Sample records for thin boron nitride

  1. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  2. STIR: Novel Electronic States by Gating Strongly Correlated Materials

    DTIC Science & Technology

    2016-03-01

    plan built on my group’s recent demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to...demonstration of electrolyte gating in Strontium Titanate, using an atomically thin hexagonal Boron Nitride barrier to prevent disorder and chemical...techniques and learned to apply thin hexagonal Boron Nitride to single crystals of materials expected to show some of the most exciting correlated

  3. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  4. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  5. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  6. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  7. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  8. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  9. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  10. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  11. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  12. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  13. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy.

    PubMed

    Wong, Dillon; Velasco, Jairo; Ju, Long; Lee, Juwon; Kahn, Salman; Tsai, Hsin-Zon; Germany, Chad; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F

    2015-11-01

    Defects play a key role in determining the properties and technological applications of nanoscale materials and, because they tend to be highly localized, characterizing them at the single-defect level is of particular importance. Scanning tunnelling microscopy has long been used to image the electronic structure of individual point defects in conductors, semiconductors and ultrathin films, but such single-defect electronic characterization remains an elusive goal for intrinsic bulk insulators. Here, we show that individual native defects in an intrinsic bulk hexagonal boron nitride insulator can be characterized and manipulated using a scanning tunnelling microscope. This would typically be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by using a graphene/boron nitride heterostructure, which exploits the atomically thin nature of graphene to allow the visualization of defect phenomena in the underlying bulk boron nitride. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunnelling spectroscopy we obtain charge and energy-level information for these boron nitride defect structures. We also show that it is possible to manipulate the defects through voltage pulses applied to the scanning tunnelling microscope tip.

  14. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  15. Thin Refractory Films on Fused Silica Crucibles

    DTIC Science & Technology

    1988-07-01

    9 4.1.4 Iridium 11 4.1.5 Boron Nitride (BN) 11 4.2 Adherence Testing 13 4.3 Metallography 13 5.0 Conclusions and Recommendations 16 Accession For...Chamber 4 2. Schematic of Crucible Coating Apparatus (SiC, NbN, and TiB 2) 6 3. Schematic of CVD Apparatus for Iridium 7 4. Schematic of Apparatus for...ultrahigh-purity coatings of silicon carbide (SiC), niobium nitride (NbN), titanium diboride (TiB2), iridium , and boron nitride (BN) onto the interior

  16. Super-hard cubic BN layer formation by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.

    1994-11-01

    Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.

  17. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    NASA Astrophysics Data System (ADS)

    Alam, M. T.; Bresnehan, M. S.; Robinson, J. A.; Haque, M. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m-1 K-1, is lower than the bulk basal plane value (390 W m-1 K-1) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.

  18. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  19. Single-Photon Emitters in Boron Nitride Nanococoons.

    PubMed

    Ziegler, Joshua; Blaikie, Andrew; Fathalizadeh, Aidin; Miller, David; Yasin, Fehmi S; Williams, Kerisha; Mohrhardt, Jordan; McMorran, Benjamin J; Zettl, Alex; Alemán, Benjamín

    2018-04-11

    Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are attractive for a variety of quantum and photonic technologies because they combine ultra-bright, room-temperature single-photon emission with an atomically thin crystal. However, the emitter's prominence is hindered by large, strain-induced wavelength shifts. We report the discovery of a visible-wavelength, single-photon emitter (SPE) in a zero-dimensional boron nitride allotrope (the boron nitride nanococoon, BNNC) that retains the excellent optical characteristics of few-layer hBN while possessing an emission line variation that is lower by a factor of 5 than the hBN emitter. We determined the emission source to be the nanometer-size BNNC through the cross-correlation of optical confocal microscopy with high-resolution scanning and transmission electron microscopy. Altogether, this discovery enlivens color centers in BN materials and, because of the BN nanococoon's size, opens new and exciting opportunities in nanophotonics, quantum information, biological imaging, and nanoscale sensing.

  20. Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection.

    PubMed

    Khan, Majharul Haque; Jamali, Sina S; Lyalin, Andrey; Molino, Paul J; Jiang, Lei; Liu, Hua Kun; Taketsugu, Tetsuya; Huang, Zhenguo

    2017-01-01

    Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Method for forming monolayer graphene-boron nitride heterostructures

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2016-08-09

    A method for fabricating monolayer graphene-boron nitride heterostructures in a single atomically thin membrane that limits intermixing at boundaries between graphene and h-BN, so as to achieve atomically sharp interfaces between these materials. In one embodiment, the method comprises exposing a ruthenium substrate to ethylene, exposing the ruthenium substrate to oxygen after exposure to ethylene and exposing the ruthenium substrate to borazine after exposure to oxygen.

  2. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the deposition chamber. Hexagonal -- BN thin films are successfully deposited using Diborane (B2H6) (5% in H2), Ammonia (NH3) and H2 as precursor gases in the conventional MPECVD mode with and without the negative DC bias. The quality of h-BN in the films improved with pressure and when NH3 used as the first precursor gas in the deposition chamber. c-BN thin films are successfully deposited using Boron-Trifluoride (BF3) (10% in Argon (Ar)), N2, H2, Ar and Helium (He) gases in the electron cyclotron resonance (ECR) mode of the MPECVD system with negative DC bias. Up-to 66% c-BN in the films is achieved under deposition conditions of lower gas flow rates and higher deposition pressures than that reported in the literature for film deposited by ECR-MPECVD. It is shown that the percentage c-BN in the films correlates with the deposition pressure, BF3/H2 ratio and, negative DC bias during nucleation and growth. Diamond thin films are deposited using 60%Ar, 39% H2 and, 1%CH4 at 600°C, 700°C and 800°C substrate temperatures, measured by an IR pyrometer, on Si substrates pre-treated with 3-6nm diamond sol and 20-40mum diamond slurry. Raman spectroscopy, FTIR, X-Ray diffraction (XRD) and, photo-thermal reflectivity methods are used to characterize the thin films. Residual stresses observed for the diamond thin films deposited in this study are tensile in nature and increased with deposition temperature. Better quality diamond films with lower residual stresses are obtained for films deposited on Si substrate pre-treated with 3-6nm diamond sol. Preliminary results on thermal conductivity, k, suggest that k is directly dependent on the deposition temperature and independent of substrate pre-treatment signifying that the nano-seeding technique can be used to replace conventional surface activation technique for diamond seeding where needed.

  3. Shear-Assisted Production of Few-Layer Boron Nitride Nanosheets by Supercritical CO2 Exfoliation and Its Use for Thermally Conductive Epoxy Composites.

    PubMed

    Tian, Xiaojuan; Li, Yun; Chen, Zhuo; Li, Qi; Hou, Liqiang; Wu, Jiaye; Tang, Yushu; Li, Yongfeng

    2017-12-19

    Boron nitride nanosheets (BNNS) hold the similar two-dimensional structure as graphene and unique properties complementary to graphene, which makes it attractive in application ranging from electronics to energy storage. The exfoliation of boron nitride (BN) still remains challenge and hinders the applications of BNNS. In this work, the preparation of BNNS has been realized by a shear-assisted supercritical CO 2 exfoliation process, during which supercritical CO 2 intercalates and diffuses between boron nitride layers, and then the exfoliation of BN layers is obtained in the rapid depressurization process by overcoming the van der Waals forces. Our results indicate that the bulk boron nitride has been successfully exfoliated into thin nanosheets with an average 6 layers. It is found that the produced BNNS is well-dispersed in isopropyl alcohol (IPA) with a higher extinction coefficient compared with the bulk BN. Moreover, the BNNS/epoxy composite used as thermal interface materials has been prepared. The introduction of BNNS results in a 313% enhancement in thermal conductivity. Our results demonstrate that BNNS produced by supercritical CO 2 exfoliation show great potential applications for heat dissipation of high efficiency electronics.

  4. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  5. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  6. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru

    2010-09-15

    Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BNmore » films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.« less

  7. Extraction of Boron Nitride Nanotubes and Fabrication of Macroscopic Articles Using Chlorosulfonic Acid.

    PubMed

    Adnan, Mohammed; Marincel, Daniel M; Kleinerman, Olga; Chu, Sang-Hyon; Park, Cheol; Hocker, Samuel J A; Fay, Catharine; Arepalli, Sivaram; Talmon, Yeshayahu; Pasquali, Matteo

    2018-03-14

    Due to recent advances in high-throughput synthesis, research on boron nitride nanotubes (BNNTs) is moving toward applications. One future goal is the assembly of macroscopic articles of high-aspect-ratio, pristine BNNTs. However, these articles are presently unattainable because of insufficient purification and fabrication methods. We introduce a solution process for extracting BNNTs from synthesis impurities without sonication or the use of surfactants and proceed to convert the extracted BNNTs into thin films. The solution process can also be used to convert as-synthesized material-which contains significant amounts of hexagonal boron nitride ( h-BN)-into mats and aerogels with controllable structure and dimension. The solution extraction method, combined with further advances in synthesis and purification, contributes to the development of all-BNNT macroscopic articles, such as fibers and 3-D structures.

  8. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    NASA Astrophysics Data System (ADS)

    Jeon, Jun-Young; Ha, Tae-Jun

    2017-08-01

    In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  9. Corrosion resistance of monolayer hexagonal boron nitride on copper

    PubMed Central

    Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A. C.; Szkopek, T.; Siaj, M.

    2017-01-01

    Hexagonal boron nitride (hBN) is a layered material with high thermal and chemical stability ideal for ultrathin corrosion resistant coatings. Here, we report the corrosion resistance of Cu with hBN grown by chemical vapor deposition (CVD). Cyclic voltammetry measurements reveal that hBN layers inhibit Cu corrosion and oxygen reduction. We find that CVD grown hBN reduces the Cu corrosion rate by one order of magnitude compared to bare Cu, suggesting that this ultrathin layer can be employed as an atomically thin corrosion-inhibition coating. PMID:28191822

  10. Crystalline boron nitride aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less

  11. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films.

    PubMed

    Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Williams, O A; Lebedev, V; Nebel, C E; Ambacher, O

    2013-01-18

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10(8) cm(-2)), in the case of hydrogen-treated ND seeding particles, to very high values of 10(11) cm(-2) for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young's moduli of more than 1000 GPa.

  12. Tribological properties of boron nitride synthesized by ion beam deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  13. Structural stability and electronic properties of an octagonal allotrope of two dimensional boron nitride.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2017-03-27

    An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.

  14. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    PubMed

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  15. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  16. Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Scuri, Giovanni; Zhou, You; High, Alexander A.; Wild, Dominik S.; Shu, Chi; De Greve, Kristiaan; Jauregui, Luis A.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2018-01-01

    We demonstrate that a single layer of MoSe2 encapsulated by hexagonal boron nitride can act as an electrically switchable mirror at cryogenic temperatures, reflecting up to 85% of incident light at the excitonic resonance. This high reflectance is a direct consequence of the excellent coherence properties of excitons in this atomically thin semiconductor. We show that the MoSe2 monolayer exhibits power-and wavelength-dependent nonlinearities that stem from exciton-based lattice heating in the case of continuous-wave excitation and exciton-exciton interactions when fast, pulsed laser excitation is used.

  17. Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source.

    PubMed

    Esteve-Adell, Ivan; He, Jinbao; Ramiro, Fernando; Atienzar, Pedro; Primo, Ana; García, Hermenegildo

    2018-03-01

    A procedure for the one-step preparation of films of few-layer N-doped graphene on top of nanometric hexagonal boron nitride sheets ((N)graphene/h-BN) based on the pyrolysis at 900 °C under an inert atmosphere of a film of chitosan containing about 20 wt% of ammonium borate salt as a precursor is reported. During the pyrolysis a spontaneous segregation of (N)graphene and boron nitride layers takes place. The films were characterized by optical microscopy that shows a thin graphene overlayer covering the boron nitride layer, the latter showing characteristic cracks, and by XPS measurements at different monitoring angles from 0° to 50° where an increase in the proportion of C vs. B and N was observed. The resulting (N)graphene/h-BN films were also characterized by Raman, HRTEM, SEM, FIB-SEM and AFM. The thickness of the (N)graphene and h-BN layers can be controlled by varying the concentration of precursors and the spin coating rate and is typically below 5 nm. Electrical conductivity measurements using microelectrodes can cause the burning of the graphene layer at high intensities, while lower intensities show that (N)graphene/h-BN films behave as capacitors in the range of positive voltages.

  18. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  19. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  20. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  1. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  2. Observation of phonon-polaritons in thin flakes of hexagonal boron nitride on gold

    NASA Astrophysics Data System (ADS)

    Ciano, C.; Giliberti, V.; Ortolani, M.; Baldassarre, L.

    2018-04-01

    Hexagonal Boron Nitride (hBN) is a layered van der Waals material able to sustain hyperbolic phonon-polaritons within its mid-infrared reststrahlen bands. We study the effect of a metallic substrate adjacent to hBN flakes on the polariton dispersion and on the standing wave patterns in nanostructures by means of mid-infrared nanospectroscopy and nanoimaging. We exploit the gold-coated tip apex for atomic force microscopy to launch polaritons in thin hBN flakes. The photo-thermal induced mechanical resonance is used to detect the amplitude profile of polariton standing waves with a lateral resolution of 30 nm. We observe the polariton excitation spectra on hBN flakes as thin as 4 nm, thanks to the infrared field enhancement in the nanogap between the gold-coated tip apex and an ultraflat gold substrate. The data indicate no major effect of remote screening of the free electrons in gold on the phonon-polariton excitation that appears robust also against geometrical imperfections.

  3. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature.

    PubMed

    Huang, Yang; Bando, Yoshio; Tang, Chengchun; Zhi, Chunyi; Terao, Takeshi; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri

    2009-02-25

    Boron nitride (BN) microtubes were synthesized in a vertical induction furnace using Li(2)CO(3) and B reactants. Their structures and morphologies were investigated using x-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The microtubes have diameters of 1-3 microm, lengths of up to hundreds of micrometers, and well-structured ultrathin walls only approximately 50 nm thick. A mechanism combining the vapor-liquid-solid (VLS) and template self-sacrificing processes is proposed to explain the formation of these novel one-dimensional microstructures, in which the Li(2)O-B(2)O(3) eutectic reaction plays an important role. Cathodoluminescence studies show that even at room temperature the thin-walled BN microtubes can possess an intense band-edge emission at approximately 216.5 nm, which is distinct compared with other BN nanostructures. The study suggests that the thin-walled BN microtubes should be promising for constructing compact deep UV devices and find potential applications in microreactors and microfluidic and drug delivery systems.

  4. Packing C60 in Boron Nitride Nanotubes

    NASA Astrophysics Data System (ADS)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  5. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  6. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  7. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  8. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  9. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals.

    PubMed

    Wu, Yimin A; Kirkland, Angus I; Schäffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moiré patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  10. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions

    PubMed Central

    Falin, Aleksey; Cai, Qiran; Santos, Elton J. G.; Scullion, Declan; Qian, Dong; Zhang, Rui; Yang, Zhi; Huang, Shaoming; Watanabe, Kenji; Taniguchi, Takashi; Barnett, Matthew R.; Chen, Ying; Ruoff, Rodney S.; Li, Lu Hua

    2017-01-01

    Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but investigation into their mechanical properties remains incomplete. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviours quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better interlayer integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, for example, as mechanical reinforcements. PMID:28639613

  11. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  12. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    NASA Astrophysics Data System (ADS)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  13. Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2015-11-11

    We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current.

  14. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  15. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.

    PubMed

    Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri

    2011-09-05

    The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory.

    PubMed

    McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J

    2017-10-11

    Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.

  17. Experimental observation of boron nitride chains.

    PubMed

    Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V

    2014-12-23

    We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.

  18. Friction and transfer behavior of pyrolytic boron nitride in contact with various metals

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.

  19. Safety Assessment of Boron Nitride as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.

  20. Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.

    PubMed

    Nithya, Jeghan Shrine Maria; Pandurangan, Arumugam

    2012-05-01

    Synthesis of boron nitride nanotubes at reduced temperature is important for industrial manufactures. In this study boron nitride nanotubes were synthesized by thermal evaporation method using B/Fe2O3/MoO3 and B/Ni2O3/MoO3 mixtures separately with ammonia as the nitrogen source. The growth of boron nitride nanotubes occurred at 1100 degrees C, which was relatively lower than other metal oxides assisted growth processes requiring higher than 1200 degrees C. MoO3 promoted formation of B2O2 and aided boron nitride nanotubes growth at a reduced temperature. The boron nitride nanotubes with bamboo shaped, nested cone structured and straight tubes like forms were evident from the high resolution transmission electron microscopy. Metallic Fe and Ni, formed during the process, were the catalysts for the growth of boron nitride nanotubes. Their formation was established by X-ray diffraction. FT Raman showed a peak due to B-N vibration of BNNTs close to 1370 cm(-1). Hence MoO3 assisted growth of boron nitride nanotubes is advantageous, as it significantly reduced the synthesis temperature.

  1. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  2. Spherical boron nitride particles and method for preparing them

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  3. Low-loss binder for hot pressing boron nitride

    DOEpatents

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  4. Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavin, Nicholas R., E-mail: nicholas.glavin.1@us.af.mil, E-mail: andrey.voevodin@us.af.mil; School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Muratore, Christopher

    2015-04-28

    Physical vapor deposition (PVD) has recently been investigated as a viable, alternative growth technique for two-dimensional materials with multiple benefits over other vapor deposition synthesis methods. The high kinetic energies and chemical reactivities of the condensing species formed from PVD processes can facilitate growth over large areas and at reduced substrate temperatures. In this study, chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated. Time resolved spectroscopy and wavelength specific imaging were used to identifymore » and track atomic neutral and ionized species including B{sup +}, B*, N{sup +}, N*, and molecular species including N{sub 2}*, N{sub 2}{sup +}, and BN. Formation and decay of these species formed both from ablation of the target and from interactions with the background gas were investigated and provided insights into fundamental growth mechanisms of continuous, amorphous boron nitride thin films. The correlation of the plasma diagnostic results with film chemical composition and thickness uniformity studies helped to identify that a predominant mechanism for BN film formation is condensation surface recombination of boron ions and neutral atomic nitrogen species. These species arrive nearly simultaneously to the substrate location, and BN formation occurs microseconds before arrival of majority of N{sup +} ions generated by plume collisions with background molecular nitrogen. The energetic nature and extended dwelling time of incident N{sup +} ions at the substrate location was found to negatively impact resulting BN film stoichiometry and thickness. Growth of stoichiometric films was optimized at enriched concentrations of ionized boron and neutral atomic nitrogen in plasma near the condensation surface, providing few nanometer thick films with 1:1 BN stoichiometry and good thicknesses uniformity over macroscopic areas.« less

  5. Boron nitride housing cools transistors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.

  6. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    PubMed

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  7. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  8. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  9. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  10. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  11. Signatures of Phonon and Defect-Assisted Tunneling in Planar Metal-Hexagonal Boron Nitride-Graphene Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2016-12-14

    Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d 2 I/dV 2 , are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are also observed in these devices. The small electronic density of states of graphene allows the charging spectra of these defect states to be electrostatically tuned, leading to "Coulomb diamonds" in the tunneling conductance.

  12. Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition

    PubMed Central

    Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.

    2013-01-01

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310

  13. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

    PubMed

    Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie

    2013-11-26

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.

  14. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  15. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  16. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  17. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less

  18. Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material.

    PubMed

    Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N

    2017-09-13

    We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

  19. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H.

    2015-05-01

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  20. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  1. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  2. Epitaxial hexagonal boron nitride on Ir(111): A work function template

    NASA Astrophysics Data System (ADS)

    Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter

    2014-06-01

    Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.

  3. Oxidation of boron nitride in an arc heated jet.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.

    1971-01-01

    Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.

  4. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites.

    PubMed

    Wang, Xue-Bin; Weng, Qunhong; Wang, Xi; Li, Xia; Zhang, Jun; Liu, Fei; Jiang, Xiang-Fen; Guo, Hongxuan; Xu, Ningsheng; Golberg, Dmitri; Bando, Yoshio

    2014-09-23

    Electrically insulating boron nitride (BN) nanosheets possess thermal conductivity similar to and thermal and chemical stabilities superior to those of electrically conductive graphenes. Currently the production and application of BN nanosheets are rather limited due to the complexity of the BN binary compound growth, as opposed to massive graphene production. Here we have developed the original strategy "biomass-directed on-site synthesis" toward mass production of high-crystal-quality BN nanosheets. The strikingly effective, reliable, and high-throughput (dozens of grams) synthesis is directed by diverse biomass sources through the carbothermal reduction of gaseous boron oxide species. The produced BN nanosheets are single crystalline, laterally large, and atomically thin. Additionally, they assemble themselves into the same macroscopic shapes peculiar to original biomasses. The nanosheets are further utilized for making thermoconductive and electrically insulating epoxy/BN composites with a 14-fold increase in thermal conductivity, which are envisaged to be particularly valuable for future high-performance electronic packaging materials.

  6. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  7. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  8. Predicting the structural and electronic properties of two-dimensional single layer boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Cheng, Xin-Lu

    2018-02-01

    Three two-dimensional (2D) single layer boron nitride sheets have been predicted based on the first-principles calculations. These 2D boron nitride sheets are comprised of equivalent boron atoms and nitride atoms with sp2 and sp bond hybridization. The geometry optimization reflects that they all possess stable planar crystal structures with the space group P 6 bar 2 m (D3h3) symmetry. The charge density distribution manifests that the B-N bonds in these boron nitride sheets are covalent in nature but with ionic characteristics. The tunable band gaps indicate their potential applications in nanoscale electronic and optoelectronic devices by changing the length of sp-bonded Bsbnd N linkages.

  9. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-04-24

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 °C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ∼20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronicmore » devices with uniform electronic properties.« less

  10. Extreme-UV electrical discharge source

    DOEpatents

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  11. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?

    PubMed

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2015-02-21

    Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

  12. Photoinduced doping in heterostructures of graphene and boron nitride.

    PubMed

    Ju, L; Velasco, J; Huang, E; Kahn, S; Nosiglia, C; Tsai, Hsin-Zon; Yang, W; Taniguchi, T; Watanabe, K; Zhang, Y; Zhang, G; Crommie, M; Zettl, A; Wang, F

    2014-05-01

    The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.

  13. Control of excitons in multi-layer van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.

    2016-03-07

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  14. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    NASA Astrophysics Data System (ADS)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  15. Apparatus for the production of boron nitride nanotubes

    DOEpatents

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  16. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.

    2018-03-01

    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.

  17. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  18. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  19. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  20. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  1. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  2. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  3. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  4. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  5. Interface formation in monolayer graphene-boron nitride heterostructures.

