthalate were found to be most effective in dissolving asphaltenes over the widest range of solubility parameters. VPO molecular weight studies of coal liquid derived carbenes, as a function of concentration in the solvent THF, indicate that these fractions are more strongly self-associated than the corresponding asphaltenes, and generally afford high infinite dilution number average molecular weights: Synthoil, 861; HRI H-Coal, 1156; Cat. Inc. SRC, 1228;more » PAMCO SRC, 1054. The variable ESR temperature dependence of the spin intensity for a Synthoil asphaltene-I/sub 2/ charge transfer followed a 1/T (Curie--Weiss) dependence over the temperature range from 25/sup 0/ to -114/sup 0/C suggesting that independent, non-interacting donor and acceptor doublets were formed. Weight percent OH values, determined from 'H NMR analysis of silylated asphaltenes, were found to provide a reasonably linear correlation with the absorbance of the monomeric OH infrared stretching bands of the asphaltenes.« less
Combustion Mechanisms of Solids
1992-02-24
ELEMENT NO. NO NO ACCESSION NO Arlington, VA 22217-5000 11 TITLE (include Security Classification) COMBUSTION MECHANISMS OF SOLIDS 12. PERSONAL AUTHOR(S...FIELD GROUP I SUB-GROUP COMBUSTION , SOLID PROPELLANT 19 ABSTRACT (Continue on reverse if necessary and identify by block number) This report...ingredients tested (AP, AN, PBAN, NMMO and BAMO-THF). Ingredient combustion behavior was studied by the edge burning sandwich method using sandwiches
Smart Nanofibers Self-Assembled from Dumbbell-Shaped Rod Amphiphiles
2011-09-01
using JEOL-JEM 2100. MALDI-TOF-MS was performed on a Bruker Microflex LRF20 using α-cyano-4-hydroxy cinnamic acid (CHCA) as matrix. Preparative high...and 4,4’-biphenyl diboronic acid (28.8 mg, 0.12 mmol) were dissolved in degassed THF (25 ml). Degassed 2 M aqueous Na2CO3 (25 ml) was added to the
Legubicin, a Tumor-Activated Prodrug for Breast Cancer Therapy
2007-04-01
carcinomas, leukemias, lymphomas, melanomas, fibrosarcomas , neuroblastoma, and the like. The cancer can, for example, be autoimmune deficiency syndrome...their analogs. (a) 4-Nitrophenyl chloroformate, Py, CH2Cl2, 0°C; (b) (i) OsO4 ( cat ), NMO, citric acid, CH2Cl2-H2O (10:1), RT, (ii) NaIO4, THF- H2O (1:1
Iron-catalyzed cross-coupling of imidoyl chlorides with Grignard reagents.
Ottesen, Lars K; Ek, Fredrik; Olsson, Roger
2006-04-27
[reaction: see text] A general, high yielding rapid iron-catalyzed cross-coupling reaction between Grignard reagents and imidoyl chlorides is described. These reactions are typically completed within 5 min, resulting in high yields of 71-96% using 5% iron catalyst in a THF-NMP solvent mixture. Functionalized imidoyl chlorides (e.g., R = CO(2)Me) gave excellent yields (89%).
Maity, Arunava; Ali, Firoj; Agarwalla, Hridesh; Anothumakkool, Bihag; Das, Amitava
2015-02-07
A unique example of an ESIPT coupled AIEE process, associated with a single molecule (1), is utilized for generating multiple luminescent colors (blue-green-white-yellow). The J-aggregated state of 1 forms a luminescent gel in THF and this luminescent property is retained even in the solid state.
