Sample records for thick graphite target

  1. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...

    2017-08-18

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).« less

  2. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).« less

  3. Deuteron irradiation of W and WO 3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  4. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  6. Optical properties of sputtered aluminum on graphite/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Teichman, Louis A.

    1989-01-01

    Solar absorptance, emittance, and coating thickness were measured for a range of coating thicknesses from about 400 A to 2500 A. The coatings were sputtered from an aluminum target onto 1-inch-diameter substrates of T300/5209 graphite/epoxy composite material with two different surface textures. Solar absorptance and emittance values for the specimens with the smooth surface finish were lower than those for the specimens with the rough surface finish. The ratio of solar absorptance to emittance was higher for the smooth specimens, increasing from 2 to 4 over the coating thickness range, than for the rough ones, which had a constant ratio of about 1. The solar absorptance and emittance values were dependent on the thickness of the sputtered coating.

  7. Development of a Muon Rotating Target for J-PARC/MUSE

    NASA Astrophysics Data System (ADS)

    Makimura, Shunsuke; Kobayashi, Yasuo; Miyake, Yasuhiro; Kawamura, Naritoshi; Strasser, Patrick; Koda, Akihiro; Shimomura, Koichiro; Fujimori, Hiroshi; Nishiyama, Kusuo; Kato, Mineo; Kojima, Kenji; Higemoto, Wataru; Ito, Takashi; Shimizu, Ryou; Kadono, Ryosuke

    At the J-PARC muon science facility (J-PARC/MUSE), a graphite target with a thickness of 20 mm has been used in vacuum to obtain an intense pulsed muon beam from the RCS 3-GeV proton beam [1], [2]. In the current design, the target frame is constructed using copper with a stainless steel tube embedded for water cooling. The energy deposited by the proton beam at 1 MW is evaluated to be 3.3 kW on the graphite target and 600 W on the copper frame by a Monte-Carlo simulation code, PHITS [3]. Graphite materials are known to lose their crystal structure and can be shrunk under intense proton beam irradiation. Consequently, the lifetime of the muon target is essentially determined by the radiation damage in graphite, and is evaluated to be half a year [4]. Hence, we are planning to distribute the radiation damage by rotating a graphite wheel. Although the lifetime of graphite in this case will be more than 10 years, the design of the bearing must be carefully considered. Because the bearing in JPARC/MUSE is utilized in vacuum, under high radiation, and at high temperature, an inorganic and solid lubricant must be applied to the bearing. Simultaneously, the temperature of the bearing must also be decreased to extend the lifetime. In 2009, a mock-up of the Muon Rotating Target, which could heat up and rotate a graphite wheel, was fabricated. Then several tests were started to select the lubricant and to determine the structure of the Muon Rotating Target, the control system and so on. In this report, the present status of the Muon Rotating Target for J-PARC/MUSE, especially the development of a rotation system in vacuum, is described.

  8. Influence of target thickness on the release of radioactive atoms

    NASA Astrophysics Data System (ADS)

    Guillot, Julien; Roussière, Brigitte; Tusseau-Nenez, Sandrine; Barré-Boscher, Nicole; Borg, Elie; Martin, Julien

    2017-03-01

    Nowadays, intense exotic beams are needed in order to study nuclei with very short half-life. To increase the release efficiency of the fission products, all the target characteristics involved must be improved (e.g. chemical composition, dimensions, physicochemical properties such as grain size, porosity, density…). In this article, we study the impact of the target thickness. Released fractions measured from graphite and uranium carbide pellets are presented as well as Monte-Carlo simulations of the Brownian motion.

  9. Preliminary Results of IS Plasma Focus as a Breeder of Short-Lived Radioisotopes 12C(d,n)13N

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Elahi, M.; Adlparvar, S.; Shahhoseini, E.; Sheibani, S.; Ranjber akivaj, H.; Alhooie, S.; Safarien, A.; Farhangi, S.; Aghaei, N.; Amini, S.; Khalaj, M. M.; Zirak, A. R.; Dabirzadeh, A. A.; Soleimani, J.; Torkzadeh, F.; Mousazadeh, M. M.; Moradi, K.; Abdollahzadeh, M.; Talaei, A.; Zaeem, A. A.; Moslehi, A.; Kashani, A.; Babazadeh, A. R.; Bagiyan, F.; Ardestani, M.; Roozbahani, A.; Pourbeigi, H.; Tajik Ahmadi, H.; Ahmadifaghih, M. A.; Mahlooji, M. S.; Mortazavi, B. N.; Zahedi, F.

    2011-04-01

    Modified IS (Iranian Sun) plasma focus (10 kJ,15 kV, 94 μF, 0.1 Hz) has been used to produce the short-lived radioisotope 13N (half-life of 9.97 min) through 12C(d,n)13N nuclear reaction. The filling gas was 1.5-3 torr of hydrogen (60%) deuterium (40%) mixture. The target was solid nuclear grade graphite with 5 mm thick, 9 cm width and 13 in length. The activations of the exogenous target on average of 20 shots (only one-third acceptable) through 10-13 kV produced the 511 keV gamma rays. Another peak found at the 570 keV gamma of which both was measured by a NaI portable gamma spectrometer calibrated by a 137Cs 0.25 μCi sealed reference source with its single line at 661.65 keV and 22Na 0.1 μCi at 511 keV. To measure the gamma rays, the graphite target converts to three different phases; solid graphite, powder graphite, and powder graphite in water solution. The later phase approximately has a doubled activity with respect to the solid graphite target up to 0.5 μCi of 511 keV and 1.1 μCi of 570 keV gamma lines were produced. This increment in activity was perhaps due to structural transformation of graphite powder to nano-particles characteristic in liquid water.

  10. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  11. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  12. Formation process of graphite film on Ni substrate with improved thickness uniformity through precipitation control

    NASA Astrophysics Data System (ADS)

    Kim, Seul-Gi; Hu, Qicheng; Nam, Ki-Bong; Kim, Mun Ja; Yoo, Ji-Beom

    2018-04-01

    Large-scale graphitic thin film with high thickness uniformity needs to be developed for industrial applications. Graphitic films with thicknesses ranging from 3 to 20 nm have rarely been reported, and achieving the thickness uniformity in that range is a challenging task. In this study, a process for growing 20 nm-thick graphite films on Ni with improved thickness uniformity is demonstrated and compared with the conventional growth process. In the film grown by the process, the surface roughness and coverage were improved and no wrinkles were observed. Observations of the film structure reveal the reasons for the improvements and growth mechanisms.

  13. Transferring-free and large-area graphitic carbon film growth by using molecular beam epitaxy at low growth temperature

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Yu; Wang, Cheng-Hung; Pao, Chun-Wei; Lin, Shih-Yen

    2015-09-01

    Graphitic carbon films prepared by using molecular beam epitaxy (MBE) on metal templates with different thicknesses deposited on SiO2/Si substrates are investigated in this paper. With thick Cu templates, only graphitic carbon flakes are obtained near the Cu grain boundaries at low growth temperatures on metal/SiO2 interfaces. By replacing the Cu templates with thin Ni templates, complete graphitic carbon films with superior crystalline quality is obtained at 600 °C on SiO2/Si substrates after removing the Ni templates. The enhanced attachment of the graphitic carbon film to the SiO2/Si substrates with reduced Ni thickness makes the approach a promising approach for transferring-free graphene preparation at low temperature by using MBE.

  14. Structural features of the adsorption layer of pentacene on the graphite surface and the PMMA/graphite hybrid surface

    NASA Astrophysics Data System (ADS)

    Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.

    2017-08-01

    Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.

  15. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    PubMed

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  16. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  17. Measurement of Thick Target Neutron Yields at 0-Degree Bombarded With 140-MeV, 250-MeV And 350-MeV Protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Yosuke; /JAERI, Kyoto; Taniguchi, Shingo

    Neutron energy spectra at 0{sup o} produced from stopping-length graphite, aluminum, iron and lead targets bombarded with 140, 250 and 350 MeV protons were measured at the neutron TOF course in RCNP of Osaka University. The neutron energy spectra were obtained by using the time-of-flight technique in the energy range from 10 MeV to incident proton energy. To compare the experimental results, Monte Carlo calculations with the PHITS and MCNPX codes were performed using the JENDL-HE and the LA150 evaluated nuclear data files, the ISOBAR model implemented in PHITS, and the LAHET code in MCNPX. It was found that thesemore » calculated results at 0{sup o} generally agreed with the experimental results in the energy range above 20 MeV except for graphite at 250 and 350 MeV.« less

  18. Perspective of Muon Production Target at J-PARC MLF MUSE

    NASA Astrophysics Data System (ADS)

    Makimura, Shunsuke; Matoba, Shiro; Kawamura, Naritoshi; Matsuzawa, Yukihiro; Tabe, Masato; Aoyagi, Hiroyuki; Kondo, Hiroto; Kobayashi, Yasuo; Fujimori, Hiroshi; Ikedo, Yutaka; Kadono, Ryosuke; Koda, Akihiro; Kojima, Kenji M.; Miyake, Yasuhiro; Nakamura, Jumpei G.; Oishi, Yu; Okabe, Hirotaka; Shimomura, Koichiro; Strasser, Patrick

    A pulsed muon beam with unprecedented intensity will be generated by a 3-GeV 333-microA proton beam on a muon target made of 20-mm thick isotropic graphite at J-PARC MLF MUSE (Muon Science Establishment). The first muon beam was successfully generated on September 26th, 2008. Gradually upgrading the beam intensity, continuous 300-kW proton beam has been operated by a fixed target method without replacements till June of 2014. However, the lifetime of the fixed target was anticipated to be less than 1 year by the proton-irradiation damage of the graphite through 1-MW beam operation. To extend the lifetime, a muon rotating target, in which the radiation damage is distributed to a wider area, was installed in September of 2014, and continuous and stable operation has been successfully performed. Because the muon target becomes highly radioactive by the proton irradiation, the maintenance is conducted by remote handling in the Hot cell. In September of 2015, a scraper No. 1 to collimate the proton beam scattered by the target was replaced for further high-power beam operation. Recently, new developments on monitoring and maintenance of the muon target for higher power operation are in progress. In this article, perspective of muon production target at J-PARC MLF MUSE will be described.

  19. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  20. Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite

    PubMed Central

    Boulanouar, Omar; Fromm, Michel; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon

    2013-01-01

    It was recently shown that the affinity of doubly charged, 1–3 diaminopropane (Dap2+) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291–21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA− transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films. PMID:23927289

  1. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  2. Auger Electrons as Probes for Composite Micro- and Nano- structured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.

    In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less

  3. Auger Electrons as Probes for Composite Micro- and Nano- structured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    DOE PAGES

    Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.; ...

    2017-10-05

    In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less

  4. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, Mark A.; Alford, Craig S.; Makowiecki, Daniel M.; Chen, Chih-Wen

    1994-01-01

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.

  5. Accelerator driven neutron source design via beryllium target and 208Pb moderator for boron neutron capture therapy in alternative treatment strategy by Monte Carlo method.

    PubMed

    Khorshidi, Abdollah

    2017-01-01

    The reactor has increased its area of application into medicine especially boron neutron capture therapy (BNCT); however, accelerator-driven neutron sources can be used for therapy purposes. The present study aimed to discuss an alternative method in BNCT functions by a small cyclotron with low current protons based on Karaj cyclotron in Iran. An epithermal neutron spectrum generator was simulated with 30 MeV proton energy for BNCT purposes. A low current of 300 μA of the proton beam in spallation target concept via 9Be target was accomplished to model neutron spectrum using 208Pb moderator around the target. The graphite reflector and dual layer collimator were planned to prevent and collimate the neutrons produced from proton interactions. Neutron yield per proton, energy distribution, flux, and dose components in the simulated head phantom were estimated by MCNPX code. The neutron beam quality was investigated by diverse filters thicknesses. The maximum epithermal flux transpired using Fluental, Fe, Li, and Bi filters with thicknesses of 7.4, 3, 0.5, and 4 cm, respectively; as well as the epithermal to thermal neutron flux ratio was 161. Results demonstrated that the induced neutrons from a low energy and low current proton may be effective in tumor therapy using 208Pb moderator with average lethargy and also graphite reflector with low absorption cross section to keep the generated neutrons. Combination of spallation-based BNCT and proton therapy can be especially effective, if a high beam intensity cyclotron becomes available.

  6. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.

    1994-02-08

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.

  7. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  8. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  9. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  10. Composite uranium carbide targets at TRIUMF: Development and characterization with SEM, XRD, XRF and L-edge densitometry

    NASA Astrophysics Data System (ADS)

    Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus

    2013-09-01

    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.

  11. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  12. Flame speed enhancement of solid nitrocellulose monopropellant coupled with graphite at microscales

    NASA Astrophysics Data System (ADS)

    Jain, S.; Yehia, O.; Qiao, L.

    2016-03-01

    The flame-speed-enhancement phenomenon of a solid monopropellant (nitrocellulose) using a highly conductive thermal base (graphite sheet) was demonstrated and studied both experimentally and theoretically. A propellant layer ranging from 20 μm to 170 μm was deposited on the top of a 20-μm thick graphite sheet. Self-propagating oscillatory combustion waves were observed, with average flame speed enhancements up to 14 times the bulk value. The ratio of the fuel-to-graphite layer thickness affects not only the average reaction front velocities but also the period and the amplitude of the combustion wave oscillations. To better understand the flame-speed enhancement and the oscillatory nature of the combustion waves, the coupled nitrocellulose-graphite system was modeled using one-dimensional energy conservation equations along with simple one-step chemistry. The period and the amplitude of the oscillatory combustion waves were predicted as a function of the ratio of the fuel-to-graphite thickness (R), the ratio of the graphite-to-fuel thermal diffusivity (α0), and the non-dimensional inverse adiabatic temperature rise (β). The predicted flame speeds and the characteristics of the oscillations agree well with the experimental data. The new concept of using a highly conductive thermal base such as carbon-based nano- and microstructures to enhance flame propagation speed or burning rate of propellants and fuels could lead to improved performance of solid and liquid rocket motors, as well as of the alternative energy conversion microelectromechanical devices.

  13. Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lopez, Osvaldo F.

    1991-01-01

    Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.

  14. Graphitic nanofilms of zinc-blende materials: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hu, San-Lue; Zhao, Li; Li, Yan-Li

    2017-12-01

    Ab initio calculations on ultra-thin nanofilms of 25 kinds of zinc-blende semiconductors demonstrate their stable geometry structures growth along (1 1 1) surface. Our results show that the (1 1 1) surfaces of 9 kinds of zinc-blende semiconductors can transform into a stable graphitelike structure within a certain thickness. The tensile strain effect on the thickness of graphitic films is not obvious. The band gaps of stable graphitic films can be tuned over a wide range by epitaxial tensile strain, which is important for applications in microelectronic devices, solar cells and light-emitting diodes.

  15. Lithium loss in the solid electrolyte interphase: Lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwieters, Timo; Evertz, Marco; Mense, Maximilian; Winter, Martin; Nowak, Sascha

    2017-07-01

    In this work we present a new method using LA-ICP-MS to quantitatively determine the lithium content in aged graphite electrodes of a lithium ion battery (LIB) by performing total depth profiling. Matrix matched solid external standards are prepared using a solid doping approach to avoid elemental fractionation effects during the measurement. The results are compared and matched to the established ICP-OES technique for bulk quantification after performing a microwave assisted acid digestion. The method is applied to aged graphite electrodes in order to determine the lithium immobilization (= "Li loss") in the solid electrolyte interphase after the first cycle of formation. For this, different samples including a reference sample are created to obtain varying thicknesses of the SEI covering the electrode particles. By applying defined charging voltages, an initial lithiation process is performed to obtain specific graphite intercalation compounds (GICs, with target stoichiometries of LiC30, LiC18, LiC12 and LiC6). Afterwards, the graphite electrode is completely discharged to obtain samples without mobile, thus active lithium in its lattice. Taking the amount of lithium into account which originates from the residues of the LiPF6 (dissolved in the carbon components containing electrolyte), it is possible to subtract the amount of lithium in the SEI.

  16. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE PAGES

    Feng, Guang; Li, Song; Zhao, Wei; ...

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  17. Influence of cyclic thermal loading on brazed composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Šmid, I.; Kny, E.; Kneringer, G.; Reheis, N.

    1990-04-01

    Reactor grade graphite and molybdenum (TZM) were brazed with different high temperature brazes. The resulting tiles had a size of 50 × 50 mm2 with a graphite thickness of 10 mm and a TZM thickness of 5 mm. The brazed composites have been tested in electron beam simulation for their thermal fatigue properties. The parameters of these tests were chosen to match NET design specifications for normal operation and "slow" peak energy deposition. The resulting damage and microstructural changes on the graphites and the brazes are discussed. Additional information is supplied on X-ray diffraction data proving the presence of different phases in the brazes.

  18. Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    PubMed Central

    2010-01-01

    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals. PMID:20163100

  19. Late-time particle emission from laser-produced graphite plasma

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-09-01

    We report a late-time "fireworks-like" particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  20. Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted "Z" Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane).

    PubMed

    Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2017-01-11

    A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.

  1. Progress in developing ultrathin solar cell blanket technology

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.

    1984-01-01

    A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).

  2. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1992-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  3. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1993-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  4. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  5. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of the order of a millimeter, that would satisfy the requirements for use in adaptive optics.

  6. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  7. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  8. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  9. A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Van Thanh, Dang; Van Thien, Nguyen; Thang, Bui Hung; Van Chuc, Nguyen; Hong, Nguyen Manh; Trang, Bui Thi; Lam, Tran Dai; Huyen, Dang Thi Thu; Hong, Phan Ngoc; Minh, Phan Ngoc

    2016-05-01

    In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20-50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.

  10. Sinusoidal current and stress evolutions in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  11. Strength of a thick graphite/epoxy rocket motor case after impact by a blunt object

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.; Illg, Walter

    1989-01-01

    The National Aeronautics and Space Administration is developing graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the Space Shuttle. The membrane region is about 36 mm thick. A study was made to determine the reduction in strength of the FWC due to accidental damage caused by low-velocity impacts. Two 76.2 cm diameter by 30.5 cm long cylinders were impacted every 5 cm of circumference with 1.27 cm radius impacters of various mass. The impacters represented tools and equipment dropped from various heights. One cylinder was empty and the other was filled with inert propellant. Five cm wide test specimens were cut from the cylinder. Each was centered on an impact site. The specimens were X-rayed and loaded to failure in uniaxial tension. The strengths and depths of impact damage were analyzed in terms of maximum impact force. Rigid body mechanics and the Hertz law were used to derive an equation for impact force in terms of kinetic energy and the masses of the impacter and target. The depth of damage was predicted in terms of impact force using Love's solution of pressure applied on part of the boundary of a semi-infinite body.

  12. Strength of a thick graphite/epoxy rocket motor case after impact by a blunt object

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Illg, W.

    1987-01-01

    The National Aeronautics and Space Administration is developing graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the Space Shuttle. The membrane region is about 36 mm thick. A study was made to determine the reduction in strength of the FWC due to accidental damage caused by low-velocity impacts. Two 76.2 cm diameter by 30.5 cm long cylinders were impacted every 5 cm of circumference with 1.27 cm radius impacters of various mass. The impacters represented tools and equipment dropped from various heights. One cylinder was empty and the other was filled with inert propellant. Five cm wide test specimens were cut from the cylinder. Each was centered on an impact sight. The specimens were X-rayed and loaded to failure in uniaxial tension. The strengths and depths of impact damage were analyzed in terms of maximum impact force. Rigid body mechanics and the Hertz law were used to derive an equation for impact force in terms of kinetic energy and the masses of the impacter and target. The depth of damage was predicted in terms of impact force using Love's solution of pressure applied on part of the boundary of a semi-infinite body.

  13. A fracture mechanics analysis of impact damage in a thick composite laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1985-01-01

    Graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the space shuttle are being made by NASA. The FWC cases are wound with AS4W graphite fiber impregnated with an epoxy resin and are about 1.4 inches or more thick. Graphite-epoxy composite laminates, unlike metals, can be damaged easily by low velocity impacts of objects like dropped tools. The residual tension strength of the FWC laminate, after impact, is being studied at Langley Research Center. The conditions that give minimum visual evidence of damage are being emphasized. A fracture mechanics analysis was developed to predict the residual strength, after impact, using radiographs to measure the size of the damage and an equivalent surface crack to represent the damage.

  14. Thermophysical properties of graphite HOPG and HAPG in the solid state and under melting (from 2000 K up to 5000 K)

    NASA Astrophysics Data System (ADS)

    Savvatimskiy, A. I.; Onufriev, S. V.; Konyukhov, S. A.

    2017-11-01

    Experiments with HOPG graphite grade showed that the melting temperature of graphite equals 4800-4900 K and that the melting of graphite is possible only at elevated pressures. The data were obtained for resistivity, specific heat and input (Joule) energy up to 5000 K. HAPG (Highly Annealing Pyrolytic Graphite) is a form of highly oriented pyrolytic graphite. HAPG specimens in the form of strips (thickness 30 microns) were placed in a cell (between two plates of glass-sapphire). The specimen temperature was measured by a high speed pyrometer. The heat of fusion for both graphite grades (heated in a confined volume) was less (and specific heat - higher) than for the case with nearly free expansion. A possible reason for the observed effects is discussed in the report.

  15. Ultrasonic nondestructive evaluation of impact-damaged graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lampert, N. R.

    1980-01-01

    Unidirectional Hercules AS/3501-6 graphite fiber epoxy composites were subjected to repeated controlled low-velocity drop weight impacts in the laminate direction. The degradation was ultrasonically monitored using through-thickness attenuation and a modified stress wave factor (SWF). There appears to be strong correlations between the number of drop-weight impacts, the residual tensile strength, the through-thickness attenuation, and the SWF. The results are very encouraging with respect to the NDE potential of both of these ultrasonic parameters to provide strength characterizations in virgin as well as impact-damaged fiber composite structures.

  16. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

    DOEpatents

    Zhamu, Aruna [Centerville, OH; Shi, Jinjun [Columbus, OH; Guo, Jiusheng [Centerville, OH; Jang, Bor Z [Centerville, OH

    2012-03-13

    A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  17. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  18. ATIC Experiment: Elemental Spectra from the Flight in 2000

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a silicon matrix charge detector, a 0.75 nuclear interaction length graphite target, 3 scintillator strip hodoscopes, and an 18 radiation length thick BGO calorimeter to measure the cosmic ray composition and energy spectra from approximately 30 GeV to near 100 TeV. In this paper, we present preliminary results from the first flight, which was a test flight that lasted for 16 days, starting on 12/28/00.

  19. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Xu, Wu; Choi, Daiwon

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less

  20. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  1. Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun

    2018-03-01

    The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.

  2. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  3. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  4. Measurements and parameterization of neutron energy spectra from targets bombarded with 120 GeV protons

    NASA Astrophysics Data System (ADS)

    Kajimoto, T.; Shigyo, N.; Sanami, T.; Iwamoto, Y.; Hagiwara, M.; Lee, H. S.; Soha, A.; Ramberg, E.; Coleman, R.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Sakamoto, Y.; Ishibashi, K.; Nakashima, H.

    2014-10-01

    The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30°, 45°, 120°, and 150°. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16-36% of the experimental yields and those calculated with FLUKA code were 26-57% of the experimental yields for all targets and emission angles.

  5. Graphene Nanobubbles Produced by Water Splitting.

    PubMed

    An, Hongjie; Tan, Beng Hau; Moo, James Guo Sheng; Liu, Sheng; Pumera, Martin; Ohl, Claus-Dieter

    2017-05-10

    Graphene nanobubbles are of significant interest due to their ability to trap mesoscopic volumes of gas for various applications in nanoscale engineering. However, conventional protocols to produce such bubbles are relatively elaborate and require specialized equipment to subject graphite samples to high temperatures or pressures. Here, we demonstrate the formation of graphene nanobubbles between layers of highly oriented pyrolytic graphite (HOPG) with electrolysis. Although this process can also lead to the formation of gaseous surface nanobubbles on top of the substrate, the two types of bubbles can easily be distinguished using atomic force microscopy. We estimated the Young's modulus, internal pressure, and the thickness of the top membrane of the graphene nanobubbles. The hydrogen storage capacity can reach ∼5 wt % for a graphene nanobubble with a membrane that is four layers thick. The simplicity of our protocol paves the way for such graphitic nanobubbles to be utilized for energy storage and industrial applications on a wide scale.

  6. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  7. Measurement of leakage neutron spectra from graphite cylinders irradiated with D-T neutrons for validation of evaluated nuclear data.

    PubMed

    Luo, F; Han, R; Chen, Z; Nie, Y; Shi, F; Zhang, S; Lin, W; Ren, P; Tian, G; Sun, Q; Gou, B; Ruan, X; Ren, J; Ye, M

    2016-10-01

    A benchmark experiment for validation of graphite data evaluated from nuclear data libraries was conducted for 14MeV neutrons irradiated on graphite cylinder samples. The experiments were performed using the benchmark experimental facility at the China Institute of Atomic Energy (CIAE). The leakage neutron spectra from the surface of graphite (Φ13cm×20cm) at 60° and 120° and graphite (Φ13cm×2cm) at 60° were measured by the time-of-flight (TOF) method. The obtained results were compared with the measurements made by the Monte Carlo neutron transport code MCNP-4C with the ENDF/B-VII.1, CENDL-3.1 and JENDL-4.0 libraries. The results obtained from a 20cm-thick sample revealed that the calculation results with CENDL-3.1 and JENDL-4.0 libraries showed good agreements with the experiments conducted in the whole energy region. However, a large discrepancy of approximately 40% was observed below the 3MeV energy region with the ENDF/B-VII.1 library. For the 2cm-thick sample, the calculated results obtained from the abovementioned three libraries could not reproduce the experimental data in the energy range of 5-7MeV. The graphite data in CENDL-3.1 were verified for the first time and were proved to be reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2017-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  9. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2015-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  10. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  11. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  12. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms

    PubMed Central

    Lee, Jae-Kap; Kim, Jin-Gyu; Hembram, K. P. S. S.; Kim, Yong-Il; Min, Bong-Ki; Park, Yeseul; Lee, Jeon-Kook; Moon, Dong Ju; Lee, Wooyoung; Lee, Sang-Gil; John, Phillip

    2016-01-01

    Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp2 carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA’ structure. The non-Bernal AA’ allotrope of graphite is synthesized by the thermal- and plasma-treatment of graphene nanopowders at ~1,500 °C. The formation of AA’ bilayer graphene nuclei facilitates the preferred texture growth and results in single-crystal AA’ graphite in the form of nanoribbons (1D) or microplates (2D) of a few nm in thickness. Kinetically controlled AA’ graphite exhibits unique nano- and single-crystalline feature and shows quasi-linear behavior near the K-point of the electronic band structure resulting in anomalous optical and acoustic phonon behavior. PMID:28000780

  13. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    PubMed

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  14. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1983-01-01

    Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.

  15. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  16. The effect of graphitic target density on carbon nanotube synthesis by pulsed laser ablation method

    NASA Astrophysics Data System (ADS)

    Kazeimzadeh, Fatemeh; Malekfar, Rasoul; Houshiar, Mahboubeh

    2018-01-01

    Carbon nanotube (CNT) was synthesized by pulsed laser ablation (PLA) of a graphitic target in vacuum chamber filled by argon gas. The effect of different condition of target preparation on the amount and quality of carbon nanotube generation was investigated. The graphite powder with 2 at% micrometer nickel (Ni) powder was mixed and packed in to a mold using a hydraulic press device at a pressure of 1000 kg/cm3. The obtained pellet which contained the mixture powder provided the carbon source for CNTs formation in PLA method. Two pellets with the pressure time of 15 and 200 min was prepared. It has been shown that the time which graphitic target is under pressure is an effective parameter that can increase the amount of produced CNTs. Field emission scanning electron microscopy (FESEM) images show that if the density of graphitic target is increased by raising up the pressure time, CNTs can grow even under the condition in which usually no nanotube can be formed. It can be due to the elimination of the distances between the graphite and catalyst grains that causes the catalysis performance improvement. The experiment was performed for nanometer cobalt ferrite (CoFe2O4) together with Ni catalyst particles too. The diameter of synthesized CNPs was larger in the case of pure nickel that is related to the size of catalysts. Moreover, it was also observed that the production rate of the nanotubes increased for high density targets. This shows that the results are independent of the type of catalyst.

  17. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    PubMed

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.

  18. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  19. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, R S; Khishchenko, K V; Krasyuk, I K

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength ofmore » graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)« less

  20. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  1. Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1981-01-01

    Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.

  2. The impact of LDEF results on the space application of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Le, Tuyen D.

    1993-01-01

    Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.

  3. Formulation and Characterization of Epoxy Resin Copolymer for Graphite Composites

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1983-01-01

    Maximum char yield was obtained with a copolymer containing 25% mol fraction DGEBE and 75% mol fraction DGEBA (Epon 828). To achieve the high values (above 40%), a large quantity of catalyst (trimethoxyboroxine) was necessary. Although a graphite laminate 1/8" thick was successfully fabricated, the limited life of the catalyzed epoxy copolymer system precludes commercial application. Char yields of 45% can be achieved with phenolic cured epoxy systems as indicated by data generated under NAS2-10207 contract. A graphite laminate using this type of resin system was fabricated for comparison purposes. The resultant laminate was easier to process and because the graphite prepreg is more stable, the fabrication process could readily be adapted to commercial applications.

  4. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  5. Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.

    1991-01-01

    In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.

  6. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  7. Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Jeong Hun; Lee, Sung Su; Lee, Hyeon Jun

    2016-03-21

    We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries;more » however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.« less

  8. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ˜5 ×1020 cm-2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.

  9. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Nocera, P.; Zhong, Z.

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ~5×10 20 cm -2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.« less

  10. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE PAGES

    Simos, N.; Nocera, P.; Zhong, Z.; ...

    2017-07-24

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in microstructural graphite behavior to that under neutron irradiation and the agreement between the fluence threshold of ~5×10 20 cm -2 where the graphite lattice undergoes a dramatic change. The confirmed similarity in behavior and agreement in threshold fluences for proton and neutron irradiation effects on graphite reported for the first time in this study will enable the safe utilization of the wealth of neutron irradiation data on graphite that extends to much higher fluences and different temperature regimes by the proton accelerator community searching for multi-MW graphite targets.« less

  11. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-01

    A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30-50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a "template mechanism" played an important role during the molten salt synthesis.

  12. Definition and Modeling of Critical Flaws in Graphite Fiber Reinforced Resin Matrix Composite Materials

    DTIC Science & Technology

    1979-08-28

    11 EXPERIMENTAL PROGRAM .......................................*16 SHEAR TESTS ON THICK DISBONDED LAMINATES .... ....... 16 COMPRESSIVE BUCKLING OF...DISBONDED LAMINATES ...... .. 17 MECHANICAL CHARACTERIZATION FOR MOISTURE CONDITIONING EFFECTS .................................. 19 ULTRASONIC WAVE...SHEAR OF THICK LAMINATED BEAMS . . . ....... 24 PROPAGATION OF DISBOND IN FATIGUE ..... ............ .. 26 BUCKLING OF DISBONDED COMPRESSION SKIN

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less

  14. Multilayer adsorption of C2H4 and CF4 on graphite: Grand Canonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Abdelatif, H.; Drir, M.

    2016-11-01

    We study the phase transitions in adsorbed multilayers by Grand Canonical Monte Carlo simulations (GCMC) of the lattice-gas model. The focus will be on ethylene (C2H4) and tetrafluoromethane (CF4) on a homogeneous graphite surface. Earlier simulations of these systems investigated structural properties, dynamical behaviors of adsorbed films and thermodynamic quantities such as isosteric heat. The main purpose of this study is to consider the adsorbed multilayers by the evaluation of the layering behavior, the wetting phenomena and the critical temperatures. The isotherms obtained for temperature from 50 K to 170 K reproduce a number of interesting features observed experimentally: (i) we observe an important number of layers in contrast with previous simulations, (ii) a finite number of layers at saturated pressure for low temperatures are found, (iii) the isotherms present vertical steps typical of layer-by-layer growth, at higher temperatures these distinct layers tend to disappear signifying that the film thickness increases continuously, (iv) a thin film to thick film transition near the triple point temperature is noticed. In addition to this qualitative description, quantitative information are determined including temperatures and relative pressures of layers formation, layer-critical-point temperatures and phase diagrams. Comparing the two systems, ethylene/graphite and tetrafluoromethane/graphite, we observe a qualitatively similar behavior.

  15. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  16. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  17. First-principles determination of the Raman fingerprint of rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Torche, Abderrezak; Mauri, Francesco; Charlier, Jean-Christophe; Calandra, Matteo

    2017-09-01

    Multilayer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed to ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite is not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral, and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multilayer graphene. Our work is a prerequisite to experimental nondestructive identification and synthesis of rhombohedral graphite.

  18. Process development and fabrication of space station type aluminum-clad graphite epoxy struts

    NASA Technical Reports Server (NTRS)

    Ring, L. R.

    1990-01-01

    The manufacture of aluminum-clad graphite epoxy struts, designed for application to the Space Station truss structure, is described. The strut requirements are identified, and the strut material selection rationale is discussed. The manufacturing procedure is described, and shop documents describing the details are included. Dry graphite fiber, Pitch-75, is pulled between two concentric aluminum tubes. Epoxy resin is then injected and cured. After reduction of the aluminum wall thickness by chemical milling the end fittings are bonded on the tubes. A discussion of the characteristics of the manufactured struts, i.e., geometry, weight, and any anomalies of the individual struts is included.

  19. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil

  20. Performance analysis of cutting graphite-epoxy composite using a 90,000psi abrasive waterjet

    NASA Astrophysics Data System (ADS)

    Choppali, Aiswarya

    Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the cutting of ¼" thick material. The objective of this project is to study the surface roughness of the cut surface with a focus on demonstrating the benefits of using higher pressures for cutting composites. The effects of major cutting parameters: jet pressure, traverse speed, abrasive feed rate and cutting head size are studied at different levels. Statistical analysis of the experimental data provides an understanding of the effect of the process parameters on surface roughness. Additionally, the effect of these parameters on the taper angle of the cut is studied. The data is analyzed to obtain a set of process parameters that optimize the cutting of 1" thick graphite-epoxy composite. The statistical analysis is used to validate the experimental data. Costs involved in the cutting process are investigated in term of abrasive consumed to better understand and illustrate the practical benefits of using higher pressures. It is demonstrated that, as pressure increased, ultra-high pressure waterjets produced a better surface quality at a faster traverse rate with lower costs.

  1. The Effect of Compressive Loading on the Fatigue Lifetime of Graphite/ Epoxy Laminates

    DTIC Science & Technology

    1979-10-01

    Un-notched 11 3 Specimen Configuration, Notched 12 4 Location of Thickness and Width Measurements 14 5 Overall View of Composite Compression Test...Grips in Universal Testing Machine 24 8 Specimen Positioning Device 26 9 "Full-Fixity" Apparatus, Showing Auxiliary Platens 26 10 Specimen and Restraint...the accumu- lation of a statistically significant data base. * IA previous research study [11 showed that graphite/epoxy composites under constant

  2. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  3. Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A.

    NASA Astrophysics Data System (ADS)

    Rumble, Douglas, III; Hoering, Thomas C.

