Volume 29, Issue1 (January 2005)
Articles in the Current Issue:
Research Article
Homogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunnelling
NASA Astrophysics Data System (ADS)
Bae, G. J.; Shin, H. S.; Sicilia, C.; Choi, Y. G.; Lim, J. J.
2005-01-01
This paper deals with the grouted pipe-roofing reinforcement method that is used in the construction of tunnels through weak grounds. This system consists on installing, prior to the excavation of a length of tunnel, an array of pipes forming a kind of umbrella above the area to be excavated. In some cases, these pipes are later used to inject grout to strengthen the ground and connect the pipes.This system has proven to be very efficient in reducing tunnel convergence and water inflow when tunnelling through weak grounds. However, due to the geometrical and mechanical complexity of the problem, existing finite element frameworks are inappropriate to simulate tunnelling using this method.In this paper, a mathematical framework based on a homogenization technique to simulate grouted pipe-roofing reinforced ground and its implementation into a 3-D finite element programme that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenization approach implies that the generation of the finite element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed.
Tracking chamber made of 15-mm mylar drift tubes
NASA Astrophysics Data System (ADS)
Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.
2017-05-01
We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.
NASA Astrophysics Data System (ADS)
Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.
2010-02-01
Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.
Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Brantley
2016-01-01
A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided tomore » achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.« less
NASA Astrophysics Data System (ADS)
Ashchepkov, Igor; Ntaflos, Theodoros; Vladykin, Nikolai; Yudin, Denis; Prokopiev, Sergei; Salikhov, Ravil; Travin, Alexei; Kutnenko, Olga
2014-05-01
The Daldyn terrain include two large kimberlite fields Daldyn and Alakite which are to the East and west part of this area correspondingly and referred to the 367-355Ma. The concentrates and mantle xenoliths from the almost 50 kimberlite pipes allow reconstruct the PTXFO2 sections and transects as well as 3D image for the each kimberlite field as well as the for the whole area. In General the common division to the 6 large layers for each parts of SCLM are close but the composition of the layer and rock sequences are different. The Daldyn SCLM is compiled from the alternation of very cold (33 mwm-2) and relatively heated (37-40 mwm-2) large layers while SCLM of Alakite is more uniform and colder in lower part. The Base of the SCLM is much highly heated in Daldyn terrain and in most studied sections are represented by the deformed or HT porphyroclastic peridotites which are rare in the Alakite field. The pyroxenite layer is more thick and pronounced within the Daldyn SCLM. The amount of eclogites and their Mg' number is also higher in general higher in SCLM of Daldyn field The composition of the peridotites are closer to the abyssal MORB peridotites while from Alakit are in general more depleted and closer to continental back arc environment. But the alkalinity of the pyroxenes and abundant metasomatic mineral such as phlogopites and richterites and pargasites are much higher in the Alakite SCKM. The trace elements of primary peridotite Cpx from Alakite SCLM reveal lower melting degrees in Alakite field The boundary between the fields locate between Sytykanskaya and Zagadochnaya pipes is characterized by upwelling of SCLM Base. SCLM layering in eastern part of Daldyn field near the Zarnitsa and Dalnyaya pipe suggests inflexion and is more permeable allowing high scale melt fluid interaction and metasomatism. NE part of the Alakit mantle SCLM from Sytykan to Molodost and further to Fainshteinovskaya pipe is more fertile and consist from the 4 evident units with the Fe# rising upward. In the central part of Alakite region lying on the line Yubileinya - Aykhal pipes and surrounding pipes in clusters represent the most depleted and relatively low metasomatized dunite core. The thermal structure of the Alakite field is in the base is relatively uniform and colder than in Daldyn SCLM. The thermal gradients are more steeper in Alakit mantle. The metasomatic associations in the Daldyn field are marking mainly Archean history in the upper part (2.3-2.5 Ma) of the SCLM (Pokhilenko et al., 2012 and refer the influence of the protokimbelites to the in the lower part ( Ashchepkov et al 2013; Pokhilenko, Alifirova, 2012) . But also the range of the more modern event refer to the Rodinia history (0.7 -1.2 By ) (Pokhilenko et al., 2012 )while or data for the Alakit SCLM mainly mark the modern event from the disseminated abundant metasomatism in the lower in middle part from (1.3 - 0.6 By ). RFBR 11-05-00060; 11-05-91060-PICS.
Institute for Aviation Research and Development Research Project
1989-01-01
Symbolics Artificial Intelligence * Vision Systems * Finite Element Modeling ( NASTRAN ) * Aerodynamic Paneling (VSAERO) Projects: * Software...34Wall Functions for k and epsilon for Turbulent Flow Through Rough and Smooth Pipes," Eleventh International Symposium on Turbulence, October 17-19, 1988
A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control
NASA Technical Reports Server (NTRS)
Pauken, Mike; Birur, Gaj
2004-01-01
Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.
Study of a heat rejection system for the Nuclear Electric Propulsion (NEP) spacecraft
NASA Technical Reports Server (NTRS)
Ernest, D. M.
1982-01-01
Two different heat pipe radiator elements, one intended for use with the power conversion subsystem of the NASA funded nuclear electric propulsion (NEP) spacecraft, and one intended for use with the DOE funded space power advanced reactor (SPAR) system were tested and evaluated. The NEP stainless steel/sodium heat pipe was 4.42 meters long and had a 1 cm diameter. Thermal performance testing at 920 K showed a non-limited power level of 3560 watts, well in excess of the design power of 2600 watts. This test verified the applicability of screen arteries for use in long radiator heat pipes. The SPAR titanium/potassium heat pipe was 5.5 meters long and had a semicircular crossection with a 4 cm diameter. Thermal performance testing at 775 K showed a maximum power level of 1.86 kW, somewhat short of the desired 2.6 kW beginning of life design requirement. The reduced performance was shown to be the result of the inability of the evaporator wall wick (shot blasted evaporator wall) to handle the required liquid flow.
-
Magnetohydrodynamic flow and heat transfer around a heated cylinder of arbitrary conductivity
NASA Astrophysics Data System (ADS)
Tassone, A.; Nobili, M.; Caruso, G.
2017-11-01
The interaction of the liquid metal with the plasma confinement magnetic field constitutes a challenge for the design of fusion reactor blankets, due to the arise of MHD effects: increased pressure drops, heat transfer suppression, etc. To overcome these issues, a dielectric fluid can be employed as coolant for the breeding zone. A typical configuration involves pipes transverse to the liquid metal flow direction. This numerical study is conducted to assess the influence of pipe conductivity on the MHD flow and heat transfer. The CFD code ANSYS CFX was employed for this purpose. The fluid is assumed to be bounded by rectangular walls with non-uniform thickness and subject to a skewed magnetic field with the main component aligned with the cylinder axis. The simulations were restricted to Re = (20; 40) and M = (10; 50). Three different scenarios for the obstacle were considered: perfectly insulating, finite conductivity and perfectly conducting. The electrical conductivity was found to affect the channel pressure penalty due to the obstacle insertion only for M = 10 and just for the two limiting cases. A general increment of the heat transfer with M was found due to the tendency of the magnetic field to equalize the flow rate between the sub-channels individuated by the pipe. The best results were obtained with the insulating pipe, due to the reduced electromagnetic drag. The generation of counter-rotating vortices close to the lateral duct walls was observed for M = 50 and perfectly conducting pipe as a result of the modified currents distribution.
-
Benavides, G.L.; Burt, J.D.
