Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films
NASA Astrophysics Data System (ADS)
Sarradin, J.; Guessous, A.; Ribes, M.
Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.
Multifunctional thin film surface
Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.
2015-10-13
A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.
Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in
2016-05-06
Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.
NASA Astrophysics Data System (ADS)
Hwang, Jaeyeon; Lee, Heon; Lee, Jong-Ho; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Son, Ji-Won
2015-01-01
To obtain La1-xSrxGa1-yMgyO3-δ (LSGM) thin films with the appropriate properties, pulsed-laser deposition (PLD) is employed, and specific considerations regarding control of the deposition parameters is investigated. It is demonstrated that with a target of stoichiometric composition, appropriate LSGM thin films cannot be produced because of the deviation of the composition from the target to the thin film. Only after adjusting the target composition an LSGM thin film with an appropriate composition and phase can be obtained. The optimized LSGM thin film possesses an electrical conductivity close to that of the bulk LSGM. In contrast, non-optimized thin films do not yield any measurable electrical conductivity. The impact of the optimization of the LSGM thin-film electrolyte on the cell performance is quite significant, in that a solid-oxide fuel cell (SOFC) with an optimized LSGM thin-film electrolyte produces a maximum power density of 1.1 W cm-2 at 600 °C, whereas an SOFC with a non-optimal LSGM thin-film electrolyte is not operable.
Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li
2012-01-01
Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.
Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.
2014-03-01
We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.
Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.
Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R
2010-09-15
In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen
2011-09-01
A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.
Thin Film Technology of High-Critical-Temperature Superconducting Electronics.
1983-12-05
MD- R136 722 THIN FILM TECHNOLOGY OF HIGH-CRITICAL-TEMPERATURE 1/1 SUPERCONDUCTING ELECTRO..(U) WESTINGHOUSE RESEARCH AND DEVELOPMENT CENTER...critical temperature has been demonstrated. Work will continue in a closed system to eliminate the base superconductor degradation, reduce leakage...a 5% decline in Tc has been demonstrated. Work will continue in a closed system to eliminate the base superconductor degradation, reduce leakage and
Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.
2016-05-06
This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.
Magnon dispersion in thin magnetic films.
Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W
2014-10-01
Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.
NASA Astrophysics Data System (ADS)
Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen
2011-09-01
A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films. Electronic supplementary information (ESI) available: Figure S1, the SEM images and photograph of the films prepared from 10 ml, 20 nm gold nanoparticles. Scheme S1, the vibrations of 1534 and 1594 cm-1 of R6G. See DOI: 10.1039/c1nr10578g
A novel nanometric DNA thin film as a sensor for alpha radiation
Kulkarni, Atul; Kim, Byeonghoon; Dugasani, Sreekantha Reddy; Joshirao, Pranav; Kim, Jang Ah; Vyas, Chirag; Manchanda, Vijay; Kim, Taesung; Park, Sung Ha
2013-01-01
The unexpected nuclear accidents have provided a challenge for scientists and engineers to develop sensitive detectors, especially for alpha radiation. Due to the high linear energy transfer value, sensors designed to detect such radiation require placement in close proximity to the radiation source. Here we report the morphological changes and optical responses of artificially designed DNA thin films in response to exposure to alpha radiation as observed by an atomic force microscope, a Raman and a reflectance spectroscopes. In addition, we discuss the feasibility of a DNA thin film as a radiation sensing material. The effect of alpha radiation exposure on the DNA thin film was evaluated as a function of distance from an 241Am source and exposure time. Significant reflected intensity changes of the exposed DNA thin film suggest that a thin film made of biomolecules can be one of promising candidates for the development of online radiation sensors. PMID:23792924
NASA Astrophysics Data System (ADS)
Adelifard, Mehdi; Darudi, Hosein
2016-07-01
There is a great interest in the use of graphene sheets in thin film solar cells with low-cost and good-optoelectronic properties. Here, the production of absorbent conductive reduced graphene oxide (RGO) thin films was investigated. RGO thin films were prepared from spray-coated graphene oxide (GO) layers at various substrate temperature followed by a simple hydrazine-reducing method. The structural, morphological, optical, and electrical characterizations of graphene oxide (GO) and RGO thin films were investigated. X-ray diffraction analysis showed a phase shift from GO to RGO due to hydrazine treatment, in agreement with the FTIR spectra of the layers. FESEM images clearly exhibited continuous films resulting from the overlap of graphene nanosheets. The produced low-cost thin films had high absorption coefficient up to 1.0 × 105 cm-1, electrical resistance as low as 0.9 kΩ/sq, and effective optical band gap of about 1.50 eV, close to the optimum value for solar conversion. The conductive absorbent properties of the reduced graphene oxide thin films would be useful to develop photovoltaic cells.
Rambabu, A; Senthilkumar, B; Sada, K; Krupanidhi, S B; Barpanda, P
2018-03-15
Sodium-ion thin-film micro-batteries form a niche sector of energy storage devices. Sodium titanate, Na 2 Ti 6 O 13 (NTO) thin films were deposited by pulsed laser deposition (PLD) using solid-state synthesized polycrystalline Na 2 Ti 6 O 13 compound. The phase-purity and crystallinity of NTO in bulk and thin-film forms were confirmed by Rietveld refinement. Electron microscopy and atomic force microscopy revealed the formation of uniform ∼100 nm thin film with roughness of ∼4 nm consisting of homogeneous nanoscale grains. These PLD-deposited NTO thin-films, when tested in Na-half cell architecture, delivered a near theoretical reversible capacity close to 42 mA h g -1 involving Ti 4+ /Ti 3+ redox activity along with good cycling stability and rate kinetics. Na 2 Ti 6 O 13 can work as an efficient and safe anode in designing sodium-ion thin-film micro-batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana
2018-05-17
Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.
Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.
Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J
2009-01-01
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.
Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces
Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik
2017-01-01
Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications. PMID:28429805
Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces
NASA Astrophysics Data System (ADS)
Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik
2017-04-01
Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.
Magnetic properties of sputtered Permalloy/molybdenum multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romera, M.; Ciudad, D.; Maicas, M.
2011-10-15
In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less
Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com; Panchal, A.K.
2016-05-06
First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the ordermore » of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.« less
Line-source excited impulsive EM field response of thin plasmonic metal films
NASA Astrophysics Data System (ADS)
Štumpf, Martin; Vandenbosch, Guy A. E.
2013-08-01
In this paper, reflection against and transmission through thin plasmonic metal films, basic building blocks of many plasmonic devices, are analytically investigated directly in the time domain for an impulsive electric and magnetic line-source excitation. The electromagnetic properties of thin metallic films are modeled via the Drude model. The problem is formulated with the help of approximate thin-sheet boundary conditions and the analysis is carried out using the Cagniard-DeHoop technique. Closed-form space-time expressions are found and discussed. The obtained time-domain analytical expressions reveal the existence of the phenomenon of transient oscillatory surface effects along a plasmonic metal thin sheet. Illustrative numerical examples of transmitted/reflected pulsed fields are provided.
Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2017-07-17
We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.
Thickness-dependence of optical constants for Ta2O5 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao
2012-09-01
An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.
A two-layer structured PbI2 thin film for efficient planar perovskite solar cells.
Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao
2015-07-28
In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm(-2) and a fill factor of 0.67.
Finding pathways to prepare Fe4N thin films at low substrate temperature
NASA Astrophysics Data System (ADS)
Seema, Gupta, Nitiand Mukul
2018-04-01
In Fe-N phase diagram the formation of Fe4N thin films occur in a very narrow region, specially below 573 K. Above this, the range of homogeneity for formation of Fe4N start to increase yielding more favorable conditions for formation of single phase Fe4N. However, when deposited at high substrate temperature (Ts) typically above 650 K, nitrogen (N) tends to diffuse out of the system yielding a N deficient phase. In this work, we attempt to find pathways to deposit Fe4N thin films at low Ts and successfully prepared single phase Fe4N thin films at Ts as low as 423 K. This was achieved by utilizing an underlayer of CrN. We find that such underlayer not only has close lattice matching with Fe4N, it also acts as a diffusion barrier for the film-substrate interface.
NASA Astrophysics Data System (ADS)
Khalyapin, D. L.; Kim, J.; Stolyar, S. V.; Turpanov, I. A.; Kim, P. D.; Kim, I.
2003-11-01
The crystal structure of the thin films of metastable Co 13Cu 87 alloy prepared by magnetron sputtering was investigated by transmission electron microscope. As-deposited films have a nanocrystal structure with an fcc lattice. As a result of the prolonged ion polishing with a beam of Ar ions with the energy of 4.7 keV, the four-layer 4H dhcp structure was formed.
Gigantic transverse voltage induced via off-diagonal thermoelectric effect in CaxCoO2 thin films
NASA Astrophysics Data System (ADS)
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Adachi, Hideaki; Yamada, Yuka
2010-07-01
Gigantic transverse voltages exceeding several tens volt have been observed in CaxCoO2 thin films with tilted c-axis orientation upon illumination of nanosecond laser pulses. The voltage signals were highly anisotropic within the film surface showing close relation with the c-axis tilt direction. The magnitude and the decay time of the voltage strongly depended on the film thickness. These results confirm that the large laser-induced voltage originates from a phenomenon termed the off-diagonal thermoelectric effect, by which a film out-of-plane temperature gradient leads to generation of a film in-plane voltage.
NASA Technical Reports Server (NTRS)
Chrzanowski, J.; Meng-Burany, S.; Xing, W. B.; Curzon, A. E.; Heinrich, B.; Irwin, J. C.; Cragg, R. A.; Zhou, H.; Habib, F.; Angus, V.
1995-01-01
Two series of Y1Ba2Cu3O(z) thin films deposited on (001) LaAl03 single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O2) and substrate temperature of the deposition process Th, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j(sub c) and T(sub c) exhibited T(sub c) greater than or equal to 91 K and j(sub c) greater than or equal to 4 x 106 A/sq cm, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O2), T(sub h)) and j(sub c) and T(sub c) have been found.
Srivastava, Samanvaya; Reddy, P Dinesh Sankar; Wang, Cindy; Bandyopadhyay, Dipankar; Sharma, Ashutosh
2010-05-07
We study by nonlinear simulations the electric field induced pattern formation in a thin viscous film resting on a topographically or chemically patterned substrate. The thin film microstructures can be aligned to the substrate patterns within a window of parameters where the spinodal length scale of the field induced instability is close to the substrate periodicity. We investigate systematically the change in the film morphology and order when (i) the substrate pattern periodicity is varied at a constant film thickness and (ii) the film thickness is varied at a constant substrate periodicity. Simulations show two distinct pathway of evolution when the substrate-topography changes from protrusions to cavities. The isolated substrate defects generate locally ordered ripplelike structures distinct from the structures on a periodically patterned substrate. In the latter case, film morphology is governed by a competition between the pattern periodicity and the length scale of instability. Relating the thin film morphologies to the underlying substrate pattern has implications for field induced patterning and robustness of inter-interface pattern transfer, e.g., coding-decoding of information printed on a substrate.
Ferroelectric thin-film active sensors for structural health monitoring
NASA Astrophysics Data System (ADS)
Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan
2007-04-01
Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.
Bui, Minh-Phuong N; Seo, Seong S
2014-01-01
We have developed an optical chemical sensor for the detection of organophosphate (OP) compounds using a polymerized crystalline colloidal array (PCCA) thin film composed of a close-packed colloidal array of polystyrene particles. The PCCA thin film was modified with β-cyclodextrin (β-CD) polymer as a capping cavity for the selective detection of paraoxon-ethyl and parathion-ethyl chemical agents. The fabrication of the modified PCCA thin film was optimized and the structure was characterized using scanning electron microscopy (SEM). The arrangement of polystyrene particles in the PCCA follows a pattern of the fcc (111) planes with strong diffraction peak in the visible spectral region and pH dependence. The diffraction peak of the β-CD modified PCCA thin film showed a red shift according to the change of paraoxon-ethyl and parathion-ethyl concentrations at a fast response time (10 s) and high sensitivity with detection limits of 2.0 and 3.4 ppb, respectively. Furthermore, the proposed interaction mechanism of β-CD with paraoxon-ethyl and parathion-ethyl in the β-CD modified PCCA thin film were discussed.
NASA Astrophysics Data System (ADS)
Fiorenza, P.; Lo Nigro, R.; Sciuto, A.; Delugas, P.; Raineri, V.; Toro, R. G.; Catalano, M. R.; Malandrino, G.
2009-03-01
The physical properties of CaCu3Ti4O12 (CCTO) thin films grown by metal organic chemical vapor deposition on LaAlO3 substrates have been investigated. The structural, compositional, and optical characteristics have been evaluated, and all the collected data demonstrated that in the obtained (001) epitaxial CCTO thin films, a low defect density is present. The electrical behavior of the deposited thin films has been studied from both micro- and nanoscopic points of view and compared with the properties reported in the literature. The electrical measurements on large area capacitors indicated that in the investigated work frequency range (102-106 Hz), the CCTO films possess dielectric constants close to the theoretically predicted "intrinsic" value and almost independent of the frequency. The nanoscopic dielectric investigation demonstrated that the deposited CCTO films possess n-type semiconducting nature and that a colossal extrinsic behavior can be locally achieved.
Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy.
Withayachumnankul, Withawat; O'Hara, John F; Cao, Wei; Al-Naib, Ibraheem; Zhang, Weili
2014-01-13
Thin-film sensing with a film thickness much less than a wavelength is an important challenge in conventional transmission-mode terahertz time-domain spectroscopy (THz-TDS). Since the interaction length between terahertz waves and a sample film is short, a small change in the transmitted signal compared with the reference is considerably obscured by system uncertainties. In this article, several possible thin-film measurement procedures are carefully investigated. It is suggested that an alternating sample and reference measurement approach is most robust for thin-film sensing. In addition, a closed-form criterion is developed to determine the critical thickness, i.e., the minimal thickness of a film unambiguously detectable by transmission-mode THz-TDS. The analysis considers influences from the Fresnel transmission at interfaces and the Fabry-Pérot reflections, in addition to the propagation across the film. The experimental results show that typical THz-TDS systems can detect polymer films with a thickness down to a few microns, two orders of magnitude less than the wavelength. For reasonably accurate characterization, it is recommended that the film thickness be at least ten times above this limit. The analysis is readily extended to biomolecular and semiconductor films. The criterion can be used to estimate the system-dependent performance in thin-film sensing applications, and can help to ascertain whether an alternative terahertz sensing modality is necessary.
KF addition to Cu2SnS3 thin films prepared by sulfurization process
NASA Astrophysics Data System (ADS)
Nakashima, Mitsuki; Fujimoto, Junya; Yamaguchi, Toshiyuki; Sasano, Junji; Izaki, Masanobu
2017-04-01
Cu2SnS3 thin films were fabricated by sulfurization with KF addition and applied to photovoltaic devices. Two methods, two-stage annealing and the use of four-layer precursors, were employed, and the quantity of NaF and KF and the annealing temperature were changed. By electron probe microanalysis (EPMA), the Cu/Sn mole ratio was found to range from 0.81 to 1.51. The X-ray diffraction (XRD) patterns and Raman spectra indicated that the fabricated thin films had a monoclinic Cu2SnS3 structure. The Cu2SnS3 thin films fabricated by two-stage annealing had a close-packed structure and a pinhole-free surface morphology. The best solar cell in this study showed V oc of 293 mV, which surpassed the previously reported value.
High-Speed Coating Method for Photovoltaic Textiles with Closed-Type Die Coater
NASA Astrophysics Data System (ADS)
Imai, Takahiko; Shibayama, Norihisa; Takamatsu, Seiichi; Shiraishi, Kenji; Marumoto, Kazuhiro; Itoh, Toshihiro
2013-06-01
We developed a closed-type die-coating method to fabricate thin films for electronic devices. We succeeded in the die-coating of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) water dispersions and regioregular poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) solution to fabricate thin films of these organic materials with extremely high speeds of 5 and 20 m/min, respectively. The film thicknesses were evaluated by cross-sectional scanning electron microscopy (SEM). The deviations of the film thicknesses from our target values were less than 5%. We fabricated Al/P3HT:PCBM/PEDOT:PSS/indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) textiles as an example of an application of the method, and the photovoltaic characteristic of the devices was confirmed.
Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael
2014-01-01
The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top ofmore » thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desfeux, R.; Bailleul, S.; Da Costa, A.
2001-06-04
Colossal magnetoresistive La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films have been grown under tensile strains on (100)-SrTiO{sub 3} substrates and compressive strains on (100)-LaAlO{sub 3} and (110)-NdGaO{sub 3} substrates by pulsed laser deposition. Using magnetic force microscopy (MFM), a {open_quotes}feather-like{close_quotes} magnetic pattern, characteristic of films with an in-plane magnetization, is observed for films deposited on both SrTiO{sub 3} and NdGaO{sub 3} while a {open_quotes}bubble{close_quotes} magnetic pattern, typical of films with an out-of-plane magnetization, is recorded for LaAlO{sub 3}. We show that the shape of the magnetic pattern imaged by MFM is fully correlated to the easy direction of the magnetization inmore » the film. {copyright} 2001 American Institute of Physics.« less
Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating
NASA Astrophysics Data System (ADS)
Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd
2018-05-01
Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.
Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3
NASA Astrophysics Data System (ADS)
Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip
2018-02-01
The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.
Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.
Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati
2016-07-06
Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...
2018-02-09
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, SL; Zhang, YB; Pun, AB
2014-09-16
Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagneticmore » resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.« less
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.
Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode.
Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik
2016-08-23
Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C-800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction.
Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode
Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik
2016-01-01
Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C–800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction. PMID:27563893
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304
Growth of Cu2ZnSnS4(CZTS) by Pulsed Laser Deposition for Thin film Photovoltaic Absorber Material
NASA Astrophysics Data System (ADS)
Nandur, Abhishek; White, Bruce
2014-03-01
CZTS (Cu2ZnSnS4) has become the subject of intense interest because it is an ideal candidate absorber material for thin-film solar cells with an optimal band gap (1.5 eV), high absorption coefficient (104 cm-1) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since thin films are deposited under high vacuum with excellent stoichiometry transfer from the target. CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of laser energy fluence and substrate temperature and post-deposition sulfur annealing on the surface morphology, composition and optical absorption have been investigated. Optimal CZTS thin films exhibited a band gap of 1.54 eV with an absorption coefficient of 4x104cm-1. A solar cell utilizing PLD grown CZTS with the structure SLG/Mo/CZTS/CdS/ZnO/ITO showed a conversion efficiency of 5.85% with Voc = 376 mV, Jsc = 38.9 mA/cm2 and Fill Factor, FF = 0.40.
Instability, rupture and fluctuations in thin liquid films: Theory and computations
NASA Astrophysics Data System (ADS)
Gvalani, Rishabh; Duran-Olivencia, Miguel; Kalliadasis, Serafim; Pavliotis, Grigorios
2017-11-01
Thin liquid films are ubiquitous in natural phenomena and technological applications. They are commonly studied via deterministic hydrodynamic equations, but thermal fluctuations often play a crucial role that still needs to be understood. An example of this is dewetting, which involves the rupture of a thin liquid film and the formation of droplets. Such a process is thermally activated and requires fluctuations to be taken into account self-consistently. Here we present an analytical and numerical study of a stochastic thin-film equation derived from first principles. We scrutinise the behaviour of the stochastic thin film equation in the limit of perfectly correlated noise along the wall-normal direction. We also perform Monte Carlo simulations of the stochastic equation by adopting a numerical scheme based on a spectral collocation method. The numerical scheme allows us to explore the fluctuating dynamics of the thin film and the behaviour of the system's free energy close to rupture. Finally, we also study the effect of the noise intensity on the rupture time, which is in good agreement with previous works. Imperial College London (ICL) President's PhD Scholarship; European Research Council Advanced Grant No. 247031; EPSRC Grants EP/L025159, EP/L020564, EP/P031587, EP/L024926, and EP/L016230/1.
NASA Astrophysics Data System (ADS)
Huynh, T. T. D.; Semmar, N.
2017-09-01
The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.
Status of CdS/CdTe solar cell research at NREL
NASA Astrophysics Data System (ADS)
Ramanathan, K.; Dhere, R. G.; Coutts, T. J.; Chu, T.; Chu, S.
1992-12-01
We report on the deposition of thin cadmium sulfide (CdS) layers from aqueous solutions and their optical properties. CdS layers have been deposited on soda lime glass, tin oxide coated glass and copper indium diselenide (CuInSe2) thin films. A systematic increase in the absorption is found to occur with increasing concentration of the buffer salt used in the bath. CdS/CdTe thin film solar cells have been fabricated by close spaced sublimation of CdTe, yielding 11.3% devices.
Boulanouar, Omar; Fromm, Michel; Mavon, Christophe; Cloutier, Pierre; Sanche, Léon
2013-01-01
We measure the desorption of anions stimulated by the impact of 0–20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H−, O−, and OH− yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O− channel and in counter-part increases considerably the desorption of OH−. The close environment of the phosphate groups may therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons. PMID:23927286
On tear film breakup (TBU): dynamics and imaging.
Braun, Richard J; Driscoll, Tobin A; Begley, Carolyn G; King-Smith, P Ewen; Siddique, Javed I
2018-06-13
We report the results of some recent experiments to visualize tear film dynamics. We then study a mathematical model for tear film thinning and tear film breakup (TBU), a term from the ocular surface literature. The thinning is driven by an imposed tear film thinning rate which is input from in vivo measurements. Solutes representing osmolarity and fluorescein are included in the model. Osmolarity causes osmosis from the model ocular surface, and the fluorescein is used to compute the intensity corresponding closely to in vivo observations. The imposed thinning can be either one-dimensional or axisymmetric, leading to streaks or spots of TBU, respectively. For a spatially-uniform (flat) film, osmosis would cease thinning and balance mass lost due to evaporation; for these space-dependent evaporation profiles TBU does occur because osmolarity diffuses out of the TBU into the surrounding tear film, in agreement with previous results. The intensity pattern predicted based on the fluorescein concentration is compared with the computed thickness profiles; this comparison is important for interpreting in vivo observations. The non-dimensionalization introduced leads to insight about the relative importance of the competing processes; it leads to a classification of large vs small TBU regions in which different physical effects are dominant. Many regions of TBU may be considered small, revealing that the flow inside the film has an appreciable influence on fluorescence imaging of the tear film.
NASA Astrophysics Data System (ADS)
Menon, Rashmi; Sreenivas, K.; Gupta, Vinay
2008-05-01
Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.
NASA Astrophysics Data System (ADS)
McCann, Ronán; Hughes, Cian; Bagga, Komal; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot
2017-06-01
In this paper, we outline a novel technique for the deposition of nanostructured thin films utilizing a modified form of pulsed laser deposition (PLD). We demonstrate confined atmospheric PLD (CAP) for the deposition of gold on cyclic olefin polymer substrates. The deposition process is a simplified form of conventional PLD, with deposition conducted under atmospheric conditions and the substrate and target in close proximity. It was found that this confinement results in the deposition of nanostructured thin films on the substrate. Infrared spectroscopy showed no significant change of polymer surface chemistry as a result of the deposition process, and optical spectroscopy revealed plasmonic behavior of the resulting thin film. The effect of laser fluence on the deposition process was also examined with more uniform films deposited at higher fluences.
NASA Astrophysics Data System (ADS)
Yuan, Wen-Xiang; Hark, S. K.; Xu, H. Y.; Mei, W. N.
2012-01-01
Using the radio frequency magnetron sputtering, CaCu 3Ti 4O 12 (CCTO) thin films were deposited on platinized silicon substrates. The influence of annealing temperature on structures and morphologies of the thin films was investigated. The high annealing temperature increased the crystallinity of the films. Temperature dependence of the dielectric constant revealed an amazing different characteristic of the dielectric relaxation at ˜10 MHz, whose characteristic frequency abnormally increased with the decrease of the measuring temperature unlike the relaxations due to extrinsic origins. Meanwhile, the dielectric constant at high frequencies was close to the value derived from the first principle calculation. All these gave the evidences to ascribe this relaxation to the intrinsic mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, J.; Meng-Burany, S.; Xing, W.B.
1994-12-31
Two series of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub z} thin films deposited on (001) LaAlO{sub 3} single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O{sub 2}) and substrate temperature of the deposition process T{sub h}, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j{sub c} and T{sub c} exhibited T{sub c}{ge}91 K and j{sub c}{ge}4 x 10{sup 6} A/cm{sup 2}, at 77 K. Close correlations between the structural quality ofmore » the film, the growth parameters (p(O{sub 2}), T{sub h}) and j{sub c} and T{sub c} have been found.« less
NASA Astrophysics Data System (ADS)
Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju
2017-03-01
High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126
The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate inmore » the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.« less
Nanosphere lithography applied to magnetic thin films
NASA Astrophysics Data System (ADS)
Gleason, Russell
Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.
Ultra thin metallic coatings to control near field radiative heat transfer
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, R.
2016-09-01
We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.
In-situ observation of stacking fault evolution in vacuum-deposited C60
NASA Astrophysics Data System (ADS)
Hardigree, J. F. M.; Ramirez, I. R.; Mazzotta, G.; Nicklin, C.; Riede, M.
2017-12-01
We report an in-situ study of stacking fault evolution in C60 thin films using grazing-incidence x-ray scattering. A Williamson-Hall analysis of the main scattering features during growth of a 15 nm film on glass indicates lattice strain as high as 6% in the first 5 nm of the film, with a decrease to 2% beyond 8 nm thickness. Deformation stacking faults along the {220} plane are found to occur with 68% probability and closely linked to the formation of a nanocrystalline powder-like film. Our findings, which capture monolayer-resolution growth, are consistent with previous work on crystalline and powder C60 films, and provide a crystallographic context for the real-time study of organic semiconductor thin films.
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili
2013-01-01
Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.
NASA Astrophysics Data System (ADS)
Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.
2007-02-01
Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.
NASA Astrophysics Data System (ADS)
Nandur, Abhishek S.
Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.
Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors
NASA Astrophysics Data System (ADS)
Baniecki, John David
This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form expression, and BSTO thin film electrical characteristics, the charge loss due to dielectric relaxation is estimated to be 6--12% of the initial charge stored on the capacitor plates for MOCVD BSTO thin films with Pt electrodes after a post top electrode anneal in oxygen. In contrast, it is shown that the charge loss due to steady state leakage is only 0.0125--0.125% of the initial charge stored on the capacitor plates. Charge retention is shown to depend strongly on the annealing conditions. Annealing MOCVD BSTO thin films with Pt electrodes in forming gas (95% Ar 5% H2) increases charge loss due to dielectric relaxation to as much as 60%. Ion implantation is used to dope BSTO thin films with Mn. X-ray diffraction and transmission electron microscopy (TEM) shows ion implantation significantly damages the film leaving only short-range order, but post-implant annealing heals the damage. Capacitance recovery after post-implant annealing is as high as 94% for 15 nm BSTO films. At low implant doses, the Mn doped films have substantially lower leakage (up to a factor of ten lower) and only slightly higher relaxation currents and dielectric loss indicating that ion implantation may be a potentially viable way of introducing dopants into high dielectric constant thin films for future DRAM applications.
Pathways toward unidirectional alignment in block copolymer thin films on faceted surfaces
NASA Astrophysics Data System (ADS)
Gunkel, Ilja; Gu, Xiaodan; Sarje, Abhinav; Hexemer, Alexander; Russell, Thomas
2015-03-01
Solvent vapor annealing (SVA) has been shown recently to be an effective means to produce long-range lateral order in block copolymer (BCP) thin films in relatively short times. Furthermore, using substrates with faceted surfaces allows for generating unidirectionally aligned BCP microdomains on the size scale of an entire wafer. While in recent years SVA has been largely demystified, the detailed pathways toward obtaining unidirectional alignment still remain unclear. Grazing-incidence X-ray scattering (GISAXS) is a very powerful tool for characterizing the structure and morphology of BCPs in thin films, and is particularly useful for studying structural changes in BCP thin films during SVA. We here present in situ GISAXS experiments on cylinder-forming PS-b-P2VP BCP thin films on faceted Sapphire substrates during annealing in THF. We show that the degree of alignment of cylindrical microdomains is greatly enhanced at solvent concentrations close to the order-disorder transition of the copolymer. Furthermore, we observed that inducing disorder by further increasing the solvent concentration and subsequent quenching to the ordered (not yet glassy) state induced the highest degree of alignment with nearly unidirectional alignment of the microdomains in less than 30 min.
NASA Astrophysics Data System (ADS)
Ito, Kenji; Yoshimoto, Shigeru; O'Rourke, Brian E.; Oshima, Nagayasu; Kumagai, Kazuhiro
2018-02-01
Positron annihilation lifetime spectroscopy (PALS) using a low-energy positron microbeam extracted into air was applied to elucidating molecular-level pore structures formed in silicon-oxide-backboned microporous thin films under controlled humidity conditions; as a result, a direct observation of the interstitial spaces in the micropores filled with water molecules was achieved. It was demonstrated that PALS using a microbeam extracted into air in combination with water vapor adsorption is a powerful tool for the in-situ elucidation of both open and closed subnanoscaled pores of functional thin materials under practical conditions.
Method of making an improved superconducting quantum interference device
Wu, Cheng-Teh; Falco, Charles M.; Kampwirth, Robert T.