    PubMed

    Sutter, P; Cortes, R; Lahiri, J; Sutter, E

    2012-09-12

    The ability to control the formation of interfaces between different materials has become one of the foundations of modern materials science. With the advent of two-dimensional (2D) crystals, low-dimensional equivalents of conventional interfaces can be envisioned: line boundaries separating different materials integrated in a single 2D sheet. Graphene and hexagonal boron nitride offer an attractive system from which to build such 2D heterostructures. They are isostructural, nearly lattice-matched, and isoelectronic, yet their different band structures promise interesting functional properties arising from their integration. Here, we use a combination of in situ microscopy techniques to study the growth and interface formation of monolayer graphene-boron nitride heterostructures on ruthenium. In a sequential chemical vapor deposition process, boron nitride grows preferentially at the edges of existing monolayer graphene domains, which can be exploited for synthesizing continuous 2D membranes of graphene embedded in boron nitride. High-temperature growth leads to intermixing near the interface, similar to interfacial alloying in conventional heterostructures. Using real-time microscopy, we identify processes that eliminate this intermixing and thus pave the way to graphene-boron nitride heterostructures with atomically sharp interfaces.

  6. Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance.

    PubMed

    Zhang, Ri-Chao; Sun, Dan; Lu, Ai; Askari, Sadegh; Macias-Montero, Manuel; Joseph, Paul; Dixon, Dorian; Ostrikov, Kostya; Maguire, Paul; Mariotti, Davide

    2016-06-01

    This Research Article reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly(vinyl alcohol) through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30 to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm(2) s(-1), 50 times greater than blank poly(vinyl alcohol) and twice that of nanocomposites containing nonplasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer, which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.

  7. Template-Free Synthesis of Highly Porous Boron Nitride: Insights into Pore Network Design and Impact on Gas Sorption.

    PubMed

    Marchesini, Sofia; McGilvery, Catriona M; Bailey, Josh; Petit, Camille

    2017-10-24

    Production of biocompatible and stable porous materials, e.g., boron nitride, exhibiting tunable and enhanced porosity is a prerequisite if they are to be employed to address challenges such as drug delivery, molecular separations, or catalysis. However, there is currently very limited understanding of the formation mechanisms of porous boron nitride and the parameters controlling its porosity, which ultimately prevents exploiting the material's full potential. Herein, we produce boron nitride with high and tunable surface area and micro/mesoporosity via a facile template-free method using multiple readily available N-containing precursors with different thermal decomposition patterns. The gases are gradually released, creating hierarchical pores, high surface areas (>1900 m 2 /g), and micropore volumes. We use 3D tomography techniques to reconstruct the pore structure, allowing direct visualization of the mesopore network. Additional imaging and analytical tools are employed to characterize the materials from the micro- down to the nanoscale. The CO 2 uptake of the materials rivals or surpasses those of commercial benchmarks or other boron nitride materials reported to date (up to 4 times higher), even after pelletizing. Overall, the approach provides a scalable route to porous boron nitride production as well as fundamental insights into the material's formation, which can be used to design a variety of boron nitride structures.

  8. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  9. BN Bonded BN fiber article from boric oxide fiber

    DOEpatents

    Hamilton, Robert S.

    1978-12-19

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising boron oxide fibers and boric acid, heating the composition in an anhydrous gas to a temperature above the melting point of the boric acid and nitriding the resulting article in ammonia gas.

  10. Multi-Functional BN-BN Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Gibbons, Luke (Inventor); Lowther, Sharon (Inventor); Thibeault, Sheila A. (Inventor); Fay, Catharine C. (Inventor)

    2017-01-01

    Multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN-BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN-BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.

  11. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, L.R.

    1981-01-23

    A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  12. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, Lowell R.

    1982-01-01

    A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  13. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  14. Singlet and triplet trions in WS2 monolayer encapsulated in hexagonal boron nitride.

    PubMed

    Vaclavkova, D; Wyzula, J; Nogajewski, K; Bartos, M; Slobodeniuk, A O; Faugeras, C; Potemski, M; Molas, M R

    2018-08-10

    Embedding a WS 2 monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS 2 monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.

  15. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  16. Preparation of boron nitride fiber by organic precursor method

    NASA Astrophysics Data System (ADS)

    Zhou, Yingying; Sun, Runjun; Zhang, Zhaohuan; Fan, Wei; Zhou, Dan; Sheng, Cuihong

    In this paper, boron nitride polymer precursor was made by boric acid, melamine, twelve sodium alkyl sulfate as raw materials and pure water as medium which is heated to 70 °C. Boron nitride precursor polymer was soluble in formic acid solution. The boron nitride precursor can be electrostatically spun at the voltage in 23 kV and the distance between the positive and negative poles is 15 cm. The formed fiber is very uniform. The properties of the precursors were analyzed through electron microscope, infrared spectrum, X-ray and ultraviolet spectrum. The aim of the job is to got the precursor of BN and spun it.

  17. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    PubMed Central

    Chang, Chong Hyun

    2018-01-01

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa). Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results. PMID:29385723

  18. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    PubMed

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  19. Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.

    2016-08-01

    This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.

  20. Single photon emitters in boron nitride: More than a supplementary material

    NASA Astrophysics Data System (ADS)

    Koperski, M.; Nogajewski, K.; Potemski, M.

    2018-03-01

    We present comprehensive optical studies of recently discovered single photon sources in boron nitride, which appear in form of narrow lines emitting centres. Here, we aim to compactly characterise their basic optical properties, including the demonstration of several novel findings, in order to inspire discussion about their origin and utility. Initial inspection reveals the presence of narrow emission lines in boron nitride powder and exfoliated flakes of hexagonal boron nitride deposited on Si/SiO2 substrates. Generally rather stable, the boron nitride emitters constitute a good quality visible light source. However, as briefly discussed, certain specimens reveal a peculiar type of blinking effects, which are likely related to existence of meta-stable electronic states. More advanced characterisation of representative stable emitting centres uncovers a strong dependence of the emission intensity on the energy and polarisation of excitation. On this basis, we speculate that rather strict excitation selectivity is an important factor determining the character of the emission spectra, which allows the observation of single and well-isolated emitters. Finally, we investigate the properties of the emitting centres in varying external conditions. Quite surprisingly, it is found that the application of a magnetic field introduces no change in the emission spectra of boron nitride emitters. Further analysis of the impact of temperature on the emission spectra and the features seen in second-order correlation functions is used to provide an assessment of the potential functionality of boron nitride emitters as single photon sources capable of room temperature operation.

  1. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  2. Wear measurement of the cutting edge of superhard turning tools using TLA technique

    NASA Astrophysics Data System (ADS)

    Vasváry, L.; Ditrói, F.; Takács, S.; Szabó, Z.; Szűcs, J.; Kundrák, J.; Mahunka, I.

    1994-03-01

    Wear measurement on superhard boron nitride and artificial diamond turning tools was performed using thin layer activation (TLA) technique. The samples were irradiated in two different geometries to improve the sensitivity of the method and change the region of wear to be investigated. The most proper irradiation parameters and nuclear reactions were investigated for both kind of tools.

  3. The preparation and application of white graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Chenghong

    2014-12-01

    In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.

  4. Relevance of the Nuclear Quantum Effects on the Proton/Deuteron Transmission through Hexagonal Boron Nitride and Graphene Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekanayake, Niranji; Huang, Jingsong; Jakowski, Jacek

    According to recent experiments, atomically thin hexagonal boron nitride and graphene are permeable to protons and deuterons (and not to other atomic species), and the experimental estimates of the activation energy are lower than the theoretical values by about 0.5 eV for the isolated proton-membrane transfer model. Our analysis of the electronic potential energy surfaces along the normal to the transmission direction, obtained using correlated electronic structure methods, suggests that the aqueous environment is essential to stabilize the proton { as opposed to the hydrogenatom { transmission. Therefore, the process is examined within a molecular model of H 2O {more » H(D) + { material { H 2O. Exact quantum-mechanical scattering calculations are performed to assess the relevance of the nuclear quantum eects, such as tunneling factors and the kinetic isotope eect (KIE). Deuteration is found to aect the thermal reaction rate constants (KIE of 3-4 for hexagonal boron nitride and 20-30 for the graphene) and to eectively lower the barriers to the proton transfer by 0.2 and 0.4 eV for the two membranes, respectively. This lowering eect is reduced for the deuteron by approximately a factor of three. A more comprehensive description of the proton transmission is likely to require an extended explicit aqueous environment.« less

  5. Relevance of the Nuclear Quantum Effects on the Proton/Deuteron Transmission through Hexagonal Boron Nitride and Graphene Monolayers

    DOE PAGES

    Ekanayake, Niranji; Huang, Jingsong; Jakowski, Jacek; ...

    2017-10-02

    According to recent experiments, atomically thin hexagonal boron nitride and graphene are permeable to protons and deuterons (and not to other atomic species), and the experimental estimates of the activation energy are lower than the theoretical values by about 0.5 eV for the isolated proton-membrane transfer model. Our analysis of the electronic potential energy surfaces along the normal to the transmission direction, obtained using correlated electronic structure methods, suggests that the aqueous environment is essential to stabilize the proton { as opposed to the hydrogenatom { transmission. Therefore, the process is examined within a molecular model of H 2O {more » H(D) + { material { H 2O. Exact quantum-mechanical scattering calculations are performed to assess the relevance of the nuclear quantum eects, such as tunneling factors and the kinetic isotope eect (KIE). Deuteration is found to aect the thermal reaction rate constants (KIE of 3-4 for hexagonal boron nitride and 20-30 for the graphene) and to eectively lower the barriers to the proton transfer by 0.2 and 0.4 eV for the two membranes, respectively. This lowering eect is reduced for the deuteron by approximately a factor of three. A more comprehensive description of the proton transmission is likely to require an extended explicit aqueous environment.« less

  6. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics

    NASA Astrophysics Data System (ADS)

    KC, Pratik; Rai, Amit; Ashton, Taylor S.; Moore, Arden L.

    2017-12-01

    The ability of graphene to serve as an ultrathin heat spreader has been previously demonstrated with impressive results. However, graphene is electrically conductive, making its use in contact with electronic devices problematic from a reliability and integration perspective. As an alternative, hexagonal boron nitride (h-BN) is a similarly structured material with large in-plane thermal conductivity but which possesses a wide band gap, thereby giving it potential to be utilized for directing contact, near-junction thermal management of electronics without shorting or the need for an insulating intermediate layer. In this work, the viability of using large area, continuous h-BN thin films as direct contact, near-junction heat spreaders for electronic devices is experimentally evaluated. Thin films of h-BN several square millimeters in size were synthesized via an atmospheric pressure chemical vapor deposition (APCVD) method that is both simple and scalable. These were subsequently transferred onto a microfabricated test device that simulated a multigate transistor while also allowing for measurements of the device temperature at various locations via precision resistance thermometry. Results showed that these large-area h-BN films with thicknesses of 77-125 nm are indeed capable of significantly lowering microdevice temperatures, with the best sample showing the presence of the h-BN thin film reduced the effective thermal resistance by 15.9% ± 4.6% compared to a bare microdevice at the same power density. Finally, finite element simulations of these experiments were utilized to estimate the thermal conductivity of the h-BN thin films and identify means by which further heat spreading performance gains could be attained.

  7. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  8. Ordering of lipid membranes altered by boron nitride nanosheets.

    PubMed

    Zhang, Yonghui; Li, Zhen; Chan, Chun; Ma, Jiale; Zhi, Chunyi; Cheng, Xiaolin; Fan, Jun

    2018-02-07

    Boron nitride nanosheets are novel promising nanomaterials with a lower cytotoxicity than graphene making them a better candidate for biomedical applications. However, there is no systematic study on how they interact with cell membranes. Here we employed large scale all-atom molecular dynamics simulations to provide molecular details of the structure and properties of membranes after the insertion of boron nitride nanosheets. Our results reveal that the boron nitride nanosheet can extract phospholipids from the lipid bilayers and is enveloped by the membrane. Afterwards, the acyl chains of lipid molecules re-orient and become more ordered. As a result, a fluid to gel phase transition occurs in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer. Consequently, the bending moduli of the bilayers increase, and the diffusivity of the individual lipid molecule decreases. These changes will affect relevant cellular activities, such as endocytosis and signal transduction. Our study provides novel insights into the biocompatibility and cytotoxicity of boron nitride nanosheets, which may facilitate the design of safer nanocarriers, antibiotics and other bio-nanotechnology applications.

  9. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less

  10. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  11. Hydrolytic Unzipping of Boron Nitride Nanotubes in Nitric Acid.

    PubMed

    Kim, Dukeun; Muramatsu, Hiroyuki; Kim, Yoong Ahm

    2017-12-01

    Boron nitride nanoribbons (BNNRs) have very attractive electrical and optical properties due to their unique edge states and width-related properties. Herein, for the first time, BNNRs were produced by a simple reflux of boron nitride nanotubes (BNNTs) in nitric acid containing water, which had led to unzipped sidewalls through hydrolysis. Their high reactivity that originated from edges was verified via a strong interaction with methylene blue.

  12. Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Wang, Jianbin; Regel, Liya L.; Wilcox, William R.

    2003-01-01

    An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.

  13. Dimensional Analysis and Extended Hydrodynamic Theory Applied to Long-Rod Penetration of Ceramics

    DTIC Science & Technology

    2016-07-01

    thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test...of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron ...since the mid 20th century. Popular candidate ceramics for such systems include alumina, aluminum nitride, boron carbide, silicon carbide, and titanium

  14. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.

    PubMed

    Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2017-05-23

    With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.

  15. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  16. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less

  17. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  18. Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism

    NASA Astrophysics Data System (ADS)

    Sonde, Sushant; Dolocan, Andrei; Lu, Ning; Corbet, Chris; Kim, Moon J.; Tutuc, Emanuel; Banerjee, Sanjay K.; Colombo, Luigi

    2017-06-01

    Chemical vapor deposition (CVD) of two-dimensional (2D) hexagonal boron nitride (h-BN) is at the center of numerous studies for its applications in novel electronic devices. However, a clear understanding of the growth mechanism is lacking for its wider industrial adoption on technologically relevant substrates such as SiO2. Here, we demonstrate a controllable growth method of thin, wafer scale h-BN films on arbitrary substrates. We also clarify the growth mechanism to be diffusion and surface segregation (D-SS) of boron (B) and nitrogen (N) in Ni and Co thin films on SiO2/Si substrates after exposure to diborane and ammonia precursors at high temperature. The segregation was found to be independent of the cooling rates employed in this report, and to our knowledge has not been found nor reported for 2D h-BN growth so far, and thus provides an important direction for controlled growth of h-BN. This unique segregation behavior is a result of a combined effect of high diffusivity, small film thickness and the inability to achieve extremely high cooling rates in CVD systems. The resulting D-SS h-BN films exhibit excellent electrical insulating behavior with an optical bandgap of about 5.8 eV. Moreover, graphene-on-h-BN field effect transistors using the as-grown D-SS h-BN films show a mobility of about 6000 cm2 V-1 s-1 at room temperature.

  19. Plasma induced sp 2 to sp 3 transition in boron nitride

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Cui, Q.; Li, X.; He, Z.; Li, W.; Ma, Y.; Guan, Q.; Gao, W.; Zou, G.

    2004-12-01

    The transition from sp 2 to sp 3 hybridization in boron nitride has been induced in plasma. Nano-crystals of cubic boron nitride (cBN) have been synthesized by direct current arc discharge method using hexagonal boron nitride (hBN) as the starting material. The characterization of the as-grown powders is carried out by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. It has been shown that cBN and hBN grains with 20-60 nm in size co-exist in the powders. A reaction route of sublimation - re-hybridization - crystallization had been put forward to explain the mechanism of the hybridization transition and the growth of cBN by this method.

  20. Dissolution and Characterization of Boron Nitride Nanotubes in Superacid.

    PubMed

    Kleinerman, Olga; Adnan, Mohammed; Marincel, Daniel M; Ma, Anson W K; Bengio, E Amram; Park, Cheol; Chu, Sang-Hyon; Pasquali, Matteo; Talmon, Yeshayahu

    2017-12-19

    Boron nitride nanotubes (BNNTs) are of interest for their unique combination of high tensile strength, high electrical resistivity, high neutron cross section, and low reactivity. The fastest route to employing these properties in composites and macroscopic articles is through solution processing. However, dispersing BNNTs without functionalization or use of a surfactant is challenging. We show here by cryogenic transmission electron microscopy that BNNTs spontaneously dissolve in chlorosulfonic acid as disentangled individual molecules. Electron energy loss spectroscopy of BNNTs dried from the solution confirms preservation of the sp 2 hybridization for boron and nitrogen, eliminating the possibility of BNNT functionalization or damage. The length and diameter of the BNNTs was statistically calculated to be ∼4.5 μm and ∼4 nm, respectively. Interestingly, bent or otherwise damaged BNNTs are filled by chlorosulfonic acid. Additionally, nanometer-sized synthesis byproducts, including boron nitride clusters, isolated single and multilayer hexagonal boron nitride, and boron particles, were identified. Dissolution in superacid provides a route for solution processing BNNTs without altering their chemical structure.

  1. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    NASA Astrophysics Data System (ADS)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  2. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  3. Order-disorder transition in a two-dimensional boron-carbon-nitride alloy

    NASA Astrophysics Data System (ADS)

    Lu, Jiong; Zhang, Kai; Feng Liu, Xin; Zhang, Han; Chien Sum, Tze; Castro Neto, Antonio H.; Loh, Kian Ping

    2013-10-01

    Two-dimensional boron-carbon-nitride materials exhibit a spectrum of electronic properties ranging from insulating to semimetallic, depending on their composition and geometry. Detailed experimental insights into the phase separation and ordering in such alloy are currently lacking. Here we report the mixing and demixing of boron-nitrogen and carbon phases on ruthenium (0001) and found that energetics for such processes are modified by the metal substrate. The brick-and-mortar patchwork observed of stoichiometrically percolated hexagonal boron-carbon-nitride domains surrounded by a network of segregated graphene nanoribbons can be described within the Blume-Emery-Griffiths model applied to a honeycomb lattice. The isostructural boron nitride and graphene assumes remarkable fluidity and can be exchanged entirely into one another by a catalytically assistant substitution. Visualizing the dynamics of phase separation at the atomic level provides the premise for enabling structural control in a two-dimensional network for broad nanotechnology applications.

  4. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  5. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers

    NASA Astrophysics Data System (ADS)

    Qiu, Yejun; Yu, Jie; Yin, Jing; Tan, Cuili; Zhou, Xiaosong; Bai, Xuedong; Wang, Enge

    2009-08-01

    Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B2O3) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B2O3 overcoatings were prepared by impregnating the S-PANFs with B2O3 ethanol solutions. By successive heat treatments at 800 °C in NH3/O2 mixture, 1100 °C in pure NH3, and 1500 °C in N2, the S-PANFs were fully removed and the B2O3 coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O2 during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B2O3 solution, and diameters from 43 to 230 nm were obtained by changing the B2O3 mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.

  6. Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers.

    PubMed

    Qiu, Yejun; Yu, Jie; Yin, Jing; Tan, Cuili; Zhou, Xiaosong; Bai, Xuedong; Wang, Enge

    2009-08-26

    Continuous boron nitride nanofibers (BNNFs) have been synthesized from boric oxide (B(2)O(3)) coatings deposited on stabilized electrospun polyacrylonitrile fibers (S-PANFs). The B(2)O(3) overcoatings were prepared by impregnating the S-PANFs with B(2)O(3) ethanol solutions. By successive heat treatments at 800 degrees C in NH(3)/O(2) mixture, 1100 degrees C in pure NH(3), and 1500 degrees C in N(2), the S-PANFs were fully removed and the B(2)O(3) coatings deflate to form solid fibers and transform into the BNNFs. The S-PANF template was fully removed by introducing O(2) during nitridation, and thus resulted in the formation of the BNNFs. The diameter of the BNNFs can be effectively controlled by changing the mass concentration of the B(2)O(3) solution, and diameters from 43 to 230 nm were obtained by changing the B(2)O(3) mass concentration from 0.25% to 4.8%. The obtained BNNFs are crystallized with the (002) planes oriented in parallel to the fiber axis. This method provides a powerful tool for obtaining BNNFs with controllable diameters, especially extremely thin BNNFs.

  7. Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties.

    PubMed

    Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj

    2013-06-20

    A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.

    PubMed

    Khatti, Zahra; Hashemianzadeh, Seyed Majid

    2016-06-10

    Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Low-Power Catalytic Gas Sensing

    DOE PAGES

    Harley-Trochimczyk, Anna; Pham, Thang; Chang, Jiyoung; ...

    2015-12-09

    We report that a high-surface-area, highly crystalline boron nitride aerogel synthesized with nonhazardous reactants has been loaded with crystalline platinum nanoparticles to form a novel nanomaterial that exhibits many advantages for use in a catalytic gas sensing application. The platinum nanoparticle-loaded boron nitride aerogel integrated onto a microheater platform allows for calorimetric propane detection. The boron nitride aerogel exhibits thermal stability up to 900 °C and supports disperse platinum nanoparticles, with no sintering observed after 24 h of high-temperature testing. The high thermal conductivity and low density of the boron nitride aerogel result in an order of magnitude faster responsemore » and recovery times (<2 s) than reported on alumina support and allow for 10% duty cycling of the microheater with no loss in sensitivity. Lastly, the resulting 1.5 mW sensor power consumption is two orders of magnitude less than commercially available catalytic gas sensors and unlocks the potential for wireless, battery-powered catalytic gas sensing.« less

  10. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  11. Morphological transformations of BNCO nanomaterials: Role of intermediates

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.

    2018-06-01

    Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.

  12. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  13. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-02-01

    Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

  14. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai; Zhang, Zuoguang

    2017-04-01

    Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 1020 atoms/cm2 were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  15. The Effect of Adjacent Materials on the Propagation of Phonon Polaritons in Hexagonal Boron Nitride.

    PubMed

    Kim, Kris S; Trajanoski, Daniel; Ho, Kevin; Gilburd, Leonid; Maiti, Aniket; van der Velden, Luuk; de Beer, Sissi; Walker, Gilbert C

    2017-07-06

    In order to apply the ability of hexagonal boron nitride (hBN) to confine energy in the form of hyperbolic phonon polariton (HPhP) modes in photonic-electronic devices, approaches to finely control and leverage the sensitivity of these propagating waves must be investigated. Here, we show that by surrounding hBN with materials of lower/higher dielectric responses, such as air and silicon, lower/higher surface momenta of HPhPs can be achieved. Furthermore, an alternative method for preparing thin hBN crystals with minimum contamination is presented, which provides opportunities to study the sensitivity of the damping mechanism of HPhPs on adsorbed materials. Infrared scanning near-field optical microscopy (IR-SNOM) results suggest that the reflections at the upper and lower hBN interfaces are primary causes of the damping of HPhPs, and that the damping coefficients of propagating waves are highly sensitive to adjacent layers, suggesting opportunities for sensor applications.

