Sample records for thiamine pyrophosphate-dependent enzyme

  1. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa M.; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate, is a cofactor of enzymes performing catalysis in pathways of energy production. In alpha (sub 2) beta (sub 2)-heterotetrameric human pyruvate dehydrogenase, this cofactor is used to cleave the C(sup alpha) -C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites has not yet been understood. To understand the mechanism of action of this enzyme, we determined the crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95-Angstrom resolution. We propose a model for the flip-flop action of this enzyme through a concerted approximately 2-Angstrom shuttle-like motion of its heterodimers. Similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase with functionally related enzymes suggests that this newly defined shuttle-like motion of domains is common to the family of thiamin pyrophosphate-dependent enzymes.

  2. Structural Basis for Flip-Flop Action of Thiamin-Dependent Enzymes Revealed by Crystal Structure of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The biologically active derivative of vitamin B1; thiamin pyrophosphate; is used as cofactor by many enzymes that perform a wide range of catalytic functions in the pathways of energy production. In alpha2beta2-heterotetrameric human pyruvate dehydrogenase, the first catalytic component enzyme of human pyruvate dehydrogenase complex, this cofactor is used to cleave the C(sup alpha)-C(=0) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase, the second catalytic component of the complex. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites have puzzled researchers from earlier functional studies of this enzyme. In order to gain insight into the mechanism of action of this enzyme, we determined the crystal structure of the holoform of human pyruvate dehydrogenase at 1.958, resolution. We propose a kinetic model for the flip-flop action of this enzyme through the concerted approx. 2A, shuttle-like motion of the heterodimers. The similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase and other functionally related enzymes suggests this newly defined mechanism of shuttle-like motion of domains to be common for the family of thiamin pyrophosphate-dependent enzymes.

  3. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  4. The Conservation of Structure and Mechanism of Catalytic Action in a Family of Thiamin Pyrophosphate (TPP)-dependent Enzymes

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, Ewa

    2004-01-01

    Thiamin pyrophosphate (TPP)-dependent enzymes are a divergent family of TPP and metal ion binding proteins that perform a wide range of functions with the common decarboxylation steps of a -(O=)C-C(OH)- fragment of alpha-ketoacids and alpha- hydroxyaldehydes. To determine how structure and catalytic action are conserved in the context of large sequence differences existing within this family of enzymes, we have carried out an analysis of TPP-dependent enzymes of known structures. The common structure of TPP-dependent enzymes is formed at the interface of four alpha/beta domains from at least two subunits, which provide for two metal and TPP-binding sites. Residues around these catalytic sites are conserved for functional purpose, while those further away from TPP are conserved for structural reasons. Together they provide a network of contacts required for flip-flop catalytic action within TPP-dependent enzymes. Thus our analysis defines a TPP-action motif that is proposed for annotating TPP-dependent enzymes for advancing functional proteomics.

  5. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  6. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  7. Redirection of the Reaction Specificity of a Thermophilic Acetolactate Synthase toward Acetaldehyde Formation

    PubMed Central

    Cheng, Maria; Yoshiyasu, Hayato; Okano, Kenji; Ohtake, Hisao; Honda, Kohsuke

    2016-01-01

    Acetolactate synthase and pyruvate decarboxylase are thiamine pyrophosphate-dependent enzymes that convert pyruvate into acetolactate and acetaldehyde, respectively. Although the former are encoded in the genomes of many thermophiles and hyperthermophiles, the latter has been found only in mesophilic organisms. In this study, the reaction specificity of acetolactate synthase from Thermus thermophilus was redirected to catalyze acetaldehyde formation to develop a thermophilic pyruvate decarboxylase. Error-prone PCR and mutant library screening led to the identification of a quadruple mutant with 3.1-fold higher acetaldehyde-forming activity than the wild-type. Site-directed mutagenesis experiments revealed that the increased activity of the mutant was due to H474R amino acid substitution, which likely generated two new hydrogen bonds near the thiamine pyrophosphate-binding site. These hydrogen bonds might result in the better accessibility of H+ to the substrate-cofactor-enzyme intermediate and a shift in the reaction specificity of the enzyme. PMID:26731734

  8. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon–carbon bond cleavage during α-oxidation of 3-methyl-branched fatty acids

    PubMed Central

    Foulon, Veerle; Antonenkov, Vasily D.; Croes, Kathleen; Waelkens, Etienne; Mannaerts, Guy P.; Van Veldhoven, Paul P.; Casteels, Minne

    1999-01-01

    In the third step of the α-oxidation of 3-methyl-branched fatty acids such as phytanic acid, a 2-hydroxy-3-methylacyl-CoA is cleaved into formyl-CoA and a 2-methyl-branched fatty aldehyde. The cleavage enzyme was purified from the matrix protein fraction of rat liver peroxisomes and identified as a protein made up of four identical subunits of 63 kDa. Its activity proved to depend on Mg2+ and thiamine pyrophosphate, a hitherto unrecognized cofactor of α-oxidation. Formyl-CoA and 2-methylpentadecanal were identified as reaction products when the purified enzyme was incubated with 2-hydroxy-3-methylhexadecanoyl-CoA as the substrate. Hence the enzyme catalyzes a carbon–carbon cleavage, and we propose calling it 2-hydroxyphytanoyl-CoA lyase. Sequences derived from tryptic peptides of the purified rat protein were used as queries to recover human expressed sequence tags from the databases. The composite cDNA sequence of the human lyase contained an ORF of 1,734 bases that encodes a polypeptide with a calculated molecular mass of 63,732 Da. Recombinant human protein, expressed in mammalian cells, exhibited lyase activity. The lyase displayed homology to a putative Caenorhabditis elegans protein that resembles bacterial oxalyl-CoA decarboxylases. Similarly to the decarboxylases, a thiamine pyrophosphate-binding consensus domain was present in the C-terminal part of the lyase. Although no peroxisome targeting signal, neither 1 nor 2, was apparent, transfection experiments with constructs encoding green fluorescent protein fused to the full-length lyase or its C-terminal pentapeptide indicated that the C terminus of the lyase represents a peroxisome targeting signal 1 variant. PMID:10468558

  9. Lyme disease spirochaete Borrelia burgdorferi does not require thiamin.

    PubMed

    Zhang, Kai; Bian, Jiang; Deng, Yijie; Smith, Alexis; Nunez, Roy E; Li, Michael B; Pal, Utpal; Yu, Ai-Ming; Qiu, Weigang; Ealick, Steven E; Li, Chunhao

    2016-11-21

    Thiamin pyrophosphate (ThDP), the active form of thiamin (vitamin B 1 ), is believed to be an essential cofactor for all living organisms 1,2 . Here, we report the unprecedented result that thiamin is dispensable for the growth of the Lyme disease pathogen Borrelia burgdorferi (Bb) 3 . Bb lacks genes for thiamin biosynthesis and transport as well as known ThDP-dependent enzymes 4 , and we were unable to detect thiamin or its derivatives in Bb cells. We showed that eliminating thiamin in vitro and in vivo using BcmE, an enzyme that degrades thiamin, has no impact on Bb growth and survival during its enzootic infectious cycle. Finally, high-performance liquid chromatography analysis reveals that the level of thiamin and its derivatives in Ixodes scapularis ticks, the enzootic vector of Bb, is extremely low. These results suggest that by dispensing with use of thiamin, Borrelia, and perhaps other tick-transmitted bacterial pathogens, are uniquely adapted to survive in tick vectors before transmitting to mammalian hosts. To our knowledge, such a mechanism has not been reported previously in any living organisms.

  10. Conservation of Fold and Topology of Functional Elements in Thiamin Pyrophosphate Enzymes

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E. M.

    2005-01-01

    Thiamin pyrophosphate (TPP)-dependent enzymes are a highly divergent family of proteins binding both TPP and metal ions. They perform decarboxylation-hydroxyaldehydes. Prior -ketoacids and of a common - (O=)C-C(OH)- fragment of to knowledge of three-dimensional structures of these enzmes, the GDGY25-30NN sequence was used to identify these enzymes. Subsequently, a number of structural studies on those enzymes revealed multi-subunit organization and the features of the two duplicate cofactor binding sites. Analyzing the structures of 44 structurally known enzymes, we found that the common structure of these enzymes is reduced to 180-220 amino acid long fragments of two PP and two PYR domains that form the [PP:PYR]2 binding center of two cofactor molecules. The structures of PP and PYR are arranged in a similar fold-sheet with triplets of helices on both sides.Dconsisting of a six-stranded Residues surrounding the cofactors are not strictly conserved, but they provide the same interatomic contacts required for the catalytic functions that these enzymes perform while maintaining interactive structural integrity. These structural and functional amino acids are topological counterparts located in the same positions of the conserved fold of sets of PP and PYR domains. Additional parallels include short fragments of sequences that link these amino acids to the fold and function. This report on the structural commonalities amongst TPP dependent enzymes is thought to contribute new approaches to annotation that may assist in advancing the functional proteomics of TPP dependent enzymes, and trace their complexity within evolutionary context.

  11. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12.

    PubMed Central

    Vander Horn, P B; Backstrom, A D; Stewart, V; Begley, T P

    1993-01-01

    Escherichia coli K-12 synthesizes thiamine pyrophosphate (vitamin B1) de novo. Two precursors [4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate] are coupled to form thiamine monophosphate, which is then phosphorylated to make thiamine pyrophosphate. Previous studies have identified two classes of thi mutations, clustered at 90 min on the genetic map, which result in requirements for the thiazole or the hydroxymethylpryimidine. We report here our initial molecular genetic analysis of the thi cluster. We cloned the thi cluster genes and examined their organization, structure, and function by a combination of phenotypic testing, complementation analysis, polypeptide expression, and DNA sequencing. We found five tightly linked genes, designated thiCEFGH. The thiC gene product is required for the synthesis of the hydroxymethylpyrimidine. The thiE, thiF, thiG, and thiH gene products are required for synthesis of the thiazole. These mutants did not respond to 1-deoxy-D-threo-2-pentulose, indicating that they are blocked in the conversion of this precursor compound to the thiazole itself. Images PMID:8432721

  12. Structural Model for the Flip-Flop Action in Thiamin Pyrophosphate-Dependent Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2003-01-01

    The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of enzymes performing catalysis in pathways of energy production, including (i) decarboxylation of alpha-keto acids followed by (ii) transketolation. These enzymes have shown a common mechanism of TPP activation by imposing an active V-conformation of this coenzyme that brings the N4 atom of the aminopyrimidine ring to the distance required for the intramolecular C-H N hydrogen-bonding with the C2- atom of the thiazolium ring. The reactive C2 atom of TPP is the nucleophile that attacks the carbonyl carbon of different substrates used by the TPP-dependent enzymes. The structure of the heterotetrameric human pyruvate dehydrogenase (Elp) recently determined in our laboratory (1) revealed the association pattern of the subunits and the specifics of two chemically equivalent cofactor binding sites. Dynamic nonequivalence of these two cofactor sites directs the flip-flop action of this enzyme, depending upon which two active sites effect each other (2). The crystal structure derived from the holo-form of Elp provided the basis for the model of the flip-flop action of Elp in which different steps of the catalytic reaction are performed in each of the two cofactor sites at any given moment, where these steps are governed by the concerted shuttle-like motion of the subunits. It is further proposed that balancing a hydrogen-bond network and related cofactor geometry determine the continuity of catalytic events.

  13. Biochemically and histopathologically comparative review of thiamine’s and thiamine pyrophosphate’s oxidative stress effects generated with methotrexate in rat liver

    PubMed Central

    Demiryilmaz, Ismail; Sener, Ebru; Cetin, Nihal; Altuner, Durdu; Suleyman, Bahadir; Albayrak, Fatih; Akcay, Fatih; Suleyman, Halis

    2012-01-01

    Summary Background Oxidative liver injury occurring with methotrexate restricts its use in the desired dose. Therefore, whether or not thiamine and thiamine pyrophosphate, whose antioxidant activity is known, have protective effects on oxidative liver injury generated with methotrexate was comparatively researched in rats using biochemical and histopathological approaches. Material/Methods Thiamine pyrophosphate+methotrexate, thiamine+methotrexate, and methotrexate were injected intraperitoneally in rats for 7 days. After this period, all animals’ livers were excised, killing them with high-dose anesthesia, and histopathologic and biochemical investigations were made. Result Biochemical results demonstrated a significant elevation in level of oxidant parameters such as MDA and MPO, and a reduction in antioxidant parameters such as GSH and SOD in the liver tissue of the methotrexate group. Also, the quantity of 8-OHdG/dG, a DNA injury product, was higher in the methotrexate group with high oxidant levels and low antioxidant levels, and the quantity of 8-OHdG/dG was in the thiamine pyrophosphate group with low oxidant levels and high antioxidant levels. In the thiamine and control groups, the 8-OHdG/dG rate was 1.48±0.35 pmol/L (P>0.05) and 0.55±0.1 pmol/L (P<0.0001). Thiamine pyrophosphate significantly decreased blood AST, ALT and LDH, but methotrexate and thiamine did not decrease the blood levels of AST, ALT and LDH. Histopathologically, although centrilobular necrosis, apoptotic bodies and inflammation were monitored in the methotrexate group, the findings in the thiamine pyrophosphate group were almost the same as in the control group. Conclusions Thiamine pyrophosphate was found to be effective in methotrexate hepatotoxicity, but thiamine was ineffective. PMID:23197226

  14. Evolutionary analysis of the TPP-dependent enzyme family.

    PubMed

    Costelloe, Seán J; Ward, John M; Dalby, Paul A

    2008-01-01

    The evolutionary relationships of the thiamine pyrophosphate (TPP)-dependent family of enzymes was investigated by generation of a neighbor joining phylogenetic tree using sequences from the conserved pyrophosphate (PP) and pyrimidine (Pyr) binding domains of 17 TPP-dependent enzymes. This represents the most comprehensive analysis of TPP-dependent enzyme evolution to date. The phylogeny was shown to be robust by comparison with maximum likelihood trees generated for each individual enzyme and also broadly confirms the evolutionary history proposed recently from structural comparisons alone (Duggleby 2006). The phylogeny is most parsimonious with the TPP enzymes having arisen from a homotetramer which subsequently diverged into an alpha(2)beta(2) heterotetramer. The relationship between the PP- and Pyr-domains and the recruitment of additional protein domains was examined using the transketolase C-terminal (TKC)-domain as an example. This domain has been recruited by several members of the family and yet forms no part of the active site and has unknown function. Removal of the TKC-domain was found to increase activity toward beta-hydroxypyruvate and glycolaldehyde. Further truncations of the Pyr-domain yielded several variants with retained activity. This suggests that the influence of TKC-domain recruitment on the evolution of the mechanism and specificity of transketolase (TK) has been minor, and that the smallest functioning unit of TK comprises the PP- and Pyr-domains, whose evolutionary histories extend to all TPP-dependent enzymes.

  15. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate.

    PubMed

    Lukacik, Petra; Lobley, Carina M C; Bumann, Mario; Arena de Souza, Victoria; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2015-10-01

    Probiotic bacterial strains have been shown to enhance the health of the host through a range of mechanisms including colonization, resistance against pathogens, secretion of antimicrobial compounds and modulation of the activity of the innate immune system. Lactobacillus salivarius UCC118 is a well characterized probiotic strain which survives intestinal transit and has many desirable host-interaction properties. Probiotic bacteria display a wide range of catabolic activities, which determine their competitiveness in vivo. Some lactobacilli are heterofermentative and can metabolize pentoses, using a pathway in which transketolase and transaldolase are key enzymes. L. salivarius UCC118 is capable of pentose utilization because it encodes the key enzymes on a megaplasmid. The crystal structures of the megaplasmid-encoded transketolase with and without the enzyme cofactor thiamine pyrophosphate have been determined. Comparisons with other known transketolase structures reveal a high degree of structural conservation in both the catalytic site and the overall conformation. This work extends structural knowledge of the transketolases to the industrially and commercially important Lactobacillus genus.

  16. Structure of ThiM from Vitamin B1 biosynthetic pathway of Staphylococcus aureus - Insights into a novel pro-drug approach addressing MRSA infections

    NASA Astrophysics Data System (ADS)

    Drebes, Julia; Künz, Madeleine; Windshügel, Björn; Kikhney, Alexey G.; Müller, Ingrid B.; Eberle, Raphael J.; Oberthür, Dominik; Cang, Huaixing; Svergun, Dmitri I.; Perbandt, Markus; Betzel, Christian; Wrenger, Carsten

    2016-03-01

    Infections caused by the methicillin-resistant Staphylococcus aureus (MRSA) are today known to be a substantial threat for global health. Emerging multi-drug resistant bacteria have created a substantial need to identify and discover new drug targets and to develop novel strategies to treat bacterial infections. A promising and so far untapped antibiotic target is the biosynthesis of vitamin B1 (thiamin). Thiamin in its activated form, thiamin pyrophosphate, is an essential co-factor for all organisms. Therefore, thiamin analogous compounds, when introduced into the vitamin B1 biosynthetic pathway and further converted into non-functional co-factors by the bacterium can function as pro-drugs which thus block various co-factor dependent pathways. We characterized one of the key enzymes within the S. aureus vitamin B1 biosynthetic pathway, 5-(hydroxyethyl)-4-methylthiazole kinase (SaThiM; EC 2.7.1.50), a potential target for pro-drug compounds and analyzed the native structure of SaThiM and complexes with the natural substrate 5-(hydroxyethyl)-4-methylthiazole (THZ) and two selected substrate analogues.

  17. Overexpression of Plastid Transketolase in Tobacco Results in a Thiamine Auxotrophic Phenotype[OPEN

    PubMed Central

    Khozaei, Mahdi; Fisk, Stuart; Lawson, Tracy; Gibon, Yves; Sulpice, Ronan; Stitt, Mark; Lefebvre, Stephane C.; Raines, Christine A.

    2015-01-01

    To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants. PMID:25670766

  18. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2012-01-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  19. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout.

    PubMed

    Ottinger, Christopher A; Honeyfield, Dale C; Densmore, Christine L; Iwanowicz, Luke R

    2012-12-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  20. Thiamine and magnesium deficiencies: keys to disease.

    PubMed

    Lonsdale, D

    2015-02-01

    Thiamine deficiency (TD) is accepted as the cause of beriberi because of its action in the metabolism of simple carbohydrates, mainly as the rate limiting cofactor for the dehydrogenases of pyruvate and alpha-ketoglutarate, both being critical to the action of the citric acid cycle. Transketolase, dependent on thiamine and magnesium, occurs twice in the oxidative pentose pathway, important in production of reducing equivalents. Thiamine is also a cofactor in the dehydrogenase complex in the degradation of the branched chain amino acids, leucine, isoleucine and valine. In spite of these well accepted facts, the overall clinical effects of TD are still poorly understood. Because of the discovery of 2-hydroxyacyl-CoA lyase (HACL1) as the first peroxisomal enzyme in mammals found to be dependent on thiamine pyrophosphate (TPP) and the ability of thiamine to bind with prion protein, these factors should improve our clinical approach to TD. HACL1 has two important roles in alpha oxidation, the degradation of phytanic acid and shortening of 2-hydroxy long-chain fatty acids so that they can be degraded further by beta oxidation. The downstream effects of a lack of efficiency in this enzyme would be expected to be critical in normal brain metabolism. Although TD has been shown experimentally to produce reversible damage to mitochondria and there are many other causes of mitochondrial dysfunction, finding TD as the potential biochemical lesion would help in differential diagnosis. Stresses imposed by infection, head injury or inoculation can initiate intermittent cerebellar ataxia in thiamine deficiency/dependency. Medication or vaccine reactions appear to be more easily initiated in the more intelligent individuals when asymptomatic marginal malnutrition exists. Erythrocyte transketolase testing has shown that thiamine deficiency is widespread. It is hypothesized that the massive consumption of empty calories, particularly those derived from carbohydrate and fat, results in a high calorie/thiamine ratio as a major cause of disease. Because mild to moderate TD results in pseudo hypoxia in the limbic system and brainstem, emotional and stress reflexes of the autonomic nervous system are stimulated and exaggerated, producing symptoms often diagnosed as psychosomatic disease. If the biochemical lesion is recognized at this stage, the symptoms are easily reversible. If not, and the malnutrition continues, neurodegeneration follows and results in a variety of chronic brain diseases. Results from acceptance of the hypothesis could be tested by performing erythrocyte transketolase tests to pick out those with TD and supplementing the affected individuals with the appropriate dietary supplements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Eachmore » protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.« less

  2. Vitamin B1 content in potato: effect of genotype, tuber enlargement, and storage, and estimation of stability and broad-sense heritability

    USDA-ARS?s Scientific Manuscript database

    Thiamine pyrophosphate (vitamin B1) is an essential nutrient in the human diet, and is often referred as the energy vitamin. Potato contains modest amounts of thiamine. However, genetic variation of thiamine concentrations in potato has never been investigated. In this study, we determined thiamine ...

  3. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-Dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina; Ciszak, Ewa M.; Korotchkina, Lioubov; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    Thiamin pyrophosphate (TPP), the biologically active form of vitamin BI, is a cofactor of enzymes catalyzing reactions involving the cleavage of a carbon-carbon bond adjacent to an oxo group. TPP-dependent enzymes show a common mechanism of TPP activation by: (1) forming the ionic N-H...O(sup -) hydrogen bonding between the N1' atom of the aminopirymidine ring of the coenzyme and intrinsic gamma-carboxylate group of glutamate and (2) imposing an "active" V-conformation that brings the N4' atom of the aminopirymidine to the distance required for the intramolecular C-H.. .N hydrogen bonding with the thiazolium C2 atom. Within these two hydrogen bonds that rapidly exchange protons, protonation of the N1' atom is strictly coordinated with the deprotonation of the 4' -amino group and eventually abstraction of the proton from C2. The human pyruvate dehydrogenase Elp, component of human pyruvate dehydrogenase complex, catalyzes the irreversible decarboxylation of the pyruvate followed by the reductive acetylation of the lipoyl group of dihydrolipoyl acyltransferase. Elp is alpha(sub 2)beta(sub2)-heterotetrameric with a molecular mass of I54 kDa, which has two catalytic sites, each providing TPP and magnesium ion as cofactors and each formed on the interface between the PP and PYR domains. The dynamic nonequivalence of two otherwise chemically equivalent catalytic sites has been observed and the flip-flop mechanism was suggested, according to which two active sites affect each other and in which different steps of the catalytic reaction are performed in each of the sites at any given moment. Based on specific futures of human pyruvate dehydrogenase including rigid and flexible connections between domains that bind the cofactor we propose a mechanistic model for the flip-flop action of this enzyme. We postulate that the dynamic protein environment drives the exchange of tautomers in the 4' -aminopyrimidine ring of the cofactor through a concerted shuttl-like motion of tightly connected domains. The dynamic exchange of those tautomers, in turns, is required during the reactions of pyruvate decarboxylation and reductive acetylation of lipoamide. Thus the shuttle-like motion of the domains is coordinated with the reactions of decarboxylation and acetylation, which are carried out in each of the cofactor sites resulting in a flip-flop action of the enzyme. The structure-derived mechanism of action of human pyruvate dehydrogenase may be likely common for other TPP-dependent enzymes.

  4. Alternatives to vitamin B 1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    DOE PAGES

    McRose, Darcy; Guo, Jian; Monier, Adam; ...

    2014-08-29

    Here, vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliatedmore » with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with ‘incomplete’ TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.« less

  5. Alternatives to vitamin B 1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRose, Darcy; Guo, Jian; Monier, Adam

    Here, vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliatedmore » with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with ‘incomplete’ TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.« less

  6. Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+.

    PubMed

    Panov, A; Scarpa, A

    1996-01-16

    The activity of alpha-ketoglutarate dehydrogenase complex (KGDHC), an important enzyme regulating several metabolic pathways, could be regulated by changes in the environment within the mitochondrial matrix. It has been postulated that the activity of this and other dehydrogenases in vivo could be modulated by changes in the intramitochondrial concentrations of Ca2+ or Mg2+. Using a purified alpha-ketoglutarate dehydrogenase from pig hearts, the effect of Ca2+ and/or Mg2+ on the enzyme activity was investigated. Either Ca2+ or Mg2+ increased enzyme activity, and the effects were additive if the concentrations of free divalent cations were below 0.1 and 1 mM for Ca2+ and Mg2+, respectively. In the presence of 1 mM alpha-ketoglutarate and other cofactors, the KM for Mg2+ was 25 microM and less than 1 microM for Ca2+. The KM for alpha-ketoglutarate was a function of the divalent cation(s) present: 4 +/- 1.1 mM in the absence of Ca2+, with or without Mg2+; 2.2 mM in the presence of 1.8 microM Ca2+ alone; and 0.3 mM in the presence of both Ca2+ and Mg2+. Mg2+ increased KGDHC activity only in the presence of thiamine pyrophosphate (TPP) indicating that KGDHC requires both TPP and Mg2+ for enzyme's maximal activity. The affinity of KGDHC for NAD+ is significantly changed by either Mg2+ or Ca2+. The conclusions are that changes in both Ca2+ and Mg2+, in concentrations possibly occurring within mitochondria, could control KGDHC activity and that thiamine pyrophosphate is required for maximal enzyme activity.

  7. Chronic administration of thiamine pyrophosphate decreases age-related histological atrophic testicular changes and improves sexual behavior in male Wistar rats.

    PubMed

    Hernández-Montiel, H L; Vásquez López, C M; González-Loyola, J G; Vega-Anaya, G C; Villagrán-Herrera, M E; Gallegos-Corona, M A; Saldaña, C; Ramos Gómez, M; García Horshman, P; García Solís, P; Solís-S, J C; Robles-Osorio, M L; Ávila Morales, J; Varela-Echavarría, A; Paredes Guerrero, R

    2014-06-01

    Aging is a multifactorial universal process and constitutes the most important risk factor for chronic-degenerative diseases. Although it is a natural process, pathological aging arises when these changes occur quickly and the body is not able to adapt. This is often associated with the generation of reactive oxygen species (ROS), inflammation, and a decrease in the endogenous antioxidant systems, constituting a physiopathological state commonly found in chronic-degenerative diseases. At the testicular level, aging is associated with tissue atrophy, decreased steroidogenesis and spermatogenesis, and sexual behavior disorders. This situation, in addition to the elevated generation of ROS in the testicular steroidogenesis, provides a critical cellular environment causing oxidative damage at diverse cellular levels. To assess the effects of a reduction in the levels of ROS, thiamine pyrophosphate (TPP) was chronically administered in senile Wistar rats. TPP causes an activation of intermediate metabolism routes, enhancing cellular respiration and decreasing the generation of ROS. Our results show an overall decrease of atrophic histological changes linked to aging, with higher levels of serum testosterone, sexual activity, and an increase in the levels of endogenous antioxidant enzymes in TPP-treated animals. These results suggest that TPP chronic administration decreases the progression of age-related atrophic changes by improving the intermediate metabolism, and by increasing the levels of antioxidant enzymes.

  8. Biochemical and molecular analysis of an X-linked case of Leigh syndrome associated with thiamin-responsive pyruvate dehydrogenase deficiency.

    PubMed

    Naito, E; Ito, M; Yokota, I; Saijo, T; Matsuda, J; Osaka, H; Kimura, S; Kuroda, Y

    1997-08-01

    We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.

  9. CRYSTALLINE INORGANIC PYROPHOSPHATASE ISOLATED FROM BAKER'S YEAST

    PubMed Central

    Kunitz, M.

    1952-01-01

    Crystalline inorganic pyrophosphatase has been isolated from baker's yeast. The crystalline enzyme is a protein of the albumin type with an isoelectric point near pH 4.8. Its molecular weight is of the order of 100,000. It contains about 5 per cent tyrosine and 3.5 per cent tryptophane. It is most stable at pH 6.8. The new crystalline protein acts as a specific catalyst for the hydrolysis of inorganic pyrophosphate into orthophosphate ions. It does not catalyze the hydrolysis of the pyrophosphate radical of such organic esters as adenosine di- and triphosphate, or thiamine pyrophosphate. Crystalline pyrophosphatase requires the presence of Mg, Co, or Mn ions as activators. These ions are antagonized by calcium ions. Mg is also antagonized by Co or Mn ions. The rate of the enzymatic hydrolysis of inorganic pyrophosphate is proportional to the concentration of enzyme and is a function of pH, temperature, concentration of substrate, and concentration of activating ion. The approximate conditions for optimum rate are: 40°C. and pH 7.0 at a concentration of 3 to 4 x 10–3 M Na4P2O7 and an equivalent concentration of magnesium salt. The enzymatic hydrolysis of Na4P2O7 or K4P2O7 proceeds to completion and is irreversible under the conditions at which hydrolysis is occurring. Details are given of the method of isolation of the crystalline enzyme. PMID:14898026

  10. Thiamine and thiaminase status in forage fish of salmonines from Lake Michigan

    USGS Publications Warehouse

    Tillitt, D.E.; Zajicek, J.L.; Brown, S.B.; Brown, L.R.; Fitzsimons, J.D.; Honeyfield, D.C.; Holey, M.E.; Wright, G.M.

    2005-01-01

    Dietary sources of thiamine (vitamin B1) and thiamine-degrading enzymes (thiaminases) are thought to be primary factors in the development of thiamine deficiency among Great Lakes salmonines. We surveyed major forage fish species in Lake Michigan for their content of thiamine, thiamine vitamers, and thiaminase activity. Concentrations of total thiamine were similar (P ≤ 0.05) among most forage fishes (alewife Alosa pseudoharengus, bloater Coregonus hoyi, spottail shiner Notropis hudsonius, deepwater sculpin Myoxocephalus thompsonii, yellow perch Perca flavescens, ninespine stickleback Pungitius pungitius, and round goby Neogobius melanostomus) and slightly lower in rainbow smelt Osmerus mordax. Concentrations of total thiamine were all above the dietary requirements of coldwater fishes, suggesting the thiamine content of forage fish is not the critical factor in the development of thiamine deficiency in Lake Michigan salmonines. Thiamine pyrophosphate was the predominant form of thiamine in most species of forage fish, followed by free thiamine and thiamine monophosphate. Total thiamine was slightly greater in summer collections of alewife and rainbow smelt than in spring and fall collections, but the same was not true for bloater. Thiaminase activity varied among species and was greatest in gizzard shad Dorosoma cepedianum, spottail shiner, alewife, and rainbow smelt. Thiaminase activity in alewife varied among collection locations, season (greatest in spring), and size of the fish. Size and condition factors were positively correlated with both total thiamine and thiaminase activity in alewife. Thus, thiamine and thiaminase activity in forage fishes collected in Lake Michigan varied among species, seasons, year caught, and size (or condition). Therefore, multiple factors must be considered in the development of predictive models for the onset of thiamine deficiency in Great Lakes salmonines. Most importantly, thiaminase activity was great in alewives and rainbow smelt, suggesting that these prey fish are key causative factors of the thiamine deficiency in Great Lakes salmonines.

  11. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    PubMed

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  12. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model

    PubMed Central

    Karuppagounder, Saravanan S.; Xu, Hui; Shi, Qingli; Chen, Lian H.; Pedrini, Steve; Pechman, David; Baker, Harriet; Beal, M. Flint; Gandy, Sam E.; Gibson, Gary E.

    2009-01-01

    Mitochondrial dysfunction, oxidative stress and reductions in thiamine-dependent enzymes have been implicated in multiple neurological disorders including Alzheimer's disease (AD). Experimental thiamine deficiency (TD) is an established model for reducing the activities of thiamine-dependent enzymes in brain. TD diminishes thiamine dependent enzymes throughout the brain, but produces a time-dependent selective neuronal loss, glial activation, inflammation, abnormalities in oxidative metabolism and clusters of degenerating neurites in only specific thalamic regions. The present studies tested how TD alters brain pathology in Tg19959 transgenic mice over expressing a double mutant form of the amyloid precursor protein (APP). TD exacerbated amyloid plaque pathology in transgenic mice and enlarged the area occupied by plaques in cortex, hippocampus and thalamus by 50%, 200% and 200%, respectively. TD increased Aβ1–42 levels by about three-fold, β-CTF (C99) levels by 33% and β-secretase (BACE1) protein levels by 43%. TD induced inflammation in areas of plaque formation. Thus, the induction of mild impairment of oxidative metabolism, oxidative stress and inflammation induced by TD alters metabolism of APP and/or Aβ and promotes accumulation of plaques independent of neuron loss or neuritic clusters. PMID:18406011

  13. Members of the YjgF/YER057c/UK114 family of proteins inhibit phosphoribosylamine synthesis in vitro.

    PubMed

    Lambrecht, Jennifer A; Browne, Beth Ann; Downs, Diana M

    2010-11-05

    The YjgF/YER057c/UK114 family of proteins is highly conserved across all three domains of life and currently lacks a consensus biochemical function. Analysis of Salmonella enterica strains lacking yjgF has led to a working model in which YjgF functions to remove potentially toxic secondary products of cellular enzymes. Strains lacking yjgF synthesize the thiamine precursor phosphoribosylamine (PRA) by a TrpD-dependent mechanism that is not present in wild-type strains. Here, PRA synthesis was reconstituted in vitro with anthranilate phosphoribosyltransferase (TrpD), threonine dehydratase (IlvA), threonine, and phosphoribosyl pyrophosphate. TrpD-dependent PRA formation in vitro was inhibited by S. enterica YjgF and the human homolog UK114. Thus, the work herein describes the first biochemical assay for diverse members of the highly conserved YjgF/YER057c/UK114 family of proteins and provides a means to dissect the cellular functions of these proteins.

  14. Maternal influences on thiamine status of walleye Sander vitreus ova.

    PubMed

    Wiegand, M D; Johnston, T A; Brown, L R; Brown, S B; Casselman, J M; Leggett, W C

    2011-03-01

    Concentrations of the various forms of thiamine (vitamin B(1) ) were determined in walleye Sander vitreus ova from three central North American lakes. Total thiamine concentrations in ova from Lake Winnipeg S. vitreus were approximately three times greater (mean 12 nmol g(-1) ) than in those from Lakes Erie or Ontario. The percentage of thiamine in the active form (thiamine pyrophosphate, TPP) was highest in Lake Ontario ova (mean 88%) and lowest in those from Lake Winnipeg (mean 70%). Neither ova total thiamine concentration nor per cent ova thiamine as TPP showed any consistent relationships with maternal age, size, morphometric condition, somatic lipid concentrations or liver lipid concentrations. Ova total thiamine concentration, however, was negatively related to ovum size in some populations, as well as among populations, and was positively related to liver total thiamine concentration. Maternal transfer of thiamine to ova appears to be independent of female ontogenetic or conditional state in S. vitreus. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  15. Synthesis and Antimicrobial Evaluation of Amixicile-Based Inhibitors of the Pyruvate-Ferredoxin Oxidoreductases of Anaerobic Bacteria and Epsilonproteobacteria

    PubMed Central

    Kennedy, Andrew J.; Bruce, Alexandra M.; Gineste, Catherine; Ballard, T. Eric; Olekhnovich, Igor N.; Macdonald, Timothy L.

    2016-01-01

    Amixicile is a promising derivative of nitazoxanide (an antiparasitic therapeutic) developed to treat systemic infections caused by anaerobic bacteria, anaerobic parasites, and members of the Epsilonproteobacteria (Campylobacter and Helicobacter). Amixicile selectively inhibits pyruvate-ferredoxin oxidoreductase (PFOR) and related enzymes by inhibiting the function of the vitamin B1 cofactor (thiamine pyrophosphate) by a novel mechanism. Here, we interrogate the amixicile scaffold, guided by docking simulations, direct PFOR inhibition assays, and MIC tests against Clostridium difficile, Campylobacter jejuni, and Helicobacter pylori. Docking simulations revealed that the nitro group present in nitazoxanide interacts with the protonated N4′-aminopyrimidine of thiamine pyrophosphate (TPP). The ortho-propylamine on the benzene ring formed an electrostatic interaction with an aspartic acid moiety (B456) of PFOR that correlated with improved PFOR-inhibitory activity and potency by MIC tests. Aryl substitution with electron-withdrawing groups and substitutions of the propylamine with other alkyl amines or nitrogen-containing heterocycles both improved PFOR inhibition and, in many cases, biological activity against C. difficile. Docking simulation results correlate well with mechanistic enzymology and nuclear magnetic resonance (NMR) studies that show members of this class of antimicrobials to be specific inhibitors of vitamin B1 function by proton abstraction, which is both novel and likely to limit mutation-based drug resistance. PMID:27090174

  16. Synthesis and Antimicrobial Evaluation of Amixicile-Based Inhibitors of the Pyruvate-Ferredoxin Oxidoreductases of Anaerobic Bacteria and Epsilonproteobacteria.

    PubMed

    Kennedy, Andrew J; Bruce, Alexandra M; Gineste, Catherine; Ballard, T Eric; Olekhnovich, Igor N; Macdonald, Timothy L; Hoffman, Paul S

    2016-07-01

    Amixicile is a promising derivative of nitazoxanide (an antiparasitic therapeutic) developed to treat systemic infections caused by anaerobic bacteria, anaerobic parasites, and members of the Epsilonproteobacteria (Campylobacter and Helicobacter). Amixicile selectively inhibits pyruvate-ferredoxin oxidoreductase (PFOR) and related enzymes by inhibiting the function of the vitamin B1 cofactor (thiamine pyrophosphate) by a novel mechanism. Here, we interrogate the amixicile scaffold, guided by docking simulations, direct PFOR inhibition assays, and MIC tests against Clostridium difficile, Campylobacter jejuni, and Helicobacter pylori Docking simulations revealed that the nitro group present in nitazoxanide interacts with the protonated N4'-aminopyrimidine of thiamine pyrophosphate (TPP). The ortho-propylamine on the benzene ring formed an electrostatic interaction with an aspartic acid moiety (B456) of PFOR that correlated with improved PFOR-inhibitory activity and potency by MIC tests. Aryl substitution with electron-withdrawing groups and substitutions of the propylamine with other alkyl amines or nitrogen-containing heterocycles both improved PFOR inhibition and, in many cases, biological activity against C. difficile Docking simulation results correlate well with mechanistic enzymology and nuclear magnetic resonance (NMR) studies that show members of this class of antimicrobials to be specific inhibitors of vitamin B1 function by proton abstraction, which is both novel and likely to limit mutation-based drug resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Reappearance of beriberi heart disease in Japan. A study of 23 cases.

    PubMed

    Kawai, C; Wakabayashi, A; Matsumura, T; Yui, Y

    1980-09-01

    Twenty-three Japanese patients with beriberi heart disease, 17 of them teenagers, were studied. The recent tendency for teenagers to take excessive sweet carbonated soft drinks, instant noodles and powermill-polished rice readily induces relative thiamine deficiency. A sudden increase in thiamine requirements due to strenuous exercise can result in overt beriberi heart disease. Alcohol had nothing to do with the development of the disease. Characteristic features commonly seen in teenage patients include peripheral edema, low peripheral vascular resistance, increased venous pressure enlarged heart, T wave abnormalities, hyperkinetic circulatory state and increased circulating blood volume. Thiamine deficiency was confirmed by a decrease in blood thiamine concentration, a decrease in erythrocyte transketolase activity and an increase in thiamine pyrophosphate (TPP) effect. Improvement was rapidly achieved with thiamine administration, balanced nutrition and rest, especially in the teenage patients. Increased circulating blood volume was useful in differentiating beriberi heart disease from hyperthyroidism.

  18. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    PubMed Central

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Åkerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjärnlund, Ulla; Oliveira, Kenneth; Ström, Karin; McCormick, Stephen D.; Karlsson, Simon; Ström, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Strömquist, Jennie; Collier, Tracy K.; Börjeson, Hans; Mörner, Torsten; Hansson, Tomas

    2016-01-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported. PMID:27958327

  19. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    USGS Publications Warehouse

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Akerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjarnlund, Ulla; Oliveira, Kenneth; Strom, Karin; McCormick, Stephen D.; Karlsson, Simon; Strom, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Stromquist, Jennie; Collier, Tracy K.; Borjeson, Hans; Morner, Torsten; Hansson, Tomas

    2016-01-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.

  20. Widespread episodic thiamine deficiency in Northern Hemisphere wildlife

    NASA Astrophysics Data System (ADS)

    Balk, Lennart; Hägerroth, Per-Åke; Gustavsson, Hanna; Sigg, Lisa; Åkerman, Gun; Ruiz Muñoz, Yolanda; Honeyfield, Dale C.; Tjärnlund, Ulla; Oliveira, Kenneth; Ström, Karin; McCormick, Stephen D.; Karlsson, Simon; Ström, Marika; van Manen, Mathijs; Berg, Anna-Lena; Halldórsson, Halldór P.; Strömquist, Jennie; Collier, Tracy K.; Börjeson, Hans; Mörner, Torsten; Hansson, Tomas

    2016-12-01

    Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.

  1. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis

    PubMed Central

    Mkrtchyan, Garik; Aleshin, Vasily; Parkhomenko, Yulia; Kaehne, Thilo; Luigi Di Salvo, Martino; Parroni, Alessia; Contestabile, Roberto; Vovk, Andrey; Bettendorff, Lucien; Bunik, Victoria

    2015-01-01

    Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins. PMID:26212886

  2. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush).

    PubMed

    Ottinger, Christopher A; Honeyfield, Dale C; Densmore, Christine L; Iwanowicz, Luke R

    2014-05-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP--biologically inactive form) to thiamine pyrophosphate (TPP--biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state. Published by Elsevier Ltd.

  3. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2014-01-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP – biologically inactive form) to thiamine pyrophosphate (TPP – biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state.

  4. Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica

    PubMed Central

    Bazurto, Jannell V.; Heitman, Nicholas J.

    2015-01-01

    ABSTRACT In Salmonella enterica, the thiamine biosynthetic intermediate 5-aminoimidazole ribotide (AIR) can be synthesized de novo independently of the early purine biosynthetic reactions. This secondary route to AIR synthesis is dependent on (i) 5-amino-4-imidazolecarboxamide ribotide (AICAR) accumulation, (ii) a functional phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase (PurC; EC 6.3.2.6), and (iii) methionine and lysine in the growth medium. Studies presented here show that AICAR is a direct precursor to AIR in vivo. PurC-dependent conversion of AICAR to AIR was recreated in vitro. Physiological studies showed that exogenous nutrients (e.g., methionine and lysine) antagonize the inhibitory effects of AICAR on the ThiC reaction and decreased the cellular thiamine requirement. Finally, genetic results identified multiple loci that impacted the effect of AICAR on thiamine synthesis and implicated cellular aspartate levels in AICAR-dependent AIR synthesis. Together, the data here clarify the mechanism that allows conditional growth of a strain lacking the first five biosynthetic enzymes, and they provide additional insights into the complexity of the metabolic network and its plasticity. IMPORTANCE In bacteria, the pyrimidine moiety of thiamine is derived from aminoimidazole ribotide (AIR), an intermediate in purine biosynthesis. A previous study described conditions under which AIR synthesis is independent of purine biosynthesis. This work is an extension of that previous study and describes a new synthetic pathway to thiamine that depends on a novel thiamine precursor and a secondary activity of the biosynthetic enzyme PurC. These findings provide mechanistic details of redundancy in the synthesis of a metabolite that is essential for nucleotide and coenzyme biosynthesis. Metabolic modifications that allow the new pathway to function or enhance it are also described. PMID:26100042

  5. Vitamin B1 (thiamine) and dementia

    PubMed Central

    Gibson, Gary E.; Hirsch, Joseph A.; Fonzetti, Pasquale; Jordon, Barry D.; Cirio, Rosanna T.; Elder, Jessica

    2016-01-01

    The earliest and perhaps best example of an interaction between nutrition and dementia is related to thiamine (vitamin B1). Throughout the last century, research showed that thiamine deficiency is associated with neurological problems, including cognitive deficits and encephalopathy. Multiple similarities exist between classical thiamine deficiency and Alzheimer’s disease (AD) in that both are associated with cognitive deficits and reductions in brain glucose metabolism. Thiamine-dependent enzymes are critical components of glucose metabolism that are reduced in the brains of AD patients and by thiamine deficiency, and their decline could account for the reduction in glucose metabolism. In preclinical models, reduced thiamine can drive AD-like abnormalities, including memory deficits, plaques, and hyperphosphorylation of tau. Furthermore, excess thiamine diminishes AD-like pathologies. In addition to dietary deficits, drugs, or other manipulations that interfere with thiamine absorption can cause thiamine deficiency. Elucidating the reasons why the brains of AD patients are functionally thiamine deficient and determining the effects of thiamine restoration may provide critical information to help treat patients with AD. PMID:26971083

  6. Expression and characterization of recombinant pyruvate phosphate dikinase from Entamoeba histolytica.

    PubMed

    Saavedra-Lira, E; Ramirez-Silva, L; Perez-Montfort, R

    1998-01-15

    The parasite Entamoeba histolytica is an organism whose main energetic source comes from glycolysis. It has the singularity that several of its glycolytic enzymes use pyrophosphate as an alternative phosphate donor. Thus, pyruvate phosphate dikinase (PPDK), an inorganic pyrophosphate (PPi)-dependent enzyme, substitutes pyruvate kinase present in humans. We previously cloned and sequenced the gene that codifies for PPDK in E. histolytica. We now report its expression in a bacterial system and its purification to 98% homogeneity. We determined its K(m) for phosphoenolpyruvate, AMP and PPi (21, < 5 and 100 microM, respectively). Unlike PPDK from maize and bacteria and pyruvate kinase from other cells, EhPPDk is dependent on divalent cations but does not require monovalent cations for activity. The enzyme has an optimum pH of 6.0, it is labile to low temperatures and has a tetrameric structure. Since EhPPDK is a PPi-dependent enzyme, we also tested the effect of some pyrophosphate analogs as inhibitors of activity. Studies on the function and structure of this enzyme may be important for therapeutic research in several parasitic diseases, since it has no counterpart in humans.

  7. D-lysergic acid-activating enzyme from the ergot fungus Claviceps purpurea.

    PubMed Central

    Keller, U; Zocher, R; Krengel, U; Kleinkauf, H

    1984-01-01

    A D-lysergic acid-activating enzyme from the ergot fungus Claviceps purpurea was purified about 145-fold. The enzyme was able to catalyse both the D-lysergic acid-dependent ATP-pyrophosphate exchange and the formation of ATP from D-lysergic acid adenylate and pyrophosphate. Both reactions were also catalysed to a decreased but significant extent with respect to dihydrolysergic acid. The molecular mass of the enzyme was estimated to lie between 135 and 140 kDa. The involvement of the enzyme in the biosynthesis of ergot peptide alkaloids is discussed. Images Fig. 4. PMID:6326747

  8. Abnormal Thiamine-Dependent Processes in Alzheimer’s Disease. Lessons from Diabetes

    PubMed Central

    Gibson, Gary E.; Hirsch, Joseph A.; Cirio, Rosanna T.; Jordan, Barry D.; Fonzetti, Pasquale; Elder, Jessica

    2013-01-01

    Reduced glucose metabolism is an invariant feature of Alzheimer’s Disease (AD) and an outstanding biomarker of disease progression. Glucose metabolism may be an attractive therapeutic target, whether the decline initiates AD pathophysiology or is a critical component of a cascade. The cause of cerebral regional glucose hypometabolism remains unclear. Thiamine-dependent processes are critical in glucose metabolism and are diminished in brains of AD patients at autopsy. Further, the reductions in thiamine-dependent processes are highly correlated to the decline in clinical dementia rating scales. In animal models, thiamine deficiency exacerbates plaque formation, promotes phosphorylation of tau and impairs memory. In contrast, treatment of mouse models of AD with the thiamine derivative benfotiamine diminishes plaques, decreases phosphorylation of tau and reverses memory deficits. Diabetes predisposes to AD, which suggests they may share some common mechanisms. Benfotiamine diminishes peripheral neuropathy in diabetic humans and animals. In diabetes, benfotiamine induces key thiamine-dependent enzymes of the pentose shunt to reduce accumulation of toxic metabolites including advanced glycation end products (AGE). Related mechanisms may lead to reversal of plaque formation by benfotiamine in animals. If so, the use of benfotiamine could provide a safe intervention to reverse biological and clinical processes of AD progression. PMID:22982063

  9. The characteristics of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferases from Sansevieria trifasciata leaves and Phaseolus coccineus stems.

    PubMed

    Kowalczyk, S

    1987-01-01

    Three different molecular forms of pyrophosphate-dependent phosphofructokinase have been isolated: one from Sansevieria trifasciata leaves and two from Phaseolus coccineus stems. The form isolated from S. trifasciata has the molecular weight of about 115,000. The apparent molecular weights for the two forms from mung bean were approximately 220,000 and 450,000. All three forms have the same pH optima, an absolute requirement for Mg2+ ions both in the forward and reverse reaction, but differ in their sensitivity toward fructose 2,6-bisphosphate. Kinetic properties of the partially purified enzymes have been investigated in the presence and absence of fructose 2,6-bisphosphate. Pyrophosphate-dependent phosphofructokinase from S. trifasciata exhibited hyperbolic kinetics with all substrates tested. The saturation curves of the enzyme (form A) from mung bean for pyrophosphate, fructose 6-phosphate and fructose 1,6-bisphosphate were sigmoidal in the absence of fructose 2,6-bisphosphate. In the presence of fructose 2,6-bisphosphate these kinetics became hyperbolic.

  10. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    PubMed

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  11. Vitamin B1 diversity and characterization of biosynthesis genes in cassava.

    PubMed

    Mangel, Nathalie; Fudge, Jared B; Fitzpatrick, Teresa B; Gruissem, Wilhelm; Vanderschuren, Hervé

    2017-06-15

    Vitamin B1, which consists of the vitamers thiamin and its phosphorylated derivatives, is an essential micronutrient for all living organisms because it is required as a metabolic cofactor in several enzymatic reactions. Genetic diversity of vitamin B1 biosynthesis and accumulation has not been investigated in major crop species other than rice and potato. We analyzed cassava germplasm for accumulation of B1 vitamers. Vitamin B1 content in leaves and roots of 41 cassava accessions showed significant variation between accessions. HPLC analyses of B1 vitamers revealed distinct profiles in cassava leaves and storage roots, with nearly equal relative levels of thiamin pyrophosphate and thiamin monophosphate in leaves, but mostly thiamin pyrophosphate in storage roots. Unusually, the cassava genome has two genes encoding the 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, THIC (MeTHIC1 and MeTHIC2), both of which carry a riboswitch in the 3'-UTR, as well as the adenylated thiazole synthase, THI1 (MeTHI1a and MeTHI1b). The THIC and THI1 genes are expressed at very low levels in storage roots compared with the accumulation of vitamin B1, indicating only limited biosynthesis de novo therein. In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC by the riboswitch present in the 3'-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  13. Thiamine and fatty acid content of walleye tissue from three southern U.S. reservoirs

    USGS Publications Warehouse

    Honeyfield, D.C.; Vandergoot, C.S.; Bettoli, P.W.; Hinterkopf, J.P.; Zajicek, J.L.

    2007-01-01

    We determined the thiamine concentration in egg, muscle, and liver tissues of walleyes Sander vitreus and the fatty acid content of walleye eggs from three southern U.S. reservoirs. In two Tennessee reservoirs (Dale Hollow and Center Hill), in which there were alewives Alosa pseudoharengus in the forage base, natural recruitment of walleyes was not occurring; by contrast in Lake James Reservoir, North Carolina, where there were no alewives, the walleye population was sustained via natural recruitment. Female walleye tissues were collected and assayed for thiamine (vitamin B1) and fatty acid content. Thiamine pyrophosphate was found to be the predominant form of thiamine in walleye eggs. In 2000, mean total egg thiamine concentrations were similar among Center Hill, Dale Hollow, and Lake James reservoirs (2.13, 3.14, and 2.77 nmol thiamine/g, respectively). Egg thiamine concentration increased as maternal muscle (r 2 = 0.73) and liver (r2 = 0.68) thiamine concentration increased. Walleye egg thiamine does not appear to be connected to poor natural reproduction in Tennessee walleyes. Threadfin shad Dorosoma petenense, which are found in all three reservoirs, had higher thiaminase activity than alewives. Six fatty acids differed among the walleye eggs for the three reservoirs. Two were physiologically important fatty acids, arachidonic acid (20:4[n-6]) and docosahexaenoic acid (22:6[n-3]), which are important eicosanoid precursors involved in the regulation of biological functions, such as immune response and reproduction. ?? Copyright by the American Fisheries Society 2007.

  14. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications.

    PubMed

    Bunik, Victoria; Artiukhov, Artem; Aleshin, Vasily; Mkrtchyan, Garik

    2016-12-14

    Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.

  15. Thiamine deficiency in childhood with attention to genetic causes: Survival and outcome predictors.

    PubMed

    Ortigoza-Escobar, Juan Darío; Alfadhel, Majid; Molero-Luis, Marta; Darin, Niklas; Spiegel, Ronen; de Coo, Irenaeus F; Gerards, Mike; Taylor, Robert W; Artuch, Rafael; Nashabat, Marwan; Rodríguez-Pombo, Pilar; Tabarki, Brahim; Pérez-Dueñas, Belén

    2017-09-01

    Primary and secondary conditions leading to thiamine deficiency have overlapping features in children, presenting with acute episodes of encephalopathy, bilateral symmetric brain lesions, and high excretion of organic acids that are specific of thiamine-dependent mitochondrial enzymes, mainly lactate, alpha-ketoglutarate, and branched chain keto-acids. Undiagnosed and untreated thiamine deficiencies are often fatal or lead to severe sequelae. Herein, we describe the clinical and genetic characterization of 79 patients with inherited thiamine defects causing encephalopathy in childhood, identifying outcome predictors in patients with pathogenic SLC19A3 variants, the most common genetic etiology. We propose diagnostic criteria that will aid clinicians to establish a faster and accurate diagnosis so that early vitamin supplementation is considered. Ann Neurol 2017;82:317-330. © 2017 American Neurological Association.

  16. Reduced activities of thiamine-dependent and cytochrome c oxidase enzymes in cerebral cortex of cattle affected by sulfur-induced polioencephalomalacia

    PubMed Central

    Amat, Samat; Hendrick, Steve; Moshynskyy, Igor; Simko, Elemir

    2017-01-01

    Sulfur-induced polioencephalomalacia (PEM) is an important disease affecting cattle in certain geographical regions. However, the pathogenesis of brain damage is not completely understood. We previously observed that excess dietary sulfur may influence thiamine status and altered thiamine metabolism may be involved in the pathogenesis of sulfur-induced PEM in cattle. In this study, we evaluated the activities of thiamine-dependent enzymes [α-ketogluterate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH)] and cytochrome c oxidase (COX) in the cerebral cortex of sulfur-induced PEM-affected cattle (n = 9) and clinically normal cattle (n = 8, each group) exposed to low or high dietary sulfur [LS = 0.30% versus HS = 0.67% sulfur on a dry matter (DM) basis]. Enzyme activities in PEM brains were measured from the brain tissue regions and examined using ultraviolent (UV) light illumination to show fluorescence or non-fluorescence regions. No gross changes under regular or UV light, or histopathological changes indicative of PEM were detected in the brains of cattle exposed to LS or HS diets. The PDH, α-KGDH, and COX activities did not differ between LS and HS brains, but all enzymes showed significantly lower (P < 0.05) activities in UV-positive region of PEM brains compared with LS and HS brains. The UV-negative regions of PEM brain had similar PDH activities to LS and HS brains, but the activities of α-KGDH and COX were significantly lower than in LS and HS brains. The results of this study suggest that reduced enzyme activities of brain PHD, α-KGDH, and COX are associated with the pathogenesis of sulfur-induced PEM. PMID:29081580

  17. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient D-lactate formation.