1977-01-01
An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimomura, Naoki, E-mail: shimomura@ecei.tohoku.ac.jp; Pati, Satya Prakash; Sato, Yuji
2015-05-07
The structural properties and Morin transition in c-plane-oriented α-Fe{sub 2}O{sub 3} and Ir-doped α-Fe{sub 2}O{sub 3} thin films have been investigated. The enhancement of the Morin transition temperature (T{sub M}) in α-Fe{sub 2}O{sub 3} film by Ir doping has been demonstrated. The T{sub M} in the c-plane-oriented α-Fe{sub 2}O{sub 3} thin film was determined from the temperature-dependent in-plane magnetization and change of coercivity (H{sub c}); this T{sub M} value was found close to that of bulk α-Fe{sub 2}O{sub 3}. The spin directions of non-doped and Ir-doped α-Fe{sub 2}O{sub 3} at room temperature were also estimated from conversion electron Mössbauer spectroscopymore » measurements. We confirmed that Ir doping dramatically enhances the T{sub M} of α-Fe{sub 2}O{sub 3} thin film.« less
Membrane transfer of crystalline silicon thin film solar cells
NASA Astrophysics Data System (ADS)
Vempati, Venkata Kesari Nandan
Silicon has been dominating the solar industry for many years and has been touted as the gold standard of the photovoltaic world. The factors for its dominance: government subsidies and ease of processing. Silicon holds close to 90% of the market share in the material being used for solar cell production. Of which 14% belongs to single-crystalline Silicon. Although 24% efficient bulk crystalline solar cells have been reported, the industry has been looking for thin film alternatives to reduce the cost of production. Moreover with the new avenues like flexible consumer electronics opening up, there is a need to introduce the flexibility into the solar cells. Thin film films make up for their inefficiency keeping their mechanical properties intact by incorporating Anti-reflective schemes such as surface texturing, textured back reflectors and low reflective surfaces. This thesis investigates the possibility of using thin film crystalline Silicon for fabricating solar cells and has demonstrated a low cost and energy efficient way for fabricating 2microm thick single crystalline Silicon solar cells with an efficiency of 0.8% and fill factor of 35%.
Wang, DongLin; Su, Gang
2014-01-01
Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350 nm–800 nm, the conversion efficiency of solar cells can be further enhanced. PMID:25418477
Thin liquid films in improved oil recovery from low-salinity brine
Myint, Philip C.; Firoozabadi, Abbas
2015-03-19
Low-salinity waterflooding is a relatively new method for improved oil recovery that has generated much interest. It is generally believed that low-salinity brine alters the wettability of oil reservoir rocks towards a wetting state that is optimal for recovery. The mechanism(s) by which the wettability alteration occurs is currently an unsettled issue. This study reviews recent studies on wettability alteration mechanisms that affect the interactions between the brine/oil and brine/rock interfaces of thin brine films that wet the surface of reservoir rocks. Of these mechanisms, we pay particular attention to double-layer expansion, which is closely tied to an increase inmore » the thickness and stability of the thin brine films. Our review examines studies on both sandstones and carbonate rocks. We conclude that the thin-brine-film mechanisms provide a good qualitative, though incomplete, picture of this very complicated problem. Finally, we give suggestions for future studies that may help provide a more quantitative and complete understanding of low-salinity waterflooding.« less
Electrochemical Properties of RuO2 Electrodes as a Function of Thin Film Thickness
NASA Astrophysics Data System (ADS)
Li, Xiang; Xiong, Jian; Luo, Yuan; Luo, Yongmei
2018-01-01
A thin film RuO2 electrode was prepared by spin coating thermal decomposition methods. Precursor containing RuCl3·nH2O and isopropyl alcohol was coated on tantalum substrate and annealed at 250-260°C for 3 h to form a thin film RuO2 electrode of about 2.5 μm, 5.6 μm, 11.4 μm, and 14.5 μm in thickness. X-ray diffraction revealed that peak intensities of those electrodes were similar and close to each other. Scanning electron microscopy showed that thin film of 5.6 μm in thickness was dense and free of cracks. Electrochemical performances of electrodes were examined by cyclic voltammetry, galvanostatic charge/discharge as well as equivalent series resistance. The highest specific capacitance value of 725 F g-1 was registered for the electrode of 5.6 μm in thickness with good constant current charge/discharge and equivalent series resistance of 0.36 Ω as well as cyclic stability.
Optimized thin film coatings for passive radiative cooling applications
NASA Astrophysics Data System (ADS)
Naghshine, Babak B.; Saboonchi, Ahmad
2018-03-01
Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.
Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation
NASA Astrophysics Data System (ADS)
Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki
2018-05-01
The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping
2017-02-01
The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).
Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.
2017-10-01
We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.
NASA Astrophysics Data System (ADS)
Wang, Qi; Wang, Chengbiao; Lv, Changchun; Wang, Yang; Peng, Zhijian; Fu, Xiuli
Oxygen-deficient tin oxide thin films were prepared by radiofrequency magnetron sputtering with a sintered non-stoichiometric tin oxide ceramic target under an atmosphere of various ratios of O2/Ar from pure Ar to 1:1. X-ray diffraction analysis showed that the thin films were polycrystalline with relatively strong (1 1 0), (1 0 1) and (2 1 1) diffraction peaks. Scanning electron microscopy observation revealed that the thin films prepared at different O2/Ar ratios were all of relatively dense and homogeneous structure. With increasing O2/Ar ratio, the grain size of the films decreased slightly, and their chemical composition became close to the stoichiometric SnO2; but the deposition rate as well as film thickness increased first and then decreased sharply. It was revealed that the main defect in obtained films was oxygen vacancy (VO), and as the O2/Ar ratio increased, the concentration of VO fell down monotonously, which would lead to an increased electrical resistivity.
In-situ diagnostics for metalorganic chemical vapor deposition of yttrium barium copper oxide
NASA Astrophysics Data System (ADS)
Tripathi, Ashok Burton
A new stagnation flow MOCVD research reactor is described that is designed to serve as a testbed to develop tools for "intelligent" thin film deposition, such as in-situ sensors and diagnostics, control algorithms, and thin film growth models. The reactor is designed in particular for the deposition of epitaxial YBa2Cu3O 7-delta on MgO, although with minor modifications it would be suitable for deposition of any metal-oxide thin films. The reactor is specifically designed to permit closed-loop thermal and stoichiometric control of the film growth process. Closed-loop control of precursor flow rates is accomplished by using ultraviolet absorption spectroscopy on each precursor line. Also integrated into the design is a Fourier Transform Infrared (FTIR) spectroscopy system which collects real-time, in-situ infrared polarized reflectance spectra of the film as it grows. Numerical simulation was used extensively to optimize the fluid dynamics and heat transfer to provide uniform fluxes to the substrate. As a result, thickness uniformity across the substrate is typically within 3% from the center to the edge of the substrate. Experimental studies of thin films grown in the Y/Ba/Cu/O system have been carried out. The films have been characterized by Rutherford Backscattering Spectrometry and X-ray Diffraction. Results indicate c-axis oriented grains with pure 1:2:3 phase YBCO, good spatial uniformity, and a low degree of c-axis wobble. Experimental growth data is used in a gas phase and surface chemistry model to calculate sticking coefficients for yttrium oxide, barium oxide, and copper oxide on YBCO. In-situ FTIR and Coherent Gradient Sensing (CGS) analysis of growing films has been performed, yielding accurate substrate temperature, film thickness monitoring, and full-field, real-time curvature maps of the films. In addition, we have implemented CGS to obtain full-field in-situ images of local curvature during oxygenation and deoxygenation of YBCO films. An analysis of the oxygen diffusion is performed, and diffusivity constants are presented for a variety of temperature and film conditions.
NASA Astrophysics Data System (ADS)
Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.
2016-10-01
Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.
Dynamics in thin folded polymer films
NASA Astrophysics Data System (ADS)
Croll, Andrew; Rozairo, Damith
Origami and Kirigami inspired structures depend on a complex interplay between geometry and material properties. While clearly important to the overall function, very little attention has focused on how extreme curvatures and singularities in real materials influence the overall dynamic behaviour of folded structures. In this work we use a set of three polymer thin films in order to closely examine the interaction of material and geometry. Specifically, we use polydimethylsiloxane (PDMS), polystyrene (PS) and polycarbonate (PC) thin films which we subject to loading in several model geometries of varying complexity. Depending on the material, vastly different responses are noted in our experiments; D-cones can annihilate, cut or lead to a crumpling cascade when pushed through a film. Remarkably, order can be generated with additional perturbation. Finally, the role of adhesion in complex folded structures can be addressed. AFOSR under the Young Investigator Program (FA9550-15-1-0168).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...
2017-04-10
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulanouar, Omar; Fromm, Michel; Mavon, Christophe
We measure the desorption of anions stimulated by the impact of 0–20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H{sup −}, O{sup −}, and OH{sup −} yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O{sup −} channel and in counter-part increases considerably the desorption of OH{sup −}. The close environment of the phosphate groups maymore » therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons.« less
Tunneling probe of fluctuating superconductivity in disordered thin films
NASA Astrophysics Data System (ADS)
Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.
2018-03-01
Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.
NASA Astrophysics Data System (ADS)
Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj
2016-08-01
A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.
Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density
NASA Astrophysics Data System (ADS)
Yang, Feng
1995-01-01
The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different textures to determine the expected rm J_{c}s. The good agreement between the experimental data and numerical results confirmed that the rm J_{c} improvement directly resulted from the reduction of the number of high-angle grain boundaries in the in-plane aligned polycrystalline YBCO thin films, and provided a guideline on the further improvement of the rm J_ {c}s of polycrystalline YBCO thin films.
Study on Thermochromic VO2 Films Grown on ZnO-Coated Glass Substrates for “Smart Windows”
NASA Astrophysics Data System (ADS)
Kato, Kazuhiro; Song, Pung Keun; Odaka, Hidehumi; Shigesato, Yuzo
2003-10-01
Vanadium dioxide (VO2) is one of the most attractive thermochromic materials, which show large changes in optical and electrical properties at the transition temperature (Tt) close to the atmospheric temperature (approximately 340 K). We already reported for VO2 deposition by rf magnetron sputtering using V2O3 or V2O5 targets that VO2 films thicker than 400 nm showed high thermochromic performance, whereas the VO2 films thinner than 200 nm did not show such performance because of their poor crystallinity and off-stoichiometry. In this study, very thin thermochromic VO2 films with thicknesses of about 50 nm were successfully deposited using highly < 001>-preferred oriented ZnO polycrystalline films as a buffer layer between the VO2 film and glass substrate (VO2/ZnO/glass) because of the heteroepitaxial growth of VO2 polycrystalline films. W-doped VO2 films were also deposited on the ZnO-coated glass substrates (ZnO/glass) by cosputtering. It was confirmed that W doping for thin VO2 films deposited on the ZnO/glass can decrease Tt systematically. Such very thin VO2 films should have high potential for application in “smart windows”.
NASA Astrophysics Data System (ADS)
Gu, Xiaodan; Gunkel, Ilja; Hexemer, Alexander; Russell, Thomas
2014-03-01
Although solvent vapor annealing (SVA) has been widely applied to block copolymer (BCP) thin films to obtain well-ordered microdomains, the mechanism of enhancing lateral order is not well understood. Here, we used real time in situ grazing-incidence small-angle x-ray scattering (in situGISAXS) to study the self-assembly of PS-b-P2VP BCP BCPs with different molecular weights thin films in THF vapor, a near neutral solvent for both blocks. Both swelling and deswelling behavior of BCP thin films were examined. The extent of swellingand the solvent removal rate not only affect the domain spacing of BCPs but also dictate the extent of lateral ordering of the BCP microdomains. Larger grains were observed at higher values of the swelling ratio (close to disordering). To preserve the maximal lateral ordering of the microdomains in the swollen state, the fastest solvent removal rate is required to freeze in the ordered microdomain structure of the swollen BCP film. We thanks support from U.S. Department of Energy BES under contract BES-DE-FG02-96ER45612 and ALS doctoral fellowship.
NASA Astrophysics Data System (ADS)
Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo
2016-03-01
Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.
Nur-E-Alam, Mohammad; Belotelov, Vladimir; Alameh, Kamal
2018-01-01
This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO) applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films. PMID:29789463
Electrodeposited CuGa(Se,Te)2 thin-film prepared from sulfate bath
NASA Astrophysics Data System (ADS)
Oda, Yusuke; Minemoto, Takashi; Takakura, Hideyuki; Hamakawa, Yoshihiro
2006-09-01
CuGa(Se,Te)2 (CGST) thin films were prepared on a soda-lime glass substrate sputter coated with molybdenum by electrodeposition. The aqueous solution which contained CuSO4-5H2O, Ga2(SO4)3-19.3H2O, H2SeO3, H6TeO6, Li2SO4 and gelatin was adjusted to pH 2.6 with dilute H2SO4 and NaOH. It has been observed that (i) a crack-less and smooth CGST film with a composition close to the stoichiometric ratio was deposited at -600 mV (vs. Ag/AgCl) when Te was hardly included in the film and (ii) cracks and products on the surface increased with increasing Te content in the film. Annealing at 600 °C for 10 min improved the crystallinity of the as-deposited films.
Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition
NASA Astrophysics Data System (ADS)
Ohtsuki, T.; Kojima, T.; Kotsugi, M.; Ohkochi, T.; Mizuguchi, M.; Takanashi, K.
2014-01-01
FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu3Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along ⟨110⟩ direction, and that the magnetic domain structure is composed only of 90∘ wall.
Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.
Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao
2016-12-01
Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.
Evidence for filamentary superconductivity up to 220 K in oriented multiphase Y-Ba-Cu-O thin films
NASA Astrophysics Data System (ADS)
Schönberger, R.; Otto, H. H.; Brunner, B.; Renk, K. F.
1991-02-01
We report on the observation of filamentary superconductivity up to 220 K in multiphase Y-Ba-Cu-O materials that are deposited as highly oriented thin films on (110)-SrTiO 3 substrates by laser ablation from ceramic targets. The high temperature zero resistivity states are reproducible after temperature cycling down to 80 K for samples treated by a special oxygenation and ozonization process at 340 K and measured in a pure oxygen atmosphere. Our results on thin films confirm former experiments of J.T. Chen and co-workers obtained on ceramic samples with preferred crystallite orientation. A close connection between superconductivity and structural instabilities of most likely ferroic nature, which are observed more often for YBa 2Cu 3O 7 in a narrow temperature range near 220 K, is suggested.
Preparation of AgInSe2 thin films grown by vacuum evaporation method
NASA Astrophysics Data System (ADS)
Matsuo, H.; Yoshino, K.; Ikari, T.
2006-09-01
Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.
Mariano, Marina; Rodríguez, Francisco J.; Romero-Gomez, Pablo; Kozyreff, Gregory; Martorell, Jordi
2014-01-01
We propose the use of whispering gallery mode coupling in a novel configuration based on implementing a thin film cell on the backside of an array of parallel fibers. We performed numerical calculations using the parameters of a thin film organic cell which demonstrate that light coupling becomes more effective as the angle for the incident light relative to the fiber array normal increases up to an optimal angle close to 55 deg. At this angle the power conversion efficiency of the fiber array solar cell we propose becomes 30% times larger than the one from an equivalent planar cell configuration. We demonstrate that the micro fiber array solar cell we propose may perform an effective partial tracking of the sun movement for over 100 degrees without any mechanical help. In addition, in the event that such fiber array cell would be installed with the adequate orientation on a vertical façade, an optimal photon-to-charge conversion would be reached for sunlight incident at 55 deg with respect to the horizon line, very close to the yearly average position for the sun at Latitude of 40 deg.
NASA Astrophysics Data System (ADS)
Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.
2017-05-01
Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.
Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A; Contreras-Puente, Gerardo
2013-03-15
Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case.
Santana, Guillermo; de Melo, Osvaldo; Aguilar-Hernández, Jorge; Mendoza-Pérez, Rogelio; Monroy, B. Marel; Escamilla-Esquivel, Adolfo; López-López, Máximo; de Moure, Francisco; Hernández, Luis A.; Contreras-Puente, Gerardo
2013-01-01
Photoluminescence (PL) studies in GaN thin films grown by infrared close space vapor transport (CSVT-IR) in vacuum are presented in this work. The growth of GaN thin films was done on a variety of substrates like silicon, sapphire and fused silica. Room temperature PL spectra of all the GaN films show near band-edge emission (NBE) and a broad blue and green luminescence (BL, GL), which can be seen with the naked eye in a bright room. The sample grown by infrared CSVT on the silicon substrate shows several emission peaks from 2.4 to 3.22 eV with a pronounced red shift with respect to the band gap energy. The sample grown on sapphire shows strong and broad ultraviolet emission peaks (UVL) centered at 3.19 eV and it exhibits a red shift of NBE. The PL spectrum of GaN films deposited on fused silica exhibited a unique and strong blue-green emission peak centered at 2.38 eV. The presence of yellow and green luminescence in all samples is related to native defects in the structure such as dislocations in GaN and/or the presence of amorphous phases. We analyze the material quality that can be obtained by CSVT-IR in vacuum, which is a high yield technique with simple equipment set-up, in terms of the PL results obtained in each case. PMID:28809356
Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications
Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; ...
2016-02-12
Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > Tc Nb and H c > HcNb, (e.g., Nb 3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above Hc Nb, thus enabling higher field gradients. Although Nb 3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (H c1) and higher critical temperature (T c) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving H c1 values larger than bulk for films thinner than their London penetration depths.« less
Espejo, A P; Zierold, R; Gooth, J; Dendooven, J; Detavernier, C; Escrig, J; Nielsch, K
2016-08-26
Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.
NASA Astrophysics Data System (ADS)
Espejo, A. P.; Zierold, R.; Gooth, J.; Dendooven, J.; Detavernier, C.; Escrig, J.; Nielsch, K.
2016-08-01
Nickel-rich NiFe thin films (Ni92Fe8, Ni89Fe11 and Ni83Fe17) were prepared by combining atomic layer deposition (ALD) with a subsequent thermal reduction process. In order to obtain Ni x Fe1-x O y films, one ALD supercycle was performed according to the following sequence: m NiCp2/O3, with m = 1, 2 or 3, followed by one FeCp2/O3 cycle. The supercycle was repeated n times. The thermal reduction process in hydrogen atmosphere was investigated by in situ x-ray diffraction studies as a function of temperature. The metallic nickel iron alloy thin films were investigated and characterized with respect to crystallinity, morphology, resistivity, and magnetism. As proof-of-concept magnetic properties of an array of Ni83Fe17, close to the perfect Permalloy stoichiometry, nanotubes and an isolated tube were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dijkkamp, D.; Venkatesan, T.; Wu, X.D.
We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO/sub 3/ and Al/sub 2/O/sub 3/ substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the usemore » of ultrahigh vacuum techniques.« less
Exposure strategy and crystallization of Ge-Sb-Te thin film by maskless phase-change lithography
NASA Astrophysics Data System (ADS)
Ni, Ri Wen; Zeng, Bi Jian; Huang, Jun Zhu; Luo, Teng; Li, Zhen; Miao, Xiang Shui
2015-04-01
Maskless phase-change lithographic technology is developed as a photoresist of phase-change materials. The controllable growth behavior of the crystallization region on an amorphous thin film of Ge2Sb2Te5 (GST) irradiated by a laser beam is investigated; the GST thin film is deposited on a silicon substrate by the sputtering method. The results of a series of the experiments and the simulations all show that the width of a crystalline pattern is not only closely related to laser power and pulse duration, but also is apparently affected by the interactive area between the focused laser spot and thin film. The width maintains a nonlinear growth with the enhancement of the laser power until the thin film approaches melting, whereas it gradually reaches a constant value due to the local thermal equilibrium. This equilibrium makes the width irrelevant to the moving velocity with certain constraints when the laser works in continuous-wave mode. Within a defocus range of 15 μm, the widths of the crystalline patterns are obtained in a broad range from 690 nm to 8.13 μm under a 0.4-NA objective lens. By adjusting the defocus amount, some crystalline square patterns with expected widths in a wide range are fabricated, and the mean percentage error between the expected and fabricated widths is only 1.495%.
Chen, Daqun; Mei, Yihong; Hu, Weihua; Li, Chang Ming
2018-05-15
For sensitive immunoassay, it is essentially important to immobilize antibody on a surface with high density and full retention of their recognition activity. Bio-inspired polydopamine (PDA) thin film has been widely utilized as a reactive coating to immobilize antibody on various surfaces. We herein report that the antibody immobilization capacity of PDA thin film is electrochemically enhanced by applying an oxidative potential to convert the surface catechol group to reactive quinone group. Quantitative surface plasmon resonance (SPR) investigation unveils that upon proper electrochemical oxidization, the antibody loading capacity of PDA film is significantly improved (up to 27%) and is very close to the theoretically maximal capacity of a planar surface if concentrated antibody solution is used. Using prostate-specific antigen (PSA) as a model target, it is further demonstrated that the SPR immunoassay sensitivity is greatly enhanced due to the improved antibody immobilization. This work offers an efficient strategy to enhance the reactivity of PDA film towards nucleophiles, and may also facilitate its immunoassay application among others. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cartas, William
Rare earth oxides (REOs) exhibit favorable catalytic performance for a diverse set of chemical transformations, including both partial and complete oxidation reactions. I will discuss our efforts to develop thin film systems of terbia for model surface science investigations of a REO that is effectively reducible, and which is thus expected to promote complete oxidation chemistry of adsorbed species. The growth of terbia on Cu(111) is shown to produce a complex surface that exhibits multiple phases of the oxide as well as exposed substrate. Growing the film on Pt(111) results in more uniform, single phase, and closed film. We used low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to characterize the structural properties of terbia thin films grown on Pt(111) in ultrahigh vacuum (UHV) using physical vapor deposition. We find that the REO grows as a high quality Tb2O 3(111) film, and adopts oxygen-deficient fluorite structures wherein the metal cations form a hexagonal lattice in registry with the Pt(111) substrate, while oxygen vacancies are randomly distributed within the film. The Tb 2O3(111) films are thermally stable when heated to 1000 K in UHV. LEED and STM show that a fraction of the Tb2O3 forms hexagonal islands when first deposited, and further depositions typically result in three dimensional growth of the film. The Tb2O3 (111) / Pt(111) system produces a coincidence structure, seen very clearly in LEED images. We have also found that Tb2O3(111) films can be oxidized in UHV by exposure to plasma-generated atomic oxygen beams. The oxidized films have an estimated TbO2 stoichiometry and decompose to Tb2O3 during heating, with O2 desorption starting at about 500 K. Terbia films oxidized at 90 K show a weakly bound state of oxygen that is likely chemisorbed. Temperature programmed reaction spectroscopy (TPRS) studies using methanol show that increased oxygen in the film does not modify the chemical selectivity of the film; however, the increased oxygen content does increase the activity of the film toward methanol dehydrogenation. We have found that when methanol is adsorbed onto the terbia-Pt(111) system, it reacts to form formaldehyde and water and reduces the surface. The development of high-quality terbia thin films on Pt(111) provides new opportunities to investigate oxidation chemistry on an REO that has distinct reduction and oxidation properties.
Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.; ...
2016-12-17
The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saikat; Nagpure, Suraj; Garlapalli, Ravinder K.
The mesostructure loss kinetics are measured as a function of the orientation of micelles in 2D hexagonal close packed (HCP) columnar mesostructured titania thin films using in situ grazing incidence small angle x-ray scattering (GISAXS). Complementary supporting information is provided by ex situ scanning electron microscopy. Pluronic surfactant P123 acts as the template to synthesize HCP structured titania thin films. When the glass substrates are modified with crosslinked P123, the micelles of the HCP mesophase align orthogonal to the films, whereas a mix of parallel and orthogonal alignment is found on unmodified glass. The rate of mesostructure loss of orthogonallymore » oriented (o-HCP) thin films (~60 nm thickness) prepared on modified substrate is consistently found to be less by a factor of 2.5 ± 0.35 than that measured for mixed orientation HCP films on unmodified substrates. The activation energy for mesostructure loss is only slightly greater for films on modified glass (155 ± 25 kJ/mol -1) than on unmodified (128 kJ/mol -1), which implies that the rate difference stems a greater activation entropy for mesostructure loss in o-HCP titania films. Nearly perfect orthogonal orientation of micelles on modified surfaces contributes to the lower rate of mesostructure loss by supporting the anisotropic stresses that develop within the films during annealing due to continuous curing, sintering and crystallization into the anatase phase during high temperature calcination (>450 °C). Because the film thickness dictates the propagation of orientation throughout the films and the degree of confinement, thicker (~250 nm) films cast onto P123-modified substrates have a much lower activation energy for mesostructure loss (89 ± 27 kJ/mol -1) due to the mix of orientations found in the films. Thus, in conclusion, this kinetic study shows that thin P123- templated o-HCP titania films are not only better able to achieve good orthogonal alignment of 3 the mesophase relative to thicker films or films on unmodified substrates, but that alignment of the mesophase in the films stabilizes the mesophase against thermally-induced mesostructure loss.« less
NASA Astrophysics Data System (ADS)
Gontad, F.; Lorusso, A.; Panareo, M.; Monteduro, A. G.; Maruccio, G.; Broitman, E.; Perrone, A.
2015-12-01
We report a design of photocathode, which combines the good photoemissive properties of lead (Pb) and the advantages of superconducting performance of niobium (Nb) when installed into a superconducting radio-frequency gun. The new configuration is obtained by a coating of Nb thin film grown on a disk of Pb via pulsed laser deposition. The central emitting area of Pb is masked by a shield to avoid the Nb deposition. The nanomechanical properties of the Nb film, obtained through nanoindentation measurements, reveal a hardness of 2.8±0.3 GPa, while the study of the electrical resistivity of the film shows the appearance of the superconducting transitions at 9.3 K and 7.3 K for Nb and Pb, respectively, very close to the bulk material values. Additionally, morphological, structural and contamination studies of Nb thin film expose a very low droplet density on the substrate surface, a small polycrystalline orientation of the films and a low contamination level. These results, together with the acceptable Pb quantum efficiency of 2×10-5 found at 266 nm, demonstrate the potentiality of the new concept photocathode.
Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...
2017-04-18
Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Erik; Chen, Aiping; Harrell, Zach
Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chuan-Xin; Li, Jun, E-mail: SHUniverjunli@163.com; Fu, Yi-Zhou
2015-11-23
This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with themore » bias stability and thermal stability.« less
Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T.
2014-01-28
FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that themore » FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.« less
Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications
NASA Technical Reports Server (NTRS)
Casiano, Matthew J.; Hamidzadeh, Hamid R.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.
Thin film DNA-complex-based dye lasers fabricated by immersion and conventional processes
NASA Astrophysics Data System (ADS)
Kawabe, Yutaka; Suzuki, Yuki
2017-08-01
DNA based thin film dye laser is one of promising optical devices for future technology. Laser oscillation and amplified spontaneous emission (ASE) were demonstrated by hemicyanine-doped DNA complex films prepared with `immersion method' as well as those made by a conventional way. In the immersion process, DNA-surfactant complex films were stained by immersion into an acetone solution including the dyes. In this study, three types of hemicyanines were incorporated with both methods, and laser oscillation was achieved with optically induced population grating formed in all of the complex films. The laser threshold values for six cases ranged in 0.07 - 0.18 mJ/cm2 , which was close to the best values made in DNA complex matrices. Continual pumping showed that laser oscillation persisted for 4 - 10 minutes. Immersion process gave superior laser capability especially for output efficiency over the conventional counterparts.
Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film
NASA Astrophysics Data System (ADS)
Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François
2011-10-01
CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.
Adsorbed water and thin liquid films on Mars
NASA Astrophysics Data System (ADS)
Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.
2012-07-01
At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10-6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.
... may be closed or covered by a thin film, which causes a partial blockage. In adults, the ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...
NASA Astrophysics Data System (ADS)
Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.
2017-03-01
In the present study, the nonlinear optical properties of sol-gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Halaszova, Sona; Prochazka, Michal; Hasko, Daniel; Velic, Dusan; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Buhanuz; Rajaram, Poolla
2018-05-01
Nanocrystalline thin films of Cu2ZnSnS4 (CZTS) were grown on the glass substrates using the spray pyrolysis technique. The films were grown at a substrate temperature of 300 °C after which they were annealed at 350 °C in vacuum. X-ray diffraction (XRD) studies showed that the films crystallized in the kesterite structure. Energy dispersive analysis of X-rays (EDAX) studies showed that the films possess the desired stoichiometry i.e. the proportion of Cu:Zn:Sn:S in the CZTS solid solution is close to 2:1:1:4. Secondary Ions Mass Spectroscopy (SIMS) depth profiling confirmed the uniformity in elemental composition along the depth of the films. SEM studies showed that the films are covered with CZTS particles forming sheet like structures. AFM studies show that the size of the particles on the surface of the films is around 10-15 nm. UV-VIS-NIR transmission spectra were used to determine the optical band gap of the CZTS films which was found to be around 1.55eV.
NASA Astrophysics Data System (ADS)
Hu, G. D.