  16. Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study

    NASA Astrophysics Data System (ADS)

    Setoodeh, A. R.; Badjian, H.

    2017-12-01

    The most stable form of boron nitride polymorph naming hexagonal boron nitride sheet has recently been widely concerned like graphite due to its interesting features such as electrical insulation and high thermal conductivity. In this study, the molecular dynamic simulations are implemented to investigate the mechanical properties of single-layer graphene sheets under tensile and compressive loadings in the absence and presence of boron-nitride coating layers. In this introduced hybrid nanostructure, the benefit of combining both individual interesting features of graphene and boron-nitride sheets such as exceptional mechanical and electrical properties can be simultaneously achieved for future potential application in nano devices. The influences of chiral indices, boundary conditions and presence of mono-atomic vacancy defects as well as coating dimension on the mechanical behavior of the resulted hybrid structure are reported. The interatomic forces between the atoms are modeled by employing the AIREBO and Tersoff-Brenner potentials for carbon-carbon and boron-nitrogen atoms in each layer, respectively. Furthermore, the van der Waal interlayer forces of carbon-boron and carbon-nitrogen are estimated by the Lennard-Jones potential field. Besides the potential improvement in electrical and physical properties of the nanostructure, it is demonstrated that the buckling load capacity of the fully coated graphene sheet with 3% concentration of mono-atomic vacancy defects noticeably enhances by amounts of 24.1%.

  17. Effects of ultraviolet radiation on lattice imperfections in pyrolytic boron nitride.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Cooley, J. A.

    1971-01-01

    Pyrolitic boron nitride was exposed to 310 equivalent sun hours of ultraviolet radiation in a space environment simulator with the objective to evaluate its applicability as a pigment for a thermal control coating and to identify radiation damage using X-ray diffraction techniques. Lattice parameter comparisons show a definite increase in lattice imperfections in the crystal structure resulting from the ultraviolet irradiation. This sensitivity to radiation damage makes pyrolitic boron nitride unsuitable as a pigment for thermal control coating.

  18. High Temperature Oxidation of Boron Nitride. Part 1; Monolithic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Farmer, Serene; Moore, Arthur; Sayir, Haluk

    1997-01-01

    High temperature oxidation of monolithic boron nitride (BN) is examined. Hot pressed BN and both low and high density CVD BN were studied. It is shown that oxidation rates are quite sensitive to microstructural factors such as orientation, porosity, and degree of crystallinity. In addition small amounts of water vapor lead to volatilization of the B2O3 oxide as H(x)B(y)O(z). For these reasons, very different oxidation kinetics were observed for each type of BN.

  19. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less

  20. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  1. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  2. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  3. Plasma enhanced ultrastable self-powered visible-blind deep ultraviolet photodetector based on atomically thin boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Feng, Peter Xianping; Rivera, Manuel; Velazquez, Rafael; Aldalbahi, Ali

    We extend our work on the use of digitally controlled plasma deposition technique to synthesize high quality boron nitride nanosheets (BNNSs). The nanoscale morphologies and layered growth characteristics of the BNNSs were characterized using scanning electron microscope, transmission electron microscopy, and atomic force microscopy. The experimental data indicated each sample consists of multiple atomically thin, highly transparent BNNSs that overlap one another with certain orientations. Purity and structural properties were characterized by Raman scattering, XRD, FTIR and XPS. Based on these characterizations, 2D BNNSs based self-powered, visible blind deep UV detectors were designed, fabricated, and tested. The bias, temperature, and humidity effects on the photocurrent strength were investigated. A significant increase of signal-to-noise ratio after plasma treatment was observed. The fabricated photodetectors presented exceptional properties: a very stable baseline and a high sensitivity to weak intensities of radiation in both UVC and UVB range while remaining visible-blind, a high signal-to-noise ratio, and excellent repeatability even when the operating temperature was up to 400 0C. The shift in cutoff wavelength was also observed. This work is supported by the Army Research Office/DoD Grant (62826-RT-REP) and the ISPP#0058 at King Saud University.

  4. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  5. Evaluation of boron nitride nanotubes and hexagonal boron nitrides as nanocarriers for cancer drugs.

    PubMed

    Emanet, Melis; Şen, Özlem; Çulha, Mustafa

    2017-04-01

    Boron nitride nanotubes (BNNTs) and hexagonal boron nitrides (hBNs) are novel nanostructures with high mechanical strengths, large surface areas and excellent biocompatibilities. Here, the potential use of BNNTs and hBNs as nanocarriers was comparatively investigated for use with cancer drugs. Doxorubicin (Dox) and folate are used as model drugs and targeting agents, respectively. The obtained results indicate that BNNTs have about a threefold higher Dox loading capacity than hBNs. It was also found that cellular uptake of folate-Dox-BNNTs was much higher when compared with Dox-BNNTs for HeLa cells, due to the presence of folate receptors on the cell surface, leading to increased cancer cell death. In summary, folate and Dox conjugated BNNTs are promising agents in nanomedicine and may have potential drug delivery applications.

  6. Structure and Growth of Hexagonal Boron Nitride on Ir(111).

    PubMed

    Farwick Zum Hagen, Ferdinand H; Zimmermann, Domenik M; Silva, Caio C; Schlueter, Christoph; Atodiresei, Nicolae; Jolie, Wouter; Martínez-Galera, Antonio J; Dombrowski, Daniela; Schröder, Ulrike A; Will, Moritz; Lazić, Predrag; Caciuc, Vasile; Blügel, Stefan; Lee, Tien-Lin; Michely, Thomas; Busse, Carsten

    2016-12-27

    Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.

  7. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  8. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  9. Investigation of the Kinetic Energy Characterization of Advanced Ceramics

    DTIC Science & Technology

    2015-04-01

    of Science, under a US Army International Technology Center contract. These ceramic formulations were compared with standard armor-grade boron ...Experimental Methodology 1 3. Results and Discussion 4 3.1 Aluminum Performance Baseline 4 3.2 Ceramic Inspection 6 3.3 Boron Carbide 6 3.4 Silicon...Carbide 7 3.5 Boron Carbide–Aluminum Nitride 7 3.6 Boron Carbide–Vanadium Diboride 7 3.7 Titanium Nitride–Aluminum Nitride 8 3.8 Comparative

  10. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  11. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  12. Tubes of rhombohedral boron nitride

    NASA Astrophysics Data System (ADS)

    Bourgeois, L.; Bando, Y.; Sato, T.

    2000-08-01

    The structure of boron nitride bamboo-like tubular whiskers grown from boron nitride powder is investigated by high-resolution transmission electron microscopy. Despite the relatively small size of the tubes (20-200 nm in diameter), they all exhibit rhombohedral-like ordering in their layer stacking. The tubular sheets also tend to have their [10 bar 1 0] direction parallel to the fibre axis. Particles of iron alloys are commonly found encapsulated inside or at the end of the filaments. It is suggested that iron plays an active role in the growth of the fibres.

  13. Rigid thin windows for vacuum applications

    DOEpatents

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  14. Ion beam modification of the structure and properties of hexagonal boron nitride: An infrared and X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Aradi, E.; Naidoo, S. R.; Billing, D. G.; Wamwangi, D.; Motochi, I.; Derry, T. E.

    2014-07-01

    The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm-1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm.

  15. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams.

    PubMed

    Poppinga, D; Halbur, J; Lemmer, S; Delfs, B; Harder, D; Looe, H K; Poppe, B

    2017-09-05

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm -3 ) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  16. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  17. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  18. Untangling the Energetics and Dynamics of Boron Monoxide Radical Reactions (11BO; X2Sigma+)

    DTIC Science & Technology

    2015-04-15

    Reaction products of isoelectronic boron monoxide (BO), cyano (CN), ethynyl (CCH), and silicon nitride (SiN) radicals with acetylene and ethylene. 3.10...Isoelectronicity in the Reactions of the Cyano (CN), Boron Monoxide (BO), Silicon Nitride (SiN), and Ethynyl (C2H) Radicals with Unsaturated Hydrocarbons...AFRL-OSR-VA-TR-2015-0111 Untangling the Energetics and Dynamics of Boron Monoxide Radical Reactions Ralf Kaiser UNIVERSITY OF HAWAII SYSTEMS HONOLULU

  19. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    NASA Astrophysics Data System (ADS)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  20. The elevated temperature mechanical properties of silicon nitride/boron nitride fibrous monoliths

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Wayne

    A unique, all-ceramic material capable of non-brittle fracture via crack deflection has been characterized from 25sp°C through 1400sp°C. This material, called fibrous monoliths (FMs), was comprised of unidirectionally aligned 250 mum diameter cells of silicon nitride surrounded by 10 mum thick cell boundaries of boron nitride. Six weight percent yttria and two weight percent alumina were added to the silicon nitride to aid in densification. TEM experiments revealed that the sintering aids used to densify the silicon nitride cells were migrating into the boron nitride cell boundary during hot-pressing and that a fine network of micro-cracks existed between basal planes of boron nitride. Elevated temperature four point bending tests were performed on fibrous monolith ceramics from room temperature through 1400sp°C. Peak strengths of FMs averaged 510 MPa for specimens tested at room temperature through 176 MPa at 1400sp°C. Work of fractures ranged from 7300 J/msp2 to 3200 J/msp2 under the same temperature conditions. The interfacial fracture energy of boron nitride, GammasbBN, as a function of temperature has been determined using the Charalambides method. The fracture energy of boron nitride is approximately 40 J/msp2 and remained constant from 25sp°C through 950sp°C. A sharp increase in GammasbBN, to about 60 J/msp2, was observed at 1000sp°C-1050sp°C. This increase in GammasbBN was attributed to interactions of the crack tip with the cell boundary glassy phase. Subsequent measurements at 1075sp°C indicated a marked decrease in GammasbBN to near 40 J/msp2 before plateauing at 17-20 J/msp2 in the 1200sp°C-1300sp°C regime. The Mode I fracture toughness of silicon nitride was also determined using the single edge precracked beam method as a function of temperature. The He and Hutchinson model relating crack deflection at an interface to the Dundurs' parameter was applied to the current data set using the temperature dependent fracture energies of the boron nitride and the silicon nitride. A more refractory fibrous monolith was fabricated in an effort to extend the high temperature properties of SN/BN fibrous monoliths. Only 4 wt.% yttria was added to the silicon nitride to aid in densification. The presence of residual carbon following binder burnout was proposed to be responsible for the formation of melilite, a phase known to undergo severe oxidation between 900sp°C-1100sp°C. When residual carbon was removed prior to hot-pressing with a post-binder burnout heat treatment at 400sp°C in air this phase was not present. A room temperature strength of 553 MPa and a work of fracture of 6700 J/msp2 was observed. A strength of 293 MPa was measured at 1400sp°C.

  1. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings.

    PubMed

    Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman

    2018-06-01

    The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  2. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  3. The redox potential of boron nitride and implications for its use as a crucible material in experimental petrology

    NASA Technical Reports Server (NTRS)

    Wendlandt, R. F.; Huebner, J. S.; Harrison, W. J.

    1982-01-01

    The suitability of boron nitride for use as a crucible material in silicate and oxygen-bearing metal sulfide systems has been investigated. Boron nitride is unsatisfactory for use with many silicate systems because its presence in combination with a source of oxygen establishes the oxygen fugacity at values below that of the assemblage quartz + fayalite + iron, reducing transition metal ions such as Ni(2+) and Fe(2+) to the metallic state. B2O3, resulting from the oxidation of BN, acts as a flux to promote formation of melt.

  4. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  5. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  6. Plasma-Enhanced Pulsed Laser Deposition of Wide Bandgap Nitrides for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Triplett, G. E., Jr.; Durbin, S. M.

    2004-01-01

    The need for a reliable, inexpensive technology for small-scale space power applications where photovoltaic or chemical battery approaches are not feasible has prompted renewed interest in radioisotope-based energy conversion devices. Although a number of devices have been developed using a variety of semiconductors, the single most limiting factor remains the overall lifetime of the radioisotope battery. Recent advances in growth techniques for ultra-wide bandgap III-nitride semiconductors provide the means to explore a new group of materials with the promise of significant radiation resistance. Additional benefits resulting from the use of ultra-wide bandgap materials include a reduction in leakage current and higher operating voltage without a loss of energy transfer efficiency. This paper describes the development of a novel plasma-enhanced pulsed laser deposition system for the growth of cubic boron nitride semiconducting thin films, which will be used to construct pn junction devices for alphavoltaic applications.

  7. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    DTIC Science & Technology

    2015-03-01

    capacitance-voltage measurements indicating Frenkel-Poole (FP) and Fowler-Nordheim tunneling (FNT) are the primary current mechanisms before and after...linear FNT model and a 0.013 eV increase in the barrier potential for the FP model. There was a decrease of 0.19 eV in the tunneling potential for the...non-linear FNT model. Defects generated by the neutron damage increased currents by increasing trap assisted tunneling (TAT). v

  8. Pulsed laser deposition of single layer, hexagonal boron nitride (white graphene, h-BN) on fiber-oriented Ag(111)/SrTiO3(001)

    NASA Astrophysics Data System (ADS)

    Velázquez, Daniel; Seibert, Rachel; Man, Hamdi; Spentzouris, Linda; Terry, Jeff

    2016-03-01

    We report on the growth of 1-10 ML films of hexagonal boron nitride (h-BN), also known as white graphene, on fiber-oriented Ag buffer films on SrTiO3(001) by pulsed laser deposition. The Ag buffer films of 40 nm thickness were used as substitutes for expensive single crystal metallic substrates. In-situ, reflection high-energy electron diffraction was used to monitor the surface structure of the Ag films and to observe the formation of the characteristic h-BN diffraction pattern. Further evidence of the growth of h-BN was provided by attenuated total reflectance spectroscopy, which showed the characteristic h-BN peaks at ˜780 cm-1 and 1367.4 cm-1. Ex-situ photoelectron spectroscopy showed that the surface of the h-BN films is stoichiometric. The physical structure of the films was confirmed by scanning electron microscopy. The h-BN films grew as large, sub-millimeter sheets with nano- and micro-sheets scattered on the surface. The h-BN sheets can be exfoliated by the micromechanical adhesive tape method. Spectral analysis was performed by energy dispersive spectroscopy in order to identify the h-BN sheets after exfoliation. The use of thin film Ag allows for reduced use of Ag and makes it possible to adjust the surface morphology of the thin film prior to h-BN growth.

  9. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  10. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  11. Synthesis of Continuous Boron Nitride Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Li, Xia; Wen, G.; Zhang, Tao; Xia, Long; Zhong, Bo; Fan, Shaoyu

    Continuous boron nitride nanofibers (BNNFs) have been gotten by electrospinning. The appropriate precursor of BNNFs was electrospinned to green born nitride nanofibers (GBNNFs) with temperatures from 80°C to 100°C in the protection of N2. By successive heat treatments in N2, the organics in GBNNFs disappeared and BN ceramics nanofibers came into being. The average diameters of BNNFs by electrospinning are less than 10 μm

  12. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.

    PubMed

    Choi, David; Poudel, Nirakar; Park, Saungeun; Akinwande, Deji; Cronin, Stephen B; Watanabe, Kenji; Taniguchi, Takashi; Yao, Zhen; Shi, Li

    2018-04-04

    Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO 2 /Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO 2 /Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO 2 /Si, resulting in a larger degree of temperature reduction.

  13. Via Method for Lithography Free Contact and Preservation of 2D Materials.

    PubMed

    Telford, Evan J; Benyamini, Avishai; Rhodes, Daniel; Wang, Da; Jung, Younghun; Zangiabadi, Amirali; Watanabe, Kenji; Taniguchi, Takashi; Jia, Shuang; Barmak, Katayun; Pasupathy, Abhay N; Dean, Cory R; Hone, James

    2018-02-14

    Atomically thin 2D materials span the common components of electronic circuits as metals, semiconductors, and insulators, and can manifest correlated phases such as superconductivity, charge density waves, and magnetism. An ongoing challenge in the field is to incorporate these 2D materials into multilayer heterostructures with robust electrical contacts while preventing disorder and degradation. In particular, preserving and studying air-sensitive 2D materials has presented a significant challenge since they readily oxidize under atmospheric conditions. We report a new technique for contacting 2D materials, in which metal via contacts are integrated into flakes of insulating hexagonal boron nitride, and then placed onto the desired conducting 2D layer, avoiding direct lithographic patterning onto the 2D conductor. The metal contacts are planar with the bottom surface of the boron nitride and form robust contacts to multiple 2D materials. These structures protect air-sensitive 2D materials for months with no degradation in performance. This via contact technique will provide the capability to produce "atomic printed circuit boards" that can form the basis of more complex multilayer heterostructures.

  14. Bridgman Growth of GeSi Alloys in a Static Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.

    1998-01-01

    Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.

  15. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M., E-mail: neekamal@srttu.edu

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energymore » of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.« less

  16. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    PubMed

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  17. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    PubMed

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  19. Two-dimensional flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  20. Two-dimensional flexible nanoelectronics.

    PubMed

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-17

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  1. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J. C.; Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3A 3A7; Jha, S. K., E-mail: skylec@gmail.com, E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  2. Program for the development of high temperature electrical materials and components

    NASA Technical Reports Server (NTRS)

    Neff, W. S.; Lowry, L. R.

    1972-01-01

    Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.

  3. Inter-layer potential for hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  4. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  5. Novel Crystal Structure C60 Nanowire

    NASA Astrophysics Data System (ADS)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  6. Structural Characterization of Atomically Thin Hexagonal Boron Nitride via Raman Spectroscopy

    DTIC Science & Technology

    2014-03-27

    thickness and the use of depth profiling to maximize spectral returns. Chapter 3 also outlines the experimental set-up and procedures related to...section. 46 Figure 4.8: Unaltered spectral return of both Site 1 (A) and Site 2 ( B ). As to be expected the relative intensity of the Raman...Dent, Modern Raman Spectroscopy : A Practical Approach. Wiley, 2006, p. 224. 59 25. A. B . Kaul, E. W . Wong, L. Epp, and B . D. Hunt, “Two

  7. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  8. Boron nitride as desalting material in combination with phosphopeptide enrichment in shotgun proteomics.

    PubMed

    Furuhashi, Takeshi; Nukarinen, Ella; Ota, Shigenori; Weckwerth, Wolfram

    2014-05-01

    Hydrophilic peptides in shotgun proteomics have been shown to be problematic in conventional chromatography. Typically, C18 solid phase extraction or peptide traps are used for desalting the sample prior to mass spectrometry analysis, but the capacity to retain hydrophilic peptides is not very high, causing a bias toward more hydrophobic peptides. This is particularly problematic in phosphoproteomic studies. We tested the compatibility of commercially available boron nitride as a novel material for peptide desalting. Boron nitride can be used to recover a wide range of peptides with different physicochemical properties comparable to combined C18 and graphite carbon material. Copyright © 2014. Published by Elsevier Inc.

  9. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  10. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-06

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

  11. Tunable Ultrafast Photon Source and Imaging System for Studying Carrier Dynamics in Graphene Devices

    DTIC Science & Technology

    2015-07-23

    structure systems (for example of graphene and boron nitride ). Figure 2 shows the homebuilt Raman spectroscopy setup in our lab which uses two...pseudo-Dirac points in the band structure. In a run up to these studies, we have also developed a technique to optically image boron nitride flakes with...2) Dheeraj Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, Brian J. LeRoy, Arvinder Sandhu, “Optical thickness determination of hexagonal boron

  12. First-principles study of plutonium adsorption on perfect and defective graphene and hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Li, Shujing; Zhou, Mei; Li, Menglei; Wang, Xiaohui; Zheng, Fawei; Zhang, Ping

    2018-05-01

    The adsorption of the Pu atom on perfect and defective graphene and hexagonal boron nitride (h-BN) sheet has been systematically investigated by using first-principles calculations. Pu atom is most likely to trap at the hollow site in pure graphene, and the energy barrier is as high as 78.3 meV. For ideal h-BN, the top site of the boron atom is the most stable adsorption site for adatom Pu, and the maximal energy barrier is only 12 meV. Comparing Pu on pure graphene and h-BN sheet, Pu atom is easy to migrate on the surface of ideal h-BN at room temperature, while it is bound to perfect graphene. Besides, Pu atom adsorbed on defective graphene and h-BN sheet, with large adsorption energies in the range of 2.66 ∼ 14.95 eV, is more stable than that on pure graphene and h-BN sheet. We have also found that all the adsorption systems are spin-polarized with the largest magnetic moments of Pu to be 7.67 μ B on graphene and 6.71 μ B on h-BN with a single vacancy of N atom. These findings suggest that graphene and h-BN two-dimensional materials can be effectively applied in the growth of high-quality plutonium single crystal thin films, as well as in nuclear waste recovery.

  13. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  14. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  15. Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si 3N 4-BN Composite Ceramic Preparation

    NASA Astrophysics Data System (ADS)

    Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.

    1997-10-01

    Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.

  16. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.

    PubMed

    Tocci, Gabriele; Joly, Laurent; Michaelides, Angelos

    2014-12-10

    Friction is one of the main sources of dissipation at liquid water/solid interfaces. Despite recent progress, a detailed understanding of water/solid friction in connection with the structure and energetics of the solid surface is lacking. Here, we show for the first time that ab initio molecular dynamics can be used to unravel the connection between the structure of nanoscale water and friction for liquid water in contact with graphene and with hexagonal boron nitride. We find that although the interface presents a very similar structure between the two sheets, the friction coefficient on boron nitride is ≈ 3 times larger than that on graphene. This comes about because of the greater corrugation of the energy landscape on boron nitride arising from specific electronic structure effects. We discuss how a subtle dependence of the friction on the atomistic details of a surface, which is not related to its wetting properties, may have a significant impact on the transport of water at the nanoscale, with implications for the development of membranes for desalination and for osmotic power harvesting.

  17. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    PubMed Central

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-01-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks. PMID:27388704

  18. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    NASA Astrophysics Data System (ADS)

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-07-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks.

  19. Viscoelastic Behavior of PDMS Filled with Boron Nitrides

    NASA Astrophysics Data System (ADS)

    Bian, J. F.; Weinkauf, D. H.; Jeon, H. S.