    PubMed

    Tian, Kangming; Niu, Dandan; Liu, Xiaoguang; Prior, Bernard A; Zhou, Li; Lu, Fuping; Singh, Suren; Wang, Zhengxiang

    2016-01-01

    Efficient production of D-lactate by engineered Escherichia coli entails balancing cell growth and product synthesis. To develop a metabolic switch to implement a desirable transition from cell growth to product fermentation, a thiamine auxotroph B0013-080A was constructed in a highly efficient D-lactate producer E. coli strain B0013-070. This was achieved by inactivation of thiE, a gene encoding a thiamine phosphate synthase for biosynthesis of thiamine monophosphate. The resultant mutant B0013-080A failed to grow on the medium in the absence of thiamine yet growth was restored when exogenous thiamine was provided. A linear relationship between cell mass formation and amount of thiamine supplemented was mathematically determined in a shake flask experiment and confirmed in a 7-L bioreactor system. This calculation revealed that ∼ 95-96 thiamine molecules per cell were required to satisfy cell growth. This relationship was employed to develop a novel fermentation process for D-lactate production by using thiamine as a limiting condition. A D-lactate productivity of 4.11 g · L(-1) · h(-1) from glycerol under microaerobic condition and 3.66 g · L(-1) · h(-1) from glucose under anaerobic condition was achieved which is 19.1% and 10.2% higher respectively than the parental strain. These results revealed a convenient and reliable method to control cell growth and improve D-lactate fermentation. This control strategy could be applied to other biotechnological processes that require optimal allocation of carbon between cell growth and product formation. © 2015 Wiley Periodicals, Inc.

  18. Quantitation of plasma thiamine, related metabolites and plasma protein oxidative damage markers in children with autism spectrum disorder and healthy controls.

    PubMed

    Anwar, Attia; Marini, Marina; Abruzzo, Provvidenza Maria; Bolotta, Alessandra; Ghezzo, Alessandro; Visconti, Paola; Thornalley, Paul J; Rabbani, Naila

    2016-11-01

    To assess thiamine and related metabolite status by analysis of plasma and urine in autistic children and healthy controls, correlations to clinical characteristics and link to plasma protein markers of oxidative damage. 27 children with autism (21 males and 6 females) and 21 (15 males and 6 females) age-matched healthy control children were recruited. The concentration of thiamine and related phosphorylated metabolites in plasma and urine and plasma protein content of dityrosine, N-formylkynurenine and 3-nitrotyrosine was determined. Plasma thiamine and thiamine monophosphate concentrations were similar in both study groups (median [lower-upper quartile]): autistic children - 6.60 nM (4.48-8.91) and 7.00 nM (5.51-8.55), and healthy controls - 6.82 nM (4.47-7.02) and 6.82 nM (5.84-8.91), respectively. Thiamine pyrophosphate (TPP) was decreased 24% in autistic children compared to healthy controls: 6.82 nM (5.81-8.52) versus 9.00 nM (8.41-10.71), p < .01. Urinary excretion of thiamine and fractional renal clearance of thiamine did not change between the groups. No correlation was observed between clinical markers and the plasma and urine thiamine concentration. Plasma protein dityrosine content was increased 88% in ASD. Other oxidative markers were unchanged. Autistic children had normal plasma and urinary thiamine levels whereas plasma TPP concentration was decreased. The latter may be linked to abnormal tissue handling and/or absorption from gut microbiota of TPP which warrants further investigation. Increased plasma protein dityrosine may reflect increased dual oxidase activity in response to change in mucosal immunity and host-microbe homeostasis.

  19. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications

    PubMed Central

    Bunik, Victoria; Artiukhov, Artem; Aleshin, Vasily; Mkrtchyan, Garik

    2016-01-01

    Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation. PMID:27983623

  20. Effect of sample handling on thiamine and thiaminolytic activity in alewife

    USGS Publications Warehouse

    Wright, G.M.; Brown, S.B.; Brown, L.R.; Moore, K.; Villella, M.; Zajicek, J.L.; Tillitt, D.E.; Fitzsimons, J.D.; Honeyfield, D.C.

    2005-01-01

    Alewives Alosa pseudoharengus were collected to evaluate handling and processing conditions that may affect the measurement of their thiamine-thiaminase content. Fish were captured by otter trawl, and reference samples of live fish were quick-frozen on dry ice immediately following capture. Other samples were placed on wet ice (4??C) or held in ambient lake water (21.5??C) for periods of up to 5 h before freezing. Total thiamine levels for reference samples averaged 26 nmol/g and consisted of 66, 15, and 19% thiamine pyrophosphate (TPP), thiamine monophosphate (TMP), and unphosphorylated thiamine (Th), respectively. After 120 min at either 4??C or 21.5??C, total thiamine concentrations were lower. At 21.5??C, the TPP proportion had decreased by 30 min and the proportion as Th increased after 60 min. In the groups sampled after 5 h, total thiamine concentrations were not altered but the proportion of TPP was lower and that of Th was higher than in reference samples. The stability of thiamine in thawed muscle samples from previously frozen alewives was poor (40% loss by 1 h at 22??C and 30% loss by 2 h at 4??C). Thiaminase activity averaged 5,975 pmol??g wet weight -1??min-1 in reference samples. In fresh-caught alewives, thiaminase activities were remarkably consistent throughout the sampling period. At 4??C, thiaminase activity in muscle tissue from previously frozen alewives was stable for the entire investigation period. At 25??C, the activity initially increased by 40% after 60 min but then decreased to 50% of initial value after 5 h. We conclude that sampling times greater than 25 min could cause some changes in the various thiamine forms and net loss in total thiamine. The thiamine content in previously frozen alewife samples is highly labile, requiring low temperatures during processing for analysis. ?? Copyright by the American Fisheries Society 2005.

  1. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  2. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  3. Linking egg thiamine and fatty acid concentrations of Lake Michigan lake trout with early life stage mortality.

    PubMed

    Czesny, Sergiusz; Dettmers, John M; Rinchard, Jacques; Dabrowski, Konrad

    2009-12-01

    The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.

  4. The route of non-enzymic and enzymic breakdown of 5-phosphoribosyl 1-pyrophosphate to ribose 1-phosphate.

    PubMed Central

    Trembacz, H; Jezewska, M M

    1990-01-01

    Spontaneous decomposition of 5-phosphoribosyl 1-pyrophosphate at pH 5.5 was established to occur as follows: 5-Phosphoribosyl 1-pyrophosphate----5-phosphoribosyl 1,2-(cyclic)phosphate----ribose 1-phosphate----ribose Enzymic degradation of 5-phosphoribosyl 1-pyrophosphate by alkaline phosphatase from calf intestine and by acid phosphatases from potato and Aspergillus niger was found to proceed according to this pathway within the pH range 2.5-7.4 with accumulation of ribose 1-phosphate. In the case of alkaline phosphatase, Mg2+ ions inhibit the pyrophosphorolysis of 5-phosphoribosyl 1-pyrophosphate and stimulate the hydrolysis of ribose 1-phosphate. PMID:1700897

  5. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    PubMed

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  7. [Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, R.

    1989-01-01

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  8. Thiamine pyrophosphate requirement for o-succinylbenzoic acid synthesis in Escherichia coli and evidence for an intermediate.

    PubMed Central

    Meganathan, R; Bentley, R

    1983-01-01

    Cell-free extracts of various strains of Escherichia coli synthesize the menaquinone biosynthetic intermediate o-succinylbenzoic acid (OSB) when supplied with chorismic acid, 2-ketoglutaric acid, and thiamine pyrophosphate (TPP). To assay for OSB synthesis, 2-[U-14C]ketoglutaric acid was used as substrate, and the synthesized OSB was examined by radiogas chromatography (as the dimethyl ester). [U-14C]Shikimic acid also gave rise to radioactive OSB if the cofactors necessary for enzymatic conversion to chorismic acid were added. Use of 2-[1-14C]ketoglutaric acid does not give rise to labeled OSB. In the absence of TPP during the incubations, OSB synthesis was much reduced; these observations are consistent with the proposed role for the succinic semialdehyde-TPP anion as the reagent adding to chorismic acid. Extracts of cells from menC and menD mutants did not form OSB separately, but did so in combination. There was evidence for formation of a product, X, by extracts of a menC mutant incubated with chorismic acid, TPP, and 2-ketoglutaric acid; X was converted to OSB by extracts of a menD mutant. It appears that the intermediate, X, is formed by one gene product and converted to OSB by the second gene product. PMID:6337125

  9. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGES

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  10. [Regulation of terpene metabolism]. Annual progress report, March 15, 1988--March 14, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, R.

    1989-12-31

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  11. Thiamin and Riboflavin in Human Milk: Effects of Lipid-Based Nutrient Supplementation and Stage of Lactation on Vitamer Secretion and Contributions to Total Vitamin Content

    PubMed Central

    Hampel, Daniela; Shahab-Ferdows, Setareh; Adair, Linda S.; Bentley, Margaret E.; Flax, Valerie L.; Jamieson, Denise J.; Ellington, Sascha R.; Tegha, Gerald; Chasela, Charles S.; Kamwendo, Debbie; Allen, Lindsay H.

    2016-01-01

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main contributors to total riboflavin. We analyzed milk collected at 2 (n = 258) or 6 (n = 104), and 24 weeks (n = 362) from HIV-infected Malawian mothers within the Breastfeeding, Antiretrovirals and Nutrition (BAN) study, randomly assigned at delivery to lipid-based nutrient supplements (LNS) or a control group, to investigate each vitamer’s contribution to total milk vitamin content and the effects of supplementation on the different thiamin and riboflavin vitamers at early and later stages of lactation, and obtain insight into the transport and distribution of these vitamers in human milk. Thiamin vitamers were derivatized into thiochrome-esters and analyzed by high-performance liquid-chromatography-fluorescence-detection (HPLC-FLD). Riboflavin and FAD were analyzed by ultra-performance liquid-chromatography-tandem-mass-spectrometry (ULPC-MS/MS). Thiamin-pyrophosphate (TPP), identified here for the first time in breast milk, contributed 1.9–4.5% to total thiamin. Free thiamin increased significantly from 2/6 to 24 weeks regardless of treatment indicating an active transport of this vitamer in milk. LNS significantly increased TMP and free thiamin only at 2 weeks compared to the control: median 170 versus 151μg/L (TMP), 13.3 versus 10.5μg/L (free thiamin, p<0.05 for both, suggesting an up-regulated active mechanism for TMP and free thiamin accumulation at early stages of lactation. Free riboflavin was consistently and significantly increased with LNS (range: 14.8–19.6μg/L (LNS) versus 5.0–7.4μg/L (control), p<0.001), shifting FAD:riboflavin relative amounts from 92–94:6–8% to 85:15%, indicating a preferred secretion of the free form into breast milk. The continuous presence of FAD in breast milk suggests an active transport and secretion system for this vitamer or possibly formation of this co-enymatic form in the mammary gland. PMID:26886782

  12. Biosynthesis of o-succinylbenzoic acid in Bacillus subtilis: identification of menD mutants and evidence against the involvement of the alpha-ketoglutarate dehydrogenase complex.

    PubMed Central

    Palaniappan, C; Taber, H; Meganathan, R

    1994-01-01

    The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity. PMID:8169214

  13. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase[OPEN

    PubMed Central

    Niehaus, Thomas D.; Hasnain, Ghulam; Gidda, Satinder K.; Nguyen, Thuy N.D.; Anderson, Erin M.; Brown, Greg; Yakunin, Alexander F.; de Crécy-Lagard, Valérie; Gregory, Jesse F.

    2016-01-01

    To synthesize the cofactor thiamin diphosphate (ThDP), plants must first hydrolyze thiamin monophosphate (ThMP) to thiamin, but dedicated enzymes for this hydrolysis step were unknown and widely doubted to exist. The classical thiamin-requiring th2-1 mutation in Arabidopsis thaliana was shown to reduce ThDP levels by half and to increase ThMP levels 5-fold, implying that the THIAMIN REQUIRING2 (TH2) gene product could be a dedicated ThMP phosphatase. Genomic and transcriptomic data indicated that TH2 corresponds to At5g32470, encoding a HAD (haloacid dehalogenase) family phosphatase fused to a TenA (thiamin salvage) family protein. Like the th2-1 mutant, an insertional mutant of At5g32470 accumulated ThMP, and the thiamin requirement of the th2-1 mutant was complemented by wild-type At5g32470. Complementation tests in Escherichia coli and enzyme assays with recombinant proteins confirmed that At5g32470 and its maize (Zea mays) orthologs GRMZM2G148896 and GRMZM2G078283 are ThMP-selective phosphatases whose activity resides in the HAD domain and that the At5g32470 TenA domain has the expected thiamin salvage activity. In vitro and in vivo experiments showed that alternative translation start sites direct the At5g32470 protein to the cytosol and potentially also to mitochondria. Our findings establish that plants have a dedicated ThMP phosphatase and indicate that modest (50%) ThDP depletion can produce severe deficiency symptoms. PMID:27677881

  14. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate

    NASA Astrophysics Data System (ADS)

    Cernak, Paul; Sen, Dipankar

    2013-11-01

    Vitamins are hypothesized to be relics of an RNA world, and were probably participants in RNA-mediated primordial metabolism. If catalytic RNAs, or ribozymes, could harness vitamin cofactors to aid their function in a manner similar to protein enzymes, it would enable them to catalyse a much larger set of chemical reactions. The cofactor thiamin diphosphate, a derivative of vitamin B1 (thiamin), is used by enzymes to catalyse difficult metabolic reactions, including decarboxylation of stable α-keto acids such as pyruvate. Here, we report a ribozyme that uses free thiamin to decarboxylate a pyruvate-based suicide substrate (LnkPB). Thiamin conjugated to biotin was used to isolate catalytic individuals from a pool of random-sequence RNAs attached to LnkPB. Analysis of a stable guanosine adduct obtained via digestion of an RNA sequence (clone dc4) showed the expected decarboxylation product. The discovery of a prototypic thiamin-utilizing ribozyme has implications for the role of RNA in orchestrating early metabolic cycles.

  15. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    PubMed

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  16. Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry

    PubMed Central

    Huang, Hsueh-Meei; Chen, Huan-Lian; Gibson, Gary E.

    2014-01-01

    Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60%) or import (−40%). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25%) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca2+ modifies the depletion and refilling mechanism of ER Ca2+ stores. PMID:24748364

  17. Structure-function characterization of the human mitochondrial thiamin pyrophosphate transporter (hMTPPT; SLC25A19): Important roles for Ile(33), Ser(34), Asp(37), His(137) and Lys(291).

    PubMed

    Sabui, Subrata; Subramanian, Veedamali S; Kapadia, Rubina; Said, Hamid M

    2016-08-01

    Thiamin plays a critical role in cellular energy metabolism. Mammalian cells obtain the vitamin from their surroundings, converted it to thiamin pyrophosphate (TPP) in the cytoplasm, followed by uptake of TPP by mitochondria via a carrier-mediated process that involves the MTPPT (product of the SLC25A19 gene). Previous studies have characterized different physiological/biological aspects of the human MTPPT (hMTPPT), but less is known about structural features that are important for its function. Here, we used a protein-docking model ("Phyre2" and "DockingServer") to predict residues that may be important for function (substrate recognition) of the hMTPPT; we also examined the role of conserved positively-charged residues predicted ("PRALINE") to be in the trans-membrane domains (TMDs) in uptake of the negatively-charged TPP. Among the six residues predicted by the docking model (i.e., Thr(29), Arg(30), Ile(33), Ser(34), Asp(37) and Phe(298)), only Ile(33), Ser(34) and Asp(37) were found to be critical for function. While no change in translational efficiency/protein stability of the Ser(34) mutant was observed, both the Ile(33) and Asp(37) mutants showed a decrease in this parameter(s); there was also a decrease in the expression of the latter two mutants in mitochondria. A need for a polar residue at position 34 of the hMTPPT was evident. Our findings with the positively-charged residues (i.e., His(82), His(137), Lys(231) and Lys(291)) predicted in the TMD showed that His(137) and Lys(291) are important for function (via a role in proper delivery of the protein to mitochondria). These investigations provide important information about the structure-function relationship of the hMTPPT. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Structure analysis of geranyl pyrophosphate methyltransferase and the proposed reaction mechanism of SAM-dependent C-methylation.

    PubMed

    Ariyawutthiphan, Orapin; Ose, Toyoyuki; Minami, Atsushi; Shinde, Sandip; Sinde, Sandip; Tsuda, Muneya; Gao, Yong-Gui; Yao, Min; Oikawa, Hideaki; Tanaka, Isao

    2012-11-01

    In the typical isoprenoid-biosynthesis pathway, condensation of the universal C(5)-unit precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) occurs via the common intermediates prenyl pyrophosphates (C(10)-C(20)). The diversity of isoprenoids reflects differences in chain length, cyclization and further additional modification after cyclization. In contrast, the biosynthesis of 2-methylisonorneol (2-MIB), which is responsible for taste and odour problems in drinking water, is unique in that it primes the enzymatic methylation of geranyl pyrophosphate (GPP) before cyclization, which is catalyzed by an S-adenosyl-L-methionine-dependent methyltransferase (GPPMT). The substrate of GPPMT contains a nonconjugated olefin and the reaction mechanism is expected to be similar to that of the steroid methyltransferase (SMT) family. Here, structural analysis of GPPMT in complex with its cofactor and substrate revealed the mechanisms of substrate recognition and possible enzymatic reaction. Using the structures of these complexes, methyl-group transfer and the subsequent proton-abstraction mechanism are discussed. GPPMT and SMTs contain a conserved glutamate residue that is likely to play a role as a general base. Comparison with the reaction mechanism of the mycolic acid cyclopropane synthase (MACS) family also supports this result. This enzyme represented here is the first model of the enzymatic C-methylation of a nonconjugated olefin in the isoprenoid-biosynthesis pathway. In addition, an elaborate system to avoid methylation of incorrect substrates is proposed.

  19. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  20. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  1. Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets?

    PubMed Central

    Du, Qinglin; Wang, Honghai; Xie, Jianping

    2011-01-01

    Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1) is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP). Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics. PMID:21234302

  2. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows.

    PubMed

    Pan, X H; Yang, L; Beckers, Y; Xue, F G; Tang, Z W; Jiang, L S; Xiong, B H

    2017-07-01

    An experiment was conducted to uncover the effects of increasing dietary grain levels on expression of thiamine transporters in ruminal epithelium, and to assess the protective effects of thiamine against high-grain-induced inflammation in dairy cows. Six rumen-fistulated, lactating Holstein dairy cows (627 ± 16.9 kg of body weight, 180 ± 6 d in milk; mean ± standard deviation) were randomly assigned to a replicated 3 × 3 Latin square design trial. Three treatments were control (20% dietary starch, dry matter basis), high-grain diet (HG, 33.2% dietary starch, DM basis), and HG diet supplemented with 180 mg of thiamine/kg of dry matter intake. On d 19 and 20 of each period, milk performance was measured. On d 21, ruminal pH, endotoxic lipopolysaccharide (LPS), and thiamine contents in rumen and blood, and plasma inflammatory cytokines were detected; a rumen papillae biopsy was taken on d 21 to determine the gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. The HG diet decreased ruminal pH (5.93 vs. 6.49), increased milk yield from 17.9 to 20.2 kg/d, and lowered milk fat and protein from 4.28 to 3.83%, and from 3.38 to 3.11%, respectively. The HG feeding reduced thiamine content in rumen (2.89 vs. 8.97 μg/L) and blood (11.66 vs. 17.63 μg/L), and the relative expression value of thiamine transporter-2 (0.37-fold) and mitochondrial thiamine pyrophosphate transporter (0.33-fold) was downregulated by HG feeding. The HG-fed cows exhibited higher endotoxin LPS in rumen fluid (134,380 vs. 11,815 endotoxin units/mL), and higher plasma concentrations of lipopolysaccharide binding protein and pro-inflammatory cytokines when compared with the control group. The gene and protein expression of tumor necrosis factor α (TNFα), IL1B, and IL6 in rumen epithelium increased when cows were fed the HG diet, indicating that local inflammation occurred. The depressions in ruminal pH, milk fat, and protein of HG-fed cows were reversed by thiamine supplementation. Thiamine supplementation increased thiamine contents in rumen and blood, and also upregulated the relative expression of thiamine transporters compared with the HG group. Thiamine supplementation decreased ruminal LPS (49,361 vs. 134,380 endotoxin units/mL) and attenuated the HG-induced inflammation response as indicated by a reduction in plasma IL6, and decreasing gene and protein expression of pro-inflammatory cytokines in rumen epithelium. Western bottling analysis showed that thiamine suppressed the protein expression of TLR4 and the phosphorylation of nuclear factor kappa B (NFκB) unit p65. In conclusion, HG feeding inhibits thiamine transporter expression in ruminal epithelium. Thiamine could attenuate the epithelial inflammation during high-grain feeding, and the protective effects may be due to its ability to suppress TLR4-mediated NFκB signaling pathways. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Subcellular localization and compartmentation of thiamine derivatives in rat brain.

    PubMed

    Bettendorff, L; Wins, P; Lesourd, M

    1994-05-26

    The subcellular distribution of thiamine derivatives in rat brain was studied. Thiamine diphosphate content was highest in the mitochondrial and synaptosomal fractions, and lowest in microsomal, myelin and cytosolic fractions. Only 3-5% of total thiamine diphosphate was bound to transketolase, a cytosolic enzyme. Thiamine triphosphate was barely detectable in the microsomal and cytosolic fraction, but synaptosomes were slightly enriched in this compound compared to the crude homogenate. Both myelin and mitochondrial fractions contained significant amounts of thiamine triphosphate. In order to estimate the relative turnover rates of these compounds, the animals received an intraperitoneal injection of either [14C]thiamine or [14C]sulbutiamine (isobutyrylthiamine disulfide) 1 h before decapitation. The specific radioactivities of thiamine compounds found in the brain decreased in the order: thiamine > thiamine triphosphate > thiamine monophosphate > thiamine diphosphate. Incorporation of radioactivity into thiamine triphosphate was more marked with [14C]sulbutiamine than with [14C]thiamine. The highest specific radioactivity of thiamine diphosphate was found in the cytosolic fraction of the brain, though this pool represents less than 10% of total thiamine diphosphate. Cytosolic thiamine diphosphate had a twice higher specific radioactivity when [14C]sulbutiamine was used as precursor compared with thiamine though no significant differences were found in the other cellular compartments. Our results suggest the existence of two thiamine diphosphate pools: the bound cofactor pool is essentially mitochondrial and has a low turnover; a much smaller cytosolic pool (6-7% of total TDP) of high turnover is the likely precursor of thiamine triphosphate.

  4. Conservation of the PTEN catalytic motif in the bacterial undecaprenyl pyrophosphate phosphatase, BacA/UppP.

    PubMed

    Bickford, Justin S; Nick, Harry S

    2013-12-01

    Isoprenoid lipid carriers are essential in protein glycosylation and bacterial cell envelope biosynthesis. The enzymes involved in their metabolism (synthases, kinases and phosphatases) are therefore critical to cell viability. In this review, we focus on two broad groups of isoprenoid pyrophosphate phosphatases. One group, containing phosphatidic acid phosphatase motifs, includes the eukaryotic dolichyl pyrophosphate phosphatases and proposed recycling bacterial undecaprenol pyrophosphate phosphatases, PgpB, YbjB and YeiU/LpxT. The second group comprises the bacterial undecaprenol pyrophosphate phosphatase, BacA/UppP, responsible for initial formation of undecaprenyl phosphate, which we predict contains a tyrosine phosphate phosphatase motif resembling that of the tumour suppressor, phosphatase and tensin homologue (PTEN). Based on protein sequence alignments across species and 2D structure predictions, we propose catalytic and lipid recognition motifs unique to BacA/UppP enzymes. The verification of our proposed active-site residues would provide new strategies for the development of substrate-specific inhibitors which mimic both the lipid and pyrophosphate moieties, leading to the development of novel antimicrobial agents.

  5. Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure.

    PubMed

    Kloss, Olena; Eskin, N A Michael; Suh, Miyoung

    2018-04-01

    Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.

  6. DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage.

    PubMed

    Suji, G; Sivakami, S

    2007-11-01

    Amino acids react with methylglyoxal to form advanced glycation end products. This reaction is known to produce free radicals. In this study, cleavage to plasmid DNA was induced by the glycation of lysine with methylglyoxal in the presence of iron(III). This system was found to produce superoxide as well as hydroxyl radicals. The abilities of various vitamins to prevent damage to plasmid DNA were evaluated. Pyridoxal-5-phosphate showed maximum protection, while pyridoxamine showed no protection. The protective abilities could be directly correlated to inhibition of production of hydroxyl and superoxide radicals. Pyridoxal-5-phosphate exhibited low radical scavenging ability as evaluated by its TEAC, but showed maximum protection probably by interfering in free radical production. Pyridoxamine did not inhibit free radical production. Thiamine and thiamine pyrophosphate, both showed protective effects albeit to different extents. Tetrahydrofolic acid showed better antioxidant activity than folic acid but was found to damage DNA by itself probably by superoxide generation.

  7. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae: Siw14 PROTEIN SELECTIVELY CLEAVES THE β-PHOSPHATE FROM 5-DIPHOSPHOINOSITOL PENTAKISPHOSPHATE (5PP-IP5).

    PubMed

    Steidle, Elizabeth A; Chong, Lucy S; Wu, Mingxuan; Crooke, Elliott; Fiedler, Dorothea; Resnick, Adam C; Rolfes, Ronda J

    2016-03-25

    Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.

    PubMed

    Martini, Laura; Meyer, Adam J; Ellefson, Jared W; Milligan, John N; Forlin, Michele; Ellington, Andrew D; Mansy, Sheref S

    2015-10-16

    An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.

  9. The PLUTO plastidial nucleobase transporter also transports the thiamin precursor hydroxymethylpyrimidine

    PubMed Central

    Beaudoin, Guillaume A.W.; Johnson, Timothy S.; Hanson, Andrew D.

    2018-01-01

    In plants, the hydroxymethylpyrimidine (HMP) and thiazole precursors of thiamin are synthesized and coupled together to form thiamin in plastids. Mutants unable to form HMP can be rescued by exogenous HMP, implying the presence of HMP transporters in the plasma membrane and plastids. Analysis of bacterial genomes revealed a transporter gene that is chromosomally clustered with thiamin biosynthesis and salvage genes. Its closest Arabidopsis homolog, the plastidic nucleobase transporter (PLUTO), is co-expressed with several thiamin biosynthetic enzymes. Heterologous expression of PLUTO in Escherichia coli or Saccharomyces cerevisiae increased sensitivity to a toxic HMP analog, and disrupting PLUTO in an HMP-requiring Arabidopsis line reduced root growth at low HMP concentrations. These data implicate PLUTO in plastidial transport and salvage of HMP. PMID:29507060

  10. Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex.

    PubMed

    Mkrtchyan, Garik V; Üçal, Muammer; Müllebner, Andrea; Dumitrescu, Sergiu; Kames, Martina; Moldzio, Rudolf; Molcanyi, Marek; Schaefer, Samuel; Weidinger, Adelheid; Schaefer, Ute; Hescheler, Juergen; Duvigneau, Johanna Catharina; Redl, Heinz; Bunik, Victoria I; Kozlov, Andrey V

    2018-05-16

    Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings. Copyright © 2018. Published by Elsevier B.V.

  11. Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin

    PubMed Central

    Meyer, Danilo; Neumann, Piotr; Koers, Eline; Sjuts, Hanno; Lüdtke, Stefan; Sheldrick, George M.; Ficner, Ralf; Tittmann, Kai

    2012-01-01

    Thiamin diphosphate, the vitamin B1 coenzyme, plays critical roles in fundamental metabolic pathways that require acyl carbanion equivalents. Studies on chemical models and enzymes had suggested that these carbanions are resonance-stabilized as enamines. A crystal structure of this intermediate in pyruvate oxidase at 1.1 Å resolution now challenges this paradigm by revealing that the enamine does not accumulate. Instead, the intermediate samples between the ketone and the carbanion both interlocked in a tautomeric equilibrium. Formation of the keto tautomer is associated with a loss of aromaticity of the cofactor. The alternate confinement of electrons to neighboring atoms rather than π-conjugation seems to be of importance for the enzyme-catalyzed, redox-coupled acyl transfer to phosphate, which requires a dramatic inversion of polarity of the reacting substrate carbon in two subsequent catalytic steps. The ability to oscillate between a nucleophilic (carbanion) and an electrophilic (ketone) substrate center highlights a hitherto unrecognized versatility of the thiamin cofactor. It remains to be studied whether formation of the keto tautomer is a general feature of all thiamin enzymes, as it could provide for stable storage of the carbanion state, or whether this feature represents a specific trait of thiamin oxidases. In addition, the protonation state of the two-electron reduced flavin cofactor can be fully assigned, demonstrating the power of high-resolution cryocrystallography for elucidation of enzymatic mechanisms. PMID:22730460

  12. Increasing thiamine concentrations in lake trout eggs from Lakes Huron and Michigan coincide with low alewife abundance

    USGS Publications Warehouse

    Riley, Stephen C.; Rinchard, Jacques; Honeyfield, Dale C.; Evans, Allison N.; Begnoche, Linda

    2011-01-01

    Lake trout Salvelinus namaycush in the Laurentian Great Lakes suffer from thiamine deficiency as a result of adult lake trout consuming prey containing thiaminase, a thiamine-degrading enzyme. Sufficiently low egg thiamine concentrations result in direct mortality of or sublethal effects on newly hatched lake trout fry. To determine the prevalence and severity of low thiamine in lake trout eggs, we monitored thiamine concentrations in lake trout eggs from 15 sites in Lakes Huron and Michigan from 2001 to 2009. Lake trout egg thiamine concentrations at most sites in both lakes were initially low and increased over time at 11 of 15 sites, and the proportion of females with egg thiamine concentrations lower than the recommended management objective of 4 nmol/g decreased over time at eight sites. Egg thiamine concentrations at five of six sites in Lakes Huron and Michigan were significantly inversely related to site-specific estimates of mean abundance of alewives Alosa pseudoharengus, and successful natural reproduction of lake trout has been observed in Lake Huron since the alewife population crashed. These results support the hypothesis that low egg thiamine in Great Lakes lake trout is associated with increased alewife abundance and that low alewife abundance may currently be a prerequisite for successful reproduction by lake trout in the Great Lakes.

  13. The PLUTO plastidial nucleobase transporter also transports the thiamin precursor hydroxymethylpyrimidine.

    PubMed

    Beaudoin, Guillaume A W; Johnson, Timothy S; Hanson, Andrew D

    2018-04-27

    In plants, the hydroxymethylpyrimidine (HMP) and thiazole precursors of thiamin are synthesized and coupled together to form thiamin in plastids. Mutants unable to form HMP can be rescued by exogenous HMP, implying the presence of HMP transporters in the plasma membrane and plastids. Analysis of bacterial genomes revealed a transporter gene that is chromosomally clustered with thiamin biosynthesis and salvage genes. Its closest Arabidopsis homolog, the plastidic nucleobase transporter (PLUTO), is co-expressed with several thiamin biosynthetic enzymes. Heterologous expression of PLUTO in Escherichia coli or Saccharomyces cerevisiae increased sensitivity to a toxic HMP analog, and disrupting PLUTO in an HMP-requiring Arabidopsis line reduced root growth at low HMP concentrations. These data implicate PLUTO in plastidial transport and salvage of HMP. © 2018 The Author(s).

  14. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru; Abramchik, Yu. A.; Zhukhlistova, N. E.

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sitesmore » were shown to be identical in both proteins.« less

  15. Tracking gene expression and oxidative damage of O2-stressed Clostridioides difficile by a multi-omics approach.

    PubMed

    Neumann-Schaal, Meina; Metzendorf, Nicole G; Troitzsch, Daniel; Nuss, Aaron Mischa; Hofmann, Julia Danielle; Beckstette, Michael; Dersch, Petra; Otto, Andreas; Sievers, Susanne

    2018-05-31

    Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O 2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype. Copyright © 2018. Published by Elsevier Ltd.

  16. Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi.

    PubMed

    Scott, D A; de Souza, W; Benchimol, M; Zhong, L; Lu, H G; Moreno, S N; Docampo, R

    1998-08-21

    The vacuolar-type proton-translocating pyrophosphatase (V-H+-PPase) is an enzyme previously described in detail only in plants. This paper demonstrates its presence in the trypanosomatid Trypanosoma cruzi. Pyrophosphate promoted organellar acidification in permeabilized amastigotes, epimastigotes, and trypomastigotes of T. cruzi. This activity was stimulated by K+ ions and was inhibited by Na+ ions and pyrophosphate analogs, as is the plant activity. Separation of epimastigote extracts on Percoll gradients yielded a dense fraction that contained H+-PPase activity measured both by proton uptake and phosphate release but lacked markers for mitochondria, lysosomes, glycosomes, cytosol, and plasma membrane. Antiserum raised against specific sequences of the plant V-H+-PPase cross-reacted with a T. cruzi protein, which was also detectable in the dense Percoll fraction. The organelles in this fraction appeared by electron microscopy to consist mainly of acidocalcisomes (acidic calcium storage organelles). This identification was confirmed by x-ray microanalysis. Immunofluorescence and immunoelectron microscopy indicated that the V-H+-PPase was located in the plasma membrane and acidocalcisomes of the three different forms of the parasite. Pyrophosphate was able to drive calcium uptake in permeabilized T. cruzi. This uptake depended upon a proton gradient and was reversed by a specific V-H+-PPase inhibitor. Our results imply that the phylogenetic distribution of V-H+-PPases is much wider than previously perceived but that the enzyme has a unique subcellular location in trypanosomes.

  17. An exploratory assessment of thiamine status in western Alaska Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Honeyfield, Dale C.; Murphy, James M.; Howard, Katherine G.; Strasburger, Wesley W.; Matz, A.C.

    2017-01-01

    This study was conducted to investigate the thiamine status of Chinook salmon Oncorhynchus tshawytscha. Egg thiamine levels in Yukon and Kuskokwim River Chinook were examined in 2001 and 2012. Muscle and liver thiamine in Chinook, coho O. kisutch, chum O. keta, and pink O. gorbuscha salmon were measured in northern Bering Sea juveniles and the percentage of the diet containing thiaminase, an enzyme that destroys thiamine, was calculated. Only 23% of the eggs were thiamine replete (> 8.0 nmol·g-1) in 2012. Seventy-four percent of the eggs had thiamine concentrations (1.5–8.0 nmol·g-1) which can lead to mortality from secondary eff ects of thiamine defi ciency. Only 3% of the eggs had < 1.5 nmol·g-1 associated with overt fry mortality. In 2001 egg thiamine in upper Yukon Chinook was 11.7 nmol·g-1 which was higher than that measured in 2012 (6.2 nmol·g-1) and paralleled Chinook productivity. Total thiamine (nmol·g-1) in Bering Sea Chinook muscle (3.8) was similar to coho (4.15), but lower than in chum (8.9) and pink salmon (9.6). Thiaminase-containing prey in Chinook (63%) and coho (36%) stomachs were elevated compared to those of chum (3%) and pink (5%) salmon. These results provide evidence of egg thiamine being less than fully replete. Thiamine deficiency was not observed in juvenile muscle tissue, but differences were present among species reflecting the percentage of diet containing thiaminase. Additional studies are recommended.

  18. Investigating the pharmacodynamic and magnetic properties of pyrophosphate-bridged coordination complexes

    NASA Astrophysics Data System (ADS)

    Ikotun, Oluwatayo (Tayo) F.

    The multidentate nature of pyrophosphate makes it an attractive ligand for complexation of metal cations. The participation of pyrophosphate in a variety of biological pathways and its metal catalyzed hydrolysis has driven our investigation into its coordination chemistry. We have successfully synthesized a library of binuclear pyrophosphate bridge coordination complexes. The problem of pyrophosphate hydrolysis to phosphate in the presence of divalent metal ions was overcome by incorporating capping ligands such as 1,10-phenanthroline and 2,2'-bipyridine prior to the addition of the pyrophosphate. The magnetic properties of these complexes was investigated and magneto-structural analysis was conducted. The biological abundance of pyrophosphate and the success of metal based drugs such as cisplatin, prompted our investigation of the cytotoxic properties of M(II) pyrophosphate dimeric complexes (where M(II) is CoII, CuII, and NiII) in adriamycin resistant human ovarian cancer cells. Thess compounds were found to exhibit toxicity in the nanomolar to picomolar range. We conducted in vitro stability studies and the mechanism of cytoxicity was elucidated by performing DNA mobility and binding assays, enzyme inhibition assays, and in vitro oxidative stress studies.

  19. Biochemical changes correlated with blood thiamine and its phosphate esters levels in patients with diabetes type 1 (DMT1).

    PubMed

    Al-Daghri, Nasser M; Alharbi, Mohammed; Wani, Kaiser; Abd-Alrahman, Sherif H; Sheshah, Eman; Alokail, Majed S

    2015-01-01

    Thiamine (vitamin B1) is an essential enzyme cofactor in most organisms required at several stages of anabolic and catabolic intermediary metabolism. However, little is known on the positive effects of thiamine in diabetic type 1 (DMT1) patients. The objectives of this study were to evaluate the biochemical changes related to thiamine deficiency in patients with DMT1 outcomes among Saudi adults. We hypothesized that blood thiamine deficiency in patients with DMT1 manifestations might lead to an increase in metabolic syndrome. A total of 77 patients with DMT1 (age 35.8 ± 5.5) and 81 controls (age 45.0 ± 18.1) (total N = 158) were randomly selected from the Riyadh Cohort Study for inclusion. Saudi adults with diabetes type 1, a significant decrease in systolic (P < 0.001), and diastolic blood pressure (P = 0.008) and microalbuminuria (P = 0.02). Moreover, cholesterol, glucose and triglycerides were significantly increased (P 0.001, 0.001 and 0.008, respectively) in patients with diabetes type 1 compared to controls. On the other hand, HDL, TMP, TDP and thiamine, were significantly decreased in patients with diabetes type 1 (P 0.005, 0.002, 0.005, and 0.002), respectively. A strong association between blood thiamine level and diabetes type 1 was detected in our study population. The results confirmed the role of thiamine and thiamine phosphate esters, in preventing metabolic changes and complications of diabetes type 1. The levels of these thiamine and thiamine phosphate esters were correlated with diabetes related biomarkers including HDL, glucose, triglycerides and cholesterol, as well as microalbuminuria, LDL and urine thiamine. The results support a pivotal role of blood thiamine and its phosphate esters in preventing the biochemical changes and complications in patients with DMT1.

  20. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation?

    PubMed Central

    Pácal, Lukáš; Kuricová, Katarína; Kaňková, Kateřina

    2014-01-01

    Growing prevalence of diabetes (type 2 as well as type 1) and its related morbidity due to vascular complications creates a large burden on medical care worldwide. Understanding the molecular pathogenesis of chronic micro-, macro- and avascular complications mediated by hyperglycemia is of crucial importance since novel therapeutic targets can be identified and tested. Thiamine (vitamin B1) is an essential cofactor of several enzymes involved in carbohydrate metabolism and published data suggest that thiamine metabolism in diabetes is deficient. This review aims to point out the physiological role of thiamine in metabolism of glucose and amino acids, to present overview of thiamine metabolism and to describe the consequences of thiamine deficiency (either clinically manifest or latent). Furthermore, we want to explain why thiamine demands are increased in diabetes and to summarise data indicating thiamine mishandling in diabetics (by review of the studies mapping the prevalence and the degree of thiamine deficiency in diabetics). Finally, we would like to summarise the evidence for the beneficial effect of thiamine supplementation in progression of hyperglycemia-related pathology and, therefore, to justify its importance in determining the harmful impact of hyperglycemia in diabetes. Based on the data presented it could be concluded that although experimental studies mostly resulted in beneficial effects, clinical studies of appropriate size and duration focusing on the effect of thiamine supplementation/therapy on hard endpoints are missing at present. Moreover, it is not currently clear which mechanisms contribute to the deficient action of thiamine in diabetes most. Experimental studies on the molecular mechanisms of thiamine deficiency in diabetes are critically needed before clear answer to diabetes community could be given. PMID:24936250

  1. Effects of detergents on the properties of 4-hydroxybenzoate. Polyprenyl transferase and the specificity of the polyprenyl pyrophosphate synthetic system in mitochondria.

    PubMed

    Nishino, T; Rudney, H

    1977-02-22

    The properties of 4-hydroxybenzoate:polyprenyl transferase and the system synthesizing polyprenyl pyrophosphate have been studied in mitochondria from rat and guinea pig livers. With solanesyl pyrophosphate and 4-hydroxybenzoate as substrates the formation of 3-nonaprenyl-4-hydroxybenzoate was linear with time, concentration of protein, and concentration of solanesyl pyrophosphate. Solanesyl monophosphate is inactive as a substrate and is noninhibitory. Conversion of solanesyl monophosphate to the pyrophosphate could not be detected. Detergents such as Triton X-100, Tween-80, and sodium deoxycholate activated the enzyme in mitochondria which were aged by freezing at -20 degrees C for periods ranging from 1 h to several days. Maximum activation also required Mg2+. In agreement with previous observation the effect of Mg2+ and Triton X-100 on fresh mitochondria was quite variable; however, activation with aged preparations was very consistent. Treatment with TritonX-100 causes al alteration in the biosynthetic pattern of rat liver mitochondria so that rather than nonaprenyl, decaprenyl, pyrophosphate is preferentially made in the presence of solanesyl pyrophosphate and isopentenyl pyrophosphate. In the presence of Triton X-100 and added pool of solanesyl pyrophosphate appears to exert a feedback inhibition on the incorporation of isopentenyl pyrophosphate into solanesyl pyrophosphate. In the case of guinea pig liver mitochondria a different pattern is observed with Triton X-100 in contrast to the rat. The de novo formation of decaprenyl pyrophosphate from isopentenyl pyrophosphate appears to be inhibited by Triton X-100, but the synthesis of decaprenyl pyrophosphate from isopentenyl pyrophosphate and nonaprenyl pyrophosphate is not inhibited. The data also indicate that in guinea pig liver in a system synthesizing decaprenyl pyrophosphate from isopentenyl pyrophosphate, there does not appear to be a detectable pool of nonaprenyl pyrophosphate. These results show that detergents can affect the specificity of the mitochondrial system synthesizing polyprenyl pyrophosphates.

  2. Population thiamine status and varying cancer rates between western, Asian and African countries.

    PubMed

    Boros, L G

    2000-01-01

    The role of food supplements in the form of vitamins has not been extensively investigated in relation to varying cancer rates between populations of different geographical regions. New data indicate that thiamine (vitamin B1), a common food supplement in Western food products, is directly involved in nucleic acid ribose synthesis of tumor cells in its biologically activated form through the non-oxidative transketolase catalyzed pentose cycle reaction. Whether thiamine plays a role in increased cancer rates in the Western World by enhancing tumor cell proliferation, while increased consumption of thiaminase rich food limiting thiamine availability protects against common malignancies in Asia and Africa has not been evaluated. In the Western World, thiamine is a popular vitamin supplement in the form of tablets and it is also added to basic food items such as milled flour, cereals, peanut butter, refreshment drinks and pastas. On the contrary, thiaminase, the natural thiamine-degrading enzyme, is abundantly present in raw and fermented fish, certain vegetables and roasted insects consumed primarily in Africa and Asia. Excess thiamine supplementation in common food products may contribute to the increased cancer rates of the Western World.

  3. Thiamine content of eggs and lengths of coho salmon (Oncorhynchus kisutch) in relation to abundance of alewife (Alosa pseudoharengus) in eastern Lake ontario, 2003 to 2006

    USGS Publications Warehouse

    Ketola, H.G.; Rinchard, J.; O'Gorman, R.; Begnoche, L.J.; Bishop, D.L.; Greulich, A.W.

    2009-01-01

    Early mortality syndrome in fry of Great Lakes salmonines is linked to reduced levels of thiamine in eggs, which reflects maternal consumption of forage fishes such as alewife (Alosa pseudoharengus) that contain thiaminase, an enzyme that destroys thiamine. We assessed annual variations in abundance and condition of alewives and thiamine status of coho salmon (Oncorhynchus kisutch) in Lake Ontario. We analyzed total thiamine in eggs of 20 coho salmon collected annually between 2003 and 2006 at the Salmon River Hatchery on the Salmon River, New York. Alewife abundance was assessed annually in southern and eastern Lake Ontario with bottom trawls during late April and early May. Mean thiamine concentration in eggs varied annually, with those collected in 2003 (2.5 nmol/g) being significantly higher than those collected in 2004 to 2006 (1.5 to 1.7 nmol/g). Although we did not test survival of fry, if reported threshold levels of thiamine for preventing mortality of Lake Michigan coho salmon fry apply, then many or most Lake Ontario coho salmon produced fry were likely to incur thiamine-deficiency mortality, especially during years 2004 to 2006. Comparison to indices of annual abundance of alewife in Lake Ontario with thiamine concentration in coho salmon eggs failed to show any significant correlations (P > 0.05). However, total length of female spawning coho salmon was positively correlated (P < 0.05) with increasing condition and estimated energy content of adult alewives in the previous spring. These results suggest that growth of coho salmon in Lake Ontario was first limited by energy intake, whereas the amount of thiamine provided by alewives was sufficient for growth (in length) but not for producing thiamine-adequate eggs.

  4. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used tomore » probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.« less

  5. Probing the active center of benzaldehyde lyase with substitutions and the pseudo-substrate analog benzoylphosphonic acid methyl ester

    PubMed Central

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2009-01-01

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438

  6. Biochemical changes correlated with blood thiamine and its phosphate esters levels in patients with diabetes type 1 (DMT1)

    PubMed Central

    Al-Daghri, Nasser M; Alharbi, Mohammed; Wani, Kaiser; Abd-Alrahman, Sherif H; Sheshah, Eman; Alokail, Majed S

    2015-01-01

    Thiamine (vitamin B1) is an essential enzyme cofactor in most organisms required at several stages of anabolic and catabolic intermediary metabolism. However, little is known on the positive effects of thiamine in diabetic type 1 (DMT1) patients. The objectives of this study were to evaluate the biochemical changes related to thiamine deficiency in patients with DMT1 outcomes among Saudi adults. We hypothesized that blood thiamine deficiency in patients with DMT1 manifestations might lead to an increase in metabolic syndrome. A total of 77 patients with DMT1 (age 35.8±5.5) and 81 controls (age 45.0±18.1) (total N = 158) were randomly selected from the Riyadh Cohort Study for inclusion. Saudi adults with diabetes type 1, a significant decrease in systolic (P < 0.001), and diastolic blood pressure (P = 0.008) and microalbuminuria (P = 0.02). Moreover, cholesterol, glucose and triglycerides were significantly increased (P 0.001, 0.001 and 0.008, respectively) in patients with diabetes type 1 compared to controls. On the other hand, HDL, TMP, TDP and thiamine, were significantly decreased in patients with diabetes type 1 (P 0.005, 0.002, 0.005, and 0.002), respectively. A strong association between blood thiamine level and diabetes type 1 was detected in our study population. The results confirmed the role of thiamine and thiamine phosphate esters, in preventing metabolic changes and complications of diabetes type 1. The levels of these thiamine and thiamine phosphate esters were correlated with diabetes related biomarkers including HDL, glucose, triglycerides and cholesterol, as well as microalbuminuria, LDL and urine thiamine. The results support a pivotal role of blood thiamine and its phosphate esters in preventing the biochemical changes and complications in patients with DMT1. PMID:26722561

  7. Structure of the ThDP-dependent enzyme benzaldehyde lyase refined to 1.65 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maraite, Andy; Schmidt, Thomas; Ansörge-Schumacher, Marion B.

    2007-07-01

    The X-ray crystal structure of the ThDP-dependent enzyme benzaldehyde lyase has been refined to 1.65 Å. Benzaldehyde lyase (BAL; EC 4.1.2.38) is a thiamine diphosphate (ThDP) dependent enzyme that catalyses the enantioselective carboligation of two molecules of benzaldehyde to form (R)-benzoin. BAL has hence aroused interest for its potential in the industrial synthesis of optically active benzoins and derivatives. The structure of BAL was previously solved to a resolution of 2.6 Å using MAD experiments on a selenomethionine derivative [Mosbacher et al. (2005 ▶), FEBS J.272, 6067–6076]. In this communication of parallel studies, BAL was crystallized in an alternative spacemore » group (P2{sub 1}2{sub 1}2{sub 1}) and its structure refined to a resolution of 1.65 Å, allowing detailed observation of the water structure, active-site interactions with ThDP and also the electron density for the co-solvent 2-methyl-2,4-pentanediol (MPD) at hydrophobic patches of the enzyme surface.« less

  8. Electron density reactivity indexes of the tautomeric/ionization forms of thiamin diphosphate.

    PubMed

    Jaña, Gonzalo A; Delgado, Eduardo J

    2013-09-01

    The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6-31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1' atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4' and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP-dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.

  9. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2004-09-08

    Alpha-ketoglutarate dehydrogenase (alpha-KGDH), a key enzyme in the Krebs' cycle, is a crucial early target of oxidative stress (Tretter and Adam-Vizi, 2000). The present study demonstrates that alpha-KGDH is able to generate H(2)O(2) and, thus, could also be a source of reactive oxygen species (ROS) in mitochondria. Isolated alpha-KGDH with coenzyme A (HS-CoA) and thiamine pyrophosphate started to produce H(2)O(2) after addition of alpha-ketoglutarate in the absence of nicotinamide adenine dinucleotide-oxidized (NAD(+)). NAD(+), which proved to be a powerful inhibitor of alpha-KGDH-mediated H(2)O(2) formation, switched the H(2)O(2) forming mode of the enzyme to the catalytic [nicotinamide adenine dinucleotide-reduced (NADH) forming] mode. In contrast, NADH stimulated H(2)O(2) formation by alpha-KGDH, and for this, neither alpha-ketoglutarate nor HS-CoA were required. When all of the substrates and cofactors of the enzyme were present, the NADH/NAD(+) ratio determined the rate of H(2)O(2) production. The higher the NADH/NAD(+) ratio the higher the rate of H(2)O(2) production. H(2)O(2) production as well as the catalytic function of the enzyme was activated by Ca(2+). In synaptosomes, using alpha-ketoglutarate as respiratory substrate, the rate of H(2)O(2) production increased by 2.5-fold, and aconitase activity decreased, indicating that alpha-KGDH can generate H(2)O(2) in in situ mitochondria. Given the NADH/NAD(+) ratio as a key regulator of H(2)O(2) production by alpha-KGDH, it is suggested that production of ROS could be significant not only in the respiratory chain but also in the Krebs' cycle when oxidation of NADH is impaired. Thus alpha-KGDH is not only a target of ROS but could significantly contribute to generation of oxidative stress in the mitochondria.

  10. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  11. Long-Distance Transport of Thiamine (Vitamin B1) Is Concomitant with That of Polyamines1[OPEN

    PubMed Central

    Martinis, Jacopo; Gas-Pascual, Elisabet; Szydlowski, Nicolas; Crèvecoeur, Michèle; Gisler, Alexandra; Bürkle, Lukas; Fitzpatrick, Teresa B.

    2016-01-01

    Thiamine (vitamin B1) is ubiquitous and essential for cell energy supply in all organisms as a vital metabolic cofactor, known for over a century. In plants, it is established that biosynthesis de novo is taking place predominantly in green tissues and is furthermore limited to plastids. Therefore, transport mechanisms are required to mediate the movement of this polar metabolite from source to sink tissue to activate key enzymes in cellular energy generating pathways but are currently unknown. Similar to thiamine, polyamines are an essential set of charged molecules required for diverse aspects of growth and development, the homeostasis of which necessitates long-distance transport processes that have remained elusive. Here, a yeast-based screen allowed us to identify Arabidopsis (Arabidopsis thaliana) PUT3 as a thiamine transporter. A combination of biochemical, physiological, and genetic approaches permitted us to show that PUT3 mediates phloem transport of both thiamine and polyamines. Loss of function of PUT3 demonstrated that the tissue distribution of these metabolites is altered with growth and developmental consequences. The pivotal role of PUT3 mediated thiamine and polyamine homeostasis in plants, and its importance for plant fitness is revealed through these findings. PMID:27006489

  12. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    PubMed

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E. histolytica ADHE to bacterial ADHE than to the G. lamblia ADHE. The 6-kDa FD of E. histolytica and G. lamblia were most similar to those of the archaebacterium Methanosarcina barkeri and the delta-purple bacterium Desulfovibrio desulfuricans, respectively, while the 12-kDa FD of the T. vaginalis hydrogenosome was most similar to the 12-kDa FD of gamma-purple bacterium Pseudomonas putida. E. histolytica genes (and probably G. lamblia genes) encoding fermentation enzymes therefore likely derive from bacteria by horizontal transfer, although it is not clear from which bacteria these amebic genes derive. These are the first nonorganellar fermentation enzymes of eukaryotes implicated to have derived from bacteria.

  13. Thiamine in septic shock patients with alcohol use disorders: An observational pilot study.

    PubMed

    Holmberg, Mathias Johan; Moskowitz, Ari; Patel, Parth Vijay; Grossestreuer, Anne Victoria; Uber, Amy; Stankovic, Nikola; Andersen, Lars Wiuff; Donnino, Michael William

    2018-02-01

    Alcohol-use disorders (AUDs) have been associated with increased sepsis-related mortality. As patients with AUDs are often thiamine deficient, we investigated practice patterns relating to thiamine administration in patients with AUDs presenting with septic shock and explored the association between receipt of thiamine and mortality. We performed a retrospective cohort study of patients presenting with septic shock between 2008 and 2014 at a single tertiary care center. We identified patients with an AUD diagnosis, orders for microbial cultures and use of antibiotics, vasopressor dependency, and lactate levels≥4mmol/L. We excluded those who received thiamine later than 48h of sepsis onset. We included 53 patients. Thirty-four (64%) patients received thiamine. Five patients (15%) received their first thiamine dose in the emergency department. The median time to thiamine administration was 9 (quartiles: 4, 18) hours. The first thiamine dose was most often given parenterally (68%) and for 100mg (88%). In those receiving thiamine, 15/34 (44%) died, compared to 15/19 (79%) of those not receiving thiamine, p=0.02. A considerable proportion of patients with AUDs admitted for septic shock do not receive thiamine. Thiamine administration in this patient population was associated with decreased mortality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Competition for vitamin B1 (thiamin) structures numerous ecological interactions.

    PubMed

    Kraft, Clifford E; Angert, Esther R

    2017-06-01

    Thiamin (vitamin B1) is a cofactor required for essential biochemical reactions in all living organisms, yet free thiamin is scarce in the environment. The diversity of biochemical pathways involved in the acquisition, degradation, and synthesis of thiamin indicates that organisms have evolved numerous ecological strategies for meeting this nutritional requirement. In this review we synthesize information from multiple disciplines to show how the complex biochemistry of thiamin influences ecological outcomes of interactions between organisms in environments ranging from the open ocean and the Australian outback to the gastrointestinal tract of animals. We highlight population and ecosystem responses to the availability or absence of thiamin. These include widespread mortality of fishes, birds, and mammals, as well as the thiamin-dependent regulation of ocean productivity. Overall, we portray thiamin biochemistry as the foundation for molecularly mediated ecological interactions that influence survival and abundance of a vast array of organisms.

  15. Thiamine Deficiency Increases Ca2+ Current and CaV1.2 L-type Ca2+ Channel Levels in Cerebellum Granular Neurons.

    PubMed

    Moreira-Lobo, Daniel C; Cruz, Jader S; Silva, Flavia R; Ribeiro, Fabíola M; Kushmerick, Christopher; Oliveira, Fernando A

    2017-04-01

    Thiamine (vitamin B1) is co-factor for three pivotal enzymes for glycolytic metabolism: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase. Thiamine deficiency leads to neurodegeneration of several brain regions, especially the cerebellum. In addition, several neurodegenerative diseases are associated with impairments of glycolytic metabolism, including Alzheimer's disease. Therefore, understanding the link between dysfunction of the glycolytic pathway and neuronal death will be an important step to comprehend the mechanism and progression of neuronal degeneration as well as the development of new treatment for neurodegenerative states. Here, using an in vitro model to study the effects of thiamine deficiency on cerebellum granule neurons, we show an increase in Ca 2+ current density and Ca V 1.2 expression. These results indicate a link between alterations in glycolytic metabolism and changes to Ca 2+ dynamics, two factors that have been implicated in neurodegeneration.

  16. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows.