2006-11-01
Bi3.15Nd0.85Ti3O12 (BNT0.85) thin films with (100) [α(100)=87.8%], (117) [α(117)=77.1%], and (001) [α(001)=98.8%] preferred orientations were deposited on Pt(100)/TiO2/SiO2/Si substrates using a metal organic decomposition process. The remanent polarization of (100)-predominant BNT0.85 film is about 50% and three times larger than those of (117)-preferred and (001)-oriented films, respectively, suggesting that the major polarization vector of BNT0.85 is close to the a axis rather than the c axis. This result can be further demonstrated by the piezoelectric measurements using an atomic force microscope in the piezoresponse mode.
NASA Astrophysics Data System (ADS)
Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh
2016-12-01
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartzentruber, Phillip D.; John Balk, Thomas, E-mail: john.balk@uky.edu; Effgen, Michael P.
2014-07-01
Osmium-ruthenium films with different microstructures were deposited onto dispenser cathodes and subjected to 1000 h of close-spaced diode testing. Tailored microstructures were achieved by applying substrate biasing during deposition, and these were evaluated with scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy before and after close-spaced diode testing. Knee temperatures determined from the close-spaced diode test data were used to evaluate cathode performance. Cathodes with a large (10-11) Os-Ru film texture possessed comparatively low knee temperatures. Furthermore, a low knee temperature correlated with a low effective work function as calculated from the close-spaced diode data. It is proposedmore » that the formation of strong (10-11) texture is responsible for the superior performance of the cathode with a multilayered Os-Ru coating.« less
Narrowband thermal radiation from closed-end microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohiyama, Asaka; Shimizu, Makoto; Iguchi, Fumitada
2015-10-07
High spectral selectivity of thermal radiation is important for achieving high-efficiency energy systems. In this study, intense, narrowband, and low directional absorption/radiation were observed in closed-end microcavity which is a conventional open-end microcavity covered by a semi-transparent thin metal film. The quality factor (Q factor) of optical absorption band strongly depended on the film electrical conductivity. Asymmetric and narrow absorption band with a Q factor of 25 at 1.28 μm was obtained for a 6-nm-thick Au film. Numerical simulations suggest that the formation of a fixed-end mode at the cavity aperture contributes to the narrowband optical absorption. The closed-end microcavity filledmore » with SiO{sub 2} exhibits intense and isotropic thermal radiation over a wide solid angle according to numerical simulation. The narrow and asymmetric absorption spectrum was experimentally confirmed in a model of closed-end microcavity.« less
Solar Cells for Lunar Application
NASA Technical Reports Server (NTRS)
Freundlich, Alex; Ignatiev, Alex
1997-01-01
In this work a preliminary study of the vacuum evaporation of silicon extracted from the lunar regolith has been undertaken. An electron gun vacuum evaporation system has been adapted for this purpose. Following the calibration of the system using ultra high purity silicon deposited on Al coated glass substrates, thin films of lunar Si were evaporated on a variety of crystalline substrates as well as on glass and lightweight 1 mil (25 microns) Al foil. Extremely smooth and featureless films with essentially semiconducting properties were obtained. Optical absorption analysis sets the bandgap (about 1.1 eV) and the refractive index (n=3.5) of the deposited thin films close to that of crystalline silicon. Secondary ion mass spectroscopy and energy dispersive spectroscopy analysis indicated that these films are essentially comparable to high purity silicon and that the evaporation process resulted in a substantial reduction of impurity levels. All layers exhibited a p-type conductivity suggesting the presence of a p-type dopant in the fabricated layers. While the purity of the 'lunar waste material' is below that of the 'microelectronic-grade silicon', the vacuum evaporated material properties seems to be adequate for the fabrication of average performance Si-based devices such as thin film solar cells. Taking into account solar cell thickness requirements (greater than 10 microns) and the small quantities of lunar material available for this study, solar cell fabrication was not possible. However, the high quality of the optical and electronic properties of evaporated thin films was found to be similar to those obtained using ultra-high purity silicon suggest that thin film solar cell production on the lunar surface with in situ resource utilization may be a viable approach for electric power generation on the moon.
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1980-01-01
The tribological properties of polyimide-bonded graphite fluoride films were studied with a pin-on-disk friction apparatus. A 440 C HT stainless steel rider with a 0.95 millimeter diameter flat area was slid against the film in order to achieve a light, closely controlled contact stress. A 1 kilogram load was applied to this flat to give a projected contact stress of 14 megapascals. Two stages of lubrication were operating. In the first stage, the film supported the load and the lubricating mechanism appeared to be the shear of a thin surface layer of the film between the rider and the bulk of the film. The second stage began after the original film was worn away, and the lubricating mechanism appeared to be the shear of very thin lubricant layers between the flat area on the rider and flat plateaus generated on the sandblasted asperities of the metallic substrate. The major difference between the lubricating mechanisms of the hemispherical and flat riders was that the flat wore through the film much more slowly than did the hemisphere.
Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng
2016-10-01
The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.
NASA Astrophysics Data System (ADS)
Yoo, Myoung Han; Ko, Pil Ju; Kim, Nam-Hoon; Lee, Hyun-Yong
2017-12-01
Preparation of Cu(In,Ga)Se2 (CIGS) thin films has continued to face problems related to the selenization of sputtered Cu-In-Ga precursors when using H2Se vapor in that the materials are highly toxic and the facilities extremely costly. Another obstacle facing the production of CIGS thin films has been the required annealing temperature, as it relates to the decomposition temperature of a typical flexible polymer substrate. A novel laser-annealing process for CIGS thin films, which does not involve the selenization process and which can be performed at a lower temperature, has been proposed. Following sputtering with a Cu0.9In0.7Ga0.3Se2 target, the laser-annealing of the CIGS thin film was performed using a continuous 532-nm Nd:YAG laser with an annealing time of 200 - 1000 s at a laser optical power of 2.75 W. CIGS chalcopyrite (112), (220/204), and (312/116) phases, with some weak diffraction peaks corresponding to the Cu-Se- or the In-Se-related phases, were successfully obtained for all the CIGS thin films that had been laser-annealed at 2.75 W. The lattice parameters, the d-spacing, the tetragonal distortion parameter, and the strain led to the crystallinity being worse and grain size being smaller at 600 s while better crystallinity was obtained at 200 and 800 s, which was closely related to the deviations from molecularity and stoichiometry, which were greatest at 600 s while the values exhibited near-stoichiometric compositions at 200 and 800 s. The band gaps of the laser-annealed CIGS thin films were within a range of 1.765 - 1.977 eV and depended on the internal stress. The mean absorbance of the laser-annealed CIGS thin films was within a range of 1.598 - 1.900, suggesting that approximately 97.47 - 98.74% of the incident photons in the visible spectral region were absorbed by this 400-nm film. The conductivity types exhibited the same deviations (Δ m > 0 and Δ s < 0) in all the laser-annealed CIGS thin films. After laser-annealing, the resistivity fell abruptly to a range of 3.551 × 10 -2 - 1.022 × 10 -1 Ω·cm. The carrier concentration was on the order of 1019 - 1021 cm -3, and the carrier mobility was 5.7 × 10 -2 - 5.7 × 100 cm2/V·s.
Incommensurate growth of Co thin film on close-packed Ag(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barman, Sukanta, E-mail: sukanta.ac@gmail.com; Menon, Krishna Kumar S. R., E-mail: krishna.menon@saha.ac.in
2016-05-06
Growth of ultrathin Co layers on close-packed Ag(111)were investigated by means of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-resolved Photoemission Spectroscopy(ARPES) techniques. The close-packed hexagonal face of Co(0001), exhibits a lattice misfit about 13% with Ag(111) surface which manipulates the growth to be incommensurate up to a certain thickness. The strain field causes aperiodic height undulation in the sub-angstrom regime of the film which was confirmed by p(1 × 1) LEED pattern along with a 6-fold moiré reconstruction pattern in the lower film thickness (up to ∼2ML). The evolution of the LEED pattern was studied withmore » increasing film coverage. Lattice strain was measured with respect to the relative positions of these double spots as a functionof film thickness. Almost a constant strain (∼13%) in the full range of film thickness explains the moiré pattern formation in order to stabilize the incommensurate growth. For higher film coverages, an epitaxial well-ordered commensurate growth was observed. Core level and valance band electronic structures of these films were studied by XPS and ARPES techniques.« less
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.
2016-08-01
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070; Chi, Hang
2016-01-25
In this research, we report the enhanced thermoelectric power factor in topologically insulating thin films of Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} with a thickness of 6–200 nm. Measurements of scanning tunneling spectroscopy and electronic transport show that the Fermi level lies close to the valence band edge, and that the topological surface state (TSS) is electron dominated. We find that the Seebeck coefficient of the 6 nm and 15 nm thick films is dominated by the valence band, while the TSS chiefly contributes to the electrical conductivity. In contrast, the electronic transport of the reference 200 nm thick film behaves similar to bulk thermoelectric materialsmore » with low carrier concentration, implying the effect of the TSS on the electronic transport is merely prominent in the thin region. The conductivity of the 6 nm and 15 nm thick film is obviously higher than that in the 200 nm thick film owing to the highly mobile TSS conduction channel. As a consequence of the enhanced electrical conductivity and the suppressed bipolar effect in transport properties for the 6 nm thick film, an impressive power factor of about 2.0 mW m{sup −1} K{sup −2} is achieved at room temperature for this film. Further investigations of the electronic transport properties of TSS and interactions between TSS and the bulk band might result in a further improved thermoelectric power factor in topologically insulating Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} thin films.« less
Nanoscale thin film growth of Au on Si(111)-7 × 7 surface by pulsed laser deposition method
NASA Astrophysics Data System (ADS)
Yokotani, Atsushi; Kameyama, Akihiro; Nakayoshi, Kohei; Matsunaga, Yuta
2017-03-01
To obtain important information for fabricating atomic-scale Au thin films that are used for biosensors, we have observed the morphology of Au particles adsorbed on a Si(111)-7 × 7 surface, which is supposed to be the initial stage of Au atomistic thin film formation. Au particles were adsorbed on the clean Si surface using a PLD method, and the adsorbed particles were observed using a scanning tunneling microscope. As the number of laser shots was increased in the PLD method, the size of the adsorbed particle became larger. The larger particles seemed to form clusters, which are aggregations of particles in which each particle is distinguished, so we call this type of cluster a film-shaped cluster. In this work, we have mainly analyzed this type of cluster. As a result the film-shaped clusters were found to have a structure of nearly monoatomic layers. The particles in the clusters were gathered closely in roughly a 3-fold structure with an inter particle distance of 0.864 nm. We propose a model for the cluster structure by modifying Au(111) face so that each observed particle consists of three Au atoms.
NASA Astrophysics Data System (ADS)
Alvi, M. A.
2017-02-01
Bulk Se77Sb23- x Ge x material with x = 4 and 12 was prepared by employing a melt quench technique. Its amorphous as well as glassy nature was confirmed by x-ray diffraction analysis and nonisothermal differential scanning calorimetry measurements. The physical vapor condensation technique was applied to prepare nanostructured thin films of Se77Sb23- x Ge x material. The surface morphology of the films was examined using field-emission scanning electron microscopy, revealing average particle size between 20 nm and 50 nm. Systematic investigation of optical absorption data indicated that the optical transition was indirect in nature. The dark conductivity (dc conductivity) of nano-structured Se77Sb23- x Ge x thin films was also investigated at temperatures from 313 K to 463 K, revealing that it tended to increase with increasing temperature. Analyses of our experimental data also indicate that the conduction is due to thermally supported tunneling of charge carriers in confined states close to the band edges. The calculated values of activation energy agree well with the optical bandgap.
Electrically reversible cracks in an intermetallic film controlled by an electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.
Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less
Electrically reversible cracks in an intermetallic film controlled by an electric field
Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.; ...
2018-01-03
Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less
Controlling Au Nanorod Dispersion in Thin Film Polymer Blends
NASA Astrophysics Data System (ADS)
Hore, Michael J. A.; Composto, Russell J.
2012-02-01
Dispersion of Au nanorods (Au NRs) in polymer thin films is studied using a combination of experimental and theoretical techniques. Here, we incorporate small volume fractions of polystyrene-functionalized Au NRs (φrod 0.05) into polystyrene (PS) thin films. By controlling the ratio of the brush length (N) to that of the matrix polymers (P), we can selectively obtain dispersed or aggregated Au NR structures in the PS-Au(N):PS(P) films. A dispersion map of these structures allows one to choose N and P to obtain either uniformly dispersed Au NRs or aggregates of closely packed, side-by-side aligned Au NRs. Furthermore, by blending poly(2,6-dimethyl-p-phenylene oxide) (PPO) into the PS films, we demonstrate that the Au nanorod morphology can be further tuned by reducing depletion-attraction forces and promoting miscibility of the Au NRs. These predictable structures ultimately give rise to tunable optical absorption in the films resulting from surface plasmon resonance coupling between the Au NRs. Finally, self-consistent field theoretic (SCFT) calculations for both the PS-Au(N):PS(P) and PS-Au(N):PS(P):PPO systems provide insight into the PS brush structure, and allow us to interpret morphology and optical property results in terms of wet and dry PS brush states.
Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film
NASA Astrophysics Data System (ADS)
Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor
2017-12-01
Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.
Effect of Heat and Laser Treatment on Cu2S Thin Film Sprayed on Polyimide Substrate
NASA Astrophysics Data System (ADS)
Magdy, Wafaa; Mahmoud, Fawzy A.; Nassar, Amira H.
2018-02-01
Three samples of copper sulfide Cu2S thin film were deposited on polyimide substrate by spray pyrolysis using deposition temperature of 400°C and deposition time of about 45 min. One of the samples was left as deposited, another was heat treated, while the third was laser treated. The structural, surface morphological, optical, mechanical, and electrical properties of the films were investigated. X-ray diffraction (XRD) analysis showed that the copper sulfide films were close to copper-rich phase (Cu2S). Increased crystallite size after heat and laser treatment was confirmed by XRD analysis and scanning electron microscopy. Vickers hardness measurements showed that the samples' hardness values were enhanced with increasing crystallite size, representing an inverse Hall-Petch (H-P) effect. The calculated optical bandgap of the treated films was lower than that of the deposited film. Finally, it was found that both heat and laser treatment enhanced the physical properties of the sprayed Cu2S films on polyimide substrate for use in solar energy applications.
Two-scale homogenization to determine effective parameters of thin metallic-structured films
Marigo, Jean-Jacques
2016-01-01
We present a homogenization method based on matched asymptotic expansion technique to derive effective transmission conditions of thin structured films. The method leads unambiguously to effective parameters of the interface which define jump conditions or boundary conditions at an equivalent zero thickness interface. The homogenized interface model is presented in the context of electromagnetic waves for metallic inclusions associated with Neumann or Dirichlet boundary conditions for transverse electric or transverse magnetic wave polarization. By comparison with full-wave simulations, the model is shown to be valid for thin interfaces up to thicknesses close to the wavelength. We also compare our effective conditions with the two-sided impedance conditions obtained in transmission line theory and to the so-called generalized sheet transition conditions. PMID:27616916
Fast infrared response of YBCO thin films
NASA Technical Reports Server (NTRS)
Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.
1990-01-01
The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.
Structure and magnetization of Co4N thin film
NASA Astrophysics Data System (ADS)
Pandey, Nidhi; Gupta, Mukul; Gupta, Rachana; Rajput, Parasmani; Stahn, Jochen
2018-02-01
In this work, we studied the local structure and the magnetization of Co4N thin films deposited by a reactive dc magnetron sputtering process. The interstitial incorporation of N atoms in a fcc Co lattice is expected to expand the structure. This expansion yields interesting magnetic properties e.g. a larger magnetic moment (than Co) and a very high value of spin polarization ratio in Co4N . By optimizing the growth conditions, we prepared Co4N film having lattice parameter close to its theoretically predicted value. The N concentration was measured using secondary ion mass spectroscopy. Detailed magnetization measurements using bulk magnetization method and polarized neutron reflectivity confirm that the magnetic moment of Co in Co4N is higher than that of Co.
Single-domain epitaxial silicene on diboride thin films
Fleurence, A.; Gill, T. G.; Friedlein, R.; ...
2016-04-12
Epitaxial silicene, which forms spontaneously on ZrB 2(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. LastlThe realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility ofmore » silicene.« less
Single-domain epitaxial silicene on diboride thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.
2016-04-11
Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility ofmore » silicene.« less
Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.
2017-01-01
In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377
Debbichi, Lamjed; Lee, Songju; Cho, Hyunyoung; Rappe, Andrew M; Hong, Ki-Ha; Jang, Min Seok; Kim, Hyungjun
2018-03-01
New light is shed on the previously known perovskite material, Cs 2 Au 2 I 6 , as a potential active material for high-efficiency thin-film Pb-free photovoltaic cells. First-principles calculations demonstrate that Cs 2 Au 2 I 6 has an optimal band gap that is close to the Shockley-Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs 2 Au 2 I 6 a double-perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs 2 Au 2 I 6 has a direct-band-gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state-of-the-art multiscale simulations connecting from the material to the device, strongly suggests that Cs 2 Au 2 I 6 will serve as the active material in highly efficient, nontoxic, and thin-film perovskite solar cells in the very near future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Santos-Filho, J. B.; Plascak, J. A.
2017-09-01
The X Y vectorial generalization of the Blume-Emery-Griffiths (X Y -VBEG) model, which is suitable to be applied to the study of 3He-4He mixtures, is treated on thin films structure and its thermodynamical properties are analyzed as a function of the film thickness. We employ extensive and up-to-date Monte Carlo simulations consisting of hybrid algorithms combining lattice-gas moves, Metropolis, Wolff, and super-relaxation procedures to overcome the critical slowing down and correlations among different spin configurations of the system. We also make use of single histogram techniques to get the behavior of the thermodynamical quantities close to the corresponding transition temperatures. Thin films of the X Y -VBEG model present a quite rich phase diagram with Berezinskii-Kosterlitz-Thouless (BKT) transitions, BKT endpoints, and isolated critical points. As one varies the impurity concentrations along the layers, and in the limit of infinite film thickness, there is a coalescence of the BKT transition endpoint and the isolated critical point into a single, unique tricritical point. In addition, when mimicking the behavior of thin films of 3He-4He mixtures, one obtains that the concentration of 3He atoms decreases from the outer layers to the inner layers of the film, meaning that the superfluid particles tend to locate in the bulk of the system.
Influence of elastic parameters on the evolution of elasticity modulus of thin films
NASA Astrophysics Data System (ADS)
Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.
2012-09-01
In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.
NASA Astrophysics Data System (ADS)
Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-06-01
Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.
Optical Characterization of Molecular Contaminant Films
NASA Technical Reports Server (NTRS)
Visentine, James T.
2007-01-01
A semi-empirical method of optical characterization of thin contaminant films on surfaces of optical components has been conceived. The method was originally intended for application to films that become photochemically deposited on such optical components as science windows, lenses, prisms, thinfilm radiators, and glass solar-cell covers aboard spacecraft and satellites in orbit. The method should also be applicable, with suitable modifications, to thin optical films (whether deposited deliberately or formed as contaminants) on optical components used on Earth in the computer microchip laser communications and thin-film industries. The method is expected to satisfy the need for a means of understanding and predicting the reductions in spectral transmittance caused by contaminant films and the consequent deterioration of performances of sensitive optical systems. After further development, this method could become part of the basis of a method of designing optical systems to minimize or compensate for the deleterious effects of contaminant films. In the original outer-space application, these deleterious effects are especially pronounced because after photochemical deposition, the films become darkened by further exposure to solar vacuum ultraviolet (VUV) radiation. In this method, thin contaminant films are theoretically modeled as thin optical films, characterized by known or assumed values of thickness, index of refraction, and absorption coefficient, that form on the outer surfaces of the original antireflection coating on affected optical components. The assumed values are adjusted as needed to make actual spectral transmittance values approximate observed ones as closely as possible and to correlate these values with amounts of VUV radiation to which the optical components have been exposed. In an initial study, the method was applied in correlating measured changes in transmittance of high-purity fused silica photochemically coated with silicone films of various measured thicknesses and exposed to various measured amounts of VUV radiation. In each case, it was found to be possible to select an index of refraction and absorption coefficient that made the ultraviolet, visible, and infrared transmittance changes predicted by the model match the corresponding measured transmittance changes almost exactly.
Semiconducting boron carbide thin films: Structure, processing, and diode applications
NASA Astrophysics Data System (ADS)
Bao, Ruqiang
The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic performance and the accelerated lifetime test of betavoltaic devices. Structural analysis by X-ray diffraction and high resolution transmission electron microscopy showed that the prepared B4C thin films are amorphous. The presence of icosahedrons, which account for the radiation hardness of icosahedral boron rich solids, in the amorphous B4C thin films was supported by Fourier transform infrared spectroscopy. The pair distribution functions derived from selected area diffraction pattern of amorphous B 4C thin films showed that the short range order structure of amorphous B4C thin films is similar to beta-rhombohedral boron but with a shorter distance. The investigation of electrical properties of B4 C thin films showed that the resistivity of B4C thin films ranges from 695 O-cm to 9650 O-cm depending on the deposition temperature; the direct and indirect bandgaps for B4C thin films are 2.776 - 2.898 eV and 1.148 - 1.327 eV, respectively; the effective lifetime of excess charge carrier is close to 0.1 ms for B4C thin film deposited at room temperature and approximates to 1 ms for those deposited at 175 °C to 500 °C. Based on structural characterization and electrical properties of B4C thin films, a structural model of B4C thin films was proposed and supported by nanoindenter experiments, i.e., the hardness of thin films deposited at temperature in the range of 275 °C to 350 °C is lower than that of the films deposited at RT and 650 °C. Heterojunctions of B4C / n-Si (100) possessing photovoltaic response have been fabricated. The suitable deposition temperature for B 4C thin film to fabricate photovoltaic device is from 175 °C to 350 °C. When the Si substrate surface was not pre-cleaned before depositing B4C thin film, the B4C / n-Si (100) heterojunction has better photovoltaic responses, presumably because there were no sputter-produced defects on the surface of Si (100) substrate. Until now, the best achievable photovoltaic performance is B4C / n-Si (100) heterojunction with 200 nm thick B4C thin film when the Si (100) substrate surface was not pre-cleaned by RF sputtering. When this heterojunction was characterized using solar simulator with air mass 1.5 spectra, the short circuit current density is 1.484 mA/cm2, the open circuit voltage is about 0.389 V, and the power conversion efficiency is about 0.214 %. In addition, B5C thin films deposited by plasma enhanced chemical vapor deposition were used to make some of the devices studied in this dissertation. It was found that the Si-doped BC / n-Si (111) heterojunctions also demonstrates their photovoltaic and betavoltaic responses. Even after irradiated by a 120 keV electron beam to a fluence of 4.38x1017 electrons/cm 2, the heterojunctions still posses betavoltaic behavior and their responses to the incident irradiance density are similar to that before irradiation.
Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles
NASA Astrophysics Data System (ADS)
Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy
2017-01-01
The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.
Merschjann, C; Mews, M; Mete, T; Karkatzinou, A; Rusu, M; Korzun, B V; Schorr, S; Schubert-Bischoff, P; Seeger, S; Schedel-Niedrig, Th; Lux-Steiner, M-Ch
2012-05-02
Thin films of chalcopyrite AgGaSe(2) have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe(2), showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe(2) phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag(2)Se and Ga(2)O(3) nanometer-scaled surface layers, as well as by Ag(2)Se inclusions in the bulk and Ag clusters at the layers' rear side. © 2012 IOP Publishing Ltd
Surface patterning by pulsed-laser-induced transfer of metals and compounds
NASA Astrophysics Data System (ADS)
Toth, Zsolt; Mogyorosi, Peter; Szoerenyi, Tamas
1990-08-01
Besults of a systematic study on Q-switched nthy laser induced rrrn2 area transfer of supported titanium and chranium thin films and Ge/Se multilayer structures are reported. The appearance of the prints is governed by film-support adhesion and source-target spacing. Best quality prints are produced by ablating well adhering ntal films in close proximity ( spacing < 15 pm) to the target to be patterned. Transfer fran stacked elenntaxy layers as a source offers a unique possibility of depositing acinpound films by mixing the constituents and transferring the material onto the target substrate in a single step.
Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.
Voortman, Thomas P; Chiechi, Ryan C
2015-12-30
This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.
Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.
2004-10-01
AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.
NASA Astrophysics Data System (ADS)
Otsuka, Shintaro; Mori, Takahiro; Morita, Yukinori; Uchida, Noriyuki; Liu, Yongxun; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku; Matsukawa, Takashi
2017-04-01
We structurally and electrically characterize sub-10-nm-thick heteroepitaxial Ge films on Si(001), formed by heated sputtering and subsequent rapid thermal annealing (RTA). After RTA treatment at 720 °C, we find the heteroepitaxial Ge films to have smooth surfaces with a roughness root mean square value of 0.54 nm. Raman measurement reveals that the 720 °C RTA improves the crystallinity of Ge films while maintaining abrupt Ge/Si interfaces. Cross-sectional transmission electron microscopy confirms that the 720 °C RTA step effectively reduces stacking faults and dislocations in the Ge films. The Richardson plot of the TaN/Ge/n-Si diode indicates a Schottky barrier height (SBH) of 0.33 V, which is close to the height of 0.37 V measured from the capacitance-voltage measurement. These values are reasonable compared with the reported SBH of the TaN/bulk Ge Schottky barrier diode, indicating that the method involving heated sputtering and subsequent RTA provides adequate thin Ge films for Ge/Si heterostructures.
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh; Anthony, Christopher; Doshi, Pankaj; Harris, Michael T.; Basaran, Osman A.
2016-09-01
Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance each other while capillary force remains negligible, in accordance with the results of Vaynblat, Lister, and Witelski.
Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; ...
2014-09-01
The high balance-of-system costs of photovoltaic (PV) installations indicate that reductions in cell $/W costs alone are likely insufficient for PV electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which yield both high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the difficulty of scaling the metal-organic chemical vapor deposition (MOCVD) process, which relies on expensive reactors and employs toxic and pyrophoric gas-phase precursors suchmore » as arsine and trimethyl gallium, respectively. In this study, we describe GaAs films made by an alternative close-spaced vapor transport (CSVT) technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient in order to deposit crystalline films with similar electronic properties to that of GaAs deposited by MOCVD. CSVT is similar to the vapor transport process used to deposit CdTe thin films and is thus a potentially scalable low-cost route to GaAs thin films.« less
Investigation of Thermal Management and Metamaterials
2010-03-01
create a metasurface (a 2-D metamaterial). This metasurface could have variable electrical and thermal conductivity via switching (opening/closing) of...selected for AFIT’s first thermal metamaterial design. The first potential application of this metasurface includes use as a thin film (less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, J.J.; Rossnagel, S.M.; Kaufman, H.R.
The work presented in this book deals with ion beam processing for basic sputter etching of samples, for sputter deposition of thin films, for the synthesis of material in thin form, and for the modification of the properties of thin films. The ion energy range covered is from a few tens of eV to about 10,000 eV, with primary interest in the range of about 20 to 1-2 keV, where implantation of the incident ion is a minor effect. Of the types of ion sources and devices available, this book examines principally broad beam ion sources, characterized by high fluxesmore » and large work areas. These sources include the ECR ion source, the Kaufman-type single- and multiple-grid sources, gridless sources such as the Hall effect or closed-drift source, and hydrid sources such as the ionized cluster beam system.« less
The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Sapiro, David O.
This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron, while insulating substrates supported only localized corrosion.
Laurenti, M; Castellino, M; Perrone, D; Asvarov, A; Canavese, G; Chiolerio, A
2017-02-06
Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn 2+ with V 3+ and V 5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V 3+ ions into V 5+ . The improvement of the crystal structure and the stronger polarity of both V 3+ - O and V 5+ - O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d 33 piezoelectric coefficient of 85 pm·V -1 , and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm -2 .
Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide
Laurenti, M.; Castellino, M.; Perrone, D.; Asvarov, A.; Canavese, G.; Chiolerio, A.
2017-01-01
Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ – O and V5+ – O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V−1, and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm−2. PMID:28165040
NASA Technical Reports Server (NTRS)
Rahman, M. M.; Hankey, W. L.; Faghri, A.
1991-01-01
The hydrodynamic and thermal behavior of a thin liquid film flowing over a solid horizontal surface is analyzed for both plane and radially spreading flows. The situations where the gravitational force is completely absent and where it is significant are analyzed separately and their practical relevance to a micro-gravity environment is discussed. In the presence of gravity, in addition to Reynolds number, the Froude number of the film is found to be an important parameter that determines the supercritical and subcritical flow regimes and any associated hydraulic jump. A closed-form solution is possible under some flow situations, whereas others require numerical integration of ordinary differential equations. The approximate analytical results are found to compare well with the available two-dimensional numerical solutions.
MacLaren, I.; Sala, B.; Andersson, S. M. L.; ...