    2004-03-01

    The addition of high thermal conductive filler particles such as boron nitride, aluminum nitride, or carbon fiber is an effective way to increase the thermal conductivity of polymeric materials for the industrial applications such as electronic packaging materials, encapsulants, and thermal fluids among others. The effects of particle dispersions, concentrations, and the interactions between BN and polymer matrix on the viscoelastic properties of the boron nitride (BN)/polydimethylsiloxane (PDMS) composites prepared by mechanical mixing are investigated using oscillatory shear rheology. Both untreated and plasma treated boron nitride (BNP) particles with hexafluoropropylene oxide monomers have been used in this study. The addition of the plasma treated BN particles to the PDMS matrix decrease significantly the complex viscosity as well as storage and loss modulus of the composites due to the reduced interfacial energy between the surface of BNP and PDMS chains. For the PDMS/BN and PDMS/BNP composites, the maximum volume packing fraction ( ˜0.4) of the particles has been determined from the complex viscosity as a function of the frequency. Additionally, the shear-induced alignment of the BN particles dispersed in the PDMS matrix decreases the viscoelastic properties of the composites with the irregular oscillations which is related to the network formation of dispersed BN particles at the higher volume fractions (> ˜0.2).

  20. Optical Boron Nitride Insulator Erosion Characterization of a 200 W Xenon Hall Thruster

    DTIC Science & Technology

    2005-05-01

    Hall thruster boron nitride insulator is evaluated as a diagnostic for real-time evaluation of thruster insulator erosion. Three Hall thruster plasma control variables are examined: ion energy (discharge potential), ion flux (propellant flow), and plasma conductivity (magnetic field strength). The boron emission, and hence the insulator erosion rate, varies linearly with ion energy and ion flux. A minimum erosion rate appears at intermediate magnetic field strengths. This may indicate that local plasma conductivity significantly affects the divergence

  1. Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.

    PubMed

    Vuković, Lela; Vokac, Elizabeth; Král, Petr

    2014-06-19

    We reveal by classical molecular dynamics simulations electroosmotic flows in thin neutral carbon (CNT) and boron nitride (BNT) nanotubes filled with ionic solutions of hydrated monovalent atomic ions. We observe that in (12,12) BNTs filled with single ions in an electric field, the net water velocity increases in the order of Na(+) < K(+) < Cl(-), showing that different ions have different power to drag water in thin nanotubes. However, the effect gradually disappears in wider nanotubes. In (12,12) BNTs containing neutral ionic solutions in electric fields, we observe net water velocities going in the direction of Na(+) for (Na(+), Cl(-)) and in the direction of Cl(-) for (K(+), Cl(-)). We hypothesize that the electroosmotic flows are caused by different strengths of friction between ions with different hydration shells and the nanotube walls.

  2. Towards NV-based magnetic sensing in the time domain

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Sumarac, Tamara; Lovchinsky, Igor; Landig, Renate; Sanchez-Yamagishi, Javier; Andersen, Trond; Park, Hongkun; Lukin, Mikhail

    2017-04-01

    The study of protein folding dynamics is an outstanding problem in the biological sciences. We show that nitrogen-vacancy (NV) centers in diamond can be used to dynamically sense the conformational states of individual proteins under ambient conditions. We present preliminary data on time-domain detection of electronic spin labels which were chemically attached to the proteins, as well as label-free detection of native hydrogen nuclear spins within the protein. In addition, we discuss work towards polarizing boron-11 spins in atomically-thin hexagonal boron nitride using Hartmann-Hahn double resonance, with the ultimate goal of studying many-body spin dynamics and performing quantum simulation. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1144152.

  3. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    PubMed

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  4. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, A.; Grenadier, S. J.; Li, J.

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  5. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors

    DOE PAGES

    Maity, A.; Grenadier, S. J.; Li, J.; ...

    2017-07-17

    Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.

  6. Boron nitride encapsulated graphene infrared emitters

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-03-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  7. N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties

    NASA Astrophysics Data System (ADS)

    Habibpour, Razieh; Kashi, Eslam; Vazirib, Raheleh

    2018-03-01

    The electronic and chemical properties of N-doped hybrid graphene and boron nitride armchair nanoribbons (N-doped a-GBNNRs) in comparison with graphene armchair nanoribbon (pristine a-GNR) and hybrid graphene and boron nitride armchair nanoribbon (C-3BN) are investigated using the density functional theory method. The results show that all the mentioned nanoribbons are nonmagnetic direct semiconductors and all the graphitic N-doped a-GBNNRs are n-type semiconductors while the rest are p-type semiconductors. The N-doped graphitic 2 and N-doped graphitic 3 structures have the lowest work function and the highest number of valence electrons (Lowdin charges) which confirms that they are effective for use in electronic device applications.

  8. Large-area few-layer hexagonal boron nitride prepared by quadrupole field aided exfoliation

    NASA Astrophysics Data System (ADS)

    Lun Lu, Han; Zhi Rong, Min; Qiu Zhang, Ming

    2018-03-01

    A quadrupole electric field-mediated exfoliation method is proposed to convert micron-sized hexagonal boron nitride (h-BN) powder into few-layer hexagonal boron nitride nanosheets (h-BNNS). Under optimum conditions (400 Hz, 40 V, 32 μg ml-1, sodium deoxycholate, TAE medium), the h-BN powders (thickness >200 nm, horizontal scale ˜10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering and atomic force microscope data show that the yield is 47.6% (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers).

  9. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for openingmore » and modulating a bandgap in graphene as high as several hundred meV.« less

  10. Conductive multi-walled boron nitride nanotubes by catalytic etching using cobalt oxide.

    PubMed

    Kim, Do-Hyun; Jang, Ho-Kyun; Kim, Min-Seok; Kim, Sung-Dae; Lee, Dong-Jin; Kim, Gyu Tae

    2017-01-04

    Boron nitride nanotubes (BNNTs) are ceramic compounds which are hardly oxidized below 1000 °C due to their superior thermal stability. Also, they are electrically almost insulators with a large band gap of 5 eV. Thus, it is a challenging task to etch BNNTs at low temperature and to convert their electrical properties to a conductive behavior. In this study, we demonstrate that BNNTs can be easily etched at low temperature by catalytic oxidation, resulting in an electrically conductive behavior. For this, multi-walled BNNTs (MWBNNTs) impregnated with Co precursor (Co(NO 3 ) 2 ·6H 2 O) were simply heated at 350 °C under air atmosphere. As a result, diverse shapes of etched structures such as pits and thinned walls were created on the surface of MWBNNTs without losing the tubular structure. The original crystallinity was still kept in the etched MWBNNTs in spite of oxidation. In the electrical measurement, MWBNNTs with a large band gap were converted to electrical conductors after etching by catalytic oxidation. Theoretical calculations indicated that a new energy state in the gap and a Fermi level shift contributed to MWBNNTs being conductive.

  11. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    PubMed

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  12. Anomalous thermal conductivity of monolayer boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabarraei, Alireza, E-mail: atabarra@uncc.edu; Wang, Xiaonan

    In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate themore » mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.« less

  13. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene.

    PubMed

    Morchutt, Claudius; Björk, Jonas; Krotzky, Sören; Gutzler, Rico; Kern, Klaus

    2015-02-11

    Polymerization of 1,3,5-tris(4-bromophenyl)benzene via dehalogenation on graphene and hexagonal boron nitride is investigated by scanning tunneling microscopy experiments and density functional theory calculations. This work reveals how the interactions between molecules and graphene or h-BN grown on Ni(111) govern the surface-confined synthesis of polymers through C-C coupling.

  14. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  15. Polymer/boron nitride nanocomposite materials for superior thermal transport performance.

    PubMed

    Song, Wei-Li; Wang, Ping; Cao, Li; Anderson, Ankoma; Meziani, Mohammed J; Farr, Andrew J; Sun, Ya-Ping

    2012-06-25

    Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization

    DOE PAGES

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; ...

    2015-10-16

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here in this study, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  17. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.

    PubMed

    Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2014-11-25

    Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.

  18. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  19. Ab initio study of boron nitride lines on graphene

    NASA Astrophysics Data System (ADS)

    Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.

  20. Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed A.; Fadlallah, Mohamed M.; Badawi, Ashraf; Maarouf, Ahmed A.

    2016-07-01

    Molecular adsorption on surfaces is a key element for many applications, including sensing and catalysis. Non-invasive sugar sensing has been an active area of research due to its importance to diabetes care. The adsorption of sugars on a template surface study is at the heart of matter. Here, we study doped hexagonal boron nitride sheets (h-BNNs) as adsorbing and sensing template for glucose and glucosamine. Using first principles calculations, we find that the adsorption of glucose and glucosamine on h-BNNs is significantly enhanced by the substitutional doping of the sheet with Al and Ga. Including long range van der Waals corrections gives adsorption energies of about 2 eV. In addition to the charge transfer occurring between glucose and the Al/Ga-doped BN sheets, the adsorption alters the size of the band gap, allowing for optical detection of adsorption. We also find that Al-doped boron nitride sheet is better than Ga-doped boron nitride sheet to enhance the adsorption energy of glucose and glucosamine. The results of our work can be potentially utilized when designing support templates for glucose and glucosamine.

  1. Hybridized boron-carbon nitride fibrous nanostructures on Ni substrates

    NASA Astrophysics Data System (ADS)

    Yap, Yoke Khin; Yoshimura, Masashi; Mori, Yusuke; Sasaki, Takatomo

    2002-04-01

    Stoichiometric BC2N films can be deposited on Si (100) at 800 °C, however, they are phase separated as pure carbon and BN phases. Likewise, hybridized boron-carbon nitride (BCN) films can be synthesized on Ni substrates. On Ni, the carbon and BN phases are hybridized through carbon nitride and boron carbide bonds. These films appeared as fibrous nanostructures. Evidence indicates that the Ni substrate acts as a sink for the carbon and forces the carbon composites to grow on top of the B and N atoms. However, as these films are grown thicker, phase separation occurs again. These results indicate that hybridized BCN phases should now be regarded as semiconducting or superhard nanostructures. High-temperature deposition on Ni substrates might be a solution to the obstacle of preparing hybridized BCN phases.

  2. The mechanical design of hybrid graphene/boron nitride nanotransistors: Geometry and interface effects

    NASA Astrophysics Data System (ADS)

    Einalipour Eshkalak, Kasra; Sadeghzadeh, Sadegh; Jalaly, Maisam

    2018-02-01

    From electronic point of view, graphene resembles a metal or semi-metal and boron nitride is a dielectric material (band gap = 5.9 eV). Hybridization of these two materials opens band gap of the graphene which has expansive applications in field-effect graphene transistors. In this paper, the effect of the interface structure on the mechanical properties of a hybrid graphene/boron nitride was studied. Young's modulus, fracture strain and tensile strength of the models were simulated. Three likely types (hexagonal, octagonal and decagonal) were found for the interface of hybrid sheet after relaxation. Although Csbnd B bonds at the interface were indicated to result in more promising electrical properties, nitrogen atoms are better choice for bonding to carbon for mechanical applications.

  3. Boron nitride encapsulated graphene infrared emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devicesmore » and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.« less

  4. Method and device to synthesize boron nitride nanotubes and related nanoparticles

    DOEpatents

    Zettl, Alexander K.

    2016-07-19

    Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.

  5. Shock-induced reaction synthesis of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Beason, M. T.; Pauls, J. M.; Gunduz, I. E.; Rouvimov, S.; Manukyan, K. V.; Matouš, K.; Son, S. F.; Mukasyan, A.

    2018-04-01

    Here, we report ultra-fast (0.1-5 μs) shock-induced reactions in the 3B-TiN system, leading to the direct synthesis of cubic boron nitride, which is extremely rare in nature and is the second hardest material known. Composite powders were produced through high-energy ball milling to provide intimate mixing and subsequently shocked using an explosive charge. High-resolution transmission electron microscopy and X-ray diffraction confirm the formation of nanocrystalline grains of c-BN produced during the metathetical reaction between boron and titanium nitride. Our results illustrate the possibility of rapid reactions enabled by high-energy ball milling possibly occurring in the solid state on incredibly short timescales. This process may provide a route for the discovery and fabrication of advanced compounds.

  6. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less

  7. Large Area Few Layers Hexagonal Boron Nitride Prepared by Quadrupole Field Aided Exfoliation.

    PubMed

    Hanlun, Lu; Rong, Min Zhi; Zhang, Ming Qiu

    2018-01-16

    A quadrupole electric field mediated exfoliation method is proposed to convert micron sized hexagonal boron nitride (hBN) powders into few layers hexagonal boron nitride nano-sheets (h-BNNS). Under the optimum conditions (400 Hz, 40 V, 32μg/mL, sodium deoxycholate, TAE medium), the hBN powders (thickness > 200 nm, horizontal scale ~ 10 μm) are successfully exfoliated into 0.5-4 nm (1-10 layers) thick h-BNNS with the same horizontal scale. Dynamic laser scattering (DLS) and atomic force microscope (AFM) statistics show that the yield is 47.6 % (for the portion with the thickness of 0.5-6 nm), and all of the vertical sizes are reduced to smaller than 18 nm (45 layers). © 2018 IOP Publishing Ltd.

  8. Origin of band gaps in graphene on hexagonal boron nitride

    PubMed Central

    Jung, Jeil; DaSilva, Ashley M.; MacDonald, Allan H.; Adam, Shaffique

    2015-01-01

    Recent progress in preparing well-controlled two-dimensional van der Waals heterojunctions has opened up a new frontier in materials physics. Here we address the intriguing energy gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron nitride substrate, demonstrating that they are produced by an interesting interplay between structural and electronic properties, including electronic many-body exchange interactions. Our theory is able to explain the observed gap behaviour by accounting first for the structural relaxation of graphene’s carbon atoms when placed on a boron nitride substrate, and then for the influence of the substrate on low-energy π-electrons located at relaxed carbon atom sites. The methods we employ can be applied to many other van der Waals heterojunctions. PMID:25695638

  9. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.

    2008-02-01

    Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.

  10. Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations

    DTIC Science & Technology

    2015-08-01

    been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels

  11. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment

    PubMed Central

    Li, Xia; Wang, Xiupeng; Zhang, Jun; Hanagata, Nobutaka; Wang, Xuebin; Weng, Qunhong; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2017-01-01

    High global incidence of prostate cancer has led to a focus on prevention and treatment strategies to reduce the impact of this disease in public health. Boron compounds are increasingly recognized as preventative and chemotherapeutic agents. However, systemic administration of soluble boron compounds is hampered by their short half-life and low effectiveness. Here we report on hollow boron nitride (BN) spheres with controlled crystallinity and boron release that decrease cell viability and increase prostate cancer cell apoptosis. In vivo experiments on subcutaneous tumour mouse models treated with BN spheres demonstrated significant suppression of tumour growth. An orthotopic tumour growth model was also utilized and further confirmed the in vivo anti-cancer efficacy of BN spheres. Moreover, the administration of hollow BN spheres with paclitaxel leads to synergetic effects in the suppression of tumour growth. The work demonstrates that hollow BN spheres may function as a new agent for prostate cancer treatment. PMID:28059072

  12. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C — Beyond Grades 91, 92 and 122

    NASA Astrophysics Data System (ADS)

    Abe, Fujio; Tabuchi, M.; Tsukamoto, S.

    Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.

  13. Performance, Stability, and Plume Characterization of the HERMeS Thruster with Boron Nitride Silica Composite Discharge Channel

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Gilland, James H.; Haag, Thomas W.; Mackey, Jonathan; Yim, John; Pinero, Luis; Williams, George; Peterson, Peter; Herman, Daniel

    2017-01-01

    NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.

  14. Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Y.; Grush, M.; Callcott, T.A.

    1997-04-01

    Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reactionmore » process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.« less

  15. Environmental Electrometry with Luminescent Carbon Nanotubes.

    PubMed

    Noé, Jonathan C; Nutz, Manuel; Reschauer, Jonathan; Morell, Nicolas; Tsioutsios, Ioannis; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Bachtold, Adrian; Högele, Alexander

    2018-06-25

    We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.

  16. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE PAGES

    Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.; ...

    2017-06-19

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  17. A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route

    NASA Astrophysics Data System (ADS)

    Salles, Vincent; Bernard, Samuel; Brioude, Arnaud; Cornu, David; Miele, Philippe

    2010-02-01

    Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments.Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments. Electronic supplementary information (ESI) available: Experimental details and EDX results. See DOI: 10.1039/b9nr00185a

  18. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches

    PubMed Central

    Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng

    2017-01-01

    Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532

  19. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  20. Fluid synthesis and structure of a new polymorphic modification of boron nitride

    NASA Astrophysics Data System (ADS)

    Pokropivny, V. V.; Smolyar, A. S.; Ovsiannikova, L. I.; Pokropivny, A. V.; Kuts, V. A.; Lyashenko, V. I.; Nesterenko, Yu. V.

    2013-04-01

    A new previously unknown phase of boron nitride with a hardness of 0.41-0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286-0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm-1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.

  1. Boron nitride microfibers grown by plasma-assisted laser chemical vapor deposition without a metal catalyst

    NASA Astrophysics Data System (ADS)

    Komatsu, Shojiro; Kazami, Daisuke; Tanaka, Hironori; Shimizu, Yoshiki; Moriyoshi, Yusuke; Shiratani, Masaharu; Okada, Katsuyuki

    2006-04-01

    Boron nitride fibers were found to grow on polycrystalline nickel and Si (100) substrates by plasma-assisted laser chemical vapor deposition from B2H6+NH3 using an excimer laser at 193nm. Their diameter was typically a few hundreds of nanometers, while the length was a few tens of micrometers. They were stoichiometric or boron-rich BN in chemical composition. When the substrate was rotated during deposition, spiral fibers were found to grow. We conclude that they grew with the help of laser light by other than the vapor - liquid - solid mechanism.

  2. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    PubMed

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  3. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  4. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teii, K., E-mail: teii@asem.kyushu-u.ac.jp; Ito, H.; Katayama, N.

    2015-02-07

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp{sup 2}-bonded boron nitride (sp{sup 2}BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp{sup 2}BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 10{sup 4} at ±10 V of biasing with increasing the sp{sup 2}BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation ofmore » the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp{sup 2}BN thickness. The forward current follows the Frenkel-Poole emission model in the sp{sup 2}BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp{sup 2}BN interlayer, while that of the major carriers for forward current is much less affected.« less

  5. Sputtering Erosion in Ion and Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1996-01-01

    Low energy sputtering of molybdenum, tantalum and boron nitride with xenon ions are being studied using secondary neutral and secondary ion mass spectrometry (SNMS/SIMS). An ultrahigh vacuum chamber was used to conduct the experiment at a base pressure of 1x10(exp -9) torr. The primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a spot size of approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and 90 deg to the primary ion beam direction. SNMS and SIMS spectra were collected at various incident angles and different ion energies. For boron nitride sputtering, the target was flooded with an electron beam to neutralize the charge buildup on the surface. In the SNMS mode, sputtering of Mo and Ta can be detected at an ion energy as low as 100 eV whereas in boron nitride the same was observed up to an energy of 300 eV. However, in the positive-SIMS mode, the sputtering of Mo was observed at 10 eV incident ion energy. The SIMS spectra obtained for boron nitride clearly identifies the two isotopes of boron as well as cluster ions such as B2(sup +) and molecular ions such as BN(sup +). From the angle versus yields measurements, it was found that the maximum SNMS yield shifts towards lower incident angles at low ion energies for all three samples.

  6. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.

    PubMed

    Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael

    2017-05-17

    In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.

  7. High temperature thermal management with boron nitride nanosheets.

    PubMed

    Wang, Yilin; Xu, Lisha; Yang, Zhi; Xie, Hua; Jiang, Puqing; Dai, Jiaqi; Luo, Wei; Yao, Yonggang; Hitz, Emily; Yang, Ronggui; Yang, Bao; Hu, Liangbing

    2017-12-21

    The rapid development of high power density devices requires more efficient heat dissipation. Recently, two-dimensional layered materials have attracted significant interest due to their superior thermal conductivity, ease of production and chemical stability. Among them, hexagonal boron nitride (h-BN) is electrically insulating, making it a promising thermal management material for next-generation electronics. In this work, we demonstrated that an h-BN thin film composed of layer-by-layer laminated h-BN nanosheets can effectively enhance the lateral heat dissipation on the substrate. We found that by using the BN-coated glass instead of bare glass as the substrate, the highest operating temperature of a reduced graphene oxide (RGO) based device could increase from 700 °C to 1000 °C, and at the same input power, the operating temperature of the RGO device is effectively decreased. The remarkable performance improvement using the BN coating originates from its anisotropic thermal conductivity: a high in-plane thermal conductivity of 14 W m -1 K -1 for spreading and a low cross-plane thermal conductivity of 0.4 W m -1 K -1 to avoid a hot spot right underneath the device. Our results provide an effective approach to improve the heat dissipation in integrated circuits and high power devices.

  8. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layersmore » were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.« less

  9. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  10. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-07-11

    MATERIALY, No 2, Mar-Apr 88) , 19 Formation of Multilayer Polytypes Based on Diamond or Sphaleritic Boron Nitride Under High Pressures at High...in Compact Modifications of Boron Nitride (V. B, Shipilo, et al,; SVERKHTVERDYYE MATERIALY, No 2, Mar-Apr 88) 20 Change in Electrical...25CrMnNiMoTi alloy steel were first refined by heat treatment and then, covered with a heat-absorbent MnP04 coating , treated with a laser beam

  11. Gate-dependent Pseudospin Mixing in Graphene/boron Nitride Moire Superlattices

    DTIC Science & Technology

    2014-08-31

    LETTERS PUBLISHED ONLINE: 31 AUGUST 2014 | DOI : 10.1038/NPHYS3075 Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices... Dirac –Weyl spinors with a two-component pseudospin1–12. The unique pseudospin structure of Dirac electrons leads to emerging phenomena such as the...massless Dirac cone2, anomalous quantum Hall eect2,3, and Klein tunnelling4,5 in graphene. The capability to manipulate electron pseudospin is highly

  12. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    PubMed

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  13. Purification of boron nitride nanotubes via polymer wrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353

    2013-03-15

    Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less

  14. Simulation of STM technique for electron transport through boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ganji, M. D.; Mohammadi-nejad, A.

    2008-06-01

    We report first-principles calculations on the electrical transport properties of boron-nitrid nanotubes (BNNTs). We consider a single walled (5,0) boron-nitrid nanotube sandwiched between an Au(1 0 0) substrate and a monatomic Au scanning tunneling microscope (STM) tip. Lateral motion of the tip over the nanotube wall cause it to change from one conformation class to the others and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BNNT/Au nanowires are shown to be a convenient switch. Experiments with a conventional STM are proposed to test these predictions. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe systems at zero bias are analyzed, and it suggests that the variation of the coupling between the wire and the electrodes leads to switching behaviour.