1982-06-01
4 Research Design ........... ...................... 6 References ............ ......................... 6 2 VEGETATIONAL...deer herds and, concomitantly, to a procurement 0 system designed to exploit these animals. Thf- was also increased use of aquatic resources, although...34...o ’ design , and attempt to further define those cultural processes through wh ich scit ties articiflate wi th
Burns, Corey P; Wilkins, Branford O; Dickie, Courtney M; Latendresse, Trevor P; Vernier, Larry; Vignesh, Kuduva R; Bhuvanesh, Nattamai S; Nippe, Michael
2017-07-25
We utilized a rigid ligand platform PyCp 2 2- (PyCp 2 2- = [2,6-(CH 2 C 5 H 3 ) 2 C 5 H 3 N] 2- ) to isolate dinuclear Dy 3+ complexes [(PyCp 2 )Dy-(μ-O 2 SOCF 3 )] 2 (1) and [(PyCp 2 )Dy-(μ-Cl)] 2 (3) as well as the mononuclear complex (PyCp 2 )Dy(OSO 2 CF 3 )(thf) (2). Compounds 1 and 2 are the first examples of organometallic Dy 3+ complexes featuring triflate binding. The isolation of compounds 1 and 3 allows us to comparatively evaluate the effects of the bridging anions on the magnetization dynamics of the dinuclear systems. Our investigations show that although the exchange coupling interactions differ for 1 and 3, the dynamic magnetic properties are dominated by relaxation via the first excited state Kramers doublet of the individual Dy sites. Compounds 1 and 3 exhibit barriers to magnetization reversal (U eff = 49 cm -1 ) that can be favorably compared to those of the previously reported examples of [Cp 2 Dy(μ-Cl)] 2 (U eff = 26 cm -1 ) and [Cp 2 Dy(thf)(μ-Cl)] 2 (U eff = 34 cm -1 ).
Purification of aflatoxin B1 antibody for the development of aflatoxin biosensor
NASA Astrophysics Data System (ADS)
Prihantoro, E. A. B.; Saepudin, E.; Ivandini, T. A.
2017-07-01
Aflatoxin B1 (AFB1) is produced from agricultural products especially peanuts overgrown with aspergillus flavus during the post-harvest process. Aflatoxin is classified as a highly toxic and carcinogenic substance to humans by the International Agency for Research on Cancer (IARC), WHO. This research was conducted to develop the AFB1 biosensor using antibody that specifically binds to aflatoxin B1. This antibody was produced by injecting an AFB1 hapten-protein (immunogen) to a rabbit. Antibody was obtained from rabbit's blood serum and purified using Protein A affinity chromatography and precipitation at the isoelectric point. The result showed that purification using protein A contains antibody of 4.0 mg/mL, whereas purification using precipitation at isoelectric pH contains antibody of 0.3 mg/mL. The pure antibody was tested for its specificity against AFB1, tetrahydrofuran (THF), dimethyl formamide (DMF), bovine serum albumin (BSA), and ethanol. The result revealed that THF, BSA, and ethanol were bound to antibody, while DMF showed no interaction. It was concluded that the polyclonal antibody which have been successfully purified from rabbit's blood serum using protein A affinity chromatography and precipitation methods showed an unspecific identification.
Alkene Metalates as Hydrogenation Catalysts
Büschelberger, Philipp; Gärtner, Dominik; Reyes‐Rodriguez, Efrain; Kreyenschmidt, Friedrich; Koszinowski, Konrad
2017-01-01
Abstract First‐row transition‐metal complexes hold great potential as catalysts for hydrogenations and related reductive reactions. Homo‐ and heteroleptic arene/alkene metalates(1−) (M=Co, Fe) are a structurally distinct catalyst class with good activities in hydrogenations of alkenes and alkynes. The first syntheses of the heteroleptic cobaltates [K([18]crown‐6)][Co(η4‐cod)(η2‐styrene)2] (5) and [K([18]crown‐6)][Co(η4‐dct)(η4‐cod)] (6), and the homoleptic complex [K(thf)2][Co(η4‐dct)2] (7; dct=dibenzo[a,e]cyclooctatetraene, cod=1,5‐cyclooctadiene), are reported. For comparison, two cyclopentadienylferrates(1−) were synthesized according to literature procedures. The isolated and fully characterized monoanionic complexes were competent precatalysts in alkene hydrogenations under mild conditions (2 bar H2, r.t., THF). Mechanistic studies by NMR spectroscopy, ESI mass spectrometry, and poisoning experiments documented the operation of a homogeneous mechanism, which was initiated by facile redox‐neutral π‐ligand exchange with the substrates followed by H2 activation. The substrate scope of the investigated precatalysts was also extended to polar substrates (ketones and imines). PMID:28026060
NASA Astrophysics Data System (ADS)
Breeze, Steven R.