1994-07-12
The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object. 12 figs.
-
Benavides, Gilbert L.; Burt, Jack D.
1994-01-01
The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object.
-
NASA Astrophysics Data System (ADS)
Cory, J. F., Jr.; Gordon, J. L.; Miyoshi, T.; Suzuki, K.
1989-06-01
Papers are presented on the use of microcomputers, supercomputers, and workstations in solid and structural mechanics. Artificial intelligence technology, the development and use of expert systems, and research in the area of robotics are discussed. Attention is also given to probabilistic finite element and boundary element methods and acoustic sensing.
-
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
-
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
-
Development and Application of Alloy TDJ-028 Seamless Pipe for Sour Oil and Gas Wells
NASA Astrophysics Data System (ADS)
Zhengzhou, Li; Cheng, Su; Baoshun, Wang; Peiming, Lu; Jie, Zhang
The new frontier of oil and gas exploration will be with deep wells. Deep wells generally have higher temperature and pressure. Wells are categorized as being either sweet or sour. Sweet wells are only mildly corrosive, while sour wells are very corrosive. Thus, material selection is especially critical for deep sour wells which contain high concentration of hydrogen sulfide, carbon dioxide, elemental sulfur and chlorides. As these conditions become more severe, tubular material selection goes from stainless steel used for sweet wells, to duplex stainless steel, to nickel based alloy such as UNS N08028, UNS N06985 and UNS N08825, for sour well service. In this paper, Alloy TDJ-028 (UNS N08028) seamless pipe used for OCTG's has been developed using hot extrusion and cold worked processing. The mechanical tests show that the minimum yield strength grade of TDJ-028 alloy pipe was higher than 110KSI. The hardness, flattening and impact properties of the pipe and coupling stock were very good. Furthermore, the corrosion data is also presented to show the performance of the Alloy TDJ-028 in sour well environment using SCC, SSC tests. The properties of Alloy TDJ-028 pipe met the specification of ISO 13680 and NACE MR0175. So far, Jiuli has the ability to produce massive Alloy TDJ-028 OCTG's for sour oil and gas wells and the production diameter of the pipe can reach 8 inch.
-
NASA Technical Reports Server (NTRS)
Chien, Steve; Kandt, R. Kirk; Roden, Joseph; Burleigh, Scott; King, Todd; Joy, Steve
1992-01-01
Scientific data preparation is the process of extracting usable scientific data from raw instrument data. This task involves noise detection (and subsequent noise classification and flagging or removal), extracting data from compressed forms, and construction of derivative or aggregate data (e.g. spectral densities or running averages). A software system called PIPE provides intelligent assistance to users developing scientific data preparation plans using a programming language called Master Plumber. PIPE provides this assistance capability by using a process description to create a dependency model of the scientific data preparation plan. This dependency model can then be used to verify syntactic and semantic constraints on processing steps to perform limited plan validation. PIPE also provides capabilities for using this model to assist in debugging faulty data preparation plans. In this case, the process model is used to focus the developer's attention upon those processing steps and data elements that were used in computing the faulty output values. Finally, the dependency model of a plan can be used to perform plan optimization and runtime estimation. These capabilities allow scientists to spend less time developing data preparation procedures and more time on scientific analysis tasks. Because the scientific data processing modules (called fittings) evolve to match scientists' needs, issues regarding maintainability are of prime importance in PIPE. This paper describes the PIPE system and describes how issues in maintainability affected the knowledge representation used in PIPE to capture knowledge about the behavior of fittings.
-
DISCRETE VOLUME-ELEMENT METHOD FOR NETWORK WATER- QUALITY MODELS
An explicit dynamic water-quality modeling algorithm is developed for tracking dissolved substances in water-distribution networks. The algorithm is based on a mass-balance relation within pipes that considers both advective transport and reaction kinetics. Complete mixing of m...
-
Efficient low static-volume water heater
NASA Technical Reports Server (NTRS)
Brown, R. L.
1976-01-01
Calrod heating element is surrounded by matrix of fused sintered copper or brass balls, and assembly is then installed in piping of water system. As water flows through matrix, sintered balls cause turbulent flow and heating. Applications include laundromats, laboratories, and photographic labs.
-
NASA Technical Reports Server (NTRS)
Bulluck, J. W.; Rushing, R. A.
1995-01-01
During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.
-
Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qingbang, Han; Ling, Chen; Changping, Zhu
2014-02-18
The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less
-
Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg
2006-09-30
Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure.more » The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy currents in ferromagnetic pipes and tubes. Since this is a new inspection method, both theory and experiment were used to determine fundamental capabilities and limitations. Fundamental finite element modeling analysis and experimental investigations performed during this development have led to the derivation of a first order analytical equation for designing rotating magnetizers to induce current and positioning sensors to record signals from anomalies. Experimental results confirm the analytical equation and the finite element calculations provide a firm basis for the design of RPMI systems. Experimental results have shown that metal loss anomalies and wall thickness variations can be detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. The design exploits the phenomenon that circumferential currents are easily detectable at distances well away from the magnets. Current changes at anomalies were detectable with commercial low cost Hall Effect sensors. Commercial analog to digital converters can be used to measure the sensor output and data analysis can be performed in real time using PC computer systems. The technology was successfully demonstrated during two blind benchmark tests where numerous metal loss defects were detected. For this inspection technology, the detection threshold is a function of wall thickness and corrosion depth. For thinner materials, the detection threshold was experimentally shown to be comparable to magnetic flux leakage. For wall thicknesses greater than three tenths of an inch, the detection threshold increases with wall thickness. The potential for metal loss anomaly sizing was demonstrated in the second benchmarking study, again with accuracy comparable to existing magnetic flux leakage technologies. The rotating permanent magnet system has the potential for inspecting unpiggable pipelines since the magnetizer configurations can be sufficiently small with respect to the bore of the pipe to pass obstructions that limit the application of many inspection technologies. Also, since the largest dimension of the Hall Effect sensor is two tenths of an inch, the sensor packages can be small, flexible and light. The power consumption, on the order of ten watts, is low compared to some inspection systems; this would enable autonomous systems to inspect longer distances between charges. This project showed there are no technical barriers to building a field ready unit that can pass through narrow obstructions, such as plug valves. The next step in project implementation is to build a field ready unit that can begin to establish optimal performance capabilities including detection thresholds, sizing capability, and wall thickness limitations.« less
-
Study on Edge Thickening Flow Forming Using the Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Park, Jin Sung; Cho, Chongdu
2011-08-01
This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.