    PubMed

    Pan, X H; Yang, L; Xue, F G; Xin, H R; Jiang, L S; Xiong, B H; Beckers, Y

    2016-11-01

    Two experiments were conducted to reveal the effects of grain-induced subacute rumen acidosis (SARA) on thiamine status in blood and rumen fluid in dairy cows. In both experiments, 6 multiparous, rumen-fistulated Holstein dairy cows were used in a 2-treatment, 2-period crossover design. Each experimental period consisted of 21d (total of 42d). Experiment 1 was to investigate the effects of SARA on thiamine status in blood and rumen fluid. Treatments were either control (20% starch, dry matter basis) or SARA-inducing diet (SAID, 33.2% starch, dry matter basis). In experiment 2, the effects of dietary thiamine supplementation on attenuating SARA and ruminal fermentation characteristics in dairy cows were studied. All cows received the same SAID diet during the whole experimental period; treatments were with or without thiamine (180mg of thiamine/kg of dry matter intake). In both experiments, rumen fluid samples were collected at 0, 3, 6, 9, and 12h after morning feeding on d 21 and 42 of the experiments for measurement of pH, thiamine, volatile fatty acid, and lactate contents. Peripheral blood was also collected at 3h after morning feeding on d 21 and 42 to measure thiamine, carbohydrate metabolites, and enzyme activities. In experiment 1, cows fed the SAID diet had lower ruminal and plasma thiamine concentrations and higher lactate than cows fed the control diet. The ruminal thiamine contents were positively related to pH and the concentrations of acetate in the rumen, and negatively correlated with the lactate contents. Experiment 2 demonstrated that ruminal pH and the concentrations of thiamine, acetate, and total volatile fatty acids in the rumen were increased, whereas ruminal lactate contents were reduced by thiamine supplementation. The concentrations of lactate and the activity of lactate dehydrogenase in blood were reduced in the thiamine supplemented group, and the opposite was true for the nonesterified fatty acids and α-ketoneglutarate dehydrogenase contents. In conclusion, the thiamine status was affected by SARA in dairy cows and ruminal infusion of thiamine could help attenuate SARA by improving theproportions of ruminal volatile fatty acids and reducing lactate contents in rumen fluid and blood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huanchen; Falck, J.R.; Hall, Traci M. Tanaka

    2012-01-11

    Inositol pyrophosphates (such as IP7 and IP8) are multifunctional signaling molecules that regulate diverse cellular activities. Inositol pyrophosphates have 'high-energy' phosphoanhydride bonds, so their enzymatic synthesis requires that a substantial energy barrier to the transition state be overcome. Additionally, inositol pyrophosphate kinases can show stringent ligand specificity, despite the need to accommodate the steric bulk and intense electronegativity of nature's most concentrated three-dimensional array of phosphate groups. Here we examine how these catalytic challenges are met by describing the structure and reaction cycle of an inositol pyrophosphate kinase at the atomic level. We obtained crystal structures of the kinase domainmore » of human PPIP5K2 complexed with nucleotide cofactors and either substrates, product or a MgF{sub 3}{sup -} transition-state mimic. We describe the enzyme's conformational dynamics, its unprecedented topological presentation of nucleotide and inositol phosphate, and the charge balance that facilitates partly associative in-line phosphoryl transfer.« less

  18. Purification and characterization of two wheat-embryo protein phosphatases.

    PubMed

    Polya, G M; Haritou, M

    1988-04-15

    Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.

  19. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.

    Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less

  20. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus , a New Twist on ATP Formation

    DOE PAGES

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; ...

    2016-08-16

    Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less

  1. Benzaldehyde lyase, a novel thiamine PPi-requiring enzyme, from Pseudomonas fluorescens biovar I.

    PubMed Central

    González, B; Vicuña, R

    1989-01-01

    Pseudomonas fluorescens biovar I can grow on benzoin as the sole carbon and energy source. This ability is due to benzaldehyde lyase, a new type of enzyme that irreversibly cleaves the acyloin linkage of benzoin, producing two molecules of benzaldehyde. Benzaldehyde lyase was purified 70-fold and found to require catalytic amounts of thiamine PPi (TPP) and a divalent cation as cofactors. Optimal activity was obtained with a 1.0 mM concentration of Mn2+, Mg2+, or Ca2+. Gel permeation chromatography indicated a native molecular weight of 80,000, whereas the enzyme migrated in sodium dodecyl sulfate-containing polyacrylamide gels as a single polypeptide with a molecular weight of 53,000. Benzaldehyde lyase is highly specific; of a variety of structurally related compounds tested, only benzoin and anisoin (4,4'-dimethoxybenzoin) acted as substrates, their apparent Kms being 9.0 x 10(-3) and 3.25 x 10(-2) mM, respectively. A catalytic mechanism for the enzyme is proposed. Images PMID:2496105

  2. Structure of Leishmania major Methionyl-tRNA Synthetase in Complex with Intermediate Products Methionyladenylate and Pyrophosphate

    PubMed Central

    Larson, Eric T.; Kim, Jessica E.; Zucker, Frank H.; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J.; Verlinde, Christophe L.M.J.; Fan, Erkang; Buckner, Frederick S.; Van Voorhis, Wesley C.; Merritt, Ethan A.; Hol, Wim G.J.

    2011-01-01

    Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg2+ ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of E. coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNAMet complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme. PMID:21144880

  3. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera.

    PubMed

    Ferriols, Victor Marco Emmanuel N; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru

    2015-05-21

    The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom.

  4. Adenine phosphoribosyltransferase from Sulfolobus solfataricus is an enzyme with unusual kinetic properties and a crystal structure that suggests it evolved from a 6-oxopurine phosphoribosyltransferase.

    PubMed

    Jensen, Kaj Frank; Hansen, Michael Riis; Jensen, Kristine Steen; Christoffersen, Stig; Poulsen, Jens-Christian Navarro; Mølgaard, Anne; Kadziola, Anders

    2015-04-14

    The adenine phosphoribosyltransferase (APRTase) encoded by the open reading frame SSO2342 of Sulfolobus solfataricus P2 was subjected to crystallographic, kinetic, and ligand binding analyses. The enzyme forms dimers in solution and in the crystals, and binds one molecule of the reactants 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and adenine or the product adenosine monophosphate (AMP) or the inhibitor adenosine diphosphate (ADP) in each active site. The individual subunit adopts an overall structure that resembles a 6-oxopurine phosphoribosyltransferase (PRTase) more than known APRTases implying that APRT functionality in Crenarchaeotae has its evolutionary origin in this family of PRTases. Only the N-terminal two-thirds of the polypeptide chain folds as a traditional type I PRTase with a five-stranded β-sheet surrounded by helices. The C-terminal third adopts an unusual three-helix bundle structure that together with the nucleobase-binding loop undergoes a conformational change upon binding of adenine and phosphate resulting in a slight contraction of the active site. The inhibitor ADP binds like the product AMP with both the α- and β-phosphates occupying the 5'-phosphoribosyl binding site. The enzyme shows activity over a wide pH range, and the kinetic and ligand binding properties depend on both pH and the presence/absence of phosphate in the buffers. A slow hydrolysis of PRPP to ribose 5-phosphate and pyrophosphate, catalyzed by the enzyme, may be facilitated by elements in the C-terminal three-helix bundle part of the protein.

  5. Treatment with thiamine hydrochloride and astaxanthine for the prevention of yolk-sac mortality in Baltic salmon fry (M74 syndrome).

    PubMed

    Koski, P; Pakarinen, M; Nakari, T; Soivio, A; Hartikainen, K

    1999-09-14

    Two practical methods are reported for treating feral Baltic salmon with thiamine hydrochloride against M74 syndrome (abnormally high yolk-sac fry mortality of the Baltic salmon). Both bathing of the yolk-sac fry in thiamine hydrochloride (1000 mg l-1, 1 h) and a single intraperitoneal injection given to the female brood fish (100 mg kg-1 fish) during the summer 3 mo before stripping were shown to elevate the whole body total thiamine concentration in the fry. Both treatments were also shown to be effective in preventing mortality due to M74 syndrome. The effect of bathing the yolk-sac fry was shown to be dose-dependent. The results support the view that there is a causal relationship between the thiamine status of the yolk-sac fry and M74 mortality. An intraperitoneal injection of astaxanthine suspension administered to the female brood fish (11 mg kg-1 fish) in the summer 3 mo before stripping elevated the astaxanthine concentration in the eggs but did not affect mortality due to M74 syndrome. An interaction between astaxanthine and thiamine may occur in the developing embryo or yolk-sac fry, however. No association could be demonstrated between the various thiamine hydrochloride treatment practices and hepatic cytochrome P450 dependent 7-ethoxyresorufin-O-deethylase (EROD) activity in the yolk-sac fry. An injection of thiamine hydrochloride into the peritoneal cavity of wild Baltic salmon females could be used to raise thiamine concentrations in their offspring in the rivers. The effect on smolt production in Finnish Baltic salmon rivers needs to be investigated further, however.

  6. Effect of water soluble vitamins on Zn transport of Caco-2 cells and their implications under oxidative stress conditions.

    PubMed

    Tupe, Rashmi Santosh; Agte, Vaishali Vilas

    2010-02-01

    The role of different water soluble vitamins in Zn metabolism beyond intestinal Zn absorption is poorly explored. Using Caco-2 cells, effects of different vitamins on intestinal Zn transport and their implications under oxidative stress (OS) were investigated. Cells were apically treated with Zn (25 muM) and vitamins (Folic acid (FA), Nicotinic acid (NA), Ascorbic acid (AA), riboflavin, thiamine, pyridoxine) for 60 min. The effect of most promising vitamins on zinc transport, antioxidant enzymes (Catalase, Glutathione peroxidase, and superoxide dismutase), and intracellular OS status (ROS generation and mitochondrial transmembrane potential) were investigated. OS was generated by tert-butyl hydro peroxide and results for each vitamin were compared with respective Zn containing controls with and without OS. Without OS, Zn transport was slightly enhanced in presence of NA, while it was significantly reduced by thiamine, riboflavin, and pyridoxine. Under OS, NA significantly (P < 0.01) enhanced Zn transport in dose-dependent manner, while, pyridoxine and AA moderately improved it. Under both conditions, Zn transport exhibited decreasing trend with increase of FA. The antioxidant enzyme and OS markers levels varied significantly in Zn + vitamins. With Zn + FA + OS, enzyme activities decreased maximally, with twofold increase in 2',7'-dichlorofluorescin diacetate (DCF-DA) (P < 0.01) and lowering of rhodamine fluorescence (P < 0.05). In Zn + AA + OS, DCF-DA fluorescence increased (P < 0.05) but with NA, cellular enzymes, and antioxidant profile were improved. Results for the first time demonstrate advantageous effects of NA and deleterious consequences of FA with no effect by AA on Zn transport, especially under OS. These observed changes in the transport of Zn seem to have an impact on OS markers.

  7. Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    'Energy-rich' thioesters are shown to act as condensing agents in the formation of pyrophosphate on hydroxyapatite in the presence of water at ambient temperature. The yield of pyrophosphate based on thioester ranges from 2.5% to 11.4% and depends upon the pH and concentration of reactants. Reaction of 0.130 M hydroxyapatite suspended in a solution of 0.08 M sodium phosphate and 0.20 M imidazole hydrochloride (pH 7.0) with 0.10 M N,S-diacetylcysteamine for 6 days gives the highest yield of pyrophosphate (11.4%). Pyrophosphate formation requires the presence of hydroxyapatite, sodium phosphate and the thioester, N,S-diacetylcysteamine. The related thioester, N,S-diacetylcysteine, also yields pyrophosphate in reactions on hydroxyapatite.

  8. Investigation of the donor and acceptor range for chiral carboligation catalyzed by the E1 component of the 2-oxoglutarate dehydrogenase complex

    PubMed Central

    Patel, Hetalben; Shim, Da Jeong; Farinas, Edgardo T.; Jordan, Frank

    2013-01-01

    The potential of thiamin diphosphate (ThDP)-dependent enzymes to catalyze C-C bond forming (carboligase) reactions with high enantiomeric excess has been recognized for many years. Here we report the application of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex in the synthesis of chiral compounds with multiple functional groups in good yield and high enantiomeric excess, by varying both the donor substrate (different 2-oxo acids) and the acceptor substrate (glyoxylate, ethyl glyoxylate and methyl glyoxal). Major findings include the demonstration that the enzyme can accept 2-oxovalerate and 2-oxoisovalerate in addition to its natural substrate 2-oxoglutarate, and that the tested acceptors are also acceptable in the carboligation reaction, thereby very much expanding the repertory of the enzyme in chiral synthesis. PMID:24277992

  9. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus

    PubMed Central

    Zhu, Ying; Li, Tingting; Ramos da Silva, Suzane; Lee, Jae-Jin; Lu, Chun; Eoh, Hyungjin; Jung, Jae U.

    2017-01-01

    ABSTRACT While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV) accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2), glutamate dehydrogenase 1 (GLUD1), and glutamic-oxaloacetic transaminase 2 (GOT2), to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD), phosphoribosyl pyrophosphate amidotransferase (PPAT), and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively), suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA) cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway. PMID:28811348

  10. A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides.

    PubMed

    Esipov, R S; Abramchik, Yu A; Fateev, I V; Konstantinova, I D; Kostromina, M A; Muravyova, T I; Artemova, K G; Miroshnikov, A I

    2016-01-01

    We propose a new approach for the synthesis of biologically important nucleotides which includes a multi-enzymatic cascade conversion of D -pentoses into purine nucleotides. The approach exploits nucleic acid exchange enzymes from thermophilic microorganisms: ribokinase, phosphoribosylpyrophosphate synthetase, and adenine phosphoribosyltransferase. We cloned the ribokinase gene from Thermus sp . 2.9, as well as two different genes of phosphoribosylpyrophosphate synthetase (PRPP-synthetase) and the adenine phosphoribosyltransferase (APR-transferase) gene from Thermus thermophilus HB27 into the expression vectors, generated high-yield E. coli producer strains, developed methods for the purification of the enzymes, and investigated enzyme substrate specificity. The enzymes were used for the conversion of D -pentoses into 5-phosphates that were further converted into 5-phospho-α- D -pentofuranose 1-pyrophosphates by means of ribokinase and PRPP-synthetases. Target nucleotides were obtained through the condensation of the pyrophosphates with adenine and its derivatives in a reaction catalyzed by APR-transferase. 2-Chloro- and 2-fluoroadenosine monophosphates were synthesized from D -ribose and appropriate heterobases in one pot using a system of thermophilic enzymes in the presence of ATP, ribokinase, PRPP-synthetase, and APR-transferase.

  11. Purification and characterization of chromatin-bound DNA-dependent RNA polymerase I from parsley (Petroselinum crispum). Influence of nucleoside triphosphates.

    PubMed Central

    Grossmann, K; Friedrich, H; Seitz, U

    1980-01-01

    The isolation and purification of DNA-dependent RNA polymerase I (EC 2.7.7.6) from parsley (Petroselinum crispum) callus cells grown in suspension culture is described. The enzyme was solubilized from isolated chromatin. Purification was achieved by using DEAE- and phospho-cellulose in batches, followed by column chromatography on DEAE- and phospho-cellulose (two columns) and density-gradient centrifugation. The highly purified enzyme was stable over several months. The properties of purified parsley RNA polymerase I were investigated. Optimum concentration for Mn2+ was 1 mM, and for Mg2+ 4-6 mM, Mn2+ was slightly more stimulatory than Mg2+. The enzyme was most active at low ionic strengths [10-20 mM-(NH4)SO4]. The influence of various phosphates was tested: pyrophosphate inhibited RNA polymerase at low concentrations, whereas orthophosphate had no effect on the enzyme activity. ADP was slightly inhibitory, and AMP had no effect on the enzyme reaction. Nucleoside triphosphates and bivalent cations in equimolar concentrations in the range 4-11 mM did not influence the RNA synthesis in vitro. Free nucleoside triphosphates in excess of this 1:1 ratio inhibited the enzyme activity, unlike free bivalent cations, which stimulated RNA polymerase I. PMID:7470092

  12. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  13. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera

    PubMed Central

    Ferriols, Victor Marco Emmanuel N.; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru

    2015-01-01

    The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom. PMID:25996801

  14. Can long-term thiamine treatment improve the clinical outcomes of myotonic dystrophy type 1?

    PubMed

    Costantini, Antonio; Trevi, Erika; Pala, Maria Immacolata; Fancellu, Roberto

    2016-09-01

    Myotonic dystrophy type 1, also known as Steinert's disease, is an autosomal dominant disorder with multisystemic clinical features affecting the skeletal and cardiac muscles, the eyes, and the endocrine system. Thiamine (vitamin B1) is a cofactor of fundamental enzymes involved in the energetic cell metabolism; recent studies described its role in oxidative stress, protein processing, peroxisomal function, and gene expression. Thiamine deficiency is critical mainly in the central and peripheral nervous system, as well as in the muscular cells. Our aim was to investigate the potential therapeutical effects of long-term treatment with thiamine in myotonic dystrophy type 1 in an observational open-label pilot study. We described two patients with myotonic dystrophy type 1 treated with intramuscular thiamine 100 mg twice a week for 12 or 11 months. We evaluated the patients using the grading of muscle strength according to Medical Research Council (MRC), the Muscular Impairment Rating Scale (MIRS), and the Modified Barthel index. High-dose thiamine treatment was well tolerated and effective in improving the motor symptomatology, particularly the muscle strength evaluated with the MRC scale, and the patients' activities of daily living using the Modified Barthel Index. At the end of treatment, the MRC score was 5 in the proximal muscles and 2-4 in the distal muscles (the MRC score before the treatment was 3-4 and 1-3, respectively). The MIRS grade improved by 25% compared to baseline for both patients. In patient #1, the Modified Barthel Index improved by 44%, and in patient #2 by 29%. These findings suggest that clinical outcomes are improved by long-term thiamine treatment.

  15. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.

    PubMed

    Chen, Rachel Ruizhen; Agrawal, Manoj; Mao, Zichao

    2013-06-01

    Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.

  16. The effects of thiamin on lead metabolism: organ distribution of lead 203.

    PubMed Central

    Kim, J S; Hamilton, D L; Blakley, B R; Rousseaux, C G

    1992-01-01

    The effect of thiamin on the organ distribution of lead was evaluated in CD-1 mice exposed intragastrically or intraperitoneally to a single dose of lead acetate (100 micrograms) containing 100 microCi lead 203. They were treated with either thiamin (25 or 50 mg/kg body weight), calcium ethylenediaminetetraacetic acid (CaEDTA) (50 mg/kg body weight), or combinations of thiamin and CaEDTA. The whole body retention and the organ distribution of lead 203 varied depending upon the route of lead administration, dose of thiamin and the specific treatment combination. Thiamin (25 or 50 mg/kg) treatment increased the whole body retention of both intragastric and intraperitoneal lead by approximately 10% in each instance. Calcium ethylenediaminetetraacetic acid, either alone or in combination with thiamin (50 mg/kg) reduced the whole body retention of lead by as much as 14% regardless of route of lead exposure. The relative retention of lead by the liver, kidney and spleen was greater in mice exposed to lead by the intragastric route. Regardless of route, CaEDTA in the combined treatment reduced the relative retention of lead in both the liver and kidney, whereas thiamin alone only reduced the retention of lead in the kidney. The results of this study indicate that thiamin in combination with CaEDTA alters the distribution and retention of lead in a manner which may have therapeutic application as it relates to chelation therapy. PMID:1423063

  17. Oil and Protein Accumulation in Developing Seeds Is Influenced by the Expression of a Cytosolic Pyrophosphatase in Arabidopsis[C][W][OA

    PubMed Central

    Meyer, Knut; Stecca, Kevin L.; Ewell-Hicks, Kim; Allen, Stephen M.; Everard, John D.

    2012-01-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that genes encoding cytosolic pyrophosphatase enzymes provide novel targets to improve seed composition for plant biotechnology applications. PMID:22566496

  18. Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase Induction and Attenuation of Hsp Gene Expression during Endosperm Modification in Quality Protein Maize1[C][W][OA

    PubMed Central

    Guo, Xiaomei; Ronhovde, Kyla; Yuan, Lingling; Yao, Bo; Soundararajan, Madhavan P.; Elthon, Thomas; Zhang, Chi; Holding, David R.

    2012-01-01

    Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large increase in transcript and protein levels of the α-regulatory subunit of PFP (PFPα) in QPM endosperm. In vitro enzyme assays showed a significant increase in forward PFP activity in developing endosperm extracts of QPM relative to the wild type and o2. An expressed retrogene version of PFPα of unknown function that was not up-regulated in QPM was also identified. The elevated expression levels of a number of ATP-requiring heat shock proteins (Hsps) in o2 endosperm are ameliorated in QPM. PFPα is also coinduced with Hsps in maize roots in response to heat, cold, and the unfolded protein response stresses. We propose that reduced ATP availability resulting from the generalized Hsp response in addition to the reduction of pyruvate, orthophosphate dikinase activity in o2 endosperm is compensated in part by increased PFP activity in QPM. PMID:22158678

  19. Thiamine losses during storage of pasteurised and sterilized model systems of minced chicken meat with addition of fresh and oxidized fat, and antioxidants.

    PubMed

    Szymandera-Buszka, Krystyna; Hęś, Marzanna; Waszkowiak, Katarzyna; Jędrusek-Golińska, Anna

    2014-01-01

    The aim of the study was to determine the effect of pasteurisation and sterilization of model systems of minced chicken meat in the presence of low or high-oxidised pork lard, soy and sunflower oil, as well as casein hydrolysate and rosemary extract, on losses of thiamine in model systems. In the samples, the thiamine content was analysed periodically by thiochromium method, as well as rate of lipid oxidation based on measurement of peroxide value (PV) by iodometric method and p-anisidine value (AV) by spectrophotometric method. It was observed that the thiamine losses in model systems of minced chicken after pasteurisation (61-71%) were higher than after sterilization (57-67%). Introduction of high-oxidised fat increased the total thiamine losses both during thermal processing and storage of meat samples (to 23%). A strong relationship was established between thiamine losses and rate of fat oxidation. The lowest total thiamine losses were observed in the samples with low-oxidised pork lard. Antioxidant addition (rosemary extract or casein hydrolysate) into meat samples limited the thiamine losses. However, the effect depended on oxidation of fat that was mixed with meat. In the samples with low-oxidised fat, higher protective effect was found for rosemary extract (7-11%). In the samples with high-oxidised fat, casein hydrolysate was superior to rosemary extract (14%). In order to increase the stability of thiamine in pasteurized or sterilized meat products with fats, the influence of fat type and its oxidative stability should be taken under consideration. Moreover, the addition of rosemary extract or casein hydrolysate has impact on the thiamine losses since it slows down lipid oxidation to a significant extent.

  20. Part I: RNA hydrolysis catalyzed by imidazole compounds. Part II. Hydrophobic acceleration of reactions and mimics of thiamin-dependent enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kool, E.T.

    1988-01-01

    Catalysts modeled after the active site groups of the enzyme Ribonuclease A were synthesized and tested for catalysis of the hydrolysis of poly(rU), using a quantitative assay. The most effective of all the catalysts is N,N{prime}-bis-imidazolylmethane, which gave a four-fold rate enhancement as compared to N-methyl-imidazole. The structure/activity relationships are discussed in light of the ribonuclease mechanism. Also examined were reactions catalyzed by the coenzyme thiamine. In an investigation of the effects of restricting conformational freedom, a thiazolium salt was attached in two positions to {beta}-cyclodextrin. Since the catalyst gave about the same rate for tritium exchange from benzaldehyde asmore » singly-attached catalysts, we surmise that any rate enhancement due to the restriction of bond rotations has been lost by forcing the structure into less productive conformations. The benzoin condensation catalyzed by cyanide was also investigated. The reaction was shown to be faster in water than in most organic solvents. Kinetic salt effects and the effects of added {beta}- and {gamma}-cyclodextrin were measured in water; salting-out ions and {gamma}-cyclodextrin increase the rate, while salting-in ions and {beta}-cyclodextrin decrease it. Negative salt effects were observed in formamide, ethylene glycol, and DMSO. All these media effects are discussed in relation to the compact, hydrophobic transition state for the reaction.« less

  1. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp.more » gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.« less

  2. FGF2 Stimulation of the Pyrophosphate-Generating Enzyme, PC-1, in Pre-Osteoblast Cells Is Mediated by RUNX2

    PubMed Central

    Hatch, Nan E; Li, Yan; Franceschi, Renny T

    2009-01-01

    Pyrophosphate is an established inhibitor of hydroxyapatite deposition and crystal growth, yet when hydrolyzed into phosphate, it becomes a substrate for hydroxyapatite deposition. Pyrophosphate-generating enzyme (PC-1), Ank, and tissue nonspecific alkaline phosphatase (Tnap) are three factors that regulate extracellular pyrophosphate levels through its generation, transport, and hydrolysis. We previously showed that fibroblast growth factor 2 (FGF2) induces PC-1 and Ank while inhibiting Tnap expression and mineralization in MC3T3E1(C4) calvarial pre-osteoblast cells. In this study, we showed similar FGF2 regulation of these genes in primary pre-osteoblast cultures. In contrast to Ank and Tnap that are regulated by FGF2 in multiple cell types, we found regulation of PC-1 to be selective to pre-osteoblastic cells and to require the osteoblast-related transcription factor, Runx2. Specifically, FGF2 was unable to induce PC-1 expression in Runx2-negative nonbone cells or in calvarial cells from Runx2-deficient mice. Transfection of these cells with a Runx2 expression vector restored FGF2 responsiveness. FGF2 was also shown to stimulate recruitment of Runx2 to the endogenous PC-1 promoter in MC3T3E1(C4) cells, as measured by chromatin immunoprecipitation. Taken together, our results establish that FGF2 is a specific inducer of PC-1 in pre-osteoblast cells and that FGF2 induces PC-1 expression through a mechanism involving Runx2. PMID:19049325

  3. Vitamin blood concentration and vitamin supplementation in bottlenose dolphins (Tursiops truncatus) in European facilities.

    PubMed

    Gimmel, Angela Emilia Ricarda; Baumgartner, Katrin; Liesegang, Annette

    2016-09-05

    As fish eaters bottlenose dolphins (Tursiops truncatus) in human care need to receive daily vitamin supplementation, because whole thawed fish lacks certain vitamins. However, the exact concentration of supplementation has not been established and is a matter of discussion. To ensure adequate vitamin supplementation in pets, vitamin blood concentrations are measured. This is not a common practice in dolphins. The objective of the present study was to collect information about vitamin supplementation in bottlenose dolphins and on vitamin blood concentrations of healthy animals in European facilities. In addition, these results were compared with blood levels of wild animals. Conclusions on how to provide bottlenose dolphins in human care with an effective vitamin supplementation will then be drawn. Initially, fish-handling techniques and vitamin supplementation were evaluated by questionnaire, which was sent to 25 European facilities that house bottlenose dolphins. Secondly, blood samples from 57 dolphins living in 10 facilities were taken and sent by mail to a reference laboratory. They were analysed for retinol, thiamine pyrophosphate, cobalamin, calcidiol and tocopherol. The blood concentrations were then correlated with vitamin supplementation, fish handling techniques and pre-existing blood concentrations of free-ranging dolphins. Finally, the data was subjected to a standard analysis of variance techniques (ANOVA) and a linear model analysis. Fish was mainly thawed in a refrigerator. Further, the 95 % confidence interval for retinol blood concentrations was 0.048 to 0.059 mg/l and for tocopherol 17.95 to 20.76 mg/l. These concentrations were 27 and 53 %, respectively, higher than those found in free-ranging animals. In contrast, calcidiol concentrations (143.9-174.7 ng/ml) of the dolphins in human care were lower than in blood found for free-ranging animals. Regarding thiamine pyrophosphate and cobalamin, concentrations ranged between 0.42 and 0.55 mg/l and 175.55 and 275.22 pg/ml respectively. No reference concentrations for free-ranging Tursiops truncatus were found. These findings suggest an over-supplementation of retinol (vitamin A) and tocopherol (vitamin E) in bottlenose dolphins (Tursiops truncatus) housed in human care. Therefore, vitamin A supplementation should not exceed 50,000 IU per animal per day and vitamin E supplementation should be around 100 IU per kg fed fish per day.

  4. Active-Site Engineering of Benzaldehyde Lyase Shows That a Point Mutation Can Confer Both New Reactivity and Susceptibility to Mechanism-Based Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Gabriel S.; Kneen, Malea M.; Petsko, Gregory A.

    2010-02-11

    Benzaldehyde lyase (BAL) from Pseudomonas putida is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the breakdown of (R)-benzoin. Here we report that a point mutant, BAL A28S, not only catalyzes the decarboxylation of benzoylformate but, like benzoylformate decarboxylase (BFDC), is also inactivated by the benzoylformate analogues methyl benzoylphosphonate (MBP) and benzoylphosphonate (BP). The latter has no effect on wild-type BAL, and the inactivation of the A28S variant is shown to result from phosphorylation of the newly introduced serine residue. This lends support to the proposal that an appropriately placed nucleophile facilitates the expulsion of carbon dioxide from the active sitemore » in many ThDP-dependent decarboxylases.« less

  5. The Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene

    PubMed Central

    Hall, Stephen J.; Eastham, Graham; Licence, Peter; Stephens, Gill

    2015-01-01

    Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway. PMID:25636853

  6. Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol.

    PubMed

    Zahr, Natalie M; Luong, Richard; Sullivan, Edith V; Pfefferbaum, Adolf

    2010-11-01

     In rodent and human studies, ethanol (EtOH) exposure is associated with elevated brain levels of the magnetic resonance spectroscopy (MRS) signal representing choline-containing compounds (Cho). One interpretation of elevated brain Cho is that it is a marker of neuroinflammation, and some evidence suggests that EtOH exposure promotes neuroinflammation. This study aimed to determine whether binge EtOH exposure (intragastric 3 g/kg 25% EtOH every 8 hours for 4 days) would induce the expression of certain cytokines in blood, liver, or brain, thereby supporting the neuroinflammation hypothesis of elevated Cho. Ten of 18 wild-type male Wistar rats (~322 g at baseline) were exposed to EtOH and attained average blood alcohol levels of ~315 mg/dl across 4 days. Blood for cytokine immunoassays was collected at baseline, after 5 doses of EtOH (binge), and immediately preceding euthanasia either 4 or 24 hours after the last dose of EtOH. Blood was additionally assayed for the levels of thiamine and liver enzymes; liver histopathology was performed postmortem; and tissue from liver and 6 brain regions was assayed for the potential induction of 7 cytokines. There were no group effects on the levels of thiamine or its phosphate derivatives, thiamine monophosphate or thiamine diphosphate. ANOVAs of liver enzyme levels indicated that only alkaline phosphatase (ALP) levels were higher in the EtOH group than in control group at binge; ALP elevations, however, are difficult to explain in the absence of changes in the levels of additional liver enzymes. Postmortem liver pathology provided evidence for minimal microvesicular lipidosis and portocentric fibrosis in the EtOH group. Group effects on the levels of the measured cytokines in the blood (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13, and GRO/CXCL1) were not significant. Similarly, postmortem evaluation of liver cytokines did not reveal group effects. Postmortem evaluation of the 7 cytokines in 6 brain regions (anterior cerebellar vermis, cingulate cortex, frontal cortex, hippocampus, hypothalamus, striatum) also failed to identify group effects. A single 4-day bout of binge EtOH exposure alone was insufficient to induce the expression of 7 cytokines in blood, liver, or 6 brain regions of wild-type Wistar rats. Alternative interpretations for elevations in brain Cho in response to a 4-day binge EtOH treatment are therefore necessary and may include induction of cytokines not measured herein or other noninflammatory mechanisms. Copyright © 2010 by the Research Society on Alcoholism.

  7. Egg thiamine status of Lake Ontario salmonines 1995-2004 with emphasis on lake trout

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Williston, G.; Brown, L.; El-Shaarawi, A.; Vandenbyllaardt, L.; Honeyfeld, D.; Tillitt, D.; Wolgamood, M.; Brown, S.B.

    2007-01-01

    Alewives (Alosa pseudoharengus), the major prey fish for Lake Ontario, contain thiaminase. They are associated with development of a thiamine deficiency in salmonines which greatly increases the potential for developing an early mortality syndrome (EMS). To assess the possible effects of thiamine deficiency on salmonine reproduction we measured egg thiamine concentrations for five species of Lake Ontario salmonines. From this we estimated the proportion of families susceptible to EMS based on whether they were below the ED20, the egg thiamine concentration associated with 20% mortality due to EMS. The ED20s were 1.52, 2.63, and 2.99 nmol/g egg for Chinook salmon (Oncorhynchus tshawytscha), lake trout (Salvelinus namaycush), and coho salmon (Oncorhynchus kisutch), respectively. Based on the proportion of fish having egg thiamine concentrations falling below the ED20, the risk of developing EMS in Lake Ontario was highest for lake trout, followed by coho (O. kisutch), and Chinook salmon, with the least risk for rainbow trout (O. mykiss). For lake trout from western Lake Ontario, mean egg thiamine concentration showed significant annual variability during 1994 to 2003, when the proportion of lake trout at risk of developing EMS based on ED20 ranged between 77 and 100%. Variation in the annual mean egg thiamine concentration for western Lake Ontario lake trout was positively related (p < 0.001, r2 = 0.94) with indices of annual adult alewife biomass. While suggesting the possible involvement of density-dependent changes in alewives, the changes are small relative to egg thiamine concentrations when alewife are not part of the diet and are of insufficient magnitude to allow for natural reproduction by lake trout.

  8. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.

    PubMed Central

    Cammack, R; Barber, M J; Bray, R C

    1976-01-01

    1. The mid-point reduction potentials of the various groups in xanthine oxidase from bovine milk were determined by potentiometric titration with dithionite in the presence of dye mediators, removing samples for quantification of the reduced species by e.p.r. (electron-paramagnetic-resonance) spectroscopy. The values obtained for the functional enzyme in pyrophosphate buffer, pH8.2, are: Fe/S centre I, -343 +/- 15mV; Fe/S II, -303 +/- 15mV; FAD/FADH-; -351 +/- 20mV; FADH/FADH2, -236 +/-mV; Mo(VI)/Mo(V) (Rapid), -355 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -355 +/- 20mV. 2. Behaviour of the functional enzyme is essentially ideal in Tris but less so in pyrophosphate. In Tris, the potential for Mo(VI)/Mo(V) (Rapid) is lowered relative to that in pyrophosphate, but the potential for Fe/S II is raised. The influence of buffer on the potentials was investigated by partial-reduction experiments with six other buffers. 3. Conversion of the enzyme with cyanide into the non-functional form, which gives the Slow molybdenum signal, or alkylation of FAD, has little effect on the mid-point potentials of the other centres. The potentials associated with the Slow signal are: Mo(VI)/Mo(V) (Slow), -440 +/- 25mV; Mo(V) (Slow)/Mo(IV), -480 +/- 25 mV. This signal exhibits very sluggish equilibration with the mediator system. 4. The deviations from ideal behaviour are discussed in terms of possible binding of buffer ions or anti-co-operative interactions amongst the redox centres. PMID:183752

  9. An adaptation to life in acid through a novel mevalonate pathway

    DOE PAGES

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.; ...

    2016-12-22

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  10. An adaptation to life in acid through a novel mevalonate pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  11. The connection between maternal thiamine shortcoming and offspring cognitive damage and poverty perpetuation in underprivileged communities across the world.

    PubMed

    Dias, Fernando M V; Silva, Danielle Marra de Freitas; Doyle, Flavia Costa de Proença; Ribeiro, Angela Maria

    2013-01-01

    The acquisition of cognitive, sensory-motor and social emotional functions depend on a proper development of the Central Nervous System (CNS). This set of functions, known as intelligence, allows a better adaptation to the environment. In the last decades, an increase in the average of intelligence has been reported. However, such an increase cannot be observed in an equivalent way in economically and social underprivileged regions. Children from those regions are in great risk of being affected by mental retardation or impaired cognitive development. In later life they will, probably, be unable to transform and improve themselves and their communities, perpetuating the poverty of the region. Therefore, knowledge of factors involved in CNS development is a matter of health closely related to social improvement. Malnutrition throughout pregnancy and breastfeeding is clearly identifiable as a cause of damage in CNS development. Vitamin B1 (Thiamine) is a micronutrient important to the growth and maturity of the CNS. Thiamine shortcoming may affect 50% of pregnant women. Thiamine function in cerebral development is still not well known. There is a gap in the literature regarding systematical research about the blood thiamine concentration throughout the periods of gestation and breastfeeding. These studies are relevant in populations with a high level of nutritional vulnerability, because in a follow up offspring cognitive exam they could reveal if the maternal thiamine deficiency is related to child CNS impairment. This paper introduce the hypothesis that thiamine shortcoming during pregnancy and breastfeeding is directly related to cognitive impairment of child. Data about the neurophysiological role of thiamine, consequences of its shortcoming in experimental models, populations under the risk of thiamine shortcoming are presented. The hypothesis that maternal thiamine shortcoming causes damage related to child cognitive development needs to be considered. Thus, thiamine shortcoming during gestation and breastfeeding and its effects on children must be studied in many populations in order to know the magnitude of the problem and to indicate actions to overcome it. Copyright © 2012. Published by Elsevier Ltd.

  12. Intravenous thiamine is associated with increased oxygen consumption in critically ill patients with preserved cardiac index.

    PubMed

    Berg, Katherine M; Gautam, Shiva; Salciccioli, Justin D; Giberson, Tyler; Saindon, Brian; Donnino, Michael W

    2014-12-01

    Oxygen consumption may be impaired in critically ill patients. To evaluate the effect of intravenous thiamine on oxygen consumption ([Formula: see text]o2) in critically ill patients. This was a small, exploratory open-label pilot study conducted in the intensive care units at a tertiary care medical center. Critically ill adults requiring mechanical ventilation were screened for enrollment. Oxygen consumption ([Formula: see text]o2) and cardiac index (CI) were recorded continuously for 9 hours. After 3 hours of baseline data collection, 200 mg of intravenous thiamine was administered. The outcome was change in [Formula: see text]o2 after thiamine administration. Twenty patients were enrolled and 3 were excluded because of incomplete [Formula: see text]o2 data, leaving 17 patients for analysis. There was a trend toward increase in [Formula: see text]o2 after thiamine administration (16.3 ml/min, SE 8.5; P = 0.052). After preplanned adjustment for changes in CI in case of a delivery-dependent state in some patients (with exclusion of one additional patient because of missing CI data), this became statistically significant (16.9 ml/min, SE 8.6; P = 0.047). In patients with average CI greater than our cohort's mean value of 3 L/min/m(2), [Formula: see text]o2 increased by 70.9 ml/min (±16; P < 0.0001) after thiamine. Thiamine had no effect in patients with reduced CI (< 2.4 L/min/m(2)). There was no association between initial thiamine level and change in [Formula: see text]o2 after thiamine administration. The administration of a single dose of thiamine was associated with a trend toward increase in [Formula: see text]o2 in critically ill patients. There was a significant increase in [Formula: see text]o2 in those patients with preserved or elevated CI. Further study is needed to better characterize the role of thiamine in oxygen extraction. Clinical trial registered with www.clinicaltrials.gov (NCT01462279).

  13. Complete recovery from undertreated Wernicke-Korsakoff syndrome following aggressive thiamine treatment.

    PubMed

    Paparrigopoulos, Thomas; Tzavellas, Elias; Karaiskos, Dimitris; Kouzoupis, Anastasios; Liappas, Ioannis

    2010-01-01

    Wernicke-Korsakoff syndrome (WKS) is a neuropsychiatric condition which results from thiamine deficiency, most commonly due to alcohol abuse. The prognosis of WKS is poor and its outcome depends mainly on prompt treatment. A 52-year-old male with a ten-year history of heavy alcohol abuse was admitted in hospital and treated for WKS. Ataxic and oculomotor symptoms promptly reversed following standard treatment but no change was observed in higher mental functioning. Although the protracted WK symptoms made the patient's improvement unlikely, aggressive treatment with thiamine (600 mg/day orally and 300 mg/day intramuscularly) fully reversed the condition within two months. Even though prolongation of undertreatment of WKS typically precludes significant improvement of symptoms due to irreversible damage of the brain, at least in some cases, higher thiamine doses (over 500 mg/day) for a longer period (at least three months) than usually recommended should be tried.

  14. Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.

    PubMed

    Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael

    2016-09-19

    The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice.

    PubMed

    Markova, Nataliia; Bazhenova, Nataliia; Anthony, Daniel C; Vignisse, Julie; Svistunov, Andrey; Lesch, Klaus-Peter; Bettendorff, Lucien; Strekalova, Tatyana

    2017-04-03

    Thiamine (vitamin B1) deficiency in the brain has been implicated in the development of dementia and symptoms of depression. Indirect evidence suggests that thiamine may contribute to these pathologies by controlling the activities of glycogen synthase kinase (GSK)-3β. While decreased GSK-3β activity appears to impair memory, increased GSK-3β activity is associated with the distressed/depressed state. However, hitherto direct evidence for the effects of thiamine on GSK-3β function has not been reported. Here, we administered thiamine or, the more bioavailable precursor, benfotiamine at 200mg/kg/day for 2weeks to C57BL/6J mice, to determine whether treatment might affect behaviours that are known to be sensitive to GSK-3β activity and whether such administration impacts on GSK-3β expression within the brain. The mice were tested in models of contextual conditioning and extinction, a 5-day rat exposure stress test, and a modified swim test with repeated testing. The tricyclic antidepressant imipramine (7.5mg/kg/day), was administered as a positive control for the effects of thiamine or benfotiamine. As for imipramine, both compounds inhibited the upregulation of GSK-3β induced by predator stress or repeated swimming, and reduced floating scores and the predator stress-induced behavioural changes in anxiety and exploration. Coincident, thiamine and benfotiamine improved learning and extinction of contextual fear, and the acquisition of the step-down avoidance task. Our data indicate that thiamine and benfotiamine have antidepressant/anti-stress effects in naïve animals that are associated with reduced GSK-3β expression and conditioning of adverse memories. Thus thiamine and benfotiamine may modulate GSK-3β functions in a manner that is dependent on whether the contextual conditioning is adaptive or maladaptive. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Riboswitches: emerging themes in RNA structure and function.

    PubMed

    Montange, Rebecca K; Batey, Robert T

    2008-01-01

    Riboswitches are RNAs capable of binding cellular metabolites using a diverse array of secondary and tertiary structures to modulate gene expression. The recent determination of the three-dimensional structures of parts of six different riboswitches illuminates common features that allow riboswitches to be grouped into one of two types. Type I riboswitches, as exemplified by the purine riboswitch, are characterized by a single, localized binding pocket supported by a largely pre-established global fold. This arrangement limits ligand-induced conformational changes in the RNA to a small region. In contrast, Type II riboswitches, such as the thiamine pyrophosphate riboswitch, contain binding pockets split into at least two spatially distinct sites. As a result, binding induces both local changes to the binding pocket and global architecture. Similar organizational themes are found in other noncoding RNAs, making it possible to begin to build a hierarchical classification of RNA structure based on the spatial organization of their active sites and associated secondary structural elements.

  17. Role of riboswitches in gene regulation and their potential for algal biotechnology.

    PubMed

    Nguyen, Ginnie T D T; Scaife, Mark A; Helliwell, Katherine E; Smith, Alison G

    2016-06-01

    Riboswitches are regulatory elements in messenger RNA to which specific ligands can bind directly in the absence of proteins. Ligand binding alters the mRNA secondary structure, thereby affecting expression of the encoded protein. Riboswitches are widespread in prokaryotes, with over 20 different effector ligands known, including amino acids, cofactors, and Mg(2+) ions, and gene expression is generally regulated by affecting translation or termination of transcription. In plants, fungi, and microalgae, riboswitches have been found, but only those that bind thiamine pyrophosphate. These eukaryotic riboswitches operate by causing alternative splicing of the transcript. Here, we review the current status of riboswitch research with specific emphasis on microalgae. We discuss new riboswitch discoveries and insights into the underlying mechanism of action, and how next generation sequencing technology provides the motivation and opportunity to improve our understanding of these rare but important regulatory elements. We also highlight the potential of microalgal riboswitches as a tool for synthetic biology and industrial biotechnology. © 2016 Phycological Society of America.

  18. TanA: a fluorogenic probe for thiaminase activity

    USGS Publications Warehouse

    Zhu, Wanjun; Zajicek, James L.; Tillitt, Donald E.; Glass, Timothy E.

    2013-01-01

    A fluorogenic thiamine analogue is presented as a fluorescent probe for thiaminase activity. The emission of the fluorophore is quenched by photoinduced electron transfer (PET) to the N-substituted pyridinium portion of the probe. Action of the enzyme releases the free pyridine group causing a substantial increase in fluorescence.

  19. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4′-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase

    PubMed Central

    Balakrishnan, Anand; Gao, Yuhong; Moorjani, Prerna; Nemeria, Natalia S.; Tittmann, Kai; Jordan, Frank

    2012-01-01

    Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the non-oxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4′-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest that: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1′,4′-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20Å away. (4) YPDC stabilizes an electrostatic model for the 4′-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members. PMID:22300533

  20. Vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E.

    PubMed

    Baumgartner, Matthias R

    2013-01-01

    The catalytic properties of many enzymes depend on the participation of vitamins as obligatory cofactors. Vitamin B12 (cobalamin) and folic acid (folate) deficiencies in infants and children classically present with megaloblastic anemia and are often accompanied by neurological signs. A number of rare inborn errors of cobalamin and folate absorption, transport, cellular uptake, and intracellular metabolism have been delineated and identification of disease-causing mutations has improved our ability to diagnose and treat many of these conditions. Two inherited defects in biotin metabolism are known, holocarboxylase synthetase and biotinidase deficiency. Both lead to multiple carboxylase deficiency manifesting with metabolic acidosis, neurological abnormalities, and skin rash. Thiamine-responsive megaloblastic anemia is characterized by megaloblastic anemia, non-type I diabetes, and sensorineural deafness that responds to pharmacological doses of thiamine (vitamin B1). Individuals affected with inherited vitamin E deficiencies including ataxia with isolated vitamin E deficiency and abetalipoproteinemia present with a spinocerebellar syndrome similar to patients with Friedreich's ataxia. If started early, treatment of these defects by oral or parenteral administration of the relevant vitamin often results in correction of the metabolic defect and reversal of the signs of disease, stressing the importance of early and correct diagnosis in these treatable conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A bicistronic transgene system for genetic modification of Parthenium argentatum

    USDA-ARS?s Scientific Manuscript database

    Parthenium argentatum (guayule) was transformed with a bicistronic transgene containing a viral 2A cleavage sequence. The transgene includes the coding sequences of two key enzymes of the mevalonate pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and farnesyl pyrophosphate synthase (FPPS), ...

  2. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro

    2016-03-01

    Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the `reverse' prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5-C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (-)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed `reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams.

  3. Metal centers in the anaerobic microbial metabolism of CO and CO2.

    PubMed

    Bender, Güneş; Pierce, Elizabeth; Hill, Jeffrey A; Darty, Joseph E; Ragsdale, Stephen W

    2011-08-01

    Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.

  4. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.

    PubMed

    Hong, Hoang Thi Kim; Nose, Akihiro; Agarie, Sakae

    2004-10-01

    An investigation was made of the respiratory properties and the role of the mitochondria isolated from one phosphoenolpyruvate carboxykinase (PCK)-CAM plant Ananas comosus (pineapple) in malate metabolism during CAM phase III. Pineapple mitochondria showed very high malate dehydrogenase (MDH), and low malic enzyme (ME) and glutamate-oxaloacetate transaminase (GOT) activities. The mitochondria readily oxidized succinate and NADH with high rates and coupling, while they only oxidized NADPH in the presence of Ca(2+). Pineapple mitochondria oxidized malate with low rates under most assay conditions, despite increasing malate concentrations, optimizing pH, providing cofactors such as coenzyme A, thiamine pyrophosphate, and NAD(+), and supplying individually external glutamate or GOT. However, providing glutamate and GOT simultaneously strongly increased the rates of malate oxidation. The OAA easily permeated the mitochondrial membranes to import into or export out of pineapple mitochondria during malate oxidation, but the mitochondria did not consume external Asp or alpha-KG. These results suggest that OAA played a significant role in the mitochondrial malate metabolism of pineapple, in which malate was mainly oxidized by active mMDH to produce OAA which could be exported outside the mitochondria via a malate-OAA shuttle. Cytosolic GOT then consumed OAA by transamination in the presence of glutamate, leading to a large increase in respiration rates. The malate-OAA shuttle might operate as a supporting system for decarboxylation in phase III of PCK-CAM pineapple. This shuttle system may be important in pineapple to provide a source of energy and substrate OAA for cytosolic PCK activity during the day when cytosolic OAA and ATP was limited for the overall decarboxylation process.

  5. Metal centers in the anaerobic microbial metabolism of CO and CO2

    PubMed Central

    Bender, Güneş; Pierce, Elizabeth; Hill, Jeffrey A.; Darty, Joseph E.

    2014-01-01

    Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO2, for harnessing ‘green’ energy and producing biofuels. One strategy is to convert CO2 into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO2 and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO2, we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO2 and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe4S4 clusters, catalyzes the addition and elimination of CO2 during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron–sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B12 and a Fe4S4 cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co3+ intermediate. Studies of CO and CO2 enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C–C and C–S bond formations. PMID:21647480

  6. Technetium-99m stannous pyrophosphate myocardial scintigraphy after cardiopulmonary resuscitation with cardioversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, R.; Spies, S.M.; Przybylek, J.

    1979-08-01

    Thirty consecutive patients underwent technetium-99m stannous pyrophosphate myocardial scintigraphy 48 to 72 h after successful cardiopulmonary resuscitation and direct current cardioversion. Five patients with transmural myocardial infarctions by ECG and enzyme determinations were correctly identified by scintigraphy. Myocardial scans were positive in five of nine patients with nontransmural infarction. Of 16 patients without evidence of myocardial infarction, only two (13%) had false-positive myocardial scans. The overall accuracy of imaging in this series was 80%. We conclude that false-positive scans after cardiopulmonary resuscitation with electrical cardioversion are infrequent, and do not significantly detract from the value of myocardial scintigraphy in themore » diagnosis of myocardial infarction.« less

  7. Drug effects on drug targets: inhibition of enzymes by neuroleptics, antimycotics, antibiotics and other drugs on human pathogenic amoebas and their anti-proliferative effects.

    PubMed

    Ondarza, Raúl N

    2007-11-01

    This paper reviews the inhibition of various enzymes by neuroleptics, anti-mycotics, antibiotics and other drugs on three species of human pathogenic amoebas, mainly Entamoeba histolytica, Acanthamoeba polyphaga and Naegleria fowleri, and their antiproliferative effects. A recent patent registered by Philip relates to the combination of an antibacterial formulation and antifungal agent for producing a therapeutically effective quantity of an antimicrobial that is suitable for suppressing or treating fungal growth. The rationale behind this patent focused on essential and valid targets with a description of the main pathogenic characteristics of these amoebas. The study of new targets, such as trypanothione and trypanothione reductase, and the drug effects of selected agents were arranged into six main groups: A) Inhibition of disulfide reducing enzymes by neuroleptics, antimycotics and antibiotics; B) Comparative evaluation of the efficacies of several drugs with antiproliferative activities; C) Inhibition of the enzymes for the synthesis of trypanothione, such as ornithine decarboxylase, spermidine synthase and trypanothione synthetase; D) Inhibition of the glycolytic enzyme PPi-dependent phosphofructokinase (PFK) from Entamoeba and Naegleria by pyrophosphate analogues, different from the host enzyme; E) Inhibition of enzymes secreted by these parasites to invade the human host, for example cysteine proteinases; and F) Inhibition of encystment pathways and cyst-wall assembly proteins.

  8. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    PubMed

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-05

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  9. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays.

    PubMed

    Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I

    2015-08-21

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.

  10. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays

    PubMed Central

    Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.

    2015-01-01

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058

  11. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.

    PubMed

    Taillefer, M; Rydzak, T; Levin, D B; Oresnik, I J; Sparling, R

    2015-04-01

    Clostridium thermocellum produces ethanol as one of its major end products from direct fermentation of cellulosic biomass. Therefore, it is viewed as an attractive model for the production of biofuels via consolidated bioprocessing. However, a better understanding of the metabolic pathways, along with their putative regulation, could lead to improved strategies for increasing the production of ethanol. In the absence of an annotated pyruvate kinase in the genome, alternate means of generating pyruvate have been sought. Previous proteomic and transcriptomic work detected high levels of a malate dehydrogenase and malic enzyme, which may be used as part of a malate shunt for the generation of pyruvate from phosphoenolpyruvate. The purification and characterization of the malate dehydrogenase and malic enzyme are described in order to elucidate their putative roles in malate shunt and their potential role in C. thermocellum metabolism. The malate dehydrogenase catalyzed the reduction of oxaloacetate to malate utilizing NADH or NADPH with a kcat of 45.8 s(-1) or 14.9 s(-1), respectively, resulting in a 12-fold increase in catalytic efficiency when using NADH over NADPH. The malic enzyme displayed reversible malate decarboxylation activity with a kcat of 520.8 s(-1). The malic enzyme used NADP(+) as a cofactor along with NH4 (+) and Mn(2+) as activators. Pyrophosphate was found to be a potent inhibitor of malic enzyme activity, with a Ki of 0.036 mM. We propose a putative regulatory mechanism of the malate shunt by pyrophosphate and NH4 (+) based on the characterization of the malate dehydrogenase and malic enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation?

    USGS Publications Warehouse

    Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E.

    2010-01-01

    In the Great Lakes there is still uncertainty as to the population level effects of a thiamine deficiency on salmonines caused by high consumption of alewives Alosa pseudoharengus. A resurgence of lake trout Salvelinus namaycush reproduction in Lake Huron following the crash of alewife stocks between 2002 and 2004 provided an opportunity to evaluate the relative effects of this crash on reproduction through relief from either alewife mediated thiamine deficiency or alewife predation on larval lake trout relative to possible changes in the size of the lake trout spawning stock. Changes in mean lake trout egg thiamine concentration post crash at one spawning reef in Parry Sound, where mean thiamine concentration increased by almost two-fold, were consistent with diet switching from alewives to rainbow smelt Osmerus mordax, the next most abundant prey fish in Lake Huron. Although thiamine levels for lake trout collected at a second reef in Parry Sound did not change post-crash, levels both pre- and post-crash were consistent with a rainbow smelt diet. A reef specific fry emergence index was found to be positively related to reef specific egg thiamine concentration but negatively related to reef specific occurrence of EMS, a thiamine deficiency related mortality syndrome. We found little evidence for overlap between the timing of spring shoreward migration of alewives and lake trout emergence, suggesting that relief from alewife predation effects had relatively little effect on the observed increase in lake trout recruitment. Numbers of spawners in the north, north-central, and southern zones of the lake increased from 2000 onwards. Overall the abundance post-2003 was higher than from pre-2004, suggesting that spawner abundance may also have contributed to increased lake trout reproduction. However, predicted numbers of spawners and measured abundance of wild recruits in assessment gear were poorly correlated suggesting that the increase in reproduction was not totally spawner dependent and hence relief from thiamine deficiency was also likely involved. We conclude from this that eliminating the effects of an alewife diet mediated thiamine deficiency can have positive effects on lake trout reproduction but more research is required to understand the effect of spawner number and the role of spawning habitat availability.

  13. Can diet-dependent factors help explain fish-to-fish variation in thiamine-dependent early mortality syndrome?

    USGS Publications Warehouse

    Brown, S.B.; Arts, M.T.; Brown, L.R.; Brown, M.; Moore, K.; Villella, M.; Fitzsimons, J.D.; Honeyfield, D.C.; Tillitt, D.E.; Zajicek, J.L.; Wolgamood, M.; Hnath, J.G.

    2005-01-01

    To provide insight into the reasons why offspring of certain salmonine females exhibit early mortality syndrome (EMS) in the Great Lakes whereas others do not, we measured the egg concentrations of potential biochemical markers (stable isotopes of nitrogen and carbon, fatty acid signatures, and lipid-soluble carotenoids and vitamins) that are indicative of differing food web and trophic structure. To corroborate the presence of EMS, we also measured the egg content of thiamine vitamers. For all the stocks of coho salmon Oncorhynchus kisutch and Chinook salmon O. tshawytscha we studied, there was a very high correspondence between EMS and low concentrations of unphosphorylated thiamine in unfertilized eggs. For salmonine stocks in the Platte River, Thompson Creek, and the Swan River, Michigan, small but significant shifts occurred in measures of egg carotenoids, retinoids, ??15N depletion, and fatty acid profiles of fish producing normal offspring relative to those exhibiting EMS. Egg thiamine concentrations in Chinook salmon from the Little Manistee River, Michigan, in the low-EMS group were only marginally above the threshold for EMS induction. Along with this small thiamine differential, there was no evidence of differing food web or dietary factors between EMS-positive and normal Chinook salmon from the Little Manistee River. Further investigations are required to determine the potential dietary sources for the observed differences in biochemical markers between EMS-positive and normal fish. These findings are generally consistent with the hypothesis that a more diverse forage base may help to limit overall dietary content of species that contain thiaminase, such as alewives Alosa pseudoharengus, and may lead to improved embryonic survival for feral salmonids. ?? Copyright by the American Fisheries Society 2005.