We have been interested in the development of soluble precursors for the production of YBasb2Cusb3Osb{7-delta} and Bisb2(Ca,Sr)sbn+1CusbnOsb(2n + 4) + delta, superconductor materials. Several heterometallic and homometallic complexes containing the constituent metals of these superconductors and bifunctional ligands such as aminoalcohols, acetates and thioethers have been isolated and structurally characterized. The thermal decomposition properties and magnetic properties of some of these compounds have been investigated. The first ligand system investigated involved 1,3-bis(dimethylamino)-2-propanol (bdmapH). By varying the ratio of bdmapH, Cu(OCHsb3)sb2, and M(Osb2CCFsb3)sb2 (M = Ca, Sr) several heterometallic complexes have been obtained, including Srsb2Cusb2(bdmap)sb4(Osb2CCFsb3)sb4, CaCu(bdmap)sb2(Osb2CCFsb3)sb3(Hsb2O), Srsb2Cusb4(bdmap)sb6-(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2 and SrCusb2(bdmap)sb3(Osb2CCFsb3)sb3(THF). With the exception of Srsb2Cusb4(bdmap)sb6(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2, these compounds thermally decompose to form mixtures of fluorides and oxides. An analogous acetate compound SrCusb2(bdmap)sb3(Osb2CCHsb3)sb3(THF) has been produced, which forms the corresponding oxide at high temperature. A bismuth dimer, Bisb2(bdmap)sb2(Osb2CCHsb3)sb4(Hsb2O), has also been obtained. Superconducting powder of the Bisb2Srsb2CaCusb2Osb{8 + delta} and epitaxial superconducting films of the YBasb2Cusb3Osb{7-delta} superconductor have been produced using the bdmap and acetate ligands as cross-linking reagents. The second ligand system investigated involved di-2-pyridylmethanediol. Only homonuclear complexes have been obtained by using this ligand, including the mononuclear compound Cu ((2-py)sb2CO(OH)) sb2(HOsb2CCH sb3)sb2*CHsb2Clsb2, the tetranuclear compound Cusb4 ((2-py)sb2CO(OH)) sb2(Osb2CCHsb 3)sb6(Hsb2O)sb2*CHsb2Clsb2, and the bismuth dimer Bisb2 ((2-py)sb2CO(OH)) sb2(Osb 2CCFsb3)sb4*(THF)sb2. The tetranuclear Cusb4 compound was found to be dominated by ferromagnetic exchanges. The third ligand system examined involved 2,2sp'-thiodiethanol (tdeHsb2). Heterometallic complexes Prsb2Cusb4(tde)sb3(tdeH)sb2(hfacac)sb4(musb6 -O) and Basb2Cusb2(tdeH)sb4(hfacac)sb4 have been obtained using this ligand. The six metal centers in Prsb2Cusb4(tde)sb3(tdeH)sb2(hfacac)sb4(musb6-O) are arranged in a octahedron and are linked by musb6-oxide and 2,2sp'-thiodiethanolato ligands. A metallomacrocyclic Cusb4 compound, Cusb4(tde)sb2(hfacac)sb4 has been produced. Attempts have been made to produce bismuthine complexes with an amino or pyridyl functional group that can coordinate to copper. The reaction of 4-Li-Csb6Hsb4CHsb2N(2-PY)sb2 with BiClsb3 produces the compound BispIII (p-Csb6Hsb4CHsb2N(2-py)sb2rbracksb3. The ability of this compound to coordinate CuClsb2 has been investigated. The complex BispV (p-Csb6Hsb4CHsb2N(2-py)sb2rbracksb3(Osb2CCHsb3)sb2 has also been produced.