  15. UV absorption in metal decorated boron nitride flakes: a theoretical analysis of excited states

    NASA Astrophysics Data System (ADS)

    Chopra, Siddheshwar; Plasser, Felix

    2017-10-01

    The excited states of single metal atom (X = Co, Al and Cu) doped boron nitride flake (MBNF) B15N14H14-X and pristine boron nitride (B15N15H14) are studied by time-dependent density functional theory. The immediate effect of metal doping is a red shift of the onset of absorption from about 220 nm for pristine BNF to above 300 nm for all metal-doped variants with the biggest effect for MBNF-Co, which shows appreciable intensity even above 400 nm. These energy shifts are analysed by detailed wavefunction analysis protocols using visualisation methods, such as the natural transition orbital analysis and electron-hole correlation plots, as well as quantitative analysis of the exciton size and electron-hole populations. The analysis shows that the Co and Cu atoms provide strong contributions to the relevant states whereas the aluminium atom is only involved to a lesser extent.

  16. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Bin; Wang, Peng; Pan, Cheng

    2015-07-20

    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine themore » twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.« less

  17. Lattice-Matched Epitaxial Graphene Grown on Boron Nitride.

    PubMed

    Davies, Andrew; Albar, Juan D; Summerfield, Alex; Thomas, James C; Cheng, Tin S; Korolkov, Vladimir V; Stapleton, Emily; Wrigley, James; Goodey, Nathan L; Mellor, Christopher J; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Foxon, C Thomas; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H

    2018-01-10

    Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls and also the topological defects where they terminate. We relate these results to theoretical models of band gap formation in graphene/boron nitride heterostructures.

  18. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures.

    PubMed

    Xu, Fen; Xie, Yi; Zhang, Xu; Zhang, Shuyuan; Liu, Xianming; Tian, Xiaobo

    2004-01-26

    In this paper we describe the large-scale synthesis of inorganic fullerene-like (IF-like) hexagonal boron nitride with vessel, hollow sphere, peanut, and onion structures by reacting BBr(3) with the synergic nitrogen sources NaNH(2) and NH(4)Cl at 400-450 degrees C for 6-12 h. The composition of products could be confirmed to be pure boron nitride with hexagonal structures by the XRD patterns and FT-IR, XPS, and EDXA spectra. The representative HRTEM images clearly reveal the layerlike features of the products. Here, the peanut-like structure of the IF-like BN is reported for the first time, and added to the list as one kind of new morphology of BN nanomaterials. The similarity in the structure between h-BN and graphite is responsible for the formation of IF-like BN with nanostructures of vessels, hollow spheres, peanuts, and onions.

  19. Shock compression behavior of a mixture of cubic and hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Hu, Xiaojun; Yang, Gang; Zhao, Bin; Li, Peiyun; Yang, Jun; Leng, Chunwei; Liu, Hanyu; Huang, Haijun; Fei, Yingwei

    2018-05-01

    We report Hugoniot measurements on a mixture of cubic boron nitride (cBN) and hexagonal boron nitride (hBN, ˜10% in weight) to investigate the shock compression behavior of BN at Hugoniot stresses up to 110 GPa. We observed a discontinuity at ˜77 GPa along the Hugoniot and interpreted it as the manifestation of the shock-induced phase transition of hBN to cBN. The experimental stress at 77-110 GPa shows significant deviation from the hydrodynamic Hugoniot of cBN calculated using the Mie-Grüneisen model coupled with the reported 300 K-isotherms of cBN. Our investigation reveals that material strength in cBN increases with the experimental stress at least up to 110 GPa. The material strength might be preserved at higher stress if we consider the previously reported high stress data.

  20. All 2D, high mobility, flexible, transparent thin film transistor

    DOEpatents

    Das, Saptarshi; Sumant, Anirudha V.; Roelofs, Andreas

    2017-01-17

    A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.

  1. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  2. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  3. Probing carbon impurities in hexagonal boron nitride epilayers

    NASA Astrophysics Data System (ADS)

    Uddin, M. R.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-05-01

    Carbon doped hexagonal boron nitride epilayers have been grown by metal organic chemical vapor deposition. Photocurrent excitation spectroscopy has been utilized to probe the energy levels associated with carbon impurities in hexagonal boron nitride (h-BN). The observed transition peaks in photocurrent excitation spectra correspond well to the energy positions of the bandgap, substitutional donors (CB, carbon impurities occupying boron sites), and substitutional acceptors (CN, carbon impurities occupying nitrogen sites). From the observed transition peak positions, the derived energy level of CB donors in h-BN is ED ˜ 0.45 eV, which agrees well with the value deduced from the temperature dependent electrical resistivity. The present study further confirms that the room temperature bandgap of h-BN is about 6.42-6.45 eV, and the CN deep acceptors have an energy level of about 2.2-2.3 eV. The results also infer that carbon doping introduces both shallow donors (CB) and deep acceptors (CN) via self-compensation, and the energy level of carbon donors appears to be too deep to enable carbon as a viable candidate as an n-type dopant in h-BN epilayers.

  4. Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology

    DOE PAGES

    Stehle, Yijing Y.; Meyer, III, Harry M.; Unocic, Raymond R.; ...

    2015-11-10

    Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies formore » the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.« less

  5. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  6. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  7. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  8. Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates

    PubMed Central

    Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi

    2013-01-01

    The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289

  9. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor

    PubMed Central

    Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong

    2014-01-01

    Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter. PMID:28788161

  10. High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor.

    PubMed

    Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong

    2014-08-11

    Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.

  11. Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride.

    PubMed

    Qi, Zhengqing John; Hong, Sung Ju; Rodríguez-Manzo, Julio A; Kybert, Nicholas J; Gudibande, Rajatesh; Drndić, Marija; Park, Yung Woo; Johnson, A T Charlie

    2015-03-25

    CVD graphene devices on stacked CVD hexagonal boron nitride (hBN) are demonstrated using a novel low-contamination transfer method, and their electrical performance is systematically compared to devices on SiO(2). An order of magnitude improvement in mobility, sheet resistivity, current density, and sustained power is reported when the oxide substrate is covered with five-layer CVD hBN. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels.

    PubMed

    Xiao, Feng; Naficy, Sina; Casillas, Gilberto; Khan, Majharul H; Katkus, Tomas; Jiang, Lei; Liu, Huakun; Li, Huijun; Huang, Zhenguo

    2015-11-25

    Upon flowing hot steam over hexagonal boron nitride (h-BN) bulk powder, efficient exfoliation and hydroxylation of BN occur simultaneously. Through effective hydrogen bonding with water and N-isopropylacrylamide, edge-hydroxylated BN nanosheets dramatically improve the dimensional change and dye release of this temperature-sensitive hydrogel and thereby enhance its efficacy in bionic, soft robotic, and drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions.

    PubMed

    Woellner, C F; Machado, L D; Autreto, P A S; de Sousa, J M; Galvao, D S

    2018-02-14

    The behavior of nanostructures under high strain-rate conditions has been the object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high-velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still unknown. In this work, we have investigated the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities, using fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations. CNS (BNS) are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in their close-ended analogs, such as nanotubes. Our results show that collision products are mainly determined by impact velocities and by two orientation angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations, large-scale deformations and nanoscroll fractures could occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.

  14. Nucleobases-decorated boron nitride nanoribbons for electrochemical biosensing: a dispersion-corrected DFT study.

    PubMed

    Dabhi, Shweta D; Roondhe, Basant; Jha, Prafulla K

    2018-03-28

    Understanding the interactions between biomolecules and boron nitride nanostructures is key for their use in nanobiotechnology and medical engineering. In this study, we investigated the adsorption of nucleobases adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) over armchair and zigzag boron nitride nanoribbons (BNNR) using density functional theory to define the applicability of BNNR for the sensing of nucleobases and DNA sequencing. To appropriately account for dispersion, the van der Waals forces (DFT-D2)-type method developed by Grimme was also included in the calculations. The calculated adsorption energy suggests the following order of adsorption for A-BNNR and Z-BNNR with the nucleobases: G > T > A > U > C and G > C > A > T > U, respectively. The origin of the binding of the different nucleobases with BNNR was analysed and π-π stacking was found to be responsible. In addition, the electronic properties, density of states and work function significantly vary after adsorption. These analyses indicate different binding natures for different nucleobases and BNNRs. Thus, this study demonstrates that BNNR can be applied as biosensors for the detection of nucleobases, which are constituents of DNA and RNA. Furthermore, analysis of electronic properties and adsorption energies will play a key role in targeted drug delivery, enzyme activities and genome sequencing. Our results indicate that BNNRs have better adsorption capacity than graphene and boron nitride nanotubes.

  15. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology ofmore » hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.« less

  16. Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions

    NASA Astrophysics Data System (ADS)

    Woellner, C. F.; Machado, L. D.; Autreto, P. A. S.; de Sousa, J. M.; Galvao, D. S.

    The behavior of nanostructures under high strain-rate conditions has been object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still not completely understood. In this work we have investigated through fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities,. CNS (BNS) nanoscrolls are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in close-ended analogues, such as nanotubes. Our results show that the collision products are mainly determined by impact velocities and by two impact angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations large-scale deformations and nanoscroll fracture can occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.

  17. Nanoporous Boron Nitride as Exceptionally Thermally Stable Adsorbent: Role in Efficient Separation of Light Hydrocarbons.

    PubMed

    Saha, Dipendu; Orkoulas, Gerassimos; Yohannan, Samuel; Ho, Hoi Chun; Cakmak, Ercan; Chen, Jihua; Ozcan, Soydan

    2017-04-26

    In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m 2 /g and particle size 5-7 μm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far. Nitrogen and hydrocarbon adsorption at 298 K and pressure up to 1 bar suggested that all hydrocarbon adsorption amounts were higher than that of nitrogen and the adsorbed amount of hydrocarbon increases with an increase in its molecular weight. The kinetics of adsorption data suggested that adsorption becomes slower with the increase in molecular weight of hydrocarbons. The equilibrium data suggested that that boron nitride is selective to paraffins in a paraffin-olefin mixture and hence may act as an "olefin generator". The ideal adsorbed solution theory (IAST)-based selectivity for CH 4 /N 2 , C 2 H 6 /CH 4 , and C 3 H 8 /C 3 H 6 was very high and probably higher than the majority of adsorbents reported in the literature. IAST-based calculations were also employed to simulate the binary mixture adsorption data for the gas pairs of CH 4 /N 2 , C 2 H 6 /CH 4 , C 2 H 6 /C 2 H 4 , and C 3 H 8 /C 3 H 6 . Finally, a simple mathematical model was employed to simulate the breakthrough behavior of the above-mentioned four gas pairs in a dynamic column experiment. The overall results suggest that nanoporous boron nitride can be used as a potential adsorbent for light hydrocarbon separation.

  18. Measurement of the elastic modulus of a multi-wall boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Chopra, Nasreen G.; Zettl, A.

    1998-02-01

    We have experimentally determined the elastic properties of an individual multi-wall boron nitride (BN) nanotube. From the thermal vibration amplitude of a cantilevered BN nanotube observed in a transmission electron microscope, we find the axial Young's modulus to be 1.22 ± 0.24 TPa, a value consistent with theoretical estimates. The observed Young's modulus exceeds that of all other known insulating fibers. Our elasticity results confirm that BN nanotubes are highly crystalline with very few defects.

  19. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  20. The Physics and Chemistry of carbides, Nitrides and Borides. Volume 185

    DTIC Science & Technology

    1990-01-01

    and C-B-C chains [15,17]. Clearly, the use of boron-rich solids as electronic materials will place new demands on the quality of materials. In this...first heated in a pyrolytic boron nitride (PBN) crucible ( Union Carbide Corp.) under high vacuum (< 50 mTorr) to 1900°C. This removed surface...contamination of the sample. The powders were loaded into a graphite die with a high-purity BN die liner ( Union Carbide Grade HBC) with inner diameter of 3/8

  1. Wettability of Pyrolytic Boron Nitride by Aluminum

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Rosenthal, Bruce N.

    1991-01-01

    The wetting of pyrolytic boron nitride by molten 99.9999 percent pure aluminum was investigated by using the sessile drop method in a vacuum operating at approximately 660 micro-Pa at temperatures ranging from 700 to 1000 C. The equilibrium contact angle decreased with an increase in temperature. For temperatures at 900 C or less, the equilibrium contact angle was greater than 90 deg. At 1000 C a nonwetting-to-wetting transition occurred and the contact angle stabilized at 49 deg.

  2. Anomalous Insulator-Metal Transition in Boron Nitride-Graphene Hybrid Atomic Layers

    DTIC Science & Technology

    2012-08-13

    REPORT Anomalous insulator-metal transition in boron nitride-graphene hybrid atomic layers 14 . ABSTRACT 16. SECURITY CLASSIFICATION OF: The study of...from the DFT calculation. The calculated transmission through a N terminated zigzag edged h-BN nanodomain embedded in graphene is shown in Fig. 14 , with...Energy ε − ε F (eV) 0 0.5 1 1.5 2 Tr an sm is si on FIG. 14 . (Color online) Transmission through a N terminated zigzag edged h-BN nanodomain embedded in

  3. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2017-11-28

    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  4. Dynamic consolidation of cubic boron nitride and its admixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, H.; Ahrens, T.J.

    1988-09-01

    Cubic boron nitride (C-BN) powders admixed with graphite-structured boron nitride powder (g-BN), silicon carbide whisker (SCW), or silicon nitride whisker (SNW) were shock compacted to pressures up to 22 GPa. Unlike previous work with diamond and graphite (D. K. Potter and T. J. Ahrens, J. Appl. Phys. 63, 910 (1987)) it was found that the addition of g-BN inhibited dynamic consolidation. Good consolidation was achieved with a 4--8 ..mu..m particle size C-BN powder admixed with 15 wt.% SNW or 20 wt.% SCW. Whereas a 37--44 ..mu..m particle size C-BN mixture was only poorly consolidated. Scanning electron microscopy (SEM) analysis demonstratemore » that SCW and SNW in the mixtures were highly deformed and indicated melt textures. A skin heating model was used to describe the physics of consolidation. Model calculations are consistent with SEM analysis images that indicate plastic deformation of SCW and SNW. Micro-Vickers hardness values as high as 50 GPa were obtained for consolidated C-BN and SNW mixtures. This compares to 21 GPa for single-crystal Al/sub 2/O/sub 3/ and 120 GPa for diamond.« less

  5. Defect charge states in Si doped hexagonal boron-nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.

    2016-02-01

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  6. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    PubMed Central

    Domun, Nadiim; Paton, Keith R.; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-01-01

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly. PMID:29048345

  7. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy

    PubMed Central

    Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.; Balgley, Jesse; Dean, Cory R.; Tromp, Rudolf M.; van der Molen, Sense Jan

    2016-01-01

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the ‘chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of. PMID:27897180

  8. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wenshuai; Wu, Zili; Foo, Guo Shiou

    Taming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies. Bader charge analysis shows that with Pt on B-vacancies, the nanosheets serve as a Lewis acid to accept electrons from Pt, and on the contrary, whenmore » Pt sits on N-vacancies, the nanosheets act as a Lewis base for donating electrons to Pt. The overall-electronic effect demonstrates an electron-rich feature of Pt after assembling on hexagonal boron nitride nanosheets. Such an interfacial electronic effect makes Pt favour the adsorption of O 2, alleviating CO poisoning and promoting the catalysis.« less

  9. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis

    DOE PAGES

    Zhu, Wenshuai; Wu, Zili; Foo, Guo Shiou; ...

    2017-06-09

    Taming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies. Bader charge analysis shows that with Pt on B-vacancies, the nanosheets serve as a Lewis acid to accept electrons from Pt, and on the contrary, whenmore » Pt sits on N-vacancies, the nanosheets act as a Lewis base for donating electrons to Pt. The overall-electronic effect demonstrates an electron-rich feature of Pt after assembling on hexagonal boron nitride nanosheets. Such an interfacial electronic effect makes Pt favour the adsorption of O 2, alleviating CO poisoning and promoting the catalysis.« less

  10. Hole polarons and p -type doping in boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Weston, L.; Wickramaratne, D.; Van de Walle, C. G.

    2017-09-01

    Boron nitride polymorphs hold great promise for integration into electronic and optoelectronic devices requiring ultrawide band gaps. We use first-principles calculations to examine the prospects for p -type doping of hexagonal (h -BN ), wurtzite (w z -BN ), and cubic (c -BN ) boron nitride. Group-IV elements (C, Si) substituting on the N site result in a deep acceptor, as the atomic levels of the impurity species lie above the BN valence-band maximum. On the other hand, group-II elements (Be, Mg) substituting on the B site do not give impurity states in the band gap; however, these dopants lead to the formation of small hole polarons. The tendency for polaron formation is far more pronounced in h -BN compared to w z -BN or c -BN . Despite forming small hole polarons, Be acceptors enable p -type doping, with ionization energies of 0.31 eV for w z -BN and 0.24 eV for c -BN ; these values are comparable to the Mg ionization energy in GaN.

  11. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  12. Corrosion resistance of inconel 690 to borax, boric acid, and boron nitride at 1100{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imrich, K.J.

    1996-12-12

    Significant general and localized corrosion was observed on Inconel 690 coupons following exposure to borax, boric acid and boron nitride at 1100{degrees}C. Severe localized attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack (IGA) of the Inconel 690 was also observed. Severe internal void formation and IGA (30 mils penetration after 3 days) was observed in the coupon exposed to boric acid. Both borax and boric acid remove the protective chromium oxide; however, this layer canmore » be reestablished by heating the Inconel 690 to 975 {degrees}C in air for several hours. Inconel 690 in direct contact with boron nitride resulted in the formation of a thick chromium borate layer, a general corrosion rate of 50 to 90 mils per year, and internal void formation of 1 mil per day.« less

  13. Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible

    PubMed Central

    Attaccalite, Claudio; Wirtz, Ludger; Marini, Andrea; Rubio, Angel

    2013-01-01

    Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth. PMID:24060843

  14. Tuning electronic properties of boron nitride nanoplate via doping carbon for enhanced adsorptive performance.

    PubMed

    Pang, Jingyu; Chao, Yanhong; Chang, Honghong; Li, Hongping; Xiong, Jun; He, Minqiang; Zhang, Qi; Li, Huaming; Zhu, Wenshuai

    2017-12-15

    In this paper, the carbon-doped boron nitride nanoplate (C-BNNP) was prepared by pyrolyzing the precursor under N 2 and served as an excellent adsorbent for removal of Rhodamine B (RhB). The structure and composition of C-BNNP were characterized and its adsorption behavior for RhB was investigated. Compared with boron nitride nanoplate (BNNP) which was synthesized under NH 3 , C-BNNP displayed an enhancement of the adsorption capacity for RhB (833mg/g). The adsorption activity was comprehensibly studied by kinetics, isotherm and thermodynamics. The adsorption kinetics followed pseudo-second-order model. The equilibrium adsorption data agreed well with the Langmuir isotherm. And the thermodynamics indicated that the adsorption process was a spontaneous, exothermic and physisorption process. In addition, the density functional theory was proposed that doping carbon in the BNNP decreased the chemical hardness of the adsorbent and enhanced the adsorption capacity of C-BNNP for RhB. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.

    PubMed

    Wu, Hongchao; Kessler, Michael R

    2015-03-18

    Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications.

  16. Interaction of Boron Nitride Nanosheets with Model Cell Membranes.

    PubMed

    Hilder, Tamsyn A; Gaston, Nicola

    2016-06-03

    Boron nitride nanomaterials have attracted attention for biomedical applications, due to their improved biocompatibility when compared with carbon nanomaterials. Recently, graphene and graphene oxide nanosheets have been shown, both experimentally and computationally, to destructively extract phospholipids from Escherichia coli. Boron nitride nanosheets (BNNSs) have exciting potential biological and environmental applications, for example the ability to remove oil from water. These applications are likely to increase the exposure of prokaryotes and eukaryotes to BNNSs. Yet, despite their promise, the interaction between BNNSs and cell membranes has not yet been investigated. Here, all-atom molecular dynamics simulations were used to demonstrate that BNNSs are spontaneously attracted to the polar headgroups of the lipid bilayer. The BNNSs do not passively cross the lipid bilayer, most likely due to the large forces experienced by the BNNSs. This study provides insight into the interaction of BNNSs with cell membranes and may aid our understanding of their improved biocompatibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chemisorption of Hydroxide on 2D Materials From DFT Calculations: Graphene Versus Hexagonal Boron Nitride

    PubMed Central

    Grosjean, Benoit; Pean, Clarisse; Siria, Alessandro; Bocquet, Lyderic; Vuilleumier, Rodolphe; Bocquet, Marie-Laure

    2017-01-01

    Recent nanofluidic measurements revealed strongly different surface charge measurements for boron-nitride and graphitic nanotubes when in contact with saline and alkaline water. 1,2 These observations contrast with the similar reactivity of a graphene layer and its boron nitride counterpart, using Density Functional Theory (DFT) framework, for intact and dissociative adsorption of gaseous water molecules. Here, we investigate, by DFT in implicit water, single and multiple adsorption of anionic hydroxide on single layers. A differential adsorption strength is found in vacuum for the first ionic adsorption on the two materials – chemisorbed on BN while physisorbed on graphene. The effect of implicit solvation reduces all adsorption values resulting in a favorable (non-favorable) adsorption on BN (graphene). We also calculate a pKa ≃ 6 for BN in water, in good agreement with experiments. Comparatively, the unfavorable results for graphene in water echoes the weaker surface charge measurements, but points to an alternative scenario. PMID:27809540

  18. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    PubMed

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  19. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    PubMed

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  20. Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield

    NASA Astrophysics Data System (ADS)

    Loh, G. C.; Baillargeat, D.

    2013-11-01

    Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.

  1. Detection of boron nitride radicals by emission spectroscopy in a laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Dutouquet, C.; Acquaviva, S.; Hermann, J.

    2001-06-01

    Several vibrational bands of boron nitride radicals have been observed in a plasma produced by pulsed-laser ablation of a boron nitride target in low-pressure nitrogen or argon atmospheres. Using time- and space-resolved emission spectroscopic measurements with a high dynamic range, the most abundant isotopic species B 11N have been detected. The emission bands in the spectral range from 340 to 380 nm belong to the Δυ =-1, 0, +1 sequences of the triplet system (transition A 3Π-X 3Π). For positive identification, the molecular emission bands have been compared with synthetic spectra obtained by computer simulations. Furthermore, B 10N emission bands have been reproduced by computer simulation using molecular constants which have been deduced from the B 11N constants. Nevertheless, the presence of the lower abundant isotopic radical B 10N was not proved due the noise level which masked the low emission intensity of the B 10N band heads.