  14. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  15. Directed evolution and expression tuning of geraniol synthase for efficient geraniol production in Escherichia coli.

    PubMed

    Tashiro, Miki; Fujii, Akira; Kawai-Noma, Shigeko; Saito, Kyoichi; Umeno, Daisuke

    2017-11-17

    To achieve an efficient production of geraniol and its derivatives in Escherichia coli, we aimed to improve the activity of geraniol synthase (GES) through a single round of mutagenesis and screening for higher substrate consumption. We isolated GES variants that outperform their parent in geraniol production. The analysis of GES variants indicated that the expression level of GES was the bottleneck for geraniol synthesis. Over-expression of the mutant GES M53 with a 5'-untranslated sequence designed for high translational efficiency, along with the additional expression of mevalonate pathway enzymes, isopentenyl pyrophosphate isomerase, and geranyl pyrophosphate synthase, yielded 300 mg/L/12 h geraniol and its derivatives (>1000 mg/L/42 h in total) in a shaking flask.

  16. Genetic control of enzyme formation. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, S. E.

    1978-07-26

    Research progress is reported on work on tryptophan biosynthesis in Euglena gracilis and higher plants. The experimental data provide an outline of the general evolution of the pathway. Structural analyses of the pathway proteins by quantitative immunochemical methods have been completed; this was done with the anthranilate synthase-1 phosphoribosyl transferase complex in Escherichia coli. An examination of the evolution, in the Enterobacteriaceae, of the enzyme activities anthranilate synthase and anthranilate-5-1 phosphoribosyl-1-pyrophosphate phosphoribosyltransferase has been begun. (ACR)

  17. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    PubMed

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.

  18. Activation of hepatic Nogo-B receptor expression—A new anti-liver steatosis mechanism of statins

    PubMed Central

    Zhang, Wenwen; Yang, Xiaoxiao; Chen, Yuanli; Hu, Wenquan; Liu, Lipei; Zhang, Xiaomeng; Liu, Mengyang; Sun, Lei; Liu, Ying; Yu, Miao; Li, Xiaoju; Li, Luyuan; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-01-01

    Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression. PMID:29217477

  19. A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template–primer

    PubMed Central

    Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S.; Rouzaut, Ana; Martinez-Irujo, Juan J.

    2007-01-01

    Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PPi-dependent phosphorolysis catalysed by wild-type and AZT (3′-azido-3′-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template–primer (Kd=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template–primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues. PMID:17355225

  20. A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template-primer.

    PubMed

    Cruchaga, Carlos; Anso, Elena; Font, María; Martino, Virginia S; Rouzaut, Ana; Martinez-Irujo, Juan J

    2007-07-01

    Inhibitors of the excision reaction catalysed by HIV-1 RT (reverse transcriptase) represent a promising approach in the fight against HIV, because these molecules would interfere with the main mechanism of resistance of this enzyme towards chain-terminating nucleotides. Only a limited number of compounds have been demonstrated to inhibit this reaction to date, including NNRTIs (non-nucleoside RT inhibitors) and certain pyrophosphate analogues. We have found previously that 2GP (2-O-galloylpunicalin), an antiviral compound extracted from the leaves of Terminalia triflora, was able to inhibit both the RT and the RNase H activities of HIV-1 RT without affecting cell proliferation or viability. In the present study, we show that 2GP also inhibited the ATP- and PP(i)-dependent phosphorolysis catalysed by wild-type and AZT (3'-azido-3'-deoxythymidine)-resistant enzymes at sub-micromolar concentrations. Kinetic and direct-binding analysis showed that 2GP was a non-competitive inhibitor against the nucleotide substrate, whereas it competed with the binding of RT to the template-primer (K(d)=85 nM). As expected from its mechanism of action, 2GP was active against mutations conferring resistance to NNRTIs and AZT. The combination of AZT with 2GP was highly synergistic when tested in the presence of pyrophosphate, indicating that the inhibition of RT-catalysed phosphorolysis was responsible for the synergy found. Although other RT inhibitors that compete with the template-primer have been described, this is the first demonstration that these compounds can be used to block the excision of chain terminating nucleotides, providing a rationale for their combination with nucleoside analogues.

  1. Nucleoside pyrophosphatase activity associated with pig kidney alkaline phosphatase

    PubMed Central

    Wass, Milica; Butterworth, P. J.

    1971-01-01

    1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; Km values are 4×10−5m for ATP and 6.3×10−5m for ADP. Vmax. for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg2+ ions to form MgATP2− or MgADP− complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with Km values identical with those of the respective free nucleotides. 3. Mg2+ ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive–non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg2+ ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations. PMID:4331861

  2. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  3. Biochemical and Structures Studies of tRNA Modificaton and Repair Enzymes

    ERIC Educational Resources Information Center

    Zhou, Chun

    2009-01-01

    RNA hypermodifications near the anticodon of tRNA are fundamental for the efficiency and fidelity of protein synthesis. Dimethylallyltransferase (DMATase) catalyzes transfer of a dimethylallyl moiety from dimethylallyl pyrophosphate to N6 of A37 in certain tRNAs. We first determined the crystal structures of "Pseudomonas aeruginosa" DMATase.…

  4. Atlantic salmon (Salmo salar) require increased dietary levels of B-vitamins when fed diets with high inclusion of plant based ingredients

    PubMed Central

    Lock, Erik-Jan; Olsvik, Pål Asgeir; Hamre, Kristin; Espe, Marit; Torstensen, Bente Elisabeth; Silva, Joana; Hansen, Ann-Cecilie; Waagbø, Rune; Johansen, Johan S.; Sanden, Monica; Sissener, Nini H.

    2016-01-01

    Aiming to re-evaluate current recommendations for nutrient supplementations when Atlantic salmon are fed diets based on plant ingredients, two regression experiments, with parr and post-smolt, were conducted. A control diet was included to evaluate if ingredients supplied sufficient nutrients without any added nutrient package (NP). The nutrient package consisted of vitamins B, C, E, minerals, cholesterol, methionine, taurine and histidine. This paper focus on B-vitamins. In parr, growth, health and welfare parameters responded on NP additions, but this was not observed in the seawater stage. During three months of feeding, parr tripled their weight. Parr given diets added the NP above NRC (2011) showed improved protein retention, and reduced liver and viscera indices. Post-smolt fed the same diets during five months showed a doubling of weight, but did not respond to the variation in NP to the same extent as parr. Significant regressions were obtained in body compartments for several of the B-vitamins in the premix. Whole body biotin concentration was unaffected by micronutrient premix level, and mRNA expression of the enzymes dependent of biotin showed only weak increases with increased biotin. Muscle thiamine plateaued at a diet level similar to NRC (2011) recommendation in freshwater, and showed stable values independent on premix addition in seawater. The mRNA expression of the enzyme G6PDH (glucose-6-phosphate dehydrogenase) is sensitive to thiamine availability; results did not indicate any need to add thiamine above levels recommended for fish in general. Niacin showed a steady increase in whole body concentrations as feed niacin increased. Muscle riboflavin peaked at a diet level of 12.4 mg kg−1. Sufficient riboflavin is important to avoid e.g., development of cataract. Cataract was not registered to be any problem, neither in fresh- nor in seawater. Cobalamin (B 12) in muscle and liver was saturated at 0.17 mg kg−1 diet. Muscle pyridoxine showed a dose-dependent level in muscle, and peaked around 10 mg kg −1 diet. White muscle ASAT (asparagine amino transferase) activity steadily increased, with indications of stable values when dietary pyridoxine was around 10–16 mg kg −1 diet. Pantothenic acid increased in gill tissue up to a level of 5.5 mg kg −1 soft gill tissue; at a dietary level of 22 mg kg−1. Improved performance, and coverage of metabolic need for niacin was at a dietary level of 66 mg kg −1, riboflavin 10–12 mg kg−1, pyridoxine 10 mg kg−1 and panthotenic acid 22 mg kg−1. Based on these results, recommended B-vitamin supplementation in plant based diets for Atlantic salmon should be adjusted. PMID:27703849

  5. Functional Characterization of the Vitamin K2 Biosynthetic Enzyme UBIAD1

    PubMed Central

    Hirota, Yoshihisa; Nakagawa, Kimie; Sawada, Natsumi; Okuda, Naoko; Suhara, Yoshitomo; Uchino, Yuri; Kimoto, Takashi; Funahashi, Nobuaki; Kamao, Maya; Tsugawa, Naoko; Okano, Toshio

    2015-01-01

    UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a significant role in vitamin K2 (MK-4) synthesis. We investigated the enzymological properties of UBIAD1 using microsomal fractions from Sf9 cells expressing UBIAD1 by analysing MK-4 biosynthetic activity. With regard to UBIAD1 enzyme reaction conditions, highest MK-4 synthetic activity was demonstrated under basic conditions at a pH between 8.5 and 9.0, with a DTT ≥0.1 mM. In addition, we found that geranyl pyrophosphate and farnesyl pyrophosphate were also recognized as a side-chain source and served as a substrate for prenylation. Furthermore, lipophilic statins were found to directly inhibit the enzymatic activity of UBIAD1. We analysed the aminoacid sequences homologies across the menA and UbiA families to identify conserved structural features of UBIAD1 proteins and focused on four highly conserved domains. We prepared protein mutants deficient in the four conserved domains to evaluate enzyme activity. Because no enzyme activity was detected in the mutants deficient in the UBIAD1 conserved domains, these four domains were considered to play an essential role in enzymatic activity. We also measured enzyme activities using point mutants of the highly conserved aminoacids in these domains to elucidate their respective functions. We found that the conserved domain I is a substrate recognition site that undergoes a structural change after substrate binding. The conserved domain II is a redox domain site containing a CxxC motif. The conserved domain III is a hinge region important as a catalytic site for the UBIAD1 enzyme. The conserved domain IV is a binding site for Mg2+/isoprenyl side-chain. In this study, we provide a molecular mapping of the enzymological properties of UBIAD1. PMID:25874989

  6. The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells.

    PubMed

    Bettendorff, L

    1994-05-26

    Thiamine transport in cultured neuroblastoma cells is mediated by a high-affinity carrier (KM = 40 nM). In contrast, the uptake of the more hydrophobic sulbutiamine (isobutyrylthiamine disulfide) is unsaturable and its initial transport rate is 20-times faster than for thiamine. In the cytoplasm, sulbutiamine is rapidly hydrolyzed and reduced to free thiamine, the overall process resulting in a rapid and concentrative thiamine accumulation. Incorporation of radioactivity from [14C]thiamine or [14C]sulbutiamine into intracellular thiamine diphosphate is slow in both cases. Despite the fact that the diphosphate is probably the direct precursor for both thiamine monophosphate and triphosphate, the specific radioactivity increased much faster for the latter two compounds than for thiamine diphosphate. This suggests the existence of two pools of thiamine diphosphate, the larger one having a very slow turnover (about 17 h); a much smaller, rapidly turning over pool would be the precursor of thiamine mono- and triphosphate. The turnover time for thiamine triphosphate could be estimated to be 1-2 h. When preloading the cells with [14C]sulbutiamine was followed by a chase with the same concentration of the unlabeled compound, the specific radioactivities of thiamine and thiamine monophosphate decreased exponentially as expected, but labeling of the diphosphate continued to increase slowly. Specific radioactivity of thiamine triphosphate increased first, but after 30 min it began to slowly decrease. These results show for the first time the existence of distinct thiamine diphosphate pools in the same homogeneous cell population. They also suggest a complex compartmentation of thiamine metabolism.

  7. Effectiveness of egg immersion in aqueous solutions of thiamine and thiamine analogs for reducing early mortality syndrome

    USGS Publications Warehouse

    Brown, S.B.; Brown, L.R.; Brown, M.; Moore, K.; Villella, M.; Fitzsimons, J.D.; Williston, B.; Honeyfield, D.C.; Hinterkopf, J.P.; Tillitt, D.E.; Zajicek, J.L.; Wolgamood, M.

    2005-01-01

    Protocols used for therapeutic thiamine treatments in salmonine early mortality syndrome (EMS) were investigated in lake trout Salvelinus namaycush and coho salmon Oncorhynchus kisutch to assess their efficacy. At least 500 mg of thiamine HCl/L added to egg baths was required to produce a sustained elevation of thiamine content in lake trout eggs. Thiamine uptake from egg baths was not influenced by a pH ranging from 5.5 to 7.5 or by a water hardness between 2 and 200 mg CaCO3/L. There was poorer thiamine uptake when initial thiamine levels were low, suggesting that current treatment regimes may not be as effective when thiamine levels are severely depressed and that higher treatment doses are necessary. Exposure of eggs to the more lipid-soluble thiamine analog allithiamine (1,000 mg/L) during water hardening increased egg thiamine levels by 1.5-2.5 nmol/g and was completely effective at reversing EMS. Another more lipid-soluble thiamine analog, benfotiamine (100 mg/L), reduced EMS but did not produce detectable increases in egg thiamine content. Although benfotiamine may be more effective than thiamine at mitigating EMS, it is more expensive than thiamine HCl or allithiamine. In addition, there still needs to be a more thorough examination of dose-response relationships. We conclude that allithiamine is an alternative to the use of thiamine in egg baths as a therapeutic treatment for salmonid EMS. ?? Copyright by the American Fisheries Society 2005.

  8. Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate*

    PubMed Central

    Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank

    2014-01-01

    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035

  9. Thiamin Pyrimidine Biosynthesis in Candida albicans: A Remarkable Reaction between Histidine and Pyridoxal Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Rung-Yi; Huang, Siyu; Fenwick, Michael K.

    2012-06-26

    In Saccharomyces cerevisiae, thiamin pyrimidine is formed from histidine and pyridoxal phosphate (PLP). The origin of all of the pyrimidine atoms has been previously determined using labeling studies and suggests that the pyrimidine is formed using remarkable chemistry that is without chemical or biochemical precedent. Here we report the overexpression of the closely related Candida albicans pyrimidine synthase (THI5p) and the reconstitution and preliminary characterization of the enzymatic activity. A structure of the C. albicans THI5p shows PLP bound at the active site via an imine with Lys62 and His66 in close proximity to the PLP. Our data suggest thatmore » His66 of the THI5 protein is the histidine source for pyrimidine formation and that the pyrimidine synthase is a single-turnover enzyme.« less

  10. Glutamine-dependent carbamoyl-phosphate synthetase and other enzyme activities related to the pyrimidine pathway in spleen of Squalus acanthias (spiny dogfish).

    PubMed Central

    Anderson, P M

    1989-01-01

    The first two steps of urea synthesis in liver of marine elasmobranchs involve formation of glutamine from ammonia and of carbamoyl phosphate from glutamine, catalysed by glutamine synthetase and carbamoyl-phosphate synthetase, respectively [Anderson & Casey (1984) J. Biol. Chem. 259, 456-462]; both of these enzymes are localized exclusively in the mitochondrial matrix. The objective of this study was to establish the enzymology of carbamoyl phosphate formation and utilization for pyrimidine nucleotide biosynthesis in Squalus acanthias (spiny dogfish), a representative elasmobranch. Aspartate carbamoyltransferase could not be detected in liver of dogfish. Spleen extracts, however, had glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydro-orotase, and glutamine synthetase activities, all localized in the cytosol; dihydro-orotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine-5'-decarboxylase activities were also present. Except for glutamine synthetase, the levels of all activities were very low. The carbamoyl-phosphate synthetase activity is inhibited by UTP and is activated by 5-phosphoribosyl 1-pyrophosphate. The first three enzyme activities of the pyrimidine pathway were eluted in distinctly different positions during gel filtration chromatography under a number of different conditions; although complete proteolysis of inter-domain regions of a multifunctional complex during extraction cannot be excluded, the evidence suggests that in dogfish, in contrast to mammalian species, these three enzymes of the pyrimidine pathway exist as individual polypeptide chains. These results: (1) establish that dogfish express two different glutamine-dependent carbamoyl-phosphate synthetase activities, (2) confirm the report [Smith, Ritter & Campbell (1987) J. Biol. Chem. 262, 198-202] that dogfish express two different glutamine synthetases, and (3) provide indirect evidence that glutamine may not be available in liver for biosynthetic reactions other than urea formation. Images Fig. 1. PMID:2570570

  11. Conformational changes in the expression domain of the Escherichia coli thiM riboswitch

    PubMed Central

    Rentmeister, Andrea; Mayer, Günter; Kuhn, Nicole; Famulok, Michael

    2007-01-01

    The thiM riboswitch contains an aptamer domain that adaptively binds the coenzyme thiamine pyrophosphate (TPP). The binding of TPP to the aptamer domain induces structural rearrangements that are relayed to a second domain, the so-called expression domain, thereby interfering with gene expression. The recently solved crystal structures of the aptamer domains of the thiM riboswitches in complex with TPP revealed how TPP stabilizes secondary and tertiary structures in the RNA ligand complex. To understand the global modes of reorganization between the two domains upon metabolite binding the structure of the entire riboswitch in presence and absence of TPP needs to be determined. Here we report the secondary structure of the entire thiM riboswitch from Escherichia coli in its TPP-free form and its transition into the TPP-bound variant, thereby depicting domains of the riboswitch that serve as communication links between the aptamer and the expression domain. Furthermore, structural probing provides an explanation for the lack of genetic control exerted by a riboswitch variant with mutations in the expression domain that still binds TPP. PMID:17517779

  12. Illumina Sequencing Approach to Characterize Thiamine Metabolism Related Bacteria and the Impacts of Thiamine Supplementation on Ruminal Microbiota in Dairy Cows Fed High-Grain Diets.

    PubMed

    Pan, Xiaohua; Xue, Fuguang; Nan, Xuemei; Tang, Zhiwen; Wang, Kun; Beckers, Yves; Jiang, Linshu; Xiong, Benhai

    2017-01-01

    The requirements of thiamine in adult ruminants are mainly met by ruminal bacterial synthesis, and thiamine deficiencies will occur when dairy cows overfed with high grain diet. However, there is limited knowledge with regard to the ruminal thiamine synthesis bacteria, and whether thiamine deficiency is related to the altered bacterial community by high grain diet is still unclear. To explore thiamine synthesis bacteria and the response of ruminal microbiota to high grain feeding and thiamine supplementation, six rumen-cannulated Holstein cows were randomly assigned into a replicated 3 × 3 Latin square design trial. Three treatments were control diet (CON, 20% dietary starch, DM basis), high grain diet (HG, 33.2% dietary starch, DM basis) and high grain diet supplemented with 180 mg thiamine/kg DMI (HG+T). On day 21 of each period, rumen content samples were collected at 3 h postfeeding. Ruminal thiamine concentration was detected by high performance liquid chromatography. The microbiota composition was determined using Illumina MiSeq sequencing of 16S rRNA gene. Cows receiving thiamine supplementation had greater ruminal pH value, acetate and thiamine content in the rumen. Principal coordinate analysis and similarity analysis indicated that HG feeding and thiamine supplementation caused a strong shift in bacterial composition and structure in the rumen. At the genus level, compared with CON group, the relative abundances of 19 genera were significantly changed by HG feeding. Thiamine supplementation increased the abundance of cellulolytic bacteria including Bacteroides, Ruminococcus 1, Pyramidobacter, Succinivibrio , and Ruminobacter , and their increases enhanced the fiber degradation and ruminal acetate production in HG+T group. Christensenellaceae R7, Lachnospira, Succiniclasticum , and Ruminococcaceae NK4A214 exhibited a negative response to thiamine supplementation. Moreover, correlation analysis revealed that ruminal thiamine concentration was positively correlated with Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter , and Fibrobacter . Taken together, we concluded that Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter , and Fibrobacter in rumen content may be associated with thiamine synthesis or thiamine is required for their growth and metabolism. In addition, thiamine supplementation can potentially improve rumen function, as indicated by greater numbers of cellulolytic bacteria within the rumen. These findings facilitate understanding of bacterial thiamine synthesis within rumen and thiamine's function in dairy cows.

  13. Illumina Sequencing Approach to Characterize Thiamine Metabolism Related Bacteria and the Impacts of Thiamine Supplementation on Ruminal Microbiota in Dairy Cows Fed High-Grain Diets

    PubMed Central

    Pan, Xiaohua; Xue, Fuguang; Nan, Xuemei; Tang, Zhiwen; Wang, Kun; Beckers, Yves; Jiang, Linshu; Xiong, Benhai

    2017-01-01

    The requirements of thiamine in adult ruminants are mainly met by ruminal bacterial synthesis, and thiamine deficiencies will occur when dairy cows overfed with high grain diet. However, there is limited knowledge with regard to the ruminal thiamine synthesis bacteria, and whether thiamine deficiency is related to the altered bacterial community by high grain diet is still unclear. To explore thiamine synthesis bacteria and the response of ruminal microbiota to high grain feeding and thiamine supplementation, six rumen-cannulated Holstein cows were randomly assigned into a replicated 3 × 3 Latin square design trial. Three treatments were control diet (CON, 20% dietary starch, DM basis), high grain diet (HG, 33.2% dietary starch, DM basis) and high grain diet supplemented with 180 mg thiamine/kg DMI (HG+T). On day 21 of each period, rumen content samples were collected at 3 h postfeeding. Ruminal thiamine concentration was detected by high performance liquid chromatography. The microbiota composition was determined using Illumina MiSeq sequencing of 16S rRNA gene. Cows receiving thiamine supplementation had greater ruminal pH value, acetate and thiamine content in the rumen. Principal coordinate analysis and similarity analysis indicated that HG feeding and thiamine supplementation caused a strong shift in bacterial composition and structure in the rumen. At the genus level, compared with CON group, the relative abundances of 19 genera were significantly changed by HG feeding. Thiamine supplementation increased the abundance of cellulolytic bacteria including Bacteroides, Ruminococcus 1, Pyramidobacter, Succinivibrio, and Ruminobacter, and their increases enhanced the fiber degradation and ruminal acetate production in HG+T group. Christensenellaceae R7, Lachnospira, Succiniclasticum, and Ruminococcaceae NK4A214 exhibited a negative response to thiamine supplementation. Moreover, correlation analysis revealed that ruminal thiamine concentration was positively correlated with Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter, and Fibrobacter. Taken together, we concluded that Bacteroides, Ruminococcus 1, Ruminobacter, Pyramidobacter, and Fibrobacter in rumen content may be associated with thiamine synthesis or thiamine is required for their growth and metabolism. In addition, thiamine supplementation can potentially improve rumen function, as indicated by greater numbers of cellulolytic bacteria within the rumen. These findings facilitate understanding of bacterial thiamine synthesis within rumen and thiamine's function in dairy cows. PMID:28979254

  14. Study of orthophosphate, pyrophosphate, and pyrophosphatase in saliva with reference to calculus formation and inhibition.

    PubMed

    Pradeep, A R; Agarwal, Esha; P, Arjun Raju; Rao, M S Narayana; Faizuddin, Mohamed

    2011-03-01

    A large amount of calculus may hamper the efficacy of daily oral hygiene and thereby accelerate plaque formation. Salivary concentrations of orthophosphate and pyrophosphate are important in preventing calculus formation. Activity of orthophosphate, pyrophosphate, and pyrophosphatase was studied in whole saliva in calculus-forming groups and plaque-forming groups. The material for this study consists of 60 healthy individuals (age range: 15 to 30 years; mean age: 22 years). Depending on calculus index score, individuals were divided into four groups, each of 15 patients: Group 1, calculus index score 0 to 0.6; Group 2, calculus index score 0.7 to 1.8; Group 3, calculus index score 1.9 to 3; and Group 4, plaque group where index varied from 0 to 3. The saliva was collected and biochemically analyzed for concentration of orthophosphate, pyrophosphate, and pyrophosphatase. The mean values of orthophosphate in Groups 1, 2, 3, and 4 were 0.2559, 1.3639, 1.7311, and 0.1868 mM, respectively. The mean values of pyrophosphate in Groups 1, 2, 3, and 4 were 0.3258, 0.1091, 0.0314, and 0.3860 mM, respectively. The mean values of pyrophosphatase in Groups 1, 2, 3, and 4 were 10.7937, 15.4249, 27.2900, and 7.5427 units/ml, respectively. A holistic approach toward the control of periodontal disease should include antiplaque and anticalculus agents. The results are conclusive that the components orthophosphate, pyrophosphate, and pyrophosphatase present in saliva have a very significant role to play in formation and inhibition of calculus. This study reinforces the idea of using pyrophosphate and newer bisphosphonates as potential anticalculus agents.

  15. The relationship between thiamine and two symbioses: Root nodule symbiosis and arbuscular mycorrhiza.

    PubMed

    Nagae, Miwa; Parniske, Martin; Kawaguchi, Masayoshi; Takeda, Naoya

    2016-12-01

    Lotus japonicus THIC is expressed in all organs, and the encoded protein catalyzes thiamine biosynthesis. Loss of function produces chlorosis, a typical thiamine-deficiency phenotype, and mortality. To investigate thiamine's role in symbiosis, we focused on THI1, a thiamine-biosynthesis gene expressed in roots, nodules, and seeds. The thi1 mutant had green leaves, but formed small nodules and immature seeds. These phenotypes were rescued by THI1 complementation and by exogenous thiamine. Thus, THI1 is required for nodule enlargement and seed maturation. On the other hand, colonization by arbuscular mycorrhiza (AM) fungus Rhizophagus irregularis was not affected in the thi1 mutant or by exogenous thiamine. However, spores of R. irregularis stored more thiamine than the source (host plants), despite lacking thiamine biosynthesis genes. Therefore, disturbance of the thiamine supply would affect progeny phenotypes such as spore formation and hyphal growth. Further investigation will be required to elucidate thiamine's effect on AM.

  16. Molecular regulation of santalol biosynthesis in Santalum album L.

    PubMed

    Rani, Arti; Ravikumar, Puja; Reddy, Manjunatha Damodara; Kush, Anil

    2013-09-25

    Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis. © 2013.

  17. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome.

    PubMed

    Ortigoza-Escobar, Juan Darío; Molero-Luis, Marta; Arias, Angela; Oyarzabal, Alfonso; Darín, Niklas; Serrano, Mercedes; Garcia-Cazorla, Angels; Tondo, Mireia; Hernández, María; Garcia-Villoria, Judit; Casado, Mercedes; Gort, Laura; Mayr, Johannes A; Rodríguez-Pombo, Pilar; Ribes, Antonia; Artuch, Rafael; Pérez-Dueñas, Belén

    2016-01-01

    Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The relationship between lactate and thiamine levels in patients with diabetic ketoacidosis.

    PubMed

    Moskowitz, Ari; Graver, Amanda; Giberson, Tyler; Berg, Katherine; Liu, Xiaowen; Uber, Amy; Gautam, Shiva; Donnino, Michael W

    2014-02-01

    Thiamine functions as an important cofactor in aerobic metabolism and thiamine deficiency can contribute to lactic acidosis. Although increased rates of thiamine deficiency have been described in diabetic outpatients, this phenomenon has not been studied in relation to diabetic ketoacidosis (DKA). In the present study, we hypothesize that thiamine deficiency is associated with elevated lactate in patients with DKA. This was a prospective observational study of patients presenting to a tertiary care center with DKA. Patient demographics, laboratory results, and outcomes were recorded. A one-time blood draw was performed and analyzed for plasma thiamine levels. Thirty-two patients were enrolled. Eight patients (25%) were thiamine deficient, with levels lower than 9 nmol/L. A negative correlation between lactic acid and plasma thiamine levels was found (r = -0.56, P = .002). This relationship remained significant after adjustment for APACHE II scores (P = .009). Thiamine levels were directly related to admission serum bicarbonate (r = 0.44, P = .019), and patients with thiamine deficiency maintained lower bicarbonate levels over the first 24 hours (slopes parallel with a difference of 4.083, P = .002). Patients with DKA had a high prevalence of thiamine deficiency. Thiamine levels were inversely related to lactate levels among patients with DKA. A study of thiamine supplementation in DKA is warranted. © 2013.

  19. Protein farnesyltransferase isoprenoid substrate discrimination is dependent on isoprene double bonds and branched methyl groups.

    PubMed

    Micali, E; Chehade, K A; Isaacs, R J; Andres, D A; Spielmann, H P

    2001-10-16

    Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized the benzyloxyisoprenyl pyrophosphate (BnPP) series of transferable farnesyl pyrophosphate (FPP) analogues (1a-e) to test the length dependence of the isoprenoid substrate on the FTase-catalyzed transfer of lipid to protein substrate. Kinetic analyses show that pyrophosphates 1a-e and geranyl pyrophosphate (GPP) transfer with a lower efficiency than FPP whereas geranylgeranyl pyrophosphate (GGPP) does not transfer at all. While a correlation was found between K(m) and analogue hydrophobicity and length, there was no correlation between k(cat) and these properties. Potential binding geometries of FPP, GPP, GGPP, and analogues 1a-e were examined by modeling the molecules into the active site of the FTase crystal structure. We found that analogue 1d displaces approximately the same volume of the active site as does FPP, whereas GPP and analogues 1a-c occupy lesser volumes and 1e occupies a slightly larger volume. Modeling also indicated that GGPP adopts a different conformation than the farnesyl chain of FPP, partially occluding the space occupied by the Ca(1)a(2)X peptide in the ternary X-ray crystal structure. Within the confines of the FTase pocket, the double bonds and branched methyl groups of the geranylgeranyl chain significantly restrict the number of possible conformations relative to the more flexible lipid chain of analogues 1a-e. The modeling results also provide a molecular explanation for the observation that an aromatic ring is a good isostere for the terminal isoprene of FPP.

  20. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives

    PubMed Central

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-01-01

    Background Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase activity. As the brain is particularly sensitive to thiamine deficiency, we wanted to test whether intracellular thiamine and thiamine phosphate levels are increased in the brain after oral benfotiamine administration. Results Benfotiamine that is practically insoluble in water, organic solvents or oil was solubilized in 200 mM hydroxypropyl-β-cyclodextrin and the mice received a single oral administration of 100 mg/kg. Though thiamine levels rapidly increased in blood and liver to reach a maximum after one or two hours, no significant increase was observed in the brain. When mice received a daily oral administration of benfotiamine for 14 days, thiamine derivatives were increased significantly in the liver but not in the brain, compared to control mice. In addition, incubation of cultured neuroblastoma cells with 10 μM benfotiamine did not lead to increased intracellular thiamine levels. Moreover, in thiamine-depleted neuroblastoma cells, intracellular thiamine contents increased more rapidly after addition of thiamine to the culture medium than after addition of benfotiamine for which a lag period was observed. Conclusion Our results show that, though benfotiamine strongly increases thiamine levels in blood and liver, it has no significant effect in the brain. This would explain why beneficial effects of benfotiamine have only been observed in peripheral tissues, while sulbutiamine, a lipid-soluble thiamine disulfide derivative, that increases thiamine derivatives in the brain as well as in cultured cells, acts as a central nervous system drug. We propose that benfotiamine only penetrates the cells after dephosphorylation by intestinal alkaline phosphatases. It then enters the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. Benfotiamine, an S-acyl derivative practically insoluble in organic solvents, should therefore be differentiated from truly lipid-soluble thiamine disulfide derivatives (allithiamine and the synthetic sulbutiamine and fursultiamine) with a different mechanism of absorption and different pharmacological properties. PMID:18549472

  1. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives.

    PubMed

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-06-12

    Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase activity. As the brain is particularly sensitive to thiamine deficiency, we wanted to test whether intracellular thiamine and thiamine phosphate levels are increased in the brain after oral benfotiamine administration. Benfotiamine that is practically insoluble in water, organic solvents or oil was solubilized in 200 mM hydroxypropyl-beta-cyclodextrin and the mice received a single oral administration of 100 mg/kg. Though thiamine levels rapidly increased in blood and liver to reach a maximum after one or two hours, no significant increase was observed in the brain. When mice received a daily oral administration of benfotiamine for 14 days, thiamine derivatives were increased significantly in the liver but not in the brain, compared to control mice. In addition, incubation of cultured neuroblastoma cells with 10 muM benfotiamine did not lead to increased intracellular thiamine levels. Moreover, in thiamine-depleted neuroblastoma cells, intracellular thiamine contents increased more rapidly after addition of thiamine to the culture medium than after addition of benfotiamine for which a lag period was observed. Our results show that, though benfotiamine strongly increases thiamine levels in blood and liver, it has no significant effect in the brain. This would explain why beneficial effects of benfotiamine have only been observed in peripheral tissues, while sulbutiamine, a lipid-soluble thiamine disulfide derivative, that increases thiamine derivatives in the brain as well as in cultured cells, acts as a central nervous system drug. We propose that benfotiamine only penetrates the cells after dephosphorylation by intestinal alkaline phosphatases. It then enters the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. Benfotiamine, an S-acyl derivative practically insoluble in organic solvents, should therefore be differentiated from truly lipid-soluble thiamine disulfide derivatives (allithiamine and the synthetic sulbutiamine and fursultiamine) with a different mechanism of absorption and different pharmacological properties.

  2. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.

    PubMed

    Belenky, Peter A; Moga, Tiberiu G; Brenner, Charles

    2008-03-28

    NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.

  3. The effect of thiamine injection on upstream migration, survival, and thiamine status of putative thiamine-deficient coho salmon

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Amcoff, P.; Balk, L.; Pecor, C.; Ketola, H.G.; Hinterkopf, J.P.; Honeyfield, D.C.

    2005-01-01

    A diet containing a high proportion of alewives Alosa pseudoharengus results in a thiamine deficiency that has been associated with high larval salmonid mortality, known as early mortality syndrome (EMS), but relatively little is known about the effects of the deficiency on adults. Using thiamine injection (50 mg thiamine/kg body weight) of ascending adult female coho salmon Oncorhynchus kisutch on the Platte River, Michigan, we investigated the effects of thiamine supplementation on migration, adult survival, and thiamine status. The thiamine concentrations of eggs, muscle (red and white), spleen, kidney (head and trunk), and liver and the transketolase activity of the liver, head kidney, and trunk kidney of fish injected with thiamine dissolved in physiological saline (PST) or physiological saline only (PS) were compared with those of uninjected fish. The injection did not affect the number of fish making the 15-km upstream migration to a collection weir but did affect survival once fish reached the upstream weir, where survival of PST-injected fish was almost twice that of controls. The egg and liver thiamine concentrations in PS fish sampled after their upstream migration were significantly lower than those of uninjected fish collected at the downstream weir, but the white muscle thiamine concentration did not differ between the two groups. At the upper weir, thiamine levels in the liver, spleen, head kidney, and trunk kidney of PS fish were indistinguishable from those of uninjected fish (called "wigglers") suffering from a severe deficiency and exhibiting reduced equilibrium, a stage that precedes total loss of equilibrium and death. For PST fish collected at the upstream weir, total thiamine levels in all tissues were significantly elevated over those of PS fish. Based on the limited number of tissues examined, thiamine status was indicated better by tissue thiamine concentration than by transketolase activity. The adult injection method we used appears to be a more effective means of increasing egg thiamine levels than immersion of eggs in a thiamine solution. ?? Copyright by the American Fisheries Society 2005.

  4. The relationship between lactate and thiamine levels in patients with diabetic ketoacidosis⋆

    PubMed Central

    Moskowitz, Ari; Graver, Amanda; Giberson, Tyler; Berg, Katherine; Liu, Xiaowen; Uber, Amy; Gautam, Shiva; Donnino, Michael W.

    2013-01-01

    Purpose Thiamine functions as an important cofactor in aerobic metabolism and thiamine deficiency can contribute to lactic acidosis. Although increased rates of thiamine deficiency have been described in diabetic outpatients, this phenomenon has not been studied in relation to diabetic ketoacidosis (DKA). In the present study, we hypothesize that thiamine deficiency is associated with elevated lactate in patients with DKA. Materials and Methods This was a prospective observational study of patients presenting to a tertiary care center with DKA. Patient demographics, laboratory results, and outcomes were recorded. A one-time blood draw was performed and analyzed for plasma thiamine levels. Results Thirty-two patients were enrolled. Eight patients (25%) were thiamine deficient, with levels lower than 9 nmol/L. A negative correlation between lactic acid and plasma thiamine levels was found (r = −0.56, P = .002). This relationship remained significant after adjustment for APACHE II scores (P = .009). Thiamine levels were directly related to admission serum bicarbonate (r = 0.44, P = .019), and patients with thiamine deficiency maintained lower bicarbonate levels over the first 24 hours (slopes parallel with a difference of 4.083, P = .002). Conclusions Patients with DKA had a high prevalence of thiamine deficiency. Thiamine levels were inversely related to lactate levels among patients with DKA. A study of thiamine supplementation in DKA is warranted. PMID:23993771

  5. Human mitochondrial pyrophosphatase: cDNA cloning and analysis of the gene in patients with mtDNA depletion syndromes.

    PubMed

    Curbo, Sophie; Lagier-Tourenne, Clotilde; Carrozzo, Rosalba; Palenzuela, Lluis; Lucioli, Simona; Hirano, Michio; Santorelli, Filippo; Arenas, Joaquin; Karlsson, Anna; Johansson, Magnus

    2006-03-01

    Pyrophosphatases (PPases) catalyze the hydrolysis of inorganic pyrophosphate generated in several cellular enzymatic reactions. A novel human pyrophosphatase cDNA encoding a 334-amino-acid protein approximately 60% identical to the previously identified human cytosolic PPase was cloned and characterized. The novel enzyme, named PPase-2, was enzymatically active and catalyzed hydrolysis of pyrophosphate at a rate similar to that of the previously identified PPase-1. A functional mitochondrial import signal sequence was identified in the N-terminus of PPase-2, which targeted the enzyme to the mitochondrial matrix. The human pyrophosphatase 2 gene (PPase-2) was mapped to chromosome 4q25 and the 1.4-kb mRNA was ubiquitously expressed in human tissues, with highest levels in muscle, liver, and kidney. The yeast homologue of the mitochondrial PPase-2 is required for mitochondrial DNA maintenance and yeast cells lacking the enzyme exhibit mitochondrial DNA depletion. We sequenced the PPA2 gene in 13 patients with mitochondrial DNA depletion syndromes (MDS) of unknown cause to determine if mutations in the PPA2 gene of these patients were associated with this disease. No pathogenic mutations were identified in the PPA2 gene of these patients and we found no evidence that PPA2 gene mutations are a common cause of MDS in humans.

  6. A DNA-scaffold platform enhances a multi-enzymatic cycling reaction.

    PubMed

    Mashimo, Yasumasa; Mie, Masayasu; Kobatake, Eiry

    2018-04-01

    We explored the co-localization of multiple enzymes on a DNA backbone via a DNA-binding protein, Gene-A* (A*-tag) to increase the efficiency of cascade enzymatic reactions. Firefly luciferase (FLuc) and pyruvate orthophosphate dikinase (PPDK) were genetically fused with A*-tag and modified with single-stranded (ss) DNA via A*-tag. The components were assembled on ssDNA by hybridization, thereby enhancing the efficiency of the cascading bioluminescent reaction producing light emission from pyrophosphate. The activity of A*-tag in each enzyme was investigated with dye-labeled DNA. Co-localization of the enzymes via hybridization was examined using a gel shift assay. The multi-enzyme complex showed significant improvement in the overall efficiency of the cascading reaction in comparison to a mixture of free enzymes. A*-tag is highly convenient for ssDNA modification of versatile enzymes, and it can be used for construction of functional DNA-enzyme complexes.

  7. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    PubMed

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  8. Thiamine and its phosphate esters in relation to cardiometabolic risk factors in Saudi Arabs.

    PubMed

    Al-Daghri, Nasser M; Al-Attas, Omar S; Alkharfy, Khalid M; Alokail, Majed S; Abd-Alrahman, Sherif H; Sabico, Shaun

    2013-09-23

    Thiamine deficiency has suggested to be linked to several insulin-resistance complications. In this study, we aim to associate circulating thiamine levels among cardiometabolic parameters in an Arab cohort using a simple, sensitive, rapid and selective high-performance liquid chromatography (HPLC) method that has recently been developed. A total of 236 randomly selected, consenting Saudi adult participants (166 males and 70 females) were recruited and screened for the presence of the metabolic syndrome (MetS) using the modified National Cholesterol Education Program-Adult Treatment Panel III definition. Blood thiamine and its derivatives were quantified using HPLC. A total of 140 participants (53.9%) had MetS. The levels of thiamine and its derivatives of those with MetS were not significantly different from those without. However, hypertensive subjects had significantly higher urinary thiamine (P = 0.03) as well as significantly lower levels of thiamine diphosphate (TDP) (P = 0.01) and total thiamine (P = 0.02) than the normotensive subjects, even after adjusting for age and body mass index (BMI). Furthermore, age- and BMI-matched participants with elevated blood glucose levels had significantly lower levels of thiamine monophosphate (P = 0.020), TDP (P < 0.001) and total thiamine (P < 0.001) and significantly elevated levels of urinary thiamine (P = 0.005) compared to normoglycemic participants. Low thiamine levels are associated with elevated blood glucose and hypertension in Saudi adults. Determination of thiamine status may be considered and corrected among patients with, or at high risk for, MetS, but the question whether thiamine deficiency correction translates to improved cardiometabolic status needs further longitudinal investigation.

  9. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    PubMed Central

    Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  10. The Drosophila melanogaster Gut Microbiota Provisions Thiamine to Its Host

    PubMed Central

    2018-01-01

    ABSTRACT The microbiota of Drosophila melanogaster has a substantial impact on host physiology and nutrition. Some effects may involve vitamin provisioning, but the relationships between microbe-derived vitamins, diet, and host health remain to be established systematically. We explored the contribution of microbiota in supplying sufficient dietary thiamine (vitamin B1) to support D. melanogaster at different stages of its life cycle. Using chemically defined diets with different levels of available thiamine, we found that the interaction of thiamine concentration and microbiota did not affect the longevity of adult D. melanogaster. Likewise, this interplay did not have an impact on egg production. However, we determined that thiamine availability has a large impact on offspring development, as axenic offspring were unable to develop on a thiamine-free diet. Offspring survived on the diet only when the microbiota was present or added back, demonstrating that the microbiota was able to provide enough thiamine to support host development. Through gnotobiotic studies, we determined that Acetobacter pomorum, a common member of the microbiota, was able to rescue development of larvae raised on the no-thiamine diet. Further, it was the only microbiota member that produced measurable amounts of thiamine when grown on the thiamine-free fly medium. Its close relative Acetobacter pasteurianus also rescued larvae; however, a thiamine auxotrophic mutant strain was unable to support larval growth and development. The results demonstrate that the D. melanogaster microbiota functions to provision thiamine to its host in a low-thiamine environment. PMID:29511074

  11. Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ.

    PubMed

    Forsgren, Margareta; Attersand, Anneli; Lake, Staffan; Grünler, Jacob; Swiezewska, Ewa; Dallner, Gustav; Climent, Isabel

    2004-09-01

    The COQ2 gene in Saccharomyces cerevisiae encodes a Coq2 (p-hydroxybenzoate:polyprenyl transferase), which is required in the biosynthetic pathway of CoQ (ubiquinone). This enzyme catalyses the prenylation of p-hydroxybenzoate with an all-trans polyprenyl group. We have isolated cDNA which we believe encodes the human homologue of COQ2 from a human muscle and liver cDNA library. The clone contained an open reading frame of length 1263 bp, which encodes a polypeptide that has sequence homology with the Coq2 homologues in yeast, bacteria and mammals. The human COQ2 gene, when expressed in yeast Coq2 null mutant cells, rescued the growth of this yeast strain in the absence of a non-fermentable carbon source and restored CoQ biosynthesis. However, the rate of CoQ biosynthesis in the rescued cells was lower when compared with that in cells rescued with the yeast COQ2 gene. CoQ formed when cells were incubated with labelled decaprenyl pyrophosphate and nonaprenyl pyrophosphate, showing that the human enzyme is active and that it participates in the biosynthesis of CoQ.

  12. The Long-Term Cost to the UK NHS and Social Services of Different Durations of IV Thiamine (Vitamin B1) for Chronic Alcohol Misusers with Symptoms of Wernicke's Encephalopathy Presenting at the Emergency Department.

    PubMed

    Wilson, Edward C F; Stanley, George; Mirza, Zulfiquar

    2016-04-01

    Wernicke's encephalopathy (WE) is an acute neuropsychiatric condition caused by depleted intracellular thiamine, most commonly arising in chronic alcohol misusers, who may present to emergency departments (EDs) for a variety of reasons. Guidelines recommend a minimum 5-day course of intravenous (IV) thiamine in at-risk patients unless WE can be excluded. To estimate the cost impact on the UK public sector (NHS and social services) of a 5-day course of IV thiamine, vs a 2- and 10-day course, in harmful or dependent drinkers presenting to EDs. A Markov chain model compared expected prognosis of patients under alternative admission strategies over 35 years. Model inputs were derived from a prospective cohort study, expert opinion via structured elicitation and NHS costing databases. Costs (2012/2013 price year) were discounted at 3.5 %. Increasing treatment from 2 to 5 days increased acute care costs but reduced the probability of disease progression and thus reduced the expected net costs by GBP87,000 per patient (95 % confidence interval GBP19,300 to GBP172,300) over 35 years. Increasing length of stay to optimize IV thiamine replacement will place additional strain on acute care but has potential UK public sector cost savings. Social services and the NHS should explore collaborations to realise both the health benefits to patients and savings to the public purse.

  13. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams.

    PubMed

    Bâ, Abdoulaye

    2013-03-01

    The current study attempts to determine whether thiamine (B1 vitamin) deficiency and chronic alcohol-related thiamine-deficient (TD) status, disturb maternal behavior towards pups. During gestation and lactation, Wistar rat dams were exposed to the following treatments: (i) prenatal TD dams; (ii) perinatal TD dams; (iii) postnatal TD dams; (iv) 12% alcohol/water drinking mothers; (v) ad libitum control dams. Pair-feeding treatments controlled malnutrition related to thiamine deficiency; (vi) prenatal pair-fed (PF) dams; (vii) perinatal PF dams; (viii) postnatal PF dams and included also the control of alcohol consummation: (ix) PF saccharose dams. Dams were observed for gestation outcome and for apparent disorders of the maternal behavior related to the pups at parturition. From the nine experimental groups studied, only pre- and perinatal TD dams exhibited spontaneous abortion (33.36 and 41.66%, respectively) followed by pups-killing responses where, respectively, 4 dams/7 (57.14%) and 5 dams/7 (71.43%) showed disruption of maternal behavior and appearance of cannibalism towards pups which all were killed within 48 hours after parturition. Spontaneous abortion and pup-killing responses were not observed in the dams of any other experimental group, suggesting that perinatal disturbances of hormonal factors underlay these maternal disorders. Previous studies reported that thiamine deficiency-induced degeneration of dopamine neurons may be related to mouse-killing aggression in rats. The present study suggests that perinatal thiamine deficiency-induced alteration of dopaminergic neurons in maternal brain could be a trigger factor of pup-killing responses. Central dopamine and oxytocin have been strongly associated with both the onset and maintenance of maternal behavior and the regulation of maternal aggressiveness as well. Our studies suggest that estrogen control oxytocin levels in brain structures of pregnancy-terminated rats via dopamine transmission. Thiamine may modulate cAMP/Ca2+ -dependent estradiol-triggered responses which in turn control dopamine synthesis. Consequently, thiamine deficiency induced perinatally triggers pup-killing responses in pregnancy-terminated rats by the following toxic effects: (i) disturbances of estrogen production and/or release affecting dopamine synthesis; (ii) alterations of dopamine inhibition on central oxytocinergic system-related maternal aggressiveness. Likewise, our results indicate also that perinatal thiamine deficiency alone induces spontaneous abortion, reduces litter size, and lowers birth weight, which together suggest changing in the fetoplacental estrogen receptor alpha/progesterone receptor A ratio during gestation, via autocrine/paracrine regulation disturbances. Those hypotheses should be confirmed by further investigations.

  14. Thiamine and its phosphate esters in relation to cardiometabolic risk factors in Saudi Arabs

    PubMed Central

    2013-01-01

    Background Thiamine deficiency has suggested to be linked to several insulin-resistance complications. In this study, we aim to associate circulating thiamine levels among cardiometabolic parameters in an Arab cohort using a simple, sensitive, rapid and selective high-performance liquid chromatography (HPLC) method that has recently been developed. Methods A total of 236 randomly selected, consenting Saudi adult participants (166 males and 70 females) were recruited and screened for the presence of the metabolic syndrome (MetS) using the modified National Cholesterol Education Program–Adult Treatment Panel III definition. Blood thiamine and its derivatives were quantified using HPLC. Results A total of 140 participants (53.9%) had MetS. The levels of thiamine and its derivatives of those with MetS were not significantly different from those without. However, hypertensive subjects had significantly higher urinary thiamine (P = 0.03) as well as significantly lower levels of thiamine diphosphate (TDP) (P = 0.01) and total thiamine (P = 0.02) than the normotensive subjects, even after adjusting for age and body mass index (BMI). Furthermore, age- and BMI-matched participants with elevated blood glucose levels had significantly lower levels of thiamine monophosphate (P = 0.020), TDP (P < 0.001) and total thiamine (P < 0.001) and significantly elevated levels of urinary thiamine (P = 0.005) compared to normoglycemic participants. Conclusions Low thiamine levels are associated with elevated blood glucose and hypertension in Saudi adults. Determination of thiamine status may be considered and corrected among patients with, or at high risk for, MetS, but the question whether thiamine deficiency correction translates to improved cardiometabolic status needs further longitudinal investigation. PMID:24059534

  15. Overexpression of Thiamin Biosynthesis Genes in Rice Increases Leaf and Unpolished Grain Thiamin Content But Not Resistance to Xanthomonas oryzae pv. oryzae

    PubMed Central

    Dong, Wei; Thomas, Nicholas; Ronald, Pamela C.; Goyer, Aymeric

    2016-01-01

    Thiamin diphosphate (ThDP), also known as vitamin B1, serves as an enzymatic cofactor in glucose metabolism, the Krebs cycle, and branched-chain amino acid biosynthesis in all living organisms. Unlike plants and microorganisms, humans are not able to synthesize ThDP de novo and must obtain it from their diet. Staple crops such as rice are poor sources of thiamin. Hence, populations that mainly consume rice commonly suffer thiamin deficiency. In addition to thiamin’s nutritional function, studies in rice have shown that some thiamin biosynthesis genes are involved in resistance to Xanthomonas oryzae, which causes a serious disease in rice fields. This study shows that overexpression of two thiamin biosynthesis genes, 4-methyl-5-β-hydroxyethylthiazole phosphate synthase and 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, involved in the first steps of the thiazole and pyrimidine synthesis branches, respectively, increased thiamin content up to fivefold in unpolished seeds that retain the bran. However, thiamin levels in polished seeds with removed bran were similar to those found in polished control seeds. Plants with higher accumulation of thiamin did not show enhanced resistance to X. oryzae. These results indicate that stacking of two traits can enhance thiamin accumulation in rice unpolished grain. We discuss potential roadblocks that prevent thiamin accumulation in the endosperm. PMID:27242822

  16. Perinatal consumption of thiamine-fortified fish sauce in rural Cambodia. A randomized clinical trial

    USDA-ARS?s Scientific Manuscript database

    Infantile beriberi, a potentially fatal disease caused by thiamine deficiency, is a public health concern in Cambodia and regions where thiamine-poor white rice is a staple food. Low maternal thiamine intake reduces breast milk thiamine placing breastfed infants at risk of beriberi. The objective wa...

  17. Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1

    PubMed Central

    de la Croix Ndong, Jean; Makowski, Alexander James; Uppuganti, Sasidhar; Vignaux, Guillaume; Ono, Koichiro; Perrien, Daniel S.; Joubert, Simon; Baglio, Serena R.; Granchi, Donatella; Stevenson, David A.; Rios, Jonathan J.; Nyman, Jeffry S.; Elefteriou, Florent

    2014-01-01

    Mineralization of the skeleton depends on the balance between levels of pyrophosphate (PPi), an inhibitor of hydroxyapatite formation, and phosphate generated from PPi breakdown by alkaline phosphatase (ALP). We report here that ablation of Nf1, encoding the RAS/GTPase–activating protein neurofibromin, in bone–forming cells leads to supraphysiologic PPi accumulation, caused by a chronic ERK–dependent increase in genes promoting PPi synthesis and extracellular transport, namely Enpp1 and Ank. It also prevents BMP2–induced osteoprogenitor differentiation and, consequently, expression of ALP and PPi breakdown, further contributing to PPi accumulation. The short stature, impaired bone mineralization and strength in mice lacking Nf1 in osteochondroprogenitors or osteoblasts could be corrected by enzyme therapy aimed at reducing PPi concentration. These results establish neurofibromin as an essential regulator of bone mineralization, suggest that altered PPi homeostasis contributes to the skeletal dysplasiae associated with neurofibromatosis type-1 (NF1), and that some of the NF1 skeletal conditions might be preventable pharmacologically. PMID:24997609

  18. Beriberi (Thiamine Deficiency) and High Infant Mortality in Northern Laos

    PubMed Central

    Barennes, Hubert; Sengkhamyong, Khouanheuan; René, Jean Pascal; Phimmasane, Maniphet

    2015-01-01

    Background Infantile beriberi (thiamine deficiency) occurs mainly in infants breastfed by mothers with inadequate intake of thiamine, typically among vulnerable populations. We describe possible and probable cases of infantile thiamine deficiency in northern Laos. Methodology/Principal Findings Three surveys were conducted in Luang Namtha Province. First, we performed a retrospective survey of all infants with a diagnosis of thiamine deficiency admitted to the 5 hospitals in the province (2007–2009). Second, we prospectively recorded all infants with cardiac failure at Luang Namtha Hospital. Third, we further investigated all mothers with infants (1–6 months) living in 22 villages of the thiamine deficiency patients’ origin. We performed a cross-sectional survey of all mothers and infants using a pre-tested questionnaire, physical examination and squat test. Infant mortality was estimated by verbal autopsy. From March to June 2010, four suspected infants with thiamine deficiency were admitted to Luang Namtha Provincial hospital. All recovered after parenteral thiamine injection. Between 2007 and 2009, 54 infants with possible/probable thiamine deficiency were diagnosed with acute severe cardiac failure, 49 (90.2%) were cured after parenteral thiamine; three died (5.6%). In the 22 villages, of 468 live born infants, 50 (10.6%, 95% CI: 8.0–13.8) died during the first year. A peak of mortality (36 deaths) was reported between 1 and 3 months. Verbal autopsy suggested that 17 deaths (3.6%) were due to suspected infantile thiamine deficiency. Of 127 mothers, 60 (47.2%) reported edema and paresthesia as well as a positive squat test during pregnancy; 125 (98.4%) respected post-partum food avoidance and all ate polished rice. Of 127 infants, 2 (1.6%) had probable thiamine deficiency, and 8 (6.8%) possible thiamine deficiency. Conclusion Thiamine deficiency may be a major cause of infant mortality among ethnic groups in northern Laos. Mothers’ and children’s symptoms are compatible with thiamine deficiency. The severity of this nutritional situation requires urgent attention in Laos. PMID:25781926

  19. Genetics Home Reference: biotin-thiamine-responsive basal ganglia disease

    MedlinePlus

    ... link) Biotin-Thiamine-Responsive Basal Ganglia Disease Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) THIAMINE METABOLISM DYSFUNCTION SYNDROME 2 (BIOTIN- OR THIAMINE-RESPONSIVE TYPE) ...

  20. Thiamine-responsive megaloblastic anemia: early diagnosis may be effective in preventing deafness.

    PubMed

    Onal, Hasan; Bariş, Safa; Ozdil, Mine; Yeşil, Gözde; Altun, Gürkan; Ozyilmaz, Isa; Aydin, Ahmet; Celkan, Tiraje

    2009-01-01

    Thiamine-responsive megaloblastic anemia syndrome is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anemia and sensorineural hearing loss. Mutations in the SLC19A2 gene, encoding a high-affinity thiamine transporter protein, THTR-1, are responsible for the clinical features associated with thiamine-responsive megaloblastic anemia syndrome in which treatment with pharmacological doses of thiamine correct the megaloblastic anemia and diabetes mellitus. The anemia can recur when thiamine is withdrawn. Thiamine may be effective in preventing deafness if started before two months. Our patient was found homozygous for a mutation, 242insA, in the nucleic acid sequence of exon B, with insertion of an adenine introducing a stop codon at codon 52 in the high-affinity thiamine transporter gene, SLC19A2, on chromosome 1q23.3.