NASA Astrophysics Data System (ADS)
Aghapoor, Kioumars; Amini, Mostafa M.; Jadidi, Khosrow; Mohsenzadeh, Farshid; Darabi, Hossein Reza; Sayahi, Hani; Jalali, Mohammad Reza
2015-11-01
L-tryptophan is adsorbed on the titania surface of Ti/MCM-41 (L-tryp≡Ti/MCM-41) as a novel material via two steps. Ti/MCM-41 was first prepared by grafting TiCl4 on activated MCM-41 mesoporous silica in an anhydrous THF. Subsequent adsorption of L-tryptophan on the surface of grafted Ti sites from an aqueous solution afforded L-tryp≡Ti/MCM-41. Characterization of the material was carried out with thermogravimetric and differential thermogravimetric analyses, powder X-ray diffraction, BET and BJH nitrogen adsorption-desorption methods, Fourier transform infrared, UV-Visible, and energy dispersive X-ray spectroscopes. The results indicate that the adsorption of L-tryptophan on the surface of Ti/MCM-41 occurred. L-tryp≡Ti/MCM-41 was applied successfully as a heterogeneous catalyst for the ring opening of styrene oxide with aniline derivatives and demonstrated high to excellent activity and regioselectivity under microwave irradiation and solvent-free conditions. This thermal-resistant catalyst can be recycled at least five times without appreciable loss of activity, which confirms the strong adsorption of L-tryptophan on Ti/MCM-41.
NASA Astrophysics Data System (ADS)
Cao, Duojun; Qian, Ying
2016-07-01
A novel pyridyltriphenylamine-rhodamine dye PTRh and a pyridyltriphenylamine derivative PTO were synthesized and characterized by 1H NMR and HRMS-MALDI-TOF. PTRh performed typical fluorescence resonance energy transfer (FRET) signal from pyridyltriphenylamine to rhodamine along with notable color change from green to rose when interacting with Hg2+ in EtOH/H2O. And PTRh as a ratiometric probe for Hg2+ based on FRET could achieve a very low detection limit of 32 nM and energy transfer efficiency of 83.7% in aqueous organic system. On the other hand, spectra properties of PTO in its aggregates, THF/H2O mixed solution and silica nanoparticles (Si-NPs) dispersed in water were investigated. And the results indicated PTO exhibited bright green fluorescence in solid state, and PTO was successfully encapsulated in silica matrix (30-40 nm), emitting bright blue fluorescence with 11.7% quantum yield. Additionally, living cell imaging experiments demonstrated that PTRh could effectively response to intracellular Hg2+ and PTO-doped Si-NPs were well uptaken by MCF-7 breast cancer cells. It could be concluded that the chromophores are promising materials used as biosensors.
The Role of Bi3+ in Promoting and Stabilizing Iron Oxo Clusters in Strong Acid.
Sadeghi, Omid; Amiri, Mehran; Reinheimer, Eric W; Nyman, May
2018-05-22
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of "molecular" and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi 3+ drives the formation of aqueous Fe 3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe 3 BiO 2 (CCl 3 COO) 8 (THF)(H 2 O) 2 , and demonstrated its conversion into an iron Keggin ion capped by six Bi 3+ irons (Bi 6 Fe 13 ). The reaction pathway was documented by X-ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi 3+ , which drives hydrolysis and condensation. Likewise, Bi 3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guiochon, Georges A; Shalliker, R. Andrew
An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Duemore » to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.
In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.