-
Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor
NASA Astrophysics Data System (ADS)
Chouet, Bernard
1985-02-01
Recent observations of seismic events at various volcanoes suggest that harmonic tremor results from the sustained occurrence of so-called long-period or low-frequency events. Accordingly, we can view the long-period volcanic event as the elementary process of tremor and interpret it as the impulse response of the tremor-generating system. We present a seismic model in which the source of tremor is the acoustic resonance of a fluid-filled volcanic pipe triggered by excess gas pressure. The model consists of three elements, namely, a triggering mechanism, a resonator, and a radiator. For simplicity, we assume a hemispherical trigger, cylindrial resonator, and circular radiator set in a vertical configuration with the trigger capping the top of the pipe and the disk-shaped radiator shutting off its bottom. Considering the simple case of a source buried in a homogeneous half space, we then apply the discrete wave number method to obtain a complete representation of the ground motion response at near and intermediate distances. The results demonstrate that the displacement attributed to the pipe dominates the near-field motion, while that due to the disk is representative of the intermediate and far fields. The trigger itself has a smaller contribution, mainly limited to the field in the proximity of the source. The characteristics displayed by the free surface response evolve from a strong impulsive signature in the immediate vicinity of the epicenter to a well-developed harmonic wave train dominated by Rayleigh waves at larger distances. No clear shear arrival can be detected in the synthetic seismograms. The displacement spectrum reflects the organ-pipe modes of the conduit, and the bandwidth associated with the dominant spectral peak of motion is controlled by the combined losses due to viscous attenuation in the fluid and elastic radiation into the solid. In the case of the cylindrical magma column considered, the radiation loss is proportional to the square of the pipe radius, while the loss related to viscous damping is inversely proportional to the same factor, indicating that the relative importance of the two loss mechanisms is critically dependent on the geometry of the magma reservoir. The relative importance of the pipe and disk elements, likewise, is a function of the conduit cross section. This suggests the possibility of determining the geometry of the source as well as the radiation loss and in situ magma viscosity from a comparison of near- and far-field observations.
-
Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development
NASA Astrophysics Data System (ADS)
Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.
2009-05-01
Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.
-
2016-09-01
UNCLASSIFIED UNCLASSIFIED Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis...significant effect on the collapse strength and must be accurately represented in finite element analysis to obtain accurate results. Often it is necessary...to interpolate measurements from a relatively coarse grid to a refined finite element model and methods that have wide general acceptance are
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beres, W.; Koul, A.K.
1994-09-01
Stress intensity factors for thru-thickness and thumb-nail cracks in the double edge notch specimens, containing two different notch radius (R) to specimen width (W) ratios (R/W = 1/8 and 1/16), are calculated through finite element analysis. The finite element results are compared with predictions based on existing empirical models for SIF calculations. The effects of a change in R/W ratio on SIF of thru-thickness and thumb-nail cracks are also discussed. 34 refs.
-
Elbow stress indices using finite element analysis
NASA Astrophysics Data System (ADS)
Yu, Lixin
Section III of the ASME Boiler and Pressure Vessel Code (the Code) specifies rules for the design of nuclear power plant components. NB-3600 of the Code presents a simplified design method using stress indices---Scalar Coefficients used the modify straight pipe stress equations so that they can be applied to elbows, tees and other piping components. The stress indices of piping components are allowed to be determined both analytically and experimentally. This study concentrates on the determination of B2 stress indices for elbow components using finite element analysis (FEA). First, the previous theoretical, numerical and experimental investigations on elbow behavior were comprehensively reviewed, as was the philosophy behind the use of stress indices. The areas of further research was defined. Then, a comprehensive investigation was carried out to determine how the finite element method should be used to correctly simulate an elbow's structural behavior. This investigation included choice of element type, convergence of mesh density, use of boundary restraint and a reconciliation study between FEA and laboratory experiments or other theoretical formulations in both elastic and elasto-plastic domain. Results from different computer programs were also compared. Reasonably good reconciliation was obtained. Appendix II of the Code describes the experimental method to determine B2 stress indices based on load-deflection curves. This procedure was used to compute the B2 stress indices for various loading modes on one particular elbow configuration. The B2 stress indices thus determined were found to be about half of the value calculated from the Code equation. Then the effect on B2 stress indices of those factors such as internal pressure and flange attachments were studied. Finally, the investigation was extended to other configurations of elbow components. A parametric study was conducted on different elbow sizes and schedules. Regression analysis was then used to obtain a modified coefficient and exponent for the Code equation used to calculate B2 index for elbows.
-
The AMBRE Project: r-process element abundances in the Milky Way thin and thick discs
NASA Astrophysics Data System (ADS)
Guiglion, Guillaume; de Laverny, Patrick; Recio-Blanco, Alejandra; Worley, C. Clare
2018-04-01
Chemical evolution of r-process elements in the Milky Way disc is still a matter of debate. We took advantage of high resolution HARPS spectra from the ESO archive in order to derive precise chemical abundances of 3 r-process elements Eu, Dy & Gd for a sample of 4 355 FGK Milky Way stars. The chemical analysis has been performed thanks to the automatic optimization pipeline GAUGUIN. Based on the [α/Fe] ratio, we chemically characterized the thin and the thick discs, and present here results of these 3 r-process element abundances in both discs. We found an unexpected Gadolinium and Dysprosium enrichment in the thick disc stars compared to Europium, while these three elements track well each other in the thin disc.
-
77 FR 29905 - Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... a bottom-opening, straight-bar grid with 2-inch bar spacing installed at an angle of 55 degrees. As...: Using \\1/4\\ inch (0.63 cm) thick and 1\\1/2\\ inch (3.8 cm) deep flat bar, and rectangular and oval pipe... currently-approved TED grids; increasing maximum mesh size on escape flaps from 1\\5/8\\ to 2 inches (4.1 to 5...
-
Simulated Heat-Pipe Vapor Dynamics
1987-05-01
results, estimated that at a radial Reynolds number of -4.626 the friction factor would be zero . This would correspond to an onset of flow reversal in...the flow to become turbulent at axial Reynolds numbers lower than 2000 which generally denotes the lower limit of the region of turbulent flow. They...thickness of the laminar sublayer. The same general trends were noted in all papers. They suggested that a favorable pressure gradient (accelerating
-
NASA Astrophysics Data System (ADS)
Castanier, Eric; Paterne, Loic; Louis, Céline
2017-09-01
In the nuclear engineering, you have to manage time and precision. Especially in shielding design, you have to be more accurate and efficient to reduce cost (shielding thickness optimization), and for this, you use 3D codes. In this paper, we want to see if we can easily applicate the CADIS methods for design shielding of small pipes which go through large concrete walls. We assess the impact of the WW generated by the 3D-deterministic code ATTILA versus WW directly generated by MCNP (iterative and manual process). The comparison is based on the quality of the convergence (estimated relative error (σ), Variance of Variance (VOV) and Figure of Merit (FOM)), on time (computer time + modelling) and on the implement for the engineer.
-
Simulation and Technology of Hybrid Welding of Thick Steel Parts with High Power Fiber Laser
NASA Astrophysics Data System (ADS)
Turichin, Gleb; Valdaytseva, Ekaterina; Tzibulsky, Igor; Lopota, Alexander; Velichko, Olga
The article devoted to steady state and dynamic simulation of melt pool behavior during hybrid laser-arc welding of pipes and shipbuilding sections. The quasi-stationary process-model was used to determine an appropriate welding mode. The dynamical model of laser welding was used for investigation of keyhole depth and width oscillations. The experiments of pipe steel and stainless steel hybrid laser-MAG welding have been made with 15-kW fiber laser in wide range of welding mode parameters. Comparison of experimentally measured and simulated behavior of penetration depth as well as their oscillation spectra approved the self-oscillation nature of melt pool behavior. The welding mode influence of melt pool stability has also been observed. The technological peculiarities, which allow provide high quality weld seam, has been discussed also.