  2. Boron Nitride Nanotubes and Nanoplatelets as Reinforcing Agents of Polymeric Matrices for Bone Tissue Engineering

    PubMed Central

    Farshid, Behzad; Lalwani, Gaurav; Mohammadi, Meisam Shir; Simonsen, John; Sitharaman, Balaji

    2016-01-01

    This study investigates the mechanical properties and in vitro cytotoxicity of one- and two-dimensional boron nitride nanomaterials-reinforced biodegradable polymeric nanocomposites. Poly(propylene fumarate) (PPF) nanocomposites were fabricated using crosslinking agent N-vinyl pyrrolidone (NVP) and inorganic nanomaterials: boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) dispersed at 0.2 wt.% in the polymeric matrix. The incorporation of BNNPs and BNNTs resulted in a ~38% and ~15% increase in compressive (young's) modulus, and ~31% and ~6% increase in compressive yield strength compared to PPF control, respectively. The nanocomposites showed a time-dependent increased protein adsorption for only collagen-I protein. The cytotoxicity evaluation of aqueous BNNT and BNNP dispersions (at 1-100 μg/mL concentrations) using a representative murine MC3T3 preosteoblast cell line showed cytocompatibility of BNNTs and BNNPs (~73-99% viability). The cytotoxicity evaluation of media extracts of nanocomposites prior to crosslinking, after crosslinking and upon degradation (using 1X-100X dilutions) showed dose-dependent cytotoxicity responses. Crosslinked nanocomposites showed excellent (~79-100%) cell viability, cellular attachment (~57-67%), and spreading similar to cells grown on the surface of tissue culture polystyrene (TCPS) control. The media extracts of degradation products showed a dose-dependent cytotoxicity. The favorable cytocompatibility results in combination with improved mechanical properties of BNNT and BNNP nanocomposites opens new avenues for further in vitro and in vivo safety and efficacy studies for their bone tissue engineering applications. PMID:26526153

  3. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2016-07-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

  4. Compact thermoelectric converter systems technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.

  5. High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.

    2014-01-01

    A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.

  6. Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.

    PubMed

    Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2016-01-21

    Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.

  7. A simple method to synthesize polyhedral hexagonal boron nitride nanofibers

    NASA Astrophysics Data System (ADS)

    Lin, Liang-xu; Zheng, Ying; Li, Zhao-hui; shen, Xiao-nv; Wei, Ke-mei

    2007-12-01

    Hexagonal boron nitride (h-BN) fibers with polyhedral morphology were synthesized with a simple-operational, large-scale and low-cost method. The sample obtained was studied by X-ray photoelectron spectrometer (XPS), electron energy lose spectroscopy (EELS), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), etc., which matched with h-BN. Environment scanning electron microscopy (ESEM) and transmission electron microscope (TEM) indicated that the BN fibers possess polyhedral morphology. The diameter of the BN fibers is mainly in the range of 100-500 nm.

  8. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lee, Gwan-Hyoung; Yu, Young-Jun; Lee, Changgu; Dean, Cory; Shepard, Kenneth L.; Kim, Philip; Hone, James

    2011-12-01

    Electron tunneling through atomically flat and ultrathin hexagonal boron nitride (h-BN) on gold-coated mica was investigated using conductive atomic force microscopy. Low-bias direct tunneling was observed in mono-, bi-, and tri-layer h-BN. For all thicknesses, Fowler-Nordheim tunneling (FNT) occurred at high bias, showing an increase of breakdown voltage with thickness. Based on the FNT model, the barrier height for tunneling (3.07 eV) and dielectric strength (7.94 MV/cm) of h-BN are obtained; these values are comparable to those of SiO2.

  9. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications.

    PubMed

    Lee, Chee Huei; Bhandari, Shiva; Tiwari, Bishnu; Yapici, Nazmiye; Zhang, Dongyan; Yap, Yoke Khin

    2016-07-15

    A comprehensive overview of current research progress on boron nitride nanotubes (BNNTs) is presented in this article. Particularly, recent advancements in controlled synthesis and large-scale production of BNNTs will first be summarized. While recent success in mass production of BNNTs has opened up new opportunities to implement the appealing properties in various applications, concerns about product purity and quality still remain. Secondly, we will summarize the progress in functionalization of BNNTs, which is the necessary step for their applications. Additionally, selected potential applications in structural composites and biomedicine will be highlighted.

  10. Thermal neutron scintillators using unenriched boron nitride and zinc sulfide

    NASA Astrophysics Data System (ADS)

    McMillan, J. E.; Cole, A. J.; Kirby, A.; Marsden, E.

    2015-06-01

    Thermal neutron detectors based on powdered zinc sulfide intimately mixed with a neutron capture compound have a history as long as scintillation technique itself. We show that using unenriched boron nitride powder, rather than the more commonly used enriched lithium fluoride, results in detection screens which produce less light but which are very considerably cheaper. Methods of fabricating large areas of this material are presented. The screens are intended for the production of large area low cost neutron detectors as a replacement for helium-3 proportional tubes.

  11. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  12. High temperature solar energy absorbing surfaces

    DOEpatents

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  13. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  14. Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates.

    PubMed

    Behura, Sanjay; Nguyen, Phong; Debbarma, Rousan; Che, Songwei; Seacrist, Michael R; Berry, Vikas

    2017-05-23

    Hexagonal boron nitride (h-BN) is an ideal platform for interfacing with two-dimensional (2D) nanomaterials to reduce carrier scattering for high-quality 2D electronics. However, scalable, transfer-free growth of hexagonal boron nitride (h-BN) remains a challenge. Currently, h-BN-based 2D heterostructures require exfoliation or chemical transfer of h-BN grown on metals resulting in small areas or significant interfacial impurities. Here, we demonstrate a surface-chemistry-influenced transfer-free growth of large-area, uniform, and smooth h-BN directly on silicon (Si)-based substrates, including Si, silicon nitride (Si 3 N 4 ), and silicon dioxide (SiO 2 ), via low-pressure chemical vapor deposition. The growth rates increase with substrate electronegativity, Si < Si 3 N 4 < SiO 2 , consistent with the adsorption rates calculated for the precursor molecules via atomistic molecular dynamics simulations. Under graphene with high grain density, this h-BN film acts as a polymer-free, planar-dielectric interface increasing carrier mobility by 3.5-fold attributed to reduced surface roughness and charged impurities. This single-step, chemical interaction guided, metal-free growth mechanism of h-BN for graphene heterostructures establishes a potential pathway for the design of complex and integrated 2D-heterostructured circuitry.

  15. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  16. Sensing properties of pristine boron nitride nanostructures towards alkaloids: A first principles dispersion corrected study

    NASA Astrophysics Data System (ADS)

    Roondhe, Basant; Dabhi, Shweta D.; Jha, Prafulla K.

    2018-05-01

    To understand the underlying physics behind the interaction of biomolecules with the nanomaterials to use them practically as bio-nanomaterials is very crucial. A first principles calculation under the frame work of density functional theory is executed to investigate the electronic structures and binding properties of alkaloids (Caffeine and Nicotine) over single walled boron nitride nanotube (BNNT) and boron nitride nanoribbon (BNNR) to determine their suitability towards filtration or sensing of these molecules. We have also used GGA-PBE scheme with the inclusion of Van der Waals (vdW) interaction based on DFT-D2. Increase in the accuracy by incorporating the dispersion correction in the calculation is observed for the long range Van der Waals interaction. Binding energy range of BNNT and BNNR with both alkaloids have been found to be -0.35 to -0.76 eV and -0.45 to -0.91 eV respectively which together with the binding distance shows physisorption binding of these molecules to the both nanostructures. The transfer of charge between the BN nanostructures and the adsorbed molecule has also been analysed by using Lowdin charge analysis. The sensitivity of both nanostructures BNNT and BNNR towards both alkaloids is observed through electronic structure calculations, density of states and quantum conductance. The binding of both alkaloids with BNNR is stronger. The analysis of the calculated properties suggests absence of covalent interaction between the considered species (BNNT/BNNR) and alkaloids. The study may be useful in designing the boron nitride nanostructure based sensing device for alkaloids.

  17. Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering.

    PubMed

    Farshid, Behzad; Lalwani, Gaurav; Shir Mohammadi, Meisam; Simonsen, John; Sitharaman, Balaji

    2017-02-01

    This study investigates the mechanical properties and in vitro cytotoxicity of one- and two-dimensional boron nitride nanomaterials-reinforced biodegradable polymeric nanocomposites. Poly(propylene fumarate) (PPF) nanocomposites were fabricated using crosslinking agent N-vinyl pyrrolidone and inorganic nanomaterials: boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) dispersed at 0.2 wt % in the polymeric matrix. The incorporation of BNNPs and BNNTs resulted in a ∼38 and ∼15% increase in compressive (Young's) modulus, and ∼31 and ∼6% increase in compressive yield strength compared to PPF control, respectively. The nanocomposites showed a time-dependent increased protein adsorption for collagen I protein. The cytotoxicity evaluation of aqueous BNNT and BNNP dispersions (at 1-100 μg/mL concentrations) using murine MC3T3 preosteoblast cells showed ∼73-99% viability. The cytotoxicity evaluation of media extracts of nanocomposites before crosslinking, after crosslinking, and upon degradation (using 1×-100× dilutions) showed dose-dependent cytotoxicity responses. Crosslinked nanocomposites showed excellent (∼79-100%) cell viability, cellular attachment (∼57-67%), and spreading similar to cells grown on the surface of tissue culture polystyrene control. The media extracts of degradation products showed a dose-dependent cytotoxicity. The favorable cytocompatibility results in combination with improved mechanical properties of BNNT and BNNP nanocomposites opens new avenues for further in vitro and in vivo safety and efficacy studies towards bone tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 406-419, 2017. © 2015 Wiley Periodicals, Inc.

  18. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

    PubMed Central

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P.

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  19. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes

    NASA Astrophysics Data System (ADS)

    O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.

    2017-11-01

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  20. Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.

    PubMed

    O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D

    2017-11-24

    Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.

  1. Single photon emission from plasma treated 2D hexagonal boron nitride.

    PubMed

    Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor

    2018-05-03

    Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.

  2. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    PubMed

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, <12%, n=6), and satisfactory recoveries between 84.9% and 101.0% under optimal conditions. Real environmental samples collected from rivers, local lakes, rain and spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Novel Composite Proton Exchange Membrane with Connected Long-Range Ionic Nanochannels Constructed via Exfoliated Nafion-Boron Nitride Nanocomposite.

    PubMed

    Jia, Wei; Tang, Beibei; Wu, Peiyi

    2017-05-03

    Nafion-boron nitride (NBN) nanocomposites with a Nafion-functionalized periphery are prepared via a convenient and ecofriendly Nafion-assisted water-phase exfoliation method. Nafion and the boron nitride nanosheet present strong interactions in the NBN nanocomposite. Then the NBN nanocomposites were blended with Nafion to prepare NBN Nafion composite proton exchange membranes (PEMs). NBN nanocomposites show good dispersibility and have a noticeable impact on the aggregation structure of the Nafion matrix. Connected long-range ionic nanochannels containing exaggerated (-SO 3 - ) n ionic clusters are constructed during the membrane-forming process via the hydrophilic and H-bonding interactions between NBN nanocomposites and Nafion matrix. The addition of NBN nanocomposites with sulfonic groups also provides additional proton transportation spots and enhances the water uptake of the composite PEMs. The proton conductivity of the NBN Nafion composite PEMs is significantly increased under various conditions relative to that of recast Nafion. At 80 °C-95% relative humidity, the proton conductivity of 0.5 NBN Nafion is 0.33 S·cm -1 , 6 times that of recast Nafion under the same conditions.

  4. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.

    2015-09-01

    Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.

  5. Band gap engineering of BC2N for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  6. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin; Moghani, Maryam Zeraati; Mirzaei, Samaneh; Abbasi, Shima

    2016-10-01

    Density functional theory (DFT) studies on the interaction of hydrogen halides (HX) environmental pollutants and the boron nitride nanotubes (BNNTs) have been reported. To exploit the possibility of BNNTs as gas sensors, the adsorption of hydrogen fluoride (HF), hydrogen chloride (HCl) and hydrogen bromide (HBr) on the side wall of armchair (5,5) boron nitride nanotubes have been investigated. B3LYP/6-31G (d) level were used to analyze the structural and electronic properties of investigate sensor. The adsorption process were interpreted by highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analysis. Topological parameters of bond critical points have been used to calculate as measure of hydrogen bond (HB) strength. Stronger binding energy, larger charge transfer and charge density illustrate that HF gas possesses chemisorbed adsorption process. The obtained results also show the strongest HB in HF/BNNT complex. We expect that results could provide helpful information for the design of new BNNTs based sensing devices.

  7. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    PubMed

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  8. Epitaxial growth of hexagonal boron nitride monolayers by a three-step boration-oxidation-nitration process

    NASA Astrophysics Data System (ADS)

    Müller, Frank; Hüfner, Stefan; Sachdev, Hermann; Gsell, Stefan; Schreck, Matthias

    2010-08-01

    The formation of well-ordered monolayers of hexagonal boron nitride on the surface of a Rh/YSZ/Si(111) multilayer substrate via a three-step boration-oxidation-nitration process was investigated by x-ray photoelectron spectroscopy (XPS), x-ray photoelectron diffraction (XPD) and low-energy electron diffraction (LEED). The chemical vapor deposition (CVD) of trimethylborate B(OCH3)3 results in a selective decomposition of the precursor, leading to a dilute distribution of boron within the interstitials of the Rh lattice. After oxidation, the layer of a boron oxygen species of about 1 nm thickness can be transformed into a hexagonal monolayer of BN by annealing in NH3 atmosphere. The results of the present study clearly show that the formation of BN monolayers is also possible when boron and nitrogen are provided successively from separate sources. This procedure represents an alternative routine for the preparation of well-ordered BN monolayers, which benefits from a strong reduction of hazardous potential and economic costs compared to the use of borazine as the current standard precursor.

  9. Optimal design of high temperature metalized thin-film polymer capacitors: A combined numerical and experimental method

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei

    2017-07-01

    The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.

  10. Application of thin dielectric films in low coherence fiber-optic Fabry-Pérot sensing interferometers: comparative study

    NASA Astrophysics Data System (ADS)

    Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata

    2016-11-01

    We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.

  11. Synthesis of boron nitride nanotubes and their applications

    PubMed Central

    Kalay, Saban; Yilmaz, Zehra; Sen, Ozlem; Emanet, Melis; Kazanc, Emine

    2015-01-01

    Summary Boron nitride nanotubes (BNNTs) have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed. PMID:25671154

  12. Measurement of the Elastic Modulus of a Single Boron Nitride Nanotube

    NASA Astrophysics Data System (ADS)

    Chopra, Nasreen G.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.

    1997-03-01

    In situ transmission electron microscope (TEM) measurements of thermally-excited vibrational characteristics of boron nitride (BN) nanotubes are used to extract the elastic modulus. We find BN nanotubes to have a higher axial Young's modulus, 1.2 TPa, than any other insulating fiber. This value is consistent with theoretical predictions and confirms previous TEM observations of the high degree of crystallinity of these structures. This work was supported by the U. S. Department of Energy under contract No. DE-AC03-76-SF00098 and the Office of Naval Research, Order No. N00014-95-F-0099

  13. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Bando, Yoshio; Sato, Tadao; Golberg, Dmitri; Zhu, Hongwei; Xu, Cailu; Wu, Dehai

    2002-12-01

    High-purity boron nitride (BN) nanofibers with diameters ranging from 30 to 100 nm were synthesized. Electron energy loss spectroscopy revealed that they have stoichiometric BN composition. The hydrogen uptake capacity measurements showed that the fibers could adsorb 2.9 wt % hydrogen under ˜10 MPa at room temperature. This hydrogen uptake capacity was compared with those of BN multiwalled or bamboo-like nanotubes under the same experimental conditions. It was suggested that the unique morphology of nanofibers, namely open-ended BN edge layers on the exterior surface, might facilitate hydrogen adsorption.

  14. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Adsorption of nucleic acid bases and amino acids on single-walled carbon and boron nitride nanotubes: a first-principles study.

    PubMed

    Zheng, Jiaxin; Song, Wei; Wang, Lu; Lu, Jing; Luo, Guangfu; Zhou, Jing; Qin, Rui; Li, Hong; Gao, Zhengxiang; Lai, Lin; Li, Guangping; Mei, Wai Ning

    2009-11-01

    We study the adsorptions of nucleic acid bases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) and four amino acids phenylalanine, tyrosine, tryptophan, alanine on the single-walled carbon nanotubes (SWCNTs) and boron nitride nanotubes (SWBNNTs) by using density functional theory. We find that the aromatic content plays a critical role in the adsorption. The adsorptions of nucleic acid bases and amino acids on the (7, 7) SWBNNT are stronger than those on the (7, 7) SWCNT. Oxidative treatment of SWCNTs favors the adsorption of biomolecules on nanotubes.

  16. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review.

    PubMed

    Kumar, Rajesh; Parashar, Avinash

    2016-01-07

    Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.

  17. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.

    We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.

  18. Lattice mismatch induced ripples and wrinkles in planar graphene/boron nitride superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Dinkar; Ertekin, Elif, E-mail: ertekin@illinois.edu; International Institute for Carbon Neutral Energy Research

    A continuum theory to describe periodic ripple formation in planar graphene/boron nitride superlattices is formulated. Due to the lattice mismatch between the two materials, it is shown that flat superlattices are unstable with respect to ripple formation of appropriate wavelengths. A competition between bending energy and transverse stretching energy gives rise to an optimal ripple wavelength that depends on the superlattice pitch. The optimal wavelengths predicted by the continuum theory are in good agreement with atomic scale total energy calculations previously reported by Nandwana and Ertekin [Nano Lett. 15, 1468 (2015)].

  19. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  20. Layer speciation and electronic structure investigation of freestanding hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    WangEqual Contribution To This Work., Jian; Wang, Zhiqiang; Cho, Hyunjin; Kim, Myung Jong; Sham, T. K.; Sun, Xuhui

    2015-01-01

    Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b

  1. Effects of Fiber Coatings on Tensile Properties of Hi-Nicalon SiC/RBSN Tow Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1997-01-01

    Uncoated Hi-Nicalon silicon carbide (SiC) fiber tows and those coated with a single surface layer of pyrolytic boron nitride (PBN), double layers of PBN/Si-rich PBN, and boron nitride (BN)/SiC coatings deposited by chemical vapor deposition (CVD) method were infiltrated with silicon slurry and then exposed to N2, for 4 hr at 1200 and 1400 C. Room temperature ultimate tensile fracture loads and microstructural characterization of uncoated and CVD coated Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride (RBSN) tow composites were measured to select suitable interface coating(s) stable under RBSN processing conditions. Results indicate that room temperature ultimate fracture loads of the uncoated Hi-Nicalon SiC/RBSN tow composites nitrided at both temperatures were significantly lower than those of the uncoated Hi-Nicalon tows without slurry infiltration. In contrast, all CVD coated Hi-Nicalon SiC/RBSN tow composites retained a greater fraction of the dry tow fracture load after nitridation at 1200 C, but degraded significantly after nitridation at 1400 C. Reaction between metal impurities (Fe and Ni) present in the attrition milled silicon powder and uncoated regions of SiC fibers appears to be the probable cause for fiber degradation.

  2. Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin

    2017-12-01

    In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.

  3. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    NASA Technical Reports Server (NTRS)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  4. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  5. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  6. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  7. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  8. Gap discrete breathers in strained boron nitride

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.

    2017-11-01

    Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.

  9. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Li, Xia; Wang, Xiupeng; Jiang, Xiangfen; Yamaguchi, Maho; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2016-02-01

    The interaction between boron nitride nanotubes (BNNTs) layer and mesenchymal stem cells (MSCs) is evaluated for the first time in this study. BNNTs layer supports the attachment and growth of MSCs and exhibits good biocompatibility with MSCs. BNNTs show high protein adsorption ability, promote the proliferation of MSCs and increase the secretion of total protein by MSCs. Especially, BNNTs enhance the alkaline phosphatase (ALP) activity as an early marker of osteoblasts, ALP/total protein and osteocalcin (OCN) as a late marker of osteogenic differentiation, which shows that BNNTs can enhance osteogenesis of MSCs. The release of trace boron and the stress on cells exerted by BNNTs with a fiber structure may account for the enhanced differentiation of MSCs into osteoblasts. Therefore BNNTs are potentially useful for bone regeneration in orthopedic applications. © 2015 Wiley Periodicals, Inc.

  10. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  11. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE PAGES

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.; ...

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  12. Design of the magnetic homonuclear bonds boron nitride nanosheets using DFT methods.

    PubMed

    Anota, E Chigo; Hernández, A Bautista; Morales, A Escobedo; Castro, M

    2017-06-01

    Design and characterization of the structural, electronic, and magnetic properties of armchair boron-nitride, BN (B 27 N 27 H 18 ), nanosheets were performed by means of density functional theory all-electron calculations. The HSEh1PBE-GGA method together with 6-31G(d) basis sets were used. Non-stoichiometric B 30 N 24 H 18 and B 24 N 30 H 18 compositions: rich in boron or nitrogen atoms, forming homonuclear B or N bonds, respectively, were chosen. The obtained results reveal that these BN nanosheets reach structural stability in the anionic form, where semiconductor and magnetic behaviors are promoted. Effectively, the HOMO-LUMO gap is of 2.03 and 2.39eV, respectively and the magnetic moments are of 1.0 magneton bohrs, coming from the boron atoms in both systems. The rich in boron nanosheets present high-polarity, either in the gas phase or embedded in aqueous mediums like water, as well as low chemical reactivity, signifying potential applicability in the transportation of pharmaceutical species in biological mediums. These systems are also promising for the design of electronic devices, because they possess low-work functions, mainly arising from the homonuclear boron or nitrogen bond formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  14. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  15. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  16. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  17. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  18. Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Mudi; Ye, Liping; Christensen, J.; Liu, Zhengyou

    2018-06-01

    The valley can serve as a new degree of freedom in the manipulation of particles or waves in condensed matter physics, whereas systems containing combinations of gain and loss elements constitute rich building units that can mimic non-Hermitian properties. By introducing gain and loss in artificial acoustic boron nitride, we show that the acoustic valley states and the valley-projected edge states display exotic behaviors in that they sustain either attenuated or amplified wave propagation. Our findings show how non-Hermiticity introduces a mechanism in tuning topological protected valley transports, which may have significance in advanced wave control for sensing and communication applications.

  19. Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Jianwei; Du, Jinglian; Wen, Bin; Melnik, Roderick; Kawazoe, Yoshiyuki; Zhang, Xiangyi

    2014-04-01

    Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ˜1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.

  20. One-pot synthesis of reduced graphene oxide@boron nitride nanosheet hybrids with enhanced oxidation-resistant properties

    NASA Astrophysics Data System (ADS)

    Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde

    2017-12-01

    Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.