    1986-06-01

    Graphite veins of hydrothermal origin occur throughout central New Hampshire. Veins truncate sillimanite-grade, metasedimentary rocks of Early Devonian-Silurian age and range in size from microscopic to meters in thickness. In addition to graphite, veins may contain quartz, tourmaline, ilmenite, rutile, sillimanite, muscovite or chlorite. Vein mineralogy is generally compatible with wall rock mineral assemblages. Mineralization structures include wall-rock alteration zones, coxcomb graphite crystals on vein walls, and botryoidal, concentrically layered graphite-silicate nodules. The δ13C values of graphite in 14 deposits studied range from - 28%. (PDB) to - 9%. Veins whose textures give evidence of a single stage of mineralization have a narrow range of δ13C values (± 0.2%.). Other veins record successive episodes of graphite precipitation and have ranges of 3-6%. In one sample, adjacent layers of graphite differ by 3%. The wide range of δ13C may be explained by mixing carbon from two crustal reservoirs: biogenic, reduced carbon and carbonate. Precipitation of graphite results from mixing two or more aqueous fluids with different CO 2/CH 4 ratios. Parental fluids are produced by devolatilization during metamorphism. Water-rich fluids with CH4 > CO2 and low δ13C are derived from pelites that contained organic matter; whereas fluids with CO2 > CH4 and high δ13C come from siliceous carbonates.

  4. Nano-cracks in a synthetic graphite composite for nuclear applications

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  5. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    NASA Technical Reports Server (NTRS)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  6. Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, K.; Hurh, P.; Sidorov, V.

    2017-02-10

    The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potentialmore » localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.« less

  7. Surface crack analysis applied to impact damage in a thick graphite-epoxy composite

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Harris, C. E.; Morris, D. H.

    1988-01-01

    The residual tensile strength of a thick graphite/epoxy composite with impact damage was predicted using surface crack analysis. The damage was localized to a region directly beneath the impact site and extended only part way through the laminate. The damaged region contained broken fibers, and the locus of breaks in each layer resembled a crack perpendicular to the direction of the fibers. In some cases, the impacts broke fibers without making a visible crater. The impact damage was represented as a semi-elliptical surface crack with length and depth equal to that of the impact damage. The maximum length and depth of the damage were predicted with a stress analysis and a maximum shear stress criterion. The predictions and measurements of strength were in good agreement.

  8. Surface crack analysis applied to impact damage in a thick graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.; Harris, Charles E.; Morris, Don H.

    1990-01-01

    The residual tensile strength of a thick graphite/epoxy composite with impact damage was predicted using surface crack analysis. The damage was localized to a region directly beneath the impact site and extended only part way through the laminate. The damaged region contained broken fibers, and the locus of breaks in each layer resembled a crack perpendicular to the direction of the fibers. In some cases, the impacts broke fibers without making a visible crater. The impact damage was represented as a semi-elliptical surface crack with length and depth equal to that of the impact damage. The maximum length and depth of the damage were predicted with a stress analysis and a maximum shear stress criterion. The predictions and measurements of strength were in good agreement.

  9. Effect of dropped plies on the strength of graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Curry, James M.; Johnson, Eric R.; Starnes, James H., Jr.

    1987-01-01

    The reduction in the compressive and tensile strengths of graphite-epoxy laminates with thickness discontinuities due to dropped plies was studied by experiment and analysis. The specimens were fabricated with all the dropped plies lumped together in the center of a sixteen-ply quasi-isotropic layup, such that one surface was flat and the slope of the opposite surface changed abruptly at the dropped ply location to accommodate the thickness change. Even though the thick and thin sections are symmetrically laminated, there exists bending-extension coupling due to the geometric eccentricity of the middle planes of the thick and thin sections. Experiments were conducted on fifty-four specimens that differed in the configuration of the dropped plies only. The strength of a laminate with dropped plies is less than the strength of its thin section, and the compressive strength of a laminate with dropped plies is less than its tensile strength. The reduction in strength is directly related to the axial stiffness change between the thick and thin sections. To examine the mechanism of failure, the three-dimensional state of stress in the dropped ply region was evaluated by the finite element method. A tensile interlaminar criterion predicted the correct location of failure, but underestimated the failure load.

  10. Charged pion spectra in proton—carbon interactions at 31 GeV/c

    NASA Astrophysics Data System (ADS)

    Zofia Posiadała, Magdalena; NA61/SHINE Collaboration

    2013-02-01

    The NA61/SHINE experiment at CERN SPS measured charged pion spectra in p+C interactions at 31 GeV/c. These measurements are necessary to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. Presented analysis was based on the data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of nuclear interaction length. Three different methods which were used in order to obtain π+ and π- spectra are introduced. Differential cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in ten intervals of the laboratory polar angle up to 420 mrad.

  11. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  12. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-08

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

  13. Thickness-dependent phase transition in graphite under high magnetic field

    NASA Astrophysics Data System (ADS)

    Taen, Toshihiro; Uchida, Kazuhito; Osada, Toshihito

    2018-03-01

    Various electronic phases emerge when applying high magnetic fields in graphite. However, the origin of a semimetal-insulator transition at B ≃30 T is still not clear, while an exotic density-wave state is theoretically proposed. In order to identify the electronic state of the insulator phase, we investigate the phase transition in thin-film graphite samples that were fabricated on silicon substrate by a mechanical exfoliation method. The critical magnetic fields of the semimetal-insulator transition in thin-film graphite shift to higher magnetic fields, accompanied by a reduction in temperature dependence. These results can be qualitatively reproduced by a density-wave model by introducing a quantum size effect. Our findings establish the electronic state of the insulator phase as a density-wave state standing along the out-of-plane direction, and help determine the electronic states in other high-magnetic-field phases.

  14. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  15. Drilling Holes in Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Minlionica, Ronald

    1987-01-01

    Relatively long-lived bit produces high-quality holes. Effective combination of cutting-tool design, feed, and speed determined for drilling 3/16-and-1/4-in. (0.48-and 0.65-cm) diameter holes in 0.18 in. (0.46cm) thick GM3013A or equivalent graphite/epoxy corrugated spar without backup material and without coolant. Developed to produce holes in blind areas, optimal techniques yielded holes of high quality, with minimal or acceptable delamination and/or fiber extension on drill-exit side.

  16. Fuel cell cooler assembly and edge seal means therefor

    DOEpatents

    Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.

    1980-01-01

    A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.

  17. Fracture behavior of thick, laminated graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.

    1984-01-01

    The effect of laminate thickness on the fracture behavior of laminated graphite epoxy (T300/5208) composites was studied. The predominantly experimental research program included the study of the 0/+ or - 45/90 sub ns and 0/90 sub ns laminates with thickness of 8, 32, 64, 96 and 120 plies and the 0/+ or - 45 sub ns laminate with thickness of 6, 30, 60, 90 and 120 plies. The research concentrated on the measurement of fracture toughness utilizing the center-cracked tension, compact tension and three point bend specimen configurations. The development of subcritical damage at the crack tip was studied nondestructively using enhanced X-ray radiography and destructively using the laminate deply technique. The test results showed fracture toughness to be a function of laminate thickness. The fracture toughness of the 0 + or - 45/90 sub ns and 0/90 sub ns laminates decreased with increasing thickness and asymptotically approached lower bound values of 30 ksi square root of in. (1043 MPa square root of mm and 25 ksi square root of in (869 MPa square root of mm respectively. In contrast to the other two laminates, the fracture toughness of the 0/+ or - 45 sub ns laminate increased sharply with increasing thickness but reached an upper plateau value of 40 ksi square root of in (1390 MPa square root of mm) at 30 plies. Fracture toughness was independent of crack size for both thin and thick laminates for all three laminate types except for the 0/90 sub 2s laminate which spilt extensively. The center cracked tension, three point bend and compact tension specimens gave comparable results.

  18. Enhanced microwave absorption properties of epoxy composites containing graphite nanosheets@Fe3O4 decorated comb-like MnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Su, Xiaogang; Wang, Jun; Zhang, Bin; Chen, Wei; Wu, Qilei; Dai, Wei; Zou, Yi

    2018-05-01

    Recently, owing to the radiation and interference from electromagnetic wave (EMW), the requirements of EMW absorbing materials have been increasing. Herein, a novel absorber composed of graphite nanosheets@Fe3O4 composites decorated comb-like MnO2 (GNFM) has been successfully synthesized via a facile two steps, characterized using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, vibrating sample magnetometry (VSM) and vector network analyzer (VNA). The ternary composites with enhanced microwave absorption performance are due to the complementary effects of electroconductive material (graphite nanosheets), dielectric materials (MnO2) and magnetic material (Fe3O4 nanospheres). Hence, the maximum reflection loss of GNFM/epoxy composites is up to ‑31.7 dB at 5.85 GHz with absorbing thickness of 4.5 mm, and the efficient frequency bandwidth below ‑10 dB can reach up to 4.47 GHz (11.87–16.34 GHz) at matching thickness of 2 mm. The results demonstrate that GNFM could be regarded as a novel type of microwave absorbing material.

  19. Tension strength of a thick graphite/epoxy laminate after impact by a 1/2-in. radius impactor

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Illg, W.; Garber, D. P.

    1986-01-01

    NASA is developing graphite/epoxy filament-wound cases for solid rocket motors of the space shuttle. They are wet-wound with AS4W graphite fiber and HBRF-55A epoxy. The membrane region is about 1.4 inches thick. Two 30-inch-diameter by 12-inch-long cylinders were impacted every two inches of circumference with 1/2-inch radius impactors that were dropped from various heights. One cylinder was empty and the other was filled with inert propellant. Two-inch-wide test specimens were cut from the cylinders. Each was centered on an impact site. The specimens were x-rayed and loaded to failure in uniaxial tension. Rigid body mechanics and the Hertz law were used to predict impact force, local deformations, contact diameters, and contact pressures. The depth of impact damage was predicted using Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions were reasonably good. The strengths of the impacted specimens were reduced by as much as 37 percent without visible surface damage. Even the radiographs did not reveal the nonvisible damage.

  20. Brazed graphite/refractory metal composites for first-wall protection elements

    NASA Astrophysics Data System (ADS)

    Šmid, I.; Croessmann, C. D.; Salmonson, J. C.; Whitley, J. B.; Kny, E.; Reheis, N.; Kneringer, G.; Nickel, H.

    1991-03-01

    The peak surface heat flux deposition on divertor elements of near term fusion devices is expected to exceed 10 MW/m 2. The needed reliability of brazed plasma interactive components, particularly under abnormal operating conditions with peak surface temperatures well beyond 1000°C, makes refractory metallic substrates and brazes with a high melting point very attractive. TZM, a high temperature alloy of molybdenum, and isotropic graphite, materials very closely matched in their thermal expansion, were brazed with four high-temperature brazes. The brazes used were Zr, 90Ni/10Ti, 90Cu/10Ti and 70Ag/27Cu/3Ti (nominal composition prior to brazing, wt%). The resulting composite tiles of 50 × 50 mm2 with a TZM thickness of 5 mm and a graphite thickness of 10 mm have been tested in high heat flux simulation for their thermal fatigue properties. Up to 600 loading cycles were carried out with an average heat flux of 10 MW/m 2 for 0.5 s pulses. The maximum surface temperature was 1100°C. In support of the experiment, the thermal response and temperature gradients of the samples were investigated using a finite element model.

  1. The fabrication, testing and delivery of boron/epoxy and graphite/epoxy nondestructive test standards

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1971-01-01

    A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.

  2. Surface chemistry and wear behavior of single-crystal silicon carbide sliding against iron at temperatures to 1500 C in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analyses and morphological studies of wear and metal transfer were conducted with a single-crystal silicon carbide 0001 surface in contact with iron at various temperatures to 1500 C in a vacuum of 10 to the minus 8th power pascal. The results indicate that below 800 C, carbide-carbon and silicon are primarily seen on the silicon carbide surface. Above 800 C the graphite increases rapidly with increase in temperature. The outermost surficial layer, which consists mostly of graphite and little silicon at temperatures above 1200 C is about 2 nm thick. A thicker layer, which consists of a mixture of graphite, carbide, and silicon is approximately 100 nm thick. The closer the surface sliding temperature is to 800 C, the more the metal transfer produced. Above 800 C, there was a transfer of rough, discontinuous, and thin iron debris instead of smooth, continuous and thin iron film which was observed to transfer below 800 C. Two kinds of fracture pits were observed on the silicon carbide surface: (1) a pit with a spherical asperity; and (2) multiangular shaped pits.

  3. Effect of Holding Time on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-10-01

    Graphite powder was adopted to prevent the AZ91D magnesium alloy from oxidizing during the melting and casting process. The microstructure of the resultant surface films formed at 973 K (700 °C) holding for 0, 15, 30, 45, and 60 minutes was investigated by scanning electron microscopy, energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) after mechanical polishing and chemical etching. The results indicated that the surface films were composed of a protective layer and the underneath particles with different morphology. The protective layer was continuous with a thickness of 200 to 1000 nm mainly consisting of MgO, MgF2, and C, while the underneath particles mainly consisted of MgF2 and MgAl2O4. The surface films were the result of the interaction between the graphite powder, the melt, and the ambient atmosphere. The number and the size of the underneath particles, determining the thickness uniformity of the surface films, and the unevenness of the microsurface morphology increased with holding time. The mechanism of holding time on the resultant surface films was also discussed.

  4. Graphite-fiber-reinforced polyimide liners of various compositions in plain spherical bearings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1978-01-01

    A plain spherical bearing design with a ball diameter of 28.6 mm, a race length of 12.7 mm, and a 1.7-mm-thick, molded composite liner was evaluated. The liner material is a self-lubricating composite of graphite-fiber-reinforced polyimide resin (GFRPI). The liner is prepared by transfer molding a mixture of one part chopped graphite fiber and one part partially polymerized resin into the space between the bearing ball and the outer race and then completing the polymerization under heat and pressure. Several liner compositions were evaluated: two types of polyimide, condensation and addition; two types of graphite fiber, low and high modulus; and four powder additives - cadmium oxide, cadmium iodide, graphite fluoride, and molybdenum disulfide. The bearings were oscillated + or - 15 deg at 1 Hz for 20 kilocycles under a radial unit load of 29 MN sq m (4200 psi) in dry air at 25, 200, or 315 C. Both types of fiber and polyimide gave low friction and wear. A simple equation was developed to fit the wear-time data and adequately predicted wear to 100 kilocycles.

  5. Effect of Melt Temperature on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-12-01

    Graphite powder was adopted to prevent AZ91D alloy from oxidizing during melting and casting. The microstructure of the resultant surface films, formed at 933 K, 973 K, 1013 K, and 1053 K (660 °C, 700 °C, 740 °C, and 780 °C) for 30 minutes, was investigated by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction, and the phase composition of the surface films was analyzed by the standard Gibbs free energy change of the reactions between the graphite powder, the alloy melt, and the ambient atmosphere. The effect and mechanism of melt temperature on the resultant surface films were also discussed. The results indicated that the surface films, of which the surface morphology comprised folds and wrinkles, were composed of a protective layer and MgF2 particles. The protective layer was contributive to the prevention of the molten alloy from oxidizing, and consisted of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium existing in the form of MgO, MgF2, C, and MgAl2O4. The layer thickness was 200 to 900 nm. The melt temperature may affect the surface films through the increased interaction between the graphite powder, the melt, and the ambient atmosphere. The oxygen content and thickness of the protective layer decreased and then increased, while the height of the folds increased with melt temperature.

  6. Mass removal by oxidation and sublimation of porous graphite during fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Phillips, Grady T.; Bauer, William A.; Fox, Charles D.; Gonzales, Ashley E.; Herr, Nicholas C.; Gosse, Ryan C.; Perram, Glen P.

    2017-01-01

    The various effects of laser heating of carbon materials are key to assessing laser weapon effectiveness. Porous graphite plates, cylinders, and cones with densities of 1.55 to 1.82 g/cm3 were irradiated by a 10-kW fiber laser at 0.075 to 3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 to 838 mm3, and penetration times for 12.7-mm-thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be redeposited on the graphite surface. Dramatic graphite crystalline structures are also produced at higher laser irradiances. Significantly increased porosity of the sample is observed even outside the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. At ˜3.5 kW/cm2, the fractions of the mass removed from the cylindrical samples in the crater, surrounding trench, and outer region of decreased porosity are 38%, 47%, and 15%, respectively. Graphite is particularly resistant to damage by high power lasers. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  7. The structural behavior of a graphite-polymide honeycomb sandwich panel with quasi-isotropic face sheets and an orthotropic core

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Hagaman, J. A.

    1979-01-01

    The results of a series of tests of graphite-polyimide honeycomb sandwich panels are presented. The panels were 1.22 m long, 0.508 m wide, and approximately 13.3 m thick. The face sheets were a T-300/PMR-15 fabric in a quasi-isotropic layup and were 0.279 mm thick. The core was Hexcel HRH 327-3/16 - 4.0 glass reinforced polyimide honeycomb, 12.7 mm thick. Three panels were used in the test: one was cut into smaller pieces for testing as beam, compression, and shear specimens; a second panel was used for plate bending tests; the third panel was used for in-plane stability tests. Presented are the experimental results of four point bending tests, short block compression tests, core transverse shear modulus, three point bending tests, vibration tests, plate bending tests, and panel stability tests. The results of the first three tests are used to predict the results of some of the other tests. The predictions and experimental results are compared, and the agreement is quite good.

  8. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials

    NASA Technical Reports Server (NTRS)

    Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.; hide

    1998-01-01

    This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.

  9. Experimental measurement of the 12C+16O fusion cross sections at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2018-05-01

    The total cross sections of the 12C+16O fusion have been experimentally determined at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam was produced by the 5MV pelletron accelerator at the University of Notre Dame impinging on a thick ultra-pure graphite target. Protons and γ-rays were measured simultaneously in the center-of-mass energy range from 3.64 to 5.01 MeV, using strip silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. A new broad resonance-like structure is observed for the 12C+16O reaction, and a decreasing trend of its S-factor towards low energies is found.

  10. Electrochemical fabrication of capacitors

    DOEpatents

    Mansour, Azzam N.; Melendres, Carlos A.

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  11. Electroplating of the superconductive boride MgB2 from molten salts

    NASA Astrophysics Data System (ADS)

    Abe, Hideki; Yoshii, Kenji; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki

    2005-02-01

    An electroplating technique of the superconductive boride MgB2 onto graphite substrates is reported. Films of MgB2 with a thickness of tens micrometer were fabricated on the planar and curved surfaces of graphite substrates by means of electrolysis on a mixture of magnesium chloride, potassium chloride, sodium chloride, and magnesium borate fused at 600 °C under an Ar atmosphere. The electrical resistivity and magnetization measurements revealed that the electroplated MgB2 films undergo a superconducting transition with the critical temperature (Tc) of 36 K.

  12. Effect of Graphite Powder Amount on Surface Films Formed on Molten AZ91D Alloy

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-10-01

    Graphite powder was adopted to prevent AZ91D magnesium alloy from oxidizing during the melting and casting process. The microstructure of the resultant surface films formed on the molten alloy protected by 0, 2.7, 5.4, 8.1, and 10.8 g dm-2 graphite powder at 973 K (700 °C) for holding time of 30 minutes was investigated by scanning electron microscopy, energy dispersive spectrometer, X-ray diffraction, and the thermodynamic method. The results indicated that the surface films were composed of a protective layer and the underneath MgF2 particles with different morphology. The protective layer was continuous with a thickness range from 200 to 550 nm consisting of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium, possibly existing in the form of MgO, MgF2, C, and MgAl2O4. The surface films were the result of the interaction between the graphite powder, the melt, and the ambient atmosphere. The unevenness of the micro surface morphology and the number and size of the underneath MgF2 particles increased with graphite powder amount. The mechanism of the effect of graphite powder amount on the resultant surface films was also discussed.

  13. Impact damage and residual tension strength of a thick graphite/epoxy rocket motor case

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1992-01-01

    Impacters of various masses were dropped from various heights onto thick graphite/epoxy filament-wound cylinders. The cylinders represented filament-wound cases made for the booster motors of the Space Shuttle. Tups of various shapes were affixed to the impacters. Some of the cylinders were filled with inert propellant, and some were empty. The cylinders were impacted numerous times around the circumference and then cut into tension coupons, each containing an impact site. The size of the damage and the residual tension strength were measured. For hemispherical tups, strength was reduced as much as 30 percent by nonvisible damage. The damage consisted of matrix cracking and broken fibers. Analytical methods were used to predict the damage and residual tension strength. A factor of safety to account for nonvisible damage was determined. For corner and rod shaped tups, any damage that resulted in strength loss was readily visible.

  14. Inverse opal carbons for counter electrode of dye-sensitized solar cells.

    PubMed

    Kang, Da-Young; Lee, Youngshin; Cho, Chang-Yeol; Moon, Jun Hyuk

    2012-05-01

    We investigated the fabrication of inverse opal carbon counter electrodes using a colloidal templating method for DSSCs. Specifically, bare inverse opal carbon, mesopore-incoporated inverse opal carbon, and graphitized inverse opal carbon were synthesized and stably dispersed in ethanol solution for spray coating on a FTO substrate. The thickness of the electrode was controlled by the number of coatings, and the average relative thickness was evaluated by measuring the transmittance spectrum. The effect of the counter electrode thickness on the photovoltaic performance of the DSSCs was investigated and analyzed by interfacial charge transfer resistance (R(CT)) under EIS measurement. The effect of the surface area and conductivity of the inverse opal was also investigated by considering the increase in surface area due to the mesopore in the inverse opal carbon and conductivity by graphitization of the carbon matrix. The results showed that the FF and thereby the efficiency of DSSCs were increased as the electrode thickness increased. Consequently, the larger FF and thereby the greater efficiency of the DSSCs were achieved for mIOC and gIOC compared to IOC, which was attributed to the lower R(CT). Finally, compared to a conventional Pt counter electrode, the inverse opal-based carbon showed a comparable efficiency upon application to DSSCs.

  15. Thick silicon growth techniques

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  16. Effect of filler content on the properties of expanded- graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Masand, Aakash; Borah, Munu; Pathak, Abhishek K.; Dhakate, Sanjay R.

    2017-09-01

    Minimization of the weight and volume of a hydrogen-based PEM fuel cell stack is an essential area of research for the development and commercialization of PEMFCs for various applications. Graphite-based composite bipolar plates have significant advantages over conventional metallic bipolar plates due to their corrosion resistivity and low cost. On the other hand, expanded graphite is seen to be a potential candidate for facilitating the required electrical, thermal and mechanical properties of bipolar plates with a low density. Therefore, in the present study, the focus is on minimization of the high loading of graphite and optimizes its composition to meet the target properties of bipolar plates as per the USDOE target. Three types of expanded graphite (EG)-phenolic-resin-based composite bipolar plates were developed by partially replacing the expanded graphite content with natural graphite (NG) and carbon black as an additional filler. The three types of composite plate with the reinforcing constituent ratio EG:NG:R (25:25:50) give a bending strength of 49 MPa, a modulus of ~6 GPa, electrical conductivity  >100 S cm-1, a shore hardness of 55 and a bulk density of 1.55 g/cc. The 50 wt% loading of resin is sufficient to wet the 50 wt% filler content in the composite plate. This study gives an insight into using hybrid reinforcements in order to achieve the desired properties of bipolar plates.

  17. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    PubMed

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  18. Pyrolytic Carbon Coatings on Aligned Carbon Nanotube Assemblies and Fabrication of Advanced Carbon Nanotube/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh

    Chemical vapor deposition (CVD) is a technique used to create a pyrolytic carbon (PyC) matrix around fibrous preforms in carbon/carbon (C/C) composites. Due to difficulties in producing three-dimensional carbon nanotube (CNT) assemblies, use of nanotubes in CVD fabricated CNT/C composites is limited. This dissertation describes efforts to: 1) Study the microstructure of PyC deposited on CNTs in order to understand the effect of microstructure and morphology of carbon coatings on graphitization behavior of CNT/PyC composites. This understanding helped to suggest a new approach for controlled radial growth of CNTs. 2) Evaluate the properties of CNT/PyC structures as a novel form of CNT assemblies with resilient, anisotropic and tunable properties. PyC was deposited on aligned sheets of nanotubes, drawn from spinnable CNT arras, using CVD of acetylene gas. At longer deposition times, the microstructure of PyC changed from laminar turbostratic carbon to a disordered carbon. For samples with short PyC deposition times (up to 30 minutes), deposited carbon layer rearranged during graphitization treatment and resulted in a crystalline structure where the coating and original tube walls could not be easily differentiated. In contrast, in samples with longer carbon deposition durations, carbon layers close to the surface of the coating remained disordered even after graphitization thermal treatment. Understanding the effect of PyC microstructure transition on graphitization behavior of CNT/PyC composites was used to develop a new method for controlled radial growth of CNTs. Carbon coated aligned CNT sheets were graphitized after each short (20 minutes) carbon deposition cycle. This prevented development of disorder carbon during subsequent PyC deposition cycles. Using cyclic-graphitization method, thick PyC coating layers were successfully graphitized into a crystalline structure that could not be differentiated from the original nanotube walls. This resulted into radial growth of CNTs, from 40 to 100 nm. Infiltration of PyC into stacked layered sheets of aligned CNTs produced resilient foam-like materials that exhibited complete recovery from 90% compressive strain. PyC coated the junctions between nanotubes and also increased their surface roughness. These changes were assumed to be responsible for the resiliency of the, once inelastic, assembly of nanotubes. While nanotubes' alignment resulted in anisotropic properties of the foams, variation in PyC infiltration duration was used to tune the foams' properties. Further investigation into properties of these foams showed promising results for their application as pressure/strain sensor and selective liquid absorbers for oil spill clean ups. Finally, CNT foams were used as novel substrates for growth of secondary nanotube assemblies. In order to achieve that, foams were first coated with alumina buffer layers using atomic layer deposition (ALD) method. New nanotubes were further grown inside the foams by CVD of acetylene over iron nano-particles. Super low density and highly porous structure of the foams allowed for diffusion of catalyst along with growth gasses into their bulk, which resulted in growth of secondary nanotubes throughout the thickness of the foams. The thickness of the alumina buffer layer was shown to influence CNT nucleation density and growth uniformity across the thickness of the foams. Compressive mechanical testing of the foams showed an order of magnitude increase in compression strength after secondary CNT growth.

  19. Hydrothermal flake graphite mineralisation in Paleoproterozoic rocks of south-east Greenland

    NASA Astrophysics Data System (ADS)

    Rosing-Schow, Nanna; Bagas, Leon; Kolb, Jochen; Balić-Žunić, Tonči; Korte, Christoph; Fiorentini, Marco L.

    2017-06-01

    Flake graphite mineralisation is hosted in the Kuummiut Terrane of the Paleoproterozoic Nagssugtoqidian Orogen, south-east Greenland. Eclogite-facies peak-metamorphic assemblages record temperatures of 640-830 °C and pressures of 22-25 kbar, and are retrogressed in the high-pressure amphibolite-facies during ca. 1870-1820 Ma. Graphite occurs as lenses along cleavage planes in breccia and as garnet-quartz-graphite veins in various metamorphic host rocks in the Tasiilaq area at Auppaluttoq, Kangikajik, and Nuuk-Ilinnera. Graphite contents reach >30 vol% in 0.2-4 × 20 m wide semi-massive mineralisation (Auppaluttoq, Kangikajik). Supergene alteration formed 1- to 2-m-thick and up to a 2.5 × 2.5 km wide loose limonitic gravel containing graphite flakes in places. The flake size ranges from 1 to 6 mm in diameter with an average of 3 mm. Liberation efficiency is at minimum 60%. Hydrothermal fluids at 600 °C, transporting carbon as CO2 and CH4, formed the mineralisation commonly hosted by shear zones, which acted as pathways for the mineralising fluids. The hydrothermal alteration assemblage is quartz-biotite-grunerite-edenite-pargasite-K-feldspar-titanite. The δ13C values of graphite, varying from -30 to -18‰ PDB, indicate that the carbon was derived from organic matter most likely from metasedimentary sources. Devolatilisation of marble may have contributed a minor amount of carbon by fluid mixing. Precipitation of graphite involved retrograde hydration reactions, depleting the fluid in H2O and causing graphite saturation. Although the high-grade mineralisation is small, it represents an excellent example of hydrothermal mineralisation in an eclogite-facies terrane during retrograde exhumation.

  20. Carbon nanotubes and methods of forming same at low temperature

    DOEpatents

    Biris, Alexandru S.; Dervishi, Enkeleda

    2017-05-02

    In one aspect of the invention, a method for growth of carbon nanotubes includes providing a graphitic composite, decorating the graphitic composite with metal nanostructures to form graphene-contained powders, and heating the graphene-contained powders at a target temperature to form the carbon nanotubes in an argon/hydrogen environment that is devoid of a hydrocarbon source. In one embodiment, the target temperature can be as low as about 150.degree. C. (.+-.5.degree. C.).

  1. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines.

    PubMed

    Woodhams, Benjamin; Ansel-Bollepalli, Laura; Surmacki, Jakub; Knowles, Helena; Maggini, Laura; de Volder, Michael; Atatüre, Mete; Bohndiek, Sarah

    2018-06-19

    Nanodiamonds have demonstrated potential as powerful sensors in biomedicine, however, their translation into routine use requires a comprehensive understanding of their effect on the biological system being interrogated. Under normal fabrication processes, nanodiamonds are produced with a graphitic carbon shell, but are often oxidized in order to modify their surface chemistry for targeting to specific cellular compartments. Here, we assessed the biological impact of this purification process, considering cellular proliferation, uptake, and oxidative stress for graphitic and oxidized nanodiamond surfaces. We show for the first time that oxidized nanodiamonds possess improved biocompatibility compared to graphitic nanodiamonds in breast cancer cell lines, with graphitic nanodiamonds inducing higher levels of oxidative stress despite lower uptake.

  2. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Sun, Xiaoran; Huang, Xiaodan; Zhou, Liang

    2015-02-01

    A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries.A novel ``spray drying-carbonization-oxidation'' strategy has been developed for the fabrication of α-Fe2O3-graphitic carbon (α-Fe2O3@GC) composite microspheres, in which α-Fe2O3 nanoparticles with sizes of 30-50 nm are well-encapsulated by onion-like graphitic carbon shells with a thickness of 5-10 nm. In the constructed composite, the α-Fe2O3 nanoparticles act as the primary active material, providing a high capacity. Meanwhile, the graphitic carbon shells serve as the secondary active component, structural stabilizer, interfacial stabilizer, and electron-highway. As a result, the synthesized α-Fe2O3@GC nanocomposite exhibits a superior lithium-ion battery performance with a high reversible capacity (898 mA h g-1 at 400 mA g-1), outstanding rate capability, and excellent cycling stability. Our product, in terms of the facile and scalable preparation process and excellent electrochemical performance, demonstrates its great potential as a high-performance anode material for lithium-ion batteries. Electronic supplementary information (ESI) available: XRD pattern, XPS spectrum, CV curves, TEM and SEM images, and table. See DOI: 10.1039/c4nr06771a

  3. Effects of stitching on fracture toughness of uniweave textile graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.; Sharma, Suresh

    1995-01-01

    The effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and Mode 1 and Mode 2 fracture toughness of textile graphite/epoxy laminates were studied experimentally. Graphite/epoxy laminates were fabricated from AS4 graphite uniweave textiles and 3501-6 epoxy using Resin Transfer Molding. The cloths were stitched with Kevlar(tm) and glass yarns before resin infusion. Delamination was implanted during processing to simulate impact damage. Sublaminate buckling tests were performed in a novel fixture to measure Compression After Impact (CAI) strength of stitched laminates. The results show that CAI strength can be improved up to 400% by through-the-thickness stitching. Double Cantilever Beam tests were performed to study the effect of stitching on Mode 1 fracture toughness G(sub 1c). It was found that G(sub 1c) increased 30 times for a low stitching density of 16 stitches/sq in. Mode 2 fracture toughness was measured by testing the stitched beams in End Notch Flexure tests. Unlike in the unstitiched beams, crack propagation in the stitched beams was steady. The current formulas for ENF tests were not found suitable for determining G(sub 2C) for stitched beams. Hence two new methods were developed - one based on crack area measured from ultrasonic C-scanning and the other based on equivalent crack area measured from the residual stiffness of the specimen. The G(sub 2c) was found to be at least 5-15 times higher for the stitched laminates. The mechanisms by which stitching increases the CAI strength and fracture toughness are discussed.

  4. Interaction of the high energy deuterons with the graphite target in the plasma focus devices based on Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akel, M., E-mail: pscientific2@aec.org.sy; Alsheikh Salo, S.; Ismael, Sh.

    2014-07-15

    Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in themore » graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.« less

  5. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Johnson, Mark L.; Williams, Desiree D.

    2003-01-01

    A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

  6. Thermo-Plasmonics for Localized Graphitization and Welding of Polymeric Nanofibers

    PubMed Central

    Zillohu, Ahnaf Usman; Alissawi, Nisreen; Abdelaziz, Ramzy; Elbahri, Mady

    2014-01-01

    There is a growing interest in modulating the temperature under the illumination of light. As a heat source, metal nanoparticles (NPs) have played an important role to pave the way for a new branch of plasmonics, i.e., thermo-plasmonics. While thermo-plasmonics have been well established in photo-thermal therapy, it has received comparatively less attention in materials science and chemistry. Here, we demonstrate the first proof of concept experiment of local chemistry and graphitization of metalized polymeric nanofibers through thermo-plasmonic effect. In particular, by tuning the plasmonic absorption of the nanohybrid through a change in the thickness of the deposited silver film on the fibers, the thermo-plasmonic effect can be adjusted in such a way that high enough temperature is generated enabling local welding and graphitization of the polymeric nanofibers. PMID:28788459

  7. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    PubMed Central

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  8. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    NASA Astrophysics Data System (ADS)

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-02-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent.

  9. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  10. Continious production of exfoliated graphite composite compositions and flow field plates

    DOEpatents

    Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.

    2010-07-20

    A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  11. Performance evaluation of tubular fuel cells fuelled by pulverized graphite

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Pil; Lim, Ho; Jeon, Chung-Hwan; Chang, Young-June; Koh, Kwang-Nak; Choi, Soon-Mok; Song, Ju-Hun

    A fuel cell fuelled by carbonaceous graphite is proposed. The tubular fuel cell, with the carbon in a fixed-bed form on the anode side, is employed to convert directly the chemical energy of carbon into electricity. Surface platinum electrodes are coated on the cell electrolyte, which is a yttria-stabilized zirconia (YSZ) tube of 1.5 mm thickness. The effect of using different sizes of graphite powder (in the range 0-180 μm) as fuel is analyzed. Power density and actual open-circuit voltage (OCV) values are measured as the temperature is varied from 0 to 950 °C. The cell provides a maximum power density of 16.8 mW cm -2 and an OCV of 1.115 V at the highest temperature condition (950 °C) tested in this study.

  12. Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland

    PubMed Central

    Fedo, Christopher M; Whitehouse, Martin J; Kamber, Balz S

    2006-01-01

    At greater than 3.7 Gyr, Earth's oldest known supracrustal rocks, comprised dominantly of mafic igneous with less common sedimentary units including banded iron formation (BIF), are exposed in southwest Greenland. Regionally, they were intruded by younger tonalites, and then both were intensely dynamothermally metamorphosed to granulite facies (the highest pressures and temperatures generally encountered in the Earth's crust during metamorphism) in the Archaean and subsequently at lower grades until about 1500 Myr ago. Claims for the first preserved life on Earth have been based on the occurrence of greater than 3.8 Gyr isotopically light C occurring as graphite inclusions within apatite crystals from a 5 m thick purported BIF on the island of Akilia. Detailed geologic mapping and observations there indicate that the banding, first claimed to be depositional, is clearly deformational in origin. Furthermore, the mineralogy of the supposed BIF, being dominated by pyroxene, amphibole and quartz, is unlike well-known BIF from the Isua Greenstone Belt (IGB), but resembles enclosing mafic and ultramafic igneous rocks modified by metasomatism and repeated metamorphic recrystallization. This scenario parsimoniously links the geology, whole-rock geochemistry, 2.7 Gyr single crystal zircon ages in the unit, an approximately 1500 Myr age for apatites that lack any graphite, non-MIF sulphur isotopes in the unit and an inconclusive Fe isotope signature. Although both putative body fossils and carbon-12 enriched isotopes in graphite described at Isua are better explained by abiotic processes, more fruitful targets for examining the earliest stages in the emergence of life remain within greater than 3.7 Gyr IGB, which preserves BIF and other rocks that unambiguously formed at Earth's surface. PMID:16754603

  13. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    DOE PAGES

    Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...