  1. Prevalence of clinical thiamine deficiency in individuals with medically complicated obesity.

    PubMed

    Nath, Anand; Tran, Tung; Shope, Timothy R; Koch, Timothy R

    2017-01-01

    Thiamine is a vitamin whose deficient can result in multiorgan symptoms. We described an 18% prevalence of clinical thiamine deficiency after gastric bypass surgery. Our hypotheses are that individuals with medically complicated obesity frequently have clinical thiamine deficiency and that diabetes mellitus is a mechanism for development of clinical thiamine deficiency. This is a single institution, retrospective observational study of consecutive patients with a body mass index of at least 35 kg/m 2 who were evaluated in preoperative gastrointestinal bariatric clinic from 2013 to 2015. Each patient underwent a symptom survey. Clinical thiamine deficiency is defined by both (1) consistent clinical symptom and (2) either a low whole-blood thiamine concentration or significant improvement of or resolution of consistent clinical symptoms after receiving thiamine supplementation. After excluding 101 individuals with prior bariatric surgery or heavy alcohol consumption, 400 patients were included in the study. Sixty-six patients (16.5% of 400) fulfill a diagnosis of clinical thiamine deficiency, with 9 (14% of 66) having consistent gastrointestinal manifestations, 46 (70% of 66) having cardiac manifestations, 39 (59% of 66) having peripheral neurologic manifestations, and 3 (5% of 66) having neuropsychiatric manifestations. Diabetes mellitus is not a risk factor (P=.59). Higher body mass index is a significant risk for clinical thiamine deficiency (P=.007). Clinical thiamine deficiency is common in these individuals and a higher body mass index is an identified risk factor. Mechanisms explaining development of thiamine deficiency in obese individuals remain unclear. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus

    PubMed Central

    2014-01-01

    Background Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tkt C ) and one located on the natural occurring plasmid pBM19 (tkt P ). Results Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn2+ and Mg2+. Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni2+, ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKTC: kcat/KM: 264 s-1 mM-1; TKTP: kcat/KM: 231 s-1 mM) and ribulose 5-phosphate (TKTC: kcat/KM: 109 s-1 mM; TKTP: kcat/KM: 84 s-1 mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKTC: kcat/KM: 108 s-1 mM; TKTP: kcat/KM: 71 s-1 mM) and fructose 6-phosphate (TKTC kcat/KM: 115 s-1 mM; TKTP: kcat/KM: 448 s-1 mM). Conclusions Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tkt P , but not of tkt C during growth with methanol [J Bacteriol 188:3063–3072, 2006] argues for TKTP being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed. PMID:24405865

  3. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.

    PubMed

    Markert, Benno; Stolzenberger, Jessica; Brautaset, Trygve; Wendisch, Volker F

    2014-01-09

    Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tkt(C)) and one located on the natural occurring plasmid pBM19 (tkt(P)). Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn(2+) and Mg(2+). Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni(2+), ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKT(C): kcat/KM: 264 s(-1) mM(-1); TKT(P): kcat/KM: 231 s(-1) mM) and ribulose 5-phosphate (TKT(C): kcat/KM: 109 s(-1) mM; TKT(P): kcat/KM: 84 s(-1) mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKT(C): kcat/KM: 108 s(-1) mM; TKT(P): kcat/KM: 71 s(-1) mM) and fructose 6-phosphate (TKT(C) kcat/KM: 115 s(-1) mM; TKT(P): kcat/KM: 448 s(-1) mM). Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tkt(P), but not of tkt(C) during growth with methanol [J Bacteriol 188:3063-3072, 2006] argues for TKT(P) being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed.

  4. Effectiveness and retention of thiamine and its analogs administered to steelhead and landlocked Atlantic salmon

    USGS Publications Warehouse

    Ketola, H.G.; Isaacs, G.R.; Robins, J.S.; Lloyd, R.C.

    2008-01-01

    We investigated the feasibility of enhancing the reproduction of steelhead Oncorhynchus mykiss and landlocked Atlantic salmon Salmo salar in lakes where the consumption of alewives Alosa pseudoharengus and other forage fishes containing thiaminase can cause them to become thiamine deficient and thereby reduce the survival of their fry. We evaluated feeding fingerling steelhead excess thiamine hydrochloride (THCl) for 1 or 2 weeks or equimolar amounts of thiamine mononitrate, thiamine-tetrahydrofurfuryl-disulfide, benfotiamine, or dibenzoyl thiamine (DBT). We found minimal internal reserves of thiamine after 6 months. We also compared the ability of injections of thiamine and its analogs to prevent mortality in thiamine-deficient steelhead and Atlantic salmon sac fry and found all forms to be effective, although benfotiamine was the least effective on an equimolar basis. Further, we injected yearling steelhead and found that DBT was tolerated at approximately 11,200 nmol/g of body weight, about 10 times more than thiamine in any other form. When yearling steelhead were injected with near-maximal doses of thiamine hydrochloride and several analogs and then fed a thiamine-deficient diet, DBT was retained for approximately 2 years - in contrast to other forms, which were retained for less than about 6 months. Therefore, these results suggest that neither feeding nor injecting young hatchery salmonids with DBT is likely to enhance their reproduction for more than 2 years after stocking. However, injecting DBT in nearly mature fish (either cultured fish from hatcheries or wild fish captured in lakes) may provide them with enough thiamine to successfully spawn within 2 years even though they consume mainly thiaminase-containing forage fishes. ?? Copyright by the American Fisheries Society 2008.

  5. Genetics Home Reference: thiamine-responsive megaloblastic anemia syndrome

    MedlinePlus

    ... Thiamine-responsive megaloblastic anemia syndrome Thiamine-responsive megaloblastic anemia syndrome Printable PDF Open All Close All Enable ... the expand/collapse boxes. Description Thiamine-responsive megaloblastic anemia syndrome is a rare condition characterized by hearing ...

  6. Vitamin B1 Functions as an Activator of Plant Disease Resistance1

    PubMed Central

    Ahn, Il-Pyung; Kim, Soonok; Lee, Yong-Hwan

    2005-01-01

    Vitamin B1 (thiamine) is an essential nutrient for humans. Vitamin B1 deficiency causes beriberi, which disturbs the central nervous and circulatory systems. In countries in which rice (Oryza sativa) is a major food, thiamine deficiency is prevalent because polishing of rice removes most of the thiamine in the grain. We demonstrate here that thiamine, in addition to its nutritional value, induces systemic acquired resistance (SAR) in plants. Thiamine-treated rice, Arabidopsis (Arabidopsis thaliana), and vegetable crop plants showed resistance to fungal, bacterial, and viral infections. Thiamine treatment induces the transient expression of pathogenesis-related (PR) genes in rice and other plants. In addition, thiamine treatment potentiates stronger and more rapid PR gene expression and the up-regulation of protein kinase C activity. The effects of thiamine on disease resistance and defense-related gene expression mobilize systemically throughout the plant and last for more than 15 d after treatment. Treatment of Arabidopsis ecotype Columbia-0 plants with thiamine resulted in the activation of PR-1 but not PDF1.2. Furthermore, thiamine prevented bacterial infection in Arabidopsis mutants insensitive to jasmonic acid or ethylene but not in mutants impaired in the SAR transduction pathway. These results clearly demonstrate that thiamine induces SAR in plants through the salicylic acid and Ca2+-related signaling pathways. The findings provide a novel paradigm for developing alternative strategies for the control of plant diseases. PMID:15980201

  7. The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation1

    PubMed Central

    Nagae, Miwa; Kawaguchi, Masayoshi; Takeda, Naoya

    2016-01-01

    Thiamine (vitamin B1) is essential for living organisms. Unlike animals, plants can synthesize thiamine. In Lotus japonicus, the expression of two thiamine biosynthesis genes, THI1 and THIC, was enhanced by inoculation with rhizobia but not by inoculation with arbuscular mycorrhizal fungi. THIC and THI2 (a THI1 paralog) were expressed in uninoculated leaves. THI2-knockdown plants and the transposon insertion mutant thiC had chlorotic leaves. This typical phenotype of thiamine deficiency was rescued by an exogenous supply of thiamine. In wild-type plants, THI1 was expressed mainly in roots and nodules, and the thi1 mutant had green leaves even in the absence of exogenous thiamine. THI1 was highly expressed in actively dividing cells of nodule primordia. The thi1 mutant had small nodules, and this phenotype was rescued by exogenous thiamine and by THI1 complementation. Exogenous thiamine increased nodule diameter, but the level of arbuscular mycorrhizal colonization was unaffected in the thi1 mutant or by exogenous thiamine. Expression of symbiotic marker genes was induced normally, implying that mainly nodule growth was delayed in the thi1 mutant. Furthermore, this mutant formed many immature seeds with reduced seed weight. These results indicate that thiamine biosynthesis mediated by THI1 enhances nodule enlargement and is required for seed development in L. japonicus. PMID:27702844

  8. Thiamin and riboflavin vitamers in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamer secretion and contributions to total vitamin content

    USDA-ARS?s Scientific Manuscript database

    While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main...

  9. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    PubMed

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  10. Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.

    PubMed

    Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric

    2017-12-01

    Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.

  11. Abolition of reperfusion-induced arrhythmias in hearts from thiamine-deficient rats.

    PubMed

    Oliveira, Fernando A; Guatimosim, Silvia; Castro, Carlos H; Galan, Diogo T; Lauton-Santos, Sandra; Ribeiro, Angela M; Almeida, Alvair P; Cruz, Jader S

    2007-07-01

    Extensive work has been done regarding the impact of thiamine deprivation on the nervous system. In cardiac tissue, chronic thiamine deficiency is described to cause changes in the myocardium that can be associated with arrhythmias. However, compared with the brain, very little is known about the effects of thiamine deficiency on the heart. Thus this study was undertaken to explore whether thiamine deprivation has a role in cardiac arrhythmogenesis. We examined hearts isolated from thiamine-deprived and control rats. We measured heart rate, diastolic and systolic tension, and contraction and relaxation rates. Whole cell voltage clamp was performed in rat isolated cardiac myocytes to measure L-type Ca(2+) current. In addition, we investigated the global intracellular calcium transients by using confocal microscopy in the line-scan mode. The hearts from thiamine-deficient rats did not degenerate into ventricular fibrillation during 30 min of reperfusion after 15 min of coronary occlusion. The antiarrhythmogenic effects were characterized by the arrhythmia severity index. Our results suggest that hearts from thiamine-deficient rats did not experience irreversible arrhythmias. There was no change in L-type Ca(2+) current density. Inactivation kinetics of this current in Ca(2+)-buffered cells was retarded in thiamine-deficient cardiac myocytes. The global Ca(2+) release was significantly reduced in thiamine-deficient cardiac myocytes. The amplitude of caffeine-releasable Ca(2+) was lower in thiamine-deficient myocytes. In summary, we have found that thiamine deprivation attenuates the incidence and severity of postischemic arrhythmias, possibly through a mechanism involving a decrease in global Ca(2+) release.

  12. Thiamine Deficiency Complex Workshop final report: November 6-7, 2008, Ann Arbor, MI

    USGS Publications Warehouse

    Honeyfield, Dale C.; Tillitt, Donald E.; Riley, Stephen C.

    2008-01-01

    Fry mortality which was first observed in the late 1960s in Great Lakes salmonines and in Baltic Sea salmon in 1974 has now been linked to thiamine deficiency (historically referred to as Early Mortality Syndrome, or EMS and M74, respectively). Over the past 14 years significant strides have been made in our understanding of this perplexing problem. It is now known that thiamine deficiency causes embryonic mortality in these salmonids. Both overt mortality and secondary effects of thiamine deficiency are observed in juvenile and adult animals. Collectively the morbidity and mortality (fry and adult mortality, secondary metabolic and behavior affects in juveniles and adult fish) are referred to as Thiamine Deficiency Complex (TDC). A workshop was held in Ann Arbor, MI on 6-7 November 2008 that brought together 38 federal, state, provincial, tribal and university scientists to share information, present data and discuss the latest observations on thiamine status of aquatic animals with thiamine deficiency and the causative agent, thiaminase. Twenty presentations (13 oral and 7 posters) detailed current knowledge. In Lake Huron, low alewife Alosa pseudoharengus abundance has persisted and egg thiamine concentrations in salmonines continue to increase, along with evidence of natural reproduction in lake trout Salvelinus namaycush. Lake Michigan Chinook salmon Oncorhynchus tshawytscha appear to have a lower thiamine requirement than other salmonids in the lake. Lake Ontario American eel Anguilla rostrata foraging on alewife have approximately one third the muscle thiamine compared to eels not feeding on alewife, suggesting that eels may be suffering from thiamine deficiency. Secondary effects of low thiamine exist in Great Lakes salmonines and should not be ignored. Thiaminase activity in dreissenid mussels is extremely high but a connection to TDC has not been made. Thiaminase in net plankton was found more consistently in lakes Michigan and Ontario than other lakes evaluated. The biological role of thiaminase I, associated with thiamine deficiency, remains to be determined whereas thiaminase II has been reported to be part of a salvage pathway leading to thiamine synthesis. The use of gene array technology and 3-dimensional histology is adding new understanding to the affects of thiamine deficiency. Research is needed to determine the thiamine status of species feeding on dreissenids, the environmental sources of thiaminase and the biological role of thiaminase I.

  13. The relative hydrolytic reactivities of pyrophosphites and pyrophosphates.

    PubMed

    Mistry, Dharmit; Powles, Nicholas

    2013-09-14

    The pH-rate profiles for the hydrolysis of pyrophosphate (PP(V)) and pyrophosphite (PP(III), pyro-di-H-phosphonate) are a complex function of pH, reflecting the different ionic species and their relative reactivities. PP(III) is more reactive than PP(V) at all pHs and only PP(III) shows a hydroxide-ion reaction at high pH, so it is 10(10)-fold more reactive than PP(V) in 0.1 M NaOH. The pK(a2) of PP(III) ~0.44, so the dominant species at pH's > 1 is the di-anion PP(III)(2-). Although there is no observable (NMR or ITC) binding of Mg(2+) to the PP(III) di-anion there is a modest increase in the rate of hydrolysis of PP(III) by Mg(2+). PP(III) is neither a substrate nor an inhibitor of pyrophosphatase, the enzyme that efficiently catalyses the hydrolysis of PP(V).

  14. Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC).

    PubMed

    Pazos, Manuel; Otten, Christian; Vollmer, Waldemar

    2018-03-20

    Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius . The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.

  15. Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC)

    PubMed Central

    Pazos, Manuel; Otten, Christian; Vollmer, Waldemar

    2018-01-01

    Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by ‘attacking’ enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius. The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II. PMID:29651453

  16. Thiamine Nutritional Status and Depressive Symptoms Are Inversely Associated among Older Chinese Adults123

    PubMed Central

    Zhang, Geng; Ding, Hanqing; Chen, Honglei; Ye, Xingwang; Li, Huaixing; Lin, Xu; Ke, Zunji

    2013-01-01

    Thiamine has been hypothesized to play an important role in mental health; however, few studies have investigated the association between thiamine nutritional status and depression in the general population. Concentrations of free thiamine and its phosphate esters [thiamine monophosphate (TMP) and thiamine diphosphate (TDP)] in erythrocytes were measured by HPLC among 1587 Chinese men and women aged 50–70 y. The presence of depressive symptoms was defined as a Center for Epidemiological Studies Depression Scale score of ≥16. The median erythrocyte concentration (nmol/L) was 3.73 for free thiamine, 3.74 for TMP, and 169 for TDP. The overall prevalence of depressive symptoms was 11.3%. Lower concentrations of all 3 erythrocyte thiamine biomarkers were monotonically associated with a higher prevalence of depressive symptoms: the multivariable adjusted ORs comparing the lowest with the highest quartiles were 2.97 (95% CI = 1.87, 4.72; P-trend < 0.001) for free thiamine, 3.46 (95% CI = 1.99, 6.02; P-trend < 0.001) for TMP, and 1.98 (95% CI = 1.22, 3.21; P-trend = 0.002) for TDP. In conclusion, poorer thiamine nutritional status and higher odds of depressive symptoms were associated among older Chinese adults. This finding should be further investigated in prospective or interventional studies. PMID:23173173

  17. Thiamine nutritional status and depressive symptoms are inversely associated among older Chinese adults.

    PubMed

    Zhang, Geng; Ding, Hanqing; Chen, Honglei; Ye, Xingwang; Li, Huaixing; Lin, Xu; Ke, Zunji

    2013-01-01

    Thiamine has been hypothesized to play an important role in mental health; however, few studies have investigated the association between thiamine nutritional status and depression in the general population. Concentrations of free thiamine and its phosphate esters [thiamine monophosphate (TMP) and thiamine diphosphate (TDP)] in erythrocytes were measured by HPLC among 1587 Chinese men and women aged 50-70 y. The presence of depressive symptoms was defined as a Center for Epidemiological Studies Depression Scale score of ≥16. The median erythrocyte concentration (nmol/L) was 3.73 for free thiamine, 3.74 for TMP, and 169 for TDP. The overall prevalence of depressive symptoms was 11.3%. Lower concentrations of all 3 erythrocyte thiamine biomarkers were monotonically associated with a higher prevalence of depressive symptoms: the multivariable adjusted ORs comparing the lowest with the highest quartiles were 2.97 (95% CI = 1.87, 4.72; P-trend < 0.001) for free thiamine, 3.46 (95% CI = 1.99, 6.02; P-trend < 0.001) for TMP, and 1.98 (95% CI = 1.22, 3.21; P-trend = 0.002) for TDP. In conclusion, poorer thiamine nutritional status and higher odds of depressive symptoms were associated among older Chinese adults. This finding should be further investigated in prospective or interventional studies.

  18. Evidence for the Involvement of Acid/Base Chemistry in the Reaction Catalyzed by the Type II Isopentenyl Diphosphate/Dimethylallyl Diphosphate Isomerase from Staphylococcus aureus†

    PubMed Central

    Thibodeaux, Christopher J.; Mansoorabadi, Steven O.; Kittleman, William; Chang, Wei-chen; Liu, Hung-wen

    2011-01-01

    The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2–H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures. PMID:18229948

  19. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  20. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  1. Interaction of 2,4-Diaminopyrimidine-Containing Drugs Including Fedratinib and Trimethoprim with Thiamine Transporters.

    PubMed

    Giacomini, Marilyn M; Hao, Jia; Liang, Xiaomin; Chandrasekhar, Jayaraman; Twelves, Jolyn; Whitney, J Andrew; Lepist, Eve-Irene; Ray, Adrian S

    2017-01-01

    Inhibition of thiamine transporters has been proposed as a putative mechanism for the observation of Wernicke's encephalopathy and subsequent termination of clinical development of fedratinib, a Janus kinase inhibitor (JAKi). This study aimed to determine the potential for other JAKi to inhibit thiamine transport using human epithelial colorectal adenocarcinoma (Caco-2) and thiamine transporter (THTR) overexpressing cells and to better elucidate the structural basis for interacting with THTR. Only JAKi containing a 2,4-diaminopyrimidine were observed to inhibit thiamine transporters. Fedratinib inhibited thiamine uptake into Caco-2 cells (IC 50 = 0.940 µM) and THTR-2 (IC 50 = 1.36 µM) and, to a lesser extent, THTR-1 (IC 50 = 7.10 µM) overexpressing cells. Two other JAKi containing this moiety, AZD1480 and cerdulatinib, were weaker inhibitors of the thiamine transporters. Other JAKi-including monoaminopyrimidines, such as momelotinib, and nonaminopyrimidines, such as filgotinib-did not have any inhibitory effects on thiamine transport. A pharmacophore model derived from the minimized structure of thiamine suggests that 2,4-diaminopyrimidine-containing compounds can adopt a conformation matching several key features of thiamine. Further studies with drugs containing a 2,4-diaminopyrimidine resulted in the discovery that the antibiotic trimethoprim also potently inhibits thiamine uptake mediated by THTR-1 (IC 50 = 6.84 µM) and THTR-2 (IC 50 = 5.56 µM). Fedratinib and trimethoprim were also found to be substrates for THTR, a finding with important implications for their disposition in the body. In summary, our results show that not all JAKi have the potential to inhibit thiamine transport and further establish the interaction of these transporters with xenobiotics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Globally Important Haptophyte Algae Use Exogenous Pyrimidine Compounds More Efficiently than Thiamin

    PubMed Central

    Gutowska, Magdalena A.; Shome, Brateen; Sudek, Sebastian; McRose, Darcy L.; Hamilton, Maria; Giovannoni, Stephen J.; Begley, Tadhg P.

    2017-01-01

    ABSTRACT Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi. Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10−6 pmol thiamin cell−1], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10−7 or (1.58 ± 0.14) × 10−7 pmol thiamin cell−1, respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata. Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure. PMID:29018119

  3. A rapid solid-phase extraction fluorometric method for thiamine and riboflavin in salmonid eggs

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Brown, Scott B.; Brown, Lisa R.; Honeyfield, Dale C.; Fitzsimons, John D.

    2005-01-01

    A new method has been developed and successfully applied to the selective measurement of thiamine (nonphosphorylated), total thiamine (sum of thiamine, thiamine monophosphate [TMP], thiamine diphosphate [TDP], and thiamine triphosphate [TTP]), and potentially interfering riboflavin in acidic (2% trichloroacetic acid) extracts of selected salmonid and walleye egg samples. Acidic extracts of eggs were applied directly to end-capped C18, reversed-phase solid-phase extraction (SPE) columns and separated into three fractions by elution with mixtures of PO4 buffer (pH 2), methanol (10%), and acetonitrile (20%). All thiamine compounds recovered in the first two fractions were oxidized to their corresponding thiochromes with alkaline potassium hexacyanoferrate, and we measured the thiochrome fluorescence (excitation at 360 nm, emission at 460 nm) in a 96-well microplate reader. Riboflavin, recovered in third fraction (eluted with pH 2, 20% acetonitrile), was analyzed directly by measuring the fluorescence of this fraction (excitation at 450 nm, emission at 530 nm). Significant portions of the phosphate esters of thiamine (TMP, TDP, and presumably TTP), when present at low concentrations (< 10 nmol of total -thiamine per gram of egg), were not retained by the 100-mg SPE column, and were collected directly during sample loading and in a subsequent phosphoric acid rinse as fraction 1. Free thiamine (nonphosphorylated) and remaining portions of the TDP and TMP were then eluted in the second fraction with 10% methanol/PO4 buffer, whereas the un-ionized, relatively nonpolar riboflavin was eluted in the third fraction with 20% acetonitrile. This new method uses a traditional sample homogenization of egg tissue to extract thiamine compounds into 2% trichlororacetic acid solution; an inexpensive, commercially available SPE column; small amounts of sample (0.5-1 g); microliter volumes of solvents per sample; a traditional, relatively nonhazardous, oxidation of thiamine compounds to fluorescent thiochromes; and an ultraviolet-visible-wavelength-filter fluorometer for the measurements. ?? Copyright by the American Fisheries Society 2005.

  4. Influence of naturally-occurring 5′-pyrophosphate-linked substituents on the binding of adenylic inhibitors to ribonuclease a: An X-ray crystallographic study

    PubMed Central

    Holloway, Daniel E; Chavali, Gayatri B; Leonidas, Demetres D; Baker, Matthew D; Acharya, K Ravi

    2009-01-01

    Ribonuclease A is the archetype of a functionally diverse superfamily of vertebrate-specific ribonucleases. Inhibitors of its action have potential use in the elucidation of the in vivo roles of these enzymes and in the treatment of pathologies associated therewith. Derivatives of adenosine 5′-pyrophosphate are the most potent nucleotide-based inhibitors known. Here, we use X-ray crystallography to visualize the binding of four naturally-occurring derivatives that contain 5′-pyrophosphate-linked extensions. 5′-ATP binds with the adenine occupying the B2 subsite in the manner of an RNA substrate but with the γ-phosphate at the P1 subsite. Diadenosine triphosphate (Ap3A) binds with the adenine in syn conformation, the β-phosphate as the principal P1 subsite ligand and without order beyond the γ-phosphate. NADPH and NADP+ bind with the adenine stacked against an alternative rotamer of His119, the 2′-phosphate at the P1 subsite, and without order beyond the 5′-α-phosphate. We also present the structure of the complex formed with pyrophosphate ion. The structural data enable existing kinetic data on the binding of these compounds to a variety of ribonucleases to be rationalized and suggest that as the complexity of the 5′-linked extension increases, the need to avoid unfavorable contacts places limitations on the number of possible binding modes. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 995–1008, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com PMID:19191310

  5. Stimulation of inorganic pyrophosphate elaboration by cultured cartilage and chondrocytes.

    PubMed

    Ryan, L M; Kurup, I; Rosenthal, A K; McCarty, D J

    1989-08-01

    Inorganic pyrophosphate elaboration by articular cartilage may favor calcium pyrophosphate dihydrate crystal deposition. Frequently crystal deposits form in persons affected with metabolic diseases. The cartilage organ culture system was used to model these metabolic conditions while measuring the influence on extracellular pyrophosphate elaboration. Alterations of ambient pH, thyroid stimulating hormone levels, and parathyroid hormone levels did not change pyrophosphate accumulation in the media. However, subphysiologic ambient calcium concentrations (25, 100, 500 microM) increased pyrophosphate accumulation about chondrocytes 3- to 10-fold. Low calcium also induced release of [14C]adenine-labeled nucleotides from chondrocytes, potential substrates for generation of extracellular pyrophosphate by ectoenzymes. Exposing cartilage to 10% fetal bovine serum also enhanced by 50% the egress of inorganic pyrophosphate from the tissue.

  6. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Perinatal consumption of thiamin-fortified fish sauce in rural Cambodia: a randomized controlled efficacy trial

    USDA-ARS?s Scientific Manuscript database

    Importance: Infantile beriberi, a potentially fatal disease caused by thiamin deficiency, remains a public health concern in Cambodia and regions where B-vitamin poor, polished white rice is a staple food. Low maternal thiamin intake reduces breast milk thiamin concentrations, placing breastfed infa...

  8. ZIO impregnation and cytochemical localization of thiamine pyrophosphatase and acid phosphatase activities in small granule-containing (SGC) cells of rat superior cervical ganglia.

    PubMed

    Chau, Y P; Lu, K S

    1994-10-01

    Cytochemical relationship between Golgi complex and dense-cored granules (DCGs) of small granule-containing (SGC) cells in rat superior cervical ganglia was examined in electron microscopy by zinc-iodide-osmium tetroxide (ZIO) method and by enzyme cytochemistry for thiamine pyrophosphatase (TPPase) and acid phosphatase (ACPase). After ZIO impregnation, all the saccules of Golgi apparatus and some of tubular rough endoplasmic reticulum (rER) were stained. DCGs in periphery of SGC cells were not stained, but varying degrees of dense deposits occurred in the DCGs in vicinity of Golgi trans-saccules. Both TPPase and ACPase activities were localized in one or two stacked layers of saccules on the trans side of the Golgi complex. No reaction products were demonstrated in the DCGs. From these results, we suggest that the DCGs of SGC cells in rat superior cervical ganglia are derived from the Golgi complex, and that lysosomal cleavage of protein contents in the DCGs may occur in the trans Golgi saccules.

  9. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33.

    PubMed

    Vergnolle, Olivia; Xu, Hua; Blanchard, John S

    2013-09-27

    Mycobacterial siderophores are critical components for bacterial virulence in the host. Pathogenic mycobacteria synthesize iron chelating siderophores named mycobactin and carboxymycobactin to extract intracellular macrophage iron. The two siderophores differ in structure only by a lipophilic aliphatic chain attached on the ε-amino group of the lysine mycobactin core, which is transferred by MbtK. Prior to acyl chain transfer, the lipophilic chain requires activation by a specific fatty acyl-AMP ligase FadD33 (also known as MbtM) and is then loaded onto phosphopantetheinylated acyl carrier protein (holo-MbtL) to form covalently acylated MbtL. We demonstrate that FadD33 prefers long chain saturated lipids and initial velocity studies showed that FadD33 proceeds via a Bi Uni Uni Bi ping-pong mechanism. Inhibition experiments suggest that, during the first half-reaction (adenylation), fatty acid binds first to the free enzyme, followed by ATP and the release of pyrophosphate to form the adenylate intermediate. During the second half-reaction (ligation), holo-MbtL binds to the enzyme followed by the release of products AMP and acylated MbtL. In addition, we characterized a post-translational regulation mechanism of FadD33 by the mycobacterial protein lysine acetyltransferase in a cAMP-dependent manner. FadD33 acetylation leads to enzyme inhibition, which can be reversed by the NAD(+)-dependent deacetylase, MSMEG_5175 (DAc1). To the best of our knowledge, this is the first time that bacterial siderophore synthesis has been shown to be regulated via post-translational protein acetylation.

  10. Properties of Intermediates in the Catalytic Cycle of Oxalate Oxidoreductase and Its Suicide Inactivation by Pyruvate

    PubMed Central

    2017-01-01

    Oxalate:ferredoxin oxidoreductase (OOR) is an unusual member of the thiamine pyrophosphate (TPP)-dependent 2-oxoacid:ferredoxin oxidoreductase (OFOR) family in that it catalyzes the coenzyme A (CoA)-independent conversion of oxalate into 2 equivalents of carbon dioxide. This reaction is surprising because binding of CoA to the acyl-TPP intermediate of other OFORs results in formation of a CoA ester, and in the case of pyruvate:ferredoxin oxidoreductase (PFOR), CoA binding generates the central metabolic intermediate acetyl-CoA and promotes a 105-fold acceleration of the rate of electron transfer. Here we describe kinetic, spectroscopic, and computational results to show that CoA has no effect on catalysis by OOR and describe the chemical rationale for why this cofactor is unnecessary in this enzymatic transformation. Our results demonstrate that, like PFOR, OOR binds pyruvate and catalyzes decarboxylation to form the same hydroxyethylidine–TPP (HE–TPP) intermediate and one-electron transfer to generate the HE–TPP radical. However, in OOR, this intermediate remains stranded at the active site as a covalent inhibitor. These and other results indicate that, like other OFOR family members, OOR generates an oxalate-derived adduct with TPP (oxalyl-TPP) that undergoes decarboxylation and one-electron transfer to form a radical intermediate remaining bound to TPP (dihydroxymethylidene–TPP). However, unlike in PFOR, where CoA binding drives formation of the product, in OOR, proton transfer and a conformational change in the “switch loop” alter the redox potential of the radical intermediate sufficiently to promote the transfer of an electron into the iron–sulfur cluster network, leading directly to a second decarboxylation and completing the catalytic cycle. PMID:28514140

  11. Disruption of Thiamine Uptake and Growth of Cells by Feline Leukemia Virus Subgroup A

    PubMed Central

    Mendoza, Ramon; Miller, A. Dusty

    2013-01-01

    Feline leukemia virus (FeLV) is still a major cause of morbidity and mortality in domestic cats and some wild cats despite the availability of relatively effective vaccines against the virus. FeLV subgroup A (FeLV-A) is transmitted in natural infections, and FeLV subgroups B, C, and T can evolve directly from FeLV-A by mutation and/or recombination with endogenous retroviruses in domestic cats, resulting in a variety of pathogenic outcomes. The cell surface entry receptor for FeLV-A is a putative thiamine transporter (THTR1). Here, we have addressed whether FeLV-A infection might disrupt thiamine uptake into cells and, because thiamine is an essential nutrient, whether this disruption might have pathological consequences. First, we cloned the cat ortholog of the other of the two known thiamine transporters in mammals, THTR2, and we show that feline THTR1 (feTHTR1) and feTHTR2 both mediate thiamine uptake, but feTHTR2 does not function as a receptor for FeLV-A. We found that feTHTR1 is widely expressed in cat tissues and in cell lines, while expression of feTHTR2 is restricted. Thiamine uptake mediated by feTHTR1 was indeed blocked by FeLV-A infection, and in feline fibroblasts that naturally express feTHTR1 and not feTHTR2, this blockade resulted in a growth arrest at physiological concentrations of extracellular thiamine. The growth arrest was reversed at high extracellular concentrations of thiamine. Our results show that FeLV-A infection can indeed disrupt thiamine uptake with pathological consequences. A prediction of these experiments is that raising the plasma levels of thiamine in FeLV-infected cats may ameliorate the pathogenic effects of infection. PMID:23269813

  12. Disruption of thiamine uptake and growth of cells by feline leukemia virus subgroup A.

    PubMed

    Mendoza, Ramon; Miller, A Dusty; Overbaugh, Julie

    2013-03-01

    Feline leukemia virus (FeLV) is still a major cause of morbidity and mortality in domestic cats and some wild cats despite the availability of relatively effective vaccines against the virus. FeLV subgroup A (FeLV-A) is transmitted in natural infections, and FeLV subgroups B, C, and T can evolve directly from FeLV-A by mutation and/or recombination with endogenous retroviruses in domestic cats, resulting in a variety of pathogenic outcomes. The cell surface entry receptor for FeLV-A is a putative thiamine transporter (THTR1). Here, we have addressed whether FeLV-A infection might disrupt thiamine uptake into cells and, because thiamine is an essential nutrient, whether this disruption might have pathological consequences. First, we cloned the cat ortholog of the other of the two known thiamine transporters in mammals, THTR2, and we show that feline THTR1 (feTHTR1) and feTHTR2 both mediate thiamine uptake, but feTHTR2 does not function as a receptor for FeLV-A. We found that feTHTR1 is widely expressed in cat tissues and in cell lines, while expression of feTHTR2 is restricted. Thiamine uptake mediated by feTHTR1 was indeed blocked by FeLV-A infection, and in feline fibroblasts that naturally express feTHTR1 and not feTHTR2, this blockade resulted in a growth arrest at physiological concentrations of extracellular thiamine. The growth arrest was reversed at high extracellular concentrations of thiamine. Our results show that FeLV-A infection can indeed disrupt thiamine uptake with pathological consequences. A prediction of these experiments is that raising the plasma levels of thiamine in FeLV-infected cats may ameliorate the pathogenic effects of infection.

  13. Effects of thiamine on reproduction of Atlantic salmon and a new hypothesis for their extirpation in Lake Ontario

    USGS Publications Warehouse

    Ketola, H. George; Bowser, Paul R.; Wooster, Gregory A.; Wedge, Leslie R.; Hurst, Steven S.

    2000-01-01

    Previous researchers demonstrated that a mortality in fry (called Cayuga syndrome) of Atlantic salmon Salmo salar from Cayuga Lake (New York) was associated with low levels of thiamine. They reduced the mortality of fry by bathing or injecting fry with thiamine. We injected four to six gravid female Atlantic salmon with either physiological saline (PS) or PS plus thiamine (7 mg/kg weight) 14–23 d before eggs were stripped, fertilized, and incubated in individual lots. Chemical analyses showed that eggs from control and treated salmon contained 1.1 and 1.6 nmol thiamine/g, respectively. Thiamine injections had no significant effect on the percentage of eggs that hatched. Between 700 and 800 Celius degree-days postfertilization, control fry (saline) showed signs of Cayuga syndrome and a 45% incidence of mortality; in contrast, mortality was only 1.9% for fry that received thiamine. By 1,078 degree-days postfertilization, mean mortality of control fry was 98.6%, whereas that for thiamine-injected salmon was 2.1%. This study showed that thiamine injections of prespawning female salmon from Cayuga Lake increased thiamine content of their eggs and prevented the Cayuga syndrome and subsequent mortality of fry. Historically, overfishing, pollution, and building of dams and barriers to spawning migration were suggested as possible causes of the decline of the Atlantic salmon in Lake Ontario and Cayuga Lake. Based on our findings and other reports, we suggest another possible contributing cause of the extirpation of landlocked Atlantic salmon in Lake Ontario and some other inland waters of New York: The entrance of alewives Alosa pseudoharengus containing thiaminase, which induced thiamine deficiency in eggs and increased mortality in fry of the predatory salmon.

  14. Gizzard shad thiaminase activity and its effect on the thiamine status of captive American alligators Alligator mississippiensis.

    PubMed

    Ross, J Perran; Honeyfield, Dale C; Brown, Scott B; Brown, Lisa R; Waddle, Amanda Rice; Welker, Michael E; Schoeb, Trenton R

    2009-12-01

    Adult mortality and low egg hatch rate were observed among American alligators Alligator mississippiensis in Lake Griffin, Florida, between 1998 and 2003. Previous studies show that the alligator mortality is due to neurological impairment associated with thiamine (vitamin Bt) deficiency. This study determined the rate of thiaminase activity in gizzard shad Dorosoma cepedianum, a fish often eaten by alligators, and examined the thiamine status of captive adult alligators fed only gizzard shad. We found that the thiaminase activity of gizzard shad in Lake Griffin is 16,409 +/- 2,121 pmol/g/min (mean +/- 2SEs). This high rate of thiaminase activity was present in most months and across a wide range of shad sizes. Seven alligators were captured in the wild from Lake Griffin and Lake Woodruff, held in captivity, and fed gizzard shad. We monitored blood and muscle thiamine levels throughout the experiment and liver thiamine at the end. Over a period of 6-12 months, all of the alligators maintained weight but blood and muscle thiamine levels decreased to 25-50% of the original (healthy) values. Three animals with the greatest reduction in thiamine died, demonstrating mobility impairment and neural histopathology similar to those seen in wild alligators in Lake Griffin. Two alligators were fed shad for 10 months but then treated with thiamine. These animals showed a reduction in thiamine while eating shad, but treatment restored their thiamine levels to the initial values, which were comparable to those of normal wild Lake Griffin alligators. We demonstrated that thiamine deficiency can be induced by a diet of gizzard shad and cause neurological signs and death in alligators in captivity. We conclude that the thiaminase activity in gizzard shad is high enough to cause thiamine deficiency in wild alligators when shad are a major part of their diet.

  15. Thiamine deficiency effects on the vision and foraging ability of lake trout fry

    USGS Publications Warehouse

    Tillitt, Donald E.; Zajicek, James L.; Claunch, Rachel; Honeyfield, Dale C.; Fitzsimons, John D.; Brown, Scott B.

    2008-01-01

    The exact causes of the historical recruitment failures of Great Lakes lake trout Salvelinus namaycush are unknown. Thiamine deficiency has been associated with neurological abnormalities in lake trout that lead to early mortality syndrome (EMS) in salmonine swim-up fry, and EMS-related mortality at the swim-up stage is a factor that contributes to the reproductive failure of lake trout populations in the Great Lakes. The potential for adverse effects of thiamine deficiency beyond the swim-up stage is unknown. We investigated the effects of low egg thiamine on behavioral functions in young, post-swim-up lake trout fry. The behavioral endpoints included visual acuity and prey capture rates in the same groups of lake trout fry from each family. Low-thiamine eggs were produced by feeding lake trout broodstock diets entailing thiaminase activity. The thiamine content of the spawned eggs ranged from 0.3 to 26.1 nmol/g. Both visual acuity and prey capture rates were affected by the thiamine content of the eggs. The visual acuity of lake trout was severely affected by low egg thiamine, mainly at thiamine concentrations below the threshold of 0.8 nmol/g but also at higher concentrations in field-collected eggs. Feeding was also reduced with low egg thiamine content. The reduction of prey capture rates was dramatic below 0.8 nmol/g and less dramatic, but still significant, in a portion of the families with egg thiamine concentrations of less than 5.0 nmol/g from both laboratory and field samples. Approximately one-third of the latter families had reduced feeding rates. Deficits in visual acuity may be part of the mechanism leading to decreased feeding rates in these fry. The effects of low egg thiamine on both of the behavioral endpoints studied increase the risk of low recruitment rates in Great Lakes lake trout populations.

  16. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels.

    PubMed

    Vignisse, Julie; Sambon, Margaux; Gorlova, Anna; Pavlov, Dmitrii; Caron, Nicolas; Malgrange, Brigitte; Shevtsova, Elena; Svistunov, Andrey; Anthony, Daniel C; Markova, Natalyia; Bazhenova, Natalyia; Coumans, Bernard; Lakaye, Bernard; Wins, Pierre; Strekalova, Tatyana; Bettendorff, Lucien

    2017-07-01

    Thiamine is essential for normal brain function and its deficiency causes metabolic impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis (AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation (number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This reduction was prevented when the mice were treated (200mg/kg/day in drinking water for 20days) with thiamine or benfotiamine, that were recently found to prevent stress-induced behavioral changes and glycogen synthase kinase-3β (GSK-3β) upregulation in the CNS. Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP) remained unchanged, suggesting that the beneficial effects observed are not linked to the role of this coenzyme in energy metabolism. Predator stress increased hippocampal protein carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in particular benfotiamine protects against paraquat-induced oxidative stress. We therefore hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that thiamine and benfotiamine prevent stress-induced inhibition of hippocampal neurogenesis and accompanying physiological changes. The present data suggest that thiamine precursors with high bioavailability might be useful as a complementary therapy in several neuropsychiatric disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Maternal consumption of thiamin-fortified fish sauce during pregnancy and lactation improves maternal and infant thiamin status and breast milk thiamin concentrations.

    USDA-ARS?s Scientific Manuscript database

    Infantile beriberi, a disease caused by thiamin (vitamin B1) deficiency, remains a public health concern in Cambodia and other parts of Southeast Asia. Infantile beriberi presents during the exclusive breastfeeding period and without treatment commonly results in death within *24 hours of clinical p...

  18. Randomized, Double-Blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study.

    PubMed

    Donnino, Michael W; Andersen, Lars W; Chase, Maureen; Berg, Katherine M; Tidswell, Mark; Giberson, Tyler; Wolfe, Richard; Moskowitz, Ari; Smithline, Howard; Ngo, Long; Cocchi, Michael N

    2016-02-01

    To determine if intravenous thiamine would reduce lactate in patients with septic shock. Randomized, double-blind, placebo-controlled trial. Two US hospitals. Adult patients with septic shock and elevated (> 3 mmol/L) lactate between 2010 and 2014. Thiamine 200 mg or matching placebo twice daily for 7 days or until hospital discharge. The primary outcome was lactate levels 24 hours after the first study dose. Of 715 patients meeting the inclusion criteria, 88 patients were enrolled and received study drug. There was no difference in the primary outcome of lactate levels at 24 hours after study start between the thiamine and placebo groups (median: 2.5 mmol/L [1.5, 3.4] vs. 2.6 mmol/L [1.6, 5.1], p = 0.40). There was no difference in secondary outcomes including time to shock reversal, severity of illness and mortality. 35% of the patients were thiamine deficient at baseline. In this predefined subgroup, those in the thiamine treatment group had statistically significantly lower lactate levels at 24 hours (median 2.1 mmol/L [1.4, 2.5] vs. 3.1 [1.9, 8.3], p = 0.03). There was a statistically significant decrease in mortality over time in those receiving thiamine in this subgroup (p = 0.047). Administration of thiamine did not improve lactate levels or other outcomes in the overall group of patients with septic shock and elevated lactate. In those with baseline thiamine deficiency, patients in the thiamine group had significantly lower lactate levels at 24 hours and a possible decrease in mortality over time.

  19. 21 CFR 582.5875 - Thiamine hydrochloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5875 Thiamine hydrochloride. (a) Product. Thiamine hydrochloride. (b) Conditions of use...

  20. 21 CFR 582.5875 - Thiamine hydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5875 Thiamine hydrochloride. (a) Product. Thiamine hydrochloride. (b) Conditions of use...

  1. 21 CFR 582.5875 - Thiamine hydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5875 Thiamine hydrochloride. (a) Product. Thiamine hydrochloride. (b) Conditions of use...

  2. Identification of the thiamin pyrophosphokinase gene in rainbow trout: Characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    USGS Publications Warehouse

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  3. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype.

    PubMed

    Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J

    2006-09-01

    Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.

  4. Thiamine Deficiency in Tropical Pediatrics: New Insights into a Neglected but Vital Metabolic Challenge

    PubMed Central

    Hiffler, Laurent; Rakotoambinina, Benjamin; Lafferty, Nadia; Martinez Garcia, Daniel

    2016-01-01

    In humans, thiamine is a micronutrient prone to depletion that may result in severe clinical abnormalities. This narrative review summarizes current knowledge on thiamine deficiency (TD) and bridges the gap between pathophysiology and clinical presentation by integrating thiamine metabolism at subcellular level with its function to vital organs. The broad clinical spectrum of TD is outlined, with emphasis on conditions encountered in tropical pediatric practice. In particular, TD is associated with type B lactic acidosis and classic forms of beriberi in children, but it is often unrecognized. Other severe acute conditions are associated with hypermetabolism, inducing a functional TD. The crucial role of thiamine in infant cognitive development is also highlighted in this review, along with analysis of the potential impact of TD in refeeding syndrome during severe acute malnutrition (SAM). This review aims to increase clinical awareness of TD in tropical settings where access to diagnostic tests is poor, and advocates for an early therapeutic thiamine challenge in resource-limited settings. Moreover, it provides evidence for thiamine as treatment in critical conditions requiring metabolic resuscitation, and gives rationale to the consideration of increased thiamine supplementation in therapeutic foods for malnourished children. PMID:27379239

  5. Alcohol and B1 vitamin deficiency-related stillbirths.

    PubMed

    Bâ, Abdoulaye

    2009-05-01

    The present study attempts to determine whether prenatal thiamine (B1 vitamin) deficiency and prenatal alcohol exposure are risk factors for stillbirths. From conception to parturition, Wistar rat dams were exposed to the following treatments: (1) Rat dams consuming a thiamine-deficient diet; (2) 12% alcohol/water drinking mothers; (3) mothers drinking 12% alcohol/water + thiamine hydrochloride mixture. Appropriate pair-fed controls and ad libitum controls were assessed. Gestation outcome and fetal parameters, including spontaneous abortion, still-born fetuses, litter size and birth weight, were assessed from the dams of each experimental group. Both alcohol and thiamine deficiency during pregnancy increased fetal death (48.26%vs. 84.47%), reduced litter size (44.54%vs. 72.7%), respectively, and lowered birth weight. Thiamine administration reversed the effects of alcohol-induced fetal death, suggesting that a part of deleterious actions of alcohol on fetal death was mediated by thiamine deficiency. Prenatal thiamine deficiency increased singularly spontaneous abortion with abundant bleeding (40%), rising the occurrence of stillbirth. Such a pathology was not observed in alcohol group. The results indexed thiamine deficiency as a potent risk factor for stillbirths. The vitamin supply during pregnancy prevents stillbirths related to chronic alcoholism and different facets of malnutrition.

  6. Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product.

    PubMed Central

    Finegold, A A; Johnson, D I; Farnsworth, C C; Gelb, M H; Judd, S R; Glomset, J A; Tamanoi, F

    1991-01-01

    Protein prenylation occurs by modification of proteins with one of at least two isoprenoids, the farnesyl group and the geranylgeranyl group. Protein farnesyltransferases have been identified, but no such enzyme has been identified for geranylgeranylation. We report the identification of an activity in crude soluble yeast extracts that catalyzes the transfer of a geranylgeranyl moiety from geranylgeranyl pyrophosphate to proteins having the C-terminal sequence Cys-Ile-Ile-Leu or Cys-Val-Leu-Leu but not to a similar protein ending with Cys-Ile-Ile-Ser. This activity is dependent upon the CDC43/CAL1 gene, which is involved in budding and the control of cell polarity, but does not require the DPR1/RAM1 gene, which is known to be required for the farnesylation of Ras proteins. These results indicate that the protein geranylgeranyltransferase activity is distinct from the protein farnesyltransferase activity and that its specificity depends in part on the extreme C-terminal leucine in the protein to be prenylated. Images PMID:2034682

  7. Cytidine Diphosphoramidate Kinase: An Enzyme Required for the Biosynthesis of the O-Methyl Phosphoramidate Modification in the Capsular Polysaccharides of Campylobacter jejuni.

    PubMed

    Taylor, Zane W; Raushel, Frank M

    2018-04-17

    Campylobacter jejuni, a leading cause of gastroenteritis, produces a capsular polysaccharide that is derivatized with a unique O-methyl phosphoramidate (MeOPN) modification. This modification contributes to serum resistance and invasion of epithelial cells. Previously, the first three biosynthetic steps for the formation of MeOPN were elucidated. The first step is catalyzed by a novel glutamine kinase (Cj1418), which catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of the amide nitrogen of l-glutamine. l-Glutamine phosphate is used by cytidine triphosphate (CTP):phosphoglutamine cytidylyltransferase (Cj1416) to displace pyrophosphate from CTP to generate cytidine diphosphate (CDP)-l-glutamine, which is then hydrolyzed by γ-glutamyl-CDP-amidate hydrolase (Cj1417) to form cytidine diphosphoramidate (CDP-NH 2 ). Here, we show that Cj1415 catalyzes the ATP-dependent phosphorylation of CDP-NH 2 to form 3'-phospho-cytidine-5'-diphosphoramidate. Cj1415 will also catalyze the phosphorylation of adenosine diphosphoramidate (ADP-NH 2 ) and uridine diphosphoramidate (UDP-NH 2 ) but at significantly reduced rates. It is proposed that Cj1415 be named cytidine diphosphoramidate kinase.

  8. Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole

    NASA Astrophysics Data System (ADS)

    Muppariqoh, N. M.; Wahyuni, W. T.; Putra, B. R.

    2017-03-01

    Vitamin B1 (thiamine) is oxidized in alkaline medium and can be detected by cyclic voltammetry technique using carbon paste electrode (CPE) as a working electrode. polypyrrole-modified CPE were used in this study to increase sensitivity and selectivity measurement of thiamine. Molecularly imprinted polymers (MIP) of the modified CPE was prepared through electrodeposition of pyrrole. Measurement of thiamine performed in KCl 0.05 M (pH 10, tris buffer) using CPE and the modified CPE gave an optimum condition anodic current of thiamine at 0.3 V, potential range (-1.6_1 V), and scan rate of 100 mV/s. Measurement of thiamine using polypyrrole modified CPE (CPE-MIPpy) showed better result than CPE itself with detection limit of 6.9×10-5 M and quantitation limit 2.1×10-4 M. CPE-MIPpy is selective to vita min B1. In conclusion, CPE-MIPpy as a working electrode showed better performance of thiamine measurement than that of CPE.

  9. Zn2+-dependent surface behavior of diacylglycerol pyrophosphate and its mixtures with phosphatidic acid at different pHs

    PubMed Central

    Villasuso, Ana L.; Wilke, Natalia; Maggio, Bruno; Machado, Estela

    2014-01-01

    Diacylglycerol pyrophosphate (DGPP) is a minor lipid that attenuates the phosphatidic acid (PA) signal, and also DGPP itself would be a signaling lipid. Diacylglycerol pyrophosphate is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol that was shown to respond to changes of pH, thus affecting the surface organization of DGPP and their interaction with PA. In this work, we have investigated how the presence of Zn2+ modulates the surface organization of DGPP and its interaction with PA at acidic and basic pHs. Both lipids formed expanded monolayers at pHs 5 and 8. At pH 5, monolayers formed by DGPP became stiffer when Zn2+was added to the subphase, while the surface potential decreased. At this pH, Zn2+ induced a phase transition from an expanded to a condensed-phase state in monolayers formed by PA. Conversely, at pH 8 the effects induced by the presence of Zn2+ on the surface behaviors of the pure lipids were smaller. Thus, the interaction of the bivalent cation with both lipids was modulated by pH and by the ionization state of the polar head groups. Mixed monolayers of PA and DGPP showed a non-ideal behavior and were not affected by the presence of Zn2+ at pH 8. This could be explained considering that when mixed, the lipids formed a closely packed monolayer that could not be further modified by the cation. Our results indicate that DGPP and PA exhibit expanded- and condensed-phase states depending on pH, on the proportion of each lipid in the film and on the presence of Zn2+. This may have implications for a possible role of DGPP as a signaling lipid molecule. PMID:25120554

  10. 21 CFR 582.5878 - Thiamine mononitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5878 Thiamine mononitrate. (a) Product. Thiamine mononitrate. (b) Conditions of use. This...

  11. 21 CFR 582.5878 - Thiamine mononitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5878 Thiamine mononitrate. (a) Product. Thiamine mononitrate. (b) Conditions of use. This...

  12. 21 CFR 582.5878 - Thiamine mononitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5878 Thiamine mononitrate. (a) Product. Thiamine mononitrate. (b) Conditions of use. This...

  13. Downbeat nystagmus caused by thiamine deficiency: an unusual presentation of CNS localization of large cell anaplastic CD 30-positive non-Hodgkin's lymphoma.

    PubMed

    Mulder, A H; Raemaekers, J M; Boerman, R H; Mattijssen, V

    1999-02-01

    A 24-year-old woman with a large cell anaplastic CD 30-positive T-cell non-Hodgkin's lymphoma (NHL) developed downbeat nystagmus, anisocoria, and oscillopsia. Prior to overt cerebral invasion by NHL, she had a thiamine deficiency with very low thiamine concentrations in the CSF, probably caused by protracted vomiting and increased vitamin B1 consumption by intrathecal tumor cells. We believe that her neurologic symptoms were caused -- at least partly -- by thiamine deficiency, as she reacted well to thiamine supplementation at the beginning of treatment.

  14. Treatment with pyrophosphate inhibits uremic vascular calcification

    PubMed Central

    O’Neill, W. Charles; Lomashvili, Koba A.; Malluche, Hartmut H.; Faugere, Marie-Claude; Riser, Bruce L.

    2011-01-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone. PMID:21124302

  15. Treatment with pyrophosphate inhibits uremic vascular calcification.

    PubMed

    O'Neill, W Charles; Lomashvili, Koba A; Malluche, Hartmut H; Faugere, Marie-Claude; Riser, Bruce L

    2011-03-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.

  16. A Phosphoenzyme Mimic, Overlapping Catalytic Sites and Reaction Coordinate Motion for Human NAMPT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgos, E.; Ho, M; Almo, S

    2009-01-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD+) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion. NAMPT structures with beryllium fluoride indicate a covalent H247-BeF3- as the phosphohistidine mimic. Activation of NAMPT by H247-phosphorylation causes stabilization of the enzyme-phosphoribosylpyrophosphate complex, permitting efficient capture of NAM. Reactant and product structures establish reactionmore » coordinate motion for NAMPT to be migration of the ribosyl anomeric carbon from the pyrophosphate leaving group to the nicotinamide-N1 while the 5-phosphoryl group, the pyrophosphate moiety, and the nicotinamide ring remain fixed in the catalytic site.« less

  17. Organochlorine pesticides and thiamine in eggs of largemouth bass and American alligators and their relationship with early life-stage mortality

    USGS Publications Warehouse

    Sepulveda, M.S.; Wiebe, J.J.; Honeyfield, D.C.; Rauschenberger, H.R.; Hinterkopf, J.P.; Johnson, W.E.; Gross, T.S.

    2004-01-01

    Thiamine deficiency has been linked to early mortality syndrome in salmonids in the Great Lakes. This study was conducted to compare thiamine concentrations in American alligators (Alligator mississippiensis) and Florida largemouth bass (Micropterus salmoides floridanus) eggs from sites with high embryo mortality and high exposure to organochlorine pesticides (OCPs) (Lakes Apopka and Griffin, and Emeralda Marsh, Florida, USA) to those from sites that have historically exhibited low embryo mortality and low OCPs (Lakes Woodruff and Orange, Florida). During June-July 2000, 20 alligator clutches were collected from these sites, artificially incubated, and monitored for embryo mortality. Thiamine and OCPs were measured in one egg/clutch. During February 2002, 10 adult female bass were collected from Emeralda Marsh and Lake Woodruff and mature ovaries analyzed for thiamine and OCP concentrations. Although ovaries from the Emeralda Marsh bass contained almost 1,000-fold more OCPs compared with the reference site, Lake Woodruff, there were no differences in thiamine concentrations between sites (11,710 vs. 11,857 pmol/g). In contrast, alligator eggs from the reference site had five times the amount of thiamine compared with the contaminated sites (3,123 vs. 617 pmol/g). Similarly, clutches with > 55% hatch rates had significantly higher concentrations of thiamine compared with clutches with <54% hatch rates (1,119 vs. 201 pmol/g). These results suggest that thiamine deficiency might be playing an important role in alligator embryo survival but not in reproductive failure and recruitment of largemouth bass. The cause(s) of this thiamine deficiency are unknown but might be related to differences in the nutritional value of prey items across the sites studied and/or to the presence of high concentration of contaminants in eggs. ?? Wildlife Disease Association 2004.