-
Mohammad Al Alfy, Ibrahim
2018-01-01
A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
-
Measurement of Coolant in a Flat Heat Pipe Using Neutron Radiography
NASA Astrophysics Data System (ADS)
Mizuta, Kei; Saito, Yasushi; Goshima, Takashi; Tsutsui, Toshio
A newly developed flat heat pipe FGHPTM (Morex Kiire Co.) was experimentally investigated by using neutron radiography. The test sample of the FGHP heat spreader was 65 × 65 × 2 mm3 composed of several etched copper plates and pure water was used as the coolant. Neutron radiography was performed at the E-2 port of the Kyoto University Research Reactor (KUR). The coolant distributions in the wick area of the FGHP and its heat transfer characteristics were measured at heating conditions. Experimental results show that the coolant distributions depend slightly on its installation posture and that the liquid thickness in the wick region remains constant with increasing heat input to the FGHP. In addition, it is found that the wick surface does not dry out even in the vertical posture at present experimental conditions.
-
NASA Astrophysics Data System (ADS)
Murmansky, B. E.; Sosnovsky, A. Yu.; Brodov, Yu. M.
2017-11-01
The inspection results are presented of turbines of different types and capacity, showing the influence of various factors (such as increased frictional forces on the mating surfaces, clearance changes in the joints elements, TES elements design, state of the thermal expansions compensation system of pipelines) on the operation both of thermal expansion system and of the turbine as a whole. The data are presented on the effectiveness of various measures aimed to eliminate the causes of the turbine thermal expansion system deviations from its normal operation. The results are shown of the influence simulation of various factors (such as flanges and piping warming, ratio of clearance changes in the elements) on the probability of turbine TES hindrance. It is shown that clearance ratios employed in most turbines do not provide the stability of turbine TES against the external action of connected pipes. The simulation results permit to explain the bearing housings turns observed during inspections, resulting in a jam on the longitudinal keys, in temperature distribution changes on the thrust bearing pads, and in some cases in false readings of instruments rotor axial displacement.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.
Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work relatedmore » to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.« less
-
NASA Astrophysics Data System (ADS)
Dudar, O. I.; Dudar, E. S.
2017-11-01
The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.
-
On the roles of solid wall in the thermal analysis of micro heat pipes
NASA Astrophysics Data System (ADS)
Hung, Yew Mun
Micro heat pipe is a small-scale passive heat transfer device of very high thermal conductance that uses phase change and circulation of its working fluid to transfer thermal energy. Different from conventional heat pipe, a micro heat pipe does not contain any wick structure. In this thesis, a one-dimensional, steady-state mathematical model of a single triangular micro heat pipe is developed, with the main purpose of establishing a series of analytical studies on the roles of the solid wall of micro heat pipes in conjunction with the characterization of the thermal performance under the effects of various design and operational parameters. The energy equation of the solid wall is solved analytically to obtain the temperature distribution. The liquid phase is coupled with the solid wall through the continuity of heat flux at their interface, and the continuity, momentum and energy equations of the liquid and vapour phases, together with the Young-Laplace equation for capillary pressure, are solve numerically to yield the heat and fluid flow characteristics of the micro heat pipe. By coupling this mathematical model with the phase-change interfacial resistance model, the relationships for the axial temperature distributions of the liquid and vapour phases throughout the longitudinal direction of a micro heat pipe are also formulated. Four major aspects associated with the operational performance of micro heat pipes are discussed. Firstly, the investigation of the effects of axial conduction in the solid wall reveals that the presence of the solid wall induces change in the phase-change heat transport of the working fluid besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on the axial temperature distribution of solid wall, in the wake of the effects of the axial heat conduction induced on the phase-change heat transport of the working fluid. Secondly, analysis on thermal performance and physical phenomena of an overloaded micro heat pipes incorporating the effects of axial conduction in the solid wall is carried out. The thermal effects of the solid material are investigated and it is observed that the behaviour of the solid wall temperature distribution varies drastically as the applied heat load exceeds the heat transport capacity. The abrupt change in the temperature profile of an overloaded micro heat pipe is of considerable practical significance in which the occurrence of dryout can be identified by physically measuring the solid wall temperatures along the axial direction. Thirdly, by taking into account the axial conduction in the solid wall, the effect of gravity on the thermal performance of an inclined micro heat pipe is explored. Attributed to the occurrence of dryout, an abrupt temperature rise is observed at the evaporator end when the micro heat pipe is negatively inclined. Therefore, the orientation of a micro heat pipe can be determined by physically measuring the solid wall temperature. Lastly, by coupling the heat transfer model of phase-change phenomena at the liquid-vapour interface, the model with axial conduction in the solid wall of the micro heat pipe is extended to predict the axial liquid and vapour temperature distributions of the working fluid, which is useful for the verification of certain assumptions made in the derivation of the mathematical model besides for analyzing the heat transfer characteristics of the evaporation process.
-
NASA Astrophysics Data System (ADS)
Komkov, M. A.; Moiseev, V. A.; Tarasov, V. A.; Timofeev, M. P.
2015-12-01
Some ecological problems related to heavy-oil extraction and ways for minimizing the negative impacts of this process on the biosphere are discussed. The ecological hazard of, for example, frequently used multistage hydraulic fracturing of formation is noted and the advantages and perspectives of superheated steam injection are considered. Steam generators of a new type and ecologically clean and costeffective insulating for tubing pipes (TPs) are necessary to develop the superheated steam injection method. The article is devoted to solving one of the most important and urgent tasks, i.e., the development and usage of lightweight, nonflammable, environmentally safe, and cost-effective insulating materials. It is shown that, for tubing shielding operating at temperatures up to 420°C, the most effective thermal insulation is a highly porous material based on basalt fiber. The process of filtration deposition of short basalt fibers with a bunch of alumina thermal insulation tubing pipe coatings in the form of cylinders and cylindrical shells from liquid pulp is substantiated. Based on the thermophysical characteristics of basalt fibers and on the technological features of manufacturing highly porous coating insulation, the thickness of a tubing pipe is determined. During the prolonged pumping of the air at an operating temperature of 400°C in the model sample of tubing pipes with insulation and a protective layer, we find that the surface temperature of the thermal barrier coating does not exceed 60°C. Introducing the described technology will considerably reduce the negative impact of heavy-oil extraction on the biosphere.
-
Technological parameters of welding of branch saddles to polyethylene pipes at low temperatures
NASA Astrophysics Data System (ADS)
Starostin, N. P.; Vasilieva, M. A.
2017-12-01
The present paper outlines a procedure for determination of dynamics of the temperature field during the welding of the branch saddle to the polyethylene gas pipeline at ambient temperatures below the normative. The analysis is accomplished by the finite element method with the heat of the phase transition taken into account. Methods of the visualization of data sets reveal the possibility of controlling the thermal process by preheating and thermal insulation during welding of the branch saddle to the pipe at low temperatures and the possibility of obtaining the dynamics of the temperature field at which a high-quality welded joint is formed.
-
NASA Technical Reports Server (NTRS)
Hsieh, T.-M.; Koenig, D. R.
1977-01-01
Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.
-
Utilization of operating experience to prevent piping failures at steam plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.S.; Dietrich, E.B.
1999-11-01
The key to preventing flow-accelerated corrosion (FAC) induced piping failures in steam plants is the development and implementation of a methodical program for assessing plant susceptibility to FAC and managing the effects of FAC. One of the key elements of an effective FAC program is the accurate and comprehensive utilization of plant-specific and industry-wide operating experience. Operating experience should be used to develop the program to identify specific areas for inspection or replacement, and to maintain an effective program. This paper discusses the utilization of operating experience in FAC programs at nuclear power plants, fossil plants and other steam plants.
-
Thermally stable diamond brazing
Radtke, Robert P [Kingwood, TX
2009-02-10
A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.
-
NASA Astrophysics Data System (ADS)
Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.