Wu, Yan-Cheng; Luo, Shi-He; Cao, Liang; Jiang, Kai; Wang, Ling-Yun; Xie, Jie-Chun; Wang, Zhao-Yang
2017-07-11
A 2,6-dibenzimidazole-appended naphthalene derivative flanking with two N-alkyl chains (sensor 4) was designed and applied for highly sensitive detection of picric acid (PA) in aqueous media. Driven by the hydrophobicity of alkyl chain and π-π stacking effect of aryl, sensor 4 can undergo self-assembly to form an orderly rod-like structure in H 2 O/THF (v/v, 90/10) solution, as shown by the dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies. Sensor 4 shows high selectivity and sensitivity toward PA over other nitroaromatic explosives. DFT calculations and 1 H NMR, the time-correlated single photon counting (TCSPC) experiments confirm that the quenching mechanism is due to both electron and energy transfer from the electron-rich sensor 4 to the electron-deficient PA. Sensor 4 can detect as low as 0.57 ppb PA in aqueous media and 11.46 ag cm -2 PA by contact mode. Importantly, sensor 4 exhibits low interference against common solvents, metal ions and anions. Thus, it is practically applicable for sensing PA in real environmental samples and vapor phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Honzátko, Ales; Cvak, Jan; Vaingátová, Silvie; Flieger, Miroslav
2005-05-01
Three urea derivatives of ergoline-based chiral selectors (CSs), differing in the size of the urea side chain, i.e. dimethyl- (CSI), diethyl- (CSII), and diisopropylurea (CSIII), were used to study the effect of steric hindrance on the enantioseparation of dansyl amino acids (Dns-AAs), pesticides, and mandelic acid under condition of capillary electrophoresis (CE) in linear polyacrylamide coated capillaries. A mixture of organic modifiers (MeOH/THF, 4:1 v/v) in a BGE consisting of 100 mM beta-alanine-acetate was used to increase the solubility of CSs up to 25 mM. The capillary was filled with CS (high UV absorption), and the inlet and outlet vials contained buffer solutions only. The best enantioseparation of Dns-AAs was achieved on CSI. Increased steric hindrance of the chiral binding site led to reduction of both enantioselectivity and resolution. The opposite pattern was observed for the separation of mandelic acid enantiomers, where the best enantioseparation and resolution was obtained with CSIII. Most of the pesticides studied reached maximum selectivity on the diethylurea ergoline derivative (CSII). Enantioseparation of fenoxaprop was found to be independent of steric hindrance.
Axial and radial nanostructures in electrospun polymer fibers
NASA Astrophysics Data System (ADS)
Greenfeld, Israel; Camposeo, Andrea; Tantussi, Francesco; Pagliara, Stefano; Fuso, Francesco; Allegrini, Maria; Pisignano, Dario; Zussman, Eyal
2013-03-01
The high tensional stresses during electrospinning of semidilute polymer solutions affect the dynamic conformation of the polymer network within the liquid jet, leaving a distinctive trace in the molecular structure after solidification. We investigated such effects in electrospun nanofibers made of conjugated polymers. Modeling the polymer network evolution during electrospinning showed that as the network stretches axially, it contracts towards the jet core. The model represents the semi-flexible conjugated polymer chains as flexible freely-jointed chains, whose joints are bonding defects. Using the conjugated polymer MEH-PPV dissolved in a mixture of THF and DMF solvents, and taking advantage of its unique photophysical characteristics, we investigated optically the variations in the density and orientation of the polymer macromolecules in electrospun nanofibers. In agreement with our model, we found higher density and axial orientation at the fiber core, while lower density and radial orientation closer to the fiber surface. The non-uniformity of the resulting molecular structure can be tuned and exploited in diverse optical and structural applications. We acknowledge: V. Fasano, G. Potente, S. Girardo and E. Caldi for assistance in measurements; United States-Israel BSF, RBNI Institute, and the Israel Science Foundation for financial support.