    2015-03-25

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  14. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  15. Stripping voltammetry in environmental and food analysis.

    PubMed

    Brainina, K Z; Malakhova, N A; Stojko, N Y

    2000-10-01

    The review covers over 230 papers published mostly in the last 5 years. The goal of the review is to attract the attention of researchers and users to stripping voltammetry in particular, its application in environmental monitoring and analysis of foodstuffs. The sensors employed are impregnated graphite, carbon paste, thick film carbon/graphite and thin film metallic electrodes modified in-situ or beforehand. Hanging mercury drop electrodes and mercury coated glassy carbon electrodes are also mentioned. Strip and long-lived sensors for portable instruments and flow through systems are discussed as devices for future development and application of stripping voltammetry.

  16. Edge effects in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1977-01-01

    This paper presents the results of a zeroth-order solution for edge effects in angle-ply composite laminates obtained using perturbation techniques and a limiting free body approach. The general solution for edge effects in laminates of arbitrary angle ply is applied to the special case of a (+ or - 45)s graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness-to-width ratio and compared to finite difference results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress and provides mathematical evidence for singular interlaminar shear stresses in (+ or - 45) graphite/epoxy laminates.

  17. Experimental investigation of graphite/polyimide sandwich panels in edgewise compression

    NASA Technical Reports Server (NTRS)

    Camarda, C. J.

    1980-01-01

    The local and general buckling behavior of graphite/polyimide sandwich panels simply supported along all four edges and loaded in uniaxial edgewise compression was investigated. Material properties of adhesive and facings were determined from flatwise tension and sandwich beam flexure tests. Tensile and compressive material properties of the facings were determined at 116, R.T., and 589 K (-250, R.T., and 600 F) using the sandwich beam flexure test method. Results indicate that Gr/PI is a usable structural material for short term use at temperatures as high as 589 K (600 F). Buckling specimens were 30.5 X 33.0 cm (12 x 13 in.), had quasi-isotropic symmetric facings and a glass/polyimide honeycomb core. Core thicknesses varied and three panels of each thickness were tested in edgewise compression at room temperature to investigate failure modes and corresponding buckling formulas. Specimens 0.635 cm (0.25 in.) thick failed by overall buckling at loads close to the analytically predicted buckling load; all other panels failed by face wrinkling. Results of the winkling tests indicate that several buckling formulas were unconservative and therefore not suitable for design purposes; recommended wrinkling equations are presented.

  18. A study to improve the mechanical properties of silicon carbide ribbon fibers

    NASA Technical Reports Server (NTRS)

    Debolt, H. E.; Robey, R. J.

    1976-01-01

    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.

  19. Composite laminates with negative through-the-thickness Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1984-01-01

    A simple analysis using two dimensional lamination theory combined with the appropriate three dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.

  20. Composite laminates with negative through-the-thickness Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1984-01-01

    A simple analysis using two-dimensional lamination theory combined with the appropriate three-dimensional anisotropic constitutive equation is presented to show some rather surprising results for the range of values of the through-the-thickness effective Poisson's ratio nu sub xz for angle ply laminates. Results for graphite-epoxy show that the through-the-thickness effective Poisson's ratio can range from a high of 0.49 for a 90 laminate to a low of -0.21 for a + or - 25s laminate. It is shown that negative values of nu sub xz are also possible for other laminates.

  1. Proton induced activity in graphite - comparison between measurement and simulation

    NASA Astrophysics Data System (ADS)

    Kiselev, Daniela; Bergmann, Ryan; Schumann, Dorothea; Talanov, Vadim; Wohlmuther, Michael

    2018-06-01

    The Paul Scherrer Institut (PSI) operates the Meson production target stations E and M with 590 MeV protons at currents of up to 2.4 mA. Both targets consist of polycrystalline graphite and rotate with 1 Hz due to the high power deposition (40 kW at 2 mA) in Target E. The graphite wheel is regularly exchanged and disposed as radioactive waste after a maximum of 3 to 4 years in operation, which corresponds to about 30 to 40 Ah of proton fluence. For disposal, the nuclide inventory of the long-lived isotopes (T1/2 > 60 d) has to be calculated and reported to the authorities. Measurements of gamma emitters, as well as 3H, 10Be and 14C, were carried out using different techniques. The measured specific activities are compared to Monte Carlo particle transport simulations performed with MCNPX2.7.0 using the BERTINI-DRESNER-RAL (default model in MCNPX2.7.0) and INCL4.6/ABLA07 as nuclear reaction models.

  2. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  3. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    NASA Astrophysics Data System (ADS)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The experimentally obtained force-time histories, strain-time histories and damage patterns of impacted composites are compared with Finite element results. The results indicate that LS-DYNA could simulate the impact responses with sufficient accuracy once proper material models and boundary conditions are defined.

  4. Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids

    NASA Astrophysics Data System (ADS)

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards ‘single-layer’ graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml-1, and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  5. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include various graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Keviar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  6. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Kevlar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  7. Long-term lithium-ion battery performance improvement via ultraviolet light treatment of the graphite anode

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Sheng, Yangping; ...

    2016-01-01

    Effects of ultraviolet (UV) light on dried graphite anodes were investigated in terms of the cycle life of lithium ion batteries. The time variations for the UV treatment were 0 (no treatment), 20, 40, and 60 minutes. UV-light-treated graphite anodes were assembled for cycle life tests in pouch cells with pristine Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC 532) cathodes. UV treatment for 40 minutes resulted in the highest capacity retention and the lowest resistance after the cycle life testing. X-ray photoelectron spectroscopy (XPS) and contact angle measurements on the graphite anodes showed changes in surface chemistry and wetting aftermore » the UV treatment. XPS also showed increases in solvent products and decreases in salt products on the SEI surface when UV-treated anodes were used. In conclusion, the thickness of the surface films and their compositions on the anodes and cathodes were also estimated using survey scans and snapshots from XPS depth profiles.« less

  8. Apparatus for producing diamond-like carbon flakes

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1986-01-01

    A vacuum arc from a spot at the face of a graphite cathode to a graphite anode produces a beam of carbon ions and atoms. A carbon coating from this beam is deposited on an ion beam sputtered target to produce diamond-like carbon flakes. A graphite tube encloses the cathode, and electrical isolation is provided by an insulating sleeve. The tube forces the vacuum arc spot to be confined to the surface on the outermost end of the cathode. Without the tube the arc spot will wander to the side of the cathode. This spot movement results in low rates of carbon deposition, and the properties of the deposited flakes are more graphite-like than diamond-like.

  9. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  10. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    The extent of fiber damage due to low-velocity impacts was determined for very thick graphite/epoxy laminates. The impacts were simulated by pressing spherical indenters against the laminates. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. Then the pieces were deplied and the individual plies were examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers resembled cracks. The cracks were more or less oriented in the direction of the fibers in the contiguous layers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The length and depth of the cracks were also predicted using maximum compression and shear stress criteria. The internal stresses were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The predictions and measurements were in good agreement.

  11. Graphite sample preparation for AMS in a high pressure and temperature press

    USGS Publications Warehouse

    Rubin, M.; Mysen, B.O.; Polach, H.

    1984-01-01

    A high pressure-high temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical 14C samples including oxalic acid and carbonates. Beam strength of 12C was generally adequate, but random radioactive contamination by 14C made age measurements impractical. ?? 1984.

  12. Graphite sample preparation for AMS in a high pressure and temperature press

    USGS Publications Warehouse

    Rubin, Meyer; Mysen, Bjorn O.; Polach, Henry

    1984-01-01

    A high pressure-temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical **1**4C samples including oxalic acid and carbonates. Beam strength of **1**2C was generally adequate, but random radioactive contamination by **1**4C made age measurements impractical.

  13. In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites.

    PubMed

    Li, Yan; Zhang, Han; Crespo, Maria; Porwal, Harshit; Picot, Olivier; Santagiuliana, Giovanni; Huang, Zhaohui; Barbieri, Ettore; Pugno, Nicola M; Peijs, Ton; Bilotti, Emiliano

    2016-09-14

    Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance. Here we show that it is possible to produce graphene/epoxy nanocomposites in situ and with high conversion of graphite to FLG/GNP through the process of three-roll milling (TRM), without the need of any additives, solvents, compatibilisers or chemical treatments. This readily scalable production method allows for more than 5 wt % of natural graphite (NG) to be directly exfoliated into FLG/GNP and dispersed in an epoxy resin. The in situ exfoliated graphitic nanoplatelets, with average aspect ratios of 300-1000 and thicknesses of 5-17 nm, were demonstrated to conferee exceptional enhancements in mechanical and electrical properties to the epoxy resin. The above conclusions are discussed and interpreted in terms of simple analytical models.

  14. Minimizing Polysulfide Shuttle Effect in Lithium-Ion Sulfur Batteries by Anode Surface Passivation.

    PubMed

    Liu, Jian; Lu, Dongping; Zheng, Jianming; Yan, Pengfei; Wang, Biqiong; Sun, Xueliang; Shao, Yuyan; Wang, Chongmin; Xiao, Jie; Zhang, Ji-Guang; Liu, Jun

    2018-06-25

    Lithium-ion sulfur batteries use nonlithium materials as the anode for extended cycle life. However, polysulfide shuttle reactions still occur on the nonmetal anodes (such as graphite and Si), and result in undesirable low Coulombic efficiency. In this work, we used Al 2 O 3 layers coated by atomic layer deposition (ALD) technique to suppress the shuttle reactions. With the optimal thickness of 2 nm Al 2 O 3 coated on graphite anode, the Coulombic efficiency of the sulfur cathode was improved from 84% to 96% in the first cycle, and from 94% to 97% in the subsequent cycles. As a result, the discharge capacity of the sulfur cathode was increased to 550 mAh g -1 in the 100th cycle, as compared with 440 mAh g -1 when the pristine graphite anode was used. The Al 2 O 3 passivation layer minimizes the formation of insoluble sulfide (Li 2 S 2 , Li 2 S) on the surface of graphite anode and improves the efficiency and capacity retention of the graphite-sulfur batteries. The surface passivation strategy could also be used in other sulfur based battery systems (with Li, Si, and Sn anodes), to minimize side reactions and enable high-performance sulfur batteries.

  15. New method for binder and carbon black detection at nanometer scale in carbon electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Jaiser, Stefan; Müller, Marcus; Scharfer, Philip; Schabel, Wilhelm; Bauer, Werner; Scheiba, Frieder; Ehrenberg, Helmut

    2017-09-01

    In the current work, graphite electrodes comprising PVDF binder and carbon black are subjected to characterization. An energy selective backscatter detector is used to localize carbon black and fluorine of PVDF. Therefore, it is necessary to distinguish between graphite, amorphous carbon and fluorine rich regions. Typically, an angular selective backscatter detector is employed to obtain an image providing the material contrast of the sample. Suitable materials for that detector are e.g. alloys to observe intermetallic phases, semiconductor for ;channeling contrast;, or imaging SiO2 and Au nanoparticles in biological cells. However, this detector cannot be used to distinguish between light elements with low atomic numbers, such as C to P. In addition, the contrast of fluorine rich regions and graphite is poor in normal in-lens images due to the low difference of the atomic mass between C and F. The aim of this study is to enhance the contrast of fluorine rich regions to graphite to carbon black. Therefore, the energy selective backscatter detector is used and its advantages and setup is described. Finally this technique is applied to investigate 400 μm thick cross-sections of graphite electrodes dried at different temperatures and obtain the carbon black distribution.

  16. Plasma carburizing with surface micro-melting

    NASA Astrophysics Data System (ADS)

    Balanovsky, A. E.; Grechneva, M. V.; Van Huy, Vu; Ponomarev, B. B.

    2018-03-01

    This paper presents carburizing the surface of 20 low carbon steel using electric arc and graphite prior. A carbon black solution was prepared with graphite powder and sodium silicate in water. A detailed analysis of the phase structure and the distribution profile of the sample hardness after plasma treatment were given. The hardened layer consists of three different zones: 1 – the cemented layer (thin white zone) on the surface, 2 – heat-affected zone (darkly etching structure), 3 – the base metal. The experimental result shows that the various microstructures and micro-hardness profiles were produced depending on the type of graphite coating (percentage of liquid glass) and processing parameters. The experiment proved that the optimum content of liquid glass in graphite coating is 50–87.5%. If the amount of liquid glass is less than 50%, adhesion to metal is insufficient. If liquid glass content is more than 87.5%, carburization of a metal surface does not occur. A mixture of the eutectic lamellar structure, martensite and austenite was obtained by using graphite prior with 67% sodium silicate and the levels of the hardness layer increased to around 1000 HV. The thickness of the cemented layer formed on the surface was around 200 μm. It is hoped that this plasma surface carburizing treatment could improve the tribological resistance properties.

  17. Neutron transmission measurements of poly and pyrolytic graphite crystals

    NASA Astrophysics Data System (ADS)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  18. Development of IR Contrast Data Analysis Application for Characterizing Delaminations in Graphite-Epoxy Structures

    NASA Technical Reports Server (NTRS)

    Havican, Marie

    2012-01-01

    Objective: Develop infrared (IR) flash thermography application based on use of a calibration standard for inspecting graphite-epoxy laminated/honeycomb structures. Background: Graphite/Epoxy composites (laminated and honeycomb) are widely used on NASA programs. Composite materials are susceptible for impact damage that is not readily detected by visual inspection. IR inspection can provide required sensitivity to detect surface damage in composites during manufacturing and during service. IR contrast analysis can provide characterization of depth, size and gap thickness of impact damage. Benefits/Payoffs: The research provides an empirical method of calibrating the flash thermography response in nondestructive evaluation. A physical calibration standard with artificial flaws such as flat bottom holes with desired diameter and depth values in a desired material is used in calibration. The research devises several probability of detection (POD) analysis approaches to enable cost effective POD study to meet program requirements.

  19. Postbuckling behavior of axially compressed graphite-epoxy cylindrical panels with circular holes

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Starnes, J. H., Jr.

    1984-01-01

    The results of an experimental and analytical study of the effects of circular holes on the postbuckling behavior of graphite-epoxy cylindrical panels loaded in axial compression are presented. The STAGSC-1 general shell analysis computer code is used to determine the buckling and postbuckling response of the panels. The loaded, curved ends of the specimens were clamped by fixtures and the unloaded, straight edges were simply supported by knife-edge restraints. The panels are loaded by uniform end shortening to several times the end shortening at buckling. The unstable equilibrium path of the postbuckling response is obtained analytically by using a method based on controlling an equilibrium-path-arc-length parameter instead of the traditional load parameter. The effects of hole diameter, panel radius, and panel thickness on postbuckling response are considered in the study. Experimental results are compared with the analytical results and the failure characteristics of the graphite-epoxy panels are described.

  20. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  1. Design, Fabrication and Test of Multi-Fiber Laminates

    NASA Technical Reports Server (NTRS)

    Pike, R. A.; Novak, R. C.

    1975-01-01

    Unidirectional and angleply multifiber laminates were tested for improved impact strength and other mechanical properties. The effects of several variables on the mechanical properties of epoxy matrix materials were described. These include fiber type (HMS and AS graphites, glass, and Kevlar 49), ratio of primary to hybridizing fiber and hybrid configuration. It is demonstrated that AS graphite/S glass in an intraply configuration results in the best combination of static and Charpy impact properties as well as superior ballistic impact resistance. Pendulum impact tests which were conducted on thin specimens are shown to produce different ranking of materials than tests conducted on standard thickness Charpy specimens. It is shown that the thin specimen results are in better agreement with the ballistic impact data. Additional static test data are reported as a function of temperature for the seven best hybrid configurations having epoxy, polyimide (PMR-15) and polyphenylquinoxaline resins as the matrix.

  2. Calibrated work function mapping by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz

    2018-04-01

    We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

  3. Research on laser-removal of a deuterium deposit from a graphite sample

    NASA Astrophysics Data System (ADS)

    Kubkowska, M.; Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Rosinski, M.; Gasior, P.

    2014-04-01

    The paper presents experimental results of investigation of a removal of deuterium deposits from a graphite target by means of pulsed laser beams. The sample was a part of the TEXTOR limiter with a deuterium-deposited layer. That target was located in the vacuum chamber, pumped out to 5×10-5 Torr, and it was irradiated with a Nd:YAG laser, which generated 3.5-ns pulses of energy of 0.5 J at λ1 = 1063 nm, or 0.1 J at λ3 = 355 nm.

  4. Effects of through-the-thickness stitching on impact and interlaminar fracture properties of textile graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Sharma, Suresh K.; Sankar, Bhavani V.

    1995-01-01

    This study investigated the effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and mode I and mode II fracture toughness of textile graphite/epoxy laminates. Uniweave resin-transfer-molded 48 ply graphite/epoxy (AS4/3501-6) laminates were stitched with Kevlar and glass yarns of different linear densities and stitch spacings. Delaminations were implanted during processing to simulate impact damage. Sublaminate buckling tests were performed to determine the effects of stitching on the compressive strength. The results showed outstanding improvements of up to 400 percent in the compression strength over the unstitched laminates. In impact and static indentation tests the onset of damage occurred at the same level, but the extent of damage was less in stitched laminates. Mode I fracture toughness of 24 ply Uniweave unidirectional (AS4/3501-6) stitched laminates was measured by conducting double-cantilever-beam tests. The critical strain energy release rate (G(sub Ic)) was found to be up to 30 times higher than the unstitched laminates. Mode II fracture toughness of the Uniweave laminates was measured by performing end-notched-flexure tests. Two new methods to compute the apparent G(sub IIc) are presented. The apparent G(sub IIc) was found to be at least 5-15 times higher for the stitched laminates.

  5. Phonon-interface scattering in multilayer graphene on an amorphous support

    PubMed Central

    Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li

    2013-01-01

    The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656

  6. Geological and geochemical reconnaissance in the central Santander Massif, Departments of Santander and Norte de Santander, Colombia

    USGS Publications Warehouse

    Evans, James George

    1976-01-01

    The central Santander Massif is composed of Precambrian Bucaramanga Gneiss and pre-Devonian Silgara Formation intruded by Mesozoic quartz diorite, quartz monzonite, and alaskite and Cretaceous or younger porphyry. Triassic (Bocas Formation), Jurassic (Jordan and Giron Formations).and Cretaceous (Tambor, Rosa Blanca, Paja, Tablazo, Simiti, La Luna, and Umir Formations) sedimentary rocks overlie the metamorphic rocks and are younger than most of the intrusions. A geological and geochemical reconnaissance of part of the central Santander Massif included the Vetas and California gold districts. At Vetas the gold is generally in brecciated aphanitic quartz and phyllonite. Dark-gray material in the ore may be graphite. The ore veins follow steep west-northwest- and north-northeast-striking fracture zones. No new gold deposits were found. Additional geochemical studies should concentrate on western Loma Pozo del Rey and on improvement of the gold extraction process. At California the gold is in pyritiferous quartz veins and quartz breccia. Ore containing black sooty material (graphite?) is highly radioactive. Some of the mineralization is post-Lower Cretaceous. Soil samples indicate that gold deposits lie under the thick blanket of soil on the ridges above the zone of mining. Three principal gold targets are outlined by gold and associated minerals in pan concentrates. The close relation of gold and copper anomalies suggests that copper may be useful as a pathfinder for gold elsewhere in the region. Based on occurrences of gold or high concentrations of pyrite or chalcopyrite in pan concentrates and on analytical data, eight potential gold targets are outlined in the central massif. Reconnaissance of the surrounding region is warranted.

  7. Parametric study of graphite foam fins and application in heat exchangers

    NASA Astrophysics Data System (ADS)

    Collins, Michael

    This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system greatly enhanced the heat transfer because of the increased interaction with the porous graphite foam fins.

  8. The compressive failure of graphite/epoxy plates with circular holes

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.; Starnes, J. H., Jr.; Henneke, E. G., II

    1978-01-01

    The behavior of fiber reinforced composite plates containing a circular cutout was characterized in terms of geometry (thickness, width, hole diameter), and material properties (bending/extensional stiffness). Results were incorporated in a data base for use by designers in determining the ultimate strength of such a structure. Two thicknesses, 24 plies and 48 plies were chosen to differentiate between buckling and strength failures due to the presence of a cutout. Consistent post-buckling strength was exhibited by both laminate configurations.

  9. Air Proportional Counter

    DOEpatents

    Simpson, Jr, J A

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  10. Plasma-induced damage of tungsten coatings on graphite limiters

    NASA Astrophysics Data System (ADS)

    Fortuna, E.; Rubel, M. J.; Psoda, M.; Andrzejczuk, M.; Kurzydowski, K. J.; Miskiewicz, M.; Philipps, V.; Pospieszczyk, A.; Sergienko, G.; Spychalski, M.; Zielinski, W.

    2007-03-01

    Vaccum plasma sprayed tungsten coatings with an evaporated sandwich Re-W interlayer on graphite limiter blocks were studied after the experimental campaign in the TEXTOR tokamak. The coating morphology was modified by high-heat loads and co-deposition of species from the plasma. Co-deposits contained fuel species, carbon, boron and silicon. X-ray diffractometer phase analysis indicated the coexistence of metallic tungsten and its carbides (WC and W2C) and boride (W2B). In the Re-W layer the presence of carbon was detected in a several micrometres thick zone. In the overheated part of the limiter, the Re-W layer was transformed into a sigma phase.

  11. Delamination and debonding of materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S. (Editor)

    1985-01-01

    The general topics consist of stress analysis, mechanical behavior, and fractography/NDI of composite laminates. Papers are presented on a dynamic hybrid finite-element analysis for interfacial cracks in composites, energy release rate during delamination crack growth in composite laminates, matrix deformation and fracture in graphite-reinforced epoxies, and the role of delamination and damage development on the strength of thick notched laminates. In addition, consideration is given to a new ply model for interlaminar stress analysis, a fracture mechanics approach for designing adhesively bonded joints, the analysis of local delaminations and their influence on composite laminate behavior, and moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.

  12. Structural, chemical, and isotopic microanalytical investigations of graphite from supernovae

    NASA Astrophysics Data System (ADS)

    Croat, T. Kevin; Bernatowicz, Thomas; Amari, Sachiko; Messenger, Scott; Stadermann, Frank J.

    2003-12-01

    We report the results of coordinated ion microprobe and transmission electron microscope (TEM) studies of presolar graphites from the KE3 separate (1.65-1.72 g/cm 3) of the Murchison CM2 meteorite. Isotopic analysis of individual graphites (1-12 μm) with the ion microprobe shows many to have large 18O excesses combined with large silicon isotopic anomalies, indicative of a supernova (SN) origin. Transmission electron microscopy (TEM) of ultramicrotome slices of these SN graphites revealed a high abundance (25-2400 ppm) of internal titanium carbides (TiCs), with a single graphite in some cases containing hundreds of TiCs. Isotopic compositions of individual TiCs by nanoscale resolution secondary ion mass spectrometry (NanoSIMS) confirmed their presolar origin. In addition to TiCs, composite TiC/Fe grains (TiCs with attached iron-nickel subgrains) and solitary kamacite internal grains were found. In the composite grains, the attached iron phase (kamacite [0-24 at. % Ni] or taenite [up to 60 at. % Ni]) was epitaxially grown onto one or more TiC faces. In contrast to the denser Murchison KFC1 graphites, no Zr-Ti-Mo carbides were observed. The average TiC diameters were quite variable among the SN graphites, from 30 to 232 nm, and were generally independent of the host graphite size. TiC grain morphologies ranged from euhedral to anhedral, with the grain surfaces exhibiting variable degrees of corrosion, and sometimes partially amorphous rims (3 to 15 nm thick). Partially amorphous rims of similar thickness were also observed on some solitary kamacite grains. We speculate that the rims on the internal grains are most plausibly the result of atom bombardment caused by drift of grains with respect to the ambient gas, requiring relative outflow speeds ˜100 km/s (i.e., a few percent of the SN mass outflow speed). Energy dispersive X-ray spectrometry (EDXS) of TiCs revealed significant V in solid solution, with an average V/Ti ratio over all TiCs of ˜83% of the solar value of 0.122. Significant variations about the mean V/Ti ratio were also seen among TiCs in the same graphite, likely indicating chemical equilibration with the surrounding gas over a range of temperatures. In general, the diversity in internal TiC properties suggests that TiCs formed first and had substantially diverse histories before incorporation into the graphite, implying some degree of turbulent mixing in the SN outflows. In most graphites, there is a decrease in the number density of TiCs as a function of increasing radial dis- tance, caused by either preferential depletion of TiCs from the gas or an acceleration of graphite growth with decreasing ambient temperature. In several graphites, TiCs showed a trend of larger V/Ti ratios with increasing distance from the graphite center, an indication of progressive equilibration with the surrounding gas before they were sequestered in the graphites. In all but one graphite, no trend was seen in the TiC size vs. distance from the graphite center, implying that appreciable TiC growth had effectively stopped before the graphites formed, or else that graphite growth was rapid compared to TiC growth. Taken together, the chemical variations among internal grains as well as the presence of partially amorphous rims and epitaxial Fe phases on some TiCs clearly indicate that the phase condensation sequence was TiC, followed by the iron phases (only found in some graphites) and finally graphite. Since graphite typically condenses at a higher temperature than iron at low pressures (<10 -3 bars) in a gas with C > O and otherwise solar composition, the observed condensation sequence implies a relative iron enrichment in the gas or greater supersaturation of graphite relative to iron. The TEM observations allow inferences to be made about the physical conditions in the gas from which the grains condensed. Given the TiC sizes and abundances, the gas was evidently quite dusty. From the observed TiC size range of ˜20 nm to ˜500 nm (assuming ˜1 yr growth time and T ˜ 1800°K), we infer minimum Ti number densities in the gas to be ˜7 × 10 4 to ˜2 × 10 6 atoms/cc, respectively. Although the gas composition is clearly not solar, for scale, these number densities would correspond to a pressure range of ˜0.2 μbar to ˜5.0 μbar in a gas of solar composition. They also correspond to minimum TiC grain number densities of ˜3 × 10 -4 to ˜0.2 grains/cc, assuming complete condensation of Ti in TiC. We estimate the maximum ratio of mean TiC grain separation distance in the gas to grain diameter from the Ti number densities as ˜3 × 10 5 to ˜1 × 10 6.

  13. ELM induced divertor heat loads on TCV

    NASA Astrophysics Data System (ADS)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  14. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  15. Suspended-Bed Reactor preliminary design, /sup 233/U--/sup 232/Th cycle. Final report (revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 ..mu.. thick, (2) silicon carbide pressure vessel, 30 ..mu.. thick, and (3) ZrC layer, 50 ..mu.. thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particlesmore » is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems.« less

  16. Measure of displacement around holes in composite plates subjected to quasi-static compression

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Post, D.; Czarnek, R.; Asundi, A.

    1986-01-01

    Contour maps of thickness changes were obtained for three quasi-isotropic graphite-epoxy plates with central holes, loaded in compression. Thickness changes were determined for six load increments from nearly zero to within a few percent of the failure load. The largest change of thickness occurred near the hole but not at the boundary of the hole. Below 90 percent of the failure load, the thickness changes were nearly proportional to load. Irregularities of thickness changes occurred in zones of compressive stresses and they were attributed to localized fiber buckling. A new optical technique was developed to measure thickness changes with high sensitivity. It utilizes a comparatively simple means of holographic interferometry on both sides of the specimen, followed by additive moire to obtain thickness changes as the sum of the out-of-plane displacements. Sensitivity was 12.5 x 10 to the -6 power in. per fringe order. The fringe patterns represent thickness changes uniquely, even when specimen warpage and consequent out-of-plane displacements are very large.

  17. B{sub 4}C-SiC reaction-sintered coatings on graphite plasma facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, P.G.; Trester, P.W.; Winter, J.

    1994-05-01

    Boron carbide plus silicon carbide (B{sub 4}C-SiC) reaction-sintered coatings for use on graphite plasma-facing components were developed. Such coatings are of interest in TEXTOR tokamak limiter-plasma interactions as a means of reducing carbon erosion, of providing a preferred release of boron for oxygen gettering, and of investigating silicon`s effect on radiative edge phenomena. Specimens evaluated had (a) either Ringsdorfwerke EK 98 graphite or Le Carbon Lorraine felt-type AEROLOR A05 CFC substrates; (b) multiphase coatings, comprised of B{sub 4}C, Sic, and graphite; (c) nominal coating compositions of 69 wt.-% B{sub 4}C + 31 wt.-% SiC; and (d) nominal coating thicknesses betweenmore » 250 and 775 {mu}m. Coated coupons were evaluated by high heat flux experiments in the JUDITH (electron beam) test facility at KFA. Simulated disruptions, with energy densities up to 10 MJm{sup {minus}2}, and normal operation simulations, with power densities up to 12 MWm{sup {minus}2}, were conducted. The coatings remained adherent; at the highest levels tested, minor changes occurred, including localized remelting, modification of the crystallographic phases, occasional microcracking, and erosion.« less

  18. Particle production of a graphite target system for the intensity frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X.; Kirk, H.; McDonald, K. T.

    2015-05-03

    A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particlemore » production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.« less

  19. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A study was made to determine the extent of fiber damage caused by low-velocity impact of spherical impactors to a very thick graphite/epoxy laminate. The laminate was cut from a filament wound case being developed for the Space Shuttle solid rocket motors. The case was wound using a wet process with AS4W graphite fiber and HBRF-55A epoxy. Impacts were simulated under quasi-static conditions by pressing hemispherically shaped indenters against the laminate at different locations. The contact force and indenter diameter were varied from location to location. The forces were chosen for each indenter diameter to produce contact pressures below and above that required to initiate damage. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. The pieces were then deplied and the individual plies examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers in each layer resembled a crack normal to the direction of the fibers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The internal stresses in the laminate were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The maximum length and depth of the cracks were predicted using a maximum shear stress criterion. Predictions and measurements were in good agreement.

  20. Porous and Cellular Materials for Structural Applications; Symposium Held in San Francisco, California on April 13-15, 1998

    DTIC Science & Technology

    1998-04-01

    Industrial Scale 179 M. Schmidt and F. Schwertfeger Structural Graphitic Carbon Foams 185 Kristen M. Kearns, David P. Anderson, and Heather J...Nanostructured Powders and Their Industrial Application, Q. Beaucage, J.E. Mark, Q. Burns, H. Duen-Wu, 1998, ISBN: 1-55899-426-2 Volume 521—Porous and Cellular...has faces which are 0.03" thick and the core is 0.4" thick. Bonding between the core and face is achieved using a standard industrial epoxy adhesive

  1. A Portable Thermoelectric Power Generator Based on a Microfabricated Silicon Combustor with Low Resistance to Flow

    DTIC Science & Technology

    2010-12-14

    conductive heat losses to dominate the energy balance. The manifold and inlet and outlet tubes were insulated using lI16-in-thick CeraTex ceramic tape...small cut in the graphite). On either side of the TE modules, O.27-mm-thick alumina insulating shims (Hi-Z Technologies) were used to prevent...accounting for the themml resistance of the alumina insulating shim) close to 300"C, which was identified by the manufacturer as a moderately "safe" limit

  2. Hidden impact damage in thick composites

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Illg, W.; Garber, D. P.

    1986-01-01

    NASA is developing light-weight graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the Space Shuttle. The 12-foot-diameter FWC's are about 1.4 inches or more thick. Tests were conducted to determine the tension strength of an FWC after low-velocity impact. Impactors of various kinetic energies, masses, and shapes were used. The conditions that give minimum visual evidence of damage were emphasized. The capability to characterize impact damage with radiography and ultrasonic attenuation was also evaluated. After impact, the specimens were loaded uniaxially in tension to determine residual strengths.

  3. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  4. Preliminary design procedure for insulated structures subjected to transient heating

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.

    1979-01-01

    Minimum-mass designs were obtained for insulated structural panels loaded by a general set of inplane forces and a time dependent temperature. Temperature and stress histories in the structure are given by closed-form solutions, and optimization of the insulation and structural thicknesses is performed by nonlinear mathematical programming techniques. Design calculations are described to evaluate the structural efficiency of eight materials under combined heating and mechanical loads: graphite/polyimide, graphite/epoxy, boron/aluminum, titanium, aluminum, Rene 41, carbon/carbon, and Lockalloy. The effect on design mass of intensity and duration of heating were assessed. Results indicate that an optimum structure may have a temperature response well below the recommended allowable temperature for the material.

  5. Communication: Local energetic analysis of the interfacial and surface energies of graphene from the single layer to graphite

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi S.; Krajina, Brad A.; Overney, René M.

    2015-12-01

    Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ˜3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

  6. Communication: Local energetic analysis of the interfacial and surface energies of graphene from the single layer to graphite.

    PubMed

    Kocherlakota, Lakshmi S; Krajina, Brad A; Overney, René M

    2015-12-28

    Recent advances in scanning probe methods that provide direct access to the surface free energy of inorganic layered materials in terms of the Hamaker constant yield energetic values for monolayer graphene that differ substantially, by a factor of around 0.4, from bulk graphite. The onset of bulk deviating energy values was observed at a multilayer slab thickness of ∼3 nm, corresponding to a layer number of 10. The findings, complemented with extractions from water contact angle measurements and calculated interlayer binding energies, find short-range ordinary van der Waals interactions to be most prominently affected by dimensional constraints and many-body interactions.

  7. Thiokol 260-SL Nozzle Development Program

    DTIC Science & Technology

    1967-01-01

    Pigure 1 Candidate Throat Inserts ............................ 7 2 Laminate Temperature versus Coating Thickness for Selectron 5003 Specimens...32 Photo Cross Adhesive Pattern ....................... 111 33 Photo Parallel Adhesive Pattern ..................... 112 34 Adhesive Applicator Teeth ...Ablative Material .... 88 XXXIII Task 9: Corlar Coating of Graphite Materials Throat, IS 11004-01-02, 156-ZC-1 ............ ....... 90 XXXIV Adapter

  8. Auger Spectroscopy Analysis of Spalled LEU-10Mo Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Samantha Kay; Schulze, Roland K.

    2017-08-03

    Presentation includes slides on Surface Science used to probe LEU-10Mo Spall; Auger highlights graphitic-like inclusions and Mo-deficient oxide on base metal; Higher C concentration detected within spall area Images Courtesy; Depth profiling reveals thick oxide; Mo concentration nears nominal only at depths ~400 nm; and lastly Key Findings.

  9. Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Funk, J. G.

    1986-01-01

    Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.

  10. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    NASA Astrophysics Data System (ADS)

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  11. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nickel Nanoparticle Encapsulated in Few-Layer Nitrogen-Doped Graphene Supported by Nitrogen-Doped Graphite Sheets as a High-Performance Electromagnetic Wave Absorbing Material.