2018-06-01
Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (<0.3 wt%). Fractional crystallization and partial melting of pyroxenite host rock play a significant role in the formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.
-
Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Díaz-Bouza, Manuel A
2018-06-17
Pipes are one of the key elements in the construction of ships, which usually contain between 15,000 and 40,000 of them. This huge number, as well as the variety of processes that may be performed on a pipe, require rigorous identification, quality assessment and traceability. Traditionally, such tasks have been carried out by using manual procedures and following documentation on paper, which slows down the production processes and reduces the output of a pipe workshop. This article presents a system that allows for identifying and tracking the pipes of a ship through their construction cycle. For such a purpose, a fog computing architecture is proposed to extend cloud computing to the edge of the shipyard network. The system has been developed jointly by Navantia, one of the largest shipbuilders in the world, and the University of A Coruña (Spain), through a project that makes use of some of the latest Industry 4.0 technologies. Specifically, a Cyber-Physical System (CPS) is described, which uses active Radio Frequency Identification (RFID) tags to track pipes and detect relevant events. Furthermore, the CPS has been integrated and tested in conjunction with Siemens’ Manufacturing Execution System (MES) (Simatic IT). The experiments performed on the CPS show that, in the selected real-world scenarios, fog gateways respond faster than the tested cloud server, being such gateways are also able to process successfully more samples under high-load situations. In addition, under regular loads, fog gateways react between five and 481 times faster than the alternative cloud approach.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu
In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less
-
On prediction of crack in different orientations in pipe using frequency based approach
NASA Astrophysics Data System (ADS)
Naniwadekar, M. R.; Naik, S. S.; Maiti, S. K.
2008-04-01
A technique based on measurement of change in natural frequencies and modeling of crack by rotational spring is employed to detect a crack with straight front in different orientations in a section of straight horizontal steel hollow pipe (outer diameter 0.0378 m and inner diameter 0.0278 m). Crack orientations in the range 0-60° with the vertical have been examined and sizes/depths in the range 1-4 mm through the wall of thickness 5 mm have been studied. Variation of rotational spring stiffness with crack size and orientation has been obtained experimentally by deflection and vibration methods. The spring stiffness reduces as expected, with an increase in crack size; it increases with an increase in the crack orientation angle. The crack location has been predicted with a maximum error of 7.29%. The sensitivity of the method for prediction of crack location on variations in experimental data has been examined by changing the difference between the frequencies of pipes with and without crack by ±10%. The method is found to be very robust; the maximum variation in location is 2.68%, which is much less than the change in frequency difference introduced.
-
Pipeline welding goes mechanized
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeson, R.
1999-11-01
Spread four has bugs in the cornfield--but not to worry. The bug referred to here is a mechanized welding bug, specifically a single welding head, computer-aided gas metal arc (GMAW) system from CRC-Evans Automatic Welding powered by a Miller Electric XMT{reg{underscore}sign} 304 inverter-based welding machine. The bug operator and owner of 32 inverters is Welded Construction, L.P., of Perrysburgh, Ohio. Spread four is a 147-mile stretch of the Alliance Pipeline system (Alliance) cutting through the cornfields of northeast Iowa. While used successfully in Canada and Europe for onshore and offshore pipeline construction for 30 years, this is the first large-scalemore » use of mechanized welding in the US on a cross-country pipeline. On longer, larger-diameter and thicker-wall pipe projects--the Alliance mainline has 1,844 miles of pipe, most of it 36-in. diameter with a 0.622-in. wall thickness--mechanized GMAW offers better productivity than manual shielded metal arc welding (SMAW). In addition, high-strength steels, such as the API 5L Grade X70 pipe used on the Alliance, benefit from the low-hydrogen content of certain solid and tubular wire electrodes.« less
-
Optical measurements of flyer plate acceleration by emulsion explosive
NASA Astrophysics Data System (ADS)
Kubota, Shiro; Shimada, Hideki; Matsui, Kikuo; Ogata, Yuji; Seto, Masahiro; Masui, Akira; Wada, Yuji; Liu, Zhi-Yue; Itoh, Shigeru
2001-04-01
This paper presents the study on the application of explosive welding technique to the field of the urgent repair of the gas and water pipe networks. The essential parameters related to the explosive welding are scrutinized from the point of view of the minimizing the damage to the steel pipe after welded explosively with a flyer plate. The emulsion explosive is contained in a rectangular hard-paper box whose bottom is the flyer plate with 100 mm length, 25 mm width and 1.5 mm thickness. The flyer motions of the flyer plates accelerated by emulsion explosive are observed by high-speed photography from the side and front view of the flyer plate. The damage to the pipe by the flyer plate is discussed with the results of the observation of flyer motion and explosive welding test under various experimental conditions. Moreover, one way to control the motion of the flyer plate is proposed. We put a PMMA buffer block into the explosive. The flying process of flyer plate is calculated by the finite different scheme based on the ALE method. The effectiveness of this method is demonstrated by the experimental and numerical studies.
-
Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian’an
2017-01-01
A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn’t influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT. PMID:29095910
-
Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence
NASA Astrophysics Data System (ADS)
Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.
2014-11-01
Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.
-
Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian'an; Yang, Lei
2017-01-01
A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn't influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT.
-
Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.
2017-12-01
The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.
-
The Air Force Weapons Laboratory Skid Resistance Research Program, 1969- 1974
1975-05-01
M(d) The slope measuring device consists of a rectangular section of aluminum (10-ft lonq, 5/8-in thick, and 2-1/2-in high) with machinists levels...pipe lines, meters, weight buckets, spray bars, and other containers of flow lines. i. Thermometric Equipment, An armored thermometer with a range from...shall be further equipped with an approved dial-scale mercury-actuated thermometer, an electric pyrometer, or other approved thermometric instruments
-
Measurement of Rubidium Number Density Under Optically Thick Conditions
2010-11-15
for efficient, high-power laser systems . While these alkali metals offer great promise, there are several issues which need to be resolved. Two such...circulator. The pressure and composition of the diluent within the heat pipe could also be adjusted using the attached gas handling system . The gas...handling system consisted of a vacuum pump, 10 Torr and 1000 Torr baratrons, various valves and a line going to a regulated gas cylinder. The second
-
1993-04-01
perpendicular to the pipe axis. During assembly, the threads are lubricated and Teflon tape is used for sealing. Aluminum witness plates (25.4 mm thick...3.3 Electrostatic Discharge ( ESD ) ................................. 7 4. INTERMEDIATE-SCALE SENSITIVITY TESTING ..................... 8 4.1 Card Gap...tests include the DWIT, friction, and electrostatic discharge ( ESD ) tests. The purpose of these tests is to enable the researcher to ensure that the
-
Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John
2014-08-01
We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time.
-
Sun, Fu; Chen, Ji-ning; Zeng, Si-yu
2008-12-01
A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.
-
Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W
2010-11-01
The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
-
Importance of Pipe Deposits to Lead and Copper Rule Compliance
When Madison, WI exceeded the lead Action Level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a simple lead solubility mechanism. In-depth scale analyses (color/texture, mineralogical and elemental composition) of 5 excav...
-
Geochemical exploration for mineralized breccia pipes in northern Arizona, U.S.A.
Wenrich, K.J.