  18. Acute thiamine deficiency and refeeding syndrome: Similar findings but different pathogenesis.

    PubMed

    Maiorana, Arianna; Vergine, Gianluca; Coletti, Valentina; Luciani, Matteo; Rizzo, Cristiano; Emma, Francesco; Dionisi-Vici, Carlo

    2014-01-01

    Refeeding syndrome can occur in several contexts of relative malnutrition in which an overaggressive nutritional support is started. The consequences are life threatening with multiorgan impairment, and severe electrolyte imbalances. During refeeding, glucose-involved insulin secretion causes abrupt reverse of lipolysis and a switch from catabolism to anabolism. This creates a sudden cellular demand for electrolytes (phosphate, potassium, and magnesium) necessary for synthesis of adenosine triphosphate, glucose transport, and other synthesis reactions, resulting in decreased serum levels. Laboratory findings and multiorgan impairment similar to refeeding syndrome also are observed in acute thiamine deficiency. The aim of this study was to determine whether thiamine deficiency was responsible for the electrolyte imbalance caused by tubular electrolyte losses. We describe two patients with leukemia who developed acute thiamine deficiency with an electrolyte pattern suggestive of refeeding syndrome, severe lactic acidosis, and evidence of proximal renal tubular dysfunction. A single thiamine administration led to rapid resolution of the tubular dysfunction and normalization of acidosis and electrolyte imbalance. This demonstrated that thiamine deficiency was responsible for the electrolyte imbalance, caused by tubular electrolyte losses. Our study indicates that, despite sharing many laboratory similarities, refeeding syndrome and acute thiamine deficiency should be viewed as separate entities in which the electrolyte abnormalities reported in cases of refeeding syndrome with thiamine deficiency and refractory lactic acidosis may be due to renal tubular losses instead of a shifting from extracellular to intracellular compartments. In oncologic and malnourished patients, individuals at particular risk for developing refeeding syndrome, in the presence of these biochemical abnormalities, acute thiamine deficiency should be suspected and treated because it promptly responds to thiamine administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Thiamine transporter-2 deficiency: outcome and treatment monitoring

    PubMed Central

    2014-01-01

    Background The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10–40 mg/kg/day) and biotin (1–2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients. PMID:24957181

  20. Organochlorine pesticides and thiamine in eggs of largemouth bass and American alligators and their relationship with early life-stage mortality.

    PubMed

    Sepúlveda, Maria S; Wiebe, Jon J; Honeyfield, Dale C; Rauschenberger, Heath R; Hinterkopf, Joy P; Johnson, William E; Gross, Timothy S

    2004-10-01

    Thiamine deficiency has been linked to early mortality syndrome in salmonids in the Great Lakes. This study was conducted to compare thiamine concentrations in American alligators (Alligator mississippiensis) and Florida largemouth bass (Micropterus salmoides floridanus) eggs from sites with high embryo mortality and high exposure to organochlorine pesticides (OCPs) (Lakes Apopka and Griffin, and Emeralda Marsh, Florida, USA) to those from sites that have historically exhibited low embryo mortality and low OCPs (Lakes Woodruff and Orange, Florida). During June-July 2000, 20 alligator clutches were collected from these sites, artificially incubated, and monitored for embryo mortality. Thiamine and OCPs were measured in one egg/clutch. During February 2002, 10 adult female bass were collected from Emeralda Marsh and Lake Woodruff and mature ovaries analyzed for thiamine and OCP concentrations. Although ovaries from the Emeralda Marsh bass contained almost 1,000-fold more OCPs compared with the reference site, Lake Woodruff, there were no differences in thiamine concentrations between sites (11,710 vs. 11,857 pmol/g). In contrast, alligator eggs from the reference site had five times the amount of thiamine compared with the contaminated sites (3,123 vs. 617 pmol/g). Similarly, clutches with >55% hatch rates had significantly higher concentrations of thiamine compared with clutches with <54% hatch rates (1,119 vs. 201 pmol/g). These results suggest that thiamine deficiency might be playing an important role in alligator embryo survival but not in reproductive failure and recruitment of largemouth bass. The cause(s) of this thiamine deficiency are unknown but might be related to differences in the nutritional value of prey items across the sites studied and/or to the presence of high concentration of contaminants in eggs.

  1. Thiamine transporter-2 deficiency: outcome and treatment monitoring.

    PubMed

    Ortigoza-Escobar, Juan Darío; Serrano, Mercedes; Molero, Marta; Oyarzabal, Alfonso; Rebollo, Mónica; Muchart, Jordi; Artuch, Rafael; Rodríguez-Pombo, Pilar; Pérez-Dueñas, Belén

    2014-06-23

    The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10-40 mg/kg/day) and biotin (1-2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients.

  2. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  3. Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea

    PubMed Central

    Kamarudin, Amirah N.; Lai, Kok S.; Lamasudin, Dhilia U.; Idris, Abu S.; Balia Yusof, Zetty N.

    2017-01-01

    Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea. Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes (THI4, THIC, TH1, and TPK) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings. PMID:29089959

  4. Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea.

    PubMed

    Kamarudin, Amirah N; Lai, Kok S; Lamasudin, Dhilia U; Idris, Abu S; Balia Yusof, Zetty N

    2017-01-01

    Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea . Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes ( THI4 , THIC , TH1 , and TPK ) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings.

  5. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium pyrophosphate. 182.8223 Section 182.8223... FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use. This substance is generally recognized...

  6. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pyrophosphate. 182.8223 Section 182.8223... FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use. This substance is generally recognized...

  7. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance is...

  8. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance is...

  10. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance is...

  11. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance is...

  12. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance is...

  13. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance is...

  14. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance is...

  15. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance is...

  16. Isotopic Studies on Structure-function Relationships of Nucleic Acids and Enzymes. Three Year Progress Report, May 1972 -- October 1975

    DOE R&D Accomplishments Database

    Boyer, P. D.

    1975-01-01

    The most important accomplishments and major contributions are tabulated with citations to published work. The more important unpublished contributions deal with the early events in ATP formation by chloroplasts, energy linkage in reaction steps of oxidative phosphorylation, molecular integrity of parental DNA, bound pyrophosphate and {sup 18}O-exchanges by inorganic pyrophosphatase, and glutamine synthetase exchanges and mechanisms. These are being prepared for publication. (JSR)

  17. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    PubMed

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chloride permeability of rat brain membrane vesicles correlates with thiamine triphosphate content.

    PubMed

    Bettendorff, L; Hennuy, B; De Clerck, A; Wins, P

    1994-07-25

    Incubation of rat brain homogenates with thiamine or thiamine diphosphate (TDP) leads to a synthesis of thiamine triphosphate (TTP). In membrane vesicles subsequently prepared from the homogenates, increased TTP content correlates with increased 36Cl- uptake. A hyperbolic relationship was obtained with a K0.5 of 0.27 nmol TTP/mg protein. In crude mitochondrial fractions from the brains of animals previously treated with thiamine or sulbutiamine, a positive correlation between 36Cl- uptake and TTP content was found. These results, together with other results previously obtained with the patch-clamp technique, suggest that TTP is an activator of chloride channels having a large unit conductance.

  19. [Advances in isoprene synthase research].

    PubMed

    Gou, Yan; Liu, Zhongchuan; Wang, Ganggang

    2017-11-25

    Isoprene emission can lead to significant consequence for atmospheric chemistry. In addition, isoprene is a chemical compound for various industrial applications. In the organisms, isoprene is produced by isoprene synthase that eliminates the pyrophosphate from the dimethylallyl diphosphate. As a key enzyme of isoprene formation, isoprene synthase plays an important role in the process of natural emission and artificial synthesis of isoprene. So far, isoprene synthase has been found in various plants. Isoprene synthases from different sources are of conservative structural and similar biochemical properties. In this review, the biochemical and structural characteristics of isoprene synthases from different sources were compared, the catalytic mechanism of isoprene synthase was discussed, and the perspective application of the enzyme in bioengineering was proposed.

  20. 21 CFR 182.6789 - Tetra sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tetra sodium pyrophosphate. 182.6789 Section 182.6789 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6789 Tetra sodium pyrophosphate. (a) Product. Tetra sodium pyrophosphate. (b) Conditions of use. This...

  1. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b...

  2. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.6789 - Tetra sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Tetra sodium pyrophosphate. 582.6789 Section 582.6789 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6789 Tetra sodium pyrophosphate. (a) Product. Tetra sodium pyrophosphate. (b) Conditions of use. This...

  4. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b...

  5. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b...

  6. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    PubMed

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-07

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.

  7. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo.

    PubMed

    Zahr, Natalie M; Sullivan, Edith V; Rohlfing, Torsten; Mayer, Dirk; Collins, Amy M; Luong, Richard; Pfefferbaum, Adolf

    2016-07-01

    Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.

  8. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5306 Ferric sodium pyrophosphate. (a) Product. Ferric sodium pyrophosphate. (b...

  9. 21 CFR 182.6789 - Tetra sodium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tetra sodium pyrophosphate. 182.6789 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6789 Tetra sodium pyrophosphate. (a) Product. Tetra sodium pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when...

  10. Thiamin deficiency in people with obesity.

    PubMed

    Kerns, Jennifer C; Arundel, Cherinne; Chawla, Lakhmir S

    2015-03-01

    Although obesity has been viewed traditionally as a disease of excess nutrition, evidence suggests that it may also be a disease of malnutrition. Specifically, thiamin deficiency was found in 15.5-29% of obese patients seeking bariatric surgery. It can present with vague signs and symptoms and is often overlooked in patients without alcohol use disorders. This review explores the relatively new discovery of high rates of thiamin deficiency in certain populations of people with obesity, including the effects of thiamin deficiency and potential underlying mechanisms of deficiency in people with obesity. The 2 observational studies that examined the prevalence in preoperative bariatric surgery patients and gaps in our current knowledge (including the prevalence of thiamin deficiency in the general obese population and whether the current RDA for thiamin meets the metabolic needs of overweight or obese adults) are reviewed. Suggestions for future areas of research are included. © 2015 American Society for Nutrition.

  11. An efficient platform for genetic selection and screening of gene switches in Escherichia coli

    PubMed Central

    Muranaka, Norihito; Sharma, Vandana; Nomura, Yoko; Yokobayashi, Yohei

    2009-01-01

    Engineered gene switches and circuits that can sense various biochemical and physical signals, perform computation, and produce predictable outputs are expected to greatly advance our ability to program complex cellular behaviors. However, rational design of gene switches and circuits that function in living cells is challenging due to the complex intracellular milieu. Consequently, most successful designs of gene switches and circuits have relied, to some extent, on high-throughput screening and/or selection from combinatorial libraries of gene switch and circuit variants. In this study, we describe a generic and efficient platform for selection and screening of gene switches and circuits in Escherichia coli from large libraries. The single-gene dual selection marker tetA was translationally fused to green fluorescent protein (gfpuv) via a flexible peptide linker and used as a dual selection and screening marker for laboratory evolution of gene switches. Single-cycle (sequential positive and negative selections) enrichment efficiencies of >7000 were observed in mock selections of model libraries containing functional riboswitches in liquid culture. The technique was applied to optimize various parameters affecting the selection outcome, and to isolate novel thiamine pyrophosphate riboswitches from a complex library. Artificial riboswitches with excellent characteristics were isolated that exhibit up to 58-fold activation as measured by fluorescent reporter gene assay. PMID:19190095

  12. Cardiac structural changes and electrical remodeling in a thiamine-deficiency model in rats.

    PubMed

    Roman-Campos, D; Campos, A C; Gioda, C R; Campos, P P; Medeiros, M A A; Cruz, J S

    2009-06-05

    Thiamine is an important cofactor present in many biochemical reactions, and its deprivation can lead to heart dysfunction. Little is known about the influence of thiamine deprivation on the electrophysiological behavior of the isolated heart cells and information about thiamine deficiency in heart morphology is controversial. Thus, we decided to investigate the major repolarizing conductances and their influence in the action potential (AP) waveform as well as the changes in the heart structure in a set of thiamine deficiency in rats. Using the patch-clamp technique, we investigated inward (I(K1)) and outward K(+) currents (I(to)), T-type and L-type Ca(2+) currents and APs. To evaluate heart morphology we used hematoxylin and eosin in transversal heart sections. Thiamine deficiency caused a marked decrease in left ventricle thickness, cardiomyocyte number, cell length and width, and membrane capacitance. When evaluating I(to) we did not find difference in current amplitude; however an acceleration of I(to) inactivation was observed. I(K1) showed a reduction in the amplitude and slope conductance, which implicated a less negative resting membrane potential in cardiac myocytes isolated from thiamine-deficient rats. We did not find any difference in L-type Ca(2+) current density. T-type Ca(2+) current was not observed. In addition, we did not observe significant changes in AP repolarization. Based on our study we can conclude that thiamine deficiency causes heart hypotrophy and not heart hypertrophy. Moreover, we provided evidence that there is no major electrical remodeling during thiamine deficiency, a feature of heart failure models.

  13. Effect of blood thiamine concentrations on mortality: Influence of nutritional status.

    PubMed

    Leite, Heitor Pons; de Lima, Lúcio Flávio Peixoto; Taddei, José Augusto de A C; Paes, Ângela Tavares

    2018-04-01

    To test the hypothesis that low blood thiamine concentrations in malnourished critically ill children are associated with higher risk of 30-d mortality. Prospective cohort study in 202 consecutively admitted children who had whole blood thiamine concentrations assessed on admission and on days 5 and 10 of intensive care unit (ICU) stay. The primary outcome variable was 30-d mortality. Mean blood thiamine concentrations within the first 10 d of ICU stay, age, sex, malnutrition, C-reactive protein concentration, Pediatric Index of Mortality 2 score, and severe sepsis/septic shock were the main potential exposure variables for outcome. Thiamine deficiency was detected in 61 patients within the first 10 d of ICU stay, 57 cases being diagnosed on admission and 4 new cases on the 5th d. C-reactive protein concentration during ICU stay was independently associated with decreased blood thiamine concentrations (P = 0.003). There was a significant statistical interaction between mean blood thiamine concentrations and malnutrition on the risk of 30-d mortality (P = 0.002). In an adjusted analysis, mean blood thiamine concentrations were associated with a decrease in the mortality risk in malnourished patients (odds ratio = 0.85; 95% confidence interval [CI]: 0.73-0.98; P = 0.029), whereas no effect was noted for well-nourished patients (odds ratio: 1.03; 95% CI: 0.94-1.13; P = 0.46). Blood thiamine concentration probably has a protective effect on the risk of 30-d mortality in malnourished patients but not in those who were well nourished. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    PubMed Central

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  15. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    PubMed

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  16. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  17. Oximes of αω-diquaternary alkane salts as antidotes to organophosphate anticholinesterases

    PubMed Central

    Berry, W. K.; Davies, D. R.; Green, A. L.

    1959-01-01

    Sixteen compounds of the general structure {HON: CH.C5H4N+.[CH2]n.R+}2Br- have been synthesized in which the position of the oxime group in the pyridine ring, the second charged group R+ and the number of methylene groups between the charged atoms have been varied. The rate at which these compounds reactivate cholinesterase inhibited by ethyl pyrophosphate has been studied and a number have been found which are more active than 2-hydroxyiminomethyl-N-methylpyridinium methanesulphonate. Since considerable variation in structure was found among those compounds which are better reactivators than the latter, the concept that 2-hydroxyiminomethyl-N-methylpyridinium salts are unique in their ability to fit the surface of the inhibited enzyme is no longer tenable. The reactivating power of these oximes correlated well with their ability, when given in conjunction with atropine, to save the lives of mice poisoned by ethyl pyrophosphate. The most effective compounds, NN'-trimethylenebis-(4-hydroxyiminomethylpyridinium bromide) and NN'-hexamethylenebis(2-hydroxyiminomethylpyridinium bromide), contained a further oxime group in R+, but the second oxime group was not essential for high activity. These new oximes were also superior in saving the lives of mice poisoned with sarin (isopropyl methylphosphonofluoridate), but the improvement was not as dramatic as when the mice were poisoned with ethyl pyrophosphate. The toxicity of the compounds varied with both n and R+ and was unrelated to the therapeutic potency. PMID:13662572

  18. Identifying Potential Therapeutics for Osteoporosis by Exploiting the Relationship between Mevalonate Pathway and Bone Metabolism.

    PubMed

    Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana

    2018-04-23

    Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Treatment of biotin-responsive basal ganglia disease: Open comparative study between the combination of biotin plus thiamine versus thiamine alone.

    PubMed

    Tabarki, Brahim; Alfadhel, Majid; AlShahwan, Saad; Hundallah, Khaled; AlShafi, Shatha; AlHashem, Amel

    2015-09-01

    To compare the combination of biotin plus thiamine to thiamine alone in treating patients with biotin-responsive basal ganglia disease in an open-label prospective, comparative study. twenty patients with genetically proven biotin-responsive basal ganglia disease were enrolled, and received for at least 30 months a combination of biotin plus thiamine or thiamine alone. The outcome measures included duration of the crisis, number of recurrence/admissions, the last neurological examination, the severity of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and the brain MRI findings during the crisis and after 30 months of follow-up. Ten children with a mean age of 6 years(1/2) were recruited in the biotin plus thiamine group (group 1) and ten children (6 females and 4 males) with a mean age of 6 years and 2 months were recruited in the thiamine group (group 2). After 2 years of follow-up treatment, 6 of 20 children achieved complete remission, 10 had minimal sequelae in the form of mild dystonia and dysarthria (improvement of the BFMDRS, mean: 80%), and 4 had severe neurologic sequelae. All these 4 patients had delayed diagnosis and management. Regarding outcome measures, both groups have a similar outcome regarding the number of recurrences, the neurologic sequelae (mean BFMDS score between the groups, p = 0.84), and the brain MRI findings. The only difference was the duration of the acute crisis: group 1 had faster recovery (2 days), versus 3 days in group 2 (p = 0.005). Our study suggests that over 30 months of treatment, the combination of biotin plus thiamine is not superior to thiamine alone in the treatment of biotin-responsive basal ganglia disease. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  20. GC-MS analysis of the ruminal metabolome response to thiamine supplementation during high grain feeding in dairy cows.

    PubMed

    Xue, Fuguang; Pan, Xiaohua; Jiang, Linshu; Guo, Yuming; Xiong, Benhai

    2018-01-01

    Thiamine is known to attenuate high-concentrate diet induced subacute ruminal acidosis (SARA) in dairy cows, however, the underlying mechanisms remain unclear. The major objective of this study was to investigate the metabolic mechanisms of thiamine supplementation on high-concentrate diet induced SARA. Six multiparous, rumen-fistulated Holstein cows were used in a replicated 3 × 3 Latin square design. The treatments included a control diet (CON; 20% starch, dry matter basis), a SARA-inducing diet (SAID; 33.2% starch, dry matter basis) and SARA-inducing diet supplemented with 180 mg of thiamine/kg of dry matter intake (SAID + T). On d21 of each period, ruminal fluid samples were collected at 3 h post feeding, and GC/MS was used to analyze rumen fluid samples. PCA and OPLS-DA analysis demonstrated that the ruminal metabolite profile were different in three treatments. Compared with CON treatment, SAID feeding significantly decreased rumen pH, acetate, succinic acid, increased propionate, pyruvate, lactate, glycine and biogenic amines including spermidine and putrescine. Thiamine supplementation significantly decreased rumen content of propionate, pyruvate, lactate, glycine and spermidine; increase rumen pH, acetate and some medium-chain fatty acids. The enrichment analysis of different metabolites indicated that thiamine supplementation mainly affected carbohydrates, amino acids, pyruvate and thiamine metabolism compared with SAID treatment. These findings revealed that thiamine supplementation could attenuate high-concentrate diet induced SARA by increasing pyruvate formate-lyase activity to promote pyruvate to generate acetyl-CoA and inhibit lactate generation. Besides, thiamine reduced biogenic amines to alleviate ruminal epithelial inflammatory response.

  1. Household Consumption of Thiamin-Fortified Fish Sauce Increases Erythrocyte Thiamin Concentrations among Rural Cambodian Women and Their Children Younger Than 5 Years of Age: A Randomized Controlled Efficacy Trial.

    PubMed

    Whitfield, Kyly C; Karakochuk, Crystal D; Kroeun, Hou; Sokhoing, Ly; Chan, Benny B; Borath, Mam; Sophonneary, Prak; Moore, Kirsten; Tong, Jeffery K T; McLean, Judy; Talukder, Aminuzzaman; Lynd, Larry D; Li-Chan, Eunice C Y; Kitts, David D; Green, Tim J

    2017-02-01

    To assess whether ad libitum consumption of thiamin-fortified fish sauce over 6 months yields higher erythrocyte thiamin diphosphate concentrations (eTDP) among women of childbearing age and their children aged 12-59 months compared with control sauce containing no thiamin. In this double-blind, randomized controlled efficacy trial, 276 nonpregnant, nonlactating women (18-45 years of age) and their families in Prey Veng, Cambodia, were randomized to receive 1 of 3 fish sauce formulations: low thiamin concentration (low, 2 g/L), high thiamin concentration (high, 8 g/L), or a control (no thiamin) fish sauce. Baseline (t = 0) and endline (t = 6 months) eTDP were measured with the use of high-performance liquid chromatography with a fluorescence detector. Fish sauce consumption did not differ between treatment groups (P = .19). In intent-to-treat analysis, women's baseline-adjusted endline eTDP (mean; 95% CI) was higher among women in the low (259; 245-274 nmol/L) and high (257; 237-276 nmol/L) groups compared with control (184; 169-198 nmol/L; P < .001); low and high groups did not differ (P = .83). Similarly, children's baseline-adjusted eTDP was higher in the low (259; 246-271 nmol/L) and high (257; 243-270 nmol/L) groups compared with control (213; 202-224 nmol/L; P < .001). Fortified fish sauce appears to be an efficacious means of improving biochemical thiamin status in nonpregnant, nonlactating women and their children (1-5 years of age) living in rural Cambodia. ClinicalTrials.gov: NCT02221063. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effect of added thiamine on the key odorant compounds and aroma of cooked ham.

    PubMed

    Thomas, Caroline; Mercier, Frédéric; Tournayre, Pascal; Martin, Jean-Luc; Berdagué, Jean-Louis

    2015-04-15

    This study shows that thiamine plays a major role in the formation of three key odorants of cooked ham: 2-methyl-3-furanthiol, 2-methyl-3-methyldithiofuran, and bis(2-methyl-3-furyl)disulphide. Analyses revealed that under identical cooking conditions, the productions of these three aroma compounds increase in a closely intercorrelated way when the dose of thiamine increases. Using a specific 2-methyl-3-furanthiol extraction-quantification method, it was possible to relate the amounts of thiamine added in model cooked hams to the amounts of 2-methyl-3-furanthiol produced in the cooking process. Sensory analyses highlighted the role of thiamine as a precursor of cooked ham aroma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Presumed primary thiamine deficiency in a young African lion (Panthera leo).

    PubMed

    DiGesualdo, Cynthia L; Hoover, John P; Lorenz, Michael D

    2005-09-01

    A 1-yr-old intact male African lion (Panthera leo) fed only beef muscle meat was evaluated for episodes of hypermetric ataxia, generalized weakness and tonic-clonic front limb movements. A hemogram, biochemical profile, blood lead, electrocardiogram, survey radiographs, and brain computed tomography were normal. Cerebral spinal fluid analyses suggested mild inflammation. Acetylcholine receptor antibody and serologic tests for all infectious agents tested were negative. Clinical signs resolved completely 9 days after instituting oral thiamine (3 mg/kg/day) and a completely nutritional diet. This lion's pretreatment thiamine blood value (11 nmol/L) was markedly lower than that of a healthy lion (191 nmol/L) and a proposed reference range for adult African lions (160-350 nmol/L). The lion remained clinically normal 2 yr later when his blood thiamine value was 340 nmol/L. African lions can develop clinical primary thiamine deficiency and may respond favorably when thiamine treatment and adequate diet are instituted prior to irreversible neuronal necrosis.

  4. Structure of a Clostridium botulinum C143S thiaminase I/thiamin complex reveals active site architecture .

    PubMed

    Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E

    2013-11-05

    Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.

  5. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency.

    PubMed

    Serrano, Mercedes; Rebollo, Mónica; Depienne, Christel; Rastetter, Agnès; Fernández-Álvarez, Emilio; Muchart, Jordi; Martorell, Loreto; Artuch, Rafael; Obeso, José A; Pérez-Dueñas, Belén

    2012-09-01

    Thiamine transporter-2 deficiency, a condition resulting from mutations in the SLC19A3 gene, has been described in patients with subacute dystonia and striatal necrosis. The condition responds extremely well to treatment with biotin and has thus been named biotin-responsive basal ganglia disease. Recently, this deficiency has also been related to Wernicke's-like encephalopathy and atypical infantile spasms, showing heterogeneous responses to biotin and/or thiamine. Two Spanish siblings with a biotin-responsive basal ganglia disease phenotype and mutations in SLC19A3 presented with acute episodes of generalized dystonia, rigidity, and symmetrical lesions involving the striatum, midline nuclei of the thalami, and the cortex of cerebral hemispheres as shown by magnetic resonance imaging. The clinical features resolved rapidly after thiamine administration. Despite the rarity of thiamine transporter-2 deficiency, it should be suspected in patients with acute dystonia and basal ganglia injury, as thiamine can halt disease evolution and prevent further episodes. © 2012 Movement Disorder Society. Copyright © 2012 Movement Disorder Society.

  6. [Anti-heat shock protein 70 (anti - Hsp 70) antibodies in alcohol use disorder patients].

    PubMed

    Michalak, Sławomir; Piorunek, Tomasz; Lenart-Jankowska, Danuta; Osztynowicz, Krystyna; Kozubski, Wojciech

    2012-01-01

    The expression of the most important chaperone protein - Hsp70 and autoimmunity directed against it is a risk factor of cardiovascular diseases, increased in subjects with alcohol use disorder (AUD). The aim of the study was to evaluate the level of anti-Hsp 70 protein antibodies (anti-Hsp 70) in sera of AUD patients during abstinence period. Material and methods. The study included 54 subjects with AUD diagnosed basing on DSM IV criteria. In the studied group clinimetric evaluation was performed, plasma lipids, basic transketolase activity in erythrocytes (TK), thiamine pyrophosphate (TPP) activation of transketolase and the level of anti-Hsp 70 antibodies were evaluated as well. Results. In AUD subjects anti-Hsp 70 level was decreased during abstinence period. During first month of abstinency it correlated negatively with total cholesterol concentration (rS=-0.8857, p=0.0188) and the percentage of TPP stimulation (rS=-0.5960, p<0.05), and during 6 months of abstinence with HDL cholesterol (rS=-0.6848, p=0.0289). After 1 year of abstinence anti-Hsp 70 correlated positively with basic TK activity (rS=0.9550, p=0.0008). Sex is an independent factor influencing anti-Hsp 70 level in AUD subjects (B=60.9469, p=0.0435). In multiple regression model including results of clinimetric evaluation and its effect on the level of anti-Hsp 70 antibodies in AUD patients during 1 month of abstinency anti-Hsp 70 correlated with TWEAK scale score (BETA=-1.4543, p=0.0144) and AUDIT score (BETA-=1.2255, p=0.0224). In 2-6 months of abstinency anti-Hsp 70 correlated with TWEAK score (BETA=1.1110, p=0.0418). After 1 year of abstinency anti-Hsp 70 correlated with AUDIT score (BETA=-1.2161, p=0.0210). Conclusion. The autoimmune reaction against Hsp 70 is decreased during abstinency in AUD patients. Its relation with plasma lipids and thiamine deficiency may lead to increased risk of cardiovascular disorders. TWEAK and AUDIT scoring seem to be most useful for clinimetric evaluation in the context of the role of anti-Hsp 70 antibodies.

  7. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  8. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  9. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  10. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  11. 21 CFR 582.5223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5223 Calcium pyrophosphate. (a) Product. Calcium pyrophosphate. (b) Conditions of use...

  12. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.).

    PubMed

    Bahuguna, Rajeev Nayan; Joshi, Rohit; Shukla, Alok; Pandey, Mayank; Kumar, J

    2012-08-01

    A novel pathogen defense strategy by thiamine priming was evaluated for its efficacy against sheath blight pathogen, Rhizoctonia solani AG-1A, of rice and compared with that of systemic fungicide, carbendazim (BCM). Seeds of semidwarf, high yielding, basmati rice variety Vasumati were treated with thiamine (50 mM) and BCM (4 mM). The pot cultured plants were challenge inoculated with R. solani after 40 days of sowing and effect of thiamine and BCM on rice growth and yield traits was examined. Higher hydrogen peroxide content, total phenolics accumulation, phenylalanine ammonia lyase (PAL) activity and superoxide dismutase (SOD) activity under thiamine treatment displayed elevated level of systemic resistance, which was further augmented under challenging pathogen infection. High transcript level of phenylalanine ammonia lyase (PAL) and manganese superoxide dismutase (MnSOD) validated mode of thiamine primed defense. Though minimum disease severity was observed under BCM treatment, thiamine produced comparable results, with 18.12 per cent lower efficacy. Along with fortifying defense components and minor influence on photosynthetic pigments and nitrate reductase (NR) activity, thiamine treatment significantly reduced pathogen-induced loss in photosynthesis, stomatal conductance, chlorophyll fluorescence, NR activity and NR transcript level. Physiological traits affected under pathogen infection were found signatory for characterizing plant's response under disease and were detectable at early stage of infection. These findings provide a novel paradigm for developing alternative, environmentally safe strategies to control plant diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  14. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  15. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  16. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  17. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate. (a) Product. Ferric pyrophosphate. (b) Conditions of use. This...

  18. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, G.A.; Hearst, J.E.; Alberti, M.

    1990-12-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C{sub 40} carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. The authors report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhodobacter capsulatus, a purple nonsulfur photosynthetic bacterium. CrtB (prephytoene pyrophosphate synthase), CrtE (phytoene synthase), and CrtI (phytoene dehydrogenase) are required for the first three reactions specific to themore » carotenoid branch of general isoprenoid metabolism. All three dehydrogenases possess a hydrophobic N-terminal domain containing a putative ADP-binding {beta}{alpha}{beta} fold characteristic of enzymes known to bind FAD or NAD(P) cofactors. These data indicate the structural conservation of early carotenoid biosynthesis enzymes in evolutionary diverse organisms.« less

  19. Structure and Biological Function of the RNA Pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus

    PubMed Central

    Messing, Simon A.J.; Gabelli, Sandra B.; Liu, Quansheng; Celesnik, Helena; Belasco, Joel G.; Piñeiro, Silvia A.; Amzel, L. Mario

    2009-01-01

    SUMMARY Until recently, the mechanism of mRNA decay in bacteria was thought to be different from that of eukaryotes. This paradigm changed with the discovery that RppH (ORF176/NudH/YgdP), an Escherichia coli enzyme that belongs to the Nudix superfamily, is an RNA resolution pyrophosphohydrolase that initiates mRNA decay by cleaving pyrophosphate from the 5′-triphosphate. Here we report the 1.9 Å structure of the Nudix hydrolase BdRppH from Bdellovibrio bacteriovorus, a bacterium that feeds on other Gram-negative bacteria. Based on the structure of the enzyme alone and in complex with GTP-Mg2+, we propose a mode of RNA binding similar to that of the nuclear decapping enzyme from Xenopus laevis, X29. In additional experiments, we show that BdRppH can indeed function in vitro and in vivo as an RNA pyrophosphohydrolase. These findings set the basis for the identification of possible decapping enzymes in other bacteria. PMID:19278661

  20. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases.

    PubMed

    Kellosalo, Juho; Kajander, Tommi; Honkanen, Riina; Goldman, Adrian

    2013-02-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.

  1. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera.

    PubMed

    Sanchita; Singh, Swati; Sharma, Ashok

    2014-11-01

    Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

  2. Structure and Biological Function of the RNA Pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messing, S.; Gabelli, S; Liu, Q

    2009-01-01

    Until recently, the mechanism of mRNA decay in bacteria was thought to be different from that of eukaryotes. This paradigm changed with the discovery that RppH (ORF176/NudH/YgdP), an Escherichia coli enzyme that belongs to the Nudix superfamily, is an RNA pyrophosphohydrolase that initiates mRNA decay by cleaving pyrophosphate from the 5?-triphosphate. Here we report the 1.9 A resolution structure of the Nudix hydrolase BdRppH from Bdellovibrio bacteriovorus, a bacterium that feeds on other Gram-negative bacteria. Based on the structure of the enzyme alone and in complex with GTP-Mg2+, we propose a mode of RNA binding similar to that of themore » nuclear decapping enzyme from Xenopus laevis, X29. In additional experiments, we show that BdRppH can indeed function in vitro and in vivo as an RNA pyrophosphohydrolase. These findings set the basis for the identification of possible decapping enzymes in other bacteria.« less

  3. Synthesis of a Comprehensive Polyprenol Library for Evaluation of Bacterial Enzyme Lipid Substrate Specificity.

    PubMed

    Wu, Baolin; Woodward, Robert; Wen, Liuqing; Wang, Xuan; Zhao, Guohui; Wang, Peng George

    2013-12-01

    Polyprenols, a type of universal glycan lipid carrier, play important roles for glycan bio-assembly in wide variety of living systems. Chemical synthesis of natural polyisoprenols such as undecaprenol and dolichols, but especially their homologs, could serves as a powerful molecular tool to dissect and define the functions of enzymes involved in glycan biosynthesis. In this paper, we report an efficient and reliable method to construct this type of hydrophoic molecule through a base-mediated iterative coupling approach using a key bifunctional ( Z , Z )-diisoprenyl building block. The ligation with N -acetyl-D-glactosamine (GalNAc) with a set of the synthesized lipid analogs forming polyprenol pyrophosphate linked GalNAc (GalNAc-PP-lipid) conjugates is also demonstrated.

  4. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  5. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  6. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  7. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  8. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  9. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  10. Kinetic and molecular characterization of the pyruvate phosphate dikinase from Trypanosoma cruzi.

    PubMed

    González-Marcano, Eglys; Acosta, Héctor; Mijares, Alfredo; Concepción, Juan Luis

    2016-06-01

    Trypanosoma cruzi, like other trypanosomatids analyzed so far, can use both glucose and amino acids as carbon and energy source. In these parasites, glycolysis is compartmentalized in glycosomes, authentic but specialized peroxisomes. The major part of this pathway, as well as a two-branched glycolytic auxiliary system, are present in these organelles. The first enzyme of one branch of this auxiliary system is the PPi-dependent pyruvate phosphate dikinase (PPDK) that converts phosphoenolpyruvate (PEP), inorganic pyrophosphate (PPi) and AMP into pyruvate, inorganic phosphate (Pi) and ATP, thus contributing to the ATP/ADP balance within the glycosomes. In this work we cloned, expressed and purified the T. cruzi PPDK. It kinetic parameters were determined, finding KM values for PEP, PPi and AMP of 320, 70 and 17 μM, respectively. Using molecular exclusion chromatography, two native forms of the enzyme were found with estimated molecular weights of 200 and 100 kDa, corresponding to a homodimer and monomer, respectively. It was established that T. cruzi PPDK's specific activity can be enhanced up to 2.6 times by the presence of ammonium in the assay mixture. During growth of epimastigotes in batch culture an apparent decrease in the specific activity of PPDK was observed. However, when its activity is normalized for the presence of ammonium in the medium, no significant modification of the enzyme activity per cell in time was found. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [Effects of excess vitamin B1 or vitamin B2 on growth and urinary excretion of water-soluble vitamins in weaning rats].

    PubMed

    Fukuwatari, Tsutomu; Kuzuya, Mako; Satoh, Shiori; Shibata, Katsumi

    2009-04-01

    To determine the tolerable upper intake levels of vitamin B(1) and vitamin B(2) in humans, we investigated the effects of excess thiamin or riboflavin administration on body weight gain, food intake, tissue weights, and urinary excretion of B-group vitamins in weaning rats. The weaning rats were freely fed ordinary diet containing 0.0006% thiamin-HCl or the same diet with 0.006%, 0.03%, 0.18% or 1.0% thiamin-HCl for 30 days, or the diet containing 0.0006% riboflavin or the same diet with 0.1%, 0.5 or 1.0% riboflavin for 22 days. Mild diarrhea was seen only in the rats fed with 1.0% thiamin-HCl diet. Excess thiamin-HCl or riboflavin did not affect body weight gains, food intake or tissue weights. The urinary excretions of water-soluble vitamins also did not differ among the diets. These results clearly showed that feeding a diet containing up to 1.0% thiamin-HCl or 1.0% riboflavin did not induce apparent adverse effects, and the no-observed-adverse-effect-levels (NOAELs) for thiamin-HCl and riboflavin in rats might be 1.0% in diet, corresponding to 900 mg/kg body weight/day.

  12. Shoshin beriberi induced by long-term administration of diuretics: a case report.

    PubMed

    Misumida, Naoki; Umeda, Hisashi; Iwase, Mitsunori

    2014-01-01

    Previous studies have suggested that diuretic therapy for heart failure may lead to thiamine deficiency due to the increased urinary thiamine excretion. Herein, we present the case of a 61-year-old man with shoshin beriberi, a fulminant form of wet beriberi, induced by long-term diuretic therapy. The patient had a history of heart failure with preserved ejection fraction and was receiving furosemide and trichlormethiazide therapy. He presented with worsening exertional dyspnea and was admitted for heart failure exacerbation. His condition failed to improve even after intensive treatment. A hemodynamic evaluation with the Swan-Ganz catheter revealed high-output heart failure with low peripheral vascular resistance. Thiamine was administered for suspected shoshin beriberi; his hemodynamic status improved dramatically within the next six hours. The serum thiamine level was below the normal range; the patient was therefore diagnosed with shoshin beriberi. The common causes of thiamine deficiency were not identified. Long-term diuretic therapy with furosemide and thiazide was thought to have played a major role in the development of thiamine deficiency. This case illustrates the importance of considering wet beriberi as a possible cause of heart failure exacerbation in patients taking diuretics, even when the common thiamine deficiency causes are not identified with history-taking.

  13. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.

    PubMed

    Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard

    2002-02-01

    All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.

  14. Biosynthesis of Nucleoside Diphosphoramidates in Campylobacter jejuni.

    PubMed

    Taylor, Zane W; Brown, Haley A; Holden, Hazel M; Raushel, Frank M

    2017-11-21

    Campylobacter jejuni is a pathogenic Gram-negative bacterium and a leading cause of food-borne gastroenteritis. C. jejuni produces a capsular polysaccharide (CPS) that contains a unique O-methyl phosphoramidate modification (MeOPN). Recently, the first step in the biosynthetic pathway for the assembly of the MeOPN modification to the CPS was elucidated. It was shown that the enzyme Cj1418 catalyzes the phosphorylation of the amide nitrogen of l-glutamine to form l-glutamine phosphate. In this investigation, the metabolic fate of l-glutamine phosphate was determined. The enzyme Cj1416 catalyzes the displacement of pyrophosphate from MgCTP by l-glutamine phosphate to form CDP-l-glutamine. The enzyme Cj1417 subsequently catalyzes the hydrolysis of CDP-l-glutamine to generate cytidine diphosphoramidate and l-glutamate. The structures of the two novel intermediates, CDP-l-glutamine and cytidine diphosphoramidate, were confirmed by 31 P nuclear magnetic resonance spectroscopy and mass spectrometry. It is proposed that the enzyme Cj1416 be named CTP:phosphoglutamine cytidylyltransferase and that the enzyme Cj1417 be named γ-glutamyl-CDP-amidate hydrolase.

  15. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases

    PubMed Central

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A.; O’Maille, Paul E.

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography–mass spectrometry (GC–MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of kcat/KM among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries. PMID:26150952

  16. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases.

    PubMed

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.

  17. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  18. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  19. Conditional sterility in plants

    DOEpatents

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  20. Blood thiamine values in captive adult African lions (Panthera leo).

    PubMed

    Hoover, John P; DiGesualdo, Cynthia L

    2005-09-01

    Heparinized whole-blood samples from 22 adult African lions (Panthera leo) fed diets considered nutritionally adequate in 10 American Zoo and Aquarium Association member zoos in North America were provided for this study. Blood thiamine values were estimated using a standard microbiological assay method. The mean +/- standard deviation for blood thiamine values was 249.3 +/- 43.5 nmol/L with a range in values from 160 to 350 nmol/L after exclusion of one outlier. There were no differences (P > 0.05) in the mean blood thiamine values of male and female lions, or of lions that were over and under 10 yr of age. This range (160 to 350 nmol/L) is proposed as a reasonable estimate of the expected range in blood thiamine values for captive adult African lions as currently fed in North American zoos.

  1. Development of thiamine deficiencies and early mortality syndrome in lake trout by feeding experimental and feral fish diets containing thiaminase

    USGS Publications Warehouse

    Honeyfield, D.C.; Hinterkopf, J.P.; Fitzsimons, J.D.; Tillitt, D.E.; Zajicek, J.L.; Brown, S.B.

    2005-01-01

    We conducted a laboratory investigation on the consequences of feeding predatory salmonids either experimental diets low in thiamine or diets containing alewife Alosa pseudoharengus. In experiment 1, adult lake trout Salvelinus namaycush were fed experimental diets containing bacterial thiaminase. In experiment 2, adult lake trout were fed natural prey species, alewives, and bloaters Coregonus hoyi. The diets consisted of four combinations of alewives and bloaters from Lake Michigan (100% alewives, 65% alewives–35% bloaters, 35% alewives–65% bloaters, and 100% bloaters), alewives from Cayuga Lake, a casein bacterial thiaminase, and a commercial trout diet. We assessed the effects of each diet on egg thiamine concentration and incidence of an embryonic early mortality syndrome (EMS). In experiment 1, incidence of EMS ranged from 0% to 100%. Significant relationships were found between the incidence of EMS and thiamine. In experiment 2, adult lake trout fed 100% alewives from either Lake Michigan or Cayuga Lake or fish fed the casein bacterial thiaminase diet produced eggs with low thiamine and swim-up fry with EMS. At either 35% or 65% alewives in the diet, egg thiamine was significantly lowered. The number of females that produced offspring that died from EMS were low but demonstrated the negative potential if feral lake trout foraged on either 35% or 65% alewives. Depleted egg thiamine and the onset of EMS required diets containing thiaminase for a minimum of 2 years in lake trout initially fully thiamine replete. We conclude that EMS can be caused by extensive feeding on 100% alewives and dietary levels of 35% or greater may prove detrimental to sustainable reproduction of salmonids in the Great Lakes. The data are consistent with that observed in feral lake trout, and it is concluded that EMS is the result of a thiamine deficiency.

  2. Preventing the Wernicke-Korsakoff syndrome in Australia: cost-effectiveness of thiamin-supplementation alternatives.

    PubMed

    Connelly, L; Price, J

    1996-04-01

    Alcoholic Wernicke's encephalopathy has been commonplace in Australia for many years and, as this syndrome is attributed to a deficiency in the diet, it should be preventable. This study employs conventional cost-effectiveness methodology to compare the economic efficiency of several thiamin-supplementation alternatives that have been proposed for the prevention of Wernicke's encephalopathy. A series of rankings of these measures is derived from an estimated cost per case averted for each of the alternatives studied. These rankings identify the least cost-effective thiamin-supplementation alternative as that of enriching bread-making flour with thiamin.

  3. Increasing consumption of breakfast cereal improves thiamine status in overweight/obese women following a hypocaloric diet.

    PubMed

    Ortega, Rosa M; López-Sobaler, Ana M; Andrés, Pedro; Rodríguez-Rodríguez, Elena; Aparicio, Aránzazu; Bermejo, Laura M

    2009-01-01

    The aim of this study was to analyse the thiamine status in a group of young, overweight/obese women and to analyse the changes in this status produced by two weight-control programmes based on approximating the diet to the theoretical ideal, increasing the relative consumption of vegetables (V) or cereals (C) (especially breakfast cereals). The study subjects were 57 Spanish women with a body mass index (BMI) of 24-35 kg/m(2), all of whom were randomly assigned to one of two slightly hypocaloric diets. Dietetic, anthropometric and biochemical data were collected at the beginning of the study and at 2 and 6 weeks. C and V subjects showed a reduction in their energy intake, body weight and BMI, both at 2 and 6 weeks. Thiamine intake and blood thiamine levels only increased with diet C (both at 2 and 6 weeks). 21.8% cf the women, 21.8% had blood thiamine levels <150 nmol/L at the beginning of the study, but at 6 weeks of intervention only 3.7% of the women in diet C, as compared with 30.8% of the women in diet V, showed blood thiamine levels <150 nmol/L. Although both diet C and diet V induced weight loss and a reduction in BMI, diet C would appear to be more useful in the maintenance of an adequate thiamine status.

  4. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  5. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne

    The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encodingmore » the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.« less

  6. Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety.

    PubMed Central

    White, R L; Spenser, I D

    1979-01-01

    Radioactivity from [2-14C]glycine enters C-2 of the thiazole moiety of thiamin and no other site, in Saccharomyces cerevisiae (strains A.T.C.C. 24903 and 39916, H.J. Bunker). Radioactivity from L-[Me-14C]methionine or from DL-[2-14C]tyrosine does not enter thiamin. PMID:384994

  7. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-β-d-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as ρ-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid, and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439

  8. Synthesis, characterization and properties of uridine 5'-( -D-apio-D-furanosyl pyrophosphate).

    PubMed

    Kindel, P K; Watson, R R

    1973-06-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.

  9. Synthesis, characterization and properties of uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)

    PubMed Central

    Kindel, Paul K.; Watson, Ronald R.

    1973-01-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5′-(α-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5′-(α-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [3H]UDP-[U-14C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the 3H/14C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100°C for 15min; (b) degraded at pH8.0 and 100°C for 3min; (c) used as a substrate in the enzymic synthesis of [14C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [3H]UDP-[U-14C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-14C]apiose and phosphate formed on alkaline degradation of UDP-[U-14C]apiose was α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-14C]apiose and phosphate formed on acid hydrolysis of α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-14C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-14C]apiose to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80°C, at pH8.0 and 25°C and at pH8.0 and 4°C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-14C]-apiose to d-[U-14C]apiose and UDP at pH3.0 and 40°C was 4.67min. After 20 days at pH6.2–6.6 and 4°C, 17% of the starting UDP-[U-14C]apiose was degraded to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-14C]apiose and UDP. After 120 days at pH6.4 and −20°C 2% of the starting UDP-[U-14C]apiose was degraded and 4% was hydrolysed. PMID:4723773

  10. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.

    PubMed

    Tittmann, Kai

    2014-12-01

    Nature has evolved different strategies for the reversible cleavage of ketose phosphosugars as essential metabolic reactions in all domains of life. Prominent examples are the Schiff-base forming class I FBP and F6P aldolase as well as transaldolase, which all exploit an active center lysine to reversibly cleave the C3-C4 bond of fructose-1,6-bisphosphate or fructose-6-phosphate to give two 3-carbon products (aldolase), or to shuttle 3-carbon units between various phosphosugars (transaldolase). In contrast, transketolase and phosphoketolase make use of the bioorganic cofactor thiamin diphosphate to cleave the preceding C2-C3 bond of ketose phosphates. While transketolase catalyzes the reversible transfer of 2-carbon ketol fragments in a reaction analogous to that of transaldolase, phosphoketolase forms acetyl phosphate as final product in a reaction that comprises ketol cleavage, dehydration and phosphorolysis. In this review, common and divergent catalytic principles of these enzymes will be discussed, mostly, but not exclusively, on the basis of crystallographic snapshots of catalysis. These studies in combination with mutagenesis and kinetic analysis not only delineated the stereochemical course of substrate binding and processing, but also identified key catalytic players acting at the various stages of the reaction. The structural basis for the different chemical fates and lifetimes of the central enamine intermediates in all five enzymes will be particularly discussed, in addition to the mechanisms of substrate cleavage, dehydration and ring-opening reactions of cyclic substrates. The observation of covalent enzymatic intermediates in hyperreactive conformations such as Schiff-bases with twisted double-bond linkages in transaldolase and physically distorted substrate-thiamin conjugates with elongated substrate bonds to be cleaved in transketolase, which probably epitomize a canonical feature of enzyme catalysis, will be also highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Perinatal Consumption of Thiamine-Fortified Fish Sauce in Rural Cambodia: A Randomized Clinical Trial.

    PubMed

    Whitfield, Kyly C; Karakochuk, Crystal D; Kroeun, Hou; Hampel, Daniela; Sokhoing, Ly; Chan, Benny B; Borath, Mam; Sophonneary, Prak; McLean, Judy; Talukder, Aminuzzaman; Lynd, Larry D; Li-Chan, Eunice C Y; Kitts, David D; Allen, Lindsay H; Green, Timothy J

    2016-10-03

    Infantile beriberi, a potentially fatal disease caused by thiamine deficiency, remains a public health concern in Cambodia and regions where thiamine-poor white rice is a staple food. Low maternal thiamine intake reduces breast milk thiamine concentrations, placing breastfed infants at risk of beriberi. To determine if consumption of thiamine-fortified fish sauce yields higher erythrocyte thiamine diphosphate concentrations (eTDP) among lactating women and newborn infants and higher breast milk thiamine concentrations compared with a control sauce. In this double-blind randomized clinical trial, 90 pregnant women were recruited in the Prey Veng province, Cambodia. The study took place between October 2014 and April 2015. Women were randomized to 1 of 3 groups (n = 30) for ad libitum fish sauce consumption for 6 months: control (no thiamine), low-concentration (2 g/L), or high-concentration (8 g/L) fish sauce. Maternal eTDP was assessed at baseline (October 2014) and endline (April 2015). Secondary outcomes, breast milk thiamine concentration and infant eTDP, were measured at endline. Women's mean (SD) age and gestational stage were 26 (5) years and 23 (7) weeks, respectively. April 2015 eTDP was measured among 28 women (93%), 29 women (97%), and 23 women (77%) in the control, low-concentration, and high-concentration groups, respectively. In modified intent-to-treat analysis, mean baseline-adjusted endline eTDP was higher among women in the low-concentration (282nM; 95% CI, 235nM to 310nM) and high-concentration (254nM; 95% CI, 225nM to 284nM) groups compared with the control group (193nM; 95% CI, 164nM to 222M; P < .05); low-concentration and high-concentration groups did not differ (P = .19). Breast milk total thiamine concentrations were 14.4 μg/dL for the control group (95% CI, 12.3 μg/dL to 16.5 μg/dL) (to convert to nanomoles per liter, multiply by 29.6); 20.7 μg/dL for the low-concentration group (95% CI, 18.6 μg/dL to 22.7 μg/dL ); and 17.7 μg/dL for the high-concentration group (95% CI, 15.6 μg/dL to 19.9 μg/dL). Mean (SD) infant age at endline was 16 (8) weeks for the control group, 17 (7) weeks for the low-concentration group, and 14 (8) for the high-concentration group. Infant eTDP was higher among those in the high-concentration group (257nM; 95% CI, 222nM to 291nM; P < .05) compared with the low-concentration (212nM; 95% CI, 181nM to 244nM) and control (187nM; 95% CI, 155nM to 218nM) groups. Compared with women in the control group, women who consumed thiamine-fortified fish sauce through pregnancy and early lactation had higher eTDP and breast milk thiamine concentrations and their infants had higher eTDP, which was more pronounced in the high group. Thiamine-fortified fish sauce has the potential to prevent infantile beriberi in this population. Clinicaltrials.gov Identifier: NCT02221063.

  12. A novel thiamine-derived pigment, pyrizepine, formed by the Maillard reaction.

    PubMed

    Igoshi, Asuka; Noda, Kyoko; Murata, Masatsune

    2018-04-26

    To find a Maillard pigment derived from thiamine, a solution containing glucose and thiamine was heated and analyzed with high-performance liquid chromatography equipped with diode-array detection. As a result, a unique peak showing an absorption maximum at 380 nm was detected. This peak was then isolated from a reaction solution containing glucose, lysine and thiamine, and was identified as 1-(2-methyl-6,9-dihydro-5H-pyrimido[4,5-e][1,4]diazepin-7-yl)ethan-1-one using instrumental analyses. This compound, named pyrizepine, was a novel yellow pigment having a fused ring consisting of pyrimidine and diazepine. Pyrizepine was a major low-molecular-weight pigment in the reaction solution. The structure suggests that pyrizepine is formed by condensation reaction between a degradation product of thiamine and a tetrosone derivative formed from glucose by the Maillard reaction.

  13. Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions.

    PubMed

    Bastida, Felipe; Kandeler, Ellen; Hernández, Teresa; García, Carlos

    2008-05-01

    Microbial ecology is the key to understanding the function of soil biota for organic matter cycling after a single amendment of organic waste in semiarid soils. Therefore, in this paper, the long-term effect (17 years) of adding different doses of a solid municipal waste to an arid soil on humus-enzyme complexes, a very stable and long-lasting fraction of soil enzymes, as well as on microbial and plant abundance, was studied. Humic substances were extracted by 0.1 M pH 7 sodium pyrophosphate from soil samples collected in experimental plots amended with different doses of a solid municipal waste (0, 65, 130, 195, and 260 t/ha) 17 years before. The activity of different hydrolases related with the C (beta-glucosidase), N (urease), and P (alkaline phosphatase) cycles and with the formation of humic substances (o-diphenol oxidase) were determined in this extract. The density and diversity of plant cover in the plots, as well as the fungal and bacterial biomass (by analyzing phopholipid fatty acids) were also determined. In general, the amended plots showed greater humic substance-related enzymatic activity than the unamended plots. This activity increased with the dose but only up to a certain level, above which it leveled off or even diminished. Plant diversity and cover density followed the same trend. Fungal and bacterial biomass also benefited in a dose-dependent manner. Different signature molecules representing gram+ and gram- bacteria, and those corresponding to monounsaturated and saturated fatty acids showed a similar behavior. The results demonstrate that organic amendment had a noticeable long-term effect on the vegetal development, humic substances-related enzyme activity and on the development of bacteria and fungi in semiarid conditions.

  14. Phylogenetic and ecological characteristics associated with thiaminase activity in Laurentian Great Lakes fishes

    USGS Publications Warehouse

    Riley, S.C.; Evans, A.N.

    2008-01-01

    Thiamine deficiency complex (TDC) causes mortality and sublethal effects in Great Lakes salmonines and results from low concentrations of egg thiamine that are thought to be caused by thiaminolytic enzymes (i.e., thiaminase) present in the diet. This complex has the potential to undermine efforts to restore lake trout Salvelinus namaycush and severely restrict salmonid production in the Great Lakes. Although thiaminase has been found in a variety of Great Lakes fishes, the ultimate source of thiaminase in Great Lakes fishes is currently unknown. We used logistic regression analysis to investigate relationships between thiaminase activity and phylogenetic or ecological characteristics of 39 Great Lakes fish species. The taxonomically more ancestral species were more likely to show thiaminase activity than the more derived species. Species that feed at lower trophic levels and occupy benthic habitats also appeared to be more likely to show thiaminase activity; these variables were correlated with taxonomy, which was the most important predictor of thiaminase activity. Further analyses of the relationship between quantitative measures of thiaminase activity and ecological characteristics of Great Lakes fish species would provide greater insight into potential sources and pathways of thiaminase in Great Lakes food webs. ?? Copyright by the American Fisheries Society 2008.

  15. Sensor Function for Butyrophilin 3A1 in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells

    PubMed Central

    Wang, Hong; Morita, Craig T.