    PubMed

    Yuan, Haoran; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-01-10

    Herein we develop a facile strategy for fabricating nickel particle encapsulated in few-layer nitrogen-doped graphene supported by graphite carbon sheets as a high-performance electromagnetic wave (EMW) absorbing material. The obtained material exhibits sheetlike morphology with a lateral length ranging from a hundred nanometers to 2 μm and a thickness of about 23 nm. Nickel nanoparticles with a diameter of approximately 20 nm were encapsulated in about six layers of nitrogen-doped graphene. As applied for electromagnetic absorbing material, the heteronanostructures exhibit excellent electromagnetic wave absorption property, comparable to most EMW absorbing materials previously reported. Typically, the effective absorption bandwidth (the frequency region falls within the reflection loss below -10 dB) is up to 8.5 GHz at the thicknesses of 3.0 mm for the heteronanostructures with the optimized Ni content. Furthermore, two processes, carbonization at a high temperature and subsequent treatment in hot acid solution, were involved in the preparation of the heteronanostructures, and thus, mass production was achieved easily, facilitating their practical applications.

  13. Decoding structural complexity in conical carbon nanofibers.

    PubMed

    Zhu, Yi-An; Wang, Zi-Jun; Cheng, Hong-Ye; Yang, Qin-Min; Sui, Zhi-Jun; Zhou, Xing-Gui; Chen, De

    2017-06-07

    Conical carbon nanofibers (CNFs) exist primarily as graphitic ribbons that fold into a cylindrical structure with the formation of a hollow core. Structural analysis aided by molecular modeling proves useful for obtaining a full picture of how the size of the central channel varies from fiber to fiber. From a geometrical perspective, conical CNFs possibly have cone tips that are nearly closed. On the other hand, their fiber wall thickness can be reduced to a minimum possible value that is determined solely by the apex angle, regardless of the outer diameter. A formula has been developed to express the number of carbon atoms present in conical CNFs in terms of measurable structural parameters. It appears that the energetically preferred fiber wall thickness increases not only with the apex angle, but also with the number of atoms in the constituent graphitic cones. The origin of the empirical observation that conical CNFs with small apex angles tend to have a large hollow core lies in the fact that in graphene sheets that are more highly curved the curvature-induced strain energy rises more rapidly as the fiber wall thickens.

  14. Synthesis and characterization of SiC based composite materials for immobilizing radioactive graphite

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng; Hu, Zhuang

    2018-06-01

    In order to immobilize high-level radioactive graphite, silicon carbide based composite materials{ (1-x) SiC· x MgAl2O4 (0.1 ≤ x≤0.4) } were fabricated by solid-state reaction at 1370 °C for 2 h in vacuum. Residual graphite and precipitated corundum were observed in the as-synthesized product, which attributed to the interface reaction of element silicon and magnesium compounds. To further understand the reasons for the presence of graphite and corundum, the effects of mole ratio of Si/C, MgAl2O4 content and non-stoichiometry of MgAl2O4 on the synthesis were investigated. To immobilize graphite better, residual graphite should be eliminated. The target product was obtained when the mole ratio of Si/C was 1.3:1, MgAl2O4 content was x = 0.2, and the mole ratio of Al to Mg in non-stoichiometric MgAl2O4 was 1.7:1. In addition, the interface reaction between magnesium compounds and silicon not graphite was displayed by conducting a series of comparative experiments. The key factor for the occurrence of interface reaction is that oxygen atom is transferred from magnesium compound to SiO gas. Infrared and Raman spectrum revealed the increased disorders of graphite after being synthesized.

  15. Large scale production of highly-qualified graphene by ultrasonic exfoliation of expanded graphite under the promotion of (NH4)2CO3 decomposition.

    PubMed

    Wang, Yunwei; Tong, Xili; Guo, Xiaoning; Wang, Yingyong; Jin, Guoqiang; Guo, Xiangyun

    2013-11-29

    Highly-qualified graphene was prepared by the ultrasonic exfoliation of commercial expanded graphite (EG) under the promotion of (NH4)2CO3 decomposition. The yield of graphene from the first exfoliation is 7 wt%, and it can be increased to more than 65 wt% by repeated exfoliations. Atomic force microscopy, x-ray photoelectron spectroscopy and Raman analysis show that the as-prepared graphene only has a few defects or oxides, and more than 95% of the graphene flakes have a thickness of ~1 nm. The electrochemical performance of the as-prepared graphene is comparable to reduced graphene oxide in the determination of dopamine (DA) from the mixed solution of ascorbic acid, uric acid and DA. These results show that the decomposition of (NH4)2CO3 molecules in the EG layers under ultrasonication promotes the exfoliation of graphite and provides a low-priced route for large scale production of highly-quality graphene.

  16. Oriented graphite layer formation in Ti/C and TiC/C multilayers deposited by high current pulsed cathodic arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, P. O. A.; Ryves, L.; Tucker, M. D.

    2008-10-01

    Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less

  17. Synthesis of core-shell iron nanoparticles via a new (novel) approach

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Koymen, Ali R.

    2014-03-01

    Carbon-encapsulated iron (Fe) nanoparticles were synthesized by a newly developed method in toluene. Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) of the as prepared sample reveal that core-shell nanostructures have been formed with Fe as core and graphitic carbon as shell. Fe nanoparticles with diameter 11nm to 102 nm are encapsulated by 6-8 nm thick graphitic carbon layers. There was no iron carbide formation observed between the Fe core and the graphitic shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. The magnetic hysteresis loop of the as synthesized powder at room temperature showed a saturation magnetization of 9 Am2 kg-1. After thermal treatment crystalline order of the samples improved and hence saturation magnetization increased to 24 Am2kg-1. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and Photothermal cancer therapy.

  18. Large scale production of highly-qualified graphene by ultrasonic exfoliation of expanded graphite under the promotion of (NH4)2CO3 decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Yunwei; Tong, Xili; Guo, Xiaoning; Wang, Yingyong; Jin, Guoqiang; Guo, Xiangyun

    2013-11-01

    Highly-qualified graphene was prepared by the ultrasonic exfoliation of commercial expanded graphite (EG) under the promotion of (NH4)2CO3 decomposition. The yield of graphene from the first exfoliation is 7 wt%, and it can be increased to more than 65 wt% by repeated exfoliations. Atomic force microscopy, x-ray photoelectron spectroscopy and Raman analysis show that the as-prepared graphene only has a few defects or oxides, and more than 95% of the graphene flakes have a thickness of ˜1 nm. The electrochemical performance of the as-prepared graphene is comparable to reduced graphene oxide in the determination of dopamine (DA) from the mixed solution of ascorbic acid, uric acid and DA. These results show that the decomposition of (NH4)2CO3 molecules in the EG layers under ultrasonication promotes the exfoliation of graphite and provides a low-priced route for large scale production of highly-quality graphene.

  19. Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy

    PubMed Central

    Vaid, Rishi; Diggins, Patrick; Weimer, Jeffrey J.; Koopman, M.; Vohra, Yogesh K.

    2010-01-01

    While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O2 in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O2 feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O2 is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O2 remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation. PMID:21221739

  20. Electrolyte volume effects on electrochemical performance and solid electrolyte interphase in Si-graphite/NMC lithium-ion pouch cells

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2017-05-15

    This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite/LiNi 0.5Mn 0.3CO 0.2O 2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendritesmore » are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. As a result, solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.« less

  1. Sodium-22 In Supernovae

    NASA Astrophysics Data System (ADS)

    Amari, Sachiko

    2008-05-01

    There are several isotopically distinct noble gas components in meteorites. Of them, Ne-E(L), heavily enriched in 22Ne, is carried by graphite with a range of density (1.6 - 2.2 g/cm3). Bulk (=aggregates) noble gas analysis of graphite separates from the Murchison meteorite indicate that a dominant source of 22Ne is 22Na (T1/2 = 2.6 a) with varying proportions of 22Ne via 14N(α,γ)18F(e+ν)18O(α,γ)22Ne with density. Low-density graphite grains, from their isotopic signatures, are believed to have formed in supernovae. Examinations of both bulk and single-grain analyses of low-density graphite grains (Amari et al., 1995; Nichols et al., 1994) indicate that all 22Ne in low-density graphite grains is from the decay of 22Na that was produced in the O/Ne zone in supernovae. One may argue why implanted 20,22Ne was not observed in the grains, considering the fact that the mass fraction of 20Ne is 5 orders of magnitude larger than that of 22Na. Croat et al. (2003) observed TiC subgrains inside low-density graphite grains have amorphous rims with the thickness of 3 to 15 nm, indicating atom bombardment from the surrounding gas. Assuming the gas is He, they estimated the velocity is 50 km/s or less. If the relative velocities between the Ne and the graphite grains are in that range, the penetration depth into the graphite grains is 2nm. Such shallow surface layers would be sputtered once the grains hit the reverse shock and keep traveling into the hot H-rich region (Nozawa et al, 2007). It remains to be seen whether or not 22Na in higher-density graphite is from supernovae or novae, or both. Amari, S. et al. 1995, Geochim. Cosmochim. Acta, 59, 1411 Croat, T.K. et al. 2003, Geochim. Cosmochim. Acta, 67, 4705 Nichols R.H. et al. 1994, Meteoritics, 29, 510 Nozawa, T. et al. 2007 ApJ, 666, 955

  2. Rapid reduction of MORB glass in piston cylinder experiments with graphite capsule - a XANES study

    NASA Astrophysics Data System (ADS)

    Ni, P.; Zhang, Y.; Fiege, A.; Newville, M.; Lanzirotti, A.

    2017-12-01

    Graphite capsules have been widely used in high-pressure, high-temperature experiments to prevent iron loss from iron-bearing samples. One common uncertainty with this experimental setup is the oxygen fugacity (fO2) inside the capsule imposed by the presence of graphite. As Holloway et al. (1992) pointed out, the use of graphite capsule places an upper limit on the fO2 in the experiment to be below CCO (graphite-CO-CO2 buffer). More recently, Medard et al. (2015) estimated the fO2 for their experiments using Pt-graphite or graphite-only capsules to be CCO-0.8. Despite the improved understanding on the fO2 using graphite capsule, the mechanism and kinetics of fO2 control in graphite capsule is still poorly understood. Such knowledge is especially important to understand whether equilibrium fO2 is reached in the sample when short experiment durations are needed (e.g. for kinetic experiments). In this study, MORB glasses after olivine dissolution (Chen and Zhang 2008) and plagioclase dissolution (Yu et al. 2016) experiments at 0.5 GPa and 1300 ºC with durations ranging from 10 s to 30 min are analyzed by XANES to obtain Fe3+/Fetotal profiles from their contact with the graphite capsule. The results show rapid Fe reduction away from the graphite-melt interface, causing a decrease of Fe3+/Fetotal from 12% to 3%. In a duration of 30 min, the 1200-µm-thick and 2000-µm-diameter basaltic glass reached near equilibrium in its iron oxidation state, with Fe3+/Fetotal ranging from 3% to 4% throughout the run product. The equilibrium Fe3+/Fetotal ratio corresponds to an fO2 of CCO-1.4, which is within error compared to the result in Medard et al. (2015). Even in the shortest experiment with an effective duration of only 10 s, a 60 µm long reduction profile was detected. Such a rapid fO2 change can be explained by rapid H2 diffusion in melt and its reaction with ferric iron: H2+Fe2O3=2FeO+H2O, which is also supported by the H2O concentration profiles measured along the reduction profile. Our results indicate rapid fO2 equilibration in MORB-glass-composition samples during nominally anhydrous graphite capsule experiments at 1300°C, and can be used to guide experimental designs.

  3. Student research with 400keV beams: {sup 13}N radioisotope production target development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fru, L. Che; Clymer, J.; Compton, N.

    2013-04-19

    The AN400 Van de Graaff accelerator at the Minnesota State University, Mankato, Applied Nuclear Science Lab has demonstrated utility as an accessible and versatile platform for student research. Despite the limits of low energy, the research team successfully developed projects with applications to the wider radioisotope production community. A target system has been developed for producing and extracting {sup 13}N by the {sup 12}C(d,n){sup 13}N reaction below 400keV. The system is both reusable and robust, with future applications to higher energy machines producing this important radioisotope for physiological imaging studies with Positron Emission Tomography. Up to 36({+-}1)% of the {supmore » 13}N was extracted from the graphite matrix when 35 A current was externally applied to the graphite target while simultaneously flushing the target chamber with CO{sub 2} gas.« less

  4. Compatibility of the Radio Frequency Mass Gauge with Graphite-Epoxy Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, G. A.; Mueller, C. H.

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552/IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 - 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98%. Together, these results suggested that a tank constructed from graphite/epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 less than Q less than 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  5. Automated eddy current analysis of materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    The use of eddy current techniques for characterizing flaws in graphite-based filament-wound cylindrical structures is described. A major emphasis was also placed upon incorporating artificial intelligence techniques into the signal analysis portion of the inspection process. Developing an eddy current scanning system using a commercial robot for inspecting graphite structures (and others) was a goal in the overall concept and is essential for the final implementation for the expert systems interpretation. Manual scans, as performed in the preliminary work here, do not provide sufficiently reproducible eddy current signatures to be easily built into a real time expert system. The expert systems approach to eddy current signal analysis requires that a suitable knowledge base exist in which correct decisions as to the nature of a flaw can be performed. A robotic workcell using eddy current transducers for the inspection of carbon filament materials with improved sensitivity was developed. Improved coupling efficiencies achieved with the E-probes and horseshoe probes are exceptional for graphite fibers. The eddy current supervisory system and expert system was partially developed on a MacIvory system. Continued utilization of finite element models for predetermining eddy current signals was shown to be useful in this work, both for understanding how electromagnetic fields interact with graphite fibers, and also for use in determining how to develop the knowledge base. Sufficient data was taken to indicate that the E-probe and the horseshoe probe can be useful eddy current transducers for inspecting graphite fiber components. The lacking component at this time is a large enough probe to have sensitivity in both the far and near field of a thick graphite epoxy component.

  6. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  7. Retention of neon in graphite after ion beam implantation or exposures to the scrape-off layer plasma in the TEXTOR tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Y. M.; Philipps, V.; Rubel, M.; Vietzke, E.; Pospieszczyk, A.; Unterberg, B.; Jaspers, R.

    2002-01-01

    The interaction of neon ions with graphite was investigated for targets either irradiated with ion beams (2-10 keV range) or exposed to the scrape-off layer plasma in the TEXTOR tokamak during discharges with neon edge cooling. The emphasis was on the influence of the target temperature (300-1200 K) and the implantation dose on the neon retention and reemission. The influence of deuterium impact on the retention of neon implanted into graphite has also been addressed. In ion beam experiments saturation is observed above a certain ion dose with a saturation level, which decreases with increasing target temperature. The temperature dependence of the thermal desorption corresponds to an apparent binding energy of about 2.06 eV. The retention of neon (CNe/CC) decreases with increasing ion energy with values from 0.55 to 0.15 following irradiation with 2 and 10 keV ions, respectively. The reemission yield during the irradiation increases with target temperature and above 1200 K all impinging ions are reemitted instantaneously. The retention densities measured using the sniffer probe at the TEXTOR tokamak are less than 1% of the total neon fluence and are over one order of magnitude smaller than those observed in ion beam experiments. The results are discussed in terms of different process decisive for ion deposition and release under the two experimental conditions.

  8. Fabrication and electrodynamic properties of all-carbon terahertz planar metamaterials by laser direct-write

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Lebedev, S. P.; Komandin, G. A.; Piqué, A.; Konov, V. I.

    2018-03-01

    A new approach to THz metamaterial structures is proposed and experimentally realized. It is based on metal-less conductive subwavelength structures on diamond surfaces generated by laser direct-write. 200 nm thick graphitized layers with DC conductivity of 730 Ω-1 cm-1 are formed on a chemical vapour deposited polycrystalline diamond surface after irradiation with an excimer KrF laser (τ l  =  20 ns, λ  =  248 nm). The optical properties of such layers are determined and simulated according to the Drude model. A polarizer with a graphitized subwavelength grating is fabricated and tested in the THz range (0.9-1.2 THz), and shows different transmission losses for orthogonal polarizations.

  9. Feasibility investigation of growing gallium arsenide single crystals in ribbon form

    NASA Technical Reports Server (NTRS)

    Richardson, D. L.

    1975-01-01

    Polycrystalline GaAs ribbons have been grown in graphite boats by passage of a wide zone through B2O3 encapsulated feed stock, confined by a quartz cover plate. By controlling the heat flow in the graphite boat and controlling the zoning rate, large grained, single phase polycrystalline samples with directional solidification and good thickness control were achieved. Arsenic vaporization was effectively suppressed at the melting point of GaAs by the B2O3 moat and 3 atmospheres of pressure. A vertical constrained-zone-melting apparatus with a B2O3 moat seal, rf heating, and water cooling on the bottom will be used to control the heat flow and temperature patterns required for growth of single crystal ribbons.

  10. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  11. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2017-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  12. Dust Detection by Curiosity ChemCam

    NASA Image and Video Library

    2013-04-08

    The ChemCam instrument on NASA Curiosity Mars rover fired its laser 50 times at its onboard graphite target showing spectral measurements from the first shot, which hit dust on the target, compared to spectral measurements of from the 50th shot.

  13. Experimental measurement of 12C+16O fusion at stellar energies

    NASA Astrophysics Data System (ADS)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; deSouza, R. T.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2017-10-01

    The total cross section of the 12C+16O fusion reaction has been measured at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam, produced by the 5 MV pelletron accelerator at the University of Notre Dame, impinged on a thick, ultrapure graphite target. Protons and γ rays were simultaneously measured in the center-of-mass energy range from 3.64 to 5.01 MeV for singles and from 3.73 to 4.84 MeV for coincidence events, using silicon and Ge detectors. Statistical model calculations were employed to interpret the experimental results. The emergence of a new resonance-like broad structure and a decreasing trend in the S -factor data towards lower energies (opposite to previous data) are found for the 12C+16O fusion reaction. Based on these results the uncertainty range of the reaction rate within the temperature range of late stellar burning environments is discussed.

  14. Extracting Wair from the electron beam measurements of Domen and Lamperti.

    PubMed

    Tessier, Frédéric; Cojocaru, Claudiu D; Ross, Carl K

    2018-01-01

    The average energy expended by an energetic electron to create an ion pair in dry air, W air , is a key quantity in radiation dosimetry. Although W air is well established for electron energies up to about 3 MeV, there is limited data for higher energies. The measurements by Domen and Lamperti [Med. Phys. 3, 294-301 (1976)] using electron beams in the energy range from 15 to 50 MeV can, in principle, be used to deduce values for W air , if the electron stopping power of graphite and air are known. A previous analysis of these data revealed an anomalous variation of 2% in W air as a function of the electron energy. We use Monte Carlo simulation techniques to reanalyze the original data and obtain new estimates for W air , and to investigate the source of the reported anomaly. Domen and Lamperti (DL) reported the ratio of the response of a graphite calorimeter to that of a graphite ionization chamber for broad beams of electrons with energies between 15 and 50 MeV and at different depths in graphite (including depths well beyond the range of the primary electrons, i.e., in the bremsstrahlung photon regime). Using a detailed EGSnrc model of the DL apparatus, as well as up-to-date stopping powers, we compute the dose ratio between the ionization chamber cavity and the calorimeter core, for plane-parallel electron beams. This dose ratio, multiplied by the DL measured ratio, provides a direct estimate for W air . Despite an improved analysis of the original work, the extracted values of W air still exhibit an increase as the mean electron energy at the point of measurement decreases below about 15 MeV. This anomalous trend is dubious physically, and inconsistent with extensive data for W air obtained at lower energies. A thorough sensitivity analysis indicates that this trend is unlikely to stem from errors in extrapolation and correction procedures, uncertainties in electron stopping powers, or bias in calorimetry or ionization chamber measurements. However, we find that results are quite sensitive to the intrinsic graphite mass thickness of the detectors and to the incident beam energy. The DL experiment provides data in an energy regime where the electron stopping power is insensitive to the mean excitation energy of graphite - an issue plaguing W air experiments at lower energies. Unfortunately, state-of-the-art scrutiny of the original data cannot explain the anomalous trend in terms of perturbation effects or extrapolation bias. It can only be understood in terms of speculative offsets in graphite mass thickness or beam energy. Therefore higher accuracy measurements for electron energies above 15 MeV are recommended to further resolve the value of W air . © Her Majesty the Queen in Right of Canada 2017. Reproduced with the permission of the Minister of Science.

  15. Preparation of thin film silver fluoride electrodes from constituent elements

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.

  16. Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes.

    PubMed

    Kumar, Rajesh; Joanni, Ednan; Singh, Rajesh K; da Silva, Everson T S G; Savu, Raluca; Kubota, Lauro T; Moshkalev, Stanislav A

    2017-12-01

    In this article we demonstrate a simple approach to fabricate interdigitated in-plane electrodes for flexible micro-supercapacitors (MSCs). A nanosecond ultraviolet laser treatment is used to reduce and pattern the electrodes on thick graphite oxide (GO) freestanding films. These laser-treated regions obtained by direct writing provide the conducting channels for electrons in the capacitors. The electrochemical performance of the MSCs was evaluated in the presence of two different electrolytes and they exhibit characteristics of nearly electrical double layer capacitors. The MSCs have areal capacitances as 2.40, 2.23 and 1.62μF/cm 2 for NaOH, Na 2 SO 4 and KCl electrolytes respectively, for measurements performed at the scan rate of 50mV/s. They retain ∼93.1% of their initial capacitances after 3500 cycles (scan rate=80mV/s) in NaOH electrolyte. The proposed laser treatment approach enables facile and fast fabrication of flexible MSCs without the need for tedious processing methods such as photolithographic micro-patterning and deposition of porous carbon or metallic current collectors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    PubMed Central

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  18. NASA MUST Paper: Infrared Thermography of Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla; Koshti, Ajay

    2010-01-01

    The focus of this project is to use Infrared Thermography, a non-destructive test, to detect detrimental cracks and voids beneath the surface of materials used in the space program. This project will consist of developing a simulation model of the Infrared Thermography inspection of the Graphite/Epoxy specimen. The simulation entails finding the correct physical properties for this specimen as well as programming the model for thick voids or flat bottom holes. After the simulation is completed, an Infrared Thermography inspection of the actual specimen will be made. Upon acquiring the experimental test data, an analysis of the data for the actual experiment will occur, which includes analyzing images, graphical analysis, and analyzing numerical data received from the infrared camera. The simulation will then be corrected for any discrepancies between it and the actual experiment. The optimized simulation material property inputs can then be used for new simulation for thin voids. The comparison of the two simulations, the simulation for the thick void and the simulation for the thin void, provides a correlation between the peak contrast ratio and peak time ratio. This correlation is used in the evaluation of flash thermography data during the evaluation of delaminations.

  19. Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.

    2017-12-01

    The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.

  20. Evolution of the secondary electron emission during the graphitization of thin C films

    NASA Astrophysics Data System (ADS)

    Larciprete, Rosanna; Grosso, Davide Remo; Di Trolio, Antonio; Cimino, Roberto

    2015-02-01

    The relation between the atomic hybridization and the secondary electron emission yield (SEY) in carbon materials has been investigated during the thermal graphitization of thin amorphous carbon layers deposited by magnetron sputtering on Cu substrates. C1s core level, valence band and Raman spectroscopy were used to follow the sp3→sp2 structural reorganization while the SEY curves as a function of the kinetic energy of the incident electron beam were measured in parallel. We found that an amorphous C layer with a thickness of a few tens of nanometers is capable to modify the secondary emission properties of the clean copper surface, reducing the maximum yield from 1.4 to 1.2. A further SEY decrease observed with the progressive conversion of sp3 hybrids into six-fold aromatic domains was related to the electronic structure close to the Fermi level of the C-films. We found that a moderate structural quality of the C layer is sufficient to notably decrease the SEY as aromatic clusters of limited size approach the secondary emission properties of graphite.

  1. Effect of Target Thickness on Cratering and Penetration of Projectiles Impacting at Velocities to 13,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Lambert, C. H., Jr.; Schryer, David R.; Casey, Francis W., Jr.

    1958-01-01

    In order to determine the effects of target thickness on the penetration and cratering of a target resulting from impacts by high-velocity projectiles, a series of experimental tests have been run. The projectile-target material combinations investigated were aluminum projectiles impacting aluminum targets and steel projectiles impacting aluminum and copper targets. The velocity spectrum ranged from 4,000 ft/sec to 13,000 ft/sec. It has been found that the penetration is a function of target thickness provided that the penetration is greater than 20 percent of the target thickness. Targets of a thickness such that the penetration amounts to less than 20 percent of the thickness may be regarded as quasi-infinite. An empirical formula has been established relating the penetration to the target thickness and to the penetration of a projectile of the same mass, configuration, and velocity into a quasi- infinite target. In particular, it has been found that a projectile can completely penetrate a target whose thickness is approximately one and one-half times as great as the penetration of a similar projectile into a quasi-infinite target. The diameter of a crater has also been found to be a function of the target thickness provided that the target thickness is not greater than the projectile length in the case of cylindrical projectiles and not greater than two to three times the projectile diameter in the case of spherical projectiles.

  2. Carbide coated fibers in graphites-aluminum composites. [(fabrication of metal matrix composites)

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1976-01-01

    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown.

  3. Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance.

    PubMed

    Sun, Yong; Jin, Shuaixing; Yang, Guowei; Wang, Jing; Wang, Chengxin

    2015-04-28

    Despite the high theoretical capacity, pure Ge has various difficulties such as significant volume expansion and electron and Li(+) transfer problems, when applied as anode materials in lithium ion battery (LIB), for which the solution would finally rely on rational design like advanced structures and available hybrid. Here in this work, we report a one-step synthesis of Ge nanowires-in-graphite tubes (GNIGTs) with the liquid Ge/C synergetic confined growth method. The structure exhibits impressing LIB behavior in terms of both cyclic stability and rate performance. We found the semiclosed graphite shell with thickness of ∼50 layers experience an interesting splitting process that was driven by electrolyte diffusion, which occurs before the Ge-Li alloying plateau begins. Two types of different splitting mechanism addressed as "inside-out"/zipper effect and "outside-in" dominate this process, which are resulted from the SEI layer growing longitudinally along the Ge-graphite interface and the lateral diffusion of Li(+) across the shell, respectively. The former mechanism is the predominant way driving the initial shell to split, which behaves like a zipper with SEI layer as invisible puller. After repeated Li(+) insertion/exaction, the GNIGTs configuration is finally reconstructed by forming Ge nanowires-thin graphite strip hybrid, both of which are in close contact, resulting in enormous enchantment to the electrons/Li(+) transport. These features make the structures perform well as anode material in LIB. We believe both the progress in 1D assembly and the structure evolution of this Ge-C composite would contribute to the design of advanced LIB anode materials.

  4. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysismore » also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.« less

  5. Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures

    NASA Astrophysics Data System (ADS)

    Abderrafi, Kamal; García-Calzada, Raúl; Sanchez-Royo, Juan F.; Chirvony, Vladimir S.; Agouram, Saïd; Abargues, Rafael; Ibáñez, Rafael; Martínez-Pastor, Juan P.

    2013-04-01

    With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50-80 nm core-shell nanoparticles with a polycrystalline core composed of small (5-10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implemented in carbon tetrachloride (CCl4), where only bare (uncoated) Si nanoparticles are produced, we suggest that a chemical (solvent decomposition giving rise to highly reactive CH-containing radicals) rather than a physical (solvent atomization followed by carbon nanostructure formation) mechanism is responsible for the formation of graphitic shells. The silicon carbonization process found for the case of laser ablation in chloroform may be promising for silicon surface protection and functionalization.

  6. Space fabrication demonstration system. [beam builder and induction fastening

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development effort on the composite beam cap fabricator was completed within cost and close to abbreviated goals. The design and analysis of flight weight primary and secondary beam builder structures proceeded satisfactorily but remains curtailed until further funding is made available to complete the work. The induction fastening effort remains within cost and schedule constraints. Tests of the LARC prototype induction welder is continuing in an instrumented test stand comprised of a Dumore drill press (air over oil feed for variable applied loads) and a dynamometer to measure actual welding loads. Continued testing shows that the interface screening must be well impregnated with resin to ensure proper flow when bonding graphite-acrylic lap shear samples. Specimens prepared from 0.030 inch thick graphite-polyethersulfone are also available for future induction fastening evaluation.

  7. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Jeelani, S.

    1992-01-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.

  8. The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan

    2017-12-01

    Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

  9. Free Vibration of Fiber Composite Thin Shells in a Hot Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1995-01-01

    Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.

  10. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries

    DOE PAGES

    Du, Zhijia; Wood, David L.; Daniel, Claus; ...

    2017-02-09

    We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less

  11. C, N, and O Isotopic Heterogeneities in Low-density Supernova Graphite Grains from Orgueil

    NASA Astrophysics Data System (ADS)

    Groopman, Evan; Bernatowicz, Thomas; Zinner, Ernst

    2012-07-01

    We report on the results of NanoSIMS isotope imaging of low-density supernova graphite grains from the Orgueil meteorite. 70 nm thick microtomed sections of three supernova graphite grains were deposited on Si wafers and isotopically imaged in the NanoSIMS. These sections contain hotspots of excesses in 18O and 15N, which are spatially well correlated, and are likely carried by internal TiC subgrains. These hotspots are considerably more enriched in 18O and 15N than the host graphite grain. Correlations between 18O and 15N excesses indicate that the grains incorporated material from the He/C supernova zone. Isotope images of the surfaces of some grains show heterogeneities in their N and O isotope compositions, with extreme excesses in 15N and 18O. In the microtome sections, we also observe two types of heterogeneities in the grains' C isotopic compositions: smooth, radial gradients in 12C/13C, with this ratio trending toward solar with increasing radius; and highly anomalous pockets up to 2 μm in size with 12C/13C Gt solar that are located near the centers of the grain sections. Partial isotopic equilibration does not likely explain the C isotopic heterogeneities. These grains and their constituent parts probably formed in a stellar environment with changing isotopic composition.

  12. Electron paramagnetic resonance field-modulation eddy-current analysis of silver-plated graphite resonators

    NASA Astrophysics Data System (ADS)

    Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.

    2005-09-01

    Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.

  13. Transitions between type A flake, type D flake, and coral graphite eutectic structures in cast irons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.S.; Verhoeven, J.D.

    1996-09-01

    Directional solidification experiments were used to measure the transition velocities between the type A and coral eutectic structures in high-purity cast irons and between the type A and type D eutectic structures in S and Te doped cast irons. Introduction of O into the gas atmosphere was found to have little effect on the A {R_arrow} D transition velocities in S doped alloys, but it produced a strong reduction in the A {R_arrow} coral transition velocities in high-purity irons. Transmission electron microscopy revealed interesting variations in the defect structures of the graphite in the flake irons vs the type ofmore » flake (A or D) and the type of doping element. Scanning Auger microscopy demonstrated that both S and Te segregate to the iron/graphite interface. In the S doped alloys, type A flakes are generally covered with a monolayer of S with patches of O in the form of iron oxide having a thickness on the order of 2 nm. A series of experiments, including examination of fracture surfaces at the quenched solid/liquid growth front, have shown that S segregates to the iron/graphite interfaces from the liquid at the growth front, but O forms at these interfaces during the cooldown. These results are discussed in relation to current models of eutectic growth in cast irons.« less

  14. Study of copper-free back contacts to thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  15. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation was conducted to characterize the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix (primary composites) hybridized with varying amounts of secondary composites made from S-glass or Kevlar 49 fibers. The tests were conducted using thin laminates having the same thickness. The specimens for these tests were instrumented with strain gages to determine stress-strain behavior. Significant results are included.

  16. Absorption Of Crushing Energy In Square Composite Tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.

  17. Effects of ply thickness on thermal cycle induced damage and thermal strain

    NASA Astrophysics Data System (ADS)

    Tompkins, Stephen S.

    1994-07-01

    An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion, CTE. A graphite-epoxy composite material, P75/ERL 1962, in thin (1 mil) and thick (5 mils) prepregs was used to make cross-ply laminates, ((0/90)(sub n))s, with equal total thickness (n=2, n=10) and cross-ply laminates with the same total number of plies (n=2). Specimens of each laminate configuration were cycled up to 1500 times between -250 and 250 F. Thermally induced microdamage was assessed as a function of the number of cycles as was the change in CTE. The results showed that laminates fabricated with thin-plies microcracked at significantly different rates and reached significantly different equilibrium crack densities than the laminate fabricated with thick-ply and n=2. The CTE of thin-ply laminates was less affected by thermal cycling and damage than the CTE of thick-ply laminates. These differences are attributed primarily to differences in interply constraints. Observed effects of ply thickness on crack density was qualitatively predicted by a combined shear-lag stress/energy method.

  18. Effects of ply thickness on thermal cycle induced damage and thermal strain

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1994-01-01

    An experimental study was conducted to determine the effects of ply thickness in composite laminates on thermally induced cracking and changes in the coefficient of thermal expansion, CTE. A graphite-epoxy composite material, P75/ERL 1962, in thin (1 mil) and thick (5 mils) prepregs was used to make cross-ply laminates, ((0/90)(sub n))s, with equal total thickness (n=2, n=10) and cross-ply laminates with the same total number of plies (n=2). Specimens of each laminate configuration were cycled up to 1500 times between -250 and 250 F. Thermally induced microdamage was assessed as a function of the number of cycles as was the change in CTE. The results showed that laminates fabricated with thin-plies microcracked at significantly different rates and reached significantly different equilibrium crack densities than the laminate fabricated with thick-ply and n=2. The CTE of thin-ply laminates was less affected by thermal cycling and damage than the CTE of thick-ply laminates. These differences are attributed primarily to differences in interply constraints. Observed effects of ply thickness on crack density was qualitatively predicted by a combined shear-lag stress/energy method.

  19. Sub-ply level scaling approach investigated for graphite-epoxy composite beam columns

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris

    1994-01-01

    Scale model graphite-epoxy composite specimens were fabricated using the 'sub-ply level' approach and tested as beam-columns under an eccentric axial load to determine the effect of specimen size on flexural response and failure. In the current research project, although the fiber diameters are not scaled, the thickness of the pre-preg material itself has been scaled by adjusting the number of fibers through the thickness of a single ply. Three different grades of graphite-epoxy composite material (AS4/3502) were obtained from Hercules, Inc., in which the number of fibers through the thickness of a single ply was reduced (Grade 190 with 12 to 16 fibers, Grade 95 with 6 to 8 fibers, and Grade 48 with 3 to 4 fibers). Thus, using the sub-ply level approach, a baseline eight ply quasi-isotropic laminate could be fabricated using either the Grade 48 or Grade 95 material and the corresponding full-scale laminate would be constructed from Grade 95 or standard Grade 190 material, respectively. Note that in the sub-ply level approach, the number of ply interfaces is constant for the baseline and full-scale laminates. This is not true for the ply level and sublaminate level scaled specimens. The three grades of graphite-epoxy composite material were used to fabricate scale model beam-column specimens with in-plane dimensions of 0.5*n x 5.75*n, where n=1,2,4 corresponsing to 1/4, 1/2, and full-scale factors. Angle ply, cross ply, and quasi-isotropic laminate stacking sequences were chosen for the investigation and the test matrices for each laminate type are given. Specimens in each laminate family with the same in-plane dimensions but different thicknesses were tested to isolate the influence of the thickness dimension on the flexural response and failure. Also, specific lay-ups were chosen with blocked plies and dispersed plies for each laminate type. Specimens were subjected to an eccentric axial load until failure. The load offset was introduced through a set of hinges which were attached to the platens of a standard load test machine. Three sets of geometrically scaled hinges were used to ensure that scaled loading conditions were applied. This loading condition was chosen because it promotes large flexural deformations and specimens fail at the center of the beam, away from the grip supports. Five channels of data including applied vertical load, end shortening displacement, strain from gages applied back-to-back at the midspan of the beam, and rotation of the hinge from a bubble inclinometer were recorded for each specimen. The beam-column test configuration was used previously to study size effects in ply level scaled composite specimens of the same material system, sizes, and stacking sequences. Thus, a direct comparison between the two scaling approaches is possible. Ply level scaled beam-columns with angle ply, cross ply, and quasi-isotropic lay-ups exhibited no size dependencies in the flexural response, but significant size effects in strength. The reduction in strength with increasing specimen size was not predicted successfully by analysis techniques. It is anticipated that results from this investigation will lead to a better understanding of the strength scale effect in composite structures.