1986-01-01
Thousands of solution-collapse breccia pipe crop out in the canyons and on the plateaus of northern Arizona. Over 80 of these are known to contain U or Cu mineralized rock. The high-grade U ore associated with potentially economic concentrations of Ag, Pb, Zn, Cu, Co and Ni in some of these pipes has continued to stimulate mining and exploration activity in northern Arizona, despite periods of depressed U prices. Large expanses of northern Arizona are comprised of undissected high plateaus; recognition of pipes in these areas is particularly important because mining access to the plateaus is far better than to the canyons. The small size of the pipes, generally less than 600 ft (200 m) in diameter, and limited rock outcrop on the plateaus, compounds the recognition problem. Although the breccia pipes, which bottom in the Mississippian Redwall Limestone, are occasionally exposed on the plateaus as circular features, so are unmineralized near-surface collapse features that bottom in the Permian Kaibab and Toroweap Formations. The distinction between these two classes of circular features is critical during exploration for this unique type of U deposit. Various geochemical and geophysical exploration methods have been tested over these classes of collapse features. Because of the small size of the deposits, and the low-level geochemical signatures in the overlying rock that are rarely dispersed for distances in excess of several hundred feet, most reconnaissance geochemical surveys, such as hydrogeochemistry or stream sediment, will not delineete mineralized pipes. Several types of detailed geochemical surveys made over collapse features, located through examination of aerial photographs and later field mapping, have been successful at delineating collapse features from the surrounding host rock: (1) Rock geochemistry commonly shows low level Ag, As, Ba, Co, Cu, Ni, Pb, Se and Zn anomalies over mineralized breccia pipes; (2) Soil surveys appear to have the greatest potential for distinguishing mineralized breccia pipes from the surrounding terrane. Although the soil anomalies are only twice the background concentrations for most anomalous elements, traverses made over collapse features show consistent enrichment inside of the feature as compared to outside; (3) B. Cereus surveys over a known mineralized pipe show significantly more anomalous samples collected from within the ring fracture than from outside of the breccia pipe; (4) Helium soil-gas surveys were made over 7 collapse features with discouraging results from 5 of the 7 features. Geophysical surveys indicate that scaler audio-magnetotelluric (AMT) and E-field telluric profile data show diagnostic conductivity differences over mineralized pipes as compared to the surrounding terrane. These surveys, coupled with the geochemical surveys conducted as detailed studies over features mapped by field and aerial photograph examination, can be a significant asset in the selection of potential breccia pipes for drilling. ?? 1986.
-
Technological study on reducing blast-hole rate during laser cutting oil pipe
NASA Astrophysics Data System (ADS)
Deng, Qiansong; Yang, Weihong; Tang, Xiahui; Peng, Hao; Qin, Yingxiong
2012-03-01
In this paper, a laser cutting technology for the oil pipes with the thickness of 10mm, the diameter of 142mm and the material of N80 has been developed, in order to reduce the high hole-blast rate in processing. Experiments are taken on the Rofin DC025 slab CO2 laser cutting system and a set of flexible fixtures. The reasons of forming blast-hole have been analyzed, and the influences of technique parameters on blast-hole rate have been studied, such as laser power, pulse frequency, laser delay, focus position and oxygen pressure. The results show that the blast-hole rate can be controlled lower than 5% at the conditions of laser power 1500W, laser delay 5s, pulse frequency 180Hz, the oxygen pressure 0.6 kg/cm2, focus length 190mm, nozzle diameter 1.5mm.
-
Finite-element analysis of vibrational modes in piezoelectric ceramic disks.
Kunkel, H A; Locke, S; Pikeroen, B
1990-01-01
The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.
-
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li
2017-01-01
Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.
-
Solar electric propulsion system thermal analysis. [including heat pipes and multilayer insulation
NASA Technical Reports Server (NTRS)
1975-01-01
Thermal control elements applicable to the solar electric propulsion stage are discussed along with thermal control concepts. Boundary conditions are defined, and a thermal analysis was conducted with special emphasis on the power processor and equipment compartment thermal control system. Conclusions and recommendations are included.
-
36 CFR 1234.10 - What are the facility requirements for all records storage facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the HVAC systems, fire alarm and fire protection systems. Manual switching between sources of service... elements are protected by a properly installed, properly maintained wet-pipe automatic sprinkler system, as... must provide documentation that the facility has a fire suppression system specifically designed to...
-
Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding
NASA Astrophysics Data System (ADS)
Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.
2011-12-01
Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.
-
Importance of Pipe Deposits to Lead and Copper Rule Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Michael R.; Cantor, Abigail F.; Triantafyllidou, Simoni
When Madison, Wis., exceeded the lead action level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a lead solubility mechanism. Scale analyses (color and texture as well as mineralogical and elemental composition) of five excavated lead service lines (LSLs) revealed that accumulation of manganese (and iron) onto pipe walls had implications for lead corrosion by providing a high-capacity sink for lead. Manganese that accumulated from source well water onto pipe scales (up to 10% by weight of scale composition) served to capture and eventually transport lead to consumer taps. In addition,more » manganese sometimes obstructed the predominance of an insoluble (and thus potentially protective) plattnerite [Pb(IV) solid] scale layer. Full LSL replacement in Madison achieved Lead and Copper Rule compliance and a major reduction in lead contamination and exposure, supplemented by unidirectional flushing of water mains and manganese control in the source well water.« less
-
Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures.
Nemec, Patrik; Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made.
-
Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures
Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622
-
Control for monitoring thickness of high temperature refractory
Caines, M.J.
1982-11-23
This invention teaches an improved monitoring device for detecting the changes in thickness of high-temperature refractory, the device consists of a probe having at least two electrically conductive generally parallel elements separated by a dielectric material. The probe is implanted or embedded directly in the refractory and is elongated to extend in line with the refractory thickness to be measured. Electrical inputs to the conductive elements provide that either or both the electrical conductance or capacitance can be found, so that charges over lapsed time periods can be compared in order to detect changes in the thickness of the refractory.
-
Peng, Song; Liu, Zhiguo; Sun, Tianxi; Wang, Guangfu; Ma, Yongzhong; Ding, Xunliang
2014-08-01
Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. Copyright © 2014 Elsevier Ltd. All rights reserved.
-
NASA Astrophysics Data System (ADS)
Wen, Chaofan; Poole, Robert J.; Willis, Ashley P.; Dennis, David J. C.
2017-03-01
Experimental results reveal that the asymmetric flow of shear-thinning fluid through a cylindrical pipe, which was previously associated with the laminar-turbulent transition process, appears to have the characteristics of a nonhysteretic, supercritical instability of the laminar base state. Contrary to what was previously believed, classical transition is found to be responsible for returning symmetry to the flow. An absence of evidence of the instability in simulations (either linear or nonlinear) suggests that an element of physics is lacking in the commonly used rheological model for inelastic shear-thinning fluids. These unexpected discoveries raise new questions regarding the stability of these practically important fluids and how they can be successfully modeled.
-
Seismic Design of ITER Component Cooling Water System-1 Piping
NASA Astrophysics Data System (ADS)
Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.
2017-04-01
The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.
-
Magnetic Barkhausen noise indications of stress concentrations near pits of various depths
NASA Astrophysics Data System (ADS)
Mandal, K.; Loukas, M. E.; Corey, A.; Atherton, D. L.
1997-11-01
The presence of a defect in a material under stress, changes the local stress distribution around it. This local stress distributions around three circular pits in line pipe steel with depths of 30, 50 and 80% wall thickness were studied nondestructively by magnetic Barkhausen noise measurements and in the presence of different bending stresses. The results show stress concentration factors ˜ 1.5, 1.7 and 2.05, respectively, and are consistent with theoretical predictions.