2015-10-17
Here, the atomic structure and chemistry of thin films of Bi(Fe,Mn)O 3 (BFMO) films with a target composition of Bi 2FeMnO 6 on SrTiO 3 are studied using scanning transmission electron microscopy imaging and electron energy loss spectroscopy. It is shown that Mn4+-rich antiphase boundaries are locally nucleated right at the film substrate and then form stepped structures that are approximately pyramidal in three dimensions. These have the effect of confining the material below the pyramids in a highly strained state with an out-of-plane lattice parameter close to 4.1 Å. Outside the area enclosed by the antiphase boundaries, the out-of-planemore » lattice parameter is much closer to bulk values for BFMO. This suggests that to improve the crystallographic perfection of the films whilst retaining the strain state through as much of the film as possible, ways need to be found to prevent nucleation of the antiphase boundaries. Since the antiphase boundaries seem to form from the interaction of Mn with the Ti in the substrate, one route to perform this would be to grow a thin buffer layer of pure BiFeO 3 on the SrTiO 3 substrate to minimise any Mn-Ti interactions.« less
James, David T; Frost, Jarvist M; Wade, Jessica; Nelson, Jenny; Kim, Ji-Seon
2013-09-24
The consideration of anisotropic structural properties and their impact on optoelectronic properties in small-molecule thin films is vital to understand the performance of devices incorporating crystalline organic semiconductors. Here we report on the important relationship between structural and optoelectronic anisotropy in aligned, functionalized-pentacene thin films fabricated using the solution-based zone-casting technique. The microstructure of thin films composed of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and 6,13-bis(triethylsilylethynyl)pentacene (TES-pentacene) is systematically controlled by varying the casting speed. By controlling the structural alignment, we were able to experimentally decouple, for the first time in these films, an intramolecular absorption transition dipole (at ∼440 nm) oriented close to the pentacene short axis and an intermolecular absorption transition dipole (at ∼695 nm) oriented predominantly along the conjugated pentacene-pentacene core stacking axis (crystallographic a-axis) in both films. Using the intermolecular absorption as a signature for intermolecular delocalization, much higher optical dichroism was obtained in TES-pentacene (16 ± 6) than TIPS-pentacene (3.2 ± 0.1), which was attributed to the 1D packing structure of TES-pentacene compared to the 2D packing structure of TIPS-pentacene. This result was also supported by field-effect mobility anisotropy measurements of the films, with TES-pentacene exhibiting a higher anisotropy (∼21-47, depending on the casting speed) than TIPS-pentacene (∼3-10).
Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.
Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R
2015-08-01
Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.
Transparent EuTiO3 films: a possible two-dimensional magneto-optical device
NASA Astrophysics Data System (ADS)
Bussmann-Holder, Annette; Roleder, Krystian; Stuhlhofer, Benjamin; Logvenov, Gennady; Lazar, Iwona; Soszyński, Andrzej; Koperski, Janusz; Simon, Arndt; Köhler, Jürgen
2017-01-01
The magneto-optical activity of high quality transparent thin films of insulating EuTiO3 (ETO) deposited on a thin SrTiO3 (STO) substrate, both being non-magnetic materials, are demonstrated to be a versatile tool for light modulation. The operating temperature is close to room temperature and allows for multiple device engineering. By using small magnetic fields birefringence of the samples can be switched off and on. Similarly, rotation of the sample in the field can modify its birefringence Δn. In addition, Δn can be increased by a factor of 4 in very modest fields with simultaneously enhancing the operating temperature by almost 100 K.
Short-period oscillations in photoemission from thin films of Cr(100)
NASA Astrophysics Data System (ADS)
Vyalikh, Denis V.; Zahn, Peter; Richter, Manuel; Dedkov, Yu. S.; Molodtsov, S. L.
2005-07-01
Angle-resolved photoemission (PE) study of thin films of Cr grown on Fe(100) reveals thickness-dependent short-period oscillations of the PE intensity close to the Fermi energy at k‖˜0 . The oscillations are assigned to quantum-well states (QWS) caused by the nesting between the Fermi-surface sheets around the Γ and the X points in the Brillouin zone of antiferromagnetic Cr. The experimental data are confirmed by density-functional calculations applying a screened Korringa-Kohn-Rostoker Green’s function method. The period of the experimentally observed QWS oscillations amounts to about 2.6 monolayers and is larger than the fundamental 2-monolayer period of antiferromagnetic coupling in Cr.
Reaction pathways in atomistic models of thin film growth
NASA Astrophysics Data System (ADS)
Lloyd, Adam L.; Zhou, Ying; Yu, Miao; Scott, Chris; Smith, Roger; Kenny, Steven D.
2017-10-01
The atomistic processes that form the basis of thin film growth often involve complex multi-atom movements of atoms or groups of atoms on or close to the surface of a substrate. These transitions and their pathways are often difficult to predict in advance. By using an adaptive kinetic Monte Carlo (AKMC) approach, many complex mechanisms can be identified so that the growth processes can be understood and ultimately controlled. Here the AKMC technique is briefly described along with some special adaptions that can speed up the simulations when, for example, the transition barriers are small. Examples are given of such complex processes that occur in different material systems especially for the growth of metals and metallic oxides.
Ferroelectric size effects in multiferroic BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Chu, Y. H.; Zhao, T.; Cruz, M. P.; Zhan, Q.; Yang, P. L.; Martin, L. W.; Huijben, M.; Yang, C. H.; Zavaliche, F.; Zheng, H.; Ramesh, R.
2007-06-01
Ferroelectric size effects in multiferroic BiFeO3 have been studied using a host of complementary measurements. The structure of such epitaxial films has been investigated using atomic force microscopy, transmission electron microscopy, and x-ray diffraction. The crystal structure of the films has been identified as a monoclinic phase, which suggests that the polarization direction is close to ⟨111⟩. Such behavior has also been confirmed by piezoforce microscopy measurements. That also reveals that the ferroelectricity is down to at least 2nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Ke; Wang, Xiaoyun; Liu, Jingjing
Highlights: • Cu/In bilayer was fabricated by BMSMW deposition technique. • High quality CIS film was successfully fabricated. • A preferable ratio of Cu:In:S close to 1:1:2 was approached. • The SPV response as high as 6 mV was achieved. - Abstract: High-quality CuInS{sub 2} (CIS) thin films have been fabricated by sulfurization of electrodeposited copper–indium bilayer. A novel bell-like wave modulated square wave (BWMSW) electrodeposition technique is employed for the deposition of copper thin film. Three independent parameters (current or potential, frequency, duty cycle) are available for the BWMSW electrodeposition, which is different from the traditional electrodeposition technique withmore » only one adjustable parameter (current or potential). The influences of deposition parameters such as frequency, duty cycle and the concentration of complexing agent are investigated. Benefited from the high quality copper film obtained by the BWMSW technique, the indium film is electrodeposited successfully on the copper layer to form a compact copper–indium alloy bilayer. After sulfurized at 600 °C for 60 min, the phase pure CIS film is obtained with better crystallinity. The structures, morphologies and optoelectronic properties of the CIS film are also characterized.« less
NASA Astrophysics Data System (ADS)
Vytykáčová, Soňa; Mrázek, Jan; Puchý, Viktor; Džunda, Róbert; Skála, Roman; Peterka, Pavel; Kašík, Ivan
2018-04-01
We present a generic sol-gel route to the preparation of optically active nanocrystalline holmium-yttrium titanate (Ho0.05Y0.95)2Ti2O7 thin films, which exhibit a strong luminescence at 2 μm. The films were prepared by the sol-gel process and thermally treated in a rapid thermal annealing furnace. The nanocrystal size and optical properties were tailored by the processing temperature. The final film thickness was around 500 nm. X-ray diffraction analysis and Raman spectroscopy confirmed the high purity of the crystal phase of (Ho0.05Y0.95)2Ti2O7. The activation energy of crystal growth was 35.7 kJ mol-1. The films had excellent structural and surface homogeneity causing their high transparency close to the theoretical limit of 93.39%. Refractive index of the film heat-treated at 1000 °C was around 1.98. The films exhibited strong emission at 2 μm with a luminescence lifetime around 4.6 ms. Their properties together with processing feasibility make them promising materials for photonic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr
Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less
Topological transitions induced by antiferromagnetism in a thin-film topological insulator
NASA Astrophysics Data System (ADS)
Yin, Gen; He, Qinglin; Yu, Luyan; Pan, Lei; Wang, Kang
Ferromagnetism introduced in topological insulators (TIs) opens a non-trivial exchange band gap, providing an exciting platform to control the topological order through an external magnetic field. The magnetization induces a topological transition that breaks time-reversal symmetry, resulting in anomalous Hall effects. Recently, it was experimentally shown that the surface of an antiferromagnetic (AFM) thin film can magnetize the surface Dirac fermions in a TI thin film similar to the case induced by ferromagnetism. Here, we show that when a TI thin film is sandwiched between two antiferromagnetic layers, an unsynchronized magnetic reversal introduces two intermediate spin configurations during the scan of the external field, resulting in a new topological phase with second Chern numbers. This topological phase introduces two counter-propagating chiral edge modes inside the exchange gap, changing the total number of transport channels drastically when the fermi level is close to the Dirac point. Induced by this change, the magnetoresistance of the channel presents an antisymmetric feature during the field scan. With the the help of the high ordering temperature of AFM layers, this transport signature of the phase transition persists up to 90K experimentally. This work is supported by (i) SHINES, an EFRC by US-DOE, Office of Science, BES, #SC0012670. (ii) US-NSF (DMR-1411085), (iii) ARO program W911NF-15-1-10561, and (iv) FAME Center in STARnet, an SRC program by MARCO and DARPA.
Tailored Waveform of Dielectric Barrier Discharge to Control Composite Thin Film Morphology.
Brunet, Paul; Rincón, Rocío; Matouk, Zineb; Chaker, Mohamed; Massines, Françoise
2018-02-06
Nanocomposite thin films of TiO 2 in a polymer-like matrix are grown in a filamentary argon (Ar) dielectric barrier discharge (DBD) from a suspension of TiO 2 nanoparticles in isopropanol (IPA). The sinusoidal voltage producing the plasma is designed to independently control the matrix growth rate and the transport of nanoparticle (NP) aggregates to the surface. The useful FSK (frequency shift keying) modulation mode is chosen to successively generate two sinusoidal voltages: a high frequency of 15 kHz and a low frequency ranging from 0.5 to 3 kHz. The coating surface coverage by the NPs and the thickness of the matrix are measured as a function of the FSK parameters. The duty cycle between these two signals is varied from 0 to 100%. It is observed that the matrix thickness is mainly controlled by the power of the discharge, which largely depends on the high-frequency value. The quantity of NPs deposited in the composite thin film is proportional to the duration of the low frequency applied. The FSK waveform has a double modulation effect, allowing us to obtain a uniform coating as the NPs are not affected by the high frequency and the matrix growth rate is limited when the low frequency is applied. When it is close to a frequency limit, the low frequency acts like a filter for the NP aggregates. The higher the frequency, the smaller the size of the aggregates transferred to the surface. By changing only the FSK modulation parameters, the thin film can be switched from superhydrophobic to superhydrophilic, and under suitable conditions, a nanocomposite thin film is obtained.
Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing
2016-11-28
The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (M w ) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where M w (PS) ≈ M w (PVME), dewetting happened at the interface between the bottom layer and substrate after SD phase separation. While in the film where M w (PS) > M w (PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to phase separation. The different sequences of phase separation and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of phase separation and dewetting.
Resonant soft x-ray GISAXS on block copolymer films
NASA Astrophysics Data System (ADS)
Wang, Cheng; Araki, T.; Watts, B.; Ade, H.; Hexemer, A.; Park, S.; Russell, T. P.; Schlotter, W. F.; Stein, G. E.; Tang, C.; Kramer, E. J.
2008-03-01
Ordered block copolymer thin films may have important applications in modern device fabrication. Current characterization methods such as conventional GISAXS have fixed electron density contrast that can be overwhelmed by surface scattering. However, soft x-rays have longer wavelength, energy dependent contrast and tunable penetration, making resonant GISAXS a very promising tool for probing nanostructured polymer thin films. Our preliminary investigation was performed using PS-b-P2VP block copolymer films on beam-line 5-2 SSRL, and beam-line 6.3.2 at ALS, LBNL. The contrast/sensitivity of the scattering pattern varies significantly with photon energy close to the C K-edge (˜290 eV). Also, higher order peaks are readily observed, indicating hexagonal packing structure in the sample. Comparing to the hard x-ray GISAXS data of the same system, it is clear that resonant GISAXS has richer data and better resolution. Beyond the results on the A-B diblock copolymers, results on ABC block copolymers are especially interesting.
Supercritical CO2/Co-solvents Extraction of Porogen and Surfactant to Obtain
NASA Astrophysics Data System (ADS)
Lubguban, Jorge
2005-03-01
A method of pore generation by supercritical CO2 (SCCO2)/co-solvents extraction for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials is investigated. A nanohybrid film was prepared from poly (propylene glycol) (PPG) and poly(methylsilsesquioxane) (PMSSQ) whereby the PPG porogen are entrapped within the crosslinked PMSSQ matrix. Another set of thin films was produced by liquid crystal templating whereby non-ionic (polyoxyethylene 10 stearyl ether) (Brij76) and ionic (cetyltrimethylammonium bromide) (CTAB) surfactant were used as sacrificial templates in a tetraethoxy silane (TEOS) and methyltrimethoxy silane (MTMS) based matrix. These two types of films were treated with SCCO2/co-solvents to remove porogen and surfactant templates. As a comparison, porous structures generated by thermal decomposition were also evaluated. It is found that SCCO2/co-solvents treatment produced closely comparable results with thermal decomposition. The results were evident from Fourier Transform Infrared (FT- IR) spectroscopy and optical constants data obtained from variable angle spectroscopic ellipsometry (VASE).
Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui
2017-12-15
Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.
Growth of electronically distinct manganite thin films by modulating cation stoichiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sangkyun; Lee, Joonhyuk; Ahn, Eunyoung
Nd 1-xSr xMnO 3 (NSMO) is a well-known manganite due to close connection between structure, transport, magnetism, and chemistry. Thus, it would be an ideal system to study modification of physical properties by external stimuli including control of stoichiometry in growth. In this work, we show that abrupt change of electronic and magnetic properties can be achieved by subtle change of oxygen partial pressure in pulsed laser deposition. Interestingly, the pressure indeed modulates cation stoichiometry. We clearly observed that the films grown at 150 mTorr and higher showed clear insulator to metal transition and stronger magnetism, commonly found in lessmore » hole doping, while the films grown at 130 mTorr and lower showed insulating behavior and weak magnetism. From soft x-ray spectroscopic methods, we clearly observed the compositional difference in those thin films. This result is further supported by scattering of lighter elements in high oxygen partial pressure but not by anion deficiency in growth.« less
Growth of electronically distinct manganite thin films by modulating cation stoichiometry
Ryu, Sangkyun; Lee, Joonhyuk; Ahn, Eunyoung; ...
2017-06-26
Nd 1-xSr xMnO 3 (NSMO) is a well-known manganite due to close connection between structure, transport, magnetism, and chemistry. Thus, it would be an ideal system to study modification of physical properties by external stimuli including control of stoichiometry in growth. In this work, we show that abrupt change of electronic and magnetic properties can be achieved by subtle change of oxygen partial pressure in pulsed laser deposition. Interestingly, the pressure indeed modulates cation stoichiometry. We clearly observed that the films grown at 150 mTorr and higher showed clear insulator to metal transition and stronger magnetism, commonly found in lessmore » hole doping, while the films grown at 130 mTorr and lower showed insulating behavior and weak magnetism. From soft x-ray spectroscopic methods, we clearly observed the compositional difference in those thin films. This result is further supported by scattering of lighter elements in high oxygen partial pressure but not by anion deficiency in growth.« less
NASA Astrophysics Data System (ADS)
Zhu, Hui; Chen, Yueyuan; Chu, Daping; Feng, Shiwei; Zhang, Yingqiao; Wang, Pengfei
2016-09-01
The fatigue of lead zirconate titanate (PZT) thin films was measured under repetitive switching using asymmetric square waves. The remnant polarization and coercive voltage were found to present regular changes in the initial 10 s, independent of the asymmetry or frequency of switching waves. We attributed the change to the relaxation of stress in the film and identified a coercive voltage V 0 of 0.6 V for the stress-free film. By comparing the coercive voltage and V 0, we found that a built-in electric field was induced by asymmetric switching, where the direction and magnitude were dependent on the degree of waveform asymmetry. Furthermore, the fatigue speed was suggested to be closely related to the generation rate of oxygen vacancies. It was confirmed by our result that a faster decay of remnant polarization can be obtained by applying square waves with a higher degree of asymmetry or symmetry of square waves with a lower frequency.
NASA Astrophysics Data System (ADS)
Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui
2017-12-01
Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.
Low-cost flexible thin-film detector for medical dosimetry applications.
Zygmanski, P; Abkai, C; Han, Z; Shulevich, Y; Menichelli, D; Hesser, J
2014-03-06
The purpose of this study is to characterize dosimetric properties of thin film photovoltaic sensors as a platform for development of prototype dose verification equipment in radiotherapy. Towards this goal, flexible thin-film sensors of dose with embedded data acquisition electronics and wireless data transmission are prototyped and tested in kV and MV photon beams. Fundamental dosimetric properties are determined in view of a specific application to dose verification in multiple planes or curved surfaces inside a phantom. Uniqueness of the new thin-film sensors consists in their mechanical properties, low-power operation, and low-cost. They are thinner and more flexible than dosimetric films. In principle, each thin-film sensor can be fabricated in any size (mm² - cm² areas) and shape. Individual sensors can be put together in an array of sensors spreading over large areas and yet being light. Photovoltaic mode of charge collection (of electrons and holes) does not require external electric field applied to the sensor, and this implies simplicity of data acquisition electronics and low power operation. The prototype device used for testing consists of several thin film dose sensors, each of about 1.5 cm × 5 cm area, connected to simple readout electronics. Sensitivity of the sensors is determined per unit area and compared to EPID sensitivity, as well as other standard photodiodes. Each sensor independently measures dose and is based on commercially available flexible thin-film aSi photodiodes. Readout electronics consists of an ultra low-power microcontroller, radio frequency transmitter, and a low-noise amplification circuit implemented on a flexible printed circuit board. Detector output is digitized and transmitted wirelessly to an external host computer where it is integrated and processed. A megavoltage medical linear accelerator (Varian Tx) equipped with kilovoltage online imaging system and a Cobalt source are used to irradiate different thin-film detector sensors in a Solid Water phantom under various irradiation conditions. Different factors are considered in characterization of the device attributes: energies (80 kVp, 130 kVp, 6 MV, 15 MV), dose rates (different ms × mA, 100-600 MU/min), total doses (0.1 cGy-500 cGy), depths (0.5 cm-20 cm), irradiation angles with respect to the detector surface (0°-180°), and IMRT tests (closed MLC, sweeping gap). The detector response to MV radiation is both linear with total dose (~1-400 cGy) and independent of dose rate (100-600 Mu/min). The sensitivity per unit area of thin-film sensors is lower than for aSi flat-panel detectors, but sufficient to acquire stable and accurate signals during irradiations. The proposed thin-film photodiode system has properties which make it promising for clinical dosimetry. Due to the mechanical flexibility of each sensor and readout electronics, low-cost, and wireless data acquisition, it could be considered for quality assurance (e.g., IMRT, mechanical linac QA), as well as real-time dose monitoring in challenging setup configurations, including large area and 3D detection (multiple planes or curved surfaces).
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
Thin film cell development workshop report
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1991-01-01
The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.
Composite polymeric film and method for its use in installing a very-thin polymeric film in a device
Duchane, D.V.; Barthell, B.L.
1982-04-26
A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
Composite polymeric film and method for its use in installing a very thin polymeric film in a device
Duchane, David V.; Barthell, Barry L.
1984-01-01
A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Shvydko, Yury; Stoupin, Stanislav
A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with themore » thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.« less
Microwave Hybrid Integrated Circuit Applicatins of High Transition Temperature Superconductor
NASA Astrophysics Data System (ADS)
Lu, Shih-Lin
This research work involves microwave characterization of high Tc superconducting (HTS) thin film using microstrip ring resonators, studying the nonlinear properties of HTS thin film transmission lines using two-tone intermodulation technique, coupling mechanisms and coupling factors of microstrip ring resonators side coupled to a microstrip line, two-port S-parameters measurements of GaAs MESFET at low temperature, and the design and implementation of hybrid ring resonator stabilized microwave oscillator using both metal films and superconducting films. A microstrip ring resonators operating at 10 GHz have been fabricated from YBCO HTS thin films deposited on one side of LaAl_2O_3 substrates. Below 60^circ Kelvin the measured unloaded Q of the HTS thin film microstrip ring resonators are more than 1.5 times that of gold film resonators. The two distinct but very close resonance peaks of a ring resonator side coupled to a microstrip line are experimentally identified as due to odd-mode and even-mode coupling. These two mechanisms have different characteristic equivalent circuit models and lead to different coupling coefficients and loaded resonance frequencies. The coupling factors for the two coupling modes are calculated using piecewise coupled line approximations. The two-port S-parameters measurement techniques and GaAs MESFET low temperature DC and microwave characteristics have been investigated. A system errors model including the errors caused by the line constriction at low temperature has been proposed and a temperature errors correction procedure has been developed for the two-port microwave S-parameters measurements at low temperature. The measured GaAs MESFET DC characteristics shows a 20% increase in transconductance at 77^circ K. There is also a 2 db increase in /S21/ at 77^circ K. The microwave oscillator stabilized with both metal and HTS thin film ring resonators have been studied. The tuning ability of the oscillator by a varactor diode has also been investigated. The phase noise performance of one side of the high Tc film oscillator does not show appreciable improvement over the gold film oscillator. With a varactor diode, the oscillator tuning range can be 300 MHz more. Two-tone intermodulation distortion (IMD) at 6.3 GHz in an HTS YBCO superconducting thin film microstrip transmission line on LaAl_2O _3 substrates are experimentally studied. At fixed input power, the 3rd order IMD power as function of temperature shows a minimum at a temperature around 60^circ Kelvin. With DC current applied, the second order IMD is observed and shows a strong functional dependance to the applied DC current and input power.
NASA Astrophysics Data System (ADS)
Yadav, Preeti; Sharma, Ambika
2017-01-01
The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index ( n 2), two-photon absorption coefficient ( β 2) and third-order susceptibility ( χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap ( E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.
NASA Astrophysics Data System (ADS)
Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei
2017-12-01
We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.
GaAs CLEFT solar cells for space applications. [CVD thin film growth technology
NASA Technical Reports Server (NTRS)
Fan, J. C. C.; Mcclelland, R. W.; King, B. D.
1984-01-01
Although GaAs solar cells are radiation-resistant and have high conversion efficiencies, there are two major obstacles that such cells must overcome before they can be widely adopted for space applications: GaAs wafers are too expensive and cells made from these wafers are too heavy. The CLEFT process permits the growth of thin single-crystal films on reusable substrates, resulting in a drastic reduction in both cell cost and cell weight. Recent advances in CLEFT technology have made it possible to achieve efficiencies of about 14 percent AM0 for 0.51-sq cm GaAs solar cells 5 microns thick with a 41-mil-thick coverglass. In preliminary experiments efficiencies close to 19 percent AM1 have been obtained for 10-micron-thick cells. It is suggested that the CLEFT technology should yield inexpensive, highly efficient modules with a beginning-of-life specific power close to 1 kW/kg (for a coverglass thickness of 4 mils).
NASA Astrophysics Data System (ADS)
Li, Qiang; Lai, Billy; Lau, Kei May
2017-10-01
We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.
Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Xiaoqing
2015-06-30
The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structuresmore » of BiFeO 3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.« less
Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology
NASA Astrophysics Data System (ADS)
Pulker, H. K.
1983-11-01
There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special methods.The great efforts made to overcome this problem led to a remarkable number of different,often highly sophisticated film thickness measuring methods reviewed in various articles such ase.g./5,6/.With some of the methods,it is possible to carry out measurement under vacuum during and after the film formation other determinations have to be undertaken outside the deposition chamber only after the film has been produced.Many of the methods cannot be employed for all film substances,and there are varying limits as regards the range of thickness and measuring accuracy.Furthermore, with these methods the film to be measured is often specially prepared or dissolved during measurement and therefore becomes useless for additional investigations or applications.If only those methods which can be employed during the film deposition are considered,then the very large number of methods is considerably reduced.Insitu measurements,however,are highly desired since many basic investigations and practically all industrial applications require a precise knowledge of thefilm thickness at any instant to enable termination of the deposition process at the predetermined right moment.Apartfrom few exceptions in practical film deposition only optical measuring units andmass determination monitors are used.
Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar
2018-05-01
Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.
Bragg projection ptychography on niobium phase domains
NASA Astrophysics Data System (ADS)
Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian
2017-07-01
Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.
Permanent laser conditioning of thin film optical materials
Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank
1995-01-01
The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.
Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL
Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the National Laboratory developed low-cost transparent encapsulation schemes for CIGS cells that reduced power
Permanent laser conditioning of thin film optical materials
Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.
1995-12-05
The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.
Ordered organic-organic multilayer growth
Forrest, Stephen R.; Lunt, Richard R.
2016-04-05
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Ordered organic-organic multilayer growth
Forrest, Stephen R; Lunt, Richard R
2015-01-13
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Low work function, stable thin films
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2000-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
NASA Astrophysics Data System (ADS)
Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.
2018-01-01
While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.
NASA Astrophysics Data System (ADS)
Junda, Maxwell M.; Grice, Corey R.; Subedi, Indra; Yan, Yanfa; Podraza, Nikolas J.
2016-07-01
Ex-situ spectroscopic ellipsometry measurements are made on radio frequency magnetron sputtered oxygenated cadmium sulfide (CdS:O) thin films. Films are deposited onto glass substrates at room temperature and at 270 °C with varying oxygen to total gas flow ratios in the sputtering ambient. Ellipsometric spectra from 0.74 to 5.89 eV are collected before and after annealing at 607 °C to simulate the thermal processes during close-space sublimation of overlying cadmium telluride in that solar cell configuration. Complex dielectric function (ɛ = ɛ1 + iɛ2) spectra are extracted for films as a function of oxygen gas flow ratio, deposition temperature, and post-deposition annealing using a parametric model accounting for critical point transitions and an Urbach tail for sub-band gap absorption. The results suggest an inverse relationship between degree of crystallinity and oxygen gas flow ratio, whereas annealing is shown to increase crystallinity in all samples. Direct band gap energies are determined from the parametric modeling of ɛ and linear extrapolations of the square of the absorption coefficient. As-deposited samples feature a range of band gap energies whereas annealing is shown to result in gap energies ranging only from 2.40 to 2.45 eV, which is close to typical band gaps for pure cadmium sulfide.
Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation
NASA Astrophysics Data System (ADS)
Bedekar, M. M.; Safari, A.; Wilber, W.
1992-11-01
Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.
NASA Astrophysics Data System (ADS)
Behera, Makhes K.; Pradhan, Dhiren K.; Pradhan, Sangram K.; Pradhan, Aswini K.
2017-12-01
Vanadium oxide (VO2) thin films have drawn significant research and development interest in recent years because of their intriguing physical origin and wide range of functionalities useful for many potential applications, including infrared imaging, smart windows, and energy and information technologies. However, the growth of highly epitaxial films of VO2, with a sharp and distinct controllable transition, has remained a challenge. Here, we report the structural and electronic properties of high quality and reproducible epitaxial thin films of VO2, grown on c-axis oriented sapphire substrates using pulsed laser deposition at different deposition pressures and temperatures, followed by various annealing schedules. Our results demonstrate that the annealing of epitaxial VO2 films significantly enhances the Semiconductor to Metal Transition (SMT) to that of bulk VO2 transition. The effect of oxygen partial pressure during the growth of VO2 films creates a significant modulation of the SMT from around room temperature to as high as the theoretical value of 68 °C. We obtained a bulk order transition ≥104 while reducing the transition temperature close to 60 °C, which is comparatively less than the theoretical value of 68 °C, demonstrating a clear and drastic improvement in the SMT switching characteristics. The results reported here will open the door to fundamental studies of VO2, along with tuning of the transition temperatures for potential applications for multifunctional devices.
NASA Astrophysics Data System (ADS)
Oh, Joon Hak; Liu, Shuhong; Bao, Zhenan; Schmidt, Rüdiger; Würthner, Frank
2007-11-01
The thin-film transistor characteristics of n-channel organic semiconductor, N ,N'-bis(2,2,3,3,4,4,4-heptafluorobutyl)-perylene tetracarboxylic diimide, are described. The slip-stacked face-to-face molecular packing allows a very dense parallel arrangement of the molecules, leading to field-effect mobility as high as 0.72cm2V-1s-1. The mobility only slightly decreased after exposure to air and remained stable for more than 50days. Our results reveal that molecular packing effects such as close stacking of perylene diimide units and segregation effects imparted by the fluorinated side chains are crucial for the air stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Analytical approximation of the InGaZnO thin-film transistors surface potential
NASA Astrophysics Data System (ADS)
Colalongo, Luigi
2016-10-01
Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
2017-11-01
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y. T.; Cao, C. R.; Huang, K. Q.
2014-08-04
The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for themore » much better GFA of the ZrCuAl metallic glass.« less
Phonon impedance matching: minimizing interfacial thermal resistance of thin films
NASA Astrophysics Data System (ADS)
Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik
2014-03-01
The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.
NASA Astrophysics Data System (ADS)
Singh, Harpal
This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2001-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Low stress polysilicon film and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.