  20. Label-Free Electrochemical Detection of the Specific Oligonucleotide Sequence of Dengue Virus Type 1 on Pencil Graphite Electrodes

    PubMed Central

    Souza, Elaine; Nascimento, Gustavo; Santana, Nataly; Ferreira, Danielly; Lima, Manoel; Natividade, Edna; Martins, Danyelly; Lima-Filho, José

    2011-01-01

    A biosensor that relies on the adsorption immobilization of the 18-mer single-stranded nucleic acid related to dengue virus gene 1 on activated pencil graphite was developed. Hybridization between the probe and its complementary oligonucleotides (the target) was investigated by monitoring guanine oxidation by differential pulse voltammetry (DPV). The pencil graphite electrode was made of ordinary pencil lead (type 4B). The polished surface of the working electrode was activated by applying a potential of 1.8 V for 5 min. Afterward, the dengue oligonucleotides probe was immobilized on the activated electrode by applying 0.5 V to the electrode in 0.5 M acetate buffer (pH 5.0) for 5 min. The hybridization process was carried out by incubating at the annealing temperature of the oligonucleotides. A time of five minutes and concentration of 1 μM were found to be the optimal conditions for probe immobilization. The electrochemical detection of annealing between the DNA probe (TS-1P) immobilized on the modified electrode, and the target (TS-1T) was achieved. The target could be quantified in a range from 1 to 40 nM with good linearity and a detection limit of 0.92 nM. The specificity of the electrochemical biosensor was tested using non-complementary sequences of dengue virus 2 and 3. PMID:22163916

  1. Nanostructural evolution during emission of CsI-coated carbon fiber cathodes

    NASA Astrophysics Data System (ADS)

    Drummy, Lawrence F.; Apt, Scott; Shiffler, Don; Golby, Ken; LaCour, Matt; Maruyama, Benji; Vaia, Richard A.

    2010-06-01

    Carbon-based nanofiber and microfiber cathodes exhibit very low voltages for the onset of electron emission, and thus provide exciting opportunities for applications ranging from high power microwave sources to field emission displays. CsI coatings have been experimentally shown to lower the work function for emission from the fiber tips, although little is known about the microstructure of the fibers themselves in their as-received state, after coating with CsI, or after being subjected to high voltage cycling. Longitudinal cross sections of the original, unused CsI-coated fibers produced by focused ion beam lift-out revealed a nanostructured graphitic core surrounded by an amorphous carbon shell with submicron sized islands of crystalline CsI on the outer surface. Aberration-corrected high resolution electron microscopy (HREM) of the fiber core achieved 0.10 nm resolution, with the graphite (200) clearly visible in digital fast Fourier transformations of the 2-4 nm highly ordered graphitic domains. As the cathode fibers are cycled at high voltage, HREM demonstrates that the graphitic ordering of the core increases with the number of cycles, however the structure and thickness of the amorphous carbon layer remains unchanged. These results are consistent with micro-Raman measurements of the fiber disordered/graphitic (D/G) band ratios. After high voltage cycling, a uniform ˜100 nm film at the fiber tip was evident in both bright field transmission electron microscopy (TEM) and high angle annular dark field scanning TEM (STEM). Low-dose electron diffraction techniques confirmed the amorphous nature of this film, and STEM with elemental mapping via x-ray energy dispersive spectroscopy indicates this layer is composed of CsIO. The oxidative evolution of tip composition and morphology due to impurities in the chamber, along with increased graphitization of the fiber core, contributes to changes in emission behavior with cycling.

  2. Compatibility of the Radio Frequency Mass Gauge with Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Mueller, Carl

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98. Together, these results suggested that a tank constructed from graphite-epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 Q 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  3. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  4. Flaw criticality of circular disbond defects in compressive laminates. M.S. Thesis. Interim Report, 1980 - 1981; [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Webster, J. D.

    1981-01-01

    The compressive behavior of T300/5208 graphite-epoxy laminates containing circular delaminations was studied to determine the flaw criticality of two types of implanted defect, Kapton bag and Teflon film, on several laminate configurations. Defect size was varied. Results, presented in the form of residual strength curves, indicate that the Teflon film defect reduced strength more than the Kapton bad defect in 12-ply samples, but that two laminates (+ or - 45) sub 2s and (90/+ or - 45) sub s were insensitive to any implanted defect. A clear thickness effect was shown to exist for the (o/+ pr 45) sub ns laminate and was attributed to failure mode transition. The analytically predicted buckling loads show excellent agreement with experimental results and are useful in predicting failure mode transition.

  5. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Jeelani, S.

    1992-02-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less

  6. Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature

    NASA Astrophysics Data System (ADS)

    Dixit, Saurabh; Shukla, A. K.

    2018-06-01

    In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.

  7. Solubility of C-O-H volatiles in graphite-saturated martian basalts and application to martian atmospheric evolution

    NASA Astrophysics Data System (ADS)

    Stanley, B. D.; Hirschmann, M. M.; Withers, A. C.

    2012-12-01

    The modern martian atmosphere is thin, leading to surface conditions too cold to support liquid water. Yet, there is evidence of liquid surface water early in martian history that is commonly thought to require a thick CO2 atmosphere. Our previous work follows the analysis developed by Holloway and co-workers (Holloway et al. 1992; Holloway 1998), which predicts a linear relationship between CO2 and oxygen fugacity (fO2) in graphite-saturated silicate melts. At low oxygen fugacity, the solubility of CO2 in silicate melts is therefore very low. Such low calculated solubilities under reducing conditions lead to small fluxes of CO2 associated with martian magmatism, and therefore production of a thick volcanogenic CO2 atmosphere could require a prohibitively large volume of mantle-derived magma. The key assumption in these previous calculations is that the carbonate ion is the chief soluble C-O-H species. The results of the calculations would not be affected appreciably if molecular CO2, rather than carbonate ion, were an important species, but could be entirely different if there were other appreciable C-species such as CO, carbonyl (C=O) complexes, carbide (Si-C), or CH4. Clearly, graphite-saturated experiments are required to explore how much volcanogenic C may be degassed by reduced martian lavas. A series of piston-cylinder experiments were performed on synthetic martian starting materials over a range of oxygen fugacities (IW+2.3 to IW-0.9), and at pressures of 1-3 GPa and temperatures of 1340-1600 °C in Pt-graphite double capsules. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and range from 0.0026-0.50 wt%. CO2 solubilities change by one order of magnitude with an order of magnitude change in oxygen fugacity, as predicted by previous work. Secondary ion mass spectrometry (SIMS) determinations of C contents in glasses range from 0.0131-0.2626 wt%. C contents determined by SIMS are consistently higher than CO2 contents determined by FTIR. This difference, termed excess C, is attributed to the presence of other reduced C-species, such as carbonyls and amides (which have C=O and N-H bonds), detected using FTIR in reduced graphite-saturated martian basalts. An atmosphere produced by degassing of magmas similar to this study would be richer in C-O-H species than previously modeled using only CO2 and could create a much warmer climate that stabilizes liquid water on the ancient martian surface.

  8. New Potential Sources for Black Onaping Carbon

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, L.; Schultz, P. H.; Wolbach, W. S.

    1997-01-01

    One intriguing and important issue of the Sudbury Structure concerns the source of the relatively large amount of C in the Onaping Formation Black member. This dilemma was recently addressed, and the conclusion was reached that an impactor could not have delivered all of the requisite C. Becker et al. have suggested that much of the C came from the impactor and reported the presence of interstellar He "caged" inside some fullerenes that may have survived the impact. So, conceivably, the C inventory in the Sudbury Structure comes from both target and impactor materials, although the known target rocks have little C. We discuss here the possibility of two terrestrial sources for at least some of the C: (1) impact evaporation/dissociation of C from carbonate target rocks and (2) the presence of heretofore-unrecognized C-rich (up to 26 wt%) siliceous "shale," fragments, which are found in the upper, reworked Black member. Experimental: Hypervelocity impact of a 0.635-diameter Al projectile into dolomite at 5.03 km/s (performed at the Ames Research Center vertical gun range) produced a thin, black layer (= 0.05 mm thick) that partially lined the crater and coated impactor remnants. Scanning electronic microscope (SEM) imagery shows this layer to be spongelike on a submicron scale and Auger spectroscopic analyses yield: 33% C, 22% Mg, 19% 0, and 9% Al (from the projectile). Elemental mapping shows that all of the available 0 is combined with Ca and Mg, Al is not oxidized, and C is in elemental form. Dissociation efficiency of C from CO2 is estimated to be <10% of crater volume. Raman spectroscopy indicates that the C is highly disorganized graphite. Another impact experiment [4] also produced highly disordered graphite from a limestone target (reducing collector), in addition to small amounts of diamond/lonsdaleite/chaoite (oxidizing collector). These experiments confirm the reduction of C from carbonates in impact vapor plumes. Observational: SEM observations and microprobe analyses of small, black shalelike inclusions in the upper Black Onaping indicate high C contents (7-26 wt% avg. = 16%). They contain mostly quartz and carbonaceous matter with small amounts of altered K-feldspar, clays, Fe oxide, and a sulfide. No evidence of shock is seen in quartz, and overall characteristics indicate a natural, lightly metamorphosed carbonaceous shale or mudstone that probably existed as a preimpact rock in the target region and distal fragments washed in during early crater filling. Fragments range in size from tens of microns to cm and increase in abundance in the upper Black toward the Onwatin contact, although their distribution is highly irregular. This increase corresponds to an increase in "organic" C with increasingly negative delta-13 C values and S, together with a decrease in fullerene abundance. In addition, we have found soot in acid-demineralized residues of the Onwatin but not in the Onaping samples. These data could be consistent with impact plume and atmospheric chemical processes, with possible diageneric ovedays. We are analyzing carbonaceous fractions of the Onaping and Onwatin to determine diagnostic C isotopic signatures Analyses by Whitehead et al. on bulk samples revealed no definitive source or processes, although delta-13 C values for "organic" C overlapped those for some meteorites. Discussion: If impact evaporation of Sudbury target carbonates did occur, then where are the carbonates? Distal carbonate (limestone/dolostone) exposures of the Espanola Formation (Huronian Supergroup) are generally thin-bedded, although remnants that partially encompass the Sudbury Crater are variable in thickness and may locally reach 250 m . If a carbonate thickness of 100-200 in existed at the target site, then copious amounts of C could have been reduced by impact processing of carbonates and also C-shale, depending on the efficiency of the processing and the amount of postimpact oxidation. Conclusion: The Sudbury crater offers a unique opportunity to study preserved characteristics of immediate carbonaceous fallback matter and particles of short-term residency in the impact plume as well as dust/aerosols from postimpact atmospheric processing.

  9. Post impact compressive strength in composites

    NASA Technical Reports Server (NTRS)

    Demuts, Edvins; Sandhu, Raghbir S.; Daniels, John A.

    1992-01-01

    Presented in this paper are the plan, equipment, procedures, and findings of an experimental investigation of the tolerance to low velocity impact of a graphite epoxy (AS4/3501-6) and graphite bismaleimide (M6/CYCOM3100) advanced composites. The applied impacts were governed by the Air Force Guide Specification 87221. Specimens of each material system having a common nominal layup (10% 0 deg; 80% +/-45 deg; 10% 90 deg), a common 7 inch (17.78 cm) by 10 inch (25.40 cm) size, five different thicknesses (9, 26, 48, 74, and 96 plies), and ambient moisture content were impacted and strength tested at room temperature. Damaged areas and post impact compression strengths (PICS) were among the most significant findings obtained. While the undamaged per ply compression strength of both materials is a strong function of laminate thickness, the per ply PICS is not. The average difference in per ply PICS between the two material systems is about seven percent. Although a smaller percentage of the applied kinetic energy was absorbed by the Gr/BMI than by the Gr/Epoxy composites, larger damaged areas were produced in the Gr/BMI than in Gr/Epoxy. Within the limitations of this investigation, the Gr/BMI system seems to offer no advantage in damage tolerance over the Gr/Epoxy system examined.

  10. Post-mortem analysis on LiFePO4|Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance

    NASA Astrophysics Data System (ADS)

    Lewerenz, Meinert; Warnecke, Alexander; Sauer, Dirk Uwe

    2017-11-01

    During cyclic aging of lithium-ion batteries the formation of a μm-thick covering layer on top of the anode facing the separator is found on top of the anode. In this work several post-mortem analyses of cyclic aged cylindrical LFP|Graphite cells are evaluated to give a detailed characterization of the covering layer and to find possible causes for the evolution of such a layer. The analyses of the layer with different methods return that it consists to high percentage of plated active lithium, deposited Fe and products of a solid electrolyte interphase (SEI). The deposition is located mainly in the center of the cell symmetrical to the coating direction. The origin of these depositions is assumed in locally overcharged particles, Fe deposition or inhomogeneous distribution of capacity density. As a secondary effect the deposition on one side increases the thickness locally; thereafter a pressure-induced overcharging due to charge agglomeration of the back side of the anode occurs. Finally a compact and dense covering layer in a late state of aging leads to deactivation of the covered parts of the anode and cathode due to suppressed lithium-ion conductivity. This leads to increasing slope of capacity fade and increase of internal resistance.

  11. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Al-Ajlony, A.; Tripathi, J. K.; Hassanein, A.

    2015-11-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C.

  12. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber.

    PubMed

    Yin, Yichao; Liu, Xiaofang; Wei, Xiaojun; Yu, Ronghai; Shui, Jianglan

    2016-12-21

    Porous carbon nanotubes/cobalt nanoparticles (CNTs/Co) composite with dodecahedron morphology was synthesized by in situ pyrolysis of the Co-based zeolitic imidazolate framework in a reducing atmosphere. The morphology and microstructure of the composite can be well tuned by controlling the pyrolysis conditions. At lower pyrolysis temperature, the CNTs/Co composite is composed of well-dispersed Co nanoparticles and short CNT clusters with low graphitic degree. The increase of pyrolysis temperature/time promotes the growth and graphitization of CNTs and leads to the aggregation of Co nanoparticles. The optimized CNTs/Co composite exhibits strong dielectric and magnetic losses as well as a good impedance matching property. Interestingly, the CNTs/Co composite displays extremely strong electromagnetic wave absorption with a maximum reflection loss of -60.4 dB. More importantly, the matching thickness of the absorber is as thin as 1.81 mm, and the filler loading of composite in the matrix is only 20 wt %. The highly efficient absorption is closely related to the well-designed structure and the synergistic effect between CNTs and Co nanoparticles. The excellent absorbing performance together with lightweight and ultrathin thickness endows the CNTs/Co composite with the potential for application in the electromagnetic wave absorbing field.

  13. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Bitsch, Boris; Gallasch, Tobias; Schroeder, Melanie; Börner, Markus; Winter, Martin; Willenbacher, Norbert

    2016-10-01

    We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm-2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.

  14. Finite-Element Vibration Analysis and Modal Testing of Graphite Epoxy Tubes and Correlation Between the Data

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Pappa, Richard S.

    1996-01-01

    Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.

  15. Development of a Scanning Microscale Fast Neutron Irradiation Platform for Examining the Correlation Between Local Neutron Damage and Graphite Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinhero, Patrick; Windes, William

    2015-03-10

    The fast particle radiation damage effect of graphite, a main material in current and future nuclear reactors, has significant influence on the utilization of this material in fission and fusion plants. Atoms on graphite crystals can be easily replaced or dislocated by fast protons and result in interstitials and vacancies. The currently accepted model indicates that after most of the interstitials recombine with vacancies, surviving interstitials form clusters and furthermore gather to create loops with each other between layers. Meanwhile, surviving vacancies and interstitials form dislocation loops on the layers. The growth of these inserted layers cause the dimensional increase,more » i.e. swelling, of graphite. Interstitial and vacancy dislocation loops have been reported and they can easily been observed by electron microscope. However, observation of the intermediate atom clusters becomes is paramount in helping prove this model. We utilize fast protons generated from the University of Missouri Research Reactor (MURR) cyclotron to irradiate highly- oriented pyrolytic graphite (HOPG) as target for this research. Post-irradiation examination (PIE) of dosed targets with high-resolution transmission electron microscopy (HRTEM) has permit observation and analysis of clusters and dislocation loops to support the proposed theory. Another part of the research is to validate M.I. Heggie’s Ruck and Tuck model, which introduced graphite layers may fold under fast particle irradiation. Again, we employed microscopy to image irradiated specimens to determine how the extent of Ruck and Tuck by calculating the number of folds as a function of dose. Our most significant accomplishment is the invention of a novel class of high-intensity pure beta-emitters for long-term lightweight batteries. We have filed four invention disclosure records based on the research conducted in this project. These batteries are lightweight because they consist of carbon and tritium and can be fabricated to conform to many geometric shapes. In addition, we have published eight peer-reviewed American Nuclear Society (ANS) transactions, and presented our findings at ANS National Meetings, and several universities.« less

  16. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  17. Superconductivity in Li{sub 3}Ca{sub 2}C{sub 6} intercalated graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, Nicolas; Herold, Claire; Mareche, Jean-Francois

    2006-04-15

    In this paper, we report the discovery of superconductivity in Li{sub 3}Ca{sub 2}C{sub 6}. Several graphite intercalation compounds (GICs) with electron donors, are well known as superconductors [T. Enoki, S. Masatsugu, E. Morinobu, Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, 2003]. It is probably not astonishing, since it is generally admitted that low dimensionality promotes high superconducting transition temperatures. Superconductivity is lacking in pristine graphite, but after charging the graphene planes by intercalation, its electronic properties change considerably and superconducting behaviour can appear. Li{sub 3}Ca{sub 2}C{sub 6} is a ternary GIC [S. Pruvost, C. Herold, A. Herold, P.more » Lagrange, Eur. J. Inorg. Chem. 8 (2004) 1661-1667], for which the intercalated sheets are very thick and poly layered (five lithium layers and two calcium ones). It contains a great amount of metal (five metallic atoms for six carbon ones). Its critical temperature of 11.15 K is very close to that of CaC{sub 6} GIC [T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1 (2005) 39-41; N. Emery, C. Herold, M. d'Astuto, V. Garcia, Ch. Bellin, J.F. Mareche, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95 (2005) 087003] (11.5 K). Both CaC{sub 6} and Li{sub 3}Ca{sub 2}C{sub 6} GICs possess currently the highest transition temperatures among all the GICs.« less

  18. Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO₂ Coating Deposited on Graphite for Supercapacitor.

    PubMed

    Huang, Wenxin; Li, Jun; Xu, Yunhe

    2017-10-19

    The nucleation and growth mechanisms of porous MnO₂ coating deposited on graphite in MnSO₄ solution were investigated in detail by cyclic voltammetry, chronoamperometry and scanning electron microscopy. The electrochemical properties of honeycomb-like MnO₂ were evaluated by cycle voltammetry and galvanostatic charge-discharge. Results indicated that MnO₂ was synthesized by the following steps: Mn 2+ → Mn 3+ + e⁻, Mn 3+ +2H2O → MnOOH + 3H⁺, and MnOOH → MnO₂ + H⁺+ e⁻. The deposition of MnO₂ was divided into four stages. A short incubation period (approximately 1.5 s) was observed, prior to nucleation. The decreasing trend of the current slowed as time increased due to nucleation and MnO₂ growth in the second stage. A huge number of nuclei were formed by instantaneous nucleation, and these nuclei grew and connected with one another at an exceedingly short time (0.5 s). In the third stage, the gaps in-between initial graphite flakes were filled with MnO₂ until the morphology of the flakes gradually became similar to that of the MnO₂-deposited layer. In the fourth stage, the graphite electrode was covered completely with a thick and dense layer of MnO₂ deposits. All MnO₂ electrodes at different deposition times obtained nearly the same specific capacitance of approximately 186 F/g, thus indicating that the specific capacitance of the electrodes is not related with deposition time.

  19. Effects of Casting Size on Microstructure and Mechanical Properties of Spheroidal and Compacted Graphite Cast Irons: Experimental Results and Comparison with International Standards

    NASA Astrophysics Data System (ADS)

    Ceschini, L.; Morri, Alessandro; Morri, Andrea

    2017-05-01

    The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.

  20. Improved adaptability of polyaryl-ether-ether-ketone with texture pattern and graphite-like carbon film for bio-tribological applications

    NASA Astrophysics Data System (ADS)

    Ren, Siming; Huang, Jinxia; Cui, Mingjun; Pu, Jibin; Wang, Liping

    2017-04-01

    With the development of surface treatment technology, an increasing number of bearings, seals, dynamic friction drive or even biomedical devices involve a textured surface to improve lubrication and anti-wear. The present investigation has been conducted in order to evaluate the friction and wear behaviours of textured polyaryl-ether-ether-ketone (PEEK) coated with a graphite-like carbon (GLC) film sliding against stainless steel pin in biological medium. Compared with pure PEEK, the PEEK coated with GLC film shows excellent tribological performance with a low friction of 0.08 and long lifetime (wear volumes are about 3.78 × 10-4 mm3 for un-textured one and 2.60 × 10-4 mm3 for textured GLC film after 36,000 s of sliding) under physiological saline solution. In particular, the GLC film with appropriate dimple area density is effective to improve friction reduction and wear resistance properties of PEEK substrate under biological solution, which is attributed to the entrapment of wear debris in the dimples to inhibit the graphitization and the fluid dynamic pressure effect derived from the texture surface to increase the thickness in elastohydrodynamic lubrication (EHL) film during sliding motions. Moreover, the friction coefficient of GLC film under physiological saline solution decreases with the increase in the applied load. With the increasing applied load, the texture surface is responsible for accounting the improved wear resistance and a much lower graphitization of the GLC film during whole test.

  1. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules

    PubMed Central

    Li, Yunjie; Hu, Xiaoxiao; Ding, Ding; Zou, Yuxiu; Xu, Yiting; Wang, Xuewei; Zhang, Yin; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-01-01

    Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions. PMID:28643777

  2. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules

    NASA Astrophysics Data System (ADS)

    Li, Yunjie; Hu, Xiaoxiao; Ding, Ding; Zou, Yuxiu; Xu, Yiting; Wang, Xuewei; Zhang, Yin; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-06-01

    Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions.

  3. New Occurrence of Shocked Graphite Aggregates at Barringer Crater

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Noma, Y.; Iancu, O. G.

    1993-07-01

    High-pressure carbon minera]s are considered to be formed by solid-solid transformation under static or impact high-pressure condition, but shocked quartz aggregates of impact craters are considered to be formed by quenched accretion of various aggregates by dynamic impact process [1-3]. The main purpose of this study is to elucidate new findings and occurrences of shocked graphite (SG) aggregates [2,3] at the Barringer meteorite crater. The graphite nodule block of Barringer Crater used in this study is collected near the rim. The sample is compared with standard graphite samples of Korea, Madagascar, and artificial impact graphites. There are four different mineral aggregates of the Barringer graphite nodule sample: (1) shocked graphite-1, (2) shocked graphite-2 and hexagonal diamond in the vein, (3) shocked quartz-1 (with kamacite) in the rim, and (4) calcite in the rim (Table 1). X-ray diffraction peaks of shocked graphite reveal low X-ray intensity, high Bragg-angle shift of X-ray diffraction peak, and multiple splitting of X-ray diffraction peaks. X-ray calculated density (rho) has been determined by X-ray diffractometer by the equation of density deviation Delta rho (%) = 100 x {(rho-rho(sub)0)/rho(sub)0}, where standard density rho(sub)0 is 2.255 g/cm^3 in Korean graphite [2,3]. The high-density value of shocked graphite grain obtained in Barringer is Delta rho = +0.6 +/- 0.1%. Shocked hexagonal diamonds (chaoite) show a high value of Delta rho = +0.6 +/- 0.9%. Analytical electron microscopy data reveal three different aggregates in the graphite nodule samples (Table 1): (1) shocked graphite-1 in the matrix, which contains uniformly Fe and Ca elements formed under gas state; (2) shocked graphite-2 in the vein, where crystallized shocked graphites and hexagonal diamonds are surrounded by kamacite-rich metals formed under gas-melt states of mixed compositions from iron meteorite and target rocks; and (3) shocked quartz-1 and kamacite in the rim, where coexisted elements are supplied from kamacite, sandstone, and limestone. The shocked quartz-1 grains with high density contain Fe and Ca elements that are different from the shocked quartz-2 of pure silica [1] formed at the final stage from the Coconino sandstone. (4) Limestone in the rim is attached from Kaibab limestone. The present shocked graphites with high density are the same as artificial fine-grained shocked graphites (Delta rho = +0.7%). Table 1, which appears here in the hard copy, shows formation stages with two shocked graphites in the Barringer Crater. Formation of shocked aggregates with chemical contamination indicate dynamic accretion processes of quenching and depression at impact. The existence of two shocked graphites indicates the two formation stages of the first gas-state and the second gas-melt states with quenching processes. The origin of carbon in the shocked graphites is considered in this study to be from Kaibab limestone. References: [1] Miura Y. (1991) Shock Waves, 1, 35-41. [2] Miura Y. (1992) Proc. Shock Waves (Japan), 2, 54-57. [3] Miura Y. et al. (1993) Symp. NIPR Antarctic Meteorite (Tokyo), in press. [4] Foote A. E. (1891) Am. J. Sci., 42, 413-417. [5] Hannemann R. E. et al. (1967) Science, 155, 995-997.

  4. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for an infrared wavelength, possibly that used for the AO system of the Keck telescope, instead of 0.63 microns. We have polished a 55 cm diameter mandrel to better than 1/20th wave optical figure in the visible using centrifugal elutriation. CMA has just told us that it needs to retool to get optimum mirror faceplate quality in this size, so implementing the 55 cm AO mirror may be delayed somewhat. We expect to complete our 1/3 rd meter AO mirror on time using novel piezoelectric actuators with a throw of one micrometer per volt, as compared to 0.005 micrometers per volt for conventional piezoelectric actuators. We will then demonstrate its AO performance interferometrically.

  5. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yusuke; Miyairi, Yousuke; Matsuzaki, Hiroyuki; Tsunomori, Fumiaki

    2007-06-01

    Availability of an effective graphitization system is essential for the successful operation of an AMS laboratory for radiocarbon measurements. We have set up a graphitization system consisting of metal vacuum lines for cleaning CO2 sample gas which is then converted to graphite. CO2 gas from a carbonate sample is produced in vacuum in a test tube by injecting concentrated phosphoric acid. The tube is placed into a heated metal block to accelerate dissolution. However, we have observed systematic differences in the time required to convert the CO2 gas to graphite under a hydrogen atmosphere, from less than 3 h to over 10 h. We have conducted a series of experiments including background measurements and yield measurements to monitor secondary carbon contamination and changes in isotopic fractionation. All of the tests show that the carbon isotope ratios remain unaffected by the duration of the process. We also used a quadrupole mass spectrometer (QMS) to identify possible contaminant gases. Contaminant peaks were identified at high mass (larger than 60) only for long duration experiments. This suggests a possible reaction between the rubber cap and acid fumes producing a contaminant gas that impeded the reduction of CO2.

  6. New production systems at ISOLDE

    NASA Astrophysics Data System (ADS)

    Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.

    1992-08-01

    New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.

  7. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, James

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the nextmore » generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.« less

  8. Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in-situ electrical resistivity

    NASA Astrophysics Data System (ADS)

    Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena

    2015-12-01

    Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.

  9. The influence of lay-up and thickness on composite impact damage and compression strength

    NASA Technical Reports Server (NTRS)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  10. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  11. Analytical Prediction of Damage Growth in Notched Composite Panels Loaded in Axial Compression

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; McGowan, David M.; Davila, Carlos G.

    1999-01-01

    A progressive failure analysis method based on shell elements is developed for the computation of damage initiation and growth in stiffened thick-skin stitched graphite-epoxy panels loaded in axial compression. The analysis method involves a step-by-step simulation of material degradation based on ply-level failure mechanisms. High computational efficiency is derived from the use of superposed layers of shell elements to model each ply orientation in the laminate. Multiple integration points through the thickness are used to obtain the correct bending effects through the thickness without the need for ply-by-ply evaluations of the state of the material. The analysis results are compared with experimental results for three stiffened panels with notches oriented at 0, 15 and 30 degrees to the panel width dimension. A parametric study is performed to investigate the damage growth retardation characteristics of the Kevlar stitch lines in the pan

  12. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1983-01-01

    The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.

  13. Stress analysis and failure of an internally pressurized composite-jacketed steel cylinder

    NASA Technical Reports Server (NTRS)

    Chen, Peter C. T.

    1992-01-01

    This paper presents a nonlinear stress analysis of a thick-walled compound tube subjected to internal pressure. The compound tube is constructed of a steel liner and a graphite-bismaleimide outer shell. Analytical expressions for the stresses, strains, and displacements are derived for all loading ranges up to failure. Numerical results for the stresses and the maximum value that the compound tube can contain without failure are presented.

  14. Flexible ultrasonic transducers for structural health monitoring of metals and composites

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Wu, K.-T.; Shih, J.-L.; Jen, C.-K.; Kruger, S. E.

    2010-03-01

    Flexible ultrasonic transducers (FUTs) which have the on-site installation capability are presented for the non-destructive evaluation (NDE) and structural health monitoring (SHM) purposes. These FUTs consist of 75 μm thick titanium membrane, thick (> 70 μm) thick piezoelectric lead-zirconate-titanate (PZT) composite (PZT-c) films and thin (< 5 μm) thick top electrodes. The PZT-c films are made by a sol-gel spray technique. Such FUT has been glued onto a steel pipe of 101 mm in diameter and 4.5 mm in wall thickness and operated up to 200°C. The glue served as high temperature ultrasonic couplant between the FUT and the external surface of the pipe. The estimated pipe thickness measurement accuracy at 200°C is 34 μm. FUTs also were glued onto the end edge of 2 mm thick aluminum (Al) plates to generate and receive predominantly symmetrical and shear-horizontal (SH) plate acoustic waves (PAWs) to detect simulated line defects at temperature up to 100°C. FUTs glued onto a graphite/epoxy (Gr/Ep) composite are also used for the detection of artificial disbonds. An induction type non-contact method for the evaluation of Al plates and Gr/Ep composites using FUTs is also demonstrated.

  15. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  16. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  17. Porous tooling process for manufacture of graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Smiser, L. W.; Orr, K. K.; Araujo, S. M.

    1981-01-01

    A porous tooling system was selected for the processing of Graphite/PMR-15 Polyimide laminates in thickness up to 3.2 mm. (0.125 inch). This tool system must have a reasonable strength, permeability dimensional stability, and thermal conductivity to accomplish curing at 600 F and 200 psi and 200 psi autoclave temperature and pressure. A permeability measuring apparatus was constructed and permeability vs. casting water level determined to produce tools at three different permeability levels. On these tools, laminates of 5, 11, and 22 plies (.027, .060, and 0.121 inch) were produced and evaluated by ultrasonic, mechanical, and thermal tests to determine the effect of the tool permeability on the cured laminates. All tools produced acceptable laminates at 5 and 11 plies but only the highest permeability produced acceptable clear ultrasonic C-Scans. Recommendations are made for future investigations of design geometry, and strengthening techniques for porous ceramic tooling.

  18. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  19. Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Bush, Harold G.

    2001-01-01

    The results of a series of tests conducted at the NASA Langley Research Center to evaluate the behavior of an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending, down-bending and brake roll loading conditions were applied. The structure with non-visible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole.

  20. Test methods and design allowables for fibrous composites. Volume 2

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C. (Editor)

    1989-01-01

    Topics discussed include extreme/hostile environment testing, establishing design allowables, and property/behavior specific testing. Papers are presented on environmental effects on the high strain rate properties of graphite/epoxy composite, the low-temperature performance of short-fiber reinforced thermoplastics, the abrasive wear behavior of unidirectional and woven graphite fiber/PEEK, test methods for determining design allowables for fiber reinforced composites, and statistical methods for calculating material allowables for MIL-HDBK-17. Attention is also given to a test method to measure the response of composite materials under reversed cyclic loads, a through-the-thickness strength specimen for composites, the use of torsion tubes to measure in-plane shear properties of filament-wound composites, the influlence of test fixture design on the Iosipescu shear test for fiber composite materials, and a method for monitoring in-plane shear modulus in fatigue testing of composites.

  1. Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.

    2001-01-01

    Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  2. Surface Raman spectroscopy of the interface of tris-(8-hydroxyquinoline) aluminum with Mg.

    PubMed

    Davis, Robert J; Pemberton, Jeanne E

    2009-07-29

    Surface Raman spectroscopy in ultrahigh vacuum is used to interrogate interfaces formed between tris-(8-hydroxyquinoline) aluminum (Alq(3)) and vapor-deposited Mg. The Raman spectral results for deposition of Mg mass thicknesses between 5 and 20 A indicate formation of a complex interfacial region composed primarily of Mg-Alq(3) adducts and small-grained amorphous or nanocrystalline graphite, the presence of which may have a significant effect on the electronic properties of this metal-organic interface. The observed shifts in nu(ring), nu(C-N), nu(Al-N), and nu(Al-O) modes along with the appearance of nu(Mg-C) and nu(Mg-O) modes suggest a structure for the Mg-Alq(3) adduct in which Mg is bound to the O and C atoms of Alq(3). In addition, several intense, broad modes are observed that are consistent with partial graphitization of the Alq(3) film.

  3. Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    NASA Astrophysics Data System (ADS)

    Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.

    2001-01-01

    Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  4. Master plot analysis of microcracking in graphite/epoxy and graphite/PEEK laminates

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Hu, Shoufeng; Bark, Jong Song

    1993-01-01

    We used a variational stress analysis and an energy release rate failure criterion to construct a master plot analysis of matrix microcracking. In the master plot, the results for all laminates of a single material are predicted to fall on a single line whose slope gives the microcracking toughness of the material. Experimental results from 18 different layups of AS4/3501-6 laminates show that the master plot analysis can explain all observations. In particular, it can explain the differences between microcracking of central 90 deg plies and of free-surface 90 deg plies. Experimental results from two different AS4/PEEK laminates tested at different temperatures can be explained by a modified master plot that accounts for changes in the residual thermal stresses. Finally, we constructed similar master plot analyses for previous literature microcracking models. All microcracking theories that ignore the thickness dependence of the stresses gave poor results.

  5. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    NASA Astrophysics Data System (ADS)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  6. Evaluation of graphite composite materials for bearingless helicopter rotor application

    NASA Technical Reports Server (NTRS)

    Ulitchny, M. G.; Lucas, J. J.

    1974-01-01

    Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced.

  7. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family.

    PubMed

    Roberts, Jenny R; Mercer, Robert R; Stefaniak, Aleksandr B; Seehra, Mohindar S; Geddam, Usha K; Chaudhuri, Ishrat S; Kyrlidis, Angelos; Kodali, Vamsi K; Sager, Tina; Kenyon, Allison; Bilgesu, Suzan A; Eye, Tracy; Scabilloni, James F; Leonard, Stephen S; Fix, Natalie R; Schwegler-Berry, Diane; Farris, Breanne Y; Wolfarth, Michael G; Porter, Dale W; Castranova, Vincent; Erdely, Aaron

    2016-06-21

    Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size. Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), and <2 μm lateral (Gr1)] ranging from 8-25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies. Mice were exposed by pharyngeal aspiration to these 3 sizes of graphite nanoplates at doses of 4 or 40 μg/mouse, or to carbon black (CB) as a carbonaceous control material. At 4 h, 1 day, 7 days, 1 month, and 2 months post-exposure, bronchoalveolar lavage was performed to collect fluid and cells for analysis of lung injury and inflammation. Particle clearance, histopathology and gene expression in lung tissue were evaluated. In addition, protein levels and gene expression were measured in blood, heart, aorta and liver to assess systemic responses. All Gr samples were found to be similarly composed of two graphite structures and agglomerated to varying degrees in DM in proportion to the lateral dimension. Surface area for Gr1 was approximately 7-fold greater than Gr5 and Gr20, but was less reactive reactive per m(2). At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1. Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates > 5 μm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1-2 μm graphite nanoplate.