X-Aerogels for Structural Components and High Temperature Applications
NASA Technical Reports Server (NTRS)
2005-01-01
Future NASA missions and space explorations rely on the use of materials that are strong ultra lightweight and able to withstand extreme temperatures. Aerogels are low density (0.01-0.5 g/cu cm) high porosity materials that contain a glass like structure formed through standard sol-gel chemistry. As a result of these structural properties, aerogels are excellent thermal insulators and are able to withstand temperatures in excess of l,000 C. The open structure of aerogels, however, renders these materials extremely fragile (fracturing at stress forces less than 0.5 N/sq cm). The goal of NASA Glenn Research Center is to increase the strength of these materials by templating polymers and metals onto the surface of an aerogel network facilitating the use of this material for practical applications such as structural components of space vehicles used in exploration. The work this past year focused on two areas; (1) the research and development of new templated aerogels materials and (2) process development for future manufacturing of structural components. Research and development occurred on the production and characterization of new templating materials onto the standard silica aerogel. Materials examined included polymers such as polyimides, fluorinated isocyanates and epoxies, and, metals such as silver, gold and platinum. The final properties indicated that the density of the material formed using an isocyanate is around 0.50 g/cc with a strength greater than that of steel and has low thermal conductivity. The process used to construct these materials is extremely time consuming and labor intensive. One aspect of the project involved investigating the feasibility of shortening the process time by preparing the aerogels in the templating solvent. Traditionally the polymerization used THF as the solvent and after several washes to remove any residual monomers and water, the solvent around the aerogels was changed to acetonitrile for the templating step. This process took a couple of days. It was experimentally determined that the polymerization reaction could be done in acetonitrile instead of THF with no detrimental effects to the properties of the resulting aerogel. Other changes in the time needed to crosslink the gels in the isocyanate solution as well as changes to the subsequent washing procedure could also shorten the processing time with no effect on the properties. Processing methods were also developed that allowed a variety of shapes as well as sizes of these materials to be formed.
Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH.
Neue, Uwe D; Méndez, Alberto
2007-05-01
The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.
Small Molecule Activation by Intermolecular Zr(IV)-Phosphine Frustrated Lewis Pairs.
Metters, Owen J; Forrest, Sebastian J K; Sparkes, Hazel A; Manners, Ian; Wass, Duncan F
2016-02-17
We report intermolecular transition metal frustrated Lewis pairs (FLPs) based on zirconocene aryloxide and phosphine moieties that exhibit a broad range of small molecule activation chemistry that has previously been the preserve of only intramolecular pairs. Reactions with D2, CO2, THF, and PhCCH are reported. By contrast with previous intramolecular examples, these systems allow facile access to a variety of steric and electronic characteristics at the Lewis acidic and Lewis basic components, with the three-step syntheses of 10 new intermolecular transition metal FLPs being reported. Systematic variation to the phosphine Lewis base is used to unravel steric considerations, with the surprising conclusion that phosphines with relatively small Tolman steric parameters not only give highly reactive FLPs but are often seen to have the highest selectivity for the desired product. DOSY NMR spectroscopic studies on these systems reveal for the first time the nature of the Lewis acid/Lewis base interactions in transition metal FLPs of this type.
Continuous process for conversion of coal
Knudson, Curtis L.; Willson, Warrack G.; Baker, Gene G.; Sondreal, Everett A.; Farnum, Sylvia A.
1982-01-01
An improved process for converting coal to liquid and gaseous products wherein the liquid products predominate and wherein reactor, tubing, and valve plugging due to carbonate salt formation is reduced by reacting crushed low-rank coal containing about 12 to 30% by weight of water in a solvent at a temperature in the range of about 455.degree. to 500.degree. C., under about 2000 to 5000 psi pressure of a H.sub.2 /CO mixture for a liquid residence time of about 20 to 60 minutes. The solvent is a fraction of liquid product defined on a weight basis as being made up of about 55% of which distills at less than 250.degree. C./lmm, about 20% of which is soluble in THF, and about 25% of which is carbon polymer and indigenous inorganic matter. The solvent is further defined as containing at least about 5 weight % of partially hydrogenated aromatics and/or fully hydrogenated aromatics and little or no alkylated aromatics or higher alkanes.