    2016-01-01

    Vγ2Vδ2 T cells play important roles in human immunity to pathogens and in cancer immunotherapy by responding to isoprenoid metabolites, such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate and isopentenyl pyrophosphate. The Ig superfamily protein butyrophilin (BTN)3A1 was shown to be required for prenyl pyrophosphate stimulation. We proposed that the intracellular B30.2 domain of BTN3A1 binds prenyl pyrophosphates, resulting in a change in the extracellular BTN3A1 dimer that is detected by Vγ2Vδ2 TCRs. Such B30.2 binding was demonstrated recently. However, other investigators reported that the extracellular BTN3A1 IgV domain binds prenyl pyrophosphates, leading to the proposal that the Vγ2Vδ2 TCR recognizes the complex. To distinguish between these mechanisms, we mutagenized residues in the two binding sites and tested the mutant BTN3A1 proteins for their ability to mediate prenyl pyrophosphate stimulation of Vγ2Vδ2 T cells to proliferate and secrete TNF-α. Mutagenesis of residues in the IgV site had no effect on Vγ2Vδ2 T cell proliferation or secretion of TNF-α. In contrast, mutagenesis of residues within the basic pocket and surrounding V regions of the B30.2 domain abrogated prenyl pyrophosphate-induced proliferation. Mutations of residues making hydrogen bonds to the pyrophosphate moiety also abrogated TNF-α secretion, as did mutation of aromatic residues making contact with the alkenyl chain. Some mutations further from the B30.2 binding site also diminished stimulation, suggesting that the B30.2 domain may interact with a second protein. These findings support intracellular sensing of prenyl pyrophosphates by BTN3A1 rather than extracellular presentation. PMID:26475929

  16. Enhanced Photolysis of Nucleic Acid Monomers by Pyrophosphate in the Simulated Primitive Soup

    NASA Astrophysics Data System (ADS)

    Kongjiang, Wang; Zhifang, Chai; Xianming, Pan

    1999-05-01

    In our simulation of the photochemistry of the primitive soup, it was found that yield of chromophore loss of some nucleic acid bases, nucleosides and nucleotides [NA] undergoing ultraviolet radiation by medium pressure mercury lamp [MPML] was enhanced by pyrophosphate and triphosphate whether O2 is present or not. The yield of chromophore loss of guanosine, uracil, 5' CMP, and the derivatives of adenine and thymine was observed to rise with the increase of molar concentration of pyrophosphate in N2-saturated systems. In air-saturated samples, increase in yield of chromophore loss was observed when the concentration of pyrophosphate reaches 5×10-4 M, relative yield of chromophore loss (CLrel) coming to maximum in the range from 0.01 to 0.1 M, followed by a slight decline with the further increase of pyrophosphate concentration. The enhancement of photolysis of NA by pyrophosphate was due to the interaction between NA and pyrophosphate radicals photoionized by UV quanta of wavelength less than about 210 nm in the emission spectrum of a MPML. The relevance of this phenomenon to the origin of life has been discussed as well.

  17. Outbreak of beriberi among African Union troops in Mogadishu, Somalia.

    PubMed

    Watson, John T; El Bushra, Hassan; Lebo, Emmaculate J; Bwire, Godfrey; Kiyengo, James; Emukule, Gideon; Omballa, Victor; Tole, John; Zuberi, Muvunyi; Breiman, Robert F; Katz, Mark A

    2011-01-01

    In July 2009, WHO and partners were notified of a large outbreak of unknown illness, including deaths, among African Union (AU) soldiers in Mogadishu. Illnesses were characterized by peripheral edema, dyspnea, palpitations, and fever. Our objectives were to determine the cause of the outbreak, and to design and recommend control strategies. The illness was defined as acute onset of lower limb edema, with dyspnea, chest pain, palpitations, nausea, vomiting, abdominal pain, or headache. Investigations in Nairobi and Mogadishu included clinical, epidemiologic, environmental, and laboratory studies. A case-control study was performed to identify risk factors for illness. From April 26, 2009 to May 1, 2010, 241 AU soldiers had lower limb edema and at least one additional symptom; four patients died. At least 52 soldiers were airlifted to hospitals in Kenya and Uganda. Four of 31 hospitalized patients in Kenya had right-sided heart failure with pulmonary hypertension. Initial laboratory investigations did not reveal hematologic, metabolic, infectious or toxicological abnormalities. Illness was associated with exclusive consumption of food provided to troops (not eating locally acquired foods) and a high level of insecurity (e.g., being exposed to enemy fire on a daily basis). Because the syndrome was clinically compatible with wet beriberi, thiamine was administered to ill soldiers, resulting in rapid and dramatic resolution. Blood samples taken from 16 cases prior to treatment showed increased levels of erythrocyte transketolase activation coefficient, consistent with thiamine deficiency. With mass thiamine supplementation for healthy troops, the number of subsequent beriberi cases decreased with no further deaths reported. An outbreak of wet beriberi caused by thiamine deficiency due to restricted diet occurred among soldiers in a modern, well-equipped army. Vigilance to ensure adequate micronutrient intake must be a priority in populations completely dependent upon nutritional support from external sources.

  18. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase. PMID:5493505

  19. Host cells and methods for producing 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 3-methyl-butan-1-ol

    DOEpatents

    Chou, Howard H [Berkeley, CA; Keasling, Jay D [Berkeley, CA

    2011-07-26

    The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.

  20. Delayed Language Development Due to Infantile Thiamine Deficiency

    ERIC Educational Resources Information Center

    Fattal-Valevski, Aviva; Azouri-Fattal, Iris; Greenstein, Yoram J.; Guindy, Michal; Blau, Ayala; Zelnik, Nathanel

    2009-01-01

    The aim of this study was to investigate the language development of 20 children who had been exposed to thiamine (vitamin B[subscript 1]) deficiency in infancy due to feeding with soy-based formula that was accidentally deficient of thiamine. In this case-control study, 20 children (12 males, eight females; mean age 31.8 mo [SD 4.1], range 24-39…

  1. Screening of a thiamine-auxotrophic yeast for alpha-ketoglutaric acid overproduction.

    PubMed

    Zhou, Jingwen; Zhou, Haiyan; Du, Guocheng; Liu, Liming; Chen, Jian

    2010-09-01

    To obtain a thiamine-auxotrophic yeast strain that overproduces alpha-ketoglutaric acid (alpha-KG) from glycerol and to investigate nutrient effects on alpha-KG production. Yeast strain WSH-Z06, a thiamine auxotroph that gave high yields of alpha-KG from glycerol, was obtained by screening for ampicillin/kanamycin resistance and thiamine auxotrophy. The strain was identified as Yarrowia lipolytica based on physiological, chemical, and phylogenetic analysis. The ability of the strain to convert glycerol to alpha-KG was analysed by investigating the effects of nutritional factors, including thiamine, riboflavin, nitrogen sources, and calcium ion. Thiamine and calcium ion concentration had the greatest effect on alpha-KG accumulation. Under optimal conditions, a yield of 39.2 g l(-1)alpha-KG was obtained from 100 g l(-1) glycerol, with 16.84 g l(-1) pyruvate as a by-product. The current work provides a method for screening for an alpha-KG overproducer. Nutrients have a significant impact on alpha-KG production in the yeast strain presented here. The alpha-KG-overproducing yeast strain Y. lipolytica WSH-Z06 is a promising parent strain for further metabolic engineering to lower by-product accumulation and accelerate glycerol utilization.

  2. Simultaneous Determination of Underivatized Vitamin B1 and B6 in Whole Blood by Reversed Phase Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Puts, Johan; de Groot, Monique; Haex, Martin; Jakobs, Bernadette

    2015-01-01

    Background Vitamin B1 (thiamine-diphosphate) and B6 (pyridoxal-5’phosphate) are micronutrients. Analysis of these micronutrients is important to diagnose potential deficiency which often occurs in elderly people due to malnutrition, in severe alcoholism and in gastrointestinal compromise due to bypass surgery or disease. Existing High Performance Liquid Chromatography (HPLC) based methods include the need for derivatization and long analysis time. We developed an Ultra High Performance Liquid Chromatography Tandem Mass spectrometry (UHPLC-MS/MS) assay with internal standards for simultaneous measurement of underivatized thiamine-diphosphate and pyridoxal-5’phosphate without use of ion pairing reagent. Methods Whole blood, deproteinized with perchloric acid, containing deuterium labelled internal standards thiamine-diphosphate(thiazole-methyl-D3) and pyridoxal-5’phosphate(methyl-D3), was analyzed by UHPLC-MS/MS. The method was validated for imprecision, linearity, recovery and limit of quantification. Alternate (quantitative) method comparisons of the new versus currently used routine HPLC methods were established with Deming regression. Results Thiamine-diphosphate and pyridoxal-5’phosphate were measured within 2.5 minutes instrumental run time. Limits of detection were 2.8 nmol/L and 7.8 nmol/L for thiamine-diphosphate and pyridoxal-5’phosphate respectively. Limit of quantification was 9.4 nmol/L for thiamine-diphosphate and 25.9 nmol/L for pyridoxal-5’phosphate. The total imprecision ranged from 3.5–7.7% for thiamine-diphosphate (44–157 nmol/L) and 6.0–10.4% for pyridoxal-5’phosphate (30–130 nmol/L). Extraction recoveries were 101–102% ± 2.5% (thiamine-diphosphate) and 98–100% ± 5% (pyridoxal-5’phosphate). Deming regression yielded slopes of 0.926 and 0.990 in patient samples (n = 282) and national proficiency testing samples (n = 12) respectively, intercepts of +3.5 and +3 for thiamine-diphosphate (n = 282 and n = 12) and slopes of 1.04 and 0.84, intercepts of -2.9 and +20 for pyridoxal-5’phosphate (n = 376 and n = 12). Conclusion The described UHPLC-MS/MS method allows simultaneous determination of underivatized thiamine-diphosphate and pyridoxal-5’phosphate in whole blood without intensive sample preparation. PMID:26134844

  3. Influence of diet of double-crested cormorants on thiamine, lead, and mineral contents of their eggs

    USGS Publications Warehouse

    Ketola, H. George; Johnson, James H.; Adams, C.M.; Farquhar, J.F.

    2009-01-01

    Throughout much of the Great Lakes basin, reproduction of several fish species is impaired by deficiency of thiamine in their eggs, an effect attributed to consumption of thiaminase-containing forage species, primarily alewife (Alosa pseudoharengus.) Because the double-crested cormorant (Phalacrocorax auritus) nesting on islands in Lake Ontario is known to consume considerable amounts of alewife, we examined cormorant food habits and measured thiamine content in eggs collected in 1999 from six separate nests of cormorants from colonies near Lake Ontario and contrasted them with food habits and eggs of cormorants from Oneida Lake where the alewife is rare. Thiamine concentrations in eggs varied between 4.31 and 11.24 nmoleslg with no significant (P>0.18) difference between mean concentrations for Lake Ontario and Oneida Lake (8.08 vs 8.36 nmoles/g) even though alewife comprised approximately 65 vs 0 % of their diets, respectively. Consumption of other thiaminase-containing species was minor in both lakes. Therefore, consumption of alewife and other thiaminase containing fishes by cormorants on Lake Ontario did not appear to significantly impair the levels of thiamine in their eggs. However, we found that the concentration of thiamine in eggs (T; nmoles/g) was inversely related (P<0.02) to lead (Pb) concentration (μg/g) according to the equation: T = −3.142 Pb + 16.25. This relationship may reflect the known ability of thiamine to chelate lead and increase its excretion.

  4. Influence of diet of double-crested cormorants on thiamine, lead, and mineral contents of their eggs

    USGS Publications Warehouse

    Ketola, H.G.; Johnson, J. H.; Adams, C.M.; Farquhar, J.F.

    2009-01-01

    Throughout much of the Great Lakes basin, reproduction of several fish species is impaired by deficiency of thiamine in their eggs, an effect attributed to consumption of thiaminase-containing forage species, primarily alewife (Alosa pseudoharengus). Because the double-crested cormorant (Phalacrocorax auritus) nesting on islands in Lake Ontario is known to consume considerable amounts of alewife, we examined cormorant food habits and measured thiamine content in eggs collected in 1999 from six separate nests of cormorants from colonies near Lake Ontario and contrasted them with food habits and eggs of cormorants from Oneida Lake where the alewife is rare. Thiamine concentrations in eggs varied between 4.31 and 11.24 nmoles/g with no significant (P>0.18) difference between mean concentrations for Lake Ontario and Oneida Lake (8.08 vs 8.36 nmoles/g) even though alewife comprised approximately 65 vs 0 % of their diets, respectively. Consumption of other thiaminase-containing species was minor in both lakes. Therefore, consumption of alewife and other thiaminase containing fishes by cormorants on Lake Ontario did not appear to significantly impair the levels of thiamine in their eggs. However, we found that the concentration of thiamine in eggs (T; nmoles/g) was inversely related (P<0.02) to lead (Pb) concentration (µg/g) according to the equation: T = -3.142 Pb + 16.25. This relationship may reflect the known ability of thiamine to chelate lead and increase its excretion.

  5. Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants

    USDA-ARS?s Scientific Manuscript database

    Inositol pyrophosphates are novel cellular signaling molecules with newly discovered roles in energy sensing and metabolic control. Studies in eukaryotes have revealed that these compounds turn over rapidly, and thus only small amounts accumulate. Inositol pyrophosphates have not been the subject of...

  6. 21 CFR 182.8223 - Calcium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium pyrophosphate. 182.8223 Section 182.8223 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8223 Calcium pyrophosphate. (a) Product. Calcium...

  7. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni.

    PubMed

    Hoffman, Paul S; Sisson, Gary; Croxen, Matthew A; Welch, Kevin; Harman, W Dean; Cremades, Nunilo; Morash, Michael G

    2007-03-01

    Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K(i), 2 to 10 microM) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 nm (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO(2)) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and (1)H nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ(-) intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.

  8. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system

    PubMed Central

    Sahr, Tobias; Rusniok, Christophe; Impens, Francis; Oliva, Giulia; Sismeiro, Odile; Coppée, Jean-Yves

    2017-01-01

    The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle. PMID:28212376

  9. Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry.

    PubMed

    Finnigan, William; Thomas, Adam; Cromar, Holly; Gough, Ben; Snajdrova, Radka; Adams, Joseph P; Littlechild, Jennifer A; Harmer, Nicholas J

    2017-03-20

    Carboxylic acid reductase enzymes (CARs) meet the demand in synthetic chemistry for a green and regiospecific route to aldehydes from their respective carboxylic acids. However, relatively few of these enzymes have been characterized. A sequence alignment with members of the ANL (Acyl-CoA synthetase/ NRPS adenylation domain/Luciferase) superfamily of enzymes shed light on CAR functional dynamics. Four unstudied enzymes were selected by using a phylogenetic analysis of known and hypothetical CARs, and for the first time, a thorough biochemical characterization was performed. Kinetic analysis of these enzymes with various substrates shows that they have a broad but similar substrate specificity. Electron-rich acids are favored, which suggests that the first step in the proposed reaction mechanism, attack by the carboxylate on the α-phosphate of adenosine triphosphate (ATP), is the step that determines the substrate specificity and reaction kinetics. The effects of pH and temperature provide a clear operational window for the use of these CARs, whereas an investigation of product inhibition by NADP + , adenosine monophosphate, and pyrophosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first. This study consolidates CARs as important and exciting enzymes in the toolbox for sustainable chemistry and provides specifications for their use as a biocatalyst.

  10. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6787 Sodium pyrophosphate. (a) Product. Sodium...

  11. Energy and glucose pathways in thiamine deficient primary rat brain microvascular endothelial cells.

    PubMed

    Ham, D; Karska-Wysocki, B

    2005-12-01

    Thiamine deficiency (TD) results in lactate acidosis, which is associated with neurodegeneration. The aim of this study was to investigate this alteration in primary rat brain endothelia. Spectrophotometric analysis of culture media revealed that only a higher concentration of pyrithiamine, which accelerates the intracellular blocking of thiamine, significantly elevated the lactate level and lactate dehydrogenase activity within 7 days. The medium without pyrithiamine and with a thiamine concentration comparable to pathophysiological plasma levels mildly reduced only the activity of transketolase. This suggests that significant metabolic changes may not occur at the early phase of TD in cerebral capillary cells, while anaerobic glycolysis in capillaries may be mediated during late stage/chronic TD.

  12. Absorption of thiamine and nicotinic acid in the rat intestine during fasting and immobilization stress

    NASA Technical Reports Server (NTRS)

    Kirilyuk, O. G.; Khmelevskiy, Y. V.

    1980-01-01

    By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.

  13. Oligomerizations of deoxyadenosine bis-phosphates and of their 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers - Effects of a pyrophosphate-linked, poly(T) analog

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Bakker, C. G.; Schwartz, Alan W.

    1990-01-01

    The effect of a 3-prime-5-prime pyrophosphate-linked oligomer of pTp on oligomerizations of pdAp and of its 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers was investigated, using HPLC to separate the reaction mixtures; peak detection was by absorbance monitoring at 254 nm. It was expected that the dimers would form stable complexes with the template, with the degree of stability depending upon the internal linkage of each dimer. It was found that, although the isomers differ substantially in their oligomerization behavior in the absence of template, the analog-template catalyzes the oligomerization to about the same extent in all three cases.

  14. Identification and analysis of proton-translocating pyrophosphatases in the methanogenic archaeon Methanosarcina mazei

    PubMed Central

    Bäumer, Sebastian; Lentes, Sabine; Gottschalk, Gerhard; Deppenmeier, Uwe

    2002-01-01

    Analysis of genome sequence data from the methanogenic archaeon Methanosarcina mazei Gö1 revealed the existence of two open reading frames encoding proton-translocating pyrophosphatases (PPases). These open reading frames are linked by a 750-bp intergenic region containing TC-rich stretches and are transcribed in opposite directions. The corresponding polypeptides are referred to as Mvp1 and Mvp2 and consist of 671 and 676 amino acids, respectively. Both enzymes represent extremely hydrophobic, integral membrane proteins with 15 predicted transmembrane segments and an overall amino acid sequence similarity of 50.1%. Multiple sequence alignments revealed that Mvp1 is closely related to eukaryotic PPases, whereas Mvp2 shows highest homologies to bacterial PPases. Northern blot experiments with RNA from methanol-grown cells harvested in the mid-log growth phase indicated that only Mvp2 was produced under these conditions. Analysis of washed membranes showed that Mvp2 had a specific activity of 0.34 U mg (protein)–1. Proton translocation experiments with inverted membrane vesicles prepared from methanol-grown cells showed that hydrolysis of 1 mol of pyrophosphate was coupled to the translocation of about 1 mol of protons across the cytoplasmic membrane. Appropriate conditions for mvp1 expression could not be determined yet. The pyrophosphatases of M. mazei Gö1 represent the first examples of this enzyme class in methanogenic archaea and may be part of their energy-conserving system. Abbreviations: DCCD, N,N′-dicyclohexylcarbodiimide; PPase, inorganic pyrophosphatase; PPi, inorganic pyrophosphate; Δp, proton motive force. PMID:15803653

  15. A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byres, Emma; Martin, David M. A.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk

    2005-06-01

    The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in spacemore » group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.« less

  16. [Thiamine retention as a function of thermal processing conditions: canned salmon].

    PubMed

    Quitral, V; Romero, N; Avila, L; Marín, M E; Nuñez, H; Simpson, R

    2006-03-01

    The present work studied the effect of different treatments at high temperatures on the nutritional properties of thiamine retention and color measurement experimentally. Canned salmon (Salmo salar) was processed under different temperatures and time conditions (110 degrees C for 135 minutes; 114 degrees C for 89 minutes; 118 degrees C for 69 minutes and 121 degrees C for 62 minutes). Thiamine was determined by HPLC before and after the process. Color changes, due to processing conditions, were also measured utilizing a Hunter colorimeter. The canning was prepared in 300 x 407 cans and sterilized until Fo value reached 6 min. The nutritional value or index represented by the B1 vitamin or thiamine was affected by high temperature and time exposition. The lowest loss of thiamine of 19.2% was obtained in the canned salmon sterilized at 114 degrees C for 89 minutes. The color in canned salmon was different from the raw material, with a severe loss of red color and a greater clarity of the meat.

  17. Wernicke-Korsakoff-syndrome: under-recognized and under-treated.

    PubMed

    Isenberg-Grzeda, Elie; Kutner, Haley E; Nicolson, Stephen E

    2012-01-01

    Wernicke-Korsakoff syndrome (WKS) is a well described syndrome of neurological and cognitive problems that comprises both Wernicke's encephalopathy (WE) and Korsakoff syndrome (KS). WE is an acute neuropsychiatric disorder caused by thiamine deficiency. KS is a chronic consequence of thiamine deficiency with prominent impairment in memory formation. The authors review the literature on the pathophysiology, presentation, and treatment of WKS, focusing on the acute identification and treatment of WE. Most cases of WE are missed by clinicians, likely because patients do not present with the classic signs associated with the condition. Attaining high serum levels of thiamine during treatment may be important to restore cognitive function as quickly as possible, though the exact dosing and route needed for effective treatment is unknown. Data indicates that the administration of intravenous (IV) thiamine has little risk. In order to prevent this potentially devastating disease, physicians should have a high index of suspicion for WKS and dose thiamine accordingly. Copyright © 2012 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  18. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock.

    PubMed

    Costa, Nara Aline; Gut, Ana Lúcia; de Souza Dorna, Mariana; Pimentel, José Alexandre Coelho; Cozzolino, Silvia Maria Franciscato; Azevedo, Paula Schmidt; Fernandes, Ana Angélica Henrique; Zornoff, Leonardo Antonio Mamede; de Paiva, Sergio Alberto Rupp; Minicucci, Marcos Ferreira

    2014-04-01

    The purpose of the study is to determine the influence of serum thiamine, glutathione peroxidase (GPx) activity, and serum protein carbonyl concentrations in hospital mortality in patients with septic shock. This prospective study included all patients with septic shock on admission or during intensive care unit (ICU) stay, older than 18 years, admitted to 1 of the 3 ICUs of the Botucatu Medical School, from January to August 2012. Demographic information, clinical evaluation, and blood sample were taken within the first 72 hours of the patient's admission or within 72 hours after septic shock diagnosis for serum thiamine, GPx activity, and protein carbonyl determination. One hundred eight consecutive patients were evaluated. The mean age was 57.5 ± 16.0 years, 63% were male, 54.6% died in the ICU, and 71.3% had thiamine deficiency. Thiamine was not associated with oxidative stress. Neither vitamin B1 levels nor the GPx activity was associated with outcomes in these patients. However, protein carbonyl concentration was associated with increased mortality. In patients with septic shock, oxidative stress was associated with mortality. On the other hand, thiamine was not associated with oxidative stress or mortality in these patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease.« less

  20. Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome.

    PubMed

    Vetreno, Ryan P; Klintsova, Anna; Savage, Lisa M

    2011-05-19

    Alcohol-induced Wernicke-Korsakoff syndrome (WKS) culminates in bilateral diencephalic lesion and severe amnesia. Using the pyrithiamine-induced thiamine deficiency (PTD) animal paradigm of WKS, our laboratory has demonstrated hippocampal dysfunction in the absence of gross anatomical pathology. Extensive literature has revealed reduced hippocampal neurogenesis following a neuropathological insult, which might contribute to hippocampus-based learning and memory impairments. Thus, the current investigation was conducted to determine whether PTD treatment altered hippocampal neurogenesis in a stage-dependent fashion. Male Sprague-Dawley rats were assigned to one of 4 stages of thiamine deficiency based on behavioral symptoms: pre-symptomatic stage, ataxic stage, early post-opisthotonus stage, or the late post-opisthotonus stage. The S-phase mitotic marker 5'-bromo-2'-deoxyuridine (BrdU) was administered at the conclusion of each stage following thiamine restoration and subjects were perfused 24 hours or 28 days after BrdU to assess cellular proliferation or neurogenesis and survival, respectively. Dorsal hippocampal sections were immunostained for BrdU (proliferating cell marker), NeuN (neurons), GFAP (astrocytes), Iba-1 (microglia), and O4 (oligodendrocytes). The PTD treatment increased progenitor cell proliferation and survival during the early post-opisthotonus stage. However, levels of neurogenesis were reduced during this stage as well as the late post-opisthotonus stage where there was also an increase in astrocytogenesis. The diminished numbers of newly generated neurons (BrdU/NeuN co-localization) was paralleled by increased BrdU cells that did not co-localize with any of the phenotypic markers during these later stages. These data demonstrate that long-term alterations in neurogenesis and gliogenesis might contribute to the observed hippocampal dysfunction in the PTD model and human WKS. Published by Elsevier B.V.

  1. Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome

    PubMed Central

    Vetreno, Ryan P.; Klintsova, Anna; Savage, Lisa M.

    2011-01-01

    Alcohol-induced Wernicke-Korsakoff syndrome (WKS) culminates in bilateral diencephalic lesion and severe amnesia. Using the pyrithiamine-induced thiamine deficiency (PTD) animal paradigm of WKS, our laboratory has demonstrated hippocampal dysfunction in the absence of gross anatomical pathology. Extensive literature has revealed reduced hippocampal neurogenesis following a neuropathological insult, which might contribute to hippocampus-based learning and memory impairments. Thus, the current investigation was conducted to determine whether PTD treatment altered hippocampal neurogenesis in a stage-dependent fashion. Male Sprague-Dawley rats were assigned to one of 4 stages of thiamine deficiency based on behavioral symptoms: pre-symptomatic stage, ataxic stage, early post-opisthotonus stage, or the late post-opisthotonus stage. The S-phase mitotic marker 5′-bromo-2′-deoxyuridine (BrdU) was administered at the conclusion of each stage following thiamine restoration and subjects were perfused 24-hours or 28-days after BrdU to assess cellular proliferation or neurogenesis and survival, respectively. Dorsal hippocampal sections were immunostained for BrdU (proliferating cell marker), NeuN (neurons), GFAP (astrocytes), Iba-1 (microglia), and O4 (oligodendrocytes). The PTD treatment increased progenitor cell proliferation and survival during the early post-opisthotonus stage. However, levels of neurogenesis were reduced during this stage as well as the late post-opisthotonus stage where there was also an increase in astrocytogenesis. The diminished numbers of newly generated neurons (BrdU/NeuN co-localization) was paralleled by increased BrdU cells that did not co-localize with any of the phenotypic markers during these later stages. These data demonstrate that long-term alterations in neurogenesis and gliogenesis might contribute to the observed hippocampal dysfunction in the PTD model and human WKS. PMID:21440532

  2. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    PubMed

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH<2 and pH>8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, R.H.; Lee, V.W.; Rubinow, A.

    1983-03-01

    To determine the value of technetium-99m-pyrophosphate myocardial scintigraphy in the diagnosis of amyloid heart disease this procedure was prospectively performed in 20 consecutive patients with biopsy-proven primary amyloidosis. Eleven patients had echocardiographic abnormalities compatible with amyloid cardiomyopathy, 9 of whom had congestive heart failure. Diffuse myocardial pyrophosphate uptake was of equal or greater intensity than that of the ribs in 9 of the 11 patients with echocardiograms suggestive of amyloidosis, but in only 2 of the 9 with normal echocardiograms, despite abnormal electrocardiograms (p less than 0.01). Increased wall thickness measured by M-mode echocardiography correlated with myocardial pyrophosphate uptake (rmore » . 0.68, p less than 0.01). None of 10 control patients with nonamyloid, nonischemic heart disease had a strongly positive myocardial pyrophosphate uptake. Thus, myocardial technetium-99m-pyrophosphate scanning is a sensitive and specific test for the diagnosis of cardiac amyloidosis in patients with congestive heart failure of obscure origin. It does not appear to be of value for the early detection of cardiac involvement in patients with known primary amyloidosis without echocardiographic abnormalities.« less

  4. Physical-chemical quality of onion analyzed under drying temperature

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Arifin, U. F.; Sasongko, S. B.

    2017-03-01

    Drying is one of conventional processes to enhance shelf life of onion. However, the active compounds such as vitamin and anthocyanin (represented in red color), degraded due to the introduction of heat during the process. The objective of this research was to evaluate thiamine content as well as color in onion drying under different temperature. As an indicator, the thiamine and color was observed every 30 minutes for 2 hours. Results showed that thiamine content and color were sensitvely influenced by the temperature change. For example, at 50°C for 2 hours drying process, the thiamine degradation was 55.37 %, whereas, at 60°C with same drying time, the degradation was 74.01%. The quality degradation also increased by prolonging drying time.

  5. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.

    PubMed

    Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C

    2016-01-01

    Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.

  6. Multicopper Oxidase Involvement in Both Mn(II) and Mn(III) Oxidation during Bacterial Formation of MnO2

    PubMed Central

    Soldatova, Alexandra V.; Butterfield, Cristina; Oyerinde, Oyeyemi F.; Tebo, Bradley M.; Spiro, Thomas G.

    2013-01-01

    Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria implicates multicopper oxidases (MCOs) as being required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation. PMID:22892957

  7. Statins impact primary embryonic mouse neural stem cell survival, cell death, and fate through distinct mechanisms.

    PubMed

    Carson, Ross A; Rudine, Anthony C; Tally, Serena J; Franks, Alexis L; Frahm, Krystle A; Waldman, Jacob K; Silswal, Neerupma; Burale, Suban; Phan, James V; Chandran, Uma R; Monaghan, A Paula; DeFranco, Donald B

    2018-01-01

    Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway (CBP), and are used for the prevention of cardiovascular disease. The anti-inflammatory effects of statins may also provide therapeutic benefits and have led to their use in clinical trials for preeclampsia, a pregnancy-associated inflammatory condition, despite their current classification as category X (i.e. contraindicated during pregnancy). In the developing neocortex, products of the CBP play essential roles in proliferation and differentiation of neural stem-progenitor cells (NSPCs). To understand how statins could impact the developing brain, we studied effects of pravastatin and simvastatin on primary embryonic NSPC survival, proliferation, global transcription, and cell fate in vitro. We found that statins dose dependently decrease NSPC expansion by promoting cell death and autophagy of NSPCs progressing through the G1 phase of the cell cycle. Genome-wide transcriptome analysis demonstrates an increase in expression of CBP genes following pravastatin treatment, through activation of the SREBP2 transcription factor. Co-treatment with farnesyl pyrophosphate (FPP), a CBP metabolite downstream of HMG-CoA reductase, reduces SREBP2 activation and pravastatin-induced PARP cleavage. Finally, pravastatin and simvastatin differentially alter NSPC cell fate and mRNA expression during differentiation, through a non-CBP dependent pathway.

  8. From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective.

    PubMed

    Gras, Pierre; Baker, Annabelle; Combes, Christèle; Rey, Christian; Sarda, Stéphanie; Wright, Adrian J; Smith, Mark E; Hanna, John V; Gervais, Christel; Laurencin, Danielle; Bonhomme, Christian

    2016-02-01

    Hydrated calcium pyrophosphates (CPP, Ca2P2O7·nH2O) are a fundamental family of materials among osteoarticular pathologic calcifications. In this contribution, a comprehensive multinuclear NMR (Nuclear Magnetic Resonance) study of four crystalline and two amorphous phases of this family is presented. (1)H, (31)P and (43)Ca MAS (Magic Angle Spinning) NMR spectra were recorded, leading to informative fingerprints characterizing each compound. In particular, different (1)H and (43)Ca solid state NMR signatures were observed for the amorphous phases, depending on the synthetic procedure used. The NMR parameters of the crystalline phases were determined using the GIPAW (Gauge Including Projected Augmented Wave) DFT approach, based on first-principles calculations. In some cases, relaxed structures were found to improve the agreement between experimental and calculated values, demonstrating the importance of proton positions and pyrophosphate local geometry in this particular NMR crystallography approach. Such calculations serve as a basis for the future ab initio modeling of the amorphous CPP phases. The general concept of NMR crystallography is applied to the detailed study of calcium pyrophosphates (CPP), whether hydrated or not, and whether crystalline or amorphous. CPP are a fundamental family of materials among osteoarticular pathologic calcifications. Their prevalence increases with age, impacting on 17.5% of the population after the age of 80. They are frequently involved or associated with acute articular arthritis such as pseudogout. Current treatments are mainly directed at relieving the symptoms of joint inflammation but not at inhibiting CPP formation nor at dissolving these crystals. The combination of advanced NMR techniques, modeling and DFT based calculation of NMR parameters allows new original insights in the detailed structural description of this important class of biomaterials. Copyright © 2016. Published by Elsevier Ltd.

  9. Thiamine Deficiency Induces Anorexia by Inhibiting Hypothalamic AMPK

    PubMed Central

    Liu, Mei; Alimov, Alexander; Wang, Haiping; Frank, Jacqueline A.; Katz, Wendy; Xu, Mei; Ke, Zun-Ji; Luo, Jia

    2014-01-01

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16 days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by 9 folds in TD group. The loss of body weight (17–24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic AMPK is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight. PMID:24607345

  10. Alcohol-related amnesia and dementia: Animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment

    PubMed Central

    Vetreno, Ryan P.; Hall, Joseph M.; Savage, Lisa M.

    2011-01-01

    Chronic alcoholism is associated with impaired cognitive functioning. Over 75% of autopsied chronic alcoholics have significant brain damage and over 50% of detoxified alcoholics display some degree of learning and memory impairment. However, the relative contributions of different etiological factors to the development of alcohol-related neuropathology and cognitive impairment are questioned. One reason for this quandary is that both alcohol toxicity and thiamine deficiency result in brain damage and cognitive problems. Two alcohol-related neurological disorders, alcohol-associated dementia and Wernicke-Korsakoff syndrome have been modeled in rodents. These pre-clinical models have elucidated the relative contributions of ethanol toxicity and thiamine deficiency to the development of dementia and amnesia. What is observed in these models—from repeated and chronic ethanol exposure to thiamine deficiency—is a progression of both neural and cognitive dysregulation. Repeated binge exposure to ethanol leads to changes in neural plasticity by reducing GABAergic inhibition and facilitating glutamatergic excitation, long-term chronic ethanol exposure results in hippocampal and cortical cell loss as well as reduced hippocampal neurotrophin protein content critical for neural survival, and thiamine deficiency results in gross pathological lesions in the diencephalon, reduced neurotrophic protein levels, and neurotransmitters levels in the hippocampus and cortex. Behaviorally, after recovery from repeated or chronic ethanol exposure there is impairment in working or episodic memory that can recover with prolonged abstinence. In contrast, after thiamine deficiency there is severe and persistent spatial memory impairments and increased perseverative behavior. The interaction between ethanol and thiamine deficiency does not produce more behavioral or neural pathology, with the exception of reduction of white matter, than long-term thiamine deficiency alone. PMID:21256970

  11. Prevention of delirium in trauma patients: Are we giving thiamine prophylaxis a fair chance?

    PubMed Central

    Blackmore, Christopher; Ouellet, Jean-Francois; Niven, Daniel; Kirkpatrick, Andrew W.; Ball, Chad G.

    2014-01-01

    Background Delirium is associated with increased morbidity and mortality in injured patients. Wernicke encephalopathy (WE) is delirium linked to malnutrition and chronic alcoholism. It is prevented with administration of thiamine. Our primary goal was to evaluate current blood alcohol level (BAL) testing and thiamine prophylaxis in severely injured patients. Methods We retrospectively reviewed the cases of 1000 consecutive severely injured patients admitted to hospital between Mar. 1, 2009, and Dec. 31, 2009. We used the patients’ medical records and the Alberta Trauma Registry. Results Among 1000 patients (mean age 48 yr, male sex 70%, mean injury severity score 23, mortality 10%), 627 underwent BAL testing at admission; 221 (35%) had a BAL greater than 0 mmol/L, and 189 (30%) had a BAL above the legal limit of 17.4 mmol/L. The mean positive BAL was 41.9 mmol/L. More than 4% had a known history of alcohol abuse. More patients were assaulted (20% v. 9%) or hit by motor vehicles (10% v. 6%) when intoxicated (both p < 0.05). Most injuries occurred after falls (37%) and motor vehicle collisions (33%). Overall, 17% of patients received thiamine prophylaxis. Of the 221 patients with elevated BAL, 44% received thiamine prophylaxis. Of those with a history of alcohol abuse, 77% received thiamine prophylaxis. Conclusion Despite the strong link between alcohol abuse, trauma and WE, more than one-third of patients were not screened for alcohol use. Furthermore, a minority of intoxicated patients received adequate prophylaxis against WE. Given the low risk and cost of BAL testing and thiamine prophylaxis and the high cost of delirium, standard protocols for prophylaxis are essential. PMID:24666443

  12. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    PubMed

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  14. Thiaminase activity in native freshwater mussels

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Sweet, Stephanie; Galbraith, Heather S.; Honeyfield, Dale C.

    2015-01-01

    Thiamine (vitamin B1) deficiency in the Great Lakes has been attributed to elevated levels of thiaminase I enzyme activity in invasive prey species; however, few studies have investigated thiaminase activity in native prey species. Some of the highest levels of thiaminase activity have been measured in invasive dreissenid mussels with little understanding of background levels contributed by native freshwater mussels (Bivalvia: Unionidae). In this study, thiaminase activity was measured in two freshwater mussel species, Elliptio complanata and Strophitus undulatus, from the Delaware and Susquehanna River drainage basins located in north eastern United States. Thiaminase activity was also measured in gravid and non-gravid S. undulatus. Average thiaminase activity differed significantly between species (7.2 and 42.4 μmol/g/min, for E. complanata and S. undulatus respectively) with no differences observed between drainage basins. Gravid S. undulatus had significantly lower thiaminase activity (28.0 μmol/g/min) than non-gravid mussels (42.4 μmol/g/min). Our results suggest that a suite of factors may regulate thiaminase activity in freshwater mussels and that native freshwater mussel thiaminase activity is within the range observed for invasive dreissenids. These results add to our understanding of the complexities in identifying the ecological conditions that set the stage for thiamine deficiency.

  15. A Large Outbreak of Thiamine Deficiency Among Illegal Gold Miners in French Guiana

    PubMed Central

    Mosnier, Emilie; Niemetzky, Florence; Stroot, Juliette; de Santi, Vincent Pommier; Brousse, Paul; Guarmit, Basma; Blanchet, Denis; Ville, Muriel; Abboud, Philippe; Djossou, Felix; Nacher, Mathieu

    2017-01-01

    From September 2013 to July 2014, several gold miners working in the tropical forest consulted the Maripasoula Health Center in French Guiana for edema and findings consistent with right-sided cardiac failure. Of the 42 cases of beriberi that were diagnosed, one patient died. The laboratory and clinical investigation demonstrated vitamin B1 deficiency in most of the patients tested. Furthermore, 30 of 42 patients responded favorably to 500 mg of intravenous or intramuscular thiamine supplementation. In addition, dietary investigation showed insufficient thiamine intake in these patients. We concluded that patients had acquired beriberi because of diet restrictions, hard labor, and infectious diseases, notably malaria. In 2016, cases were still being reported. We recommend screening for compatible symptoms in gold miners, thiamine supplementation, and nutritional intervention. PMID:28500804

  16. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets.

    PubMed

    Shi, Dashuang; Caldovic, Ljubica; Tuchman, Mendel

    2018-06-12

    Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N -acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.

  17. A novel mechanism of functional cooperativity regulation by thiol redox status in a dimeric inorganic pyrophosphatase.

    PubMed

    Costa, Evenilton P; Façanha, Arnoldo R; Cruz, Criscila S; Silva, Jhenifer N; Machado, Josias A; Carvalho, Gabriel M; Fernandes, Mariana R; Martins, Renato; Campos, Eldo; Romeiro, Nelilma C; Githaka, Naftaly W; Konnai, Satoru; Ohashi, Kazuhiko; Vaz, Itabajara S; Logullo, Carlos

    2017-01-01

    Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PP i ), probably by inducing disulfide bridge formation. Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Calcium pyrophosphate dihydrate gout and other crystal deposition diseases.

    PubMed

    Reginato, A J

    1991-08-01

    The number of crystal or birefringent particles associated with arthritis is increasing, and a uniform taxonomy is needed. The term gout has been proposed as a generic term for these diseases based on historical, clinical, and crystallographic reasons. Calcium pyrophosphate dihydrate gout follows monosodium urate gout in frequency, and its spectrum of clinical manifestations continues to grow. Familial calcium pyrophosphate dihydrate gout was described for the first time in kindreds studied in England and Tunisia; new Jewish and Spanish kindreds were also reported. Type I collagen was shown to nucleate nativelike calcium pyrophosphate dihydrate crystals, and pyrophosphate elaboration was explored in cartilage explants in an attempt to reproduce the in vivo metabolic or endocrine disorders associated with calcium pyrophosphate dihydrate gout. The effect of pyrophosphatase and different cofactors such as magnesium in dissolving calcium pyrophosphate dihydrate crystals was investigated. High-resolution electron microscopy was used to study the interrelation between apatite and other basic calcium phosphate crystals in apatite gout. Raman microscopy was applied for the first time to identify crystals in biologic specimens. A simple and specific technique for basic calcium phosphate crystal identification is necessary to understand the relationship between different calcium phosphate crystals and osteoarthritis. Several reports about children and young patients with primary oxalate gout described the effect of oxalate on eyes, periodontal tissues, and bone. Multicenter studies showed poor results of renal transplantation, but favored combined liver and renal transplantation.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  20. X-ray Crystal Structure of Aristolochene Synthase from Aspergillus terreus and Evolution of Templates for the Cyclization of Farnesyl Diphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishova,E.; Di Costanzo, L.; Cane, D.

    2007-01-01

    Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 {angstrom} resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the {alpha}-helical class I terpene synthase fold with the active site in the 'open', solvent-exposed conformation. Intriguingly, the 2.15 {angstrom} resolution crystal structure of the complex with Mg{sup 2+}{sub 3}-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the 'closed' conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition frommore » the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved {alpha}-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.« less

  1. Effects of long-term experimental diabetes on adrenal gland growth and phosphoribosyl pyrophosphate formation in growth hormone-deficient dwarf rats.

    PubMed

    Kunjara, Sirilaksana; Greenbaum, A Leslie; McLean, Patricia; Grønbaek, Henning; Flyvbjerg, Allan

    2012-06-01

    The availability of growth hormone (GH)-deficient dwarf rats with otherwise normal pituitary function provides a powerful tool to examine the relative role of hyperglycaemia and the reordering of hormonal factors in the hypertrophy-hyperfunction of the adrenal gland that is seen in experimental diabetes. Here, we examine the effects of long-term (6 months) experimental diabetes on the growth of the adrenal glands; their content of phosphoribosyl pyrophosphate (PRPP); and the activity of the PRPP synthetase, G6P dehydrogenase and 6PG dehydrogenase enzymes in GH-deficient dwarf rats compared to heterozygous controls. These parameters were selected in view of the known role of PRPP in both de novo and salvage pathways of purine and pyrimidine synthesis and in the formation of NAD, and in view of the role of the oxidative enzymes of the pentose phosphate pathway in both R5P formation and the generation of the NADPH that is required in reductive synthetic reactions. This study shows that GH deficiency prevents the increase in adrenal gland weight, PRPP synthetase, PRPP content and G6P dehydrogenase and 6PG dehydrogenase. This contrasts sharply with the heterozygous group that showed the expected increase in these parameters. The blood glucose levels of the groups of long-term diabetic rats, both GH-deficient and heterozygous, remained at an elevated level throughout the experiment. These results are fully in accord with earlier evidence from studies with somatostatin analogues which showed that the GH-insulin-like growth factor I (IGF-I)-axis plays a key role in the adrenal diabetic hypertrophy-hyperfunction syndrome. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  2. In silico analysis of the amido phosphoribosyltransferase inhibition by PY873, PY899 and a derivative of isophthalic acid.

    PubMed

    Batool, Sidra; Nawaz, Muhammad Sulaman; Kamal, Mohammad A

    2013-10-01

    Selectively decreasing the availability of precursors for the de novo biosynthesis of purine nucleotides is a valid approach towards seeking a cure for leukaemia. Nucleotides and deoxynucleotides are required by living cells for syntheses of RNA, DNA, and cofactors such as NADP(+), FAD(+), coenzyme A and ATP. Nucleotides contain purine and pyrimidine bases, which can be synthesized through salvage pathway as well. Amido phosphoribosyltransferase (APRT), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme that in humans is encoded by the PPAT (phosphoribosyl pyrophosphate amidotransferase) gene. APRT catalyzes the first committed step of the de novo pathway using its substrate, phosphoribosyl pyrophosphate (PRPP). As APRT is inhibited by many folate analogues, therefore, in this study we focused on the inhibitory effects of three folate analogues on APRT activity. This is extension of our previous wet lab work to analyze and dissect molecular interaction and inhibition mechanism using molecular modeling and docking tools in the current study. Comparative molecular docking studies were carried out for three diamino folate derivatives employing a model of the human enzyme that was built using the 3D structure of Bacillus subtilis APRT (PDB ID; 1GPH) as the template. Binding orientation of interactome indicates that all compounds having nominal cluster RMSD in same active site's deep narrow polar fissure. On the basis of comparative conformational analysis, electrostatic interaction, binding free energy and binding orientation of interactome, we support the possibility that these molecules could behave as APRT inhibitors and therefore may block purine de novo biosynthesis. Consequently, we suggest that PY899 is the most active biological compound that would be a more potent inhibitor for APRT inhibition than PY873 and DIA, which also confirms previous wet lab report.

  3. Thiamine

    MedlinePlus

    ... B vitamins, and found in many vitamin B complex products. Vitamin B complexes generally include vitamin B1 (thiamine), vitamin B2 (riboflavin), ... is required by our bodies to properly use carbohydrates. It also helps maintain proper nerve function.

  4. Investigation of thiamine and PCB association with early life stage fry mortality in lake trout from northwestern Lake Michigan in 1996-1998

    USGS Publications Warehouse

    Honeyfield, Dale C.; Beltman, Dong; Holey, Mark; Edsall, Carol C.

    2005-01-01

    Lake trout (Salvelinus namaycush) eggs were collected from 72 females near Sturgeon Bay, WI in northwestern Lake Michigan from 1996, 1997, and 1998 to determine the relationships between egg thiamine and polychlorinated biphenyl (PCB) concentrations with egg fertilization and hatch, prevalence of abnormal fry, and fry mortality. Fry mortality consistent with early mortality syndrome (EMS) was observed in eggs from 33% of the females in 1996, 25% in 1997, and 28% in 1998. Among egg lots exhibiting EMS, fry mortality averaged 95% in 1996, 63% in 1997 and 77% in 1998 compared to 2% or less in lots that did not exhibit EMS. Expression of EMS was strongly correlated with egg thiamine concentrations; egg lots with less than approximately 1 nmol/g total thiamine consistently exhibited high rates of EMS, whereas egg batches with greater than 1.5 nmol/g showed little or no incidence of EMS among swim-up fry. Egg thiamine concentration was not related to fertilization rate, egg hatch, or the prevalence of abnormal fry. There was no relationship between egg concentrations of PCBs or tetrachlorinated dibenzo-p-dioxin (TCDD) equivalents (from PCBs, dioxins, and furans) and any of the egg or fry viability measurements, including EMS. We concluded that fry mortality observed in Lake Michigan lake trout in 1996-1998 was not caused by the toxicity of PCBs, dioxins, and furans, but is due to low egg thiamine concentrations.

  5. Thiamine for prevention and treatment of Wernicke-Korsakoff Syndrome in people who abuse alcohol.

    PubMed

    Day, Ed; Bentham, Peter W; Callaghan, Rhiannon; Kuruvilla, Tarun; George, Sanju

    2013-07-01

    Autopsy studies suggest that Wernicke-Korsakoff syndrome (WKS) is not a rare disorder, particularly in individuals who abuse alcohol. Thiamine has been established as the treatment of choice for over 50 years, but uncertainty remains about appropriate dosage and duration. Current practice guidelines are based on case reports and clinical experience. This is an update of a review first published in 2004 and last updated in 2008. • To assess the efficacy of thiamine in preventing and treating the manifestations of WKS due to excess alcohol consumption. • To determine the optimum form, dose and duration of thiamine treatment for this indication. ALOIS, the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (CDCIG), The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL and LILACS were searched on 6 September 2012 using the term thiamine OR aneurine. ALOIS contains records from all major health care databases (The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS) as well as from many trial databases and grey literature sources. Any randomised trials comparing thiamine with alternative interventions or comparing different thiamine regimens (varying in formulation, dose or duration of administration). All abstracts were independently inspected by two reviewers (ED and PWB), and relevant articles were retrieved and assessed for methodological quality using criteria provided in the Cochrane Handbook for Systematic Reviews of Interventions. Two studies were identified that met the inclusion criteria, but only one contained sufficient data for quantitative analysis. Ambrose (2001) randomly assigned participants (n = 107) to one of five doses of intramuscular thiamine and measured outcomes after 2 days of treatment. We compared the lowest dose (5 mg/day) with each of the other four doses. A significant difference favoured 200 mg/day compared with the 5-mg/day dose in determining the number of trials needed to meet inclusion criteria on a delayed alternation test (mean difference (MD) -17.90, 95% confidence interval (CI) -35.4 to -0.40, P = 0.04). No significant differences emerged when the other doses were compared with 5 mg/day. The pattern of results did not reflect a simple dose-response relationship. The study had methodological shortcomings in design and in the presentation of results that limited further analysis. Evidence from randomised controlled clinical trials is insufficient to guide clinicians in determining the dose, frequency, route or duration of thiamine treatment for prophylaxis against or treatment of WKS due to alcohol abuse.

  6. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach

    PubMed Central

    Lang, Kathrin; Rieder, Renate; Micura, Ronald

    2007-01-01

    Riboswitches are genetic control elements within non-coding regions of mRNA. They consist of a metabolite-sensitive aptamer and an adjoining expression platform. Here, we describe ligand-induced folding of a thiamine pyrophosphate (TPP) responsive riboswitch from Escherichia coli thiM mRNA, using chemically labeled variants. Referring to a recent structure determination of the TPP/aptamer complex, each variant was synthesized with a single 2-aminopurine (AP) nucleobase replacement that was selected to monitor formation of tertiary interactions of a particular region during ligand binding in real time by fluorescence experiments. We have determined the rate constants for conformational adjustment of the individual AP sensors. From the 7-fold differentiation of these constants, it can be deduced that tertiary contacts between the two parallel helical domains (P2/J3-2/P3/L3 and P4/P5/L5) that grip the ligand's ends in two separate pockets, form significantly faster than the function-critical three-way junction with stem P1 fully developed. Based on these data, we characterize the process of ligand binding by an induced fit of the RNA and propose a folding model of the TPP riboswitch aptamer. For the full-length riboswitch domain and for shorter constructs that represent transcriptional intermediates, we have additionally evaluated ligand-induced folding via AP-modified variants and provide insights into the sequential folding pathway that involves a finely balanced equilibrium of secondary structures. PMID:17693433

  7. Micronutrients supplementation and nutritional status in cognitively impaired elderly persons: a two-month open label pilot study.

    PubMed

    von Arnim, Christine A F; Dismar, Stephanie; Ott-Renzer, Cornelia S; Noeth, Nathalie; Ludolph, Albert C; Biesalski, Hans K

    2013-11-15

    Malnutrition is a widespread problem in elderly people and is associated with cognitive decline. However, interventional studies have produced ambiguous results. For this reason, we wanted to determine the effect of micronutrient supplementation on blood and tissue levels and on general nutritional status in persons with mild or moderate cognitive impairment. We performed a 2-month, open-label trial, administering a daily micronutrient supplement to 42 memory clinic patients with mild cognitive deficits. Blood levels of antioxidants, zinc, and B vitamins were determined before and after supplementation. In addition, we assessed metabolic markers for B vitamins and intracellular (buccal mucosa cell [BMC]) antioxidant levels. Nutritional status was assessed by using the Mini Nutritional Assessment (MNA). Blood levels of B vitamins, folic acid, lutein, β-carotene, α-carotene, and α-tocopherol increased significantly. Decreases in homocysteine levels and the thiamine pyrophosphate effect and an increase in holotranscobalamin were observed. We found no increase in intracellular antioxidant levels of BMC. The MNA score in subjects at risk for malnutrition increased significantly, mainly owing to better perception of nutritional and overall health status. Micronutrient supplementation improved serum micronutrient status, with improved metabolic markers for B vitamins but not for intracellular antioxidant status, and was associated with improved self-perception of general health status. Our data underline the necessity of determining micronutrient status and support the use of additional assessments for general health and quality of life in nutritional supplementation trials.

  8. Blood vitamin concentrations in privately owned dogs fed non-standardized commercial diets and after intake of diets with specified vitamin concentrations.

    PubMed

    Tran, J L; Horvath, C; Krammer, S; Höller, U; Zentek, J

    2007-02-01

    The objective was to investigate in a survey study the blood vitamin concentrations in healthy dogs fed non-specified commercial complete diets and in an intervention study to determine the effects of defined dietary vitamin intakes on blood vitamin levels and hair and skin condition. Sixty-four privately owned dogs, aged from 1 to 8 years, without history of skin or coat problems were included. All animals were fed commercial complete diets with uncertain vitamin concentrations before enrolment. The animals were assigned, according to weight and gender, to four groups with graded vitamin intakes. The blood vitamin levels and skin and coat quality of the dogs were investigated at days 0 and day 122. Coat and hair condition was not influenced by the experimental diets. The retinol concentrations were reduced at the end of the experiment compared with the baseline levels, retinyl esters were not influenced. 25-Hydroxycholecalciferol decreased in all groups, alpha-tocopherol was constant or tended to decrease. Ascorbic acid, thiamine pyrophosphate and riboflavin concentrations were not affected by treatment, flavin adenine dinucleotide and pyridoxal-5'-phosphate were partially reduced on day 122. Cobalamin, pantothenate and biotin concentrations increased with higher dietary intakes, folate levels in tendency. In conclusion, this study gives a survey of blood vitamin concentrations in healthy dogs and provides a data base for the evaluation of the vitamin status in health and disease.

  9. Heightened Avidity for Trisodium Pyrophosphate in Mice Lacking Tas1r3

    PubMed Central

    Aleman, Tiffany R.; McCaughey, Stuart A.

    2015-01-01

    Laboratory rats and mice prefer some concentrations of tri- and tetrasodium pyrophosphate (Na3HP2O7 and Na4P2O7) to water, but how they detect pyrophosphates is unknown. Here, we assessed whether T1R3 is involved. We found that relative to wild-type littermate controls, Tas1r3 knockout mice had stronger preferences for 5.6–56mM Na3HP2O7 in 2-bottle choice tests, and they licked more 17.8–56mM Na3HP2O7 in brief-access tests. We hypothesize that pyrophosphate taste in the intact mouse involves 2 receptors: T1R3 to produce a hedonically negative signal and an unknown G protein-coupled receptor to produce a hedonically positive signal; in Tas1r3 knockout mice, the hedonically negative signal produced by T1R3 is absent, leading to a heightened avidity for pyrophosphate. PMID:25452580

  10. The Wernicke-Korsakoff syndrome: a reappraisal in Queensland with special reference to prevention.

    PubMed

    Price, J; Kerr, R; Hicks, M; Nixon, P F

    The Wernicke-Korsakoff syndrome occurs most frequently in alcoholic patients when they become thiamin deficient. First admissions to psychiatric units with the chronic component of this syndrome, Korsakoff's psychosis, peaked in Queensland in 1975-1976. The fall in hospital admission rates since this time could relate to a decline in per-capita alcohol consumption in Australia, or to more awareness of the thiamin needs of drinkers. Alternatively, the improvement may be illusory: although many cases of Wernicke's encephalopathy are being diagnosed, many of these patients are not receiving psychiatric assessment and treatment, perhaps because admission to psychiatric hospital beds is more difficult than it was formerly. Patients who are diagnosed as having Korsakoff's psychosis fare badly in the community, and have a greatly increased mortality rate than do such patients in hospital. Optimal care for such patients is necessarily costly of medical resources. Of available preventive measures, evidence is presented to support the fortification of beer with thiamin and the provision of community educational programmes. The fortification of flour with thiamin may have little impact on the thiamin-deficiency syndromes that arise in problem drinkers in Queensland.

  11. Thiamine content and thiaminase activity of ten freshwater stocks and one marine stock of alewives

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Zajicek, J.L.; Tillitt, D.E.; Brown, S.B.; Brown, L.R.; Honeyfield, D.C.; Warner, D.M.; Rudstam, L. G.; Pearsall, W.

    2005-01-01

    Alewives Alosa pseudoharengus contain thiaminase activity that has been implicated in the development of a thiamine deficiency and associated effects in salmonines of the Great Lakes basin. Little is known about the factors that regulate thiaminase activity in alewives. We sampled alewives of uniform size (60-120 mm) during the summer of 1998 from the Gulf of St. Lawrence, seven of New York's Finger Lakes, one inland lake in Ontario, and two Great Lakes to assess possible relationships among thiamine, lipid content, fish abundance, lake morphometry, lake productivity, freshwater residency, and thiaminase activity. Thiaminase activity varied significantly among the 11 locations but was unrelated to thiamine concentration, which did not vary significantly. Alewife thiaminase activity in the Finger Lakes was negatively related to lipid content and positively related to measures of lake size (e.g., area, volume, and maximum depth). Activity in the one marine stock sampled in the Gulf of St. Lawrence was comparable to the highest values observed in the 10 freshwater stocks examined. Variation in alewife thiaminase activity has the potential to affect the extent of a thiamine deficiency associated with salmonines who feed on alewives as well as the viability of their offspring.