  8. Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Structure

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie; Quinn, Robert D.

    2007-01-01

    Comparative studies were performed on the heat-shielding characteristics of honeycomb-core sandwich panels fabricated with different materials for possible use as wall panels for the proposed crew exploration vehicle. Graphite/epoxy sandwich panel was found to outperform aluminum sandwich panel under the same geometry due to superior heat-shielding qualities and lower material density. Also, representative reentry heat-transfer analysis was performed on the windward wall structures of a generic crew exploration vehicle. The Apollo low Earth orbit reentry trajectory was used to calculate the reentry heating rates. The generic crew exploration vehicle has a graphite/epoxy composite honeycomb sandwich exterior wall and an aluminum honeycomb sandwich interior wall, and is protected with the Apollo thermal protection system ablative material. In the thermal analysis computer program used, the TPS ablation effect was not yet included; however, the results from the nonablation heat-transfer analyses were used to develop a "virtual ablation" method to estimate the ablation heat loads and the thermal protection system recession thicknesses. Depending on the severity of the heating-rate time history, the virtual ablation period was found to last for 87 to 107 seconds and the ablation heat load was estimated to be in the range of 86 to 88 percent of the total heat load for the ablation time period. The thermal protection system recession thickness was estimated to be in the range of 0.08 to 0.11 inches. For the crew exploration vehicle zero-tilt and 18-degree-tilt stagnation points, thermal protection system thicknesses of h = {0.717, 0.733} inches were found to be adequate to keep the substructural composite sandwich temperature below the limit of 300 F.

  9. Flexure fatigue testing of 90 deg graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Peck, Ann Nancy W.

    1995-01-01

    A great deal of research has been performed characterizing the in-plane fiber-dominated properties, under both static and fatigue loading, of advanced composite materials. To the author's knowledge, no study has been performed to date investigating fatigue characteristics in the transverse direction. This information is important in the design of bonded composite airframe structure where repeated, cyclic out-of-plane bending may occur. Recent tests characterizing skin/stringer debond failures in reinforced composite panels where the dominant loading in the skin is flexure along the edge of the frame indicate failure initiated either in the skin or else the flange, near the flange tip. When failure initiated in the skin, transverse matrix cracks formed in the surface skin ply closest to the flange and either initiated delaminations or created matrix cracks in the next lower ply, which in turn initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the flange angle ply closest to the skin and initiated delamination. In no configuration did failure propagate through the adhesive bond layer. For the examined skin/flange configurations, the maximum transverse tension stress at failure correlates very well with the transverse tension strength of the composites. Transverse tension strength (static) data of graphite epoxy composites have been shown to vary with the volume of material stressed. As the volume of material stressed increased, the strength decreased. A volumetric scaling law based on Weibull statistics can be used to predict the transverse strength measurements. The volume dependence reflects the presence of inherent flaws in the microstructure of the lamina. A similar approach may be taken to determine a volume scale effect on the transverse tension fatigue behavior of graphite/epoxy composites. The objective of this work is to generate transverse tension strength and fatigue S-N characteristics for composite materials using 3-point flexure tests of 90 deg graphite/epoxy specimens. Investigations will include the volume scale effect as well as frequency and span-to-thickness ratio effects. Prior to the start of the experimental study, an analytical study using finite element modeling will be performed to investigate the span-to-thickness effect. The ratio of transverse flexure stress to shear stress will be monitored and its values predicted by the FEM analysis compared with the value obtained using a 'strength of materials' based approach.

  10. A next generation positron microscope and a survey of candidate samples for future positron studies

    NASA Astrophysics Data System (ADS)

    Dull, Terry Lou

    A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify the Point Defect Model, a detailed, but as yet microscopically unconfirmed, theory of the corrosive breakdown of passive films. DBS results supportive of the PDM were observed. Graphitic carbon fibers were also studied and DBS indicated the presence of a 200 nm thick outer fiber skin possibly characterized by a high degree of graphitic crystallite alignment.

  11. 19 F(α,n) thick target yield from 3.5 to 10.0 MeV

    DOE PAGES

    Norman, E.B.; Chupp, T.E.; Lesko, K.T.; ...

    2015-09-01

    Using a target of PbF2, the thick-target yield from the 19F(α,n) reaction was measured from Eα=3.5–10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range.

  12. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  13. High temperature low friction surface coating

    DOEpatents

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  14. Stress wave attenuation in thin structures by ultrasonic through-transmission

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Williams, J. H., Jr.

    1980-01-01

    The steady state amplitude of the output of an ultrasonic through transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios; the specimen-transducer reflection coefficient; the specimen-transducer phase shift parameter; and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress wave reflections are taken into account and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). A direct method for continuous or intermittent monitoring of through thickness attenuation of plate structures which may be subject to service structural degradation is provided.

  15. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. II. H-physisorbed case.

    PubMed

    Martinazzo, Rocco; Tantardini, Gian Franco

    2006-03-28

    Following previous investigation of collision induced (CI) processes involving hydrogen atoms chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen atom is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H atom in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low collision energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the collision energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) collision induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident atoms is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen atoms, i.e., atoms with an excess energy channeled in the motion parallel to the surface. These atoms might contribute in explaining hydrogen formation on graphite.

  16. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  17. Guanine oxidation signal enhancement in DNA via a polyacrylonitrile nanofiber-coated and cyclic voltammetry-treated pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Aladag Tanik, Nilay; Demirkan, Elif; Aykut, Yakup

    2018-07-01

    This study investigated the electrochemical detection of specific nucleic acid hybridization sequences using a nanofiber-coated pencil graphite biosensor. The biosensor was developed to detect Val66Met single point mutations in the brain-derived neurotrophic factor gene, which is frequently observed in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and bipolar disorder. The oxidation signal of the most electroactive and stable DNA base, i.e., guanine, was used at approximately +1.0 V. Pencil graphite electrode (PGE) surfaces were coated with polyacrylonitrile nanofibers by electrospinning. Cyclic voltammetry was applied to the nanofiber-coated PGE to pretreat its surfaces. The application of cyclic voltammetry to the nanofiber-coated PGE surfaces before attaching the probe yielded a four fold increase in the oxidation signal for guanine compared with that using the untreated and uncoated PGE surface. The signal reductions were 70% for hybridization, 10% for non-complementary binding, and 14% for a single mismatch compared with the probe. The differences in full match, non-complementary, and mismatch binding indicated that the biosensor selectively detected the target, and that it was possible to determine hybridization in about 65 min. The detection limit was 0.19 μg/ml at a target concentration of 10 ppm.

  18. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  19. Role of Integrin Subunits in Mesenchymal Stem Cell Differentiation and Osteoblast Maturation on Graphitic Carbon-coated Microstructured Surfaces

    PubMed Central

    Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999

  20. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    PubMed

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cost-effective masks for deep x-ray lithography

    NASA Astrophysics Data System (ADS)

    Scheunemann, Heinz-Ulrich; Loechel, Bernd; Jian, Linke; Schondelmaier, Daniel; Desta, Yohannes M.; Goettert, Jost

    2003-04-01

    The production of X-ray masks is one of the key techniques for X-ray lithography and the LIGA process. Different ways for the fabrication of X-ray masks has been established. Very sophisticated, difficult and expensive procedures are required to produce high precision and high quality X-ray masks. In order to minimize the cost of an X-ray mask, the mask blank must be inexpensive and readily available. The steps involved in the fabrication process must also be minimal. In the past, thin membranes made of titanium, silicon carbide, silicon nitride (2-5μm) or thick beryllium substrates (500μm) have been used as mask blanks. Thin titanium and silicon compounds have very high transparency for X-rays; therefore, these materials are predestined for use as mask membrane material. However, the handling and fabrication of thin membranes is very difficult, thus expensive. Beryllium is highly transparent to X-rays, but the processing and use of beryllium is risky due to potential toxicity. During the past few years graphite based X-ray masks have been in use at various research centers, but the sidewall quality of the generated resist patterns is in the range of 200-300 nm Ra. We used polished graphite to improve the sidewall roughness, but polished graphite causes other problems in the fabrication of X-ray masks. This paper describes the advantages associated with the use of polished graphite as mask blank as well as the fabrication process for this low cost X-ray mask. Alternative membrane materials will also be discussed.

  2. Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor

    PubMed Central

    Huang, Wenxin; Xu, Yunhe

    2017-01-01

    The nucleation and growth mechanisms of porous MnO2 coating deposited on graphite in MnSO4 solution were investigated in detail by cyclic voltammetry, chronoamperometry and scanning electron microscopy. The electrochemical properties of honeycomb-like MnO2 were evaluated by cycle voltammetry and galvanostatic charge-discharge. Results indicated that MnO2 was synthesized by the following steps: Mn2+→Mn3++e−, Mn3++2H2O→MnOOH+3H+, and MnOOH→MnO2+H++e−. The deposition of MnO2 was divided into four stages. A short incubation period (approximately 1.5 s) was observed, prior to nucleation. The decreasing trend of the current slowed as time increased due to nucleation and MnO2 growth in the second stage. A huge number of nuclei were formed by instantaneous nucleation, and these nuclei grew and connected with one another at an exceedingly short time (0.5 s). In the third stage, the gaps in-between initial graphite flakes were filled with MnO2 until the morphology of the flakes gradually became similar to that of the MnO2-deposited layer. In the fourth stage, the graphite electrode was covered completely with a thick and dense layer of MnO2 deposits. All MnO2 electrodes at different deposition times obtained nearly the same specific capacitance of approximately 186 F/g, thus indicating that the specific capacitance of the electrodes is not related with deposition time. PMID:29048377

  3. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE PAGES

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul; ...

    2017-12-11

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  4. High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector

    NASA Astrophysics Data System (ADS)

    Chu, Hsun-Chen; Tuan, Hsing-Yu

    2017-04-01

    Cu Foil, a thin sheet of Cu, is the common anode current collector in commercial lithium ion batteries (LIBs) which accounts for ∼ 10 wt% of the total cell weight. However, thickness reduction of LIB-based Cu foils below 6 μm has been limited by the incapability of conventional rolling annealing or electrodeposition process. We here report a new type of Cu foil, so called Cu nanowire foil (CuNW foil), for use as an LIB anode current collector. We fabricate Cu NW foils by rolling press Cu nanowire fabric to reduce the thickness down to ∼1.5 μm with an areal weight down to ∼1.2 mg cm-2 and a density approximately 96% to that of bulk Cu. The rough surface and porous structure of CuNW foil enable better wetting and adhering properties of graphite slurry on foil. In full cell examination, a cell of a areal capacity of 3 mAh cm-2 exhibits 83.6% capacity retention for 600 cycles at 0.6 C that meets the standard specification of most commercial LIBs. As a proof-of-concept of demonstration, we fabricate a 700 mA pouch-type battery implemented with graphite-Cu NWs foil anodes to serve as energy supply to operate electronic devices.

  5. UV absorption investigation of ferromagnetically filled ultra-thick carbon onions, carriers of the 217.5 nm Interstellar Absorption Feature

    NASA Astrophysics Data System (ADS)

    Boi, Filippo S.; Zhang, Xiaotian; Ivaturi, Sameera; Liu, Qianyang; Wen, Jiqiu; Wang, Shanling

    2017-12-01

    Carbon nano-onions (CNOs) are fullerene-like structures which consist of quasi-spherical closed carbon shells. These structures have become a subject of great interest thanks to their characteristic absorption feature of interstellar origin (at 217.5 nm, 4.6 μm-1). An additional extinction peak at 3.8 μm-1 has also been reported and attributed to absorption by graphitic residues between the as-grown CNOs. Here, we report the ultraviolet absorption properties of ultra-thick CNOs filled with FePt3 crystals, which also exhibit two main absorption peaks—features located at 4.58 μm-1 and 3.44 μm-1. The presence of this additional feature is surprising and is attributed to nonmagnetic graphite flakes produced as a by-product in the pyrolysis experiment (as confirmed by magnetic separation methods). Instead, the feature at 4.58 μm-1 is associated with the π-plasmonic resonance of the CNOs structures. The FePt3 filled CNOs were fabricated in situ by an advanced one-step fast process consisting in the direct sublimation and pyrolysis of two molecular precursors, namely, ferrocene and dichloro-cyclooctadiene-platinum in a chemical vapour deposition system. The morphological, structural, and magnetic properties of the as-grown filled CNOs were characterized by a means of scanning and transmission electron microscopy, X-ray diffraction, and magnetometry.

  6. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1991-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  7. Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Byun, Segi; Yu, Jin

    2016-03-01

    When a reduced graphite oxide (RGO) freestanding film is fabricated on a supercapacitor cell via compression onto a current collector, there are gaps between the film and the current collector, even if the cell is carefully assembled. These gaps can induce increases in the electrical series resistance (ESR) of the cell, resulting in degradation of the cell's electrochemical performance. Here, to effectively reduce the ESR of the supercapacitor, metal sputtering deposition is introduced. This enables the direct formation of the current collector layer on a partially reduced GO (pRGO) film, the model system. Using metal sputtering, a nickel (Ni) layer with a thickness <1 μm can be created easily on one side of the pRGO film. Good electrical interconnection between the pRGO film and the current collector can be obtained using a Ni layer formed on the pRGO film. The pRGO film sustains its film form with high packing density (∼1.31 g cm-3). Furthermore, the Ni-sputtered pRGO film with optimized Ni thickness exhibits remarkable enhancement of its electrochemical performance. This includes a superior rate capability and semi-permanent cycle life compared with the untreated pRGO film. This is due to the significant decrease in the ESR of the film.

  8. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  9. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique.

    PubMed

    Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  10. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil.more » The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.« less

  11. Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Małolepszy, A.; Błonski, S.; Chrzanowska-Giżyńska, J.; Wojasiński, M.; Płocinski, T.; Stobinski, L.; Szymanski, Z.

    2018-04-01

    The results of synthesis of the fluorescent carbon dots (CDots) from graphite target and reduced graphene oxide (rGO) nanoparticles performed by the nanosecond laser ablation in polyethylene glycol 200 (PEG200) are shown. Two-step laser irradiation (first graphite target, next achieved suspension) revealed a very effective production of CDots. However, the ablation in PEG appeared to be effective with 1064 nm laser pulse in contrast to the ablation with 355 nm laser pulse. In the case of rGO nanoparticles similar laser irradiation procedure was less efficient. In both cases, received nanoparticles exhibited strong, broadband photoluminescence with a maximum dependent on the excitation wavelength. The size distribution for obtained CDots was evaluated using the DLS technique and HRTEM images. The results from both methods show quite good agreement in nanoparticle size estimation although the DLS method slightly overestimates nanoparticle's diameter.

  12. Engineering Analysis Studies for Preliminary Design of Lightweight Cryogenic Hydrogen Tanks in UAV Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Palko, Joseph L.; Tornabene, Robert T.; Bednarcyk, Brett A.; Powers, Lynn M.; Mital, Subodh K.; Smith, Lizalyn M.; Wang, Xiao-Yen J.; Hunter, James E.

    2006-01-01

    A series of engineering analysis studies were conducted to investigate the potential application of nanoclay-enhanced graphite/epoxy composites and polymer cross-linked silica aerogels in cryogenic hydrogen storage tank designs. This assessment focused on the application of these materials in spherical tank designs for unmanned aeronautic vehicles with mission durations of 14 days. Two cryogenic hydrogen tank design concepts were considered: a vacuum-jacketed design and a sandwiched construction with an aerogel insulating core. Analyses included thermal and structural analyses of the tank designs as well as an analysis of hydrogen diffusion to specify the material permeability requirements. The analyses also provided material property targets for the continued development of cross-linked aerogels and nanoclay-enhanced graphite/epoxy composites for cryogenic storage tank applications. The results reveal that a sandwiched construction with an aerogel core is not a viable design solution for a 14-day mission. A vacuum-jacketed design approach was shown to be far superior to an aerogel. Aerogel insulation may be feasible for shorter duration missions. The results also reveal that the application of nanoclay-enhanced graphite/epoxy should be limited to the construction of outer tanks in a vacuum-jacketed design, since a graphite/epoxy inner tank does not provide a significant weight savings over aluminum and since the ability of nanoclay-enhanced graphite/epoxy to limit hydrogen permeation is still in question.

  13. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    PubMed

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  14. Synthesis and characterization of 2D graphene sheets from graphite powder

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh V.; Patel, R. H.; Chaki, S. H.

    2018-05-01

    Graphene is 2D material composed of one atom thick hexagonal layer. This material has attracted great attention among scientific community because of its high surface area, excellent mechanical properties and conductivity due to free electrons in the 2D lattice. There are various approaches to prepare graphene nanosheets such as top-down approach where graphite exfoliation and nanotube unwrapping can be done. The bottom up approach involves deposition of hydrocarbon through CVD, epitaxial method and organo-synthesis etc.. In present studies top down approach method was used to prepare graphene. The graphite powder with around 20 µm to 150µm particle size was subjected to concentrated strong acid in presence of strong oxidizing agent in order to increase the d-spacing between layers which leads to the disruption of crystal lattice as confirmed by XRD (X'pert Philips). FT Raman spectra taken via (Renishaw InVia microscope) of pristine powder and Graphene oxide revealed the increase in D-band and reduction in G-Band. These exfoliated sheets have oxygen rich complexes at the surface of the layers as characterised by FTIR technique. The GO powder was ultrasonicated to prepare the stable suspension of Graphene. The graphene layers were observed under TEM (Philips Tecnai 20) as 2dimensional sheets with around 1µm sizes.

  15. Concept for a beryllium divertor with in-situ plasma spray surface regeneration

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Watson, R. D.; McGrath, R. T.; Croessmann, C. D.; Whitley, J. B.; Causey, R. A.

    1990-04-01

    Two serious problems with the use of graphite tiles on the ITER divertor are the limited lifetime due to erosion and the difficulty of replacing broken tiles inside the machine. Beryllium is proposed as an alternative low-Z armor material because the plasma spray process can be used to make in-situ repairs of eroded or damaged surfaces. Recent advances in plasma spray technology have produced beryllium coatings of 98% density with a 95% deposition efficiency and strong adhesion to the substrate. With existing technology, the entire active region of the ITER divertor surface could be coated with 2 mm of beryllium in less than 15 h using four small plasma spray guns. Beryllium also has other potential advantages over graphite, e.g., efficient gettering of oxygen, ten times less tritium inventory, reduced problems of transient fueling from D/T exchange and release, no runaway erosion cascades from self-sputtering, better adhesion of redeposited material, as well as higher strength, ductility, and fracture toughness than graphite. A 2-D finite element stress analysis was performed on a 3 mm thick Be tile brazed to an OFHC soft-copper saddle block, which was brazed to a high-strength copper tube. Peak stresses remained 50% below the ultimate strength for both brazing and in-service thermal stresses.

  16. Design, construction and performance evaluation of the target tissue thickness measurement system in intraoperative radiotherapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Yazdani, Mohammad Reza; Setayeshi, Saeed; Arabalibeik, Hossein; Akbari, Mohammad Esmaeil

    2017-05-01

    Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.

  17. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  18. Study of 232Th(n, γ) and 232Th(n,f) reaction rates in a graphite moderated spallation neutron field produced by 1.6 GeV deuterons on lead target

    NASA Astrophysics Data System (ADS)

    Asquith, N. L.; Hashemi-Nezhad, S. R.; Westmeier, W.; Zhuk, I.; Tyutyunnikov, S.; Adam, J.

    2015-02-01

    The Gamma-3 assembly of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is designed to emulate the neutron spectrum of a thermal Accelerator Driven System (ADS). It consists of a lead spallation target surrounded by reactor grade graphite. The target was irradiated with 1.6 GeV deuterons from the Nuclotron accelerator and the neutron capture and fission rate of 232Th in several locations within the assembly were experimentally measured. 232Th is a proposed fuel for envisaged Accelerator Driven Systems and these two reactions are fundamental to the performance and feasibility of 232Th in an ADS. The irradiation of the Gamma-3 assembly was also simulated using MCNPX 2.7 with the INCL4 intra-nuclear cascade and ABLA fission/evaporation models. Good agreement between the experimentally measured and calculated reaction rates was found. This serves as a good validation for the computational models and cross section data used to simulate neutron production and transport of spallation neutrons within a thermal ADS.

  19. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less

  20. preparation of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry: A closed-system approach

    NASA Astrophysics Data System (ADS)

    Verkouteren, R. Michael; Klouda, George A.; Currie, Lloyd A.; Donahue, Douglas J.; Jull, A. J. Timothy; Linick, T. W.

    1987-11-01

    A technique has been developed at NBS for the production of high quality targets for radiocarbon analysis by accelerator mass spectrometry (AMS). Our process optimizes chemical yields, ion currents and characterizes the chemical blank. The approach encompasses sample combustion to CO 2, catalytic reduction of CO 2 by Zn to CO, reduction to graphitic carbon on high-purity iron wool and in situ formation of a homogeneous iron-carbon bead; all steps are performed in a closed system. The total measurement system blank and variability are considered in the light of contributions from combustion, iron wool, reduction, bead formation and instrument blank. Additionally, use of this approach provides an increase in throughput, i.e. the effective management of large numbers of samples. Chemical yields for 50-800 μg C samples deposited on 15 mg iron wool were greater than 90%. Integrated 12C - ion currents observed were significant, being 4-64% of those observed in pure graphite. These currents are about an order of magnitude greater than those expected from dilution of graphite with an inert substrate. Isotopic accuracy, precision and blank were assessed by measuring the {14C }/{13C } ratios of a series of targets prepared from dead carbon and oxalic acid (SRM 4990C). Each target was typically measured for one hour; bead consumption was estimated at 5% to 10%. System blank subsequent to combustion was equivalent to (2.2 ± 0.5) μg modern carbon (chemistry + instrument); combustion blank currently stands at (0.4 ± 0.1) (SE, n = 6) μg C.

  1. Structure and tribological properties of steel after non-vacuum electron beam cladding of Ti, Mo and graphite powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataev, I.A.; Mul, D.O.; Bataev, A.A.

    2016-02-15

    The non-vacuum electron beam cladding technique was used to fabricate layers alloyed with Ti, Mo and C on the surface of low-alloyed steel. Two types of experiments were carried out. In the first experiment, a mixture of Ti and graphite powders was used for cladding; in the second, a mixture of Ti, Mo and graphite powders was used for cladding. CaF{sub 2} powder or a mixture of CaF{sub 2} and LiF powders was used as flux. The thickness of the cladded layers was in the range of 2–2.2 mm. The structure of the layers was studied using optical microscopy, scanningmore » electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness after cladding of the layers fabricated by cladding of Ti and graphite powders was 8–9 GPa, while the microhardness of layers with Mo additions reached 11–12 GPa. The highest wear resistance at sliding friction and friction in abrasive environment was reached in the samples fabricated using Ti, Mo and graphite mixture due to the higher hardness and the martensite–austenite structure of the matrix. The wear resistance against fixed abrasive particles was 2.4 times higher compared to that of carburized and quenched steel. - Highlights: • Ti, C and Mo mixture of powders was cladded using non-vacuum electron beam treatment. • The depth of the cladded layers was 2.0 … 2.2 mm. • The microhardness of layer with Mo, Ti and C additions reached ~ 11 … 12 GPa. • The hardening of the layers caused by the formation of TiC particles and martensitic matrix • Wear resistance of cladded coatings was 2.4 higher than carburized steel.« less

  2. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  3. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.

  4. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.

  5. A Thick Target for Synchrotrons and Betatrons

    DOE R&D Accomplishments Database

    McMillan, E. M.

    1950-09-19

    If a wide x-ray beam from an electron synchrotron or betatron is desired, in radiographic work with large objects for example, the usually very thin target may be replaced by a thick one, provided the resulting distortion of the x-ray spectrum due to multiple radiative processes is permissible. It is difficult to make the circulating electron beam traverse a thick target directly because of the small spacing between successive turns. Mounting a very thin beryllium, or other low-z material, fin on the edge of the thick target so that the fin projects into the beam will cause the beam to lose sufficient energy, and therefore radium, to strike the thick target the next time around. Sample design calculations are given.

  6. Elastic torsional buckling of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  7. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eren, B.; Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Gysin, U.

    2016-01-25

    Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.

  8. Two-photon coincident emission from thick targets for 70-keV incident electrons

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kahler, D. L.; Quarles, C. A.

    1993-04-01

    Two-photon coincidence yields have been measured in thick targets of C, Al, Ag, and Ta for 70 keV incident electrons and photons radiated at +/-45° to the incident beam. A theoretical model, which is more rigorous, has been developed to simulate the two-photon processes of coherent thick-target double bremsstrahlung (TTDB) and the incoherent emission of two single-bremsstrahlung (SBSB) photons in a thick-target environment. The model is based on an integration of the thin-target cross sections over the target thickness taking into account electron energy loss, electron backscattering, and photon attenuation. It predicts a yield that is much lower than that of the previous model. The prediction of the model fits the present experimental data well by adjusting the relative weight of the two competing processes, and we find that TTDB dominates at low Z and incoherent SBSB dominates at higher Z.

  9. Hypervelocity impacts into graphite

    NASA Astrophysics Data System (ADS)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  10. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    PubMed

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Influence of micromachined targets on laser accelerated proton beam profiles

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  12. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  13. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  14. Calculation of the room-temperature shapes of unsymmetric laminates

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1981-01-01

    A theory explaining the characteristics of the cured shapes of unsymmetric laminates is presented. The theory is based on an extension of classical lamination theory which accounts for geometric nonlinearities. A Rayleigh-Ritz approach to minimizing the total potential energy is used to obtain quantitative information regarding the room temperature shapes of square T300/5208 (0(2)/90(2))T and (0(4)/90(4))T graphite-epoxy laminates. It is shown that, depending on the thickness of the laminate and the length of the side the square, the saddle shape configuration is actually unstable. For values of length and thickness that render the saddle shape unstable, it is shown that two stable cylindrical shapes exist. The predictions of the theory are compared with existing experimental data.

  15. Thermal conductivity in nanocrystalline-SiC/C superlattices

    DOE PAGES

    Habermehl, S.; Serrano, J. R.

    2015-11-17

    We reported the formation of thin film superlattices consisting of alternating layers of nitrogen-doped SiC (SiC:N) and C. Periodically terminating the SiC:N surface with a graphitic C boundary layer and controlling the SiC:N/C thickness ratio yield nanocrystalline SiC grains ranging in size from 365 to 23 nm. Frequency domain thermo-reflectance is employed to determine the thermal conductivity, which is found to vary from 35.5 W m -1 K -1 for monolithic undoped α-SiC films to 1.6 W m -1 K -1 for a SiC:N/C superlattice with a 47 nm period and a SiC:N/C thickness ratio of 11. A series conductancemore » model is employed to explain the dependence of the thermal conductivity on the superlatticestructure. Our results indicate that the thermal conductivity is more dependent on the SiC:N/C thickness ratio than the SiC:N grain size, indicative of strong boundary layerphonon scattering.« less

  16. Ionic Liquid-Modified Thermosets and Their Nanocomposites: Dispersion, Exfoliation, Degradation, and Cure

    NASA Astrophysics Data System (ADS)

    Throckmorton, James A.

    This dissertation explores the application of a room temperature ionic liquid (RTIL) to problems in the chemistry, processing, and modification of thermosetting polymers. In particular, the solution properties and reaction chemistry of 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-DCN) are applied to problems of nanoparticle dispersion and processing, graphite exfoliation, cyanate ester (CE) cure, and the environmental degradation of CEs. Nanoparticle Dispersion: Nanocomposite processing can be simplified by using the same compound as both a nanoparticle solvent and an initiator for polymerization. This dual-function molecule can be designed both for solvent potential and reaction chemistry. EMIM-DCN, previously shown by our lab to act as an epoxy initiator, is used in the synthesis of silica and acid expanded graphite composites. These composites are then characterized for particle dispersion and physical properties. Individual particle dispersion of silica nanocomposites is shown, and silica nanocomposites at low loading show individual particle dispersion and improved modulus and fracture toughness. GNP nanocomposites show a 70% increase in modulus along with a 10-order of magnitude increase in electrical conductivity at 6.5 vol%, and an electrical percolation threshold of 1.7 vol%. Direct Graphite Exfoliation By Laminar Shear: This work presents a laminar-shear alternative to chemical processing and chaotic flow-fields for the direct exfoliation of graphite and the single-pot preparation of nanocomposites. Additionally, we develop the theory of laminar flow through a 3-roll mill, and apply that theory to the latest developments in the theory of graphite interlayer shear. The resulting nanocomposite shows low electrical percolation (0.5 vol%) and low thickness (1-3 layer) graphite/graphene flakes. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. Cyanate Ester Cure: Dicyanamide-containing ionic liquids decrease the cure temperature of bi- and tri-functional CEs. During the cure reaction, the dicyanamide anion completely reacts and is incorporated into the triazine network. The cure effect was found in many dicyanamide-containing ionic liquids with diverse cations. This invention creates a novel, ionic thermoset polymer. The dicyanamide initiator provides an alternative to metal and hydroxyl catalysts (which have been shown to accelerate degradation and possess human and environmental toxicity). Additionally, the ionic character of the new polymer, rare among thermosets, lends itself to future research and novel applications. RTIL initiation also paves the way to new CE technologies, including RTIL-CE nanocomposites, prepared by graphite exfoliation and nanocomposite dispersion techniques developed herin.

  17. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline

    NASA Astrophysics Data System (ADS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-12-01

    Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.

  18. Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2018-03-01

    The oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deeper oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.

  19. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    NASA Astrophysics Data System (ADS)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  20. Dissecting anode swelling in commercial lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxin; Tang, Huaqiong

    2012-11-01

    An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.

  1. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Grady, J. E.; Sun, C. T.

    1991-01-01

    Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.

  2. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS.

    PubMed

    Cikhardt, J; Krása, J; De Marco, M; Pfeifer, M; Velyhan, A; Krouský, E; Cikhardtová, B; Klír, D; Rezáč, K; Ullschmied, J; Skála, J; Kubeš, P; Kravárik, J

    2014-10-01

    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

  3. The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles.

    PubMed

    Xie, Xiubo; Pang, Yu; Kikuchi, Hiroaki; Liu, Tong

    2016-11-09

    25 nm carbon-coated microporous Co/CoO nanoparticles (NPs) were synthesized by integrating chemical de-alloying and chemical vapor deposition (CVD) methods. The NPs possess micropores of 0.8-1.5 nm and display a homogeneous carbon shell of about 4 nm in thickness with a low graphitization degree. The saturation magnetization (M S ) and coercivity (H C ) of the NPs were 70.3 emu g -1 and 398.4 Oe, respectively. The microporous Co/CoO/C NPs exhibited enhanced microwave absorption performance with a minimum reflection coefficient (RC) of -78.4 dB and a wide absorption bandwidth of 8.1 GHz (RC ≤ -10 dB), larger than those of the nonporous counterparts of -68.3 dB and 5.8 GHz. The minimum RC values of the microporous Co/CoO/C NPs at different thicknesses were much smaller than the nonporous counterparts. The high microwave absorption mechanism of the microporous Co/CoO/C nanocomposite can be interpreted in terms of the interfacial polarization relaxation of the core/shell and micropore structures, the effective permittivity modification of the air in the micropores and the polarization relaxation of the defects in the low-graphitization carbon shell and the porous Co NPs. Our study demonstrates that the microporous Co/CoO/C nanocomposite is an efficient microwave absorber with high absorption intensity and wide absorption bandwidth.

  4. Feasibility Studies of Parametric X-rays Use in a Medical Environment

    NASA Astrophysics Data System (ADS)

    Sones, Bryndol; Danon, Yaron; Blain, Ezekiel

    2009-03-01

    Parametric X-rays (PXR) are produced from the interaction of relativistic electrons with the periodic structure of crystal materials. Smooth X-ray energy tunability is achieved by rotating the crystal with respects to the electron beam direction. Experiments at the Rensselaer Polytechnic Institute 60-MeV LINAC produce quasi-monochromatic X-rays (6-35 keV) from various target crystals to include highly oriented pyrolytic graphite (HOPG), LiF, Si, Ge, Cu, and W using electron beam currents up to 6 uA. These experiments demonstrate the first PXR images and some of the merits of thin metallic crystals. Recent experiments with a 100-μm thick Cu crystal improve the Cu PXR (with energy ˜12 keV) to Cu fluorescence ratio by a factor of 20 compared to a 1 mm-thick Cu crystal. This study uses Monte Carlo techniques to investigate (1) PXR dose compared to emissions from simulated Mo, Rh, and W anodes for mammography applications and (2) electron scattering effects when considering LiF111, Si111, and Cu111 PXR production using electron beams with energies of 20-30 MeV. Advantages in using monochromatic PXR compared to X-rays from Mo and Rh anodes in mammography applications result in a dose per incident photon reduction by a factor of 2. Using 20 MeV electrons, the thinner Cu111 crystal for 15 keV PXR production results in an electron scattering angle of 30.7+/-0.2 mrad offering the best potential for PXR from lower energy electrons.

  5. Slider thickness promotes lubricity: from 2D islands to 3D clusters

    NASA Astrophysics Data System (ADS)

    Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea

    2016-05-01

    The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represents an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction of gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressive drop of static friction from monolayer islands, that are easily pinned, towards clusters, that slide more readily. The main ingredient contributing to this thickness-induced lubricity appears to be the increased effective rigidity of the atomic contact, acting to reduce the cluster interdigitation with the substrate. A second element which plays a role is the lateral contact size, which can accommodate the solitons typical of the incommensurate interface only above a critical contact diameter, which is larger for monolayer islands than for thick clusters. The two effects concur to make clusters more lubric than islands, and large sizes more lubric than smaller ones. These conclusions are expected to be of broader applicability in diverse nanotribological systems, where the role played by static, and dynamic, friction is generally quite important.

  6. Slider thickness promotes lubricity: from 2D islands to 3D clusters.

    PubMed

    Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea

    2016-06-07

    The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represents an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction of gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressive drop of static friction from monolayer islands, that are easily pinned, towards clusters, that slide more readily. The main ingredient contributing to this thickness-induced lubricity appears to be the increased effective rigidity of the atomic contact, acting to reduce the cluster interdigitation with the substrate. A second element which plays a role is the lateral contact size, which can accommodate the solitons typical of the incommensurate interface only above a critical contact diameter, which is larger for monolayer islands than for thick clusters. The two effects concur to make clusters more lubric than islands, and large sizes more lubric than smaller ones. These conclusions are expected to be of broader applicability in diverse nanotribological systems, where the role played by static, and dynamic, friction is generally quite important.