NASA Astrophysics Data System (ADS)
Mineart, Kenneth
Network forming block copolymers, i.e. thermoplastic elastomers (TPEs), are one of the highest commodity forms of block copolymers due to their competitive elasticity and extendability as well as their ability to be melt and solution processed. TPEs owe many of their advantages to a combination of hard and soft blocks. The soft blocks, which must be covalently bound at both ends to hard blocks, connect adjacent hard domains resulting in physically cross-linked systems. Herein, simulations and theory are used to provide a molecular-level depiction of the evolution from diblock copolymers, which do not contain the ability to form physical cross-links, to network forming triblock copolymers. In addition, systems with high interblock incompatibility that are within the diblock-to-triblock transition (i.e. having high molecular asymmetry) are identified to form three component (ABC triblock copolymer) phases from copolymer containing only two chemically distinct blocks. Following this work, which emphasizes the fundamental principle of TPEs, the dissertation shifts focus to physically- and chemically-modified triblock and pentablock copolymer TPEs. Recent progress has sought to broaden TPEs to include properties that are above and beyond their inherent mechanical benefits, including responsiveness to external stimuli. The first examples presented here consist of TPEs prepared in combination with amorphous hydrocarbon additives to yield TPE gels (TPEGs). The resulting TPEGs, which maintain the beneficial processing properties of TPEs, are subsequently molded into 1- and 2-D arrays of microchannels that are filled with liquid metal. The final devices exhibit strain-sensitive electrical conductivity to at least 600% strain, have tunable compliance (ease of stretching), and are fully recyclable. The substitution of the amorphous hydrocarbon component for crystalline analogues with melting points <100 °C yield TPE composites (TPECs). The TPECs gain the added capability of thermally-triggered shape-memory actuation, which results in a number of design possibilities including: (i) multiple-transition shape-memory in single a composite, (ii) complex actuation in laminates and, (iii) thermally-responsive electrical conductivity in microchannel-molded composites filled with liquid metal. These shape-memory TPECs can also be tuned to have different shape-memory response rates through the addition of an amorphous hydrocarbon tackifier, which serves to dilute the crystalline content without altering TPE concentration. The second set of functionalized TPEs examined are midblock-sulfonated block copolymers, which have substantial ion and water transport abilities, but are often restricted in thermal processability. The casting solvent-dependent morphology of a midblock sulfonated pentablock copolymer highlights the impact of solvent templating on resulting film domain structures. It is shown that film deposition from a miscible mixture of toluene and isopropanol (TIPA) leads to spherical sulfonated domains within a nonpolar matrix whereas deposition from neat tetrahydrofuran (THF) produces a combination of lamellar and hexagonally-pack cylinder nanostructures. These morphologies can both be converted to the anticipated equilibrium morphology, alternating lamellae, using THF vapor-annealing. Further, the morphology resulting from each solvent-casting approach impacts the rate and overall capacity at which films absorb water. Specifically, THF-cast copolymers swell faster and to a greater extent. However, some intrigue lies in the transformation of the TIPA-cast copolymer upon swelling, which yields disordered, but continuous, hydrophilic domains. The disordered morphology outperforms ordered analogues in solar simulation experiments indicating higher ion conductivity.
Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui
2017-02-01
Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical and Environmental Studies of Conduction Polymers.
1986-01-17
Carbonate), 0.25M Tetrabutylammonium hexafluorophosphate (Bu4 NPF 6 )/THF, and 0.25M Lithium Trifluoromethyl sulfonate (LiCF3 SO 3)frHF. Lithium ...processible polymeric component Other anions commonly used in synthesizing polypyrrole, namely, tetrafluoroborate, hexafluorophosphate rifluoromethyl...are perchlorate (CI0 4 "), tetrafluoroborate (BF 4 "), trifluoromethyl sulfonate (CF3 SO"), hexafluorophosphate (PF6 ") and p-toluene sulfonate (PTS
Dynamical Hole-Burning Requirements for Frequency Domain Optical Storage.
1986-01-29
the absorption line of free-base phthalocyanine molecules in a poly(methylmethacrylate) (PMMA) host[4]. Since in one laser spot many groups of...ul - 6.’ C4 VIP .44, 4V .i .... -13- 2F r ~~perma~nent reservoir . ( h o le - b u r n i n g ) ’ - . 1 Oh -ar repren t cnt oursl Thf con tousa n t h