Miniature hybrid microwave IC's using a novel thin-film technology
NASA Astrophysics Data System (ADS)
Eda, Kazuo; Miwa, Tetsuji; Taguchi, Yutaka; Uwano, Tomoki
1990-12-01
A novel thin-film technology for miniature hybrid microwave ICs is presented. All passive components, such as resistors and capacitors, are fully integrated on ordinary alumina ceramic substrates using the thin-film technology with very high yield. The numbers of parts and wiring processes were significantly reduced. This technology was applied to the fabrication of Ku-band solid-state power amplifiers. This thin-film technology offers the following advantages: (1) a very high yield fabrication process of thin-film capacitor having excellent electrical characteristics in the gigahertz range (Q = 230 at 12 GHz) and reliability: (2) two kinds of thin-film resistors having different temperature coefficients of resistivity and a lift-off process to integrate them with thin-film capacitors; and (3) a matching method using the thin-film capacitor.
Manipulation of electronic phases in Au-nanodots-decorated manganite films by laser illumination
NASA Astrophysics Data System (ADS)
Li, Hui; Zhang, Kaixuan; Wang, Dongli; Xu, Han; Zhou, Haibiao; Fan, Xiaodong; Cheng, Guanghui; Cheng, Long; Lu, Qingyou; Li, Lin; Zeng, Changgan
2018-06-01
Precise manipulation of the electronic phases in strongly correlated oxides offers an avenue to control the macroscopic functionalities, thereby sparking enormous research interests in condensed matter physics. In the present paper, phase-separated La0.33Pr0.34Ca0.33MnO3 (LPCMO) thin films with a fraction of the ferromagnetic metallic phase close to the percolation threshold are successfully prepared, in which the nonvolatile and erasable switching between different electronic states is realized through cooperative effects of Au-nanodots capping and laser illumination. The deposition of Au nanodots on LPCMO thin films leads to the occurrence of a thermally inaccessible nonpercolating state at low temperatures, manifested as the absence of insulator-metal transition as temperature decreases. Such a nonpercolating state can be substantially tuned back to a percolating state by laser illumination in a nonvolatile and erasable way, accompanied by gigantic resistance drops in a wide temperature range. The formation of local oxygen vacancies near Au nanodots and thereby the modulation of mesoscopic electronic texture should be the key factor for the realization of flexible modulation of global transport properties in LPCMO thin films. Our findings pave a way toward the manipulation of physical properties of the electronically phase-separated systems and the design of optically controlled electronic devices.
Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun
2014-08-01
This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.
NASA Astrophysics Data System (ADS)
Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.
2018-05-01
The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.
Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method
NASA Astrophysics Data System (ADS)
Sathisha, D.; Naik, K. Gopalakrishna
2018-05-01
Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.
Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian
2017-06-14
A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.
Generation of low work function, stable compound thin films by laser ablation
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2001-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er
NASA Astrophysics Data System (ADS)
Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.
2017-02-01
Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.
NASA Astrophysics Data System (ADS)
Vegesna, Sahitya V.; Bürger, Danilo; Patra, Rajkumar; Abendroth, Barbara; Skorupa, Ilona; Schmidt, Oliver G.; Schmidt, Heidemarie
2017-06-01
Isothermal magnetoresistance (MR) of n-type conducting Zn1-xMnxO thin films on a sapphire substrate with a Mn content of 5 at. % has been studied in in-plane and out-of-plane magnetic fields up to 6 T in the temperature range of 5 K to 300 K. During pulsed laser deposition of the ZnMnO thin films, we controlled the thickness and roughness of a highly conductive ZnMnO surface layer. The measured MR has been modeled with constant s-d exchange (0.2 eV in ZnMnO) and electron spin (S = 5/2 for Mn2+) for samples with a single two dimensional (2D) ZnMnO layer, a single three dimensional (3D) ZnMnO layer, or a 2D and 3D (2D + 3D) ZnMnO layer in parallel. The temperature dependence of modeled Thouless length LTh (LTh ˜ T-0.5) is in good agreement with the theory [Andrearczyk et al., Phys. Rev. B 72, 121309(R) (2005)]. The superimposed positive and negative MR model for ZnCoO thin films [Xu et al., Phys. Rev. B 76, 134417 (2007)] has been extended in order to account for the increase in the density of states close to the Fermi level of n-ZnMnO due to substitutional Mn2+ ions and their effect on the negative MR in ZnMnO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less
Evidence for power-law frequency dependence of intrinsic dielectric response in the Ca Cu3 Ti4 O12
NASA Astrophysics Data System (ADS)
Tselev, Alexander; Brooks, Charles M.; Anlage, Steven M.; Zheng, Haimei; Salamanca-Riba, Lourdes; Ramesh, R.; Subramanian, M. A.
2004-10-01
We investigated the dielectric response of CaCu3Ti4O12 (CCTO) thin films grown epitaxially on LaAlO3 (001) substrates by pulsed laser deposition. The dielectric response of the films was found to be strongly dominated by a power law in frequency, typical of materials with localized hopping charge carriers, in contrast to the Debye-like response of the bulk material. The film conductivity decreases with annealing in oxygen, and it suggests that oxygen deficit is a cause of the relatively high film conductivity. With increase of the oxygen content, the room temperature frequency response of the CCTO thin films changes from the response indicating the presence of some relatively low conducting capacitive layers to purely power law, and then toward a frequency independent response with a relative dielectric constant ɛ'˜102 . The film conductance and dielectric response decrease upon decrease of the temperature, with dielectric response being dominated by the power-law frequency dependence. Below ˜80K , the dielectric response of the films is frequency independent with ɛ' close to 102 . The results provide another piece of evidence for an extrinsic, Maxwell-Wagner type, origin of the colossal dielectric response of the bulk CCTO material, connected with electrical inhomogeneity of the bulk material.
Metal sulfide thin films by chemical spray pyrolysis
NASA Astrophysics Data System (ADS)
Krunks, Malle; Mellikov, Enn
2001-04-01
CdS, ZnS and CuS thin films were prepared by spray pyrolysis method using metal chlorides and thiourea (tu) as starting materials. Metal sulfide films form as products of thermal decomposition of complexes Cd(tu)2Cl2, Zn(tu)2Cl2 and Cu(tu)Cl(DOT)1/2H2O, originally formed in aqueous solution at precursors molar ratio 1:2. The metal-ligand bonding is thermally stable up to 220 degrees Celsius, followed by multistep degradation process of complexes. The TG/DTA analysis show similar thermal behavior of complexes up to 300 degrees Celsius with the formation of metal sulfides in this decomposition step. In air intensive oxidation processes are detected close to 400, 600 and 720 degrees Celsius for Cu, Cd and Zn complexes, respectively. The results of thermoanalytical study and XRD of sprayed films show that CdS and ZnS films could be grown at 450 degrees Celsius even in air while deposition of copper sulfide films should be performed in an inert atmosphere. High total impurities content of 10 wt% in CdS films prepared at 240 degrees Celsius is originated from the precursor and reduced to 2 wt% by increasing the growth temperature up to 400 degrees Celsius.
Erickson, Kenneth L.
2001-01-01
A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.
Shrestha, Nabeen K; Bui, Hoa Thi; Lee, Taegweon; Noh, Yong-Young
2018-04-17
The present work demonstrates the formation of self-aligned nanoporous architecture of gallium oxide by anodization of gallium metal film controlled at -15 °C in aqueous electrolyte consisting of phosphoric acid. SEM examination of the anodized film reveals that by adding ethylene glycol to the electrolyte and optimizing the ratio of phosphoric acid and water, chemical etching at the oxide/electrolyte interfaces can be controlled, leading to the formation of aligned nanotubular oxide structures with closed bottom. XPS analysis confirms the chemical composition of the oxide film as Ga 2 O 3 . Further, XRD and SAED examination reveals that the as-synthesized nanotubular structure is amorphous, and can be crystallized to β-Ga 2 O 3 phase by annealing the film at 600 °C. The nanotubular structured film, when used as photoanode for photoelectrochemical splitting of water, achieved a higher photocurrent of about two folds than that of the nanoporous film, demonstrating the rewarding effect of the nanotubular structure. In addition, the work also demonstrates the formation of highly organized nonporous Ga 2 O 3 structure on a nonconducting glass substrate coated with thin film of Ga-metal, highlighting that the current approach can be extended for the formation of self-organized nanoporous Ga 2 O 3 thin film even on nonconducting flexible substrates.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qingliu; Shi, Bing; Bareño, Javier
Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitablemore » in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.« less
Silicon-germanium and platinum silicide nanostructures for silicon based photonics
NASA Astrophysics Data System (ADS)
Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.
2017-05-01
This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr < 600°C) forms on the wetting layer. Long-term annealing of granular films at the same conditions results in formation of c(4x2)-reconstructed wetting layer typical to high-temperature MBE (Tgr < 600°C) and huge clusters of Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.
Low-Cost Detection of Thin Film Stress during Fabrication
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.
Effect of crystal structure on strontium titanate thin films and their dielectric properties
NASA Astrophysics Data System (ADS)
Kampangkeaw, Satreerat
Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible causes that make dielectric behavior in STO thin films different from the bulk. We characterized such film structures as lattice parameters, out-of-plane grain size, in-plane grain size, thickness, roughness, strains, and defects using ellipsometry, atomic force microscopy, and a high-resolution X-ray diffractometry. In plane grain size and percentage of defects were found to play a major role on the dielectric performance of the films.
Compositional ratio effect on the surface characteristics of CuZn thin films
NASA Astrophysics Data System (ADS)
Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol
2018-05-01
CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.
A thin film nitinol heart valve.
Stepan, Lenka L; Levi, Daniel S; Carman, Gregory P
2005-11-01
In order to create a less thrombogenic heart valve with improved longevity, a prosthetic heart valve was developed using thin film nitinol (NiTi). A "butterfly" valve was constructed using a single, elliptical piece of thin film NiTi and a scaffold made from Teflon tubing and NiTi wire. Flow tests and pressure readings across the valve were performed in vitro in a pulsatile flow loop. Bio-corrosion experiments were conducted on untreated and passivated thin film nitinol. To determine the material's in vivo biocompatibility, thin film nitinol was implanted in pigs using stents covered with thin film NiTi. Flow rates and pressure tracings across the valve were comparable to those through a commercially available 19 mm Perimount Edwards tissue valve. No signs of corrosion were present on thin film nitinol samples after immersion in Hank's solution for one month. Finally, organ and tissue samples explanted from four pigs at 2, 3, 4, and 6 weeks after thin film NiTi implantation appeared without disease, and the thin film nitinol itself was without thrombus formation. Although long term testing is still necessary, thin film NiTi may be very well suited for use in artificial heart valves.
Polat, B D; Keleş, O
2014-05-01
We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.
Barrios, Carlos Angulo; Canalejas-Tejero, Víctor
2017-01-01
We report on a top-down method for the controlled fabrication of three-dimensional (3D), closed, thin-shelled, hollow nanostructures (nanocages) on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU). The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.
NASA Astrophysics Data System (ADS)
Fang, Fang
2011-12-01
Public awareness of the increasing energy crisis and the related serious environmental concerns has led to a significantly growing demand for alternative clean and renewable energy resources. Thin film are widely applied in multiple renewable energy devices owing to the reduced amount of raw materials and increase flexibility of choosing from low-cost candidates, which translates directly into reduced capital cost. This is a key driving force to make renewable technology competitive in the energy market. This thesis is focused on the measurement of energy level alignments at interfaces of thin film structures for renewable energy applications. There are two primary foci: II -VI semiconductor ZnSe/ZnTe thin film solar cells and Bi2Te3/Sb2Te3 thin film structures for thermoelectric applications. In both cases, the electronic structure and energy band alignment at interfaces usually controls the carrier transport behavior and determines the quality of the device. High-resolution photoemission spectroscopy (lab-based XPS & synchrotron-based UPS) was used to investigate the chemical and electronic properties of epitaxial Bi2Te3 and Sb2Te3 thin films, in order to validate the anticipated band alignment at interfaces in Bi 2Te3/Sb2Te3 superlattices as one favoring electron-transmission. A simple, thorough two-step treatment of a chemical etching in dilute hydrochloric acid solution and a subsequent annealing at ˜150°C under ultra-high vacuum environment is established to remove the surface oxides completely. It is an essential step to ensure the measurements on electronic states are acquired on stoichimetric, oxide-free clean surface of Bi 2Te3 and Sb2Te3 films. The direct measurement of valence band offsets (VBO) at a real Sb 2Te3/Bi2Te3 interface is designed based on the Kraut model; a special stacking film structure is prepared intentionally: sufficiently thin Sb2Te3 film on top of Bi2Te 3 that photoelectrons from both of them are collected simultaneously. From a combination of core levels and valence band ultraviolet photoemission spectra of the bulk materials as well as the heterojunction (Sb2Te 3/Bi2Te3), the VBO at p-type Sb2Te 3 and n-type Bi2Te3 is determined as 0.04 +/- 0.10 eV. Such a small energy offset is within the same magnitude of the thermal energy of kT, at room temperature. The motivation for the II-VI ZnTe-based thin film solar cell derives from the need to identify and overcome performance-limiting properties related to the processing of film deposition using close space sublimation (CSS). Chemical and electronic properties of the CSS grown ZnTe/ZnSe films were studied in x-ray diffraction, scanning electron microscopy and photoemission spectroscopy. Specifically, Se oxide was observed on the ZnSe surface, the removal of this oxide generated apparent offsets in the valence band and hence the alignment at the heterojunction energy diagram. Processing steps to mitigate oxidation yielded the best cells. Film structure was studied on the dependence of growth time; physical film damage is found during the initial stages when depositing ZnTe on a grown ZnSe film. Preliminary studies of films grown by evaporation and their characterizations are presented at last. In this thesis, a better understanding of the electronic structure at interfaces is built in two different thin film devices, and the resulting band energy diagram of the corresponding devices offered effective feedback in materials and device.The problem of energy equilibrium in the human body has received a great deal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application
Hawkins, G.A.; Clarke, J.
1975-10-31
A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.
[Spectral emissivity of thin films].
Zhong, D
2001-02-01
In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.
Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.
Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min
2017-08-29
Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain. We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates. Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.
Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil
2018-09-01
Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.
Effects of high temperature and film thicknesses on the texture evolution in Ag thin films
NASA Astrophysics Data System (ADS)
Eshaghi, F.; Zolanvari, A.
2017-04-01
In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} < uvw \\rangle weak fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} < uvw \\rangle orientations as their preferred orientations, but their preferred fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} < uvw \\rangle fiber texture.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.
Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-08-29
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification
Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-01-01
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057
NASA Astrophysics Data System (ADS)
Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder
2018-05-01
In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).
Dewetting of Thin Polymer Films
NASA Astrophysics Data System (ADS)
Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.
2001-03-01
DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.
Temperature dependence of LRE-HRE-TM thin films
NASA Astrophysics Data System (ADS)
Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei
2003-04-01
Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.
Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates
NASA Astrophysics Data System (ADS)
Nagao, Yuki; Kubo, Takahiro
2014-12-01
Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.
Thin film superconductor magnetic bearings
Weinberger, Bernard R.
1995-12-26
A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.
Metal Induced Growth of Si Thin Films and NiSi Nanowires
2010-02-25
Zinc Oxide Over MIG Silicon- We have been studying the formation of ZnO films by RF sputtering. Part of this study deals with...about 50 nm. 15. SUBJECT TERMS Thin film silicon, solar cells, thin film transistors , nanowires, metal induced growth 16. SECURITY CLASSIFICATION...to achieve, µc-Si is more desirable than a-Si due to its increased mobility. Thin film µc-Si is also a popular material for thin film transistors
NMR characterization of thin films
Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela
2010-06-15
A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
NMR characterization of thin films
Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela
2008-11-25
A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
NASA Astrophysics Data System (ADS)
Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki
2017-05-01
Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.
Chang, Hsueh‐Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae‐Heng
2016-01-01
The concept of in‐line sputtering and selenization become industrial standard for Cu–III–VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto‐electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non‐stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full‐function analytical solar cell simulator. The future prospects regarding the development of copper–indium–gallium–selenide thin film solar cells have also been discussed. PMID:27840790
A general strategy for hybrid thin film fabrication and transfer onto arbitrary substrates.
Zhang, Yong; Magan, John J; Blau, Werner J
2014-04-28
The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 10(4) S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices.
A General Strategy for Hybrid Thin Film Fabrication and Transfer onto Arbitrary Substrates
Zhang, Yong; Magan, John J.; Blau, Werner J.
2014-01-01
The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 104 S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices. PMID:24769689
NASA Astrophysics Data System (ADS)
Liang, Ji-Ran; Wu, Mai-Jun; Hu, Ming; Liu, Jian; Zhu, Nai-Wei; Xia, Xiao-Xu; Chen, Hong-Da
2014-07-01
Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal—insulator transition properties of the vanadium dioxide thin films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (1¯11) to (011) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal—insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal—insulator transition.
Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films
NASA Astrophysics Data System (ADS)
Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.
2018-03-01
Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.
Metallic Thin-Film Bonding and Alloy Generation
NASA Technical Reports Server (NTRS)
Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)
2016-01-01
Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.
Moghimian, Pouya; Srot, Vesna; Rothenstein, Dirk; Facey, Sandra J; Harnau, Ludger; Hauer, Bernhard; Bill, Joachim; van Aken, Peter A
2014-09-30
A versatile method for the directional assembly of M13 phage using amorphous carbon and SiO2 thin films was demonstrated. A high affinity of the M13 phage macromolecules for incorporation into aligned structures on an amorphous carbon surface was observed at the concentration range, in which the viral nanofibers tend to disorder. In contrast, the viral particles showed less freedom to adopt an aligned orientation on SiO2 films when deposited in close vicinity. Here an interpretation of the role of the carbon surface in significant enhancement of adsorption and generation of viral arrays with a high orientational order was proposed in terms of surface chemistry and competitive electrostatic interactions. This study suggests the use of amorphous carbon substrates as a template for directional organization of a closely-packed and two-dimensional M13 viral film, which can be a promising route to mineralize a variety of smooth and homogeneous inorganic nanostructure layers.
Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.
1999-01-01
Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, Shaheed U.; Desale, Dipalee J.; Siddiqui, Farha Y.
2012-11-15
Graphical abstract: The effect of different intensities (40, 60 100 and 200 W) of light on CdS quantum dots thin film annealed at 350 °C indicating enhancement in (a) photo-current and (b) photosensitivity. Highlights: ► The preparation of CdS nanodot thin film at room temperature by M-CBD technique. ► Study of air annealing on prepared CdS nanodots thin film. ► The optimized annealing temperature for CdS nanodot thin film is 350 °C. ► Modified CdS thin films can be used in photosensor application. -- Abstract: CdS quantum dots thin-films have been deposited onto the glass substrate at room temperature usingmore » modified chemical bath deposition technique. The prepared thin films were further annealed in air atmosphere at 150, 250 and 350 °C for 1 h and subsequently characterized by scanning electron microscopy, ultraviolet–visible spectroscopy, electrical resistivity and I–V system. The modifications observed in morphology and opto-electrical properties of the thin films are presented.« less
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
Dammak, Abir; Moreau, Céline; Azzam, Firas; Jean, Bruno; Cousin, Fabrice; Cathala, Bernard
2015-12-15
The effect of the variation of CNC concentration on the growth pattern of CNC-XG films is investigated. We found that a transition in the growth slope occurs at a CNC concentration of roughly 3-4gL(-1). A close effect can be obtained by the increase of the ionic strength of the CNC suspensions, suggesting that electrostatic interactions are involved. Static light scattering investigation of CNC dispersions at increasing concentrations demonstrated that the particle-particle interactions change as the CNC concentration increases. Neutron Reflectivity (NR) was used to probe the internal structure of the films. The increase of the CNC concentration as well as the increase of the ionic strength in the CNC suspension were found to induce a densification of the adsorbed CNC layers, even though the mechanisms are not strictly identical in both cases. Small changes in these parameters provide a straightforward way of controlling the architecture of CNC-based multilayered thin films and, as a result, their functional properties. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Young-Bae; Ruglovsky, Jennifer L.; Atwater, Harry A.
2004-07-01
Single crystal BaTiO3 thin films have been transferred onto Pt-coated and Si3N4-coated substrates by the ion implantation-induced layer transfer method using H + and He+ ion coimplantation and subsequent annealing. The transferred BaTiO3 films are single crystalline with root mean square roughness of 17nm. Polarized optical and piezoresponse force microscopy (PFM) indicate that the BaTiO3 film domain structure closely resembles that of bulk tetragonal BaTiO3 and atomic force microscopy shows a 90° a -c domain structure with a tetragonal angle of 0.5°-0.6°. Micro-Raman spectroscopy indicates that the local mode intensity is degraded in implanted BaTiO3 but recovers during anneals above the Curie temperature. The piezoelectric coefficient, d33, is estimated from PFM to be 80-100pm/V and the coercive electric field (Ec) is 12-20kV/cm, comparable to those in single crystal BaTiO3.
THz behavior of indium-tin-oxide films on p-Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. R., E-mail: elliott.brown@wright.edu; Zhang, W-D., E-mail: wzzhang@fastmail.fm; Chen, H.
2015-08-31
This paper reports broadband THz free-space transmission measurements and modeling of indium-tin-oxide (ITO) thin films on p-doped Si substrates. Two such samples having ITO thickness of 50 and 100 nm, and DC sheet conductance 260 and 56 Ω/sq, respectively, were characterized between 0.2 and 1.2 THz using a frequency-domain spectrometer. The 50-nm-film sample displayed very flat transmittance over the 1-THz bandwidth, suggesting it is close to the critical THz sheet conductance that suppresses multi-pass interference in the substrate. An accurate transmission-line-based equivalent circuit is developed to explain the effect, and then used to show that the net reflectivity and absorptivity necessarilymore » oscillate with frequency. This has important implications for the use of thin-film metallic coupling layers on THz components and devices, such as detectors and sources. Consistent with previous reported results, the sheet conductance that best fits the THz transmittance data is roughly 50% higher than the DC values for both samples.« less
NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO
NASA Astrophysics Data System (ADS)
Wicks, R.; Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R.; Tjeng, L. H.; Damascelli, A.
2012-04-01
We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO1 -xNx films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+4f6 and a corresponding decrease in the number of Eu2+4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu1-δO thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO1-xNx still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J = 7/2) and the non-magnetic f6 (J = 0) states close to the Fermi level.
NASA Astrophysics Data System (ADS)
Rozana, M. D.; Arshad, A. N.; Wahid, M. H. M.; Habibah, Z.; Sarip, M. N.; Rusop, M.
2018-05-01
This study investigates the effect of annealing on the topography, morphology and crystal phases of poly(vinylideneflouride)/Magnesium Oxide (MgO) nanocomposites thin films via AFM, FESEM and ATR-FTIR. The nanocomposites thin films were annealed at temperatures ranging from 70°C to 170°C. The annealed PVDF/MgO nanocomposites thin films were then cooled at room temperature before removal from the oven. This is to restructure the crystal lattice and to reduce imperfection for the PVDF/MgO nanocomposites thin films. PVDF/MgO nanocomposites thin films with annealing temperatures of 70°C, 90°C and 110°C showed uniform distribution of MgO nanoparticles, relatively low average surface roughness and no visible of defects. High application of annealing temperature on PVDF/MgO nanocomposites thin films caused tear-like defects on the thin films surface as observed by FESEM. The PVDF/MgO nanocomposites thin films annealed at 70°C was found to be a favourable film to be utilized in this study due to its enhanced β-crystalites of PVDF as evident in ATR-FTIR spectra.
NASA Astrophysics Data System (ADS)
Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih
2017-01-01
We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-10-06
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting.
Wang, Feifei; Li, Pan; Wang, Dong; Li, Longhai; Xie, Shuangxi; Liu, Lianqing; Wang, Yuechao; Li, Wen Jung
2014-01-01
Organizing a material into well-defined patterns during the dewetting process provides an attractive micro-/nano-fabrication method without using a conventional lithographic process, and hence, offers potential applications in organic electronics, optics systems, and memory devices. We report here how the mechanical modification of polymer surface by an Atomic Force Microscope (AFM) can be used to guide thin film dewetting evolution and break the intrinsic spatial correlation of spontaneous instability. An AFM is used to implement the mechanical modification of progressively narrow grids to investigate the influence of pattern size on the modulation of ultrathin polystyrene films dewetting evolution. For films with different initial thicknesses, when grid size is close to or below the characteristic wavelength of instability, the spinodal dewetting is suppressed, and film rupture is restricted to the cutting trench. We will show in this paper it is possible to generate only one droplet per gridded area on a thin film subsequent to nucleation dominated dewetting on a non-patterned substrate. Furthermore, when the grid periodicity exceeds the spinodal length, the number of droplets in predefined areas gradually approaches that associated with unconfined dewetting. PMID:25283744
Moving contact lines in partial wetting: bridging the gap across the scales
NASA Astrophysics Data System (ADS)
Pahlavan, Amir; Cueto-Felgueroso, Luis; McKinley, Gareth; Juanes, Ruben
2017-11-01
The spreading and dewetting of liquid films on solid substrates is a common phenomenon in nature and industry from a snail secreting a mucosal film to printing and coating processes. A quantitative description of these phenomena, however, requires a detailed understanding of the flow physics at the nanoscale as the intermolecular interactions become important close to the contact line. Classical hydrodynamic theory describes wetting as an interplay between viscous and interfacial forces, neglecting the intermolecular interactions, leading to a paradox known as the moving contact line singularity. By contrast, molecular kinetic theory describes wetting as an activated process, neglecting the bulk hydrodynamics in the spreading viscous fluid film altogether. Here, we show that our recently developed model for thin liquid films in partial wetting, which properly incorporates the role of van der Waals interactions in a thin spreading fluid layer into a height-dependent surface tension, bridges the gap between these two approaches and leads to a unified framework for the description of wetting phenomena. We further use our model to investigate the instability and dewetting of nanometric liquid films, and show that it brings theoretical predictions closer to experimental observations.
80-MHz intravascular ultrasound transducer using PMN-PT free-standing film.
Li, Xiang; Wu, Wei; Chung, Youngsoo; Shih, Wan Y; Shih, Wei-Heng; Zhou, Qifa; Shung, K Kirk
2011-11-01
[Pb(Mg(1/3)Nb(2/3))O(3)](0.63)[PbTiO(3)](0.37) (PMN-PT) free-standing film of comparable piezoelectric properties to bulk material with thickness of 30 μm has been fabricated using a modified precursor coating approach. At 1 kHz, the dielectric permittivity and loss were 4364 and 0.033, respectively. The remnant polarization and coercive field were 28 μC/cm(2) and 18.43 kV/cm. The electromechanical coupling coefficient k(t) was measured to be 0.55, which was close to that of bulk PMN-PT single-crystal material. Based on this film, high-frequency (82 MHz) miniature ultrasonic transducers were fabricated with 65% bandwidth and 23 dB insertion loss. Axial and lateral resolutions were determined to be as high as 35 and 176 μm. In vitro intravascular imaging on healthy rabbit aorta was performed using the thin film transducers. In comparison with a 35-MHz IVUS transducer, the 80-MHz transducer showed superior resolution and contrast with satisfactory penetration depth. The imaging results suggest that PMN-PT free-standing thin film technology is a feasible and efficient way to fabricate very-high-frequency ultrasonic transducers.
NASA Astrophysics Data System (ADS)
Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU
2018-03-01
Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.
Nanocrystal thin film fabrication methods and apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk
Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.
NASA Technical Reports Server (NTRS)
Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)
2010-01-01
A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.
Wu, Xuanzhi; Sheldon, Peter
2000-01-01
A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anisimova, N. P.; Tropina, N. E., E-mail: Mazina_ne@mail.ru; Tropin, A. N.
2010-12-15
The opportunity to increase the output emission efficiency of PbSe-based photoluminescence structures by depositing an antireflection layer is analyzed. A model of a three-layer thin film where the central layer is formed of a composite medium is proposed to calculate the reflectance spectra of the system. In von Bruggeman's approximation of the effective medium theory, the effective permittivity of the composite layer is calculated. The model proposed in the study is used to calculate the thickness of the arsenic chalcogenide (AsS{sub 4}) antireflection layer. The optimal AsS{sub 4} layer thickness determined experimentally is close to the results of calculation, andmore » the corresponding gain in the output photoluminescence efficiency is as high as 60%.« less
Wells, Frederick S.; Pan, Alexey V.; Wang, X. Renshaw; Fedoseev, Sergey A.; Hilgenkamp, Hans
2015-01-01
The glass-like vortex distribution in pulsed laser deposited YBa2Cu3O7 − x thin films is observed by scanning superconducting quantum interference device microscopy and analysed for ordering after cooling in magnetic fields significantly smaller than the Earth's field. Autocorrelation calculations on this distribution show a weak short-range positional order, while Delaunay triangulation shows a near-complete lack of orientational order. The distribution of these vortices is finally characterised as an isotropic vortex glass. Abnormally closely spaced groups of vortices, which are statistically unlikely to occur, are observed above a threshold magnetic field. The origin of these groups is discussed, but will require further investigation. PMID:25728772
Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film
NASA Astrophysics Data System (ADS)
Walther, R.; Fritz, S.; Müller, E.; Schneider, R.; Maniv, T.; Cohen, H.; Matyssek, C.; Busch, K.; Gerthsen, D.