  7. Carbonized Micro- and Nanostructures: Can Downsizing Really Help?

    PubMed Central

    Naraghi, Mohammad; Chawla, Sneha

    2014-01-01

    In this manuscript, we discuss relationships between morphology and mechanical strength of carbonized structures, obtained via pyrolysis of polymeric precursors, across multiple length scales, from carbon fibers (CFs) with diameters of 5–10 μm to submicron thick carbon nanofibers (CNFs). Our research points to radial inhomogeneity, skin–core structure, as a size-dependent feature of polyacrylonitrile-based CFs. This inhomogeneity is a surface effect, caused by suppressed diffusion of oxygen and stabilization byproducts during stabilization through skin. Hence, reducing the precursor diameters from tens of microns to submicron appears as an effective strategy to develop homogeneous carbonized structures. Our research establishes the significance of this downsizing in developing lightweight structural materials by comparing intrinsic strength of radially inhomogeneous CFs with that of radially homogeneous CNF. While experimental studies on the strength of CNFs have targeted randomly oriented turbostratic domains, via continuum modeling, we have estimated that strength of CNFs can reach 14 GPa, when the basal planes of graphitic domains are parallel to nanofiber axis. The CNFs in our model are treated as composites of amorphous carbon (matrix), reinforced with turbostratic domains, and their strength is predicted using Tsai–Hill criterion. The model was calibrated with existing experimental data. PMID:28788651

  8. Structure, Frictional Melting and Fault Weakening during the 2008 Mw 7.9 Wenchuan Earthquake Slip: Observation from the WFSD Drilling Core Samples

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.

    2015-12-01

    The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow crust at the southern segment along the Yingxiu-Beichuan fault, and another one along the northern segment. Melt and graphite in the PSZs indicate that the frictional melting and thermal pressurization are the main fault mechanisms during the Wenchuan earthquake. The melt and graphite can be considered as markers of large earthquakes.

  9. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  10. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  11. Liquid crystals as on-demand, variable thickness targets for intense laser applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick L.; Andereck, C. David; Schumacher, Douglass W.

    2014-10-01

    Laser-based ion acceleration is currently studied for its applications to advanced imaging and cancer therapy, among others. Targets for these and other high-intensity laser experiments are often small metallic foils with few to sub-micron thicknesses, where the thickness determines the physics of the dominant acceleration mechanism. We have developed liquid crystal films that preserve the planar target geometry advantageous to ion acceleration schemes while providing on-demand thickness variation between 50 and 5000 nm. This thickness control is obtained in part by varying the temperature at which films are formed, which governs the phase (and hence molecular ordering) of the liquid crystal material. Liquid crystals typically have vapor pressures well below the 10-6 Torr operating pressures of intense laser target chambers, and films formed in air maintain their thickness during chamber evacuation. Additionally, the minute volume that comprises each film makes the cost of each target well below one cent, in stark contrast to many standard solid targets. We will discuss the details of liquid crystal film control and formation, as well as characterization experiments performed at the Scarlet laser facility. This work was performed with support from DARPA and NNSA.

  12. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  13. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    NASA Astrophysics Data System (ADS)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  14. Dose control in electron beam processing: Comparison of results from a graphite charge collector, routine dosimeters and the ISS alanine-based dosimeter

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.

    1993-10-01

    A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.

  15. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  16. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-01

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  17. First wall design of aluminum alloy R-tokamak

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Matsuoka, K.; Ogawa, Y.; Kitagawa, S.; Toi, K.; Yamazaki, K.; Abe, Y.; Amano, T.; Fujita, J.; Kaneko, O.; Kawahata, K.; Kuroda, T.; Matsuura, K.; Midzuno, Y.; Naitou, H.; Noda, N.; Ohkubo, K.; Oka, Y.; Sakurai, K.; Tanahashi, S.; Watari, T.

    1984-05-01

    A design study of a low-activation D-T tokamak Reacting Plasma Project In Nagoya has been finished. The study emphasizes the vacuum vessel and the bumper limiter. Our choice of materials (aluminum vacuum vessel, copper conductors, aluminum TF coil case and lead shield) results in a radiation level of about 1 × 10 -3 times that of a TFTR type design, and 1 × 10 -4 times that of JET type design, at 2 weeks after one D-T shot. Thick graphite tiles will be fixed directly on the aluminum vacuum vessel using aluminum spring washers and bolts. With this simplified structure of the bumper limiter, the inner surface temperature of the thick aluminum vacuum vessel will be less than 120°C which is required to reduce the overaging effect of the aluminum alloy.

  18. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates.

    PubMed

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-06

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  19. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    NASA Astrophysics Data System (ADS)

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2016-01-01

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  20. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG.

    PubMed

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2016-01-21

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  1. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.

    PubMed

    Wei, Yin; Zhang, Ji; Wang, Xu; Duan, Yixiang

    2015-03-15

    This paper describes a novel approach utilizing nano-graphite-aptamer hybrid and DNase I for the amplified detection of ochratoxin A (OTA) for the first time. Nano-graphite can effectively quench the fluorescence of carboxyfluorescein (FAM) labeled OTA specific aptamer due to their strong π-π; stacking interactions; while upon OTA addition, it will bind with aptamer to fold into an OTA-aptamerG-quadruplex structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the G-quadruplex structure can be cleaved by DNase I, and in such case OTA is delivered from the complex. The released OTA then binds other FAM-labeled aptamers on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled aptamers from the nano-graphite, which leads to significant amplification of the signal. Under the optimized conditions, the present amplified sensing system exhibits high sensitivity toward OTA with a limit of detection of 20nM (practical measurement), which is about 100-fold higher than that of traditional unamplified homogeneous assay. Our developed method also showed high selectivity against other interference molecules and can be applied for the detection of OTA in real red wine samples. The proposed assay is simple, cost-effective, and might open a door for the development of new assays for other biomolecules. This aptasensor is of great practical importance in food safety and could be widely extended to the detection of other toxins by replacing the sequence of the recognition aptamer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A limiting analysis for edge effects in angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  3. NERVA turbopump bearing retainer fabrication on nonmetallic retainer

    NASA Technical Reports Server (NTRS)

    Accinelli, J. B.

    1972-01-01

    The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10 to the 9th power rads (C) prompted development of nonmetallic reinforced polymers of the following types: (1) polybenzimidazole, (2) polyimide, and (3) polyquinoxaline. Retainers were machined from tubular laminates (billets), including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this prepreg over a heated mandrel to form a tube with the required thickness and length.

  4. Pulsed photoinitiated fabrication of inkjet printed titanium dioxide/reduced graphene oxide nanocomposite thin films.

    PubMed

    Bourgeois, Briley; Luo, Sijun; Riggs, Brian; Ji, Yaping; Adireddy, Shiva; Schroder, Kurt; Farnsworth, Stan; Chrisey, Douglas; Escarra, Matthew

    2018-08-03

    This work reports a new technique for scalable and low-temperature processing of nanostructured TiO 2 thin films, allowing for practical manufacturing of TiO 2 -based devices such as perovskite solar cells at low-temperature or on flexible substrates. Dual layers of dense and mesoporous TiO 2 /graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J cm -2 ) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 and 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 ± 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO 2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 ± 1.11 Ω/□ and 28.90 ± 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO 2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO 2 while offering the distinct advantages of scalable manufacturing, low-temperature processing, simultaneous bilayer fabrication, and in situ formation of removable carbon nanocomposites.

  5. Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1994-01-01

    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical properties. Correlation with cyclic data revealed the presence of a mechanism not considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular specimens had little effect on the predicted thermal expansion.

  6. Modeling to study the role of catalyst in the formation of graphitic shells during carbon nanofiber growth subjected to reactive plasma

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.

    2018-04-01

    An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a significant influence on their field emission properties. The comparisons of these theoretical findings to the experimental observations confirm the adequacy of the proposed model.

  7. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.

  8. Optimization of the photoneutron target geometry for e-accelerator based BNCT.

    PubMed

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-06-01

    Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon's incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets. Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape.

  9. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  10. Radiographic detection of 100 A thickness variations in 1-. mu. m-thick coatings applied to submillimeter-diameter laser fusion targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupin, D.M.

    1986-01-01

    We have developed x-ray radiography to measure thickness variations of coatings on laser fusion targets. Our technique is based on measuring the variation in x-ray transmission through the targets. The simplest targets are hollow glass microshells or microballoons 100 to 500 ..mu..m in diameter, that have several layers of metals or plastics, 1 to 100 ..mu..m thick. Our goal is to examine these opaque coatings for thickness variations as small as 1% or 0.1%, depending on the type of defect. Using contact radiography we have obtained the desired sensitivity for concentric and elliptical defects of 1%. This percentage corresponds tomore » thickness variations as small as 100 A in a 1-..mu..m-thick coating. For warts and dimples, the desired sensitivity is a function of the area of the defect, and we are developing a system to detect 0.1% thickness variations that cover an area 10 ..mu..m by 10 ..mu..m. We must use computer analysis of contact radiographs to measure 1% thickness variations in either concentricity or ellipticity. Because this analysis takes so long on our minicomputer, we preselect the radiographs by looking for defects at the 10% level on a video image analysis system.« less

  11. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  12. Temperature dependence of yields from multi-foil SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.

    2011-10-01

    The temperature dependence of neutron-rich isotope yields was studied within the framework of the HRIBF-SPES Radioactive Ion Beams (RIB) project. On-line release measurements of fission fragments from a uranium carbide target at ensuremath 1600 {}^{circ}C , ensuremath 1800 {}^{circ}C and ensuremath 2000 {}^{circ}C were performed at ORNL (USA). The fission reactions were induced by a 40MeV proton beam accelerated into a uranium carbide target coupled to a plasma ion source. The experiments allowed for tests of performance of the SPES multi-foil target prototype loaded with seven UC2/graphite discs (ratio C/ U = 4 with density about 4g/cm3.

  13. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  14. Thick electrodes for Li-ion batteries: A model based analysis

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Singh, Madhav; Hein, Simon; Kaiser, Jörg; Hahn, Horst; Latz, Arnulf

    2016-12-01

    Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 μm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.

  15. Study on the property of low friction complex graphite-like coating containing tantalum

    NASA Astrophysics Data System (ADS)

    Wang, Zuoping; Feng, Lajun; Shen, Wenning

    2018-03-01

    In order to enhance equipment lifetime under low oil or even dry conditions, tantalum was introduced into the graphite-like coating (GLC) by sputtering mosaic targets. The results showed that the introduction of Ta obviously reduced the friction coefficient and hardness of the GLC, while improved the wearability. When the atomic percentage of Ta was larger than 3%, the steady friction coefficient was lower than 0.01, suggesting the coating exhibited super lubricity. When the content of Ta was about 5.0%, the average friction coefficient was 0.02 by a sliding friction test under load of 20 N in unlubricated condition. Its average friction coefficient reduced by 75%, compared with that of control GLC (0.0825).

  16. Structural Analysis of Pyrolytic Graphite Optics for the HiPEP Ion Thruster

    NASA Technical Reports Server (NTRS)

    Meckel, Nicole; Polaha, Jonathan; Juhlin, Nils

    2006-01-01

    The long lifetime requirements of interplanetary exploration missions is driving the need to develop long-life components for the electric propulsion thrusters that are being targeted for these missions. One of the primary life-limiting components of ion thrusters are the optics, which are continuously eroded during the operation of the thruster. Pyrolytic graphite optics are being considered for the High Power Electric Propulsion (HiPEP) ion thruster because of their very high resistance to erosion. This paper describes the structural analysis of the HiPEP pyrolytic graphite. A description of the development of the grid model, as well as the development of the effective properties and stress concentrations in the apertured area of the grids is included. An evaluation of the use of curved grids shows that the increased stiffness (compared to flat grids) prevents intergrid impact during launch, however, the residual stresses introduced by curving the grids pushes the resulting peak stresses beyond the critical stress. As a result, flat grids are recommended as the design solution. Thermally induced grid displacements during normal thruster operation are also presented.

  17. HOPG/ZnO/HOPG pressure sensor

    NASA Astrophysics Data System (ADS)

    Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad

    2017-12-01

    Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.

  18. A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams (70-250 MeV) for cylindrical and spherical ion chambers.

    PubMed

    Verhaegen, F; Palmans, H

    2001-10-01

    Current dosimetry protocols for clinical protons do not take into account any secondary electron fluence perturbation in ion chambers. In this work, we performed a systematic study of secondary electron fluence perturbation factors for spherical and cylindrical ion chambers in proton beams (70-250 MeV). The electron fluence perturbation factor, pe, was calculated using Monte Carlo transport of protons and secondary electrons. The influence of proton energy, cavity wall material (graphite, water, A150, PMMA, polystyrene), cavity radius, cavity wall thickness and positioning depth in water is studied. The influence of inelastic nuclear proton interactions is briefly discussed. It was found that pe depends on wall material; the largest values for pe were obtained for ion chambers with A150 walls (pe=1.009), the smallest values for graphite walls. The perturbation factor was found to be largely independent of proton energy. A slight decrease of pe with cavity radius was obtained, especially for low energy protons. The wall thickness was found to have no effect on pe in the range studied (0.025-0.1 cm). The depth of the cavity in a water phantom was also found to have an insignificant effect on pe. Based on the results in the paper for spherical and cylindrical ion chambers, a method to calculate pe for a thimble ion chamber is presented. The results presented in this paper for cylindrical and spherical ion chambers are in contradiction to the calculated electron fluence perturbation factors for planar ion chambers in the paper by Casnati et al.

  19. Summary of a study to determine low-velocity impact damage and residual tension strength for a thick graphite/epoxy motor case

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    Impacters of various shapes and masses were dropped from various heights onto 36 mm (1.4 in.) thick graphite/epoxy cylinders, which represented filament wound cases (FWC) for the booster motors of the Space Shuttle. Insert solid propellant was cast into some of the cylinders. The cylinders were impacted numerous times around the circumference and then cut into 51 mm (2.0 in.) wide tension specimens, each containing an impact site. Four indenters were used: a sharp corner, two hemispheres, and a bolt-like rod. The diameters of the hemispheres were 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.), and the diameter of the rod was 6.3 mm (0.25 in.). Impacts with the rod were simulated by pressing the rod against the face of specimens. For the hemispheres, the damage initiated beneath the surface at a critical contact pressure and was not visible on the surface until an even larger pressure was exceeded. The damage consisted of matrix cracking and broken fiber. The rod and corner made visible surface damage in all tests. For the hemispheres, the tension strength was reduced considerably before the damage was visible on the surface, 30 percent for the 25.4 mm (1.0 in.) diameter hemisphere and 10 percent for the 12.7 mm (0.5 in.) diameter hemisphere. Analytical methods were used to predict the damage and residual tension strength. A factor of safety to account for nonvisible damage was determined.

  20. Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protection is obtained with arginine.

    PubMed

    Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M

    2017-02-01

    We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Summary of a study to determine low-velocity impact damage and residual tension strength for a thick graphite/epoxy motor case

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    Impacters of various shapes and masses were dropped from various heights onto 36 mm (1.4 in.) thick graphite/epoxy cylinders, which represented filament wound cases (FWC) for the booster motors of the Space Shuttle. Insert solid propellant was cast into some of the cylinders. The cylinders were impacted numerous times around the circumference and then cut into 51 mm (2.0 in.) wide tension specimens, each containing an impact site. Four indenters were used: a sharp corner, two hemispheres, and a bolt-like rod. The diameters of the hemispheres were 12.7 mm mm (0.5 in.) and 25.4 mm (1.0 in.), and the diameter of the rod was 6.3 mm (0.25 in.). Impacts with the rod were simulated by pressing the rod against the face of specimens. For the hemispheres, the damage initiated beneath the surface at a critical contact pressure and was not visible on the surface until an even larger pressure was exceeded. The damage consisted of matrix cracking and broken fiber. The rod an corner made visible surface damage in all tests. For the hemispheres, the tension strength was reduced considerably before the damage was visible on the surface, 30 percent for the 25.4 mm (1.0 in.) diameter hemisphere and 10 percent for the 12.7 mm (0.5 in.) diameter hemisphere. Analytical methods were used to predict the damage and residual tension strength. A factor of safety to account for nonvisible damage was determined.

  2. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    NASA Astrophysics Data System (ADS)

    Olson, Luke; Sridharan, Kumar; Anderson, Mark; Allen, Todd

    2011-04-01

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 °C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr 2O 3 barrier film on the surface of the alloy prior to Ni electroplating.

  3. The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O

    DOE PAGES

    Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.

    2016-04-16

    Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less

  4. The low temperature oxidation of lithium thin films on HOPG by O 2 and H 2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulfsberg, Steven M.; Koel, Bruce E.; Bernasek, Steven L.

    Lithiated graphite and lithium thin films have been used in fusion devices. In this environment, lithiated graphite will undergo oxidation by background gases. In order to gain insight into this oxidation process, thin (< 15 monolayer (ML)) lithium films on highly ordered pyrolytic graphite (HOPG) were exposed in this paper to O 2(g) and H 2O (g) in an ultra-high vacuum chamber. High resolution electron energy loss spectroscopy (HREELS) was used to identify the surface species formed during O 2(g) and H 2O (g) exposure. Auger electron spectroscopy (AES) was used to obtain the relative oxidation rates during O 2(g)more » and H 2O (g) exposure. AES showed that as the lithium film thickness decreased from 15 to 5 to 1 ML, the oxidation rate decreased for both O 2(g) and H 2O (g). HREELS showed that a 15 ML lithium film was fully oxidized after 9.7 L (L) of O 2(g) exposure and Li 2O was formed. HREELS also showed that during initial exposure (< 0.5 L) H 2O (g), lithium hydride and lithium hydroxide were formed on the surface of a 15 ML lithium film. Finally, after 0.5 L of H 2O (g) exposure, the H 2O (g) began to physisorb, and after 15 L of H 2O (g) exposure, the 15 ML lithium film was not fully oxidized.« less

  5. A Study of Multiplicities in Hadronic Interactions (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada Tristan, Nora Patricia; /San Luis Potosi U.

    Using data from the SELEX (Fermilab E781) experiment obtained with a minimum-bias trigger, we study multiplicity and angular distributions of secondary particles produced in interactions in the experimental targets. We observe interactions of {Sigma}{sup -}, proton, {pi}{sup -}, and {pi}{sup +}, at beam momenta between 250 GeV/c and 650 GeV/c, in copper, polyethylene, graphite, and beryllium targets. We show that the multiplicity and angular distributions for meson and baryon beams at the same momentum are identical. We also show that the mean multiplicity increases with beam momentum, and presents only small variations with the target material.

  6. Optimization of the photoneutron target geometry for e-accelerator based BNCT

    PubMed Central

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-01-01

    Background and aim Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. Methods In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. Results The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon’s incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets Conclusion Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape. PMID:28848635

  7. Comparison of Intralaminar and Interlaminar Mode-I Fracture Toughness of Unidirectional IM7/8552 Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James

    2012-01-01

    The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.

  8. Electrical conductivity of graphite oxide nanoplatelets obtained from bamboo: Effect of the deoxidation degree

    NASA Astrophysics Data System (ADS)

    Gross, K.; Prias-Barragan, J. J.; Sangiao, S.; de Teresa, J. M.; Lajaunie, L.; Arenal, R.; Ariza-Calderón, H.; Prieto, P.

    Given the high interest in the fabrication and application of carbon-based materials, we present a new and cost-effective method for the synthesis of graphite oxide nanoplatelets (GONP) using bamboo pyroligneous acid (BPA) as source. GONP-BPA present lateral dimensions of 5-100 micro-meter and thickness less than 80 nm, as confirmed by TEM. EEL spectra show that locally the carbon is mainly in sp2 bonding configuration and confirm a short/medium range crystalline order. Elemental analysis by EDX confirms the presence of oxygen in an atomic percentage ranging from 17 to 5%. For electrical characterization, single platelets were contacted by focused-ion-beam-induced deposition of Pt nanowires. The four-point probe electrical conductivity shows a direct correlation with the oxygen percentage. Three orders of magnitude conductivity rise is observed by the oxygen reduction, reaching a value of 2.3x103 S/m at the final deoxidation degree. The results suggest that GONP-BPA could be used in the development of advanced devices and sensors.

  9. Imaging initial formation processes of nanobubbles at the graphite-water interface through high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh

    2018-03-01

    The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).

  10. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.

    PubMed

    Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.

  11. Improving cylinder-type LiFePO4 battery performance via control of internal resistance

    NASA Astrophysics Data System (ADS)

    Purwanto, Agus; Jumari, Arif; Nizam, Muhammad; Widiyandari, Hendri; Sudaryanto; Deswita; Azmin Mohamad, Ahmad

    2018-04-01

    Strategies for controlling the internal resistance to improve battery performance were systematically investigated. Electrode densification of LiFePO4 cathodes significantly reduced the internal resistance of the prepared batteries. Densification by reduction to 31.25% of initial thickness resulted in optimal electrochemical performance of the prepared LiFePO4 batteries. The addition of KS 6 graphite material improved the conductivity of the cathodes, which was indicated by a lowering of the internal resistance. The internal resistance was decreased from 73 to 54 when the KS6/AB ratio was varied from 3 to 1. Another factor in controlling the internal resistance was the location of a welded aluminum tab in the cathode. The welding of an aluminum tab in a small gap in the cathode significantly reduced the internal resistance. Thus, three main factors can be performed during fabrication to reduce the internal resistance of a LiFePO4 battery: cathode densification, KS-6 graphite addition, and the arrangement of an aluminum tab welded to the cathode. By optimizing these factors, high-performance LFP batteries were produced.

  12. Scale effects on the transverse tensile strength of graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Salpekar, Satish A.

    1992-01-01

    The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.

  13. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.

    1986-01-01

    During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.

  14. Effect of load, area of contact, and contact stress on the tribological properties of polyimide bonded graphite fluoride films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1981-01-01

    A pin-on-disk type of friction and wear apparatus was used to study the effect of load, contact stress and rider area of contact on the friction and wear properties of polyimide-bonded graphite fluoride films. Different rider area contacts were obtained by initially generating flats (with areas of 0.0035, 0.0071, 0.0145, and 0.0240 cm) on 0.476-cm radius hemispherically-tipped riders. Different projected contact stresses were obtained by applying loads of 2.5-to 58.8-N to the flats. Two film wear mechanisms were observed. The first was found to be a linear function of contact stress and was independent of rider area of contact. The second was found to increase exponentially as the stress increased. The second also appeared to be a function of rider contact area. Wear equations for each mechanism were empirically derived from the experimental data. In general, friction coefficients increased with increasing rider contact area and with sliding duration. This was related to the build-up of thick rider transfer films.

  15. Influence of atmospheric plasma on physicochemical properties of vapor-grown graphite nanofibers.

    PubMed

    Seo, Min-Kang; Park, Soo-Jin; Lee, Sang-Kwan

    2005-05-01

    Vapor-grown graphite nanofibers (GNFs) were modified by plasma treatments using low-pressure plasmas with different gases (Ar gas only and/or Ar/O2 gases), flow rates, pressures, and powers. Surface characterizations and morphologies of the GNFs after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS), contact angle, titration, and transmission electron microscopy (TEM) measurements. Also, the investigation of thermomechanical behavior and impact strengths of the GNFs/epoxy composites was performed by dynamic-mechanical thermal analysis (DMTA) and Izod impact testing, respectively. The plasma treatment of the fibers changed the surface morphologies by forming a layer with a thickness on the order of 1 nm, mainly consisting of oxygen functional groups such as hydroxyl, carbonyl, and carboxyl groups. After functionalization of the complete surfaces, further plasma treatment did not enhance the superficial oxygen content but slightly changed the portions of the functional groups. Also, the composites with plasma-treated GNFs showed an increase in T(g) and impact strength compared to the composites containing the same amount of plasma-untreated GNFs.

  16. Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    In this paper, the oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deepermore » oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Finally, kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.« less

  17. Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air

    DOE PAGES

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2017-12-14

    In this paper, the oxidation rates of several nuclear-grade graphites, NBG-18, NBG-17, IG-110 and IG-11, were measured in air using thermogravimetry. Kinetic parameters and oxidation behavior for each grade were compared by coke type, filler grain size and microstructure. The thickness of the oxidized layer for each grade was determined by layer peeling and direct density measurements. The results for NBG-17 and IG-11 were compared with those available in the literature and our recently reported results for NBG-18 and IG-110 oxidation in air. The finer-grained graphites IG-110 and IG-11 were more oxidized than medium-grained NBG-18 and NBG-17 because of deepermore » oxidant penetration, higher porosity and higher probability of available active sites. Variation in experimental conditions also had a marked effect on the reported kinetic parameters by several studies. Finally, kinetic parameters such as activation energy and transition temperature were sensitive to air flow rates as well as sample size and geometry.« less

  18. An efficient 14-MeV neutron detector for use in mixed 2. 5- and 14-MeV neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, S.; Bond, D.S.; Hawkes, N.P.

    1993-06-01

    A neutron detector capable of measuring the time-dependent yield of 14-MeV neutrons from a D--D plasma producing predominantly 2.5-MeV neutrons has been developed. The detector consists of a thick polythene recoil proton radiator backed by a graphite foil attached to a large area totally depleted ion-implanted diode. Protons scattered in the forward direction by 14-MeV neutrons pass through the graphite foil and are registered in the diode. Recoil protons from 2.5-MeV neutrons, however, are prevented from reaching the diode by the foil. When operated with a 1.5-MeV energy bias, the measured neutron detection efficiency for 15-MeV neutrons is 3.2[times]10[sup [minus]3]more » per neutron. The corresponding figure for 3.1-MeV neutrons is a factor of 540 lower. The neutron detector and its laboratory calibration are described, as is its deployment at the Joint European Torus where it serves as a triton burn-up monitor.« less

  19. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.

    We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.

  20. Improving Strength of Postbuckled Panels Through Stitching

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2007-01-01

    The behavior of blade-stiffened graphite-epoxy panels with impact damage is examined to determine the effect of adding through-the-thickness stitches in the stiffener flange-to-skin interface. The influence of stitches is evaluated by examining buckling and failure for panels with failure loads up to 3.5 times greater than buckling loads. Analytical and experimental results from four configurations of panel specimens are presented. For each configuration, two panels were manufactured with skin and flanges held together with through-the-thickness stitches introduced prior to resin infusion and curing and one panel was manufactured with no stitches holding the flange to the skin. No mechanical fasteners were used for the assembly of any of these panels. Panels with and without low-speed impact damage were loaded to failure in compression. Buckling and failure modes are discussed. Stitching had little effect on buckling loads but increased the failure loads of impact-damaged panels by up to 30%.

  1. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Lu; Niu, Dongmei, E-mail: mayee@csu.edu.cnmailto; Xie, Haipeng

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecularmore » tilt angle about the substrate normal with the increasing film thickness.« less

  2. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  3. Progress toward a practical laser driven ion source using variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Cochran, Ginevra; Zeil, Karl; Metzkes, Josephine; Obst, Lieselotte; Kluge, Thomas; Schlenvoigt, Hans-Peter; Prencipe, Irene; Cowan, Tom; Schramm, Uli; Schumacher, Douglass

    2016-10-01

    Ion acceleration from ultra-intense laser interaction has been long investigated in pursuit of requisite energies and spectral distributions for applications like proton cancer therapy. However, the details of ion acceleration mechanisms and their laser intensity scaling are not fully understood, especially the complete role of pulse contrast and target thickness. Additionally, target delivery and alignment at appropriate rates for study and subsequent treatment pose significant challenges. We present results from a campaign on the Draco laser using liquid crystal targets that have on-demand, in-situ thickness tunability over more than three orders of magnitude, enabling rapid data collection due to <1 minute, automatically aligned target formation. Diagnostics include spectral and spatial measurement of ions, electrons, and reflected and transmitted light, all with thickness, laser focus, and pulse contrast variations. In particular we discuss optimal thickness vs. contrast and details of ultra-thin target normal ion acceleration, along with supporting particle-in-cell studies. This work was supported by the DARPA PULSE program through AMRDEC, by the NNSA (DE-NA0001976), by EC Horizon 2020 LASERLAB-EUROPE/LEPP (654148), and by the German Federal Ministry of Education and Research (BMBF, 03Z1O511).

  4. The thickness effect of pre-deposited catalyst film on carbon nanotube growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wei, Y. Y.; Eres, Gyula; Lowndes, Douglas H.

    2001-03-01

    Chemical vapor deposition (CVD) of multi wall carbon nanotubes (MWCNTs) was realized on a substrate with a layer of iron film used as a catalyst. The catalyst film was pre-deposited in an electron-gun evaporator equipped with a movable shutter which partially blocks the beam during the evaporation process to produce a catalyst film with a continuously changing thickness from 0 to 60 nm. This technique creates a growth environment in which the film thickness is the only variable and eliminates sample-to-sample variations, enabling a systematic study of the thickness effect of the catalyst film on CNT growth. After the deposition of the catalyst film, the sample was immediately transferred into a CVD chamber where CNT growth was performed. Using Acetylene (C_2H_2) as a carbon-source gas, at the substrate temperature of around 700^oC, MWCNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature from 640^oC to 800^oC. There appears to be no strong correlation between the film thickness and the diameter of the tubes. At the substrate temperature of over 900^oC, the deposited carbon formed graphite sheets surrounding the catalyst particles and no CNTs were observed. A plot of the critical thickness of the catalyst film where CNTs start to grow as a function of the substrate temperature has obtained, which can be served as a reference for selecting the growth parameter in MWCNT growth. The significance of these experimental trends is discussed within the framework of the diffusion model for MWCNT growth.

  5. Measuring Submicron-Sized Fractionated Particulate Matter on Aluminum Impactor Disks

    PubMed Central

    Buchholz, Bruce A.; Zermeño, Paula; Hwang, Hyun-Min; Young, Thomas M.; Guilderson, Thomas P.

    2011-01-01

    Sub-micron sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56–100 nm, 100–180 nm, 180–320 nm, 320–560 nm, 560–1000 nm, and 1000–1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20–200 microgram C) and large aluminum substrate (~25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for 14C-AMS analysis of PM deposited on Al impact foils. PMID:22228915

  6. The influence of electrode and separator thickness on the cell resistance of symmetric cellulose-polypyrrole-based electric energy storage devices

    NASA Astrophysics Data System (ADS)

    Tammela, Petter; Olsson, Henrik; Strømme, Maria; Nyholm, Leif

    2014-12-01

    The influence of the cell design of symmetric polypyrrole and cellulose-based electric energy storage devices on the cell resistance was investigated using chronopotentiometric and ac impedance measurements with different separator and electrode thicknesses. The cell resistance was found to be dominated by the electrolyte and current collector resistances while the contribution from the composite electrode material was negligible. Due to the electrolyte within the porous electrodes thin separators could be used in combination with thick composite electrodes without loss of performance. The paper separator contributed with a resistance of ∼1.5 Ω mm-1 in a 1.0 M NaNO3 electrolyte and the tortuosity value for the separator was about 2.5. The contribution from the graphite foil current collectors was about ∼0.4-1.1 Ω and this contribution could not be reduced by using platinum foil current collectors due to larger contact resistances. The introduction of chopped carbon fibres into the electrode material or the application of pressure across the cells, however, decreased the charge transfer resistance significantly. As the present results demonstrate that cells with higher charge storage capacities but with the same cell resistance can be obtained by increasing the electrode thickness, the development of paper based energy storage devices is facilitated.

  7. Damage tolerance and arrest characteristics of pressurized graphite/epoxy tape cylinders

    NASA Technical Reports Server (NTRS)

    Ranniger, Claudia U.; Lagace, Paul A.; Graves, Michael J.

    1993-01-01

    An investigation of the damage tolerance and damage arrest characteristics of internally-pressurized graphite/epoxy tape cylinders with axial notches was conducted. An existing failure prediction methodology, developed and verified for quasi-isotropic graphite/epoxy fabric cylinders, was investigated for applicability to general tape layups. In addition, the effect of external circumferential stiffening bands on the direction of fracture path propagation and possible damage arrest was examined. Quasi-isotropic (90/0/plus or minus 45)s and structurally anisotropic (plus or minus 45/0)s and (plus or minus 45/90)s coupons and cylinders were constructed from AS4/3501-6 graphite/epoxy tape. Notched and unnotched coupons were tested in tension and the data correlated using the equation of Mar and Lin. Cylinders with through-thickness axial slits were pressurized to failure achieving a far-field two-to-one biaxial stress state. Experimental failure pressures of the (90/0/plus or minus 45)s cylinders agreed with predicted values for all cases but the specimen with the smallest slit. However, the failure pressures of the structurally anisotropic cylinders, (plus or minus 45/0)s and (plus or minus 45/90)s, were above the values predicted utilizing the predictive methodology in all cases. Possible factors neglected by the predictive methodology include structural coupling in the laminates and axial loading of the cylindrical specimens. Furthermore, applicability of the predictive methodology depends on the similarity of initial fracture modes in the coupon specimens and the cylinder specimens of the same laminate type. The existence of splitting which may be exacerbated by the axial loading in the cylinders, shows that this condition is not always met. The circumferential stiffeners were generally able to redirect fracture propagation from longitudinal to circumferential. A quantitative assessment for stiffener effectiveness in containing the fracture, based on cylinder radius, slit size, and bending stiffnesses of the laminates, is proposed.

  8. Determining the Biogenicity of Microfossils in the Apex Chert, Western Australia, Using Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    DeGregorio, B. T.; Sharp, T. G.

    2003-01-01

    For over a decade, the oldest evidence for life on this planet has been microfossils in the 3.5 Ga Apex Chert in Western Australia. Recently, the biogenicity of these carbon-rich structures has been called into question through reanalysis of the local geology and reinterpretation of the original thin sections. Although initially described as a stratiform, bedded chert of siliceous clasts, the unit is now thought to be a brecciated hydrothermal vein chert. The high temperatures of a hydrothermal environment would probably have detrimental effects to early non-hyperthermophilic life, compared to that of a shallow sea. Conversely, a hydrothermal origin would suggest that if the microfossils were valid, they might have been hyperthermophilic. Apex Chert controversy. The Apex Chert microfossils were originally described as septate filaments composed of kerogen similar in morphology to Proterozoic and modern cyanobacteria. However new thin section analysis shows that these carbonaceous structures are not simple filaments. Many of the original microfossils are branched and have variable thickness when the plane of focus is changed. Hydrothermal alteration of organic remains has also been suggested for the creation of these strange morphologies. Another point of contention lies with the nature of the carbon material in these proposed microfossils. Kerogen is structurally amorphous, but transforms into well-ordered graphite under high pressures and temperatures. Raman spectrometry of the carbonaceous material in the proposed microfossils has been interpreted both as partially graphitized kerogen and amorphous graphite. However, these results are inconclusive, since Raman spectrometry cannot adequately discriminate between kerogen and disordered graphite. There are also opposing views for the origin of the carbon in the Apex Chert. The carbon would be biogenic if the proposed microfossils are indeed the remains of former living organisms. However, an inorganic Fischer- Tropsch-type synthesis is also a possible explanation for the formation of large-aggregate carbonaceous particles and could also account for the depletion of (13)C observed.

  9. Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.

    2011-03-01

    In the framework of the R&D program for the SPES (Selective Production of Exotic Species) project of the Istituto Nazionale di Fisica Nucleare (INFN), production yields of neutron-rich isotopes have been measured at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory, USA). This experiment makes use of the multi-foil SPES target prototype composed of 7 uranium carbide discs, with excess of graphite (ratio C/ U = 4 . 77 isotopes of medium mass (between 72 and 141amu), produced via proton-induced fission of uranium using a 40MeV proton beam, have been collected and analyzed for the target heated at 2000 ° C target temperature.