  1. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons

    PubMed Central

    2013-01-01

    Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813

  2. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  3. Submicron cubic boron nitride as hard as diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guoduan; Kou, Zili, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Lei, Li

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  4. Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jianwei; Du, Jinglian; Wen, Bin, E-mail: wenbin@ysu.edu.cn

    2014-04-28

    Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.

  5. Robust half-metallic ferromagnetism and curvature dependent magnetic coupling in fluorinated boron nitride nanotubes.

    PubMed

    Guo, Chunsheng; Zhou, Yu; Shi, Xin-Qiang; Gan, Li-Yong; Jiang, Hong; Zhao, Yong

    2016-04-28

    The fluorinated boron nitride (F-BN) nanostructures are found to be fully spin polarized and half-metallic by means of first-principles calculations based on the Heyd-Scuseria-Ernzerhof hybrid functional. It is found that the full spin polarization and 1 μB local moment in F-BN nanotubes are independent of tube radius and it is also robust in planar ribbons and sheets. The long-ranged ferromagnetic coupling between local moments decreases with decreasing tube radius. This suggests that F-BN systems with small local curvatures could be more easily experimentally observed and have greater potential applications in spin devices.

  6. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    PubMed Central

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  7. Thermally conductive tough flexible elastomers as composite of slide-ring materials and surface modified boron nitride particles via plasma in solution

    NASA Astrophysics Data System (ADS)

    Goto, Taku; Iida, Masaki; Tan, Helen; Liu, Chang; Mayumi, Koichi; Maeda, Rina; Kitahara, Koichi; Hatakeyama, Kazuto; Ito, Tsuyohito; Shimizu, Yoshiki; Yokoyama, Hideaki; Kimura, Kaoru; Ito, Kohzo; Hakuta, Yukiya; Terashima, Kazuo

    2018-03-01

    We have developed a thermally conductive flexible elastomer as a composite material with slide-ring (SR) materials and boron nitride (BN) particles surface-modified via plasma in solution. This composite shows excellent properties as a flexible insulator for thermal management. Surface modification of BN particles using plasma in solution increases the tensile strength, extension ratio at break, toughness, and rubber characteristics of the composites, compared to SR and non-modified BN, while the Young's modulus values are identical. Furthermore, the thermal conductivity also improved as a result of plasma surface modification.

  8. Computational simulation of subatomic-resolution AFM and STM images for graphene/hexagonal boron nitride heterostructures with intercalated defects

    NASA Astrophysics Data System (ADS)

    Lee, Junsu; Kim, Minjung; Chelikowsky, James R.; Kim, Gunn

    2016-07-01

    Using ab initio density functional calculations, we predict subatomic-resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images of vertical heterostructures of graphene/hexagonal boron nitride (h-BN) with an intercalated metal atom (Li, K, Cr, Mn, Co, or Cu), and study the effects of the extrinsic metal defect on the interfacial coupling. We find that the structural deformation of the graphene/h-BN layer caused by the metal defect strongly affects the AFM images, whereas orbital hybridization between the metal defect and the graphene/h-BN layer characterizes the STM images.

  9. Search for giant magnetic anisotropy in transition-metal dimers on defected hexagonal boron nitride sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Wang, H.; Wu, R. Q., E-mail: wur@uci.edu

    2016-05-28

    Structural and magnetic properties of many transition-metal dimers embedded in a defected hexagonal boron nitride monolayer are investigated through density functional calculations to search for systems with magnetic anisotropy energies (MAEs) larger than 30meV. In particular, Ir–Ir@Dh–BN is found to have both large MAE (∼126 meV) and high structural stability against dissociation and diffusion, and it hence can serve as magnetic unit in spintronics and quantum computing devices. This giant MAE mainly results from the spin orbit coupling and the magnetization of the upper Ir atom, which is in a rather isolated environment.

  10. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  11. Spring Constants for Stacks of Curved Leaves of Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    Stacks of curved leaves of pyrolytic boron nitride (PBN) were deflected and the force versus deflection data was recorded. From this data, the spring constant for a given spring geometry (radius of curvature of a leaf, width of a leaf, thickness of a leaf, and number of leaves in the stack) was determined. These experiments were performed at room temperature, 500 C and 1000 C. However, temperature was not found to affect the spring constant. The measured values were generally within one order of magnitude of predictions made using a previously derived equation for a simply supported cylindrical section with a line force at the center.

  12. Experimental identification of p-type conduction in fluoridized boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi

    2013-04-01

    The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.

  13. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    PubMed

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  14. Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing

    NASA Astrophysics Data System (ADS)

    Movlarooy, Tayebeh; Fadradi, Mahboobeh Amiri

    2018-05-01

    The adsorption of CNCl gas, on the surface of boron nitride nanotubes in pure form, as well as doped with Al and Ga, based on the density functional theory (DFT) has been studied. The electron and structural properties of pristine and doped nanotubes have been investigated. By calculating the adsorption energy, the most stable positions and the equilibrium distance are obtained, and charge transferred and electronic properties have been calculated. The most stable molecule adsorption position for pure nanotube is obtained at the center of the hexagon and for doped nanotube above the impurity atom from N side.

  15. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity

    NASA Astrophysics Data System (ADS)

    Abbasi, F. M.; Gul, Maimoona; Shehzad, S. A.

    2018-05-01

    Current study provides a comprehensive numerical investigation of the peristaltic transport of boron nitride-ethylene glycol nanofluid through a symmetric channel in presence of magnetic field. Significant effects of Brownian motion and thermophoresis have been included in the energy equation. Hall and Ohmic heating effects are also taken into consideration. Resulting system of non-linear equations is solved numerically using NDSolve in Mathematica. Expressions for velocity, temperature, concentration and streamlines are derived and plotted under the assumption of long wavelength and low Reynolds number. Influence of various parameters on heat and mass transfer rates have been discussed with the help of bar charts.

  16. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael

    2018-03-01

    The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.

  17. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  18. Boron Nitride-supported Sub-nanometer Pd 6 Clusters for Formic Acid Decomposition: A DFT Study

    DOE PAGES

    Schimmenti, Roberto; Cortese, Remedios; Duca, Dario; ...

    2017-04-25

    A periodic, self-consistent planewave DFT study was carried out to explore the potential use of Pd 6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO 2 and H 2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate tomore » monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub-nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.« less

  19. Toward Edge-Defined Holey Boron Nitride Nanosheets

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  20. Boron Nitride Nanotubes Synthesized by Pressurized Reactive Milling Process

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2004-01-01

    Nanotubes, because of their very high strength, are attractive as reinforcement materials for ceramic matrix composites (CMCs). Recently there has been considerable interest in developing and applying carbon nanotubes for both electronic and structural applications. Although carbon nanotubes can be used to reinforce composites, they oxidize at high temperatures and, therefore, may not be suitable for ceramic composites. Boron nitride, because it has a higher oxidation resistance than carbon, could be a potential reinforcement material for ceramic composites. Although boron nitride nanotubes (BNnT) are known to be structurally similar to carbon nanotubes, they have not undergone the same extensive scrutiny that carbon nanotubes have experienced in recent years. This has been due to the difficulty in synthesizing this material rather than lack of interest in the material. We expect that BNnTs will maintain the high strength of carbon nanotubes while offering superior performance for the high-temperature and/or corrosive applications of interest to NASA. At the NASA Glenn Research of preparing BN-nTs were investigated and compared. These include the arc jet process, the reactive milling process, and chemical vapor deposition. The most successful was a pressurized reactive milling process that synthesizes BN-nTs of reasonable quantities.

  1. Vertical transport in graphene-hexagonal boron nitride heterostructure devices

    PubMed Central

    Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2015-01-01

    Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656

  2. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    PubMed Central

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-01-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052

  3. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  4. Ammonium-tungstate-promoted growth of boron nitride nanotubes.

    PubMed

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-11

    Ammonium tungstate ((NH 4 ) 10 W 12 O 41  · xH 2 O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B 2 O 2 ) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH 4 ) 10 W 12 O 41  · xH 2 O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO 3 ) 2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO 3 ) 2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  5. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-10-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.

  6. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  7. Ultrasound exfoliation of inorganic analogues of graphene

    PubMed Central

    2014-01-01

    High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented. PMID:24708572

  8. Ultrasound exfoliation of inorganic analogues of graphene.

    PubMed

    Stengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-04-05

    High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon nitride (h-BCN), and graphitic carbon nitride (g-C3N4)) in liquids leads to the breakdown of the 3D graphitic structure into a 2D structure; the efficiency of this process is highly dependent upon the physical effects of the ultrasound. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were employed to verify the quality of the exfoliation. Herein, this new method of exfoliation with ultrasound assistance for application to mono- and bilayered materials in hydrophobic and hydrophilic environments is presented.

  9. Oven rack having integral lubricious, dry porcelain surface

    DOEpatents

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  10. Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.

    PubMed

    Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H

    2011-01-01

    Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.

  11. Boron Nitride Nanotube: Synthesis and Applications

    NASA Technical Reports Server (NTRS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  12. Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.

    PubMed

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo

    2016-04-01

    Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.

  13. Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films

    PubMed Central

    2017-01-01

    We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes. PMID:28410557

  14. Boron nitride nanotube: synthesis and applications

    NASA Astrophysics Data System (ADS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-04-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA/JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800°C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  15. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  16. Finding the Stable Structures of WxN1-x with an ab-initio High-Throughput Approach

    DTIC Science & Technology

    2014-03-13

    cubic boron nitride[4], carbonitrides,[5] and transition metal borides .[6, 7] Over the past several years there has been considerable theoretical...include ionic and covalent structures which seem chemically similar to W-N. These include borides , carbides, oxides, and other nitrides. In this paper we...metallic alloys, [23–27] we extended it to include over fifty new structures. These include nitrides, oxides, borides , and carbides. The important

  17. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    NASA Astrophysics Data System (ADS)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  18. Investigation of the Optical, Electronic, and Structural Properties of Fiber Optic Glasses

    DTIC Science & Technology

    1993-06-01

    H. Kawarada, and A. Hiraki , Proc. of MRS: Symp. in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, eds. J.F. Glass...vacancy emission. This ,5Y. Yokota, H. Kawarada, and A. Hiraki , in Diamond, Boron Ni- observation is in accord with the interpretation of the tride

  19. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  20. Consolidation of cubic and hexagonal boron nitride composites

    DOE PAGES

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; ...

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturingmore » of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.« less

  2. The structure, stability, and electronic properties of ultra-thin BC2N nanotubes: a first-principles study.

    PubMed

    Wang, Yue; Zhang, Juan; Huang, Gang; Yao, Xinhua; Shao, Qingyi

    2014-12-01

    Rapid developments of the silicon electronics industry have close to the physical limits and nanotube materials are the ideal materials to replace silicon for the preparation of next generation electronic devices. Boron-carbon-nitrogen nanotubes (BCNNT) can be formed by joining carbon nanotube (CNT) and boron nitride nanotube (BNNT) segments, and BC2N nanotubes have been widely and deeply studied. Here, we employed first-principles calculations based on density function theory (DFT) to study the structure, stability, and electronic properties of ultra thin (4 Å diameter) BC2N nanotubes. Our results showed that the cross sections of BC2N nanotubes can transform from round to oval when CNT and BNNT segments are parallel to the tube axis. It results when the curvature of BNNT segments become larger than CNT segments. Further, we found the stability of BC2N nanotubes is sensitive to the number of B-N bonds, and the phase segregation of BNNT and CNT segments is energetically favored. We also obtained that all (3,3) BC2N nanotubes are semiconductor, whereas (5,0) BC2N nanotubes are conductor when CNT and BNNT segments are perpendicular to the tube axis; and semiconductor when CNT and BNNT segments are parallel to the tube axis. These electronic properties are abnormal when compared to the relative big ones.

  3. Spin-polarized electron current from carbon-doped open armchair boron nitride nanotubes: Implication for nano-spintronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Duan, Wenhui

    2007-03-01

    Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.

  4. Rebar graphene from functionalized boron nitride nanotubes.

    PubMed

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  5. Electronic structure and optical properties of boron nitride nanotube bundles from first principles

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2015-06-01

    The electronic and optical properties of bundled armchair and zigzag boron nitride nanotubes (BNNTs) are investigated by using density functional theory. Owing to the inter-tube coupling, the dispersions along the tube axis and in the plane perpendicular to the tube axis of BNNT bundles are significantly varied, which are characterized by the decrease of band gap, the splitting of the doubly degenerated states, the expansions of valence and conduction bands. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities.

  6. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    NASA Astrophysics Data System (ADS)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  7. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes.

    PubMed

    Xu, Xiaoji G; Tanur, Adrienne E; Walker, Gilbert C

    2013-04-25

    We propose a practical method to obtain near-field infrared absorption spectra in apertureless near-field scanning optical microscopy (aNSOM) through homodyne detection with a specific choice of reference phase. The underlying mechanism of the method is illustrated by theoretical and numeric models to show its ability to obtain absorptive rather than dispersive profiles in near-field infrared vibrational microscopy. The proposed near-field nanospectroscopic method is applied to obtain infrared spectra from regions of individual multiwall boron nitride nanotubes (BNNTs) in spatial regions smaller than the diffraction limit of the light source. The spectra suggest variations in interwall spacing within the individual tubes probed.

  8. Elastic deformation of helical-conical boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, F. F.; Bando, Y.; Golberg, D.; Ma, R. Z.; Li, Y. B.; Tang, C. C.

    2003-08-01

    Boron nitride nanotubes with hollow conical-helix geometry have exhibited striking flexibility and elasticity comparable to metals. During an electron-beam induced deformation at room temperature, the nanotubes can be bent by a maximum angle as high as 180° and then retrieve the starting morphology without any evidence of structural failure. The outstanding low-temperature elasticity in this nano-material is interpreted by a theoretical model, displaying deformation processes dominated by slide of filaments along with changes in apex angles stepwise. The specific tubular geometry is believed to take advantages of both high stiffness and extraordinary flexibility of BN filaments, and easiness of interlayer slide in graphitic structure, hence leading to high resistance to fracture.

  9. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  10. Scanning Tunneling Spectroscopy of Potassium on Graphene

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  11. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  12. Study of electronic and magnetic properties of h-BN on Ni surfaces: A DFT approach

    NASA Astrophysics Data System (ADS)

    Sahoo, M. R.; Sahu, S.; Kushwaha, A. K.; Nayak, S.

    2018-04-01

    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and close-packedsurfaces of fcc-Ni(111). Electronic and magnetic properties of single layer hexagonal Boron Nitride (h-BN) on Ni (111) surface have been studied with density functional calculation. Since lattice constants of nickel surfaces are very close to that of h-BN, nickel acts as a good substrate. We found that the interaction between 2Pz - 3dz2 orbitals leads to change in electronic band structure as well as density of states which results spin polarization in h-BN.

  13. Adhesion, friction, and deformation of ion-beam-deposited boron nitride films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Buckley, Donald H.; Alterovitz, Samuel A.; Pouch, John J.; Liu, David C.

    1987-01-01

    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.

  14. Adhesion, friction and deformation of ion-beam-deposited boron nitride films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Alterovitz, S. A.; Pouch, J. J.; Liu, D. C.

    1987-01-01

    The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.

  15. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  16. Energetics and formation mechanism of borders between hexagonal boron nitride and graphene

    NASA Astrophysics Data System (ADS)

    Sawahata, Hisaki; Yamanaka, Ayaka; Maruyama, Mina; Okada, Susumu

    2018-06-01

    We studied the energetics of two-dimensional heterostructures consisting of hexagonal boron nitride (h-BN) and graphene with respect to the border structure and heterobond species using density functional theory. A BC heterobond is energetically preferable at the border between h-BN and graphene. We also found that the polarization at the zigzag border increases the total energy of the heterostructures. Competition between the bond formation energy and the polarization energy leads to chiral borders at which BC heterobonds are dominant. By taking the formation process of the heterostructures into account, the zigzag border with BC heterobonds is found to be preferentially synthesized from graphene edges under hydrogen-rich conditions.

  17. Intraband Raman laser gain in a boron nitride coupled quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorthy, N. Narayana; Peter, A. John, E-mail: a.john.peter@gmail.com

    2016-05-23

    On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B{sub 0.3}Ga{sub 0.7}N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.

  18. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  19. Structure of Boron Nitride Nanotubes: Tube Closing Vs. Chirality

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu

    1998-01-01

    The structure of boron nitride nanotubes is investigated using a generalized tight-binding molecular dynamics method. It is shown that dynamic relaxation results in a wavelike or "rippled" surface in which the B atoms rotate inward and the N atoms move outward, reminiscent of the surface relaxation of the III-V semiconductors. More importantly, the three different morphologies of the tube closing with flat, conical and amorphous ends, as observed in experiments, are shown to be directly related to the tube chiralities. The abundance of flat end tubes observed in experiments is, thus, shown to be an indication of the greater stability of "zig-zag" BN tubes over the "arm-chair" tubes under experimental conditions.

  20. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  1. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    NASA Astrophysics Data System (ADS)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  2. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  3. Probing nonlocal effects in metals with graphene plasmons

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo J. C.; Iranzo, David Alcaraz; Gonçalves, P. A. D.; Hajati, Yaser; Bludov, Yuliy V.; Jauho, Antti-Pekka; Mortensen, N. Asger; Koppens, Frank H. L.; Peres, N. M. R.

    2018-06-01

    In this paper, we analyze the effects of nonlocality on the optical properties of a system consisting of a thin metallic film separated from a graphene sheet by a hexagonal boron nitride (hBN) layer. We show that nonlocal effects in the metal have a strong impact on the spectrum of the surface plasmon-polaritons on graphene. If the graphene sheet is nanostructured into a periodic grating, we show that the resulting extinction curves can be used to shed light on the importance of nonlocal effects in metals. Therefore graphene surface plasmons emerge as a tool for probing nonlocal effects in metallic nanostructures, including thin metallic films. As a byproduct of our study, we show that nonlocal effects may lead to smaller losses for the graphene plasmons than what is predicted by a local calculation. Finally, we demonstrate that such nonlocal effects can be very well mimicked using a local theory with an effective spacer thickness larger than its actual value.

  4. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  5. High-purity production of ultrathin boron nitride nanosheets via shock chilling and their enhanced mechanical performance and transparency in nanocomposite hydrogels.

    PubMed

    Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2018-05-25

    A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max ) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

  6. Shockwave Processing of Composite Boron and Titanium Nitride Powders

    NASA Astrophysics Data System (ADS)

    Beason, Matthew T.; Gunduz, I. Emre; Mukasyan, Alexander S.; Son, Steven F.

    2015-06-01

    Shockwave processing of powders has been shown to initiate reactions between condensed phase reactants. It has been observed that these reactions can occur at very short timescales, resulting in chemical reactions occurring at a high pressure state. These reactions have the potential to produce metastable phases. Kinetic limitations prevent gaseous reactants from being used in this type of synthesis reaction. To overcome this limitation, a solid source of gaseous reactants must be used. An example of this type of reaction is the nitrogen exchange reaction (e.g. B + TiN, B + Si3N4 etc.). In these reactions nitrogen is ``carried'' by a material that can be then reduced by the second reactant. This work explores the possibility of using nitrogen exchange reactions to synthesize the cubic phase of boron nitride (c-BN) through shockwave processing of ball milled mixtures of boron and titanium nitride. The heating from the passage of the shock wave (pore collapse, plastic work, etc.) combined with thermochemical energy from the reaction may provide a means to synthesize c-BN. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002377. National Defense Science & Engineering Graduate Fellowship (NDSEG), 32 CFR 168a.

  7. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    PubMed

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  8. High-purity production of ultrathin boron nitride nanosheets via shock chilling and their enhanced mechanical performance and transparency in nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2018-05-01

    A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12–16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

  9. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    PubMed Central

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL−1 and 10 µg·mL−1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL−1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. PMID:28860759

  10. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    PubMed

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  11. Radio Frequency Plasma Synthesis of Boron Nitride Nanotubes (BNNTs) for Structural Applications: Part I

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Alexa, Joel A.; Jensen, Brian J.; Thomsen, Donald L.

    2016-01-01

    It is evident that nanotubes, such as carbon, boron nitride and even silicon, offer great potential for many aerospace applications. The opportunity exists to harness the extremely high strength and stiffness exhibited by high-purity, low-defect nanotubes in structural materials. Even though the technology associated with carbon nanotube (CNT) development is mature, the mechanical property benefits have yet to be fully realized. Boron nitride nanotubes (BNNTs) offer similar structural benefits, but exhibit superior chemical and thermal stability. A broader range of potential structural applications results, particularly as reinforcing agents for metal- and ceramic- based composites. However, synthesis of BNNTs is more challenging than CNTs mainly because of the higher processing temperatures required, and mass production techniques have yet to emerge. A promising technique is radio frequency plasma spray (RFPS), which is an inductively coupled, very high temperature process. The lack of electrodes and the self- contained, inert gas environment lend themselves to an ultraclean product. It is the aim of this White Paper to survey the state of the art with regard to nano-material production by analyzing the pros and cons of existing methods. The intention is to combine the best concepts and apply the NASA Langley Research Center (LaRC) RFPS facility to reliably synthesize large quantities of consistent, high-purity BNNTs.

  12. Synergistic Behavior of Tubes, Junctions, and Sheets Imparts Mechano-Mutable Functionality in 3D Porous Boron Nitride Nanostructures

    PubMed Central

    2015-01-01

    One-dimensional (1D) boron nitride nanotube (BNNT) and 2D hexagonal BN (h-BN) are attractive for demonstrating fundamental physics and promising applications in nano-/microscale devices. However, there is a high anisotropy associated with these BN allotropes as their excellent properties are either along the tube axis or in-plane directions, posing an obstacle in their widespread use in technological and industrial applications. Herein, we report a series of 3D BN prototypes, namely, pillared boron nitride (PBN), by fusing single-wall BNNT and monolayer h-BN aimed at filling this gap. We use density functional theory and molecular dynamics simulations to probe the diverse mechano-mutable properties of PBN prototypes. Our results demonstrate that the synergistic effect of the tubes, junctions, and sheets imparts cooperative deformation mechanisms, which overcome the intrinsic limitations of the PBN constituents and provide a number of superior characteristics including 3D balance of strength and toughness, emergence of negative Poisson’s ratio, and elimination of strain softening along the armchair orientation. These features, combined with the ultrahigh surface area and lightweight structure, render PBN as a 3D multifunctional template for applications in graphene-based nanoelectronics, optoelectronics, gas storage, and functional composites with fascinating in-plane and out-of-plane tailorable properties. PMID:25289114

  13. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  14. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs' interaction with graphene, and applied to address the challenge of dispersing bare-surfaced GNPs for efficient liquid-phase catalysis. We also revisited the functionalization of graphene and present a non-invasive surface introduction of interfaceable moieties. Isostructural to graphene, ultrathin BN sheet is another atomic-thick nanomaterial possessing a highly diverse set of properties inconceivable from graphene. Exfoliating UTBNSs has been challenging due to their exceptional intersheet-bonding and chemical-inertness. To develop applications of BN monolayers and evolve research, a facile lab-scale approach was desired that can produce processable dispersions of BN monolayers. We demonstrated a novel chlorosulfonic acid based treatment that resulted in protonation assisted layer-by-layer exfoliation of BN monolayers with highest reported yields till date. Further, the BN monolayers exhibited extensively protonated N centers, which are utilized for chemically interfacing GNPs, demonstrating their ability to act as excellent nano-templates. The scientific details obtained from the research shown here will significantly support current research activities and greatly impact their future applications. Our research findings have been published in ACS Nano, Small, Journal of Physical Chemistry Letters, MRS Proceedings and have gathered >45 citations.