2016-06-01
The excitation of cavity standing waves in double-slit structures in thin gold films, with slit lengths between 400 and 2560 nm, was probed with a strongly focused electron beam in a transmission electron microscope. The energies and wavelengths of cavity modes up to the 11 th mode order were measured with electron energy loss spectroscopy to derive the corresponding dispersion relation. For all orders, a significant redshift of mode energies accompanied by a wavelength elongation relative to the expected resonator energies and wavelengths is observed. The resultant dispersion relation is found to closely follow the well-known dispersion law of surface-plasmon polaritons (SPPs) propagating on a gold/air interface, thus providing direct evidence for the hybridized nature of the detected cavity modes with SPPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi
2014-05-01
Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less
Heat Transfer Issues in Thin-Film Thermal Radiation Detectors
NASA Technical Reports Server (NTRS)
Barry, Mamadou Y.
1999-01-01
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.
NASA Astrophysics Data System (ADS)
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.
Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2012-01-01
Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brize, Virginie; STMicroelectronics, 16 rue P and M Curie, 37001 Tours; Autret-Lambert, Cecile, E-mail: cecile.autret-lambert@univ-tours.fr
2011-10-15
CaCu{sub 3}Ru{sub 4}O{sub 12} (CCRO) is a conductive oxide having the same structure as CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO{sub 4} substrate. Structural and physical properties of bulkmore » CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation. - Graphical Abstract: Structure of CaCu{sub 3}Ru{sub 4}O{sub 12} showing the RuO{sub 6} octahedra and the square planar environment for Cu{sup 2+}. Highlights: > In this study, we investigate the structural properties and microstructure of ceramics CaCu{sub 3}Ru{sub 4}O{sub 12}. > We study the conduction properties of polycrystalline material. > Then we synthesize the conductive thin film which is deposited on a high K material with the same structure (CaCu{sub 3}Ti{sub 4}O{sub 12}).« less
NASA Astrophysics Data System (ADS)
Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun
2016-07-01
Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.
Öztürk, Zafer; Filez, Matthias; Weckhuysen, Bert M
2017-08-10
The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.
Yu, Kyle; Yang, Jinlong; Zuo, Yi Y
2016-05-17
Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.
Sputter deposition for multi-component thin films
Krauss, A.R.; Auciello, O.
1990-05-08
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.
Sputter deposition for multi-component thin films
Krauss, Alan R.; Auciello, Orlando
1990-01-01
Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.
Methods for fabricating thin film III-V compound solar cell
Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve
2011-08-09
The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.
Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films
NASA Astrophysics Data System (ADS)
Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.
2016-03-01
W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.
Self-Limited Growth in Pentacene Thin Films
2017-01-01
Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought. PMID:28287698
Self-Limited Growth in Pentacene Thin Films.
Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland
2017-04-05
Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis
Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less
Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Yiping; Seewald, Lucas J.; Chen, Zhizhong; Shi, Jian; Washington, Morris A.; Lu, Toh-Ming
2017-01-01
Wurtzite (W) and zinc-blende (ZB) polytypism has long been observed in epitaxial CdS thin films. The present work, based on van der Waals epitaxial CdS thin films, is an attempt to explain which crystal modification, W or ZB, is favored under different growth conditions. In this van der Waals epitaxy system where the substrate influence is considered weak, it is found that the substrate temperature plays a crucial role in determining the crystal modification of CdS, that is, W and ZB CdS are more stable at low and high ends of substrate temperature, respectively. We attribute this temperature effect to the entropy difference (SW < SZB), a conclusion well supported by the thermodynamic hard sphere model formulation of the entropy difference between hexagonal close-packed and face-centered cubic structures. By summarizing other works, we find that the entropy difference model can also be applied to large mismatched (≳3%) CdS-substrate chemical epitaxy systems but not for small mismatched (≲3%) ones. In the latter case, the energy benefit in terms of high density of bonding contributed by the substrate-film interface is believed to be too overwhelming for the intrinsic entropy difference to overcome. Furthermore, the deposition rate is found to affect the crystalline quality and strain level in CdS films but not the crystal modification of the CdS films. Last, Raman and photoluminescence spectroscopies reveal the strain behaviors in the films. The phase change from W to ZB CdS is well-correlated with the observed peak shifts in Raman and photoluminescence spectroscopies.
Magneto-Optic Laser Beam Steering
1975-10-01
Thin Substrates 16 1. Substrate Thinning 16 2. LPE on TMn Substrates 18 3. Statics of BRIG Crystal Films on Thin Substrates... 19 4. Results...6 Garnet Etch Rate 17 7 Thin Substrate: Film Both Sides 20 8 Thin Substrate: Film One Side 21 9 Film with Substrate Both Sides 23 10 Ratio...Robbins et al reported that iron garnet films could be grown on gallium garnet sub- strates by using a coprecipitated slurry. This technique was
NASA Astrophysics Data System (ADS)
Gao, Pengzhao; Rebrov, Evgeny V.; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Kozlowski, Gregory; Cetnar, John; Turgut, Zafer; Subramanyam, Guru
2010-02-01
Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.
Wei, Yaowei; Pan, Feng; Zhang, Qinghua; Ma, Ping
2015-01-01
Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm(2). The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm(2), the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.
Synthesis and annealing study of RF sputtered ZnO thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.
2016-05-23
In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less
Deposition and characterization of ZnSe nanocrystalline thin films
NASA Astrophysics Data System (ADS)
Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat
2018-02-01
ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630
NASA Astrophysics Data System (ADS)
Kim, Min Hong; Choi, Hyung Wook; Kim, Kyung Hwan
2013-11-01
The WO3-x thin films were prepared on indium tin oxide (ITO) coated glass at 0.7 oxygen flow ratio [O2/(Ar+O2)] using the facing targets sputtering (FTS) system at room temperature. In order to obtain the annealing effect, as-deposited thin films were annealed at temperatures of 100, 200, 300, 400, and 500 °C for 1 h in open air. The structural properties of the WO3-x thin film were measured using an X-ray diffractometer. The WO3-x thin films annealed at up to 300 °C indicated amorphous properties, while those annealed above 400 °C indicated crystalline properties. The electrochemical and optical properties of WO3-x thin films were measured using cyclic voltammetry and a UV/vis spectrometer. The maximum value of coloration efficiency obtained was 34.09 cm2/C for thin film annealed at 200 °C. The WO3-x thin film annealed at 200 °C showed superior electrochromic properties.
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.
NASA Astrophysics Data System (ADS)
Şinoforoğlu, Mehmet; Dağcı, Kader; Alanyalıoğlu, Murat; Meral, Kadem
2016-06-01
The present study reports on an easy preparation of poly(pyronin Y)/graphene (poly(PyY)/graphene) nanocomposites thin films on indium tin oxide coated glass substrates (ITO). The thin films of poly(PyY)/graphene nanocomposites are prepared by a novel method consisting of three steps; (i) preparation of graphene oxide (GO) thin films on ITO by spin-coating method, (ii) self-assembly of PyY molecules from aqueous solution onto the GO thin film, (iii) surface-confined electropolymerization (SCEP) of the adsorbed PyY molecules on the GO thin film. The as-prepared poly(PyY)/graphene nanocomposites thin films are characterized by using electroanalytical and spectroscopic techniques. Afterwards, the graphene-based polymeric dye thin film on ITO is used as an electrode in an electrochemical cell. Its performance is tested for electrochemical detection of nitrite. Under optimized conditions, the electrocatalytical effect of the nanocomposites thin film through electrochemical oxidation of nitrite is better than that of GO coated ITO.
Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang
2016-12-21
To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.
Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan
2018-04-01
As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.
Ultrashort pulse laser deposition of thin films
Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.
2002-01-01
Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.
Correlating thermoelectric properties with microstructure in Bi 0.8 Sb 0.2 thin films
Siegal, M. P.; Lima-Sharma, A. L.; Sharma, P. A.; ...
2017-04-03
The room temperature electronic transport properties of 100 nm-thick thermoelectric Bi 0.8Sb 0.2 films, sputter-deposited onto quartz substrates and post-annealed in an ex-situ furnace, systematically correlate with the overall microstructural quality, improving with increasing annealing temperature until close to the melting point for the alloy composition. Furthermore, the optimized films have high crystalline quality with ~99% of the grains oriented with the trigonal axis perpendicular to the substrate surface. Film resistivities and Seebeck coefficients are accurately measured by preventing deleterious surface oxide formation via a SiN capping layer and using Nd-doped Al for contacts. Our resulting values are similar tomore » single crystals and significantly better than previous reports from films and polycrystalline bulk alloys.« less
Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1
2011-04-30
IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12...effect of substrate temperature during the deposition of a- IGZO film on the performance of thin film transistors Introduction The effect of substrate...temperature during depositing IGZO channel layer on the performance of amorphous indium-gallium-zinc oxide (a- IGZO
A comparison study of Co and Cu doped MgO diluted magnetic thin films
NASA Astrophysics Data System (ADS)
Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.
2017-02-01
Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.
Micromachined ultrasonic transducers with piezoelectric aluminum nitride thin films
NASA Astrophysics Data System (ADS)
Wang, Qianghua
In this research, a laboratory prototype of micromachined ultrasonic transducer (MUT) has been designed and fabricated with the application of piezoelectric aluminum nitride (AlN) thin films. The fabrication process of MUT device, especially the deposition of AlN thin film, is compatible with a standard integrated circuits (IC) technology. Preliminary results have demonstrated the feasibility of AlN thin film applied in MUT for medical ultrasonic detection. AlN thin film was grown on aluminum metal layer by plasma source molecular beam epitaxy (PSMBE) system. X-ray diffraction (XRD) shows the films exhibit a high c-axis texture for a thickness of 1.2 mum grown at a temperature of 450°C. For the AlN film of 1.20 mum, residual stress was a compressive stress of 883 Mpa, which reduced with increasing thickness of the film. Based on the fundamentals of vibration and piezoelectricity, MUT device including silicon resonator and AlN sandwich structure has been designed. A prototype of 8 x 8 devices on a 3″ silicon (100) wafer has been fabricated. A series of experiments were conducted to find the process flow and the optimum process parameters. MUT devices were characterized by optical, electrical, and acoustic measurements. The measured resonant frequencies AlN MUT and PVDF MUT devices were larger than the calculated value in order of 5% to 12%. The ratios of the flexural frequencies to the fundamental frequency were much close to the MUT design model within a 3% error for AlN MUT devices. Resonant frequencies of AlN MUT devices were also verified by the reflection coefficient with a network analyzer and the electrical impedance with an impendence analyzer. Effective coupling factors of AlN MUT devices were determined to be 0.18 from the resonant frequency and the antiresonant frequency. Fractional bandwidth of an AlN MUT was 8.30% at the center frequency of 2.65 MHz. Pressure sensitivity was stable between 14 mV/MPa and 18 mV/MPa independent on the pressure intensity and the distance from the ultrasonic source to the AlN MUT device. Immersion measurement, device linear characteristics, and performance of AlN MUT device exhibit a great potential for the state-of-art ultrasonic camera.
Synthesis of cobalt doped BiFeO3 multiferroic thin films on p-Si substrate by sol-gel method
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Shrisha, B. V.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and cobalt doped BiFeO3 (BiFe1-xCoxO3) nanostructure thin films were grown on p-silicon substrates by sol-gel spin coating method with a sequence of coating and annealing process. The post-annealing of the grown films was carried out under high pure argon atmosphere. The grown nanostructure thin films were characterized using XRD, FESEM, and AFM for the structural, morphological and topological studies, respectively. The elemental compositions of the samples were studied by EDX spectra. The PL spectra of the grown sample shows a narrow emission peak around 559 nm which corresponds to the energy band gap of BFO thin films. The XRD peaks of the BiFeO3 nanostructure thin film reveals the rhombohedral structure and transformed from rhombohedral to orthorhombic or tetragonal structure in Co doped BiFeO3 thin films. The Co substitution in BiFeO3 helped to obtain higher dense nanostructure thin films with smaller grain size than the BiFeO3 thin films.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2017-04-01
We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.
Thin film bismuth iron oxides useful for piezoelectric devices
Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy
2016-05-31
The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.
Applications of Thin Film Thermocouples for Surface Temperature Measurement
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Holanda, Raymond
1994-01-01
Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Zhibin; Hao Jianhua
2012-09-01
We have epitaxially deposited ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films grown on GaAs substrate via SrTiO{sub 3} buffer layer by laser molecular beam epitaxy. Structural characteristics of the heterostructure were measured by various techniques. The in-plane dielectric properties of the heteroepitaxial structure under different applying frequency were investigated from -190 to 90 Degree-Sign C, indicating Curie temperature of the BST film to be around 52 Degree-Sign C. At room temperature, the dielectric constant of the heterostructure under moderate dc bias field can be tuned by more than 30% and K factor used for frequency agile materials is foundmore » to be close to 8. Our results offer the possibility to combine frequency agile electronics of ferroelectric titanate with the high-performance microwave capabilities of GaAs for room temperature tunable device application.« less
NASA Astrophysics Data System (ADS)
Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.
2015-07-01
Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.
Bimetallic nanocomposite as hole transport co-buffer layer in organic solar cell
NASA Astrophysics Data System (ADS)
Mola, Genene Tessema; Arbab, Elhadi A. A.
2017-12-01
Silver-zinc bimetallic nanocomposite (Ag:Zn BiM-NPs) was used as an inter-facial buffer layer in the preparation of thin film organic solar cell (TFOSC). The current investigation focuses on the effect of bimetallic nanoparticles on the performance of TFOSC. A number experiments were conducted by employing Ag:Zn nanocomposite buffer layer of thickness 1 nm at various positions of the device structure. In all cases, we found significant improvement on the power conversion efficiency of the solar cells. It is also noted that the open circuit voltage of the devices are decreasing when Ag:Zn form direct contact with the ITO electrode and without the inclusion of PEDOT:PSS. However, all results show that the introduction of Ag:Zn nanocomposite layer close to PEDOT:PSS could be beneficial to improve the charge transport processes in the preparation of thin film organic solar cell. The Ag:Zn BiM-NPs and the device properties were presented and discussed in terms of optical, electrical and film morphologies of the devices.
Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Department of Physics, Karnataka Government Research centre SCEM, Mangalore, 575007; Sandeep, K. M.
2016-05-23
Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnOmore » thin films. The minimum resistivity of 2.54 × 10{sup −3} Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.
2008-03-04
Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the filmmore » grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.« less
The uniformity study of non-oxide thin film at device level using electron energy loss spectroscopy
NASA Astrophysics Data System (ADS)
Li, Zhi-Peng; Zheng, Yuankai; Li, Shaoping; Wang, Haifeng
2018-05-01
Electron energy loss spectroscopy (EELS) has been widely used as a chemical analysis technique to characterize materials chemical properties, such as element valence states, atoms/ions bonding environment. This study provides a new method to characterize physical properties (i.e., film uniformity, grain orientations) of non-oxide thin films in the magnetic device by using EELS microanalysis on scanning transmission electron microscope. This method is based on analyzing white line ratio of spectra and related extended energy loss fine structures so as to correlate it with thin film uniformity. This new approach can provide an effective and sensitive method to monitor/characterize thin film quality (i.e., uniformity) at atomic level for thin film development, which is especially useful for examining ultra-thin films (i.e., several nanometers) or embedded films in devices for industry applications. More importantly, this technique enables development of quantitative characterization of thin film uniformity and it would be a remarkably useful technique for examining various types of devices for industrial applications.
NASA Astrophysics Data System (ADS)
Musaoğlu, Caner; Pat, Suat; Özen, Soner; Korkmaz, Şadan; Mohammadigharehbagh, Reza
2018-03-01
In this study, investigation of some physical properties of In-doped CuxO thin films onto amorphous glass substrates were done. The thin films were depsoied by thermionic vacuum arc technique (TVA). TVA technique gives a thin film with lower precursor impurity according to the other chemical and physical depsoition methods. The microstructural properties of the produced thin films was determined by x-ray diffraction device (XRD). The thickness values were measured as to be 30 nm and 60 nm, respectively. The miller indices of the thin films’ crystalline planes were determined as to be Cu (111), CuO (\\bar{1} 12), CuInO2 (107) and Cu2O (200), Cu (111), CuO (\\bar{1} 12), CuO (\\bar{2} 02), CuInO2 (015) for sample C1 and C2, respectively. The produced In-doped CuO thin films are in polycrystalline structure. The surface properties of produced In doped CuO thin films were determined by using an atomic force microscope (AFM) and field emission scanning electron microscope (FESEM) tools. The optical properties of the In doped CuO thin films were determined by UV–vis spectrophotometer, interferometer, and photoluminescence devices. p-type semiconductor thin film was obtained by TVA depsoition.
Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’
2015-01-01
Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
NASA Astrophysics Data System (ADS)
Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.
2016-12-01
As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.
Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements
NASA Technical Reports Server (NTRS)
1996-01-01
Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.
Scientific Understanding of Non-Chromated Corrosion Inhibitors Function
2013-01-01
deposited Al - Cu thin films (left) and aged Al - Cu thin films (right). 348 Figure 7.8. Pit morphologies developed...under neat epoxy resins applied to “as- deposited ” (left) and aged Al - Cu thin films (right) at different exposure times. 349 Figure 7.9. SEM and EDS...results of “As- deposited ” Al - Cu thin film. 351 Figure 7.10. SEM and EDS results of aged Al - Cu thin films. 352 Figure 7.11. Pit
Piezoelectric thin films and their applications for electronics
NASA Astrophysics Data System (ADS)
Yoshino, Yukio
2009-03-01
ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.
Skuza, J. R.; Scott, D. W.; Mundle, R. M.; Pradhan, A. K.
2016-01-01
We demonstrate the electro-thermal control of aluminum-doped zinc oxide (Al:ZnO) /vanadium dioxide (VO2) multilayered thin films, where the application of a small electric field enables precise control of the applied heat to the VO2 thin film to induce its semiconductor-metal transition (SMT). The transparent conducting oxide nature of the top Al:ZnO film can be tuned to facilitate the fine control of the SMT of the VO2 thin film and its associated properties. In addition, the Al:ZnO film provides a capping layer to the VO2 thin film, which inhibits oxidation to a more energetically favorable and stable V2O5 phase. It also decreases the SMT of the VO2 thin film by approximately 5–10 °C because of an additional stress induced on the VO2 thin film and/or an alteration of the oxygen vacancy concentration in the VO2 thin film. These results have significant impacts on technological applications for both passive and active devices by exploiting this near-room-temperature SMT. PMID:26884225
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
Hobson, David O.; Snyder, Jr., William B.
1995-01-01
A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.
Research progress of VO2 thin film as laser protecting material
NASA Astrophysics Data System (ADS)
Liu, Zhiwei; Lu, Yuan; Hou, Dianxin
2018-03-01
With the development of laser technology, the battlefield threat of directional laser weapons is becoming more and more serious. The blinding and destruction caused by laser weapons on the photoelectric equipment is an important part of the current photo-electronic warfare. The research on the defense technology of directional laser weapons based on the phase transition characteristics of VO2 thin films is an important subject. The researches of VO2 thin films are summarized based on review these points: the preparation methods of VO2 thin films, phase transition mechanism, phase transition temperature regulating, interaction between VO2 thin films and laser, and the application prospect of vo2 thin film as laser protecting material. This paper has some guiding significance for further research on the VO2 thin films in the field of defense directional laser weapons.
Singularities in Free Surface Flows
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental techniques. The aim of fifth problem is to analyze the coalescence dynamics of drops through a combination of GFEM and scaling theory. Lastly, the sixth problem concerns the thinning and rupture dynamics of thin films of Newtonian and power-law fluids using scaling theory based on asymptotic analysis and the predictions of this theory are corroborated using computations based on GFEM.
Chemical vapor deposition of silicon, silicon dioxide, titanium and ferroelectric thin films
NASA Astrophysics Data System (ADS)
Chen, Feng
Various silicon-based thin films (such as epitaxial, polycrystalline and amorphous silicon thin films, silicon dioxide thin films and silicon nitride thin films), titanium thin film and various ferroelectric thin films (such as BaTiO3 and PbTiO3 thin films) play critical roles in the manufacture of microelectronics circuits. For the past few years, there have been tremendous interests to search for cheap, safe and easy-to-use methods to develop those thin films with high quality and good step coverage. Silane is a critical chemical reagent widely used to deposit silicon-based thin films. Despite its wide use, silane is a dangerous material. It is pyrophoric, extremely flammable and may explode from heat, shock and/or friction. Because of the nature of silane, serious safety issues have been raised concerning the use, transportation, and storage of compressed gas cylinders of silane. Therefore it is desired to develop safer ways to deposit silicon-based films. In chapter III, I present the results of our research in the following fields: (1) Silane generator, (2) Substitutes of silane for deposition of silicon and silicon dioxide thin films, (3) Substitutes of silane for silicon dioxide thin film deposition. In chapter IV, hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachement of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine ligands. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and non-metals such as phosphorus and arsenic. In this study, hydropyridine-containing titanium compounds were synthesized and used as chemical vapor deposition precursors for deposition of titanium containing thin films. Some other titanium compounds were also studied for comparison. In chapter V, Chemical Vapor Depositions (CVD) of many oxide thin films including ferroelectric and high dielectric constant BaTiO3, SrTiO 3 and PbTiO3 films had been carried out under reduced pressure (30 torr--80 torr) using liquid precursors containing beta-diketone ligands. The relative reactivities of Ba(beta-diketonate)2, Sr(beta-diketonate) 2, Pb(beta-diketonate)2, Ti(beta-diketonate)3, TiO(beta-diketonate)2 and Ti(OiPr)2(beta-diketonate) 2 had been studied individually prior to the deposition of BaTiO 3, SrTiO3 and PbTiO3 thin films from the mixtures of corresponding precursors. By using multi-step deposition method, carbon free stoichiometric BaTiO3 thin films uniform in large area have been achieved.
NASA Astrophysics Data System (ADS)
Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki
2017-05-01
We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Quan, E-mail: wangq@mail.ujs.edu.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Zhang, Yanmin
2013-11-14
Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructuremore » after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.« less
NASA Astrophysics Data System (ADS)
Dinh, L. N.; Grant, D. M.; Schildbach, M. A.; Smith, R. A.; Siekhaus, W. J.; Balazs, B.; Leckey, J. H.; Kirkpatrick, J. R.; McLean, W.
2005-12-01
Due to the exothermic reaction of lithium hydride (LiH) salt with water during transportation and handling, there is always a thin film of lithium hydroxide (LiOH) present on the LiH surface. In dry or vacuum storage, this thin LiOH film slowly decomposes. The technique of temperature-programmed reaction/decomposition (TPR) was employed in combination with the isoconversion method of thermal analysis to determine the outgassing kinetics of H 2O from pure LiOH and H 2 and H 2O from this thin LiOH film. H 2 production via the reaction of LiH with LiOH, forming a lithium oxide (Li 2O) interlayer, is thermodynamically favored, with the rate of further reaction limited by diffusion through the Li 2O and the stability of the decomposing LiOH. Lithium hydroxide at the LiOH/vacuum interface also decomposes easily to Li 2O, releasing H 2O which subsequently reacts with LiH in a closed system to form H 2. At the onset of dry decomposition, where H 2 is the predominant product, the activation energy for outgassing from a thin LiOH film is lower than that for bulk LiOH. However, as the reactions at the LiH/Li 2O/LiOH and at the LiOH/vacuum interfaces proceed, the overall activation energy barrier for the outgassing approaches that of bulk LiOH decomposition. The kinetics developed here predict a hydrogen evolution profile in good agreement with hydrogen release observed during long term isothermal storage.
Cho, Kyung-Hoon; Seong, Tae-Geun; Choi, Joo-Young; Kim, Jin-Seong; Kwon, Jae-Hong; Shin, Sang-Il; Chung, Myung-Ho; Ju, Byeong-Kwon; Nahm, Sahn
2009-10-20
The amorphous Bi(5)Nb(3)O(15) film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-O(2) film) has a hydrophobic surface with a surface energy of 35.6 mJ m(-2), which is close to that of the orthorhombic pentacene (38 mJ m(-2)), resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of 145 nF cm(-2) during and after 10(5) bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the poly(ether sulfone) substrate at room temperature using a BNRT-O(2) film as a gate insulator exhibited a promising device performance with a high field effect mobility of 0.5 cm(2) V(-1) s(-1), an on/off current modulation of 10(5), and a small subthreshold slope of 0.2 V decade(-1) under a low operating voltage of -5 V. This device also maintained a high carrier mobility of 0.45 cm(2) V(-1 )s(-1) during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-O(2) film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.
Temperature Behavior of Thin Film Varactor
2012-01-01
Temperature Behavior of Thin Film Varactor By Richard X. Fu ARL-TR-5905 January 2012...Thin Film Varactor Richard X. Fu Sensors and Electron Devices Directorate, ARL...DD-MM-YYYY) January 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Temperature Behavior of Thin Film Varactor 5a
Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.
Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai
2018-05-30
Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.
Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.
2016-05-01
V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films
NASA Astrophysics Data System (ADS)
Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.
2003-08-01
We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.
Characterization of aluminum selenide bi-layer thin film
NASA Astrophysics Data System (ADS)
Boolchandani, Sarita; Soni, Gyanesh; Srivastava, Subodh; Vijay, Y. K.
2018-05-01
The Aluminum Selenide (AlSe) bi-layer thin films were grown on glass substrate using thermal evaporation method under high vacuum condition. The morphological characterization was done using SEM. Electrical measurement with temperature variation shows that thin films exhibit the semiconductor nature. The optical properties of prepared thin films have also been characterized by UV-VIS spectroscopy measurements. The band gap of composite thin films has been calculated by Tauc's relation at different temperature ranging 35°C-100°C.
Investigation of phase transition properties of ZrO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder
2018-05-01
This paper presents the synthesis of transparent thin films of zirconium oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Synthesized films were characterized for different annealing time and withdrawal speed. Change in crystallographic properties of thin films was investigated by using X-ray diffraction. Surface morphology of transparent thin films was estimated by using scanning electron microscope.
NASA Astrophysics Data System (ADS)
Kamat, Sandip V.; Chhabra, Jasvinder; Patil, V. S.; Yadav, J. B.; Puri, R. K.; Puri, Vijaya
2018-05-01
The polythiophene thin films were prepared by a wellknown chemical bath deposition technique. The deposited thin films were characterized for structural morphological properties and the adhesion of these thin films were measured by direct pull off (DPO) method, the effect of oxidant concentration on these thin films also studied. The FTIR spectra of chemically deposited polythiophene thin films shows the absorption peak at 836 cm-1 which represents c-s stretching vibrations, shifts to 869 cm-1 as the oxidant concentration increases. The band at 666 cm-1 representing c-s-c ring deformation becomes sharper and appears with a shoulder peak due to increase in oxidant concentration.
Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.
2016-07-19
In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
NASA Astrophysics Data System (ADS)
Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo
2018-02-01
Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2001-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J.
1998-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, H.J.; Stoner, R.J.
1998-05-05
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2002-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
1999-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.
2013-08-01
We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
A study on micro-structural and optical parameters of InxSe1-x thin film
NASA Astrophysics Data System (ADS)
Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.
2018-04-01
Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.
Superconductivity-related insulating behavior.
Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D
2004-03-12
We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.
Large area polysilicon films with predetermined stress characteristics and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
NASA Astrophysics Data System (ADS)
Liu, Wei-Ting; Huang, Wen-Yao
2012-10-01
This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.
NASA Astrophysics Data System (ADS)
Liu, Wei-ting; Huang, Wen-Yao
2012-06-01
This study used novel fluorescence based deep-blue-emitting molecules, namely BPVPDA, an organic fluorescence color thin film using BPVPDA exhibit deep blue fluorine with CIE coordinates of (0.13,0.16). The developed original Organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness, in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a thin-film-transistor (TFT) LCD with organic color thin films. The organic color thin films structure uses organic dye dopent in limpid photo resist. With this technology , the following characteristics can be obtained: (1) high color reproduction of gamut ratio, and (2) improved luminous efficiency with organic color fluorescence thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD and OLED.
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate
2013-01-01
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090
NASA Astrophysics Data System (ADS)
Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng
2018-01-01
It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.
Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao
2013-02-28
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.
Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.
1999-01-01
A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin
2015-03-28
Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less
NASA Astrophysics Data System (ADS)
Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed
2018-06-01
The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.
NASA Astrophysics Data System (ADS)
Lv, Shuliang; Zhou, Yawei; Xu, Wenwu; Mao, Wenfeng; Wang, Lingtao; Liu, Yong; He, Chunqing
2018-01-01
Various transparent GaN-doped SnO2 thin films were deposited on glass substrates by e-beam evaporation using GaN:SnO2 targets of different GaN weight ratios. It is interesting to find that carrier polarity of the thin films was converted from n-type to p-type with increasing GaN ratio higher than 15 wt.%. The n-p transition in GaN-doped SnO2 thin films was explained for the formation of GaSn and NO with increasing GaN doping level in the films, which was identified by Hall measurement and XPS analysis. A transparent thin film p-n junction was successfully fabricated by depositing p-type GaN:SnO2 thin film on SnO2 thin film, and a low leakage current (6.2 × 10-5 A at -4 V) and a low turn-on voltage of 1.69 V were obtained for the p-n junction.
Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices
Xiao, Zhigang; Kisslinger, Kim
2015-06-17
Thin films of hafnium dioxide (HfO 2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO 2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO 2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO 2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ringmore » oscillator to test the quality of the HfO 2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO 2 thin film functioned very well as the gate oxide.« less
Stretchable, adhesive and ultra-conformable elastomer thin films.
Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji
2016-11-16
Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (T g ). In this paper, we report that free-standing polystyrene (PS, T g : 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, T g : -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (R a = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.
In-situ ellipsometry: applications to thin film research, development, and production
NASA Astrophysics Data System (ADS)
Kief, M. T.
1999-07-01
Many industries including the optics industry, semiconductor industry, and magnetic storage industry are deeply rooted in the science and technology of thin film materials and thin film based devices. Research in novel thin film systems and the engineering of artificial structures increasingly requires a control on the atomic scale in both thickness and lateral order. Development of the deposition and fabrication processes for these thin film structures requires technical sophistication and efficiency combined with an understanding of the multi-faceted process interactions. The production of these materials necessitates a remarkable degree of control to minimize scrap and assure good performance. Furthermore, in today's industry these operations must occur at an ever accelerating pace. In this article, we will review one technique which can make these challenges more tractable - insitu ellipsometry. This is a very powerful tool which is capable of characterizing thin film processes in real-time. We review the art and illustrate with novel applications to metal thin film growth. In addition, we will illustrate how information obtained with insitu ellipsometry can predict the end use thin film properties such as the transport properties. In conclusion, further advances in insitu ellipsometry and its applications will be discussed in terms of needs and trends as a tool for thin film research, development and production.
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1989-01-01
Strain-energy release rates are often used to predict when delamination growth will occur in laminates under compression. Because of the inherently high computational cost of performing such analyses, less rigorous analyses such as thin-film plate analysis were used. The assumptions imposed by plate theory restrict the analysis to the calculation of total strain energy, G(sub t). The objective is to determine the accuracy of thin-film plate analysis by comparing the distribution of G(sub t) calculated using fully three dimensional (3D), thin-film 3D, and thin-film plate analyses. Thin-film 3D analysis is the same as thin-film plate analysis, except 3D analysis is used to model the sublaminate. The 3D stress analyses were performed using the finite element program NONLIN3D. The plate analysis results were obtained from published data, which used STAGS. Strain-energy release rates were calculated using variations of the virtual crack closure technique. The results demonstrate that thin-film plate analysis can predict the distribution of G(sub t) quite well, at least for the configurations considered. Also, these results verify the accuracy of the strain-energy release rate procedure for plate analysis.
NASA Astrophysics Data System (ADS)
Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku
2015-10-01
We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine
2005-01-01
Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.
Transferable and flexible thin film devices for engineering applications
NASA Astrophysics Data System (ADS)
Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun
2014-05-01
Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.
Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin
2012-11-27
The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.
NASA Astrophysics Data System (ADS)
Oshima, Naoya; Uchiyama, Kiyoshi; Ehara, Yoshitaka; Oikawa, Takahiro; Ichinose, Daichi; Tanaka, Hiroki; Sato, Tomoya; Uchida, Hiroshi; Funakubo, Hiroshi
2017-10-01
A strongly {110}-oriented perovskite-type thin film of tetragonal Pb(Zr0.4Ti0.6)O3 (PZT) was successfully obtained on a (100)Si substrate using a {101}PdO//{111}Pd thin film as a buffer layer. The {101}PdO//{111}Pd thin film buffer layer was obtained by oxidizing {111}Pd after depositing {111}Pd on a {111}Pt/TiO x /SiO2/{100}Si substrate. Using this buffer layer, a {110} c -oriented SrRuO3 (SRO) thin film was deposited by sputtering as a bottom electrode of PZT thin films. Subsequently, the {110}-oriented PZT thin film can be deposited on a (110) c SRO thin film by metal-organic chemical deposition (MOCVD) and its properties can be compared with those of PZT thin films with other orientations of {100} and {111}. Among the {100}, {110}, {111}-oriented PZT films, the {100}-oriented one showed the largest remnant polarization, which is in good agreement with those of the PZTs epitaxially grown in the 〈100〉, 〈110〉, and 〈111〉 directions. The other properties, i.e., piezoelectricity and dielectric constants, also showed similar anisotropic tendencies, which is in good agreement with the data reported in the epitaxially grown PZTs.
An overview of thin film nitinol endovascular devices.
Shayan, Mahdis; Chun, Youngjae
2015-07-01
Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Çetinörgü, E.; Goldsmith, S.
2007-09-01
ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.
Thermal conductivity of pure silica MEL and MFI zeolite thin films
NASA Astrophysics Data System (ADS)
Coquil, Thomas; Lew, Christopher M.; Yan, Yushan; Pilon, Laurent
2010-08-01
This paper reports the room temperature cross-plane thermal conductivity of pure silica zeolite (PSZ) MEL and MFI thin films. PSZ MEL thin films were prepared by spin coating a suspension of MEL nanoparticles in 1-butanol solution onto silicon substrates followed by calcination and vapor-phase silylation with trimethylchlorosilane. The mass fraction of nanoparticles within the suspension varied from 16% to 55%. This was achieved by varying the crystallization time of the suspension. The thin films consisted of crystalline MEL nanoparticles embedded in a nonuniform and highly porous silica matrix. They featured porosity, relative crystallinity, and MEL nanoparticles size ranging from 40% to 59%, 23% to 47% and 55 nm to 80 nm, respectively. PSZ MFI thin films were made by in situ crystallization, were b-oriented, fully crystalline, and had a 33% porosity. Thermal conductivity of these PSZ thin films was measured at room temperature using the 3ω method. The cross-plane thermal conductivity of the MEL thin films remained nearly unchanged around 1.02±0.10 W m-1 K-1 despite increases in (i) relative crystallinity, (ii) MEL nanoparticle size, and (iii) yield caused by longer nanoparticle crystallization time. Indeed, the effects of these parameters on the thermal conductivity were compensated by the simultaneous increase in porosity. PSZ MFI thin films were found to have similar thermal conductivity as MEL thin films even though they had smaller porosity. Finally, the average thermal conductivity of the PSZ films was three to five times larger than that reported for amorphous sol-gel mesoporous silica thin films with similar porosity and dielectric constant.
NASA Astrophysics Data System (ADS)
Rehman, Mohammad Mutee ur; Kim, Kwang Tae; Na, Kyoung Hoan; Choi, Kyung Hyun
2017-11-01
In this study, organic polymer poly-vinyl acetate (PVA) and inorganic aluminum oxide (Al2O3) have been used together to fabricate a hybrid barrier thin film for the protection of PET substrate. The organic thin films of PVA were developed through roll to roll electrohydrodynamic atomization (R2R-EHDA) whereas the inorganic thin films of Al2O3 were grown by roll to roll spatial atmospheric atomic layer deposition (R2R-SAALD) for mass production. The use of these two technologies together to develop a multilayer hybrid organic-inorganic barrier thin films under atmospheric conditions is reported for the first time. These multilayer hybrid barrier thin films are fabricated on flexible PET substrate. Each layer of Al2O3 and PVA in barrier thin film exhibited excellent morphological, chemical and optical properties. Extremely uniform and atomically thin films of Al2O3 with average arithmetic roughness (Ra) of 1.64 nm and 1.94 nm respectively concealed the non-uniformity and irregularities in PVA thin films with Ra of 2.9 nm and 3.6 nm respectively. The optical transmittance of each layer was ∼ 80-90% while the water vapor transmission rate (WVTR) of hybrid barrier was in the range of ∼ 2.3 × 10-2 g m-2 day-1 with a total film thickness of ∼ 200 nm. Development of such hybrid barrier thin films with mass production and low cost will allow various flexible electronic devices to operate in atmospheric conditions without degradation of their properties.
Variable temperature superconducting microscope
NASA Astrophysics Data System (ADS)
Cheng, Bo; Yeh, W. J.
2000-03-01
We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.
NASA Astrophysics Data System (ADS)
Yu, Fei; Ma, Xiaoyu; Deng, Wanling; Liou, Juin J.; Huang, Junkai
2017-11-01
A physics-based drain current compact model for amorphous InGaZnO (a-InGaZnO) thin-film transistors (TFTs) is proposed. As a key feature, the surface potential model accounts for both exponential tail and deep trap densities of states, which are essential to describe a-InGaZnO TFT electrical characteristics. The surface potential is solved explicitly without the process of amendment and suitable for circuit simulations. Furthermore, based on the surface potential, an explicit closed-form expression of the drain current is developed. For the cases of the different operational voltages, surface potential and drain current are verified by numerical results and experimental data, respectively. As a result, our model can predict DC characteristics of a-InGaZnO TFTs.
Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-17
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
2012-01-01
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341
Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbard, J. A.; Softley, T. P.
2016-06-21
Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom. We show that “handshake” electronmore » transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given film thickness.« less
Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications
NASA Astrophysics Data System (ADS)
Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.
Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.
Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A
2009-01-01
This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.
Effects of bacteria on CdS thin films used in technological devices
NASA Astrophysics Data System (ADS)
Alpdoğan, S.; Adıgüzel, A. O.; Sahan, B.; Tunçer, M.; Metin Gubur, H.
2017-04-01
Cadmium sulfide (CdS) thin films were fabricated on glass substrates by the chemical bath deposition method at 70 {}^\\circ \\text{C} considering deposition times ranging from 2 h to 5 h. The optical band gaps of CdS thin films were found to be in the 2.42-2.37 eV range. CdS thin films had uniform spherical nano-size grains which had polycrystalline, hexagonal and cubic phases. The films had a characteristic electrical resistivity of the order of {{10}5} Ω \\text{cm} and n-type conductivity at room condition. CdS thin films were incubated in cultures of B.domonas aeruginosa and Staphylococcus aureus, which exist abundantly in the environment, and form biofilms. SEM images showed that S. aureus and K. pneumonia were detected significantly on the film surfaces with a few of P. aeruginosa and B. subtilis cells attached. CdS thin film surface exhibits relatively good resistance to the colonization of P. aeruginosa and B. subtilis. Optical results showed that the band gap of CdS thin films which interacted with the bacteria is 2.42 \\text{eV} . The crystal structure and electrical properties of CdS thin films were not affected by bacterial adhesion. The antimicrobial effect of CdS nanoparticles was different for different bacterial strains.
Magnetic damping phenomena in ferromagnetic thin-films and multilayers
NASA Astrophysics Data System (ADS)
Azzawi, S.; Hindmarch, A. T.; Atkinson, D.
2017-11-01
Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.
Thin-film thickness measurement method based on the reflection interference spectrum
NASA Astrophysics Data System (ADS)
Jiang, Li Na; Feng, Gao; Shu, Zhang
2012-09-01
A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.
Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics.
Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag
2018-05-25
Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS 2 ) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS 2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS 2 thin film by annealing at 450 °C for 1 h in H 2 S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS 2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 10 5 and 10 4 cm -1 in the visible region, respectively. In addition, SnS and SnS 2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS 2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS 2 thin films exhibited on-off drain current ratios of 8.8 and 2.1 × 10 3 and mobilities of 0.21 and 0.014 cm 2 V -1 s -1 , respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS 2 thin films were 6.0 × 10 16 and 8.7 × 10 13 cm -3 , respectively, in this experiment.
Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics
NASA Astrophysics Data System (ADS)
Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag
2018-05-01
Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.
NASA Astrophysics Data System (ADS)
Wagner, Sean Robert
As the electronics industry continues to evolve and move towards functional electronic devices with increasing complexity and functionality, it becomes important to explore materials outside the regime of conventional semiconductors. Organic semiconducting small molecules have received a large amount of attention due to their high degree of flexibility, the option to perform molecular synthesis to modify their electronic and magnetic properties, and their ability to organize into highly-ordered functionalized nanostructures and thin films. Being able to form complex nanostructures and thin films with molecular precision, while maintaining the ability to tune properties through modifications in the molecular chemistry could result in vast improvements in conventional device architectures. However, before this is realized, there still remains a significant lack of understanding regarding how these molecules interact with various substrate surfaces as well as their intermolecular interactions. The interplay between these interactions can produce drastic changes in the molecular orientation and ordering at the hetero-interface, which can affect the transport properties of the molecular thin film and ultimately modify the performance of the organic electronic device. This study first focuses on the growth dynamics, molecular ordering, and molecular orientation of metal phthalocyanine (MPc) molecules, particularly on Si, a substrate which is notoriously difficult to form an organized organic thin film on due to the surface dangling bonds. By deactivating these bonds, the formation of a highly ordered organic molecular thin film becomes possible. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, low-energy electron diffraction, and density functional theory calculations, the growth evolution of MPc molecules ( M = Zn, Cu, Co) from the single molecule level to multilayered films on the deactivated Si(111)-B surface is investigated. Initial tests are centered around thermally evaporated ZnPc. These molecules display a highly-ordered, close-packed, tilted configuration which differs from any known bulk packing motif. The ZnPc molecules are able to diffuse rapidly on the Si surface and preferentially nucleate at Si step-edges. This is followed by the formation of highly-ordered anisotropic stripe structures which grow across the Si terraces, i.e. anisotropic step-flow growth. The step-flow growth mode further impacts the growth by reducing the allowed symmetry of the molecular domains such that thin films with an exclusive in-plane molecular ordering are formed. Additionally, the ZnPc tilted packing motif stabilizes the molecular film, allowing it to maintain this packing for multilayered films, despite the decreasing substrate influence. The strength of the MPc-substrate interaction can be modified by changing the central transition-metal ion within the molecule. Through selective p-d orbital coupling between MPc molecules and the substrate, the degree of orbital coupling can induce modifications in the molecular ordering and orientation of MPc molecules at the interface. The secondary focus of this study is to initiate preliminary experimentation towards understanding how ordered organic molecular thin films can be applied to silicon-based devices that could have a significant impact on the electronics market. Si nanomembrane is a flexible, low-dimensional nanomaterial with electronic properties that are highly sensitive to the interface condition. By merging the knowledge of MPc thin film growth on Si with Si nanomembrane technology, possibilities towards modifying the transport properties of nanomaterials through engineering the organic-inorganic hetero-interface can be explored.
NASA Astrophysics Data System (ADS)
Vinoth, E.; Gopalakrishnan, N.
2018-04-01
Undoped and Mg doped (at l0 mol %) ZnO thin films have been grown on glass substrates by using the RF magnetron sputtering. The structural properties of the fabricated thin films were studied by X-ray diffraction analysis and it was found hexagonal wurtzite phase and preferential orientation along (002) of both films. Green Band Emission peaks in the Photoluminescence spectra confirm the structural defects such as oxygen vacancies (Vo) in the films. Uniform distribution of spherical shape morphology of grains observed in the both films by FESEM. However, the growth of grains was found in the Mg doped thin film. The temperature dependent ammonia sensing is done by the indigenously made gas sensing setup. The gas response of the both films was increased as the temperature increases, attains maximum at 75° C and then decreases. Response and recovery time measurementswere donefor boththe films and it shows the fast response time and quick recovery for doped thin film compared to the pure ZnO thin film.
NASA Astrophysics Data System (ADS)
Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong
2011-10-01
We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.
Morphing hybrid honeycomb (MOHYCOMB) with in situ Poisson’s ratio modulation
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Neville, Robin M.; Scarpa, Fabrizio; Bond, Ian P.; Potter, Kevin D.
2016-08-01
Electrostatic adhesion can be used as a means of reversible attachment. Through application of high voltage (~2 kV) across closely spaced parallel plate electrodes, significant shear stresses (11 kPa) can be generated. The highest levels of electrostatic holding force can be achieved through close contact of connection surfaces; this is facilitated by flexible electrodes which can conform to reduce air gaps. Cellular structures are comprised of thin walled elements, making them ideal host structures for electrostatic adhesive elements. The reversible adhesion provides control of the internal connectivity of the cellular structure, and determines the effective cell geometry. This would offer variable stiffness and control of the effective Poisson’s ratio of the global cellular array. Using copper-polyimide thin film laminates and PVDF thin film dielectrics, double lap shear electrostatic adhesive elements have been introduced to a cellular geometry. By activating different groups of reversible adhesive interfaces, the cellular array can assume four different cell configurations. A maximum stiffness modulation of 450% between the ‘All off’ and ‘All on’ cell morphologies has been demonstrated. This structure is also capable of in situ effective Poisson’s ratio variations, with the ability to switch between values of -0.45 and 0.54. Such a structure offers the potential for tuneable vibration absorption (due to its variable stiffness properties), or as a smart honeycomb with controllable curvature and is termed morphing hybrid honeycomb.
NASA Astrophysics Data System (ADS)
Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.
2017-03-01
Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation of low-loss optical waveguides over shallow and deep focusing conditions. Lastly, SLM beam shaping has been successfully extended to interferometric processing inside thin transparent film, enabling the arbitrary formation of uniform or non-uniform, symmetric or asymmetric patterns of flexible shape on nano-scale dimensions without phase-noise degradation by the SLM patterning. We present quantized structuring of thin films by a single laser pulse, demonstrating λ/2nfilm layer ejection control, blister formation, nano-cavities, and film colouring. Closed intra-film nanochannels with high aspect ratio (20:1) have been formed inside 3.5 um thick silica, opening new prospects for sub-cellular studies and lab-in-film concepts that integrate on CMOS silicon technologies.
NASA Astrophysics Data System (ADS)
Srikant, V.; Tarsa, E. J.; Clarke, D. R.; Speck, J. S.
1995-02-01
Expitaxial ferroelectric BaTiO3 thin films have been grown on (001) MgO and MgO-buffered (001) GaAs substrates by pulsed laser deposition to explore the effect of substrate lattice parameter. X-ray-diffraction studies showed that the BaTiO3 films on both MgO single-crystal substrates and MgO-buffered (001) GaAs substrates have a cube-on-cube epitaxy; however, for the BaTiO3 films grown on MgO the spacing of the planes parallel to the substrate was close to the c-axis dimension of the unconstrained tetragonal phase, whereas the BaTiO3 films on MgO/GaAs exhibited a spacing closer to the a-axis dimension of the unconstrained tetragonal phase. The cube-on-cube epitaxy was maintained through the heterostructures even when thin epitaxial intermediate buffer layers of SrTiO3 and La(0.5)Sr(0.5)CoO3 were used. The intermediate layers had no effect on the position of the BaTiO3 peak in theta - 2 theta scans. Together, these observations indicate that, for the materials combinations studied, it is the thermal-expansion mismatch between the film and the underlying substrate that determines the crystallographic orientation of the BaTiO3 film. Preliminary measurements indicate that the BaTiO3 films are 'weakly' ferroelectric.
NASA Astrophysics Data System (ADS)
Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric
2016-09-01
Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.
Landau-de Gennes theory of surface-enhanced ordering in smectic films.
Shalaginov, A N; Sullivan, D E
2001-03-01
A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.
Growth and characterization of α and β-phase tungsten films on various substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr
2016-03-15
The growth conditions of tungsten thin films were investigated using various substrates including Si, Si/SiO{sub 2}, GaAs, MgO, and Al{sub 2}O{sub 3}, and recipes were discovered for the optimal growth conditions of thick metastable β-phase tungsten films on Si, GaAs, and Al{sub 2}O{sub 3} substrates, which is an important material in spin orbit torque studies. For the Si/SiO{sub 2} substrate, the crystal phase of the tungsten films was different depending upon the tungsten film thickness, and the transport properties were found to dramatically change with the thickness owing to a change in phase from the α + β phase to the α-phase.more » It is shown that the crystal phase changes are associated with residual stress in the tungsten films and that the resistivity is closely related to the grain sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.
Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakshi, M.; Perumal, P.; Sivakumar, R.
2016-05-23
V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
Thin-Film Photovoltaics: Status and Applications to Space Power
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Hepp, Aloysius F.
1991-01-01
The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.
Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors.
Cheng, Tien-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn
2018-07-01
Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.
PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.
The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Film and membrane-model thermodynamics of free thin liquid films.
Radke, C J
2015-07-01
In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans
2017-11-01
The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.
Development of sputtered CuSbS2 thin films grown by sequential deposition of binary sulfides
NASA Astrophysics Data System (ADS)
Medina-Montes, M. I.; Vieyra-Brito, O.; Mathews, N. R.; Mathew, X.
2018-05-01
In this work, CuSbS2 thin films were developed by annealing binary precursors deposited sequentially by rf magnetron sputtering. The recrystallization process was optimized and the films were extensively characterized using a number of tools such as XRD, Raman, SEM, energy dispersive x-ray spectroscopy, atomic force microscopy, Hall, UV–vis spectroscopy, Ellipsometry, Seebeck, and photoresponse. The influence of annealing temperature on the structure, morphology, elemental composition, optical and electrical properties are reported. Annealing below 350 °C resulted in famatinite (Cu3SbS4) and chalcostibite (CuSbS2) ternaries as well as binary phases. Phase-pure chalcostibite was obtained in the range of 350 °C–375 °C. At 400 °C, although CuSbS2 was predominant, tetrahedrite phase (Cu12Sb4S13) appeared as an additional phase. The elemental composition of the films was slightly sulfur deficient, and the atomic percentages of Cu, Sb and S showed a dependence on annealing temperature. The material properties of the phase-pure CuSbS2 thin films are: optical band gap in the range of 1.5–1.62 eV, absorption coefficient close to 105 cm‑1, atomic ratios of Cu/Sb ∼1 and (Cu + Sb)/S ∼1.2, crystal size 18.3–24.5 nm and grain size 50–300 nm. The films were photo-sensitive, showed p-type semiconductor behavior. Electrical resistivity, carrier density and hole mobility were 94–459 Ω cm, 1.6–7.0 × 1015 cm‑3 and 8.4–9.5 cm2 V‑1 s respectively.
NASA Astrophysics Data System (ADS)
Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.
2014-02-01
Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.
Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film
NASA Astrophysics Data System (ADS)
Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy
2002-02-01
Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.
Effect of temperature on optical properties of PMMA/SiO2 composite thin film
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-05-01
Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.
Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.
Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2016-12-28
Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN) 4 ] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L) 2 [Pt(CN) 4 ] thin films [L = H 2 O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe 2+ site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.
Mobility Optimization in LaxBa1-xSnO3 Thin Films Deposited via High Pressure Oxygen Sputtering
NASA Astrophysics Data System (ADS)
Postiglione, William Michael
BaSnO3 (BSO) is one of the most promising semiconducting oxides currently being explored for use in future electronic applications. BSO possesses a unique combination of high room temperature mobility (even at very high carrier concentrations, > 1019 cm-3), wide band gap, and high temperature stability, making it a potentially useful material for myriad applications. Significant challenges remain however in optimizing the properties and processing of epitaxial BSO, a critical step towards industrial applications. In this study we investigate the viability of using high pressure oxygen sputtering to produce high mobility La-doped BSO thin films. In the first part of our investigation we synthesized, using solid state reaction, phase-pure stoichiometric polycrystalline 2% La-doped BaSnO 3 for use as a target material in our sputtering system. We verified the experimental bulk lattice constant, 4.117 A, to be in good agreement with literature values. Next, we set out to optimize the growth conditions for DC sputtering of La doped BaSnO3. We found that mobility for all our films increased monotonically with deposition temperature, suggesting the optimum temperature for deposition is > 900 °C and implicating a likely improvement in transport properties with post-growth thermal anneal. We then preformed systematic studies aimed at probing the effects of varying thickness and deposition rate to optimize the structural and electronic transport properties in unbuffered BSO films. In this report we demonstrate the ability to grow 2% La BSO thin films with an effective dopant activation of essentially 100%. Our films showed fully relaxed (bulk), out-of-plane lattice parameter values when deposited on LaAlO3, MgO, and (LaAlO3)0.3(Sr2 TaAlO6)0.7 substrates, and slightly expanded out-of-plane lattice parameters for films deposited on SrTiO3, GdScO3, and PrScO3 substrates. The surface roughness's of our films were measured via AFM, and determined to be on the nm scale or better. Specular XRD measurements confirmed highly crystalline films with narrow rocking curve FWHMs on the order of 0.05°. The optimum thickness found to maximize mobility was around 100 nm for films deposited at 8 A/min. These films exhibited room temperature mobilities in excess of 50 cm 2V-1s-1 at carrier concentrations 3 x 1020 cm-3 across 4 different substrate materials (LaAlO3, SrTiO3, GdScO3, and PrScO 3). Contrary to expectations, our findings showed no dependence of mobility on substrate mismatch, indicating that threading dislocations are either not the dominant scattering source, or that threading dislocation density in the films was constant regardless of the substrate. The highest mobility film achieved in this study, 70 cm2V -1s-1, was measured for a film grown at a considerably slower rate ( 2 A/min) and lower thickness ( 380 A). Said film was deposited on a PrScO3 (110) substrate, the most closely lattice matched substrate commercially available for BSO (-2.2% pseudo-cubic). This film showed a high out-of-plane lattice parameter from X-ray diffraction (aop = 4.158 A), suggesting a significantly strained film. This result highlights the possibility of sputtering coherent, fully strained, BSO films, far exceeding the theoretical critical thickness for misfit dislocation formation, on closely lattice matched substrates. Overall, this work validates the concept of high pressure oxygen sputtering to produce high mobility La-doped BSO films. The mobility values reported in this thesis are comparable to those found for films deposited via pulsed laser deposition in previous studies, and represent record values for sputter deposited BSO thin films.
Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making
Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.
1999-07-13
A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.
2004-11-01
properties of Co- doped ZnO nanocluster films", .J. of Appl. Phys. in press, 2005 2. Presentations (contributed): Conference Contributions: 1) Y. Qiang...gigahertz band applications. The effects of substrates bias, sputter parameters, and seed-layer have thoroughly been investigated. The magnetic...Adequate properties of soft magnetic thin film were evaluated by an analytical calculation [1] to meet the requirement for gigahertz band thin-film
Cytotoxicity Evaluation of Anatase and Rutile TiO₂ Thin Films on CHO-K1 Cells in Vitro.
Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L; Soto, Enrique
2016-07-26
Cytotoxicity of titanium dioxide (TiO₂) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO₂ thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO₂ films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO₂ films' thickness values fell within the nanometer range (290-310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO₂ thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO₂ thin films, the number of CHO-K1 cells on the control substrate and on all TiO₂ thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO₂ films annealed at 800 °C. These results indicate that TiO₂ thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO₂ thin films in biomedical science.
Comparison of the agglomeration behavior of thin metallic films on SiO2
NASA Astrophysics Data System (ADS)
Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.
2005-07-01
The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.
Creation and Ordering of Oxygen Vacancies at WO 3-δ and Perovskite Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kelvin H. L.; Li, Guoqiang; Spurgeon, Steven R.
Changes in structure and composition resulting from oxygen deficiency can strongly impact the physical and chemical properties of transition metal oxides, which may lead to new functionalities for novel electronic devices. Oxygen vacancies (V o) can be readily formed to accomodate the lattice mismatch during epitixial thin film growth. In this paper, the effects of substrate strain and oxidizing power on the creation and distribution of V o in WO 3-δ thin films are investigated in detail. An 18O 2 isotope labeled time-of-flight secondary ion mass spectrometry study reveals that WO 3-δ films grown on SrTiO 3 substrates display amore » significantly larger oxygen vacancy gradient along the growth direction compared to those grown on LaAlO 3 substrates. This result is corroborated by scanning transmission electron microscopy imaging which reveals a large number of defects close to the interface to accommodate interfacial tensile strain, leading to the ordering of V o and the formation of semi-aligned Magnéli phases. The strain is gradually released and tetragonal phase with much better crystallinity is observed at the film/vacuum interface. The changes in structure resulting from oxygen defect creation are shown to have a direct impact on the electronic and optical properties of the films.« less
Photochemical metal organic deposition of metal oxides
NASA Astrophysics Data System (ADS)
Law, Wai Lung (Simon)
This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.
Lee, HyunSeok; Yim, Haena; Kim, Kwang-Bum; Choi, Ji-Won
2015-11-01
LiFePO4 thin film cathodes are deposited on various transparent conducting oxide thin films on glass, which are used as cathode current collectors. The XRD patterns show that the thin films have the phase of LiFePO4 with an ordered olivine structure indexed to the orthorhombic Pmna space group. LiFePO4 thin film deposited on various TCO glass substrates exhibits transmittance of about 53%. The initial specific discharge capacities of LiFePO4 thin films are 25.0 μAh/cm2 x μm on FTO, 33.0 μAh/cm2 x μm on ITO, and 13.0 μAh/cm2 x μm on AZO coated glass substrates. Interestingly, the retention capacities of LiFePO4 thin films are 76.0% on FTO, 31.2% on ITO, and 37.7% on AZO coated glass substrates at 20th cycle. The initial specific discharge capacity of the LiFePO4/FTO electrode is slightly lower, but the discharge capacities of the LiFePO4/FTO electrode relatively decrease less than those of the others such as LiFePO4/ITO and LiFePO4/AZO with cycling. The results reported here provide the high transparency of LiFePO4 thin films cathode materials and the good candidate as FTO current collector of the LiFePO4 thin film cathode of transparent thin film rechargeable batteries due to its high transparency and cyclic retention.