-
Utility Distribution Systems in Sweden, Finland, Norway and England
1976-11-01
the duct adds to the water protection and sumps, with access for pumping, are provided -at low points. Glass wool or mineral wool insulation is placed...mm thick, is glass, mineral wool or polyurethane foam. The outer pipe is steel, polyurethane or asbestos cement coupled with O-ring seals. Asbestos...decided that asbestos cement should be replaced by less dangerous materials. Some use is made of steel, plastic or copper tubes with mineral wool or
-
NASA Technical Reports Server (NTRS)
Melton, Patrick B. (Inventor)
1989-01-01
A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratzer, W.K.; Wise, M.J.
1962-12-12
The objective of this production test is to authorize the irradiation of coextruded Zr-2 jacketed thick walled 1.6% enriched tubular elements in KER loops 1 and 2 to evaluate the swelling behavior of fuel elements at high uranium temperatures Coextruded Zr-2 jacketed 1.6% enriched tubular fuel elements 1.79 inch OD, 0.97 inch ID, and 12 inches long will be irradiated KER loops 1 and 2 to exposures no greater than 2500 MWD/T.
-
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.
2018-04-01
Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.
-
Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.
Kimura, Masatomo; Ito, Hiroyuki
2009-03-01
An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.
-
Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
-
Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G
2011-08-01
This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted.
-
Potential impacts of changing supply-water quality on drinking water distribution: A review.
Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter
2017-06-01
Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.
This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less
-
Numerical Simulations of Instabilities in Single-Hole Office Elements
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.
2013-01-01
An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.
-
Simulation of Thermal Signature of Tires and Tracks
2012-08-01
the body-ply is a linear elastic material. To facilitate the analysis, the tire was divided into Tread and Sidewall by the dash line as shown in...only one element is assigned through the thickness of the tire . Therefore, the thickness of the element is the same as the thickness of the tire ...to the whole part of the 3D full tire in the thermal analysis. The average strain energy density for each part ( tread or sidewall) in the cross
-
NASA Astrophysics Data System (ADS)
Najeeb, Umair
This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.
-
NASA Astrophysics Data System (ADS)
Seghedi, I.; Kurszlaukis, S.; Maicher, D.
2009-05-01
Tuzo pipe is infilled by a series of coherent and fragmental kimberlite facies types typical for a diatreme to root zone transition level. Coherent or transitional coherent kimberlite facies dominate at depth, but also occur at shallow levels, either as dikes or as individual or agglutinated coherent kimberlite clasts (CKC). Several fragmental kimberlite varieties fill the central and shallow portions of the pipe. The definition, geometry and extent of the geological units are complex and are controlled by vertical elements. Specific for Tuzo is: (1) high abundance of locally derived xenoliths (granitoids and minor diabase) between and within the kimberlite phases, varying in size from sub-millimeter to several tens of meters, frequent in a belt-like domain between 120-200 m depth in the pipe; (2) the general presence of CKC, represented by round-subround, irregular to amoeboid-shaped clasts with a macrocrystic or aphanitic texture, mainly derived from fragmentation of erupting magma and less commonly from previously solidified kimberlite, as well as recycled pyroclasts. In addition, some CKC are interpreted to be intersections of a complex dike network. This diversity attests formation by various volcanic processes, extending from intrusive to explosive; (3) the presence of bedded polymict wall- rock and kimberlite breccia occurring mostly in deep levels of the pipe below 345 m depth. The gradational contact relationships of these deposits with the surrounding kimberlite rocks and their location suggest that they formed in situ. The emplacement of Tuzo pipe involved repetitive volcanic explosions alternating with periods of relative quiescence causing at least partial consolidation of some facies. The volume deficit in the diatreme-root zone after each eruption was compensated by gravitational collapse of overlying diatreme tephra and pre-fragmented wall-rock xenoliths. Highly explosive phases were alternating with weak explosions or intrusive phases, suggesting an external factor to control the explosive behaviour of the magma. The overall constant volatile content of the kimberlite does not explain the observed extreme change in emplacement behaviour. The facies architecture of fragmental facies dominated by vertical elements is similar to that in non- kimberlitic diatremes and indicates deposition from debris jets marking separate and repeated explosive volcanic events. In basaltic pipes, such jets are generated by phreatomagmatic explosions in the explosion chamber(s) of the root zone, causing abundant country rock fragmentation and further efficient mixture of the various particles. Phases of high explosivity formed the finely fragmented kimberlites containing a high percentage of wall-rock xenoliths, while the fluidal-shaped and partly welded texturally variable and wall-rock- poor transitional coherent facies suggest phases of repetitive, hot, and low-energy fragmentation forming kimberlite spatter. Peperite hosted in kimberlite tephra is also typically found in basaltic root zones. Time gaps in between volcanic eruptive periods are indicated by cognate pyroclasts and reworked wall-rock deposits emplaced by sporadic sedimentation events in subterranean cavities under the widening roof of the pipe. The presence of temporary caves in the root zone is proposed also by the occurrence of spherical CKC in deep- seated fragmental kimberlite and by spatter found in transitional coherent rocks. Evidence for caves was mostly preserved at deeper pipe levels advocating continuously recurring processes during the life span of Tuzo.
-
Vikram, N Raj; Senthil Kumar, K S; Nagachandran, K S; Hashir, Y Mohamed
2012-01-01
During fixed orthodontic therapy, when the stress levels in the periodontal ligament (PDL) exceedsan optimum level, it could lead to root resorption. To determine an apical stress incident on the maxillary central incisor during tooth movement with varying cemental and periodontal ligament thickness by Finite Element Method (FEM) modeling. A three dimensional finite element model of a maxillary central incisor along with enamel, dentin, cementum, PDL and alveolar bone was recreated using EZIDCOM and AUTOCAD software. ALTAIR Hyper mesh 7.0 version was used to create the Finite Element meshwork of the tooth. This virtual model was transferred to Finite Element Analysis software, ANSYS where different tooth movements were performed. Cemental thickness at the root apex was varied from 200 μm to 1000 μm in increments of 200 μm. PDL thickness was varied as 0.24 mm and 0.15 mm. Intrusive, Extrusive, Rotation and Tipping forces were delivered to determine an apical stress for each set of parameters. Results indicated that an apical stress induced in the cementum and PDL, increased with an increase in cementum and PDL thickness respectively. Apical stress induced in the cementum remained the same or decreased with an increase in the PDL thickness. Apical stress induced in the PDL decreased with an increase in the cementum thickness. The study concluded that the clinical delivery of an orthodontic forces will cause stress in the cementum and PDL. Hence, it is necessary to limit the orthodontic force to prevent root resorption.
-
NASA Astrophysics Data System (ADS)
Lein, A. Yu.; Dara, O. M.; Bogdanova, O. Yu.; Novikov, G. V.; Ulyanova, N. V.; Lisitsyn, A. P.