  15. Vertical III-nitride thin-film power diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  16. Defect-Based Modulation of Optoelectronic Properties for Biofunctionalized Hexagonal Boron Nitride Nanosheets.

    PubMed

    Shakourian-Fard, Mehdi; Heydari, Hadiseh; Kamath, Ganesh

    2017-09-06

    Defect engineering potentially allows for dramatic tuning of the optoelectronic properties of two-dimensional materials. With the help of DFT calculations, a systematic study of DNA nucleobases adsorbed on hexagonal boron-nitride nanoflakes (h-BNNFs) with boron (V B ) and nitrogen (V N ) monovacancies is presented. The presence of V N and V B defects increases the binding strength of nucleobases by 9 and 34 kcal mol -1 , respectively (h-BNNF-V B >h-BNNF-V N >h-BNNF). A more negative electrostatic potential at the V B site makes the h-BNNF-V B surface more reactive than that of h-BNNF-V N , enabling H-bonding interactions with nucleobases. This binding energy difference affects the recovery time-a significant factor for developing DNA biosensors-of the surfaces in the order h-BNNF-V B >h-BNNF-V N >h-BNNF. The presence of V B and V N defect sites increases the electrical conductivity of the h-BNNF surface, V N defects being more favorable than V B sites. The blueshift of absorption peaks of the h-BNNF-V B -nucleobase complexes, in contrast to the redshift observed for h-BNNF-V N -nucleobase complexes, is attributed to their observed differences in binding energies, the HOMO-LUMO energy gap and other optoelectronic properties. Time-dependent DFT calculations reveal that the monovacant boron-nitride-sheet-nucleobase composites absorb visible light in the range 300-800 nm, thus making them suitable for light-emitting devices and sensing nucleobases in the visible region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explainmore » the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.« less

  18. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com; Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir

    2016-11-15

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior suchmore » as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.« less

  19. Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.

    PubMed

    Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping

    2018-08-24

    Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.

  20. Hybrid-PIC Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2017-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for AEPS thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  1. Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Hong, Deok Gi; Jung, Young Mee; Won, Jong Chan; Lee, Seung Woo

    2018-04-01

    Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2‧-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4‧-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain. In particular, the BN is selectively incorporated into the TDA-rich phase in this study.

  2. Rebar Graphene from Functionalized Boron Nitride Nanotubes

    PubMed Central

    2015-01-01

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties. PMID:25486451

  3. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance.

    PubMed

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-12

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ∼98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  4. Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei

    2018-04-01

    In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.

  5. Strong confinement of optical fields using localized surface phonon polaritons in cubic boron nitride.

    PubMed

    Chatzakis, Ioannis; Krishna, Athith; Culbertson, James; Sharac, Nicholas; Giles, Alexander J; Spencer, Michael G; Caldwell, Joshua D

    2018-05-01

    Phonon polaritons (PhPs) are long-lived electromagnetic modes that originate from the coupling of infrared (IR) photons with the bound ionic lattice of a polar crystal. Cubic-boron nitride (cBN) is such a polar, semiconductor material which, due to the light atomic masses, can support high-frequency optical phonons. Here we report on random arrays of cBN nanostructures fabricated via an unpatterned reactive ion etching process. Fourier-transform infrared reflection spectra suggest the presence of localized surface PhPs within the reststrahlen band, with quality factors in excess of 38 observed. These can provide the basis of next-generation IR optical components such as antennas for communication, improved chemical spectroscopies, and enhanced emitters, sources, and detectors.

  6. Dyakonov surface waves at the interface between hexagonal-boron-nitride and isotropic material

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Ren, G.; Gao, Y.; Wang, Q.; Wan, C.; Wang, J.; Jian, S.

    2016-12-01

    In this paper we analyze the propagation of Dyakonov surface waves (DSWs) at the interface between hexagonal-boron-nitride (h-BN) and isotropic dielectric material. Various properties of DSWs supported at the dielectric-elliptic and dielectric-hyperbolic types of interfaces have been theoretically investigated, including the real effective index, propagation length, the angular existence domain (AED) and the composition ratio of evanescent field components in an h-BN crystal and isotropic dielectric material, respectively. The analysis in this paper reveals that h-BN could be a promising anisotropic material to observe the propagation of DSWs and may have potential diverse applications, such as high sensitivity stress sensing or optical sensing of analytes infiltrating dielectric materials.

  7. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    PubMed

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  8. Synthesis micro-scale boron nitride nanotubes at low substrate temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajjad, Muhammad, E-mail: msajjadd@gmail.com; Makarov, Vladimir; Morell, Gerardo

    2016-07-15

    High temperature synthesis methods produce defects in 1D nanomaterials, which ultimately limit their applications. We report here the synthesis of micro-scale boron nitride nanotubes (BNNT) at low substrate temperature (300 {sup o}C) using a pulsed CO{sub 2} laser deposition technique in the presence of catalyst. The electron microscopic analyses have shown the nanotubes distributed randomly on the surface of the substrate. The average diameter (∼0.25 μm) of a nanotube, which is the highest reported value to date, is estimated by SEM data and confirmed by TEM measurements. These nanotubes are promising for high response deep-UV photo-luminescent devices. A detailed synthesismore » mechanism is presented and correlated with the experimental results.« less

  9. In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians.

    PubMed

    Salvetti, Alessandra; Rossi, Leonardo; Iacopetti, Paola; Li, Xia; Nitti, Simone; Pellegrino, Teresa; Mattoli, Virgilio; Golberg, Dmitri; Ciofani, Gianni

    2015-07-01

    Boron nitride nanotubes (BNNTs) represent an extremely interesting class of nanomaterials, and recent findings have suggested a number of applications in the biomedical field. Anyhow, extensive biocompatibility investigations are mandatory before any further advancement toward preclinical testing. Here, we report on the effects of multiwalled BNNTs in freshwater planarians, one of the best-characterized in vivo models for developmental biology and regeneration research. Obtained results indicate that BNNTs are biocompatible in the investigated model, since they do not induce oxidative DNA damage and apoptosis, and do not show adverse effects on planarian stem cell biology and on de novo tissue regeneration. In summary, collected findings represent another important step toward BNNT realistic applications in nanomedicine.

  10. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  11. Theoretical studies of urea adsorption on single wall boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chermahini, Alireza Najafi; Teimouri, Abbas; Farrokhpour, Hossein

    2014-11-01

    Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.

  12. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    NASA Astrophysics Data System (ADS)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  13. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  14. Effective cleaning of hexagonal boron nitride for graphene devices.

    PubMed

    Garcia, Andrei G F; Neumann, Michael; Amet, François; Williams, James R; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2012-09-12

    Hexagonal boron nitride (h-BN) films have attracted considerable interest as substrates for graphene. ( Dean, C. R. et al. Nat. Nanotechnol. 2010 , 5 , 722 - 6 ; Wang, H. et al. Electron Device Lett. 2011 , 32 , 1209 - 1211 ; Sanchez-Yamagishi, J. et al. Phys. Rev. Lett. 2012 , 108 , 1 - 5 .) We study the presence of organic contaminants introduced by standard lithography and substrate transfer processing on h-BN films exfoliated on silicon oxide substrates. Exposure to photoresist processing adds a large broad luminescence peak to the Raman spectrum of the h-BN flake. This signal persists through typical furnace annealing recipes (Ar/H(2)). A recipe that successfully removes organic contaminants and results in clean h-BN flakes involves treatment in Ar/O(2) at 500 °C.

  15. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls

    NASA Astrophysics Data System (ADS)

    Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui

    2016-04-01

    We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.

  16. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    PubMed Central

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-01-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s. PMID:28367992

  17. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    DTIC Science & Technology

    2016-06-15

    with end-functionalized polymers . First, an end-functionalized polymer with conjugated end-molecule, pyrene, is successfully employed to boron... polymers . First, an end-functionalized polymer with conjugated end-molecule, pyrenes, is successfully employed to boron nitride nanosheets (BNNS), and...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY

  18. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.

    PubMed

    Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry

    2014-07-09

    Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.

  19. The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMs)

    NASA Astrophysics Data System (ADS)

    Arutt, Charles N.; Alles, Michael L.; Liao, Wenjun; Gong, Huiqi; Davidson, Jim L.; Schrimpf, Ronald D.; Reed, Robert A.; Weller, Robert A.; Bolotin, Kirill; Nicholl, Ryan; Pham, Thang Toan; Zettl, Alex; Qingyang, Du; Hu, Juejun; Li, Mo; Alphenaar, Bruce W.; Lin, Ji-Tzuoh; Shurva, Pranoy Deb; McNamara, Shamus; Walsh, Kevin M.; X-L Feng, Philip; Hutin, Louis; Ernst, Thomas; Homeijer, Brian D.; Polcawich, Ronald G.; Proie, Robert M.; Jones, Jacob L.; Glaser, Evan R.; Cress, Cory D.; Bassiri-Gharb, Nazanin

    2017-01-01

    The potential of micro and nano electromechanical systems (M and NEMS) has expanded due to advances in materials and fabrication processes. A wide variety of materials are now being pursued and deployed for M and NEMS including silicon carbide (SiC), III-V materials, thin-film piezoelectric and ferroelectric, electro-optical and 2D atomic crystals such as graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2). The miniaturization, functionality and low-power operation offered by these types of devices are attractive for many application areas including physical sciences, medical, space and military uses, where exposure to radiation is a reliability consideration. Understanding the impact of radiation on these materials and devices is necessary for applications in radiation environments.

  20. Promising Sparingly Alloyed Boron-Bearing Steels for the Production of High-Strength Fasteners

    NASA Astrophysics Data System (ADS)

    Bobylev, M. V.; Koroleva, E. G.; Shtannikov, P. A.

    2005-05-01

    The main advantages of boron-bearing steels used for production of rolled sections at cold upset shops of Russian automotive plants are considered. A thermodynamic model for the majority of boron-bearing steels for high-strength fasteners is used to plot nomograms characterizing the effect of titanium, aluminum, nitrogen, and boron on the amount of nitrides and oxides segregated in crystallization and on the content of effective boron. The effect of effective boron on the characteristics of hardenability is estimated. The studies conducted are used for determining the range of permissible contents of titanium and aluminum ensuring through hardenability of rolled bars from steels 12G1R, 20G2R, and 30G1R up to 25 mm in diameter.

  1. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  2. Synthesis of boron nitride powders

    NASA Astrophysics Data System (ADS)

    Dreissig, Dirk Horst

    2002-09-01

    In the materials science community there is much interest in the development of new, efficient approaches for preparing ceramic powders having properties or performance characteristics not found with powders produced by traditional metallurgical synthesis methods. In this regard, aerosol-based syntheses are finding general acceptance for the preparation of non-metal and metal oxide powders. In contrast, much less effort has been given to aerosol-type syntheses for non-oxide powders despite potentially useful benefits. This dissertation describes the application of two chemical systems in aerosol assisted vapor phase synthesis (AAVS) for the preparation of spherical morphology boron oxynitride, BNxOy, powders that are subsequently converted to spherical morphology boron nitride in a second nitridation step. Chapter 1 describes the AAVS synthesis of BNxOy powders using a reaction of an aqueous boric acid containing aerosol with ammonia at 1000°C. The effect of reactor tube material, total gas flow rate, ammonia concentration, boric acid concentration, and urea addition to the boric acid aerosol on the percent oxygen composition is described. The resulting BNxOy powders contain significant amounts of oxygen that require replacement in a second stage nitridation reaction at elevated temperature under ammonia. The influences of the reaction temperature profile, crucible geometry and transformation additive on final oxygen composition and powder crystallinity are described. Chapter 2 outlines the formation of BNxOy powders from an AAVS reaction between the boron precursor (MeO)3B and ammonia. The formation of the powders is studied as a function of total gas flow rate and ammonia concentration. In all cases the resulting powders contain lower levels of oxygen compared to powders produced from aqueous boric acid aerosols. The conversion of the BNxOy powders in the second stage nitridation reaction with ammonia is examined as a function of crucible geometry, temperature profile and ammonia flow rate. In support of this process, the molecular reaction between (MeO)3B and NH3 was reexamined. The adduct, (MeO)3B·NH3, was isolated and its molecular structure determined by single crystal X-ray diffraction techniques. The results of these studies provide guidance for more detailed studies that should result in industrial scale synthesis of spherical morphology BN which currently is not formed by standard metallurgical syntheses. This new material has potential applications in several areas including the formation of BN loaded organic polymer composites.

  3. Protecting the properties of monolayer MoS 2 on silicon based substrates with an atomically thin buffer

    DOE PAGES

    Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew; ...

    2016-02-12

    Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS 2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations. Here we show that an atomically thin buffer layer of hexagonal-boron nitride (hBN) protects themore » range of key opto-electronic, structural, and morphological properties of monolayer MoS 2 on Si-based substrates. The hBN buffer restores sharp diffraction patterns, improves monolayer flatness by nearly two-orders of magnitude, and causes over an order of magnitude enhancement in photoluminescence, compared to bare Si and SiO 2 substrates. Lastly, our demonstration provides a way of integrating MoS 2 and other 2D monolayers onto standard Si-substrates, thus furthering their technological applications and scientific investigations.« less

  4. Tribological properties of alumina-boria-silicate fabric from 25 to 850 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.

  5. High-performance polyimide nanocomposites with core-shell AgNWs@BN for electronic packagings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yongcun; Liu, Feng, E-mail: liufeng@nwpu.edu.cn

    2016-08-22

    The increasing density of electronic devices underscores the need for efficient thermal management. Silver nanowires (AgNWs), as one-dimensional nanostructures, possess a high aspect ratio and intrinsic thermal conductivity. However, high electrical conductivity of AgNWs limits their application for electronic packaging. We synthesized boron nitride-coated silver nanowires (AgNWs@BN) using a flexible and fast method followed by incorporation into synthetic polyimide (PI) for enhanced thermal conductivity and dielectric properties of nanocomposites. The thinner boron nitride intermediate nanolayer on AgNWs not only alleviated the mismatch between AgNWs and PI but also enhanced their interfacial interaction. Hence, the maximum thermal conductivity of an AgNWs@BN/PImore » composite with a filler loading up to 20% volume was increased to 4.33 W/m K, which is an enhancement by nearly 23.3 times compared with that of the PI matrix. The relative permittivity and dielectric loss were about 9.89 and 0.015 at 1 MHz, respectively. Compared with AgNWs@SiO{sub 2}/PI and Ag@BN/PI composites, boron nitride-coated core-shell structures effectively increased the thermal conductivity and reduced the permittivity of nanocomposites. The relative mechanism was studied and discussed. This study enables the identification of appropriate modifier fillers for polymer matrix nanocomposites.« less

  6. The interface between ferroelectric and 2D material for a Ferroelectric Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Park, Nahee; Kang, Haeyong; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok

    We have studied electrical property of ferroelectric field-effect transistor which consists of graphene on hexagonal Boron-Nitride (h-BN) gated by a ferroelectric, PMN-PT (i.e. (1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) single-crystal substrate. The PMN-PT was expected to have an effect on polarization field into the graphene channel and to induce a giant amount of surface charge. The hexagonal Boron-Nitride (h-BN) flake was directly exfoliated on the PMN-PT substrate for preventing graphene from directly contacting on the PMN-PT substrate. It can make us to observe the effect of the interface between ferroelectric and 2D material on the device operation. Monolayer graphene as 2D channel material, which was confirmed by Raman spectroscopy, was transferred on top of the hexagonal Boron-Nitride (h-BN) by using the conventional dry-transfer method. Here, we can demonstrate that the structure of graphene/hexagonal-BN/ferroelectric field-effect transistor makes us to clearly understand the device operation as well as the interface between ferroelectric and 2D materials by inserting h-BN between them. The phenomena such as anti-hysteresis, current saturation behavior, and hump-like increase of channel current, will be discussed by in terms of ferroelectric switching, polarization-assisted charge trapping.

  7. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    NASA Astrophysics Data System (ADS)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  8. Initial stages of growth and the influence of temperature during chemical vapor deposition of sp{sup 2}-BN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubarov, Mikhail; Pedersen, Henrik; Högberg, Hans

    2015-11-15

    Knowledge of the structural evolution of thin films, starting by the initial stages of growth, is important to control the quality and properties of the film. The authors present a study on the initial stages of growth and the temperature influence on the structural evolution of sp{sup 2} hybridized boron nitride (BN) thin films during chemical vapor deposition (CVD) with triethyl boron and ammonia as precursors. Nucleation of hexagonal BN (h-BN) occurs at 1200 °C on α-Al{sub 2}O{sub 3} with an AlN buffer layer (AlN/α-Al{sub 2}O{sub 3}). At 1500 °C, h-BN grows with a layer-by-layer growth mode on AlN/α-Al{sub 2}O{sub 3} upmore » to ∼4 nm after which the film structure changes to rhombohedral BN (r-BN). Then, r-BN growth proceeds with a mixed layer-by-layer and island growth mode. h-BN does not grow on 6H-SiC substrates; instead, r-BN nucleates and grows directly with a mixed layer-by-layer and island growth mode. These differences may be caused by differences in substrate surface temperature due to different thermal conductivities of the substrate materials. These results add to the understanding of the growth process of sp{sup 2}-BN employing CVD.« less

  9. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com

    2016-05-06

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less

  10. Nanotube phonon waveguide

    DOEpatents

    Chang, Chih-Wei; Zettl, Alexander K.

    2013-10-29

    Disclosed are methods and devices in which certain types of nanotubes (e.g., carbon nanotubes and boron nitride nanotubes conduct heat with high efficiency and are therefore useful in electronic-type devices.

  11. Guiding of High Laser Intensities in Long Plasma Channels

    NASA Astrophysics Data System (ADS)

    Levin, M.; Eisenmann, S.; Palchan, T.; Zigler, A.; Sugiyama, K.; Nakajima, K.; Kaganovich, D.; Hubbard, R. F.; Ting, A.; Gordon, D. F.; Sprangle, P.; Fraenkel, M.; Maman, S.; Henis, Z.

    Plasma channels have been widely used to guide intense laser pulses over many Rayleigh lengths. Using optimized segmented capillary discharges, we demonstrated guided propagation of ultra short (100 fs) high intensity (1016 W/cm-2, limited by the laser system) pulses over distances up to 12.6 cm and intensities above 1018W/cm2 for 1.5cm boron nitride capillary. Both radial and longitudinal density profiles of plasma channels were studied under various discharge conditions. A new diagnostic technique is presented in which the transport of a guided laser pulse at different delay times from the initiation of the discharge is sampled on a single discharge shot. Using external, 10 nsec Nd YAG laser of several tenths of milijoules to ignite polyethylene capillaries we have demonstrated channels of various length in density range of 1017 - 1019 cm-3 and up to 25% deep. The longitudinal profiles were found to be remarkably uniform in both short and long capillaries. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. Using these capillaries we have guided laser intensities above 1018W/cm2. The laser ignition of capillary discharge provided reliable almost jitter free approach. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge.

  12. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery.

    PubMed

    Weng, Qunhong; Wang, Binju; Wang, Xuebin; Hanagata, Nobutaka; Li, Xia; Liu, Dequan; Wang, Xi; Jiang, Xiangfen; Bando, Yoshio; Golberg, Dmitri

    2014-06-24

    Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble, and stable in physiological solutions and could be easily functionalized for effective drug deliveries are still challenging. Here, we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g., doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNCaP cancer cells than free drugs.

  13. Effects of axial magnetic field on the electronic and optical properties of boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2011-07-01

    The splitting of band structure and absorption spectrum, for boron nitride nanotubes (BNNTs) under axial magnetic field, is studied using the tight binding approximation. It is found that the band splitting ( ΔE) at the Γ point is linearly proportional to the magnetic field ( Φ/Φ0). Our results indicate that the splitting rate νii, of the two first bands nearest to the Fermi level, is a linear function of n -2 for all (n,0) zigzag BNNTs. By investigation of the dependence of band structure and absorption spectrum to the magnetic field, we found that absorption splitting is equal to band splitting and the splitting rate of band structure can be used to determine the splitting rate of the absorption spectrum.

  14. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, K.; Xiao, H. Y.; Zhang, Y.

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recoverymore » process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.« less

  15. Structural and electronic properties of double-walled boron nitride nanocones

    NASA Astrophysics Data System (ADS)

    Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.

    2018-01-01

    First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.

  16. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  17. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    PubMed Central

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  18. Hybrid-Particle-In-Cell Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2018-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  19. Random telegraph noise in 2D hexagonal boron nitride dielectric films

    NASA Astrophysics Data System (ADS)

    Ranjan, A.; Puglisi, F. M.; Raghavan, N.; O'Shea, S. J.; Shubhakar, K.; Pavan, P.; Padovani, A.; Larcher, L.; Pey, K. L.

    2018-03-01

    This study reports the observation of low frequency random telegraph noise (RTN) in a 2D layered hexagonal boron nitride dielectric film in the pre- and post-soft breakdown phases using conductive atomic force microscopy as a nanoscale spectroscopy tool. The RTN traces of the virgin and electrically stressed dielectric (after percolation breakdown) were compared, and the signal features were statistically analyzed using the Factorial Hidden Markov Model technique. We observe a combination of both two-level and multi-level RTN signals in h-BN, akin to the trends commonly observed for bulk oxides such as SiO2 and HfO2. Experimental evidence suggests frequent occurrence of unstable and anomalous RTN traces in 2D dielectrics which makes extraction of defect energetics challenging.

  20. Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD.

    PubMed

    Caneva, Sabina; Weatherup, Robert S; Bayer, Bernhard C; Blume, Raoul; Cabrero-Vilatela, Andrea; Braeuninger-Weimer, Philipp; Martin, Marie-Blandine; Wang, Ruizhi; Baehtz, Carsten; Schloegl, Robert; Meyer, Jannik C; Hofmann, Stephan

    2016-02-10

    Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.

Top