  10. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Chaoqun; Chen, Zhaowei; Wang, Zhenzhen; Li, Wei; Ju, Enguo; Yan, Zhengqing; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved.As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07719b

  11. Mo100 to Mo99 Target Cooling Enhancements Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2016-02-16

    Target design requirements changed significantly over the past year to a much higher beam current on larger diameter disks, and with a beam impingement on both ends of the target. Scaling from the previous design, that required significantly more mass flow rate of helium coolant, and also thinner disks. A new Aerzen GM12.4 blower was selected that can deliver up to 400 g/s at 400 psi, compared to about 100 g/s possible with the Tuthill blower previously selected.Further, to accommodate the 42 MeV, 2.7 mA beam on each side of the target, the disk thickness and the coolant gaps weremore » halved to create the current baseline design: 0.5 mm disk thickness (at 29 mm diameter) and 0.25 mm coolant gap. Thermal-hydraulic analysis of this target, presented below for reference, gave very good results, suggesting that the target could be improved with fewer, thicker disks and with disk thickness increasing toward the target center. The total thickness of Mo100 in the target remaining the same, that reduces the number of coolant gaps. This allows for the gap width to be increased, increasing the mass flow in each gap and consequently increasing heat transfer. A preliminary geometry was selected and analyzed with variable disk thickness and wider coolant gaps. The result of analysis of this target shows that disk thickness increase near the window was too aggressive and further resizing of the disks is necessary, but it does illustrate the potential improvements that are possible. Experimental and analytical study of diffusers on the target exit has been done. This shows modest improvement in requcing pressure drop, as will be summarized below. However, the benefit is not significant, and implementation becomes problematic when disk thickness is varying. A bull nose at the entrance does offer significant benefit and is relatively easy to incorporate. A bull nose on both ends is now a feature of the baseline design, and will be a feature of any redesign or enhanced designs that follow.« less

  12. SU-F-T-361: Dose Enhancement Due to Nanoparticle Addition in Skin Radiotherapy: A Monte Carlo Study Using Kilovoltage Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X; Chow, J

    Purpose: This study investigated the dose enhancement due to addition of nanoparticles with different types and concentrations in skin radiotherapy using kilovoltage photon beams. Methods: An inhomogeneous water phantom (15×15×10 cm{sup 3}) having the skin target layer (0.5–5 mm), added with different concentrations (3–40 mg/ml) of nanoparticles (Au, Pt, I, Ag and Fe{sub 2}O{sub 3}), was irradiated by the 105 and 220 kVp photon beams produced by a Gulmay D3225 Orthovoltage unit. The circular cone of 5-cm diameter and source-to-surface distance of 20 cm were used. Doses in the skin target layer with and without adding the nanoparticles were calculatedmore » using Monte Carlo simulation (the EGSnrc code) through the macroscopic approach. Dose enhancement ratio (DER), defined as the ratio of dose at the target with nanoparticle addition to the dose without addition, was calculated for each type and concentration of nanoparticle in different target thickness. Results: For Au nanoparticle, DER dependence on target thickness for the 220 kVp photon beams was not significant. However, DER for Au nanoparticle was found decreasing with an increase of target thickness when the nanoparticle concentration was increased from 18 to 40 mg/ml using the 105 kVp photon beams. For nanoparticle concentration of 40 mg/ml, DER variation with target thickness was not significant for the 220 kVp photon beams, but DEF was found decreasing with the target thickness when lower energy of photon beam (105 kVp) was used. DEF was found increasing with an increase of nanoparticle concentration. The higher the DEF increasing rate, the higher the atomic number of the nanoparticle except I and Ag for the same target thickness. Conclusion: It is concluded that nanoparticle addition can result in dose enhancement in kilovoltage skin radiotherapy. Moreover, the DER is related to the photon beam energy, target thickness, atomic number and concentration of nanoparticles.« less

  13. Fatigue and Damage Tolerance Analysis of a Hybrid Composite Tapered Flexbeam

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Schaff, Jeffrey R.; Dobyns, Al

    2001-01-01

    The behavior of nonlinear tapered composite flexbeams under combined axial tension and cyclic bending loading was studied using coupon test specimens and finite element (FE) analyses. The flexbeams used a hybrid material system of graphite/epoxy and glass/epoxy and had internal dropped plies, dropped in an overlapping stepwise pattern. Two material configurations, differing only in the use of glass or graphite plies in the continuous plies near the midplane, were studied. Test specimens were cut from a full-size helicopter tail-rotor flexbeam and were tested in a hydraulic load frame under combined constant axialtension load and transverse cyclic bending loads. The first determination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group in the tapered region of the flexbeam, near the thick end. Delaminations grew slowly and stably, toward the thick end of the flexbeam, at the interfaces above and below the dropped-ply region. A 2D finite element model of the flexbeam was developed. The model was analyzed using a geometrically non-linear analysis with both the ANSYS and ABAQUS FE codes. The global responses of each analysis agreed well with the test results. The ANSYS model was used to calculate strain energy release rates (G) for delaminations initiating at two different ply-ending locations. The results showed that delaminations were more inclined to grow at the locations where they were observed in the test specimens. Both ANSYS and ABAQUS were used to calculate G values associated with delamination initiating at the observed location but growing in different interfaces, either above or below the ply-ending group toward the thick end, or toward the thin end from the tip of the resin pocket. The different analysis codes generated the same trends and comparable peak values, within 5-11 % for each delamination path. Both codes showed that delamination toward the thick region was largely mode II, and toward the thin region was predominantly mode I. The calculated peak G-values from either analysis predict delamination is most likely to occur along the same interface where it was observed in the test specimens. Calculated peak G values were used with material characterization data to calculate a curve relating the fatigue life of the specimens, N, to the applied transverse load, V, for a given constant axial load.

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  15. Method of producing nano-scaled inorganic platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  16. The Effect of Carbon and Boron on the Friction Behavior of Ti-Implanted 52100 Bearing Steel at Low Sliding Speeds

    DTIC Science & Technology

    1982-05-01

    process, titanium chlorides are produced by passing chlorine gas through a fine titanium powder contained in a graphite chamber. At the high source...CO was used for a carbon source; the boron source was boron trifluoride . The 52100 samples were disks 0.95 cm in diameter and 0.3 cm thick. During...eV modulation amplitude. The ion gun 1w operated in an Ar atmosphere (5 x 10-5 torr) with a rastered beam of 2 keY Ar+ ions at densities ranging from

  17. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Demanes, J; Kamrava, M

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour themore » target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.« less

  18. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Newhauser, Wayne D.

    2009-03-01

    In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.

  19. Direct graphene growth from highly ordered pyrolytic graphite using pulsed Nd: YAG laser on p-Si (100) substrate at 700°c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pramod, E-mail: kumarpramod.iitd@gmail.com; Lahiri, Indranil; Mitra, Anirban

    Few layer graphene was deposited on p-type Si (100) substrates by pulsed laser deposition of highly ordered pyrolytic graphite (HOPG) target at a relatively low temperature of 700 °C, without any catalytic layer. Effect of laser energy on the ability to produce the crystalline graphene was studied. It was observed that a laser energy of 220 mJ/pulse lead to form few layer graphene while higher laser energy of 440 mJ/pulse was detrimental to precipitation process. The reasons behind this observation are also discussed. Graphene samples were analyzed using Raman spectroscopy and surface morphology of graphene samples was confirmed using fieldmore » emission scanning electron microscope (FE-SEM).« less

  20. Quasi-monoenergetic protons accelerated by laser radiation pressure and shocks in thin gaseous targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Minqing; Shao Xi; Liu Chuansheng

    Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of themore » laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.« less

  1. Simple room-temperature preparation of high-yield large-area graphene oxide

    PubMed Central

    Huang, NM; Lim, HN; Chia, CH; Yarmo, MA; Muhamad, MR

    2011-01-01

    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer’s method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm2, respectively. The simplified Hummer’s method provides a facile approach for the preparation of large-area GO. PMID:22267928

  2. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  3. Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.

    1995-01-01

    The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.

  4. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, D. L.; Kelly, A. M.; Alexander, D. J.

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less

  5. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  6. Electron Acceleration from the Interaction of VULCAN 100TW Laser with Au Foils and its Dependence on Laser Polarisation

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Bellei, C.; Kneip, S.; Mangles, S. P. D.; Palmer, C.; Willingale, L.; Dangor, A. E.; Najmudin, Z.; Clarke, R. J.; Heathcote, R.; Henig, A.; Schreiber, J.; Saevert, A.; Kaluza, M.

    2008-11-01

    Electrons as well as ions can be accelerated to high energies (MeV) by high intensity laser interactions with solid targets. An overview of an experiment on the Vulcan laser (pulse length cτ˜150μm, energy on target ˜60 J), will be presented. In this experiment electron acceleration from thick overdense plasmas is investigated by conducting thickness scans using Au foil targets ranging from 10 to 100 μm. The electron spectra, of the most energetic electrons produced in the interaction, are measured along the laser direction and extend up to 40MeV. Surprisingly the electron acceleration depends on target thickness. Simultaneously rear surface proton beam profiles show a dependence of target thickness. Both effects are attributed to electron recirculation. In addition the effects of polarisation was investigated. A decrease in number and effective temperature of energetic electrons is observed for circular polarisation as compared to linear polarisation.

  7. TU-H-BRC-06: Temperature Simulation of Tungsten and W25Re Targets to Deliver High Dose Rate 10 MV Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Trovati, S; Loo, B

    Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Remore » targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad member. BL and PM have received research grants from Varian Medical System, Inc. and RaySearch Laboratory. RF is an employee of Siemens Healthcare GmbH.« less

  8. Preparation of 7Be targets for nuclear astrophysics research

    NASA Astrophysics Data System (ADS)

    Maugeri, E. A.; Heinitz, S.; Dressler, R.; Barbagallo, M.; Kivel, N.; Schumann, D.; Ayranov, M.; Musumarra, A.; Gai, M.; Colonna, N.; Paul, M.; Halfon, S.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.

    2017-02-01

    This work describes the preparation of three 7Be targets which were used in two independent measurements of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis at the n\\_TOF-CERN facility and at Soreq-SARAF . A more precise value of this cross section could shed light on the long lasting "Cosmological Lithium problem". Two methods for target preparation were used. A target was obtained by deposition and subsequent air-drying of (24.50± 0.54) GBq of Be(NO3)2 droplets precisely positioned onto a stretched low density polyethylene film 0.635 μm thick. The thickness of the deposited Be(NO3)2 layer was deduced using Monte-Carlo simulations to be 0.36 μm. The energy loss of 8500 keV alpha particles passing through the target obtained by air-drying of 7Be(NO3)2 droplets was estimated to be 88 keV . Two other targets were prepared via molecular plating onto ~ 5 μm and 1 mm thick aluminium backings, respectively. The first was obtained by molecular plating (24.47± 0.53) GBq of 7Be, resulting in a deposited layer of Be(OH)2, 1.04 μm thick. The second molecular plated target was obtained depositing (3.95± 0.08) GBq of 7Be. The mean energy loss of 8500 keV alpha particles, passing through the molecular plated target with 5 μm thick aluminium backings was estimated as 814 keV . The energy loss by 8500 keV alpha particles in all the obtained targets is considered tolerable for the envisaged cross section measurements. The preparation and characterization of the targets is here described.

  9. Graphene-based composite materials.

    PubMed

    Stankovich, Sasha; Dikin, Dmitriy A; Dommett, Geoffrey H B; Kohlhaas, Kevin M; Zimney, Eric J; Stach, Eric A; Piner, Richard D; Nguyen, SonBinh T; Ruoff, Rodney S

    2006-07-20

    Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

  10. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    PubMed

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  12. PhybalSIT — Fatigue Assessment and Life Time Calculation of the Ductile Cast Iron EN-GJS-600 at Ambient and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Jost, Benjamin; Klein, Marcus; Eifler, Dietmar

    This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.

  13. Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Lian, Ke-Yan; Liu, Lingling; Wu, Yingchao; Qiu, Qi; Jiang, Jun; Deng, Mingsen; Luo, Yi

    2016-03-01

    Nitrogen-doped graphene (N-graphene) has attractive properties that has been widely studied over the years. However, its possible formation process still remains unclear. Here, we propose a highly feasible formation mechanism of the graphitic-N doing in thermally treated graphene with ammonia by performing ab initio molecular dynamic simulations at experimental conditions. Results show that among the commonly native point defects in graphene, only the single vacancy 5-9 and divacancy 555-777 have the desirable electronic structures to trap N-containing groups and to mediate the subsequent dehydrogenation processes. The local structure of the defective graphene in combining with the thermodynamic and kinetic effect plays a crucial role in dominating the complex atomic rearrangement to form graphitic-N which heals the corresponding defect perfectly. The importance of the symmetry, the localized force field, the interaction of multiple trapped N-containing groups, as well as the catalytic effect of the temporarily formed bridge-N are emphasized, and the predicted doping configuration agrees well with the experimental observation. Hence, the revealed mechanism will be helpful for realizing the targeted synthesis of N-graphene with reduced defects and desired properties.

  14. FennoFlakes: a project for identifying flake graphite ores in the Fennoscandian shield and utilizing graphite in different applications

    NASA Astrophysics Data System (ADS)

    Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.

    2016-04-01

    Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.

  15. Process simulations for manufacturing of thick composites

    NASA Astrophysics Data System (ADS)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure gages at the mandrel-composite interface. Cylinders were hoop wound with tensions ranging from 13-34 N. An analytical model was developed to calculate change in stress due to relaxation during winding. Although compressive circumferential stresses occurred throughout each of the cylinders, the magnitude was fairly low.

  16. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  17. Effects of Surface Electron Doping and Substrate on the Superconductivity of Epitaxial FeSe Films.

    PubMed

    Zhang, W H; Liu, X; Wen, C H P; Peng, R; Tan, S Y; Xie, B P; Zhang, T; Feng, D L

    2016-03-09

    Superconductivity in FeSe is greatly enhanced in films grown on SrTiO3 substrates, although the mechanism behind remains unclear. Recently, surface potassium (K) doping has also proven able to enhance the superconductivity of FeSe. Here, by using scanning tunneling microscopy, we compare the K doping dependence of the superconductivity in FeSe films grown on two substrates: SrTiO3 (001) and graphitized SiC (0001). For thick films (20 unit cells (UC)), the optimized superconducting (SC) gaps are of similar size (∼9 meV) regardless of the substrate. However, when the thickness is reduced to a few UC, the optimized SC gap is increased up to ∼15 meV for films on SrTiO3, whereas it remains unchanged for films on SiC. This clearly indicates that the FeSe/SrTiO3 interface can further enhance the superconductivity, beyond merely doping electrons. Intriguingly, we found that this interface enhancement decays exponentially as the thickness increases, with a decay length of 2.4 UC, which is much shorter than the length scale for relaxation of the lattice strain, pointing to interfacial electron-phonon coupling as the likely origin.

  18. Measurements of the effective atomic numbers of minerals using bremsstrahlung produced by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Czarnecki, S.; Williams, S.

    2017-12-01

    The accuracy of a method for measuring the effective atomic numbers of minerals using bremsstrahlung intensities has been investigated. The method is independent of detector-efficiency and maximum accelerating voltage. In order to test the method, experiments were performed which involved low-energy electrons incident on thick malachite, pyrite, and galena targets. The resultant thick-target bremsstrahlung was compared to bremsstrahlung produced using a standard target, and experimental effective atomic numbers were calculated using data from a previous study (in which the Z-dependence of thick-target bremsstrahlung was studied). Comparisons of the results to theoretical values suggest that the method has potential for implementation in energy-dispersive X-ray spectroscopy systems.

  19. Morphological and functional effects of graphene on the synthesis of uranium carbide for isotopes production targets.

    PubMed

    Biasetto, L; Corradetti, S; Carturan, S; Eloirdi, R; Amador-Celdran, P; Staicu, D; Blanco, O Dieste; Andrighetto, A

    2018-05-29

    The development of tailored targets for the production of radioactive isotopes represents an active field in nuclear research. Radioactive beams find applications in nuclear medicine, in astrophysics, matter physics and materials science. In this work, we study the use of graphene both as carbon source for UO 2 carbothermal reduction to produce UC x targets, and also as functional properties booster. At fixed composition, the UC x target grain size, porosity and thermal conductivity represent the three main points that affect the target production efficiency. UC x was synthesized using both graphite and graphene as the source of carbon and the target properties in terms of composition, grain size, porosity, thermal diffusivity and thermal conductivity were studied. The main output of this work is related to the remarkable enhancement achieved in thermal conductivity, which can profitably improve thermal dissipation during operational stages of UC x targets.

  20. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    PubMed

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The ratio of microwaves to X-rays in solar flares: The case for the thick target model

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Petrosian, Vahe

    1988-01-01

    The expected ratio of synchrotron microwave radiation to bremsstrahlung X-rays for thick target, thin target, and multithermal solar flare models is calculated. The calculations take into account the variation of the microwave to X-ray ratio with X-ray spectral index. The theoretical results are compared with observed ratios of a sample of 51 solar flares with well known spectral index. From this it is concluded that the nonthermal thick target model with a loop length of and order of 10 to the 9th power cm and a magnetic field of 500 + or - 200 G provides the best fit to the data. The thin target and multithermal models require unreasonably large density or pressure and/or low magnetic field to match the data.

  2. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  3. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  4. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  5. Integration of uncooled scraper elements and its diagnostics into Wendelstein 7-X

    DOE PAGES

    Fellinger, Joris; Loesser, Doug; Neilson, Hutch; ...

    2017-08-08

    The modular stellarator Wendelstein 7-X in Greifswald (Germany) successfully started operation in 2015 with short pulse limiter plasmas. In 2017, the next operation phase (OP) OP1.2 will start once 10 uncooled test divertor units (TDU) with graphite armor will be installed. The TDUs allow for plasma pulses of 10 s with 8 MW heating. OP2, allowing for steady state operation, is planned for 2020 after the TDUs will be replaced by 10 water cooled CFC armored divertors. Due to the development of plasma currents like bootstrap currents in long pulse plasmas in OP2, the plasma could hit the edge ofmore » the divertor targets which has a reduced cooling capacity compared to the central part of the target tiles. To prevent overloading of these edges, a so-called scraper element can be positioned in front of the divertor, intersecting those strike lines that would otherwise hit the divertor edges. As a result, these edges are protected but as a drawback the pumping efficiency of neutrals is also reduced. As a test an uncooled scraper element with graphite tiles will be placed in two out of ten half modules in OP1.2. A decision to install ten water cooled scraper elements for OP2 is pending on the results of this test in OP1.2. To monitor the impact of the scraper element on the plasma, Langmuir probes are integrated in the plasma facing surface, and a neutral gas manometer measures the neutral density directly behind the plasma facing surface. Moreover, IR and VIS cameras observe the plasma facing surface and thermocouples monitor the temperatures of the graphite tiles and underlying support structure. This paper describes the integration of the scraper element and its diagnostics in Wendelstein 7-X.« less

  6. Quantification of Chemical Erosion in the DIII-D Divertor

    NASA Astrophysics Data System (ADS)

    McLean, Adam

    2009-11-01

    Chemical erosion (CE) yield at the graphite divertor target in DIII-D was measured to be substantially lower in cold near-detached plasma conditions compared to well-attached ones, with major implications for ITER. Current estimates of tritium retention by co-deposition with hydrocarbons (HCs) in ITER place potentially severe restrictions on operation. However, calculations done to date have been based on excessively conservative assumptions, due to limited understanding of cold divertor plasmas (1-5eV) which bridge energy thresholds for complex atomic and molecular processes not present in attached conditions. Hydrocarbon injection through a unique porous graphite plate which realistically simulates secondary reactions of HCs with a graphite surface has been used to measure CE in-situ. For the first time in a divertor, measurements were made at extrinsic CH4 injection rates comparable to the expected intrinsic CE rate of C, with the resulting spectroscopic emissions separated from those of the intrinsic sources. Under cold plasma conditions the contribution of CE-produced C relative to total C sources in the divertor declined dramatically from ˜50% to <15%. Photon efficiencies for products from the breakup of injected CH4 were greater than previous measurements at higher puff rates, indicating the importance of minimizing perturbation to the local plasma. At 350K, the measured CE yield near the outer strike point was ˜2.6% in attachment dropping to only ˜0.5% in cold plasma; results are consistent with some theoretical predications and lab studies. Under full detachment, near total extinction of the CD band occurred, consistent with suppression of net C erosion. These findings have potentially major impact on projected target lifetime and tritium retention in future reactors, and for the PFC choice in ITER.

  7. Method of Joining Graphite Fibers to a Substrate

    NASA Technical Reports Server (NTRS)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  8. KSC-08pd3866

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, ssembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. Lined up left to right are the Stage 1 and Stage 2 motors, the boattail, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  9. Surface characterization of graphene based materials

    NASA Astrophysics Data System (ADS)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-12-01

    In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5-2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  10. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment

    NASA Astrophysics Data System (ADS)

    Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.

    2011-04-01

    Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.

  11. Analysis of delamination in cross ply laminates initiating from impact induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.

    1991-01-01

    Several two dimensional finite element analyses of (0 sub 2/90 sub 8/0 sub 2) glass/epoxy and graphite-epoxy composite laminates were performed to study some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center was analyzed. Inclined matrix cracks such as those produced by low velocity impact were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tension and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces. The large interlaminar stresses at the ends of the matrix cracks indicate that matrix cracking may give rise to delamination. The ratio of mode I to total strain energy release rate at the beginning of delamination calculated at the two matrix crack tips was 60 and 28 pct., respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 pct. in the graphite-epoxy laminate. Thus, a significant mode I component of strain energy release rate may be present at the delamination initiation due to an impact load.

  12. Twin disk composite flywheel

    NASA Astrophysics Data System (ADS)

    Ginsburg, B. R.

    The design criteria, materials, and initial test results of composite flywheels produced under DOE/Sandia contract are reported. The flywheels were required to store from 1-5 kWh with a total energy density of 80 W-h/kg at the maximum operational speed. The maximum diameter was set at 0.6 m, coupled to a maximum thickness of 0.2 m. A maximum running time at full speed of 1000 hr, in addition to a 10,000 cycle lifetime was mandated, together with a radial overlap in the material. The unit selected was a circumferentially wound composite rim made of graphite/epoxy mounted on an aluminum mandrel ring connected to an aluminum hub consisting of two constant stress disks. A tangentially wound graphite/epoxy overlap covered the rings. All conditions, i.e., rotation at 22,000 rpm and a measured storage of 1.94 kWh were verified in the first test series, although a second flywheel failed in subsequent tests when the temperature was inadvertantly allowed to rise from 15 F to over 200 F. Retest of the first flywheel again satisfied design goals. The units are considered as ideal for coupling with solar energy and wind turbine systems.

  13. Amended Results for Hard X-Ray Emission by Non-thermal Thick Target Recombination in Solar Flares

    NASA Astrophysics Data System (ADS)

    Reep, J. W.; Brown, J. C.

    2016-06-01

    Brown & Mallik and the corresponding corrigendum Brown et al. presented expressions for non-thermal recombination (NTR) in the collisionally thin- and thick-target regimes, claiming that the process could account for a substantial part of the hard X-ray continuum in solar flares usually attributed entirely to thermal and non-thermal bremsstrahlung (NTB). However, we have found the thick-target expression to become unphysical for low cut-offs in the injected electron energy spectrum. We trace this to an error in the derivation, derive a corrected version that is real-valued and continuous for all photon energies and cut-offs, and show that, for thick targets, Brown et al. overestimated NTR emission at small photon energies. The regime of small cut-offs and large spectral indices involve large (reducing) correction factors but in some other thick-target parameter regimes NTR/NTB can still be of the order of unity. We comment on the importance of these results to flare and microflare modeling and spectral fitting. An empirical fit to our results shows that the peak NTR contribution comprises over half of the hard X-ray signal if δ ≳ 6{≤ft(\\tfrac{{E}0c}{4{keV}}\\right)}0.4.

  14. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  15. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  16. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  17. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  18. Graphite Black shale of Vendas de Ceira, Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Quinta-Ferreira, Mário; Silva, Daniela; Coelho, Nuno; Gomes, Ruben; Santos, Ana; Piedade, Aldina

    2017-04-01

    The graphite black shale of Vendas de Ceira located in south of Coimbra (Portugal), caused serious instability problems in recent road excavation slopes. The problems increased with the rain, transforming shales into a dark mud that acquires a metallic hue when dried. The black shales are attributed to the Devonian or eventually, to the Silurian. At the base of the slope is observed graphite black shale and on the topbrown schist. Samples were collected during the slope excavation works. Undisturbed and less altered materials were selected. Further, sampling was made difficult as the graphite shale was covered by a thick layer of reinforced concrete, which was used to stabilize the excavated surfaces. The mineralogy is mainly constituted by quartz, muscovite, ilite, ilmenite and feldspar without the presence of expansive minerals. The organic matter content is 0.3 to 0.4%. The durability evaluated by the Slake Durability Test varies from very low (Id2 of 6% for sample A) to high (98% for sample C). The grain size distribution of the shale particles, was determined after disaggregation with water, which allowed verifying that sample A has 37% of fines (5% of clay and 32% of silt) and 63% of sand, while sample C has only 14% of fines (2% clay and 12% silt) and 86% sand, showing that the decrease in particle size contributes to reduce durability. The unconfined linear expansion confirms the higher expandability (13.4%) for sample A, reducing to 12.1% for sample B and 10.5% for sample C. Due the shale material degradated with water, mercury porosimetry was used. While the dry weight of the three samples does not change significantly, around 26 kN/m3, the porosity is much higher in sample A with 7.9% of pores, reducing to 1.4% in sample C. The pores size vary between 0.06 to 0.26 microns, does not seem to have any significant influence in the shale behaviour. In order to have a comparison term, a porosity test was carried out on the low weatherable brown shale, which is quite abundant at the site. The main difference to the graphite shale is the high porosity of the brown shale with 14.7% and the low volume weight of 23 kN/m3, evidencing the distinct characteristics of the graphite schists. The maximum strength was evaluated by the Schmidt hammer, as the point load test could not be performed as the rock was very soft. The maximum estimated values on dry samples were 32 MPa for sample A and 85 MPa for sample C. The results show a singular material characterized by significant heterogeneity. It can be concluded that for the graphite schists the smaller particle size and higher porosity make the soft rock extremely weatherable when decompressed and exposed to water, as a result of high capillary tension and reduced cohesion. They also exhibit high expansion and an enormous degradation of the rock presenting a behaviour close to a soil. The graphite black schist is a highly weatherable soft rock, without expansive minerals, with small pores, in which the porosity, low strength and low cohesion allow their rapid degradation when decompressed and exposed to the action of Water.

  19. Synthesis of gold nanoparticles with graphene oxide.

    PubMed

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  1. Research and application of high performance GPES rigid foam composite plastic insulation boards

    NASA Astrophysics Data System (ADS)

    sun, Hongming; xu, Hongsheng; Han, Feifei

    2017-09-01

    A new type of heat insulation board named GPES was prepared by several polymers and modified nano-graphite particles, injecting high-pressure supercritical CO2. Compared with the traditional thermal insulation material, GPES insulation board has higher roundness bubble and thinner bubble wall. Repeatability and reproducibility tests show that melting knot, dimensional stability, strength and other physical properties are significantly better than traditional organic heat insulation materials. Especially the lower and more stable thermal conductivity of GPES can significantly reduce thermal insulation layer thickness. Obviously GPES is the best choice of insulation materials with the implement of 75% and higher energy efficiency standard.

  2. The fracture behavior of filament wound cylinders with surface flaws

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.; Poe, C. C., Jr.

    1985-01-01

    The behavior of tensile coupons with surface notches of various semielliptical shapes has been evaluated for specimens obtained from a thick filament wound graphite/epoxy cylinder. Specimens with very shallow notches were observed to be notch insensitive and the unnotched strength from these specimens was determined to be 54.97 Ksi with an associated failure strain of 1.328 percent. Specimens with deeper notches were sensitive to notch depth and notch aspect ratio. Isotropic linear elastic fracture mechanics with an estimated fracture toughness of 27.2 Ksi-in.-to the 1/2 correctly predicted the influence of notch depth, aspect ratio and specimen finite width.

  3. Removal of glass adhered to sintered ceramics in hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.

  4. Photoexfoliation of two-dimensional materials through continuous UV irradiation

    NASA Astrophysics Data System (ADS)

    Lin, Wai-Chen; Chuang, Ming-Kai; Keshtov, Muchamed L.; Sharma, Ganesh D.; Chen, Fang-Chung

    2017-03-01

    This paper describes the preparation of fluorinated graphene nanosheets (FGNs) through photoexfoliation of fluorinated graphite (FG) in the liquid phase. We discovered that UV irradiation of FG dispersions in N-methyl-2-pyrolidone facilitated exfoliation to give FGNs. Transmission electron microscopy and atomic force microscopy revealed that the average thickness of the FGNs was approximately 3 nm; they were considerably thinner than the nanosheets prepared using a conventional sonication approach. Furthermore, when the FGNs were deposited uniformly onto substrates (through spin coating), they formed effective cathode interlayers for polymer solar cells (PSCs), the efficiency of which was 60% greater than that of PSCs containing FGNs prepared through ultrasonication.

  5. Thermal shock and erosion resistant tantalum carbide ceramic material

    NASA Technical Reports Server (NTRS)

    Honeycutt, L., III; Manning, C. R. (Inventor)

    1978-01-01

    Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles.

  6. High-quality Silicon Films Prepared by Zone-melting Recrystallization

    NASA Technical Reports Server (NTRS)

    Chen, C. K.; Geis, M. W.; Tsaur, B. Y.; Fan, J. C. C.

    1984-01-01

    The graphite strip heater zone melting recrystallization (ZMR) technique is described. The material properties of the ZMR films, and SOI device results are reviewed. Although our ZMR work is primarily motivated by integrated circuit applications, this work evolved in part from earlier research on laser crystallization of thick amorphous GaAs and Si films, which was undertaken with the goal of producing low cost photovoltaic materials. The ZMR growth process and its effect on the properties of the recrystallized films may contribute some insight to a general understanding of the rapid recrystallization of Si for solar cells. Adaptation of ZMR for solar cell fabrication is considered.

  7. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wug-Dong; Tanioka, Kenkichi

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less

  9. Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-11-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.

  10. Proton Energy Optimization and Spatial Distribution Analysis from a Thickness Study Using Liquid Crystal Targets

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Schumacher, Douglas; Freeman, Richard; van Woerkom, Linn

    2016-10-01

    Laser-accelerated ions from thin targets have been widely studied for applications including secondary radiation sources and cancer therapy, with recent studies trending towards thinner targets which can provide improved ion energies and yields. Here we discuss results from an experiment on the Scarlet laser at OSU using variable thickness liquid crystal targets. On this experiment, the spatial and spectral distributions of accelerated ions were measured along target normal and laser axes at varying thicknesses from 150nm to 2000nm at a laser intensity of 1 ×1020W /cm2 . Maximum ion energy was observed for targets in the 600 - 800nm thickness range, with proton energies reaching 24MeV . The ions were further characterized using radiochromic film, revealing an unusual spatial distribution on many laser shots. Here, the peak ion yield falls in an annular ring surrounding the target normal, with an increasing divergence angle as a function of ion energy. Details of these spatial and spectral ion distributions will be presented, including spectral deconvolution of the RCF data, revealing additional trends in the accelerated ion distributions. Supported by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0001976.

  11. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    PubMed

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application.

  12. The action of macrosounds on graphite ore and derived products

    NASA Technical Reports Server (NTRS)

    Bradeteanu, C.; Dragan, O.

    1974-01-01

    A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.

  13. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less

  14. Graphite

    USGS Publications Warehouse

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and China’s graphite production is expected to increase, although rising labor costs and some mine production problems are developing. China is expected to continue to be the dominant exporter for the near future. Mexico and Canada export graphite mainly to the United States, which has not had domestic production of natural graphite since the 1950s. Most graphite deposits in the United States are too small, low-grade, or remote to be of commercial value in the near future, and the likelihood of discovering larger, higher-grade, or favorably located domestic deposits is unlikely. The United States is a major producer of synthetic graphite.

  15. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Dong, Kegong; Yan, Yonghong; Zhu, Bin; Zhang, Tiankui; Chen, Jia; Yu, Minghai; Tan, Fang; Wang, Shaoyi; Han, Dan; Lu, Feng; Gu, Yuqiu

    2017-06-01

    An experiment for pair production by high intensity laser irradiating thick solid targets is present. The experiment used picosecond beam of the XingGuangIII laser facility, with intensities up to several 1019 W/cm2, pulse durations about 0.8 ps and laser energies around 120 J. Pairs were generated from 1 mm-thick tantalum disk targets with different diameters from 1 mm to 10 mm. Energy spectra of hot electron from targetrear surface represent a Maxwellian distribution and obey a scaling of ∼(Iλ2)0.5. Large quantity of positrons were observed at the target rear normal direction with a yield up to 2.8 × 109 e+/sr. Owing to the target rear surface sheath field, the positrons behave as a quasi-monoenergetic beam with peak energy of several MeV. Our experiment shows that the peak energy of positron beam is inversely proportional to the target diameter.

  16. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S; Bradford, Philip D

    2018-07-20

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  17. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S.; Bradford, Philip D.

    2018-07-01

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam’s extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  18. Damage Detection and Impact Testing on Laminated and Sandwich Composite Panels

    NASA Technical Reports Server (NTRS)

    Hughes, Derke R.; Craft, William J.; Schulz, Mark J.; Naser, Ahmad S.; Martin, William N.

    1998-01-01

    This research investigates health monitoring of sandwich shell composites to determine if the Transmittance Functions (TF) are effective in determining the present of damage. The health monitoring test was conducted on the sandwich plates before and after low velocity impacts using the health monitoring technique given in TFs are a NDE (Nondestructive Evaluation) technique that utilizes the ratios of cross-spectrums to auto-spectrums between two response points on the sandwich composites. The test for transmittance was conducted on the same density foam core throughout the experiment. The test specimens were 17.8 cm by 25.4 cm in dimension. The external sheets (face sheets) were created from graphite/epoxy laminate with dimension of 1.58 mm thick. The polymethacrylide (Rohacell) foam core was 12.7 mm thick. These samples experienced a transformation in the TF that was considered the low velocity impact damage. The low velocity damage was observed in the TFs for the sandwich composites.

  19. Predicting Properties of Unidirectional-Nanofiber Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Handler, Louis M.; Manderscheid, Jane

    2008-01-01

    A theory for predicting mechanical, thermal, electrical, and other properties of unidirectional-nanofiber/matrix composite materials is based on the prior theory of micromechanics of composite materials. In the development of the present theory, the prior theory of micromechanics was extended, through progressive substructuring, to the level of detail of a nanoscale slice of a nanofiber. All the governing equations were then formulated at this level. The substructuring and the equations have been programmed in the ICAN/JAVA computer code, which was reported in "ICAN/JAVA: Integrated Composite Analyzer Recoded in Java" (LEW-17247), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 36. In a demonstration, the theory as embodied in the computer code was applied to a graphite-nanofiber/epoxy laminate and used to predict 25 properties. Most of the properties were found to be distributed along the through-the-thickness direction. Matrix-dependent properties were found to have bimodal through-the-thickness distributions with discontinuous changes from mode to mode.

  20. Wing planform geometry effects on large subsonic military transport airplanes. Final technical report March 1976-February 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulfan, R.M.; Vachal, J.D.

    1978-02-01

    A Preliminary Design Study of large turbulent flow military transport aircraft has been made. The study airplanes were designed to carry a heavy payload (350,000 lb) for a long range (10,000 nmi). The study tasks included: Wing geometry/cruise speed optimization of a large cantilever wing military transport airplane; Preliminary design and performance evaluation of a strut-braced wing transport airplane; and Structural analyses of large-span cantilever and strut-braced wings of graphite/epoxy sandwich construction (1985 technology). The best cantilever wing planform for minimum takeoff gross weight, and minimum fuel requirements, as determined using statistical weight evaluations, has a high aspect ratio, lowmore » sweep, low thickness/chord ratio, and a cruise Mach number of 0.76. A near optimum wing planform with greater speed capability (M = 0.78) has an aspect ratio = 12, quarter chord sweep = 20 deg, and thickness/chord ratio of 0.14/0.08 (inboard/outboard).« less

Top