2018-03-01
The mineralogy and geochemistry of a fragment of an active hydrothermal edifice from the Hydrothermal Hill of the Southern Trough valley of the Guaymas Basin in the Gulf of California were studied. The sample was collected from a depth of 1995 m by the Pisces manned submersible on cruise 12 of the R/V Akademik Mstislav Keldysh, Institute of Oceanology, Russian Academy of Sciences. The fragment and the edifice itself consists of two accrete pipes: ore (pyrrhotite) and barren (carbonate) combined in a single edifice by an outer barite-opal zone. The ore edifice is located in the rift zone of the Guaymas Basin with a thick sedimentary cover and is depleted in metals in comparison with ores from rift zones of the open ocean, which are not blocked by sedimentary deposits. This is explained by loss of metals at the boundary between hot sills and sedimentary rocks and by the processes of interaction of hydrothermal solutions with sedimentary deposits. The sedimentary series faciitates long-term preservation of endogenous heat and the ore formation process. Ore edifices of the Guaymas Basin are mostly composed of pyrrhotite, have a specific set of major elements, microelements and REEs, and contain naphthenic hydrocarbons. They may be search signs of hidden polymetallic deposits, considered to be the roots of ore occurrences localized under the surface of the bottom in young active rifts with high spreading and sedimentation rates, i.e., in near-continental areas of rifts of the humid zone with avalanche sedimentation.
-
Development and Verification of a Weld Simulation Capability for VAST
2012-06-01
midsurface -aligned and not contain any offsets (i.e., thickness is symmetric on either side of the midsurface ). Furthermore, for a given element...both above and below the midsurface – i.e., NT /2 elements representing half the thickness both above and below (Figure 35). This operation is easy for
-
NASA Astrophysics Data System (ADS)
Moreira, EdsonVasques; Barbosa Rabello, JoséMaurício; Pereira, MarcelodosSantos; Lopes, RicardoTadeu; Zscherpel, Uwe
2010-12-01
Digital radiography in the inspection of welded pipes to be installed under deep water offshore gas and oil pipelines, like a presalt in Brazil, in the paper has been investigated. The aim is to use digital radiography for nondestructive testing of welds as it is already in use in the medical, aerospace, security, automotive, and petrochemical sectors. Among the current options, the DDA (Digital Detector Array) is considered as one of the best solutions to replace industrial films, as well as to increase the sensitivity to reduce the inspection cycle time. This paper shows the results of this new technique, comparing it to radiography with industrial films systems. In this paper, 20 test specimens of longitudinal welded pipe joints, specially prepared with artificial defects like cracks, lack of fusion, lack of penetration, and porosities and slag inclusions with varying dimensions and in 06 different base metal wall thicknesses, were tested and a comparison of the techniques was made. These experiments verified the purposed rules for parameter definitions and selections to control the required digital radiographic image quality as described in the draft international standard ISO/DIS 10893-7. This draft is first standard establishing the parameters for digital radiography on weld seam of welded steel pipes for pressure purposes to be used on gas and oil pipelines.
-
NASA Astrophysics Data System (ADS)
Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał
2017-11-01
District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.
-
Features and applications of the Groove Analysis Program (GAP)
NASA Technical Reports Server (NTRS)
Ku, Jentung; Nguyen, Tu M.; Brennan, Patrick J.
1995-01-01
An IBM Personal Computer (PC) version of the Groove Analysis program (GAP) was developed to predict the steady state heat transport capability of an axially grooved heat pipe for a specified groove geometry and working fluid. In the model, the capillary limit is determined by the numerical solution of the differential equation for momentum conservation with the appropriate boundary conditions. This governing equation accounts for the hydrodynamic losses due to friction in liquid and vapor flows and due to liquid/vapor shear interaction. Back-pumping in both 0-g and 1-g is accounted for in the boundary condition at the condenser end. Slug formation in 0-g and puddle flow in 1-g are also considered in the model. At the user's discretion, the code will perform the analysis for various fluid inventories (undercharge, nominal charge, overcharge, or a fixed fluid charge) and heat pipe elevations. GAP will also calculate the minimum required heat pipe wall thickness for pressure containment at design temperatures that are greater than or lower than the critical temperature of the working fluid. This paper discusses the theory behind the development of the GAP model. It also presents the many useful and powerful capabilities of the model. Furthermore, a correlation of flight test performance data and the predictions using GAP are presented and discussed.
-
NASA Astrophysics Data System (ADS)
Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin
2018-04-01
Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.
-
Origin of a major cross-element zone: Moroccan Rif
NASA Astrophysics Data System (ADS)
Morley, C. K.
1987-08-01
Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of North America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.
-
Origin of a major cross-element zone: Moroccan Rif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, C.K.
1987-08-01
Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of Northmore » America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.« less
-
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
-
Dredge Mooring Study Recommended Design, Phase 2 Report
1992-05-01
processes are acceptable under this Specification: a. Shielded Metal Arc Welding (SMAW). b. Gas Tungsten-Arc Welding ( GTAW or TIG). c. Gas Metal-Arc...the GTAW process. 11.3.9.3 For welding of stainless steel pipe, the GTAW process shall be used on the root pass of open butt joints welded from one...whichever is greater, from each edge of the weld (t = wall thickness of the thickest part being welded). 11.3.11.5 Postweld heat treatment for chromium
-
Experimental Observations of Vortex Ring Interaction with the Fluid Adjacent to a Surface.
1983-10-01
minute. The water enters the inlet tank from a distribution manifold pipe and rises vertically through a 15 cm. thick plastic sponge. The flow then passes...parts exposed to water are made from PVC plastic to resist corrosion. The generator was designed to have interchangeable parts which allow the generation...of vortex rings over a range of caracteristics . The motor speed is continuously variable up to a speed of 7400 rpm. Cams with stroke lengths of 0.64
-
Installation Restoration Program. Phase 1. Records Search Andrews AFB. Maryland
1985-06-01
red to silvery-qrey, functions ma a conf ining bed. Formation. ~Va plastics thin lonses of pole gray silt. Ann"a Formation. ye (0-210 sand, qrsenieh...the Nanjemoy Formation (a clayey glauconi- tic sand, two to thirty feet thick) and the Marlboro Clay (a plastic clay with silt partings, two to... plastics , empty 55-gallon drums, waste lumber, tires, pipes, and hospital wastes such as unused needles and chemical reagents. In the past, Site D-4 was
-
Livingston, J.P.
1959-01-27
A die is presented for pressing powdered materials into a hemispherical shape of uniforin density and wall thickness comprising a fcmale and male die element held in a stationary spaced relation with the space being equivalent to the wall thickness and defining the hemispherical shape, a pressing ring linearly moveable along the male die element, an inlet to fill the space with powdered materials, a guiding system for moving the pressing ring along the male die element so as to press the powdered material and a heating system for heating the male element so that the powdered material is heated while being pressed.
-
Use of chemical mechanical polishing in micromachining
Nasby, Robert D.; Hetherington, Dale L.; Sniegowski, Jeffry J.; McWhorter, Paul J.; Apblett, Christopher A.
1998-01-01
A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.
-
Vortex breakdown in simple pipe bends
NASA Astrophysics Data System (ADS)
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
-
Thermal management system technology development for space station applications
NASA Technical Reports Server (NTRS)
Rankin, J. G.; Marshall, P. F.
1983-01-01
A short discussion of the history to date of the NASA thermal management system technology development program is presented, and the current status of several ongoing studies and hardware demonstration tasks is reported. One element of technology that is required for long-life, high-power orbital platforms/stations that is being developed is heat rejection and a space-constructable radiator system. Aspects of this project include high-efficiency fin concepts, a heat pipe quick-disconnect device, high-capacity heat pipes, and an alternate interface heat exchanger design. In the area of heat acquisition and transport, developments in a pumped two-phase transport loop, a capillary pumped transport loop using the concept of thermal utility are reported. An example of a thermal management system concept is provided.
-
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
-
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
-
High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2008-01-01
Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.