  12. Radiation damage in vitamin B 1: An endor study of an x-irradiated single crystal of thiamine

    NASA Astrophysics Data System (ADS)

    Geoffroy, M.; Reddy, M. V. V. S.; Lambelet, P.; Horman, I.

    A single crystal of thiamine chloride hydrochloride has been x-irradiated at room temperature and studied by 1H-ENDOR spectroscopy at 110 K. It is shown that at least two radical species are trapped in the crystal. Several 1H-hyperfine tensors have been determined for each radical; they indicate that one species is due to cleavage of the thiamine molecule into its pyrimidine and thiazole moieties while the other species is due to hydrogen addition onto the pyrimidine ring.

  13. Familial pyrophosphate arthropathy. Occurrence and Crystal Identification.

    PubMed

    Bjelle, A

    1981-01-01

    Hereditary pyrophosphate arthropathy has been observed in three Swedish families and in a few other caucasian populations. The inheritance is most probably autosomal dominant with a variable penetrance. The most severe cases have been found in homozygotes among isolates of immigrants in Slovakia and Chile. Studies on genetic and etio-pathogenetic factors in hereditary pyrophosphate arthropathy, and the utilization of new diagnostic techniques for crystal identification, are important approaches towards a further understanding of the disease.

  14. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants

    PubMed Central

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-01-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (106 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould. PMID:27721697

  15. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants.

    PubMed

    Hong, Jeum Kyu; Kim, Hyeon Ji; Jung, Heesoo; Yang, Hye Ji; Kim, Do Hoon; Sung, Chang Hyun; Park, Chang-Jin; Chang, Seog Won

    2016-10-01

    Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea , respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (10 6 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea . Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

  16. Spectrofluorimetric determination of some water-soluble vitamins.

    PubMed

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R

    2011-01-01

    Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  17. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    PubMed Central

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-01-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase. PMID:12429023

  18. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose.

    PubMed

    Yagi, Toshihiro; Baroja-Fernández, Edurne; Yamamoto, Ryuji; Muñoz, Francisco José; Akazawa, Takashi; Hong, Kyoung Su; Pozueta-Romero, Javier

    2003-03-01

    A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.

  19. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases.

    PubMed

    Grabińska, Kariona A; Park, Eon Joo; Sessa, William C

    2016-08-26

    cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. An Enzymatic Platform for the Synthesis of Isoprenoid Precursors

    PubMed Central

    Rodriguez, Sofia B.; Leyh, Thomas S.

    2014-01-01

    The isoprenoid family of compounds is estimated to contain ∼65,000 unique structures including medicines, fragrances, and biofuels. Due to their structural complexity, many isoprenoids can only be obtained by extraction from natural sources, an inherently risky and costly process. Consequently, the biotechnology industry is attempting to genetically engineer microorganisms that can produce isoprenoid-based drugs and fuels on a commercial scale. Isoprenoid backbones are constructed from two, five-carbon building blocks, isopentenyl 5-pyrophosphate and dimethylallyl 5-pyrophosphate, which are end-products of either the mevalonate or non-mevalonate pathways. By linking the HMG-CoA reductase pathway (which produces mevalonate) to the mevalonate pathway, these building block can be synthesized enzymatically from acetate, ATP, NAD(P)H and CoA. Here, the enzymes in these pathways are used to produce pathway intermediates and end-products in single-pot reactions and in remarkably high yield, ∼85%. A strategy for the regio-specific incorporation of isotopes into isoprenoid backbones is developed and used to synthesize a series of isotopomers of diphosphomevalonate, the immediate end-product of the mevalonate pathway. The enzymatic system is shown to be robust and capable of producing quantities of product in aqueous solutions that meet or exceed the highest levels achieved using genetically engineered organisms in high-density fermentation. PMID:25153179

  1. Challenges in Diagnosis and Treatment of Wernicke Encephalopathy: Report of 2 Cases.

    PubMed

    Infante, Maria Teresa; Fancellu, Roberto; Murialdo, Alessandra; Barletta, Laura; Castellan, Lucio; Serrati, Carlo

    2016-04-01

    Wernicke encephalopathy (WE) is a medical emergency caused by thiamine deficiency, characterized by cerebellar ataxia, ophthalmoplegia, and cognitive disturbances that may progress to Korsakoff amnesia. We describe 2 patients with WE who needed high-dose and long-term treatment with thiamine to obtain neurological improvement and recovery. The first patient was a woman diagnosed with non-Hodgkin lymphoma. After a gastrointestinal infection, she developed depression, memory loss, disorientation, behavioral changes, and ataxic paraplegia. Brain magnetic resonance imaging (MRI) showed bilateral alterations in thalamic, frontal, and periaqueductal regions, suggestive of WE. The second patient was a man who lost 10 kg after surgical gastrectomy; he developed diplopia, ophthalmoplegia, cerebellar ataxia, lower limb paresthesias, and amnesia. A brain MRI demonstrated contrast enhancement of mammillary bodies, compatible with WE. The patients were treated with intramuscular (IM) thiamine (1200 mg/d for 2 months and 900 mg/d for a month, respectively) with gradual cognitive and behavioral improvement and brain MRI normalization, while ataxia and oculomotion improved in following months. In both patients, thiamine was gradually reduced to IM 200 mg/d and continued for a year, without clinical relapses. There is no consensus about dosage, frequency, route, and duration of thiamine administration in WE treatment. Based on our cases, we recommend treating patients with WE with higher doses of IM thiamine for a longer time than suggested (900-1200 mg/d for 1-2 months, in our cases) and to gradually reduce dosage after clinical and radiological improvement, maintaining IM 200 mg/d dosage for at least 1 year. © 2016 American Society for Parenteral and Enteral Nutrition.

  2. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.

    PubMed

    Nahas, John V; Iosue, Christine L; Shaik, Noor F; Selhorst, Kathleen; He, Bin Z; Wykoff, Dennis D

    2018-05-10

    Convergent evolution is often due to selective pressures generating a similar phenotype. We observe relatively recent duplications in a spectrum of Saccharomycetaceae yeast species resulting in multiple phosphatases that are regulated by different nutrient conditions - thiamine and phosphate starvation. This specialization is both transcriptional and at the level of phosphatase substrate specificity. In Candida glabrata , loss of the ancestral phosphatase family was compensated by the co-option of a different histidine phosphatase family with three paralogs. Using RNA-seq and functional assays, we identify one of these paralogs, CgPMU3 , as a thiamine phosphatase. We further determine that the 81% identical paralog CgPMU2 does not encode thiamine phosphatase activity; however, both are capable of cleaving the phosphatase substrate, 1-napthyl-phosphate. We functionally demonstrate that members of this family evolved novel enzymatic functions for phosphate and thiamine starvation, and are regulated transcriptionally by either nutrient condition, and observe similar trends in other yeast species. This independent, parallel evolution involving two different families of histidine phosphatases suggests that there were likely similar selective pressures on multiple yeast species to recycle thiamine and phosphate. In this work, we focused on duplication and specialization, but there is also repeated loss of phosphatases, indicating that the expansion and contraction of the phosphatase family is dynamic in many Ascomycetes. The dynamic evolution of the phosphatase gene families is perhaps just one example of how gene duplication, co-option, and transcriptional and functional specialization together allow species to adapt to their environment with existing genetic resources. Copyright © 2018, G3: Genes, Genomes, Genetics.

  3. Malnutrition-induced Wernicke's encephalopathy following a water-only fasting diet.

    PubMed

    Hutcheon, Deborah A

    2015-02-01

    Wernicke's encephalopathy is a critical condition of neurological dysfunction resulting from a deficiency in thiamine. Chronic alcoholism is recognized as the most common cause of Wernicke's encephalopathy, but other causes, including fasting/starvation and malnutrition, have been documented within the scientific literature. These causes may not be readily recognized by healthcare professionals and may lead to Wernicke's encephalopathy being overlooked as a diagnosis when a nonalcoholic patient presents with classic signs and symptoms of the disorder. A narrative review of thiamine and its relationship to the development, diagnosis, and treatment of Wernicke's encephalopathy is presented based on a review of evidence-based guidelines and published research. To heighten awareness of the development of Wernicke's encephalopathy in fasted/starved and malnourished patients and to contribute to the scientific body of knowledge for the identification and management of Wernicke's encephalopathy in these patients, the clinical course and treatment of an adult woman who developed Wernicke's encephalopathy following a 40-day water-only fasting diet is outlined. Clinical suspicion was required to identify the patient's condition and initiate immediate intervention through parenteral thiamine administration. Oral thiamine supplementation of 100 to 800 mg per day for 6 months was required to aid recovery. The patient's clinical course and response to treatment illustrate the necessity for clinical awareness and suspicion of Wernicke's encephalopathy among healthcare professionals, timely and adequate parenteral thiamine administration, and oral thiamine supplementation at therapeutic doses to correct the nutrient deficiency, halt the progression of Wernicke's encephalopathy, and promote recovery. © 2014 American Society for Parenteral and Enteral Nutrition.

  4. Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff Syndrome.

    PubMed

    Pires, Rita G W; Pereira, Silvia R C; Oliveira-Silva, Ieda F; Franco, Glaura C; Ribeiro, Angela M

    2005-07-01

    This is a factorial (2 x 2 x 2) spatial memory and cholinergic parameters study in which the factors are chronic ethanol, thiamine deficiency and naivety in Morris water maze task. Both learning and retention of the spatial version of the water maze were assessed. To assess retrograde retention of spatial information, half of the rats were pre-trained on the maze before the treatment manipulations of pyrithiamine (PT)-induced thiamine deficiency and post-tested after treatment (pre-trained group). The other half of the animals was only trained after treatment to assess anterograde amnesia (post-trained group). Thiamine deficiency, associated to chronic ethanol treatment, had a significant deleterious effect on spatial memory performance of post-trained animals. The biochemical data revealed that chronic ethanol treatment reduced acetylcholinesterase (AChE) activity in the hippocampus while leaving the neocortex unchanged, whereas thiamine deficiency reduced both cortical and hippocampal AChE activity. Regarding basal and stimulated cortical acetylcholine (ACh) release, both chronic ethanol and thiamine deficiency treatments had significant main effects. Significant correlations were found between both cortical and hippocampal AChE activity and behaviour parameters for pre-trained but not for post-trained animals. Also for ACh release, the correlation found was significant only for pre-trained animals. These biochemical parameters were decreased by thiamine deficiency and chronic ethanol treatment, both in pre-trained and post-trained animals. But the correlation with the behavioural parameters was observed only for pre-trained animals, that is, those that were retrained and assessed for retrograde retention.

  5. Evaluating Mineral-Associated Soil Organic Matter Pools as Indicators of Forest Harvesting Disturbance

    NASA Astrophysics Data System (ADS)

    Kellman, L. M.; Gabriel, C. E.

    2015-12-01

    Soil organic matter (SOM) in northern forest soils is associated with a suite of minerals that can confer SOM stability, resulting in the potential for long-term storage of carbon. Increasingly, evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance. The objective of this research was to investigate changes in a suite of mineral-associated pools of SOM through depth in a temperate forest soil to determine which mineral-associated carbon pools are most sensitive to forest harvesting disturbance. Sequential selective dissolutions representing increasingly stable SOM pools (soluble minerals (deionized water); humus-mineral complexes (Na-pyrophosphate); poorly crystalline minerals (HCl hydroxylamine); and crystalline secondary minerals (Na-dithionite + HCl)) of mineral soils through depth to 50 cm were carried out in podzolic soils sampled from temperate red spruce forests of contrasting stand age in Nova Scotia, Canada. Results of this analysis point to a loss of carbon from SOM within the B-horizon of the most recently harvested site from the pyrophosphate-extracted humus mineral complexed SOM, suggesting that it is this exchangeable pool that appears to be destabilized following clearcut harvesting at these study sites. This suggests that recovery from this landuse disturbance is dependent upon increasing storage of this SOM pool, and that mineral-associated pools, particularly pyrophosphate-extractable SOM, may be a useful indicator of changes to soil carbon storage following land use change.

  6. A method for measuring total thiaminase activity in fish tissues

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.

    2005-01-01

    An accurate, quantitative, and rapid method for the measurement of thiaminase activity in fish samples is required to provide sufficient information to characterize the role of dietary thiaminase in the onset of thiamine deficiency in Great Lakes salmonines. A radiometric method that uses 14C-thiamine was optimized for substrate and co-substrate (nicotinic acid) concentrations, incubation time, and sample dilution. Total thiaminase activity was successfully determined in extracts of selected Great Lakes fishes and invertebrates. Samples included whole-body and selected tissues of forage fishes. Positive control material prepared from frozen alewives Alosa pseudoharengus collected in Lake Michigan enhanced the development and application of the method. The method allowed improved discrimination of thiaminolytic activity among forage fish species and their tissues. The temperature dependence of the thiaminase activity observed in crude extracts of Lake Michigan alewives followed a Q10 = 2 relationship for the 1-37??C temperature range, which is consistent with the bacterial-derived thiaminase I protein. ?? Copyright by the American Fisheries Society 2005.

  7. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    PubMed

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Heightened avidity for trisodium pyrophosphate in mice lacking Tas1r3.

    PubMed

    Tordoff, Michael G; Aleman, Tiffany R; McCaughey, Stuart A

    2015-01-01

    Laboratory rats and mice prefer some concentrations of tri- and tetrasodium pyrophosphate (Na3HP2O7 and Na4P2O7) to water, but how they detect pyrophosphates is unknown. Here, we assessed whether T1R3 is involved. We found that relative to wild-type littermate controls, Tas1r3 knockout mice had stronger preferences for 5.6-56mM Na3HP2O7 in 2-bottle choice tests, and they licked more 17.8-56mM Na3HP2O7 in brief-access tests. We hypothesize that pyrophosphate taste in the intact mouse involves 2 receptors: T1R3 to produce a hedonically negative signal and an unknown G protein-coupled receptor to produce a hedonically positive signal; in Tas1r3 knockout mice, the hedonically negative signal produced by T1R3 is absent, leading to a heightened avidity for pyrophosphate. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Hyperemesis gravidarum complicated by Wernicke's encephalopathy.

    PubMed

    Spruill, Steven C; Kuller, Jeffrey A

    2002-05-01

    Wernicke's encephalopathy is usually associated with alcohol abuse, but can also occur with hyperemesis gravidarum. The effect of delay in thiamine replacement on fetal outcomes is unknown. We present a case of this complication. A primipara with hyperemesis was admitted for mental status changes in her 14th week of pregnancy. Physical examination revealed a lethargic patient with ophthalmoplegia, ataxia, and hyporeflexia. Parenteral thiamine therapy was started. The patient improved rapidly although the ataxia persisted. A spontaneous abortion occurred 2 weeks later. Wernicke's encephalopathy can complicate hyperemesis gravidarum. Early thiamine replacement may decrease the chances of spontaneous abortion.

  10. [Subtractive gene cloning and gene-disruption for elucidation of pseudohyphal formation in Candida tropicalis].

    PubMed

    Suzuki, Takahito

    2003-01-01

    The dimorphic transition from yeast to pseudohyphae in the petroleum-assimilating yeast Candida tropicalis occurs following the addition of ethanol to glucose semi-defined medium. Subtractive gene cloning was performed on the cDNA from the yeast-growing control culture and on that from the ethanol-supplemented one (the ethanol culture). A homologue of Schizosaccharomyces pombe nmt1+ or Saccharomyces cerevisiae THI5 was isolated from the cDNA fraction as a preferentially expressed gene for the ethanol culture. This homologue was tentatively called Ctnmt1+, since exogenous thiamine repressed its expression in C. tropicalis growth media. The ethanol culture showed a biphasic pattern of growth phases and the expression of Ctnmt1+ occurred at the first growth phase. The supplementation of thiamine to the ethanol culture at the first phase was followed by repression of Ctnmt1+ expression and also delay of pseudohyphal growth: filamentous growth was inhibited and chains of yeast cells were formed. A Ctnmt1+ disruptant of this organism did not show thiamine auxotrophy and produced pseudohyphal filaments even in the control culture. The supplementation of oxythiamine, an analog of thiamine, to the control culture was followed by the appearance of pseudohyphal filaments, indicating the participation of thiamine during the process of pseudohyphal growth in this organism.

  11. Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines.

    PubMed

    Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie

    2007-11-01

    Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.

  12. Effect of thiamine concentration on animal health, feedlot performance, carcass characteristics, and ruminal hydrogen sulfide concentrations in lambs fed diets based on 60% distillers dried grains plus solubles.

    PubMed

    Neville, B W; Schauer, C S; Karges, K; Gibson, M L; Thompson, M M; Kirschten, L A; Dyer, N W; Berg, P T; Lardy, G P

    2010-07-01

    Limited data are available regarding the influence of thiamine supplementation on the incidence of polioencephalomalacia (PEM) in lambs fed diets containing increased concentrations of S in the diet (>0.7%). Therefore, our objective was to evaluate the influence of thiamine supplementation on feedlot performance, carcass quality, ruminal hydrogen sulfide gas concentrations, and incidence of PEM in lambs fed a finishing diet containing 60% distillers dried grains with solubles (DDGS; DM basis). Two studies were conducted using completely randomized designs to evaluate the influence of concentration of thiamine supplementation. Study 1 used 240 lambs fed in 16 pens, whereas study 2 used 55 individually fed lambs. Lamb finishing diets contained 60% DDGS, which resulted in a dietary S concentration of 0.73% (DM basis). Treatments diets were based on the amount of supplemental thiamine provided: 1) no supplemental thiamine (CON), 2) 50 mg/animal per day (LO), 3) 100 mg/animal per day (MED), or 4) 150 mg/animal per day (HI). Additionally, in study 2, a fifth treatment was included, which contained 0.87% S (DM basis; increased S provided by addition of dilute sulfuric acid) and provided 150 mg of thiamine/animal per day (HI+S). In study 1, ADG decreased quadratically (P = 0.04), with lambs fed the CON, LO, and MED diets gaining BW at a greater rate than lambs fed the HI diet. In study 1, DMI responded quadratically (P < 0.01), whereas G:F tended to differ linearly (P = 0.08) to concentration of thiamine supplementation, with MED lambs having greater DMI and decreased G:F. No differences (P > or = 0.17) in lamb performance were observed in study 2. In both studies, most carcass characteristics were unaffected, with the exception of a tendency for decreased carcass conformation (study 1; P = 0.09) and greater flank streaking (study 2; P = 0.03). No differences in ruminal hydrogen sulfide concentration (P > 0.05) among treatments were apparent until d 10, at which point lambs fed the LO diet had less hydrogen sulfide concentrations than all other treatments. Lambs fed HI had the greatest concentrations of hydrogen sulfide on d 31 (1.07 g of hydrogen sulfide /m(3); P < 0.009). Ruminal pH did not differ (P = 0.13) and averaged 5.6 +/- 0.06. No clinical cases of PEM were observed during the course of either study. The use of thiamine as a dietary additive to aid in the prevention of PEM in finishing lambs does not appear to be necessary under the conditions of this study.

  13. d-3-Hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetic mechanism from steady-state kinetics of the reaction catalysed by the enzyme in solution and covalently attached to diethylaminoethylcellulose

    PubMed Central

    Preuveneers, M. J.; Peacock, D.; Crook, E. M.; Clark, J. B.; Brocklehurst, K.

    1973-01-01

    1. The reversible NAD+-linked oxidation of d-3-hydroxybutyrate to acetoacetate in 0.1m-sodium pyrophosphate buffer, pH8.5, at 25.0°C, catalysed by d-3-hydroxybutyrate dehydrogenase (d-3-hydroxybutyrate–NAD+ oxidoreductase, EC 1.1.1.30), was studied by initial-velocity, dead-end inhibition and product-inhibition analysis. 2. The reactions were carried out on (a) the soluble enzyme from Rhodopseudomonas spheroides and (b) an insoluble derivative of this enzyme prepared by its covalent attachment to DEAE-cellulose by using 2-amino-4,6-dichloro-s-triazine as coupling agent. 3. The insolubilized enzyme preparation contained 5mg of protein/g wet wt. of total material, and when freshly prepared its specific activity was 1.2μmol/min per mg of protein, which is 67% of that of the soluble dialysed enzyme. 4. The reactions catalysed by both the enzyme in solution and the insolubilized enzyme were shown to follow sequential pathways in which the nicotinamide nucleotides bind obligatorily first to the enzyme. Evidence is presented for kinetically significant ternary complexes and that the rate-limiting step(s) of both catalyses probably involves isomerization of the enzyme–nicotinamide nucleotide complexes and/or dissociation of the nicotinamide nucleotides from the enzyme. Both catalyses therefore are probably best described as ordered Bi Bi mechanisms, possibly with multiple enzyme–nicotinamide nucleotide complexes. 5. The kinetic parameters and the calculable rate constants for the catalysis by the soluble enzyme are similar to the corresponding parameters and rate constants for the catalysis by the insolubilized enzyme. PMID:4352835

  14. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  15. Method of synthesis of proton conducting materials

    DOEpatents

    Garzon, Fernando Henry; Einsla, Melinda Lou; Mukundan, Rangachary

    2010-06-15

    A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about 1200.degree. C.

  16. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    PubMed

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots.

    PubMed

    Purbia, Rahul; Paria, Santanu

    2016-05-15

    In this study microwave-assisted hydrothermal method was used to prepare highly luminescent carbon dots (1-6 nm size) within a minute from tender coconut (Cocos nucifera) water. The synthesized carbon dots (C-dots) exhibit emission of blue and green lights while excited at 390 and 450 nm wavelengths, respectively. As an application, these C-dots were tested for a simple "turn on" fluorescent sensor for rapid detection of thiamine (vitamin B1). The detection of thiamine in human body is very important to prevent various diseases such as beriberi, neurological disorders, optic neuropathy, etc. The fluorescence emission intensity of C-dots quenches after addition of Cu(2+) ion and then again increases selectively (turn on) after the addition of thiamine. The fluorescence emission intensity enhancement of Cu(2+) ion modified C-dots in the presence of thiamine exhibits a linear relationship within the thiamine concentration range of 10-50 μM. The limit of detection was found to be 280 nM from this study. The selectivity of the detection was also tested in the presence of different organic molecules and inorganic ions (Ca(2+), Mg(2+), Na(+), K(+), Cl(-), SO4(2-), and NO3(-)) which are present in blood serum and urine and found to be almost no interference in the detection. Finally, to see the applicability in real samples a commercial vitamin capsule was tested and found less than 3% error in the detected concentration. The C-dots were also used for bioimaging of fungus and the results show they are also suitable for this application too. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Delayed Influence of Spinal Cord Injury on the Amino Acids of NO• Metabolism in Rat Cerebral Cortex Is Attenuated by Thiamine

    PubMed Central

    Boyko, Alexandra; Ksenofontov, Alexander; Ryabov, Sergey; Baratova, Lyudmila; Graf, Anastasia; Bunik, Victoria

    2018-01-01

    Severe spinal cord injuries (SCIs) result in chronic neuroinflammation in the brain, associated with the development of cognitive and behavioral impairments. Nitric oxide (NO•) is a gaseous messenger involved in neuronal signaling and inflammation, contributing to nitrosative stress under dysregulated production of reactive nitrogen species. In this work, biochemical changes induced in the cerebral cortex of rats 8 weeks after SCI are assessed by quantification of the levels of amino acids participating in the NO• and glutathione metabolism. The contribution of the injury-induced neurodegeneration is revealed by comparison of the SCI- and laminectomy (LE)-subjected animals. Effects of the operative interventions are assessed by comparison of the operated (LE/SCI) and non-operated animals. Lower ratios of citrulline (Cit) to arginine (Arg) or Cit to ornithine and a more profound decrease in the ratio of lysine to glycine distinguish SCI animals from those after LE. The data suggest decreased NO• production from both Arg and homoarginine in the cortex 8 weeks after SCI. Both LE and SCI groups show a strong decrease in the level of cortex glutathione. The neurotropic, anti-inflammatory, and antioxidant actions of thiamine (vitamin B1) prompted us to study the thiamine effects on the SCI-induced changes in the NO• and glutathione metabolism. A thiamine injection (400 mg/kg intraperitoneally) within 24 h after SCI abrogates the changes in the cerebral cortex amino acids related to NO•. Thiamine-induced normalization of the brain glutathione levels after LE and SCI may involve increased supply of glutamate for glutathione biosynthesis. Thus, thiamine protects from sequelae of SCI on NO•-related amino acids and glutathione in cerebral cortex. PMID:29379782

  19. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    PubMed

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay, relative activities toward Sia derivatives have been obtained. The preference of mouse CSS toward Neu5Ac and the ability of the rainbow trout enzyme to activate both KDN and Neu5Ac were confirmed. Thus, this simple and time-saving method is suitable for a systematic comparison of enzyme activity of structurally mutated enzymes based on the relative specific activity.

  20. A Genetic and Pharmacological Analysis of Isoprenoid Pathway by LC-MS/MS in Fission Yeast

    PubMed Central

    Takami, Tomonori; Fang, Yue; Zhou, Xin; Jaiseng, Wurentuya; Ma, Yan; Kuno, Takayoshi

    2012-01-01

    Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level. PMID:23145048

  1. Bisphosphonates inactivate human EGFRs to exert antitumor actions

    PubMed Central

    Yuen, Tony; Stachnik, Agnes; Iqbal, Jameel; Sgobba, Miriam; Gupta, Yogesh; Lu, Ping; Colaianni, Graziana; Ji, Yaoting; Zhu, Ling-Ling; Kim, Se-Min; Li, Jianhua; Liu, Peng; Izadmehr, Sudeh; Sangodkar, Jaya; Bailey, Jack; Latif, Yathin; Mujtaba, Shiraz; Epstein, Solomon; Davies, Terry F.; Bian, Zhuan; Zallone, Alberta; Aggarwal, Aneel K.; Haider, Shozeb; New, Maria I.; Sun, Li; Narla, Goutham; Zaidi, Mone

    2014-01-01

    Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyrosine kinases or the enzyme farnesyl pyrophosphate synthase. Consistent with this finding, colon cancer cells expressing low levels of HER do not respond to bisphosphonates. The results suggest that bisphosphonates can potentially be repurposed for the prevention and therapy of HER family-driven cancers. PMID:25453081

  2. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    van Deenen, Nicole; Bachmann, Anne-Lena; Schmidt, Thomas; Schaller, Hubert; Sand, Jennifer; Prüfer, Dirk; Schulze Gronover, Christian

    2012-04-01

    Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.

  3. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  4. An exponential model equation for thiamin loss in irradiated ground pork as a function of dose and temperature of irradiation

    NASA Astrophysics Data System (ADS)

    Fox, J. B.; Thayer, D. W.; Phillips, J. G.

    The effect of low dose γ-irradiation on the thiamin content of ground pork was studied in the range of 0-14 kGy at 2°C and at radiation doses from 0.5 to 7 kGy at temperatures -20, 10, 0, 10 and 20°C. The detailed study at 2°C showed that loss of thiamin was exponential down to 0kGy. An exponential expression was derived for the effect of radiation dose and temperature of irradiation on thiamin loss, and compared with a previously derived general linear expression. Both models were accurate depictions of the data, but the exponential expression showed a significant decrease in the rate of loss between 0 and -10°C. This is the range over which water in meat freezes, the decrease being due to the immobolization of reactive radiolytic products of water in ice crystals.

  5. Infant botulism: is there an association with thiamine deficiency?

    PubMed

    Ringe, Hannelore; Schuelke, Markus; Weber, Sven; Dorner, Brigitte G; Kirchner, Sebastian; Dorner, Martin B

    2014-11-01

    Infant botulism is an acute life-threatening condition and diagnosis is frequently delayed. Therefore, the best time window to administer specific antibodies, at present the only etiology-based therapy, is often missed, entailing long periods of hospitalization in the PICU. Here we present a 3-month-old boy with infant botulism and respiratory failure, who quickly and favorably responded to thiamine supplementation. From the feces we isolated Clostridium botulinum serotype A2. In addition to producing botulinum neurotoxin A, this strain carried the thiaminase I gene and produced thiaminase I. Accordingly, the child's feces were positive for thiaminase I activity. Because C botulinum group I strains are capable of producing thiaminase I, we speculate that thiamine degradation might further aggravate the paralytic symptoms caused by botulinum neurotoxins in infant botulism. Thus, supportive supplementation with thiamine could be beneficial to speed up recovery and to shorten hospitalization in some patients with infant botulism. Copyright © 2014 by the American Academy of Pediatrics.

  6. Factors affecting a cyanogen bromide-based assay of thiamin.

    PubMed

    Wyatt, D T; Lee, M; Hillman, R E

    1989-11-01

    We analyzed extensively a modified thiochrome method for thiamin analysis. Acid phosphatase (EC 3.1.3.2) from potato was superior to either alpha-amylase or acid phosphatase from wheat germ as a dephosphorylating agent. Timing of cyanogen bromide exposure was important, but the assay had good precision and accuracy. The standard curve was linear from 10 to 3000 nmol/L. The within-run and between-run coefficients of variation for total thiamin in whole blood were 3.6% and 7.4%, respectively. Analytical recoveries for low, intermediate, and high additions of thiamin to whole blood were 93-109%. Sample yield was increased by 41% (+/- 29% SD) with pre-assay freezing. Samples were stable for two days at room temperature, for seven days when refrigerated, and for two years when frozen. Previously unreported interference was seen with penicillin derivatives, and with several commonly used diuretic and antiepileptic medications. This assay may be suitable for population screening; 200 samples could be analyzed weekly at a cost of +0.20 per sample.

  7. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    PubMed

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  8. Biotransformation of nitroso aromatic compounds and 2-oxo acids to N-hydroxy-N-arylacylamides by thiamine-dependent enzymes in rat liver.

    PubMed

    Yoshioka, T; Uematsu, T

    1998-07-01

    The formation of N-hydroxy-N-arylacylamides from nitroso aromatic compounds and 2-oxo acids was investigated using rat liver subcellular fractions. Activities were found in both mitochondria and cytosol, except for activities for phenylpyruvate and glyoxylate; the former did not produce N-hydroxy-N-phenylphenylacetamide and the latter nonenzymatically produced N-hydroxy-N-phenylformamide with nitrosobenzene (NOB). The cytosolic activity of N-hydroxy-N-phenylglycolamide formation was indicated to be due to transketolase, which utilized hydroxypyruvate as a glycolic aldehyde donor to NOB. With mitochondria, 2-oxo acids (including hydroxypyruvate) served as substrates for the biotransformation of NOB to the corresponding N-hydroxy-N-phenylacylamides. The substrate preference was 2-oxobutyrate > pyruvate > 2-oxoisovalerate > 2-oxoisocaproate > 2-oxovalerate > 2-oxo-3-methylvalerate, judging from Vmax/half-saturating concentration for mitochondria values. The half-saturating concentrations for NOB were nearly constant. The mitochondrial activity was due to pyruvate dehydrogenase complex and branched-chain 2-oxo acid dehydrogenase complex (BCDHC). By using partially purified BCDHC, pyruvate and 2-oxobutyrate were found to be common substrates for both of the enzymes, and 2-oxoisovalerate was shown to be the most effective substrate for BCDHC. Analysis by the Taft equation indicated that the polar effects, rather than the steric effects, of the alkyl groups of 2-oxo acids are important for BCDHC-catalyzed formation of N-hydroxy-N-phenylacylamides. A positive Hammett constant obtained for the formation of N-hydroxy-N-arylisobutyramides indicates that an electron-withdrawing substituent makes the nitroso compounds susceptible to BCDHC-catalyzed biotransformation.

  9. Clavine Alkaloids Gene Clusters of Penicillium and Related Fungi: Evolutionary Combination of Prenyltransferases, Monooxygenases and Dioxygenases

    PubMed Central

    Martín, Juan F.; Liras, Paloma

    2017-01-01

    The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently. PMID:29186777

  10. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    NASA Astrophysics Data System (ADS)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  11. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    PubMed

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency.

  12. 21 CFR 582.5875 - Thiamine hydrochloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Thiamine hydrochloride. 582.5875 Section 582.5875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  13. 21 CFR 582.5878 - Thiamine mononitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Thiamine mononitrate. 582.5878 Section 582.5878 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  14. 21 CFR 582.5875 - Thiamine hydrochloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Thiamine hydrochloride. 582.5875 Section 582.5875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  15. 21 CFR 582.5878 - Thiamine mononitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Thiamine mononitrate. 582.5878 Section 582.5878 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  16. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis.

    PubMed

    Min, K L; Kim, Y H; Kim, Y W; Jung, H S; Hah, Y C

    2001-08-15

    The white-rot fungus Phellinus ribis produced a single form of laccase, which was purified to apparent electrophoretic homogeneity from cultures induced with 2,5-xylidine. This protein was a dimer, consisting of two subunits of 76 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Carbohydrate analysis revealed that the enzyme contained about 28% carbohydrate content. The laccase appeared to be different from other known laccases by the UV-visible absorption spectrum analysis. One enzyme molecule contained one copper, one manganese, and two zinc atoms. The laccase showed optimal activity at pH 4.0-6.0, 5.0, and 6.0 with 2,6-dimethoxyphenol, ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)], and syringaldazine, respectively. The enzyme preferably oxidized dimethoxyphenol and aromatic amine compounds. The stability of the laccase was low at acidic pH, whereas it showed high stability at neutral pH and mild temperature. The N-terminal amino acid sequence revealed a very low homology with other microbial laccases. With some substrates, the addition of manganese and H2O2 resulted in a remarkable increase in the oxidation rate. Without an appropriate phenolic substrate, the enzyme could not oxidize Mn(II) in the presence of H2O2 or pyrophosphate. Copyright 2001 Academic Press.

  17. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelli,S.; McLellan, J.; Montalvetti, A.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformationalmore » change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.« less

  18. Signs of preclinical Wernicke's encephalopathy and thiamine levels as predictors of neuropsychological deficits in alcoholism without Korsakoff's syndrome.

    PubMed

    Pitel, Anne-Lise; Zahr, Natalie M; Jackson, Karen; Sassoon, Stephanie A; Rosenbloom, Margaret J; Pfefferbaum, Adolf; Sullivan, Edith V

    2011-02-01

    The purpose of this study was to determine whether meeting historical criteria for unsuspected Wernicke's encephalopathy (WE), largely under-diagnosed in vivo, explains why some alcoholics have severe neuropsychological deficits, whereas others, with a similar drinking history, exhibit preserved performance. Demographic, clinical, alcohol related, and neuropsychological measures were collected in 56 abstinent alcoholics and 38 non-alcohol-dependent volunteers. Alcoholics were classified using the clinical criteria established by Caine et al (1997) and validated in their neuropathological study of alcoholic cases. Our alcoholics who met a single criterion were considered 'at risk for WE' and those with two or more criteria with 'signs of WE'. Whole blood thiamine was also measured in 22 of the comparison group and 28 alcoholics. Of the alcoholics examined, 27% met no criteria, 57% were at risk for WE, and 16% had signs of WE. Neuropsychological performance of the alcoholic subgroups was graded, with those meeting zero criteria not differing from controls, those meeting one criterion presenting mild-to-moderate deficits on some of the functional domains, and those meeting two or more criteria having the most severe deficits on each of the domains examined. Thiamine levels were selectively related to memory performance in the alcoholics. Preclinical signs of WE can be diagnosed in vivo, enabling the identification of ostensibly 'uncomplicated' alcoholics who are at risk for neuropsychological complications. The graded effects in neuropsychological performance suggest that the presence of signs of WE explains, at least partially, the heterogeneity of alcoholism-related cognitive and motor deficits.

  19. Biochemical and Structural Characterization of Bisubstrate Inhibitors of BasE, the Self-standing Non-Ribosomal Peptide Synthetase Adenylate-Forming Enzyme of Acinetobactin Synthesis†,‡

    PubMed Central

    Drake, Eric J.; Duckworth, Benjamin P.; Neres, João; Aldrich, Courtney C.; Gulick, Andrew M.

    2010-01-01

    The human pathogen Acinetobacter baumannii produces a siderophore called acinetobactin that is derived from one molecule each of threonine, histidine, and 2,3-dihydroxybenzoic acid (DHB). The activity of several non-ribosomal peptide synthetase (NRPS) enzymes is used to combine the building blocks into the final molecule. The acinetobactin synthesis pathway initiates with a self-standing adenylation enzyme, BasE, that activates the DHB molecule and covalently transfers it to the pantetheine cofactor of an aryl-carrier protein of BasF, a strategy that is shared with many siderophore-producing NRPS clusters. In this reaction, DHB reacts with ATP to form the aryl adenylate and pyrophosphate. In a second partial reaction, the DHB is transferred to the carrier protein. Inhibitors of BasE and related enzymes have been identified that prevent growth of bacteria on iron-limiting media. Recently, a new inhibitor of BasE has been identified via high-throughput screening using a fluorescence polarization displacement assay. We present here biochemical and structural studies to examine the binding mode of this inhibitor. The kinetics of the wild-type BasE enzyme is shown and inhibition studies demonstrate that the new compound exhibits competitive inhibition against both ATP and 2,3-dihydroxybenzoate. Structural examination of BasE bound to this inhibitor illustrates a novel binding mode in which the phenyl moiety partially fills the enzyme pantetheine binding tunnel. Structures of rationally designed bisubstrate inhibitors are also presented. PMID:20853905

  20. Kinetic Fluorescence Experiment for the Determination of Thiamine.

    ERIC Educational Resources Information Center

    Bower, Nathan W.

    1982-01-01

    Background information, procedures, and typical results are provided for an experiment which integrates principles of fluorescent and kinetic analysis. In the procedure, mecuric chloride is used as a selective oxidizing agent for converting thiamine to thiochrome. The experiment can be completed in a two-hour laboratory period. (Author/JN)

  1. Reversible changes in size of cell nuclei isolated from Amoeba proteus: role of the cytoskeleton.

    PubMed

    Pomorski, P; Grebecka, L; Grebecki, A; Makuch, R

    2000-01-01

    Micrurgically isolated interphasal nuclei of Amoeba proteus, which preserve F-actin cytoskeletal shells on their surface, shrink after perfusion with imidazole buffer without ATP, and expand to about 200% of their cross-sectional area upon addition of pyrophosphate. These changes in size may be reproduced several times with the same nucleus. The shrunken nuclei are insensitive to the osmotic effects of sugars and distilled water, whereas the expanded ones react only to the distilled water, showing further swelling. The shrinking-expansion cycles are partially inhibited by cytochalasins. They are attributed to the state of actomyosin complex in the perinuclear cytoskeleton, which is supposed to be in the rigor state in the imidazole buffer without ATP, and to dissociate in the presence of pyrophosphate. Inflow of external medium to the nuclei during dissociation of the myosin from the perinuclear F-actin may be due to colloidal osmosis depending on other macromolecular components of the karyoplasm.

  2. Effects of Humic Acids Isolated from Peat of Various Origin on in Vitro Production of Nitric Oxide: a Screening Study.

    PubMed

    Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Yu; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M

    2016-09-01

    A screening study of biological activity of native humic acids isolated from peat was performed; several physical and chemical parameters of their structures were studied by UV- and infrared spectroscopy. Spectroscopy yielded similar shape of light absorption curves of humic acids of different origin, which can reflect similarity of general structural principles of these substances. Alkaline humic acids have more developed system of polyconjugation, while molecular structures of pyrophosphate humic acids were characterized by higher aromaticity and condensation indexes. Biological activity of the studied humic acids was assessed by NO-stimulating capacity during their culturing with murine peritoneal macrophages in a wide concentration range. It was shown that due to dose-dependent enhancement of NO production humic acids can change the functional state of macrophages towards development of pro-inflammatory properties. These changes were associated with high activity of humic acids isolated by pyrophosphate extraction, which allows considering effects of isolation method on biological activity.

  3. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile, and accurate RNA structure analysis

    PubMed Central

    Smola, Matthew J.; Rice, Greggory M.; Busan, Steven; Siegfried, Nathan A.; Weeks, Kevin M.

    2016-01-01

    SHAPE chemistries exploit small electrophilic reagents that react with the 2′-hydroxyl group to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues based on the ability of reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as for simple model RNAs. This protocol describes the experimental steps, implemented over three days, required to perform SHAPE probing and construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. These steps include RNA folding and SHAPE structure probing, mutational profiling by reverse transcription, library construction, and sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots, and provides useful troubleshooting information, often within an hour. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures, and visualize probable and alternative helices, often in under a day. We illustrate these algorithms with the E. coli thiamine pyrophosphate riboswitch, E. coli 16S rRNA, and HIV-1 genomic RNAs. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles, and entire transcriptomes. The straightforward MaP strategy greatly expands the number, length, and complexity of analyzable RNA structures. PMID:26426499

  4. Structure-Derived Proton-Transfer Mechanism of Action Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2003-01-01

    The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of pyruvate dehydrogenase (E1p) that is involved in decarboxylation of pyruvate followed by reductive acetylation of lipoic acid covalently bound to a lysine residue of dihydrolipoamide acetyltransferase. The structure of E1p recently determined in our laboratory revealed patterns of association of foul subunits and specifics of two TPP binding sites. The mechanism of action in part includes a conserved hydrogen bond between the N1' atom of the aminopyrimidine ring of the cofactor and the carboxylate group of Glu59 from the beta subunits, and a V-conformation of the cofactor that brings the N4' atom of the aminopyrimidine ring to the distance of the intramolecular hydrogen bond formed with the C2-atom of the thiazolium moiety. The carboxylate group of Glu59 is the local proton acceptor that enables proton translocation within the aminopyrimidine ring and stabilization of the rare N4' - iminopyrimidine tautomer. Based on the analysis of E1p structure, we postulate that the protein environment drives N4' - amino/N4' - imino dynamics resulting in a concerted shuttle-like movement of the subunits. We also propose that this movement of the subunits is strictly coordinated with the two enzymatic reactions carried out in E1p by each of the two cofactor sites. It is proposed that these reactions are in alternating phases such that when one active site is involved in decarboxylation, the other is involved in acetylation of lipoyl noiety.

  5. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    PubMed

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-04

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  6. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches

    PubMed Central

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    ABSTRACT Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations. PMID:26932506

  7. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.

    PubMed

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.

  8. Identification of cyanobacterial non-coding RNAs by comparative genome analysis.

    PubMed

    Axmann, Ilka M; Kensche, Philip; Vogel, Jörg; Kohl, Stefan; Herzel, Hanspeter; Hess, Wolfgang R

    2005-01-01

    Whole genome sequencing of marine cyanobacteria has revealed an unprecedented degree of genomic variation and streamlining. With a size of 1.66 megabase-pairs, Prochlorococcus sp. MED4 has the most compact of these genomes and it is enigmatic how the few identified regulatory proteins efficiently sustain the lifestyle of an ecologically successful marine microorganism. Small non-coding RNAs (ncRNAs) control a plethora of processes in eukaryotes as well as in bacteria; however, systematic searches for ncRNAs are still lacking for most eubacterial phyla outside the enterobacteria. Based on a computational prediction we show the presence of several ncRNAs (cyanobacterial functional RNA or Yfr) in several different cyanobacteria of the Prochlorococcus-Synechococcus lineage. Some ncRNA genes are present only in two or three of the four strains investigated, whereas the RNAs Yfr2 through Yfr5 are structurally highly related and are encoded by a rapidly evolving gene family as their genes exist in different copy numbers and at different sites in the four investigated genomes. One ncRNA, Yfr7, is present in at least seven other cyanobacteria. In addition, control elements for several ribosomal operons were predicted as well as riboswitches for thiamine pyrophosphate and cobalamin. This is the first genome-wide and systematic screen for ncRNAs in cyanobacteria. Several ncRNAs were both computationally predicted and their presence was biochemically verified. These RNAs may have regulatory functions and each shows a distinct phylogenetic distribution. Our approach can be applied to any group of microorganisms for which more than one total genome sequence is available for comparative analysis.

  9. The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors.

    PubMed

    Svane, Simon; Kjeldsen, Frank; McKee, Vickie; McKenzie, Christine J

    2015-07-14

    The three dimetallic compounds [Ga2(bpbp)(OH)2(H2O)2](ClO4)3, [In2(bpbp)(CH3CO2)2](ClO4)3 and [Zn2(bpbp)(HCO2)2](ClO4) (bpbp(-) = 2,6-bis((N,N'-bis(2-picolyl)amino)methyl)-4-tertbutylphenolate) were evaluated as stable solid state precursors for reactive solution state receptors to use for the recognition of the biologically important anion pyrophosphate in water at neutral pH. Indicator displacement assays using in situ generated complex-pyrocatechol violet adducts, {M2(bpbp)(HxPV)}(n+) M = Ga(3+), In(3+), Zn(2+), were tested for selectivity in their reactions with a series of common anions: pyrophosphate, phosphate, ATP, arsenate, nitrate, perchlorate, chloride, sulfate, formate, carbonate and acetate. The receptor employing Ga(3+) showed a slow but visually detectable response (blue to yellow) in the presence of one equivalent of pyrophosphate but no response to any other anion, even when they were present in much higher concentrations. The systems based on In(3+) or Zn(2+) show less selectivity in accord with visibly discernible responses to several of the anions. These results demonstrate a facile method for increasing anion selectivity without modification of an organic dinucleating ligand scaffold. The comfortable supramolecular recognition of pyrophosphate by the dimetallic complexes is demonstrated by the single crystal X-ray structure of [Ga2(bpbp)(HP2O7)](ClO4)2 in which the pyrophosphate is coordinated to the two gallium ions via four of its oxygen atoms.

  10. Brain and Behavioral Pathology in an Animal Model of Wernicke’s Encephalopathy and Wernicke-Korsakoff Syndrome

    PubMed Central

    Vetreno, Ryan P.; Ramos, Raddy L.; Anzalone, Steven; Savage, Lisa M.

    2012-01-01

    Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory. PMID:22192411

  11. Brain and behavioral pathology in an animal model of Wernicke's encephalopathy and Wernicke-Korsakoff Syndrome.

    PubMed

    Vetreno, Ryan P; Ramos, Raddy L; Anzalone, Steven; Savage, Lisa M

    2012-02-03

    Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation.

    PubMed

    Zhang, Yan; Li, Zhi-Xia; Yu, Xiu-Dao; Fan, Jia; Pickett, John A; Jones, Huw D; Zhou, Jing-Jiang; Birkett, Michael A; Caulfield, John; Napier, Johnathan A; Zhao, Guang-Yao; Cheng, Xian-Guo; Shi, Yi; Bruce, Toby J A; Xia, Lan-Qin

    2015-05-01

    Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Isoprenoids and tau pathology in sporadic Alzheimer's disease.

    PubMed

    Pelleieux, Sandra; Picard, Cynthia; Lamarre-Théroux, Louise; Dea, Doris; Leduc, Valérie; Tsantrizos, Youla S; Poirier, Judes

    2018-05-01

    The mevalonate pathway has been described to play a key role in Alzheimer's disease (AD) physiopathology. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are nonsterol isoprenoids derived from mevalonate, which serve as precursors to numerous human metabolites. They facilitate protein prenylation; hFPP and hGGPP synthases act as gateway enzymes to the prenylation of the small guanosine triphosphate (GTP)ase proteins such as RhoA and cdc42 that have been shown to facilitate phospho-tau (p-Tau, i.e., protein tau phosphorylated) production in the brain. In this study, a significant positive correlation was observed between the synthases mRNA prevalence and disease status (FPPS, p < 0.001, n = 123; GGPPS, p < 0.001, n = 122). The levels of mRNA for hFPPS and hGGPPS were found to significantly correlate with the amount of p-Tau protein levels (p < 0.05, n = 34) and neurofibrillary tangle density (p < 0.05, n = 39) in the frontal cortex. Interestingly, high levels of hFPPS and hGGPPS mRNA prevalence are associated with earlier age of onset in AD (p < 0.05, n = 58). Together, these results suggest that accumulation of p-Tau in the AD brain is related, at least in part, to increased levels of neuronal isoprenoids. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Isoprenoids and related pharmacological interventions: potential application in Alzheimer's disease.

    PubMed

    Li, Ling; Zhang, Wei; Cheng, Shaowu; Cao, Dongfeng; Parent, Marc

    2012-08-01

    Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein-protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer's disease.

  15. Structure of the Bacillus anthracis dTDP- L -rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, Jackson; Lee, Jesi; Halavaty, Andrei S.

    L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), fromBacillus anthraciswas determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs.more » However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.« less

  16. Pathology, physiologic parameters, tissue contaminants, and tissue thiamine in morbid and healthy central Florida adult American alligators (Alligator mississippiensis)

    USGS Publications Warehouse

    Honeyfield, D.C.; Ross, J.P.; Carbonneau, D.A.; Terrell, S.P.; Woodward, A.R.; Schoeb, T.R.; Perceval, H.F.; Hinterkopf, J.P.

    2008-01-01

    An investigation of adult alligator (Alligator mississippiensis) mortalities in Lake Griffin, central Florida, was conducted from 1998-2004. Alligator mortality was highest in the months of April and May and annual death count peaked in 2000. Bacterial pathogens, heavy metals, and pesticides were not linked with the mortalities. Blood chemistry did not point to any clinical diagnosis, although differences between impaired and normal animals were noted. Captured alligators with signs of neurologic impairment displayed unresponsive and uncoordinated behavior. Three of 21 impaired Lake Griffin alligators were found to have neural lesions characteristic of thiamine deficiency in the telencephalon, particularly the dorsal ventricular ridge. In some cases, lesions were found in the thalamus, and parts of the midbrain. Liver and muscle tissue concentrations of thiamine (vitamin B"1) were lowest in impaired Lake Griffin alligators when compared to unimpaired alligators or to alligators from Lake Woodruff. The consumption of thiaminase-positive gizzard shad (Dorosoma cepedianum) is thought to have been the cause of the low tissue thiamine and resulting mortalities. ?? Wildlife Disease Association 2008.

  17. Paenibacillus thiaminolyticus is not the cause of thiamine deficiency impeding lake trout (Salvelinus namaycush) recruitment in the Great Lakes

    USGS Publications Warehouse

    Richter, Catherine A.; Evans, Allison N.; Wright-Osment, Maureen K.; Zajicek, James L.; Heppell, Scott A.; Riley, Stephen C.; Krueger, Charles C.; Tillitt, Donald E.

    2012-01-01

    Thiamine (vitamin B1) deficiency is a global concern affecting wildlife, livestock, and humans. In Great Lakes salmonines, thiamine deficiency causes embryo mortality and is an impediment to restoration of native lake trout (Salvelinus namaycush) stocks. Thiamine deficiency in fish may result from a diet of prey with high levels of thiaminase I. The discoveries that the bacterial species Paenibacillus thiaminolyticus produces thiaminase I, is found in viscera of thiaminase-containing prey fish, and causes mortality when fed to lake trout in the laboratory provided circumstantial evidence implicating P. thiaminolyticus. This study quantified the contribution of P. thiaminolyticus to the total thiaminase I activity in multiple trophic levels of Great Lakes food webs. Unexpectedly, no relationship between thiaminase activity and either the amount of P. thiaminolyticus thiaminase I protein or the abundance of P. thiaminolyticus cells was found. These results demonstrate that P. thiaminolyticus is not the primary source of thiaminase activity affecting Great Lakes salmonines and calls into question the long-standing assumption that P. thiaminolyticus is the source of thiaminase in other wild and domestic animals.

  18. Increased central immunoreactive beta-endorphin content in patients with Wernicke-Korsakoff syndrome and in alcoholics.

    PubMed Central

    Summers, J A; Pullan, P T; Kril, J J; Harper, C G

    1991-01-01

    beta-endorphin, adrenocorticotrophin, and alpha-melanocyte stimulating hormone were measured by radioimmunoassay in three areas of human brain at necropsy in seven subjects with Wernicke-Korsakoff syndrome and in 52 controls. Thiamin concentration in six brain areas was also measured. Mamillary body beta-endorphin concentrations were significantly increased in those with the syndrome compared with controls, and those controls with high alcohol intake showed increased mamillary body beta-endorphin compared with controls with low alcohol intake. Brain thiamin concentration was similar in both groups, with the exception of the brainstem, where it was reduced in subjects with Wernicke-Korsakoff syndrome. Thalamic beta-endorphin in controls was inversely correlated with thiamin in frontal white matter, frontal cortex, parietal white matter and parietal cortex, while beta-endorphin in the hypothalamus of patients was inversely correlated with thiamin in frontal cortex, parietal white matter, thalamus and brainstem. These results suggest that there is a disturbance of the endorphinergic system in Wernicke-Korsakoff syndrome which may be related to alcohol intake. PMID:1650797

  19. Early mortality syndrome in Great Lakes salmonines

    USGS Publications Warehouse

    Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.; Tillitt, Donald E.

    2005-01-01

    Early mortality syndrome (EMS) is the termused to describe an embryonic mortality affectingthe offspring of salmonines (coho salmonOnco-rhynchus kisutch, Chinook salmonOncorhynchustshawytscha, steelhead [anadromous rainbow troutOncorhynchus mykiss], brown troutSalmo trutta,and lake trout,Salvelinus namaycush) in LakesMichigan and Ontario and, to a lesser extent, LakesHuron and Erie (Marcquenski and Brown 1997).Clinical signs of EMS include loss of equilibrium,a spiral swimming pattern, lethargy, hyperexcit-ability, hemorrhage, and death between hatch andfirst feeding. Early mortality syndrome was ob-served as far back as the 1960s in Great Lakessalmonines (Marcquenski and Brown 1997; Fitz-simons et al. 1999) and is of concern because mor-tality has been high in recent years (Wolgamoodet al. 2005; all 2005 citations are this issue). Stocksof Atlantic salmonSalmo salarfrom the FingerLakes and the Baltic Sea also exhibit a similarearly life stage mortality, called Cayuga syndrome(Fisher et al. 1995) and M74 (Bo ̈ rjeson and Norr-gren 1997), respectively. Low egg thiamine levelsand enhanced survival following thiamine treat-ments are common characteristics of EMS, CayugaSyndrome, and M74 (Fitzsimons et al. 1999). Be-cause the deficiency does not appear to be the re-sult of inadequate dietary thiamine (Fitzsimons and Brown 1998), investigators have hypothesizedthat the presence of some thiaminolytic factors inthe diet may reduce the bioavailability of thiamine,either by destroying it or converting it to an in-active analog or thiamine antagonist (Fisher et al.1996; Fitzsimons et al. 1999).

  20. Thiamine deficiency in Cambodian infants with and without beriberi.

    PubMed

    Coats, Debra; Shelton-Dodge, Kelsey; Ou, Kevanna; Khun, Vannara; Seab, Sommon; Sok, Kimsan; Prou, Chiva; Tortorelli, Silvia; Moyer, Thomas P; Cooper, Lisa E; Begley, Tadhg P; Enders, Felicity; Fischer, Philip R; Topazian, Mark

    2012-11-01

    To test the hypothesis that heavy metal toxicity and consumption of thiaminase-containing foods predispose to symptomatic thiamine deficiency. In a case-control study, thiamine diphosphate (TDP) blood concentrations were measured in 27 infants diagnosed with beriberi at a rural clinic, as well as their mothers and healthy Cambodian and American controls. Blood and urine levels of lead, arsenic, cadmium, mercury, and thallium were measured. Local food samples were analyzed for thiaminase activity. Mean TDP level among cases and Cambodian controls was 48 and 56 nmol/L, respectively (P = .08) and was 132 nmol/L in American controls (P < .0001 compared with both Cambodian groups). Mean TDP level of mothers of cases and Cambodian controls was 57 and 57 nmol/L (P = .92), and was 126 nmol/L in American mothers (P < .0001 compared with both Cambodian groups). Cases (but not controls) had lower blood TDP levels than their mothers (P = .02). Infant TDP level decreased with infant age and was positively associated with maternal TDP level. Specific diagnostic criteria for beriberi did not correlate with TDP level. There was no correlation between heavy metal levels and either TDP level or case/control status. No thiaminase activity was observed in food samples. Thiamine deficiency is endemic among infants and nursing mothers in rural southeastern Cambodia and is often clinically inapparent. Neither heavy metal toxicity nor consumption of thiaminase-containing foods account for thiamine deficiency in this region. Copyright © 2012 Mosby, Inc. All rights reserved.

Top