Liang, Yuan-Chang; Lung, Tsai-Wen; Wang, Chein-Chung
2016-12-01
Well-crystallized Sn 2 S 3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn 2 S 3 thin films exhibited a sheet-like feature. The Sn 2 S 3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn 2 S 3 thin films further in ambient air at 400 °C engendered roughened and oxidized surfaces on the Sn 2 S 3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn 2 S 3 thin films transformed into a SnO 2 phase, and well-layered Sn 2 S 3 -SnO 2 heterostructure thin films were thus formed. The Sn 2 S 3 -SnO 2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO 2 gases (0.2-2.5 ppm). By contrast, the pure Sn 2 S 3 thin film exhibited an unapparent room-temperature NO 2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn 2 S 3 -SnO 2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO 2 gas-sensing responses of the heterostructure thin film on exposure to NO 2 gas at low concentrations in this work.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh
2018-04-01
In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.
Opening and retraction of particulate soap films
NASA Astrophysics Data System (ADS)
Timounay, Yousra; Lorenceau, Elise; Rouyer, Florence
2015-07-01
We study for the first time the bursting dynamics of thin liquid films laden with hydrophobic micronic particles either with free or constrained edges. We highlight that the particles can arrange in bilayer or monolayer configurations and explore a range of particles coverage from zero to random close packing. When the particles bridge the two interfaces (monolayer configuration) of free-edge films, the hole opens intermittently. For the other cases, we observe constant retraction velocities, modeled by balancing liquid and particles inertia against surface tension as in Taylor-Culick theory. But, this approach is only valid up to a critical value of particles coverage due to the interplay between the interfaces and the friction between particles.
Flexible, wearable, and functional graphene-textile composites
NASA Astrophysics Data System (ADS)
Liu, Ying; Zhang, Kun-Ning; Zhang, Ying; Tao, Lu-Qi; Li, Yu-Xing; Wang, Dan-Yang; Yang, Yi; Ren, Tian-Ling
2017-06-01
In this paper, a flexible, wearable, and functional graphene-textile composite is demonstrated. Laser scribing technology is applied to fabricate a graphene film. The thin layer of polydimethylsiloxane is covered on the surface of the graphene-textile film evenly, which would improve the abrasive resistance of the film, enhance the ability to adapt to environmental changes, and extend the service life, while maintaining the device's excellent flexibility and comfort. The graphene-textile composite can achieve constant temperature heating by controlling the input voltage, detect the human movement, and perceive the human pulse signal. The composite presents great commercial prospects and a large value in the medical, daily wear, and other areas that are closely related to human lives.
NASA Astrophysics Data System (ADS)
Klee, M.; Boots, H.; Kumar, B.; van Heesch, C.; Mauczok, R.; Keur, W.; de Wild, M.; van Esch, H.; Roest, A. L.; Reimann, K.; van Leuken, L.; Wunnicke, O.; Zhao, J.; Schmitz, G.; Mienkina, M.; Mleczko, M.; Tiggelman, M.
2010-02-01
Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm2, high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85°C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.
NASA Astrophysics Data System (ADS)
Gashaw Hone, Fekadu; Dejene, F. B.
2018-02-01
Polycrystalline lead sulphide (PbS) thin films were grown on glass substrates by chemical bath deposition route using ethanolamine (ETA) as a complexing agent. The effects of ETA molar concentration on the structural, morphological, electrical and optical properties of lead sulphide thin films were thoroughly studied. The XRD analyses revealed that all the deposited thin films were face center cubic crystal structure and their preferred orientations were varied along the (111) and (200) planes. The XRD results further confirmed that ETA concentration had a significant effects on the strain, average crystalline size and dislocation density of the deposited thin films. The SEM studies illustrated the evolution and transformation of surface morphology as ETA molar concentration increased from 0.41 M to 1.64 M. The energy dispersive x-ray analysis was used to verify the compositional elements of the deposited thin films. Optical spectroscopy investigation established that the band gap of the PbS thin films were reduced from 0.98 eV to 0.68 eV as ETA concentration increased. The photoluminescence spectra showed a well defined peak at 428 nm and shoulder around 468 nm for all PbS thin films. The electrical resistivity of the thin films found in the order of 103 Ω cm at room temperature and decreased as the ETA molar concentration was increased.
Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong
2017-10-01
Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.
Piezoelectric MEMS: Ferroelectric thin films for MEMS applications
NASA Astrophysics Data System (ADS)
Kanno, Isaku
2018-04-01
In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullal, H. S.; von Roedern, B.
2007-09-01
We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. Inmore » CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.« less
Influence of spray time on the optical and electrical properties of CoNi2S4 thin films
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Fouad, S. S.; Ismail, A. M.; Sakr, G. B.
2018-04-01
In this paper, a facile spray pyrolysis technique was utilized to synthesize CoNi2S4 thin films. The influence of spray time on the structural, optical and electrical properties of the CoNi2S4 thin films was studied. The x-ray diffraction studies of the CoNi2S4 thin films illustrate that the films exhibit a polycrystalline nature with cubic structure. The values of the lattice strain ε, and the dislocation density δ, were decreased as the spray time increase while the grain size has reverse manner to lattice strain ε, and the dislocation density δ. The transmittance and reflectance spectra of the CoNi2S4 thin films were recorded in the wavelength range of (400–2500) nm to evaluate the optical parameters of the CoNi2S4 thin films. Optical absorption coefficient of CoNi2S4 thin films revealed a presence of a direct energy gap and the values of energy gap were decreased from 1.68 to 1.53 eV as the spray time increases from 15 min to 45 min. The nonlinear refractive index of the CoNi2S4 thin films was increased with increasing of the spray time. The CoNi2S4 thin films exhibit single activation energy and the activation energy was decreased as the spray time increased.
Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films
NASA Astrophysics Data System (ADS)
Eshaghi, F.; Zolanvari, A.
2018-04-01
In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.
Caporizzo, M. A.; Ezzibdeh, R. M.
2016-01-01
This study systematically investigates how polymer composition changes nanoparticle (NP) grafting and diffusion in solvated random copolymer thin films. By thermal annealing from 135 to 200 °C, thin films with a range of hydrophobicity are generated by varying acrylic acid content from 2% (SAA2) to 29% (SAA29). Poly(styrene-random-tert butyl acrylate) films, 100 nm thick, that are partially converted to poly(styrene-random-acrylic acid), SAA, reversibly swell in ethanol solutions containing amine-functionalized SiO2 nanoparticles with a diameter of 45 nm. The thermodynamics and kinetics of NP grafting are directly controlled by the AA content in the SAA films. At low AA content, namely SAA4, NP attachment saturates at a monolayer, consistent with a low solubility of NPs in SAA4 due to a weakly negative χ parameter. When the AA content exceeds 4%, NPs sink into the film to form multilayers. These films exhibit hierarchical surface roughness with a RMS roughness greater than the NP size. Using a quartz crystal microbalance, NP incorporation in the film is found to saturate after a mass equivalence of about 3 close-packed layers of NPs have been incorporated within the SAA. The kinetics of NP grafting is observed to scale with AA content. The surface roughness is greatest at intermediate times (5–20 min) for SAA13 films, which also exhibit superhydrophobic wetting. Because clustering and aggregation of the NPs within SAA29 films reduce film transparency, SAA13 films provide both maximum hydrophobicity and transparency. The method in this study is widely applicable because it can be applied to many substrate types, can cover large areas, and retains the amine functionality of the particles which allows for subsequent chemical modification. PMID:25689222
Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran
1999-01-01
A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.
NASA Astrophysics Data System (ADS)
Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.
2018-05-01
This study presents the investigation on crystallinity property of PbTiO3 thin films towards metal-insulator-metal capacitor device fabrication. The preparation of the thin films utilizes sol-gel spin coating method with low annealing temperature effect. Hence, structural and electrical characterization is brought to justify the thin films consistency.
Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making
Bhattacharya, Raghu Nath
2016-01-12
A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.
M.J. Wald; J.M. Considine; K.T. Turner
2013-01-01
Instrumented indentation is a technique that can be used to measure the elastic properties of soft thin films supported on stiffer substrates, including polymer films, cellulosic sheets, and thin layers of biological materials. When measuring thin film properties using indentation, the effect of the substrate must be considered. Most existing models for determining the...
NASA Astrophysics Data System (ADS)
Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong
2018-03-01
Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.
Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.
Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry
NASA Astrophysics Data System (ADS)
Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong
2010-10-01
Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.
Nanostructure and strain effects in active thin films for novel electronic device applications
NASA Astrophysics Data System (ADS)
Yuan, Zheng
2007-12-01
There are many potential applications of ferroelectric thin films that take advantage of their unique dielectric and piezoelectric properties, such as tunable microwave devices and thin-film active sensors for structural health monitoring (SHM). However, many technical issues still restrict practical applications of ferroelectric thin films, including high insertion loss, limited figure of merit, soft mode effect, large temperature coefficients, and others. The main theme of this thesis is the advanced technique developments, and the new ferroelectric thin films syntheses and investigations for novel device applications. A novel method of additional doping has been adopted to (Ba,Sr)TiO 3 (BSTO) thin films on MgO. By introducing 2% Mn into the stoichiometric BSTO, Mn:BSTO thin films have shown a greatly enhanced dielectric tunability and a reduced insertion loss at high frequencies (10-30 GHz). A new record of a large tunability of 80% with a high dielectric constant of 3800 and an extra low dielectric loss of 0.001 at 1 MHz at room-temperature was achieved. Meanwhile, the new highly epitaxial ferroelectric (Pb,Sr)TiO3 (PSTO) thin films have been synthesized on (001) MgO substrates. PSTO films demonstrated excellent high frequency dielectric properties with high dielectric constants above 1420 and large dielectric tunabilities above 34% at room-temperature up to 20 GHz. In addition, a smaller temperature coefficient from 80 K to 300 K was observed in PSTO films compared to BSTO films. These results indicate that the Mn:BSTO and PSTO films are both good candidates for developing room-temperature tunable microwave devices. Furthermore, crystalline ferroelectric BaTiO3 (BTO) thin films have been deposited directly on metal substrate Ni through a unique in-situ substrate pre-oxidation treatment. The highly oriented nanopillar structural BTO films were grown on the buffered layers created by the pre-oxidation treatment. No interdiffusion or reaction was observed at the interface. As-grown BTO films demonstrated good ferroelectric properties and an extremely large piezoelectric response of 130 (x 10-12 C/N). These excellent preliminary results enable the long-term perspective on the unobtrusive ferroelectric thin-film active sensors for SHM applications.
In-situ ellipsometry: applications to thin film research, development, and production
NASA Astrophysics Data System (ADS)
Kief, Mark T.
1999-07-01
Many industries including the optics industry, semiconductor industry, and magnetic storage industry are deeply rooted in the science and technology of the film materials and thin film based devices. Research in novel thin film systems and the engineering of artificial structures increasingly requires a control on the atomic scale in both thickness and lateral order. Development of the deposition and fabrication processes for these thin film structures requires technical sophistication and efficiency combined with an understanding of the multi-faceted process interactions. The production of these materials necessitates a remarkable degree of control to minimize scrap and assure good performance. Furthermore, in today's industry these operations must occur at an ever accelerating pace. In this article, we will review one technique which can make these challenges more tractable-- insitu ellipsometry. This is a very powerful tool which is capable of characterizing thin film processes in real-time. We review the art and illustrate with novel applications to metal thin film growth. In addition, we will illustrate how information obtained with insitu ellipsometry can predict the end use thin film properties such as the transport properties. In conclusion, further advances in insitu ellipsometry and its applications will be discussed in terms of needs and trends as a tool for thin film research, development and production.
Effect of cadmium incorporation on the properties of zinc oxide thin films
NASA Astrophysics Data System (ADS)
Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.
2018-02-01
Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.
Understanding strain-induced phase transformations in BiFeO 3 thin films
Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; ...
2015-05-01
Bismuth ferrite (BiFeO 3) is a promising lead free multiferroic with large polarization, ferroelectricity and robust antiferomagnetism. Experiments demonstrate that epitaxial strain substantially enhance the piezoelectric response of BiFeO 3 thin films. Here, through a synergestic combination of theory and experiments, we characterize the co-existing polymorphs (specifically an intermediate S' phase between the bulk rhombohedral-R and the pseudotetragonal T' phases) observed in strained BiFeO 3 thin films. We show that the S' phase, although energetically very close to the T' phase, exhibits structural similarities with the bulk R phase. G-type antiferromagnetic ordering is predicted for the S' and R phases,more » whereas, the G/C-type antiferromagnetic order types are energetically indistinguishable for the T' phase. Furthermore, we predict a blue-shift in the band gap Eg when moving from R to S' to T', which we confirm by Electron Energy Loss Spectroscopy measurements. The flat energy landscape and the absence of an energy barrier between the T and S' phases indicate that a reversible phase transformation between the two is possible under the application of an external electric field. This may make it possible to strain engineer the electromechanical response or, utilizing the corresponding changes in Eg, create unique photonic structures.« less
NASA Astrophysics Data System (ADS)
Gerbi, Andrea; Buzio, Renato; Kawale, Shrikant; Bellingeri, Emilio; Martinelli, Alberto; Bernini, Cristina; Tresca, Cesare; Capone, Massimo; Profeta, Gianni; Ferdeghini, Carlo
2017-12-01
We investigate with scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations the surface structures and the electronic properties of Fe1+y Te thin films grown by pulsed laser deposition. Contrary to the regular arrangement of antiferromagnetic nanostripes previously reported on cleaved single-crystal samples, the surface of Fe1+y Te thin films displays a peculiar distribution of spatially inhomogeneous nanostripes. Both STM and DFT calculations show the bias-dependent nature of such features and support the interpretation of spin-polarized tunneling between the FeTe surface and an unintentionally magnetized tip. In addition, the spatial inhomogeneity is interpreted as a purely electronic effect related to changes in hybridization and Fe-Fe bond length driven by local variations in the concentration of excess interstitial Fe cations. Unexpectedly, the surface density of states measured by STS strongly evolves with temperature in close proximity to the antiferromagnetic-paramagnetic first-order transition, and reveals a large pseudogap of 180-250 meV at about 50-65 K. We believe that in this temperature range a phase transition takes place, and the system orders and locks into particular combinations of orbitals and spins because of the interplay between excess interstitial magnetic Fe and strongly correlated d-electrons.
Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian
2017-12-13
Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharadwaja, S. S. N., E-mail: s.s.n.bharadwaja@gmail.com; Ko, S. W.; Qu, W.
Excimer laser assisted re-oxidation for reduced, crystallized BaTiO{sub 3} thin films on Ni-foils was investigated. It was found that the BaTiO{sub 3} can be re-oxidized at an oxygen partial pressure of ∼50 mTorr and substrate temperature of 350 °C without forming a NiO{sub x} interface layer between the film and base metal foil. The dielectric permittivity of re-oxidized films was >1000 with loss tangent values <2% at 100 Hz, 30 mV{sub rms} excitation signal. Electron Energy Loss Spectroscopy indicated that BaTiO{sub 3} thin films can be re-oxidized to an oxygen stoichiometry close to ∼3 (e.g., stoichiometric). High resolution cross sectional transmission electronmore » microscopy showed no evidence of NiO{sub x} formation between the BaTiO{sub 3} and the Ni foil upon excimer laser re-oxidation. Spectroscopic ellipsometry studies on laser re-oxidized [001]{sub C} and [111]{sub C} BaTiO{sub 3} single crystals indicate that the re-oxidation of BaTiO{sub 3} single crystals is augmented by photo-excitation of the ozone, as well as laser pulse induced temperature and local stress gradients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Irshad, E-mail: bhat.amu85@gmail.com; Husain, Shahid; Patil, S. I.
2015-06-24
We report the structural, morphological and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} (LTMO) thin film grown on (001) LaAlO{sub 3} single crystal substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) results confirm that the film has good crystalline quality, single phase, and c-axis orientation. The atomic force microscopy (AFM) results have revealed that the film consists of grains with the average size in a range of 20–30 nm and root-mean square (rms) roughness of 0.27nm. The resistivity versus temperature measurement exhibits an insulator to metal transition (MIT). We have noticed a huge value of magnetoresistance (∼93%)more » close to MIT in presence of 8T field. X-ray photoemission spectroscopy confirms the electron doping and suggests that Te ions could be in the Te{sup 4+} state, while the Mn ions stay in the Mn{sup 2+} and Mn{sup 3+} valence state.« less
Methods for preparing colloidal nanocrystal-based thin films
Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.
2016-05-10
Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.
NASA Astrophysics Data System (ADS)
Choudhary, Ritika; Chauhan, Rishi Pal
2017-07-01
The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.
Young's modulus measurement of aluminum thin film with cantilever structure
NASA Astrophysics Data System (ADS)
Lee, ByoungChan; Lee, SangHun; Lee, Hwasu; Shin, Hyungjae
2001-09-01
Micromachined cantilever structures are commonly used for measuring mechanical properties of thin film materials in MEMS. The application of conventional cantilever theory in experiment raises severe problem. The deformation of the supporting post and flange is produced by the applied electrostatic force and lead to more reduced measurement value than real Young's modulus of thin film materials. In order to determine Young's modulus of aluminum thin film robustly and reproducibly, the modified cantilever structure is proposed. Two measurement methods, which are cantilever tip deflection measurement and resonant frequency measurement, are used for confirming the reliability of the proposed cantilever structure as well. Measured results indicate that the proposed measurement scheme provides useful and credible Young's modulus value for thin film materials with sub-micron thickness. The proved validation of the proposed scheme makes sure that in addition to Young's modulus of aluminum thin film, that of other thin film materials which are aluminum alloy, metal, and so forth, can be extracted easily and clearly.
Printable CIGS thin film solar cells
NASA Astrophysics Data System (ADS)
Fan, Xiaojuan
2014-03-01
Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.
Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes
NASA Astrophysics Data System (ADS)
Ahmed, Moinuddin; Butler, Donald P.
2015-07-01
Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.
Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie
2012-01-05
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.
Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films
NASA Astrophysics Data System (ADS)
Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo
2001-08-01
The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr, Ti)O3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 °C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 °C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C-V characteristics, P-E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x-y alignment and the interface between electrode and PZT in MFM capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuanyuan; Yang, Mengjin; Pang, Shuping
Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(=NH)NH2 (formamidine or FA) gas at 150 degrees C, which leads to rapid displacement of the MA+ cations by FA+ cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapidmore » chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach -18%.« less
NASA Astrophysics Data System (ADS)
Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko
2018-04-01
The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.
Structural and morphological study on ZnO:Al thin films grown using DC magnetron sputtering
NASA Astrophysics Data System (ADS)
Astuti, B.; Sugianto; Mahmudah, S. N.; Zannah, R.; Putra, N. M. D.; Marwoto, P.; Aryanto, D.; Wibowo, E.
2018-03-01
ZnO doped Al (ZnO:Al ) thin film was deposited on corning glass substrate using DC magnetron sputtering method. Depositon process of the ZnO:Al thin films was kept constant at plasma power, deposition temperature and deposition time are 40 watt, 400°C and 2 hours, respectivelly. Furthermore, for annealing process has been done on the variation of oxygen pressure are 0, 50, and 100 mTorr. X-ray diffraction (XRD), and SEM was used to characterize ZnO:Al thin film was obtained. Based on XRD characterization results of the ZnO:Al thin film shows that deposited thin film has a hexagonal structure with the dominant diffraction peak at according to the orientation of the (002) plane and (101). Finally, the crystal structure of the ZnO:Al thin films that improves with an increasing the oxygen pressure at annealing process up to 100 mTorr and its revealed by narrow FWHM value and also with dense crystal structure.
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
Computational Study of In-Plane Phonon Transport in Si Thin Films
Wang, Xinjiang; Huang, Baoling
2014-01-01
We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061
Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut
Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less
Magnetoelastic Properties of Magnetic Thin Films Using the Magnetooptic Kerr Effect
NASA Astrophysics Data System (ADS)
Mayo, Elizabeth; Lederman, David
1998-03-01
The magnetoelastic properties of Co and Fe thin films were measured using the magnetooptic Kerr effect (MOKE). Films were grown via magnetron sputtering on thin mica substrates. Magnetization loops were measured using MOKE with the magnetic field along different in-plane directions. Subsequently, the samples were mounted on a cylindrical sample holder, which imposed a well-defined strain to the film. This caused the magnetization loops to change dramatically due to the magnetoelastic coefficient of the thin film materials. The effects of the surface roughness and film thickness will also be discussed.
Petsagkourakis, Ioannis; Pavlopoulou, Eleni; Portale, Giuseppe; Kuropatwa, Bryan A.; Dilhaire, Stefan; Fleury, Guillaume; Hadziioannou, Georges
2016-01-01
Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing. PEDOT:Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the PEDOT:Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK2 has been readily obtained for PEDOT:Tos thin films following this methodology. PMID:27470637
NASA Astrophysics Data System (ADS)
Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.
2018-06-01
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
Petsagkourakis, Ioannis; Pavlopoulou, Eleni; Portale, Giuseppe; Kuropatwa, Bryan A; Dilhaire, Stefan; Fleury, Guillaume; Hadziioannou, Georges
2016-07-29
Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing. Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK(2) has been readily obtained for Tos thin films following this methodology.
Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.
Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P
2007-09-01
Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.
Multi-layer assemblies with predetermined stress profile and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2003-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.
2006-01-01
A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.
Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-01-01
We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.
Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films
NASA Astrophysics Data System (ADS)
Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng
2013-03-01
A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Andrei; Kirianov, Eugene; Zlenko, Albina
The effect of substrates on the magnetic and transport properties of Ni{sub 2}Mn{sub 1.5}In{sub 0.5} ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude thatmore » the energy difference between the FM austenite and FiM martensite states in Ni{sub 2}Mn{sub 1.5}In{sub 0.5} films grown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni{sub 2}Mn{sub 1.5}In{sub 0.5} film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.« less
Oxygen vacancy induced room temperature ferromagnetism in (In1-xNix)2O3 thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Deepannita; Kaleemulla, S.; Kuppan, M.; Rao, N. Madhusudhana; Krishnamoorthi, C.; Omkaram, I.; Reddy, D. Sreekantha; Rao, G. Venugopal
2018-05-01
Nickel doped indium oxide thin films (In1-xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1-xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1-xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1-xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.
Gas Permeation in Thin Glassy Polymer Films
NASA Astrophysics Data System (ADS)
Paul, Donald
2011-03-01
The development of asymmetric and composite membranes with very thin dense ``skins'' needed to achieve high gas fluxes enabled the commercial use of membranes for molecular level separations. It has been generally assumed that these thin skins, with thicknesses of the order of 100 nm, have the same permeation characteristics as films with thicknesses of 25 microns or more. Thick films are easily made in the laboratory and have been used extensively for measuring permeation characteristics to evaluate the potential of new polymers for membrane applications. There is now evidence that this assumption can be in very significant error, and use of thick film data to select membrane materials or predict performance should be done with caution. This presentation will summarize our work on preparing films of glassy polymers as thin as 20 nm and characterizing their behavior by gas permeation, ellipsometry and positron annihilation lifetime spectroscopy. Some of the most important polymers used commercially as gas separation membranes, i.e., Matrimid polyimide, polysulfone (PSF) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), have been made into well-defined thin films in our laboratories by spin casting techniques and their properties studied using the techniques we have developed. These thin films densify (or physically age) much faster than thicker films, and, as result, the permeability decreases, sometimes by several-fold over weeks or months for thin films. This means that the properties of these thin films can be very different from bulk films. The techniques, interpretations and implications of these observations will be discussed. In a broader sense, gas permeation measurements can be a powerful way of developing a better understanding of the effects of polymer chain confinement and/or surface mobility on the behavior of thin films.
SHI irradiation effect on pure and Mn doped ZnO thin films
NASA Astrophysics Data System (ADS)
Khawal, H. A.; Raskar, N. D.; Dole, B. N.
2017-05-01
Investigated the structural, surface, electrical and modifications induced by Swift Heavy Ions (SHI) irradiation on pure and Mn substituted ZnO thin films were observed. Thin films of Zn1-xMnxO (x = 0.00, 0.04) were synthesized using the dip coating technique. All thin films irradiated by Li3+ swift heavy ions with fluence 5 × 1013 ions/cm2. The XRD peak reveals that all the samples exhibit wurtzite structures. Surface morphology of samples was investigated by SEM, it was observed that pristine samples of ZnO thin film shows spherical shape but for 4 % Mn substituted ZnO thin film with 5 × 1013 ions/cm2 fluence, it reveals that big grain spherical morphology like structure respectively. I-V characteristics were recorded in the voltage range -5 to 5 V. All curves were passed through origin and nearly linear exhibit ohmic in nature for the films.
Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Yao, Shun
2015-06-01
High-quality coatings of fluoride materials are in extraordinary demand for use in deep ultraviolet (DUV) lithography. Gadolinium fluoride (GdF3) thin films were prepared by a thermal boat evaporation process at different substrate temperatures. GdF3 thin film was set at quarter-wave thickness (∼27 nm) with regard to their common use in DUV/vacuum ultraviolet optical stacks; these thin films may significantly differ in nanostructural properties at corresponding depositing temperatures, which would crucially influence the performance of the multilayers. The measurement and analysis of optical, structural, and mechanical properties of GdF3 thin films have been performed in a comprehensive characterization cycle. It was found that depositing GdF3 thin films at relative higher temperature would form a rather dense, smooth, homogeneous structure within this film thickness scale.
NASA Astrophysics Data System (ADS)
Wen, Jici; Wei, Yujie; Cheng, Yang-Tse
2018-05-01
During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the curvature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b) small deformation holds. Here, we demonstrate that the change in elastic properties can influence the measurement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the Stoney-equation for in-situ stress measurements of thin film electrodes.
[Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].
Tang, Xiaoshan; Li, Da
2010-12-01
Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.
Pulsed photonic fabrication of nanostructured metal oxide thin films
NASA Astrophysics Data System (ADS)
Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.
2017-09-01
Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.
a Brief Survey on Basic Properties of Thin Films for Device Application
NASA Astrophysics Data System (ADS)
Rao, M. C.; Shekhawat, M. S.
Thin film materials are the key elements of continued technological advances made in the fields of optoelectronic, photonic and magnetic devices. Thin film studies have directly or indirectly advanced many new areas of research in solid state physics and chemistry which are based on phenomena uniquely characteristic of the thickness, geometry and structure of the film. The processing of materials into thin films allows easy integration into various types of devices. Thin films are extremely thermally stable and reasonably hard, but they are fragile. On the other hand organic materials have reasonable thermal stability and are tough, but are soft. Thin film mechanical properties can be measured by tensile testing of freestanding films and by the micro beam cantilever deflection technique, but the easiest way is by means of nanoindentation. Optical experiments provide a good way of examining the properties of semiconductors. Particularly measuring the absorption coefficient for various energies gives information about the band gaps of the material. Thin film materials have been used in semiconductor devices, wireless communications, telecommunications, integrated circuits, rectifiers, transistors, solar cells, light-emitting diodes, photoconductors and light crystal displays, lithography, micro- electromechanical systems (MEMS) and multifunctional emerging coatings, as well as other emerging cutting technologies.
Qi, Zhi-mei; Wei, Mingdeng; Honma, Itaru; Zhou, Haoshen
2007-02-02
Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.
NASA Astrophysics Data System (ADS)
Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.
2011-10-01
Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.
NASA Astrophysics Data System (ADS)
Hu, Han; Sun, Ying
2013-11-01
Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.
Doping induced c-axis oriented growth of transparent ZnO thin film
NASA Astrophysics Data System (ADS)
Mistry, Bhaumik V.; Joshi, U. S.
2018-04-01
c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.
Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.
Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen
2018-01-10
Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.
Indium tin oxide thin film strain gages for use at elevated temperatures
NASA Astrophysics Data System (ADS)
Luo, Qing
A robust ceramic thin film strain gage based on indium-tin-oxide (ITO) has been developed for static and dynamic strain measurements in advanced propulsion systems at temperatures up to 1400°C. These thin film sensors are ideally suited for in-situ strain measurement in harsh environments such as those encountered in the hot sections of gas turbine engines. A novel self-compensation scheme was developed using thin film platinum resistors placed in series with the active strain element (ITO) to minimize the thermal effect of strain or apparent strain. A mathematical model as well as design rules were developed for the self-compensated circuitry using this approach and close agreement between the model and actual static strain results has been achieved. High frequency dynamic strain tests were performed at temperatures up to 500°C and at frequencies up to 2000Hz to simulate conditions that would be encountered during engine vibration fatigue. The results indicated that the sensors could survive extreme test conditions while maintaining sensitivity. A reversible change in sign of the piezoresistive response from -G to +G was observed in the vicinity of 950°C, suggesting that the change carrier responsible for conduction in the ITO gage had been converted from a net "n-carrier" to a net "p-carrier" semiconductor. Electron spectroscopy for chemical analysis (ESCA) of the ITO films suggested they experienced an interfacial reaction with the Al2O3 substrate at 1400°C. It is likely that oxygen uptake from the substrate is responsible for stabilizing the ITO films to elevated temperatures through the interfacial reaction. Thermo gravimetric analysis of ITO films on alumina at elevated temperatures showed no sublimation of ITO films at temperature up to 1400°C. The surface morphology of ITO films heated to 800, 1200 and 1400°C were also evaluated by atomic force microscopy (AFM). A linear current-voltage (I--V) characteristic indicated that the contact interface between the ITO and platinum was ohmic in nature. The small specific contact resistivities were determined in the range of 10-3 to 10-1 Ocm2 from room temperature up to 1400°C using a transmission line model (